
POLITECNICO DI TORINO
Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

Neural Network Based Algorithm for
Multi-UAV Coverage Path Planning

Supervisors

Giorgio GUGLIERI

Simone GODIO

Candidate

Giovanni SANNA

April 2021

Summary

Unmanned Aerial Vehicles, better known as drones, have become an eye in the sky
to aid men with a perspective from above. They provide real-time, high-resolution
imagery at low cost. Originally thought for military applications, UAVs have
found their way into mainstream usage thanks to the enhanced levels of safety
and efficiency they bring. Robotic UAVs operate without an onboard pilot; the
trend is of continuous evolution with an ever increasing level of automation. On
the other side, Artificial Neural Networks lead the cutting-edge machine learning
techniques, whose purpose is to render machines more and more intelligent by
means of bio-inspired models.
This work combines both the potential of artificial intelligence with drone-based
surveillance capabilities - a fleet of AI-driven UAVs executes the Coverage Path
Planning of a complex-shaped urban areas. The outcome is a strategic selection
and planning of the trajectories over a map - while accounting for congestion, colli-
sions, and image overlapping issues. The decision-making process is delivered by a
balanced “explicit vs implicit” programming. The algorithm relies on a mixed-use
of decentralized Artificial Neural Networks which confers elementary cognitive skills
to each UAV, and a modified version of the famous A* pathfinder. Moreover, the
training session of the Neural Network completely bypasses common drawbacks
such as the need of large labeled databases or high computational resources.
Particular attention is given to the scenario developed in the occasion of the
Leonardo Drone Contest, proposed by the homonymous company. Further case
studies focus on real urban areas, for which the grid resolution of the traditional
Coverage Path Planning approaches can’t model the problem with sufficient accu-
racy.

Keywords: Neural Network, Artificial Intelligence, UAV, Supervised Imitation
Learning, Urban Coverage Path Planning.

Table of Contents

1 Introduction 1

2 Neural Machine Learning 6
2.1 General features . 6

2.1.1 Relation between AI and Neural Network 6
2.1.2 Perceptron Model . 8
2.1.3 Neural Nomenclature - Multilayered Perceptron 10
2.1.4 Activation functions . 13
2.1.5 The Universal Approximation Theorem 15

2.2 Supervised Learning Process . 18
2.2.1 Types of Learning . 18
2.2.2 What does learning means? 19
2.2.3 Loss function . 20
2.2.4 Gradient Descent . 22
2.2.5 Issues . 29

3 Inside the Neural Network 32
3.1 Dataset . 32

3.1.1 Dataset division . 32
3.1.2 Handwritten Digits Recognition 34
3.1.3 Occupancy Grids and Maps. 35

3.2 The Neural Network . 38
3.2.1 Network Input - State and Sensors 38
3.2.2 Neural Network Design . 39
3.2.3 Neural Network Architecture 42

3.3 Expert System . 45
3.3.1 Imitation Learning . 45

3.4 Data Pipeline . 48

iv

4 Algorithm 50
4.1 Assumptions . 50
4.2 Algorithm Overview . 52
4.3 Zone creation . 53
4.4 Path-finding algorithm . 59
4.5 Flowchart . 62

5 Results & Simulation 66
5.1 Evaluation Metrics . 66
5.2 Results . 68
5.3 Simulation in ROS . 78

6 Conclusion 81

Acronyms 86

List of Symbols 88

List of Tables 90

List of Figures 91

Bibliography 97

v

Chapter 1

Introduction

Multi-robot Coverage Path Planning (mCPP) is a well-known problem that inter-
ests researchers all over the world. The growing popularity of Unmanned Aerial
Systems (UAS) sheds light on new fields of application: among them, the aerial
coverage path planning in urban environments has very unique features for which
the use of traditional coverage algorithms could prove problematic. Coverage path
planning is defined as:
"[1]Coverage Path Planning is the task of determining a path that passes overall
points of an area or volume of interest while avoiding obstacles.”
This task is integral to many robotic applications, such as vacuum cleaning robots,
painter robots, demining robots, lawnmowers, automated harvesters, window clean-
ers, and inspection of complex structures, just to name a few[1]. For UAV applica-
tions, a slight deviation from the traditional CPP definition leads to a complete
change of paradigm. In fact, because of their very nature, UAVs do not need to
physically pass over through all the points in the area: to explore the scene, it is
sufficient for the point to be within the frame of the camera. The CPP problem,
especially harsh in its multi-agent version, has been tackled with a multitude of
different proposals, collected in several documents in line with the established scien-
tific research field. In 1998, H. Choset reported a first analysis of CPP state of the
art in Coverage for Robotics - A survey of recent results[1], a reference document for
future development that explored heuristic methods, squared grid-based algorithm,
as well as approximate, partial-approximate, and exact cellular decomposition. It
was the early ’00s and the robotic target of the document was shaded with a kind of
vagueness, enough that the author himself declares that the document was focused
on "mobile robots constrained to operate in the plane". Later on, in 2013, the survey
[2]"A Survey on Coverage Path Planning for Robotics" carried out an analysis on
the state of the art CPP developed in the previous ten years. Compared to Choset’s
document[1], it is possible to assist to a drastic increase in the number of explored

1

Introduction

solutions, from hexagonal grids to Morse function based decomposition, from to
spanning tree to wave-front algorithm, with an introduction to a non-learning
version of a neural network. Moreover, the coverage path planning began to involve
landmark-based and 3D coverage, to witness the explosion of UAV applications in
the mainstream and the gained interest of the coverage path planning from the
world of scientific research. More recent surveys include [3]Survey on path and view
planning for UAVs (2019) and [4]Survey on Coverage Path Planning with Unmanned
Aerial Vehicles (2018), where a wide set of solutions is deeply analyzed, highlight-
ing the pros and cons of each method. In order to plan a path, most approaches
use space discretization over an occupancy grid with squared cells, which allows
the creation of known optimal trajectories e.g. the "back and forth" or "spiral",
while avoiding image overlapping between consequential scans. Those traditional
approaches align the camera Field Of View (FOV) with the cells of the occupancy
grid, where the cell is the size of the robot footprint: this makes it possible to treat
UAV applications just like any other terrestrial robot. This approach is useful in
surroundings with low obstacle density and in applications such e.g. surveillance,
smart farming, photogrammetry, disaster management, and wildfire tracking. The
offline multi-robot coverage path planning literature contains plenty of elegant
solutions: e.g. in [5]"A Bioinspired Neural Network-Based Approach for Cooperative
Coverage Planning of UAVs" (2021), a non-trained version of a neural network
is explored; the multi-agent decision making is delegated to a dynamic cost-map
where each agent moves following the negative gradient of the cost function over
the discrete network. In [6]"Near-optimal coverage trajectories for image mosaicing
using a mini quad-rotor over irregular-shaped fields" (2013), Valente et al present a
wavefront approach, a flooding algorithm that marks the neighborhood adjacency of
cells. This method decomposes the target area and converts it into a regular graph
numerically labeled by the wavefront algorithm. By using a Deep-Limited Search
(DLS) among adjacent cells, the flooding mechanism is capable to determine a start
to end trajectory without visiting previously explored nodes for a single UAV case.
In [7] Fractal Trajectories for Online Non-Uniform Aerial Coverage (2015), uniform
coverage path planning is explored with the Hilbert curves and their properties,
resulting in fractal trajectories which evenly covers the map underneath. Moreover,
this approach contemplates also planning for a discrete fixed height by changing
the order of the Hilbert curve, although it has been implemented only in the single-
agent case. In [8]A*-Based Solution to the Coverage Path Planning Problem (2017),
the problem is faced with the A* pathfinder, adapted in order to find a trajectory
that minimizes the number of turns while accounting for the complete coverage
of non-convex environments. Other architectures include [9] harmony search, [10]

genetic algorithm, and [11] chaotic ant colony optimization. Those 2D methods are
not fruitful in urban applications with a high density of complex-shaped obstacles,
since the grid resolution is not dense enough to allow for optimal planning. Too

2

Introduction

low resolution would miss urban complexity, too high resolution would require low
flight height from terrain and non-optimal trajectories in urban environments with
large, obstacle-free, explorable areas. This work presents a Multi-UAV Coverage
Path Planning algorithm that uses a compatible space resolution with real urban
maps while keeping the exploration bi-dimensional. The tight grid allows planning
smoother and precise trajectories that can follow urban shapes. The core of the
algorithm uses a pre-trained Artificial Neural Network (ANN) to decide the next
action to take based on the UAV’s current local state. The use of artificial neural
networks has been tested both in the trained and non-trained versions, but only
a few used Artificial Intelligence (AI) to complete the multi-robot coverage path
planning task. For those applications, the training stage is usually faced with
Multi-Agent Reinforcement Learning (MARL). Several MARL architectures can
be implemented, each one with its strengths and weaknesses. The basic idea
behind decentralized architectures is: each agent (UAV) senses its state from the
environment (e.g. presence of obstacles). Based on its state, it decides what action
to take (e.g. move right) and interacts with the environment (the map): the agent
receives positive rewards if the action had positive consequences or vice-versa. After
a long training, the agent learns a policy to map states to actions to maximize
the expected discounted return. This process is not trivial at all, and requires an
expensive amount of computational time as the exploration of the environment
leads to a huge set of possible states. In 2019, Google DeepMind showed MARL
incredible capabilities by creating AlphaStar, an AI-driven player of the game
StarCraft II, which defeated several professional players. The action space was so
huge that each agent would need an equivalent experience of up to 200 years of
real-time plays to reach useful performances. The training session of the neural
networks was designed in several precise steps. In one step of the training, the
AI was trained on Human priors, collecting data from an expert player and using
them as a training basis. Brand new neural networks that still need training are
likely to select actions without any meaning or strategy.; the first strategic choices
manifest themselves after thousands, if not millions of training iterations. By
using expert priors, AlphaStar skipped this "dumb agent" phase and the randomic
exploration, restricting drastically the learning time and starting with an advanced
infant stage. This technique is called Imitation Learning as the solution is guided
and the learning neural networks have a solid foundation to start from. Among
the learning paradigms, Imitation Learning is usually implemented with Reinforce-
ment Learning (RL), since the tuple {State, Action, Probability, Reward} of the
Markov Decision Process (MPD) creates a strong framework for decision-making
applications. This work of thesis stands out the Imitation Learning capabilities
used in conjunction with Supervised Learning for the multi-UAV coverage path
planning problem. Classical taxonomy divides learning paradigms according to the
practical uses and potential of the model. Problems related to decision-making

3

Introduction

are usually delegated to Reinforcement Learning (RL) due to its nature, while
Supervised Learning is applied in problems of classification, image recognition, or
data regression. However, unlike RL, training times of supervised networks are
reduced by several orders of magnitude compared with RL: this feature has moved
the target of this work from reinforcement machine learning to supervised. The
first months of work focused on simulations in which the goal was to maximize
the expected reward of the problem using a Deep-Q-Network (DQN), in which the
reward was proportional to the number of cells explored by the UAV. Regardless
of the complexity of the map to be explored, computational times were such as
to require the support of High-Performance Computing (HPC) clusters of the
Politecnico di Torino. Reducing the planning problem to an image classification
problem, it was possible to deal with a decision-making problem with supervised
techniques. The migration from the Deep-Q-Network algorithm to Supervised
Learning made training times collapse from days to minutes, with equivalent per-
formance to more than 10 days of RL training. On the other hand, supervised
learning relies on labeled datasets for the training session, where each state and
action pair (in general input feature and class) must be available. The need for a
consistent base of data to learn from is the main drawback of Supervised Learning,
as it requires thousands of samples to have a performing network able to generalized
what it has learned. To overcome this issue the dataset used in this work has
been created by collecting experiences from an expert system, that can be both a
human or an expert algorithm. Each UAV uses an artificial neural network to sense
the nearby environment information and then decide what action or movement
to take. The network learns to imitate those data, and it is able not only to
reproduce the expert behaviour with outstanding accuracy but can to find common
patterns among the training data and predict the next action to take also from
never seen states. This ability is called generalized learning and lets the network
transfer decision-making policies from previous situations to new ones. Moreover,
the imitation framework used to collect the experiences from the expert system
records entries for a single-agent case in simplified environments. This inductive
approach shows further generalized learning capabilities since the network is trained
for a single-agent case while the final applications involve multi-agent scenarios.
The whole project has been coded in Python v3.7, since it is the leading Object
Oriented Programming (OOP) language in the machine learning field. The entire
design of the artificial neural network passed through the Keras Python libraries,
included in TensorFlow. Google Maps was used to aid the creation of the real
urban maps, modeled as occupancy grid matrices in MS Excel.
In Chapter 2 - Neural Machine Learning, the artificial neural network model is
introduced, from the first bio-inspired perceptron of Rosenblatt (1958) to complex
state-of-art networks. This overview introduces the basics features of an ANN

4

Introduction

as structural architecture, hyper-parameters, design issues, and machine learning
potential. Particular attention is paid to the two flows of information that govern
the behavior of the network, namely the forward propagation, which is responsible
for the network prediction, and backward propagation, which implements the
gradient descent algorithm to tune networks’ parameters leading to an "Artificial
Intelligent" network.
In Chapter 3 - Inside the Neural Network, the artificial neural network used for
the simulation is presented in detail, from the network design to the training
process. Particular attention is paid to the input vector, whose choice was crucial
for the desired outcomes. Moreover, the whole data pipeline is introduced, from
the imitation framework to the data partition over the three main data-subsets:
training, validation, and testing. Finally, an overview of data augmentation is given,
describing the process that led to the achievement of the 54,000 entries present in
the current database.
In Chapter 4 - Algorithm, it is presented a modified version of the A* pathfinder,
and its synergistic use with the neural network. The whole logical flowchart is
presented, highlighting both the potential and the criticalities of the algorithm,
presenting an innovative approach that aims not only at the cooperation of UAVs
but also at their collaboration. Moreover, the combined use of the Lloyd Algorithm
and Voronoi Diagrams is presented to divide the target explorable space and en-
hance strategic coverage.
In Chapter 5 - Results & Simulation, a base of evaluation metrics is used to
evaluate the quality of the results over real urban maps, accounting exploration
rates, congestion, strategy, and energetic constraints. Particular attention is given
to the case study presented in the Leonardo Drone Contest, whose performances
are simulated in a 3D environment using Robotic Operating System (ROS) and
Gazebo.
In the final Chapter 6 - Conclusion, the main points of the whole work are resumed,
analyzing critically both strengths and weaknesses of the proposed algorithm, laying
the basis of further development and future works.

5

Chapter 2

Neural Machine Learning

The strategic coverage requires a coordinated sequence of actions from each UAV:
the limited storage capacity of energetic resources requires efficient trajectories
that minimize the amount of in-flight time while avoiding collisions. At each
time-step each UAV must select the most convenient action: in this context, the
decision-making process is entrusted to a balanced use between Artificial Neural
Networks and Path-finding Algorithms. The network confers elementary cognitive
skills to each agent, which decides the next action based on the sensed surrounding
state. This chapter describes the Artificial Neural Network model: from the basic
architecture concept to the information propagation, the mathematical model,
practical issues, and finally, the training process that leads to Artificial Intelligence.

2.1 General features

2.1.1 Relation between AI and Neural Network
Our society is driven by Artificial Intelligence. The growing development and fame
of this field, in conjunction with Machine Learning, leads often to improper use
of the term. A definition of AI is given by Bill Brock, VP of engineering at Very:
".AI, simply stated, is the concept of machines being able to perform tasks that
seemingly require human intelligence ...". There are mainly two ways to create an
AI machine. The first one is by using explicit programming, where each action is
coded and the output is the result of complex but clear cause and effect relations.
The machine follows an exact complex logical structure to accomplish the task. In
explicit programming, the code is written to reflect the programmer’s will through
a fully planned flow of events. The second one is by using implicit programming.
The program is still coded by a human, but the logical process that leads to the
result is created by the machine itself, usually learning from a trial and error

6

Neural Machine Learning

process with some random influences. In this sense, Machine Learning covers only
a subset of Artificial Intelligence. This latter approach has unique features whose
potentialities interested researchers all over the world. On the other side, the usage
of those self-taught machines in real-life applications raises security issues for which
the model can not be treated as a black-box, especially in critical operations such
as (e.g.) surgery operations or economic predictions. This paradigm opens up
a wide range of studies, including Machine Learning Explainability, whose goal
is to untangle machines’ decision process. The Artificial Neural Network is one
of the most promising models in the Machine Learning universe. It follows that
Machine Learning can be implemented into several ways: one of them is by means of
Artificial Neural Networks, although other models exist, such as (e.g.) the tabular
Q-Learning. The set relation between AI, ML, and ANN can be summarized as
follows:

Artificial Neural Network ⊂Machine Learning ⊂ Artificial Intelligence

For the sake of completeness, it is necessary to specify that Artificial Neural
Networks exist also in the non-learning version, for which Machine Learning is not
involved. However, in the greatest majority of use cases, it refers to the trained
version. Neural networks are mathematical models that allow the resolution of
problems in which explicit programming is difficult. The range of application is
particularly broad, ranging from decision making to computer vision. An example
of pattern recognition based on neural networks is shown in Figure 2.1, in which a
UAV is engaged to aid a search and rescue operation (SAR). The image shows how
it can recognize the injured in real time using only the on-board instrumentation.

Figure 2.1: [12] UAV engaged in a SAR operation - neural networks aid the
computer vision to recognize injured. Thanks to convolutional layers, pattern
recognition can occur on multiple objects (classes) in the same image.

7

Neural Machine Learning

2.1.2 Perceptron Model
Perceptron is the elementary constituent unit of an artificial neural network and it
itself constitutes the simplest network, with only one layer and one output unit.
It was developed in the 1950s and 1960s by the scientist Frank Rosenblatt in the
field of psychology, to achieve a simplistic mathematical model of how the human
brain works.[13] The Perceptron aims to emulate the behaviour single a neuron.
With reference to Figure 2.2, where the isolated perceptron is shown, and Figure
2.3, where the perceptron is immersed in a generic network, it can be thought as a
computational unit which performs a two-step calculation, showed in Equation 2.1,
(a) (b): z1

1 = qn
i=1 w1

i1a
0
i + b1

1 (a)
a1

1 = σ1(z1
1) (b)

(2.1)

þw1
1 =


w1

11
w1

21
...

w1
n1

 þa0 =


a0

1
a0

2
...

a0
n


The input of the network is the feature vector þa0 ∈ Rn, broken down into its
components a0

1, a0
2, ..., a0

n. The superscript number is not to be confused with the
pow operation, but it indicates the layer of the activation number, while the
subscript number indicates the progressive enumeration of the neurons of the layer
indicated in the superscript, Figure 2.3. This feature vector is usually an external
input that represents the state of the problem. The output of the perceptron is
the activation a1

1 ∈ R, and it is the result of the two-step calculation of Equation
2.1 that is fired in the outbound link. The relation many-to-one suggests the
traveling direction in which the information propagates. When the information
propagates from the input layer to the output layer, left to right as in this case,
the propagation is called forward propagation. The first step of the calculation is
a linear weighted sum of all elements of the input vector þa0 weighed according to
the weight of the corresponding connection, plus a bias term that is internal to the
perceptron that produces the intermediate quantity z1

1 ∈ R. The second step of
calculation applies a generic scalar function to z1

1 , σ1 : R → R , producing the
output a1

1. This function is called activation function, and its role is fundamental
to achieve the non-linear desired behaviour, the details of which are described in
the Subsection 2.1.4. Notice that the perceptron is fully connected with all other
neurons contained in the input layer and for that reason, those types of networks
are called "Dense".

8

Neural Machine Learning

Figure 2.2: The Perceptron - visualization of the computational unit. The
perceptron, represented through the circle, is connected with the outside through
several incoming edges and one outgoing connection edge. Inbound links provide
inputs to the computational unit, i.e. the activation of the previous level, which
the perceptron uses to produce the output through Equations 2.1 (a) and (b). The
output is then propagated toward the next unit thanks to the outbound connection.
Figure 2.3 shows an example of a perceptron immersed in a network.

Figure 2.3: A perceptron immersed in a network - it is shown its connection with
the input layer. The input layer has n several units which are activated from an
external source: a0

1, a0
2, ..., a0

n. The input propagates toward the perceptron using
the edges, where the Equation 2.1 computes the output a1

1. Noticed that while the
weight values are proper of each edge, the bias term is contained in the perceptron
and not visible, as well as the activation function.

The perceptron was critically discussed by Marvin Minsky and Seymour Papert
in the 1969 book "Perceptrons: an introduction to Computational Geometry"

9

Neural Machine Learning

showing that the class of functions it was able to discriminate was limited to
linearly separable forms. The proposed problem was to divide the solutions of the
Exclusive-OR XOR function. Placing the truth table data in a Cartesian system it
is clear that the perceptron would not be able to learn this problem simply because
there is no decision surface to separate the inputs from the outputs with a straight
line, as shown in Figure 2.4.

Figure 2.4: On the right, the XOR Boolean truth table. On the right, the function
represented on the Cartesian plane.

The perceptron’s reduced computational capacity led to a loss of interest in the
subject for more than 10 years, ending what the mathematician Douglas Hofstadter,
author of "Godel, Escher and Bach", had defined as the golden age of dreams
boolean of artificial intelligence. It was only through the development of multilayer
networks and the error back-propagation algorithm, introduced in 1986, that interest
in artificial neural networks was reignited. By connecting multiple perceptrons
together, it is possible to create more complex neural networks with multiple
intermediate layers as well as multiple output networks, as the Deep Neural
Networks, and overcome the limits of the single-perceptron model.

2.1.3 Neural Nomenclature - Multilayered Perceptron
Neural networks are involved in most cutting-edge machine learning use cases.
As a consequence, research is constantly focused on this field and the literature
continuously evolves, creating plenty of variations from the standard models.
However, all variations present some common key elements that render the following
nomenclature particularly useful for the understanding of this document. The
reference architecture is a generic Standard Fully Connected Artificial Neural
Network with multiple outputs - Fig 2.5. Each circle represents a Neuron, also
called a Unit or Node. Neurons are stacked in vertical piles called layers. There
are three types of layers. The Input Layer is the starting point of the forward
propagation; its neurons are initialized with an external source of information, and

10

Neural Machine Learning

Figure 2.5: A Standard Fully Connected Artificial Neural Network with four
output. This network has an architecture with 3 computational layers, two of which
are hidden and the last one is the output. The input vector contains 17 feature
information, each of which constitutes the activation of a neuron.

only propagates towards the next layer. On the other side, the Output Layer is
the final computation layer; it only receives information from the previous layer

11

Neural Machine Learning

and constitutes the arrival point. All the other layers that are Input nor Output
Layers are called Hidden Layers. The number of total layers, indicated with L,
is the sum of hidden layers plus the output layer: the input layer is not counted
as the input neurons are filled with external information and does not compute
Equation 2.1: in the network in Figure 2.5 there are L = 3 three layers. Each unit
fires in output a quantity that is called activation and is generally indicated with
ali, indicating the activation of the i-th neuron of the layer l. Note that the same
activation is fired in all the outbound links indistinctly. The last graphical element
is the edge. Edges, also called Synapses or Connections or Links, joint together two
neurons and represent how information is propagated through the network. Each
connection has an associated value called weight, as anticipated in the perceptron
model. When an activation value propagates through an edge, its value is weighted
with the correspondent edge value. The notation to represent a generic weights is
wl
ij: this indicates the connection between the i-th neuron of the layer l − 1 with

the j-th neuron of the layer l. The activation of a generic unit ali is a function of
the input weights, of each activation of the previous level, of the activation function
and finally of the bias term bli. There is a bias term for each neuron, and the set
of all biases and all connection weights constitute the set of trainable parameters,
which are tuned during the training session to make the network learn. Each layer
l has an associated activation function σl that is unique for all the units of the
correspondent layer. Note that each Unit of each Layer is connected to each other
Unit of the previous and the subsequent layer (if any): the traditional taxonomy
calls this type of connection between layers Fully Connected or Dense. Finally,
regardless of the verse of propagation, those type of architecture where the output
does not influence the input are called Feed-forward networks, in contrast with
Feed-back networks which have feedback edges that link the Output Layer with
the Input Layer, and that characterize another type of networks called Recurrent
Neural Networks. For standard networks, as reference one showed in Figure 2.5,
the forward propagation can be summarized in the following four steps:

Step 1: initialization – the input layer is filled with an external state.

Step 2: propagation – each input neuron is fired toward the following layer and
weighted with the weight of the correspondent link in which the information
is traveling.

Step 3: computation – each neuron of the following layer receives the propagated
information, computes Equation 2.1, and fires again the information toward
the following layer.

Step 4: iteration – Step 2 and Step 3 are iterated until the output layer is filled
and results can be read.

12

Neural Machine Learning

2.1.4 Activation functions

The activation function plays a fundamental role in both computations for
forward-propagation and the training mechanism. If each unit performed only the
first step described in Equation 2.1, the output level would contain only linear
combinations of the initial vector þa0. In its original publication, referring to human
neurons, Rosenblatt stated:[13]"If the algebraic sum of excitatory and inhibitory
impulse intensities is equal to or greater than the threshold (b) of the A-unit, then
the A-unit fires, again on an all-or-nothing basis", where A-unit is the equivalent
to a Node, Unit or Neuron. In the same way, the biologically inspired perceptron
emulates this behaviour by using the activation function σl. The information is
fired to the next layer only when the excitation level is greater than a threshold.
There are various types of activation functions, each one with pros and cons.
The first perceptron model used a unit step activation function with a threshold,
following the "all-or-nothing" rule. Let b ∈ R be a generic bias term, the threshold
value. The step function is described as:

f(z) =
0 if z < b

1 if z ≥ b
(2.2)

Figure 2.6: Step function with a bias example of 0.5 - this was the first activation
function used in the pioneering perceptron model, although the non-differentiable
point in z = b.

Although Rosenblatt understood that the perceptron model needed an activation
function that was able to discriminate the active from the passive state, the
mathematical implementation with the step function presented the problem of the
non-differentiability in z = b, as shown in Figure 2.6. Logistic activation function,
also known as Sigmoid activation function σ(x) overcome this problem with a
formulation that is monotonic and has a first derivative which is bell-shaped and
easy to use, as shown in Equation 2.4. Its output is contained in (0, 1) and is
commonly used for classification:

13

Neural Machine Learning

f(z) = σ(z) = 1
1 + e−z (2.3)

f Í(z) = σ(z)(1− σ(z)) (2.4)

Figure 2.7: Logistic or Sigmoid activation function. Note that the output is
contained in (0, 1), with horizontal tangent to plus and minus infinity.

The main limitation of the Sigmoid function is its codomain, forced to be between
(0, 1) for each input value. Hyperbolic tangent activation function, in comparison
with logistic function, allows the output to have also negative values, expanding
the range a (−1, +1) as shown in Figure 2.8.

f(z) = tanh(z) = ez − e−z

ez + e−z (2.5)

Figure 2.8: Hyperbolic tangent activation function over the range [6, 6]. Note the
admissibility of negative values when compared with Figure 2.7.

The ReLU, acronym of Rectified Linear Unit, was first introduced in 2000 with
strong biological motivations and mathematical justifications; later on, in 2011 it
has shown an excellent behaviour with Deep Artificial Neural Networks, thanks to
its semi-linear behaviour and practicality,

14

Neural Machine Learning

f(z) = max(0, z + b) (2.6)

Figure 2.9: Rectifier Linear Unit - ReLU function with a bias example of 0.5 -
note the linear behaviour the follows the bias/activation point. This activation
function is particularly important since the network used for the coverage path
planning uses exploits ReLU in most of the layers.

Although there are many other activation functions, the above listing is enough
for the purpose of this document. Noticed that all the activation functions have
a remarkable non-linear behaviour, a fundamental property which springs the
potentiality of Feed-Forward artificial neural network models, enough to earn it
the name of Universal Approximation.

2.1.5 The Universal Approximation Theorem
Let n ∈ N be the number of input neurons and m ∈ N be the number of neurons in
the output layer. The Neural Network creates a functional relation between two set:
the domain of dimension n and the co-domain of dimension m , NN : Rn → Rm,
by means of Equation 2.1 applied in each computational unit. If on the one hand,
the non-linearity introduced by each activation function raises up the complexity
of this function, on the other hand, this represents the key-element that renders
Neural Network a Universal Approximator. In 1989 Hornik, Stinchcombe and White
published the article:[14]Multilayer feedforward networks are universal approximators.
The article proof the fact that for any continuous function g on a compact set
K, there exists a Feed-forward Neural Network, having only a single hidden layer,
which uniformly approximates g to within an arbitrary Ô > 0 on K. This amazing
outcome renders Artificial Neural Networks not only a powerful instrument to
access multidimensional spaces in an elegant manner but also a key element for
function approximation of any space dimension. Regardless of the final use of
the neural network, it is then clear that the mathematical purpose beyond the
training process is to approximate a complex function in spaces that are usually
multidimensional. The learning mechanism behind the training comes down into
a minimum cost problem, as explained in Subsection 2.2.4. Potentially, the more

15

Neural Machine Learning

complex network architecture, the more the approximate function will minimize
the cost function. The main drawback is the limitation of computational resources,
so the addition of a single neuron in an articulated network would cause a surge
in processing time. To have an idea about the order of magnitude, the neural
network described in Figure 2.11 has 3 trainable parameters, the neural network
described in Figure 2.5 has 322 trainable parameters, while the neural network
used for the coverage path planning problem has 106˙684 trainable parameters. An
example could clarify the ANNs purpose. Since the perceptron is the elementary
unit, step-back to the perceptron model. Its simple architecture allows immediate
visualization of the approximation process. Consider a perceptron with an input
layer of two units a1

1, a1
1 and a ReLU activation function, as shown in Figure 2.10:

this kind of perceptron is usually used to classify the data into two parts, therefore,
it is also known as a Linear Binary Classifier. The linear name should not be
misleading as the ReLU function is and remains non-linear. In the example of
Figure 2.11, two classes, represented by the white dots and black dots must be
grouped. The purpose of the binary classifier is to train the model in order to have
the output y in a high state when the combination of x1, x2 correspond to a black
dot, or the output in a low state when the combination of the inputs corresponds to
a white dot. The functional relation of this particular architecture of the perceptron
can be written in the extended form by combining Equation 2.1.(a) and Equation
2.6:

y = a1
1 = f(a0

1, a0
2) = max(0, w1

11a
0
1 + w1

21a
0
2 + b1

1) (2.7)

This relation contains three trainable parameters: the two weights w1
11, w1

21,

Figure 2.10: The purpose of this simple neural network is to divide the data
shown in Figure 2.11. The equation that governs its behaviour has been made
explicit in Equation 2.7.

corresponding to the two connection edges, and the bias term b1
1 of the ReLU

16

Neural Machine Learning

function. By adjusting the trainable parameters it is possible to move the threshold
value that allows the perceptron to fire (high state, black dots) or not (low state,
white dots). This process is known as neural network training. The network starts
with random trainable parameters that do not group the two classes; after an
iterative process, the classification converges and the network is able to distinguish
one class from another. In the Figure 2.11 there are shown three moments of
the training process, then three ways of splitting white and black sets: the line
H3 belongs to a training step in which the network was not tuned to classify the
dots and so its classification is wrong because it does not divide the two sets; H1
and H2, instead, correctly divide the two sets - however, H2 should belong to the
last training steps, when the net has been trained since its division is preferred
because it minimizes a reference value called Loss Function that will be explained
in Section 2.2. In the example shown in Figure 2.11, a single perceptron with a

Figure 2.11: In this case, the solid and empty dots can be correctly classified
by any number of linear classifiers. H1 (blue) classifies them correctly, as does H2
(red). H2 could be considered "better" in the sense that it is also furthest from
both groups. H3 (green) fails to correctly classify the dots.

ReLU activation function was sufficient to linearly divide the two sets. For more
complex distributions it is likely that it doesn’t exist any efficient solution with
a simple perceptron or classes are not linearly separable. In those cases more
complex neural networks are mandatory. The more complex the architecture is,
the more accurate the classification. In Figure 2.12, it is shown artificial neural
networks with increasing complexity. For the same data, or column of the table,
it is shown how the correspondent network would solve the classification problem.
The first example shows the X-OR problem, highlighting the evident limitations of

17

Neural Machine Learning

the single-layer perceptron, since a point "A" is contained in the "B" partition. For
an efficient clustering on the X-OR function, a network with at least two layers
is required. For more complex data distribution as the second double-spiral case,
the network with two layers is not sufficient anymore and a three-layered network
is required. For more complex data, it is the task of the designer to choose an
appropriate architecture, without exceeding in complexity nor a too minimalist
structure.

Figure 2.12: Different levels of approximation and different datasets. The single-
layer network is able to classify only linear separable classes. Networks with
increasing complexity are able to group data with more articulated distribution.

2.2 Supervised Learning Process
The following discussion specializes in the case of Supervised Learning, object of
use in the development of the algorithm, although many concepts can also be
generalized to other learning paradigms.

2.2.1 Types of Learning
There are mainly three types of learning:

18

Neural Machine Learning

• Supervised Learning: the machine is trained by using a labeled database
where the data is already tagged with the correct answer. Each entry of the
database contains two coupled information: an input state vector, also called
feature vector, and its label that contains information about how the output
should be. The purpose of the neural network is to emulate the input-output
association by finding their inner relations. As a result of the training, the
network should be able not only to predict the correct label of the training set
but also of unforeseen data. Supervised Learning deals mainly with two types
of problems - classification problems and regression problems. An example of
application can be image classification: for a fixed number of classes (airplane,
car, train) and given a labeled database of vehicles, the neural network should
learn which class is represented in the picture.

• Unsupervised Learning: only input states are known and the machine explores
the underlying patterns among them and predicts the output. The purpose is
to finds relationships or correlations between the available data when those
are too complex to guess. In this sense, the learning process is opposite to
Supervised Learning since the correct outputs are not known: the learning
process is self-organized. Unsupervised Learning deals with problems such
as K-means clustering or Principal Component Analysis. An example of
application can be recognition of cancer risk factors by analyzing the clinical
history of patients and finding common patterns that may have led to the
disease.

• Reinforcement Learning: these algorithms are useful in the field of robotics
and gaming. One or more agents learn to explore an environment by inter-
acting with it. On a reward/punishment basis, some behavioral policies are
encouraged in order to reach a goal. This learning mechanism is an extremely
simplified version of how humans learn.

2.2.2 What does learning means?
Behind the learning process of the neural networks, there is a mathematical
framework that exploits differential algebra. The following description is focused
on Supervised Learning for Classification problems since the exploration algorithm
relies on a supervised method. In the Perceptron Model, Subsection 2.1.2, and the
Multi-layer Perceptron Model, Subsection 2.1.3, the forward propagation has been
introduced. The forward propagation is used when the neural model is asked to
predict a solution. The input layer is filled with an external initial state called the
feature vector. This state is then weighted and propagated through all the hidden
layers toward the output layer, thanks to the edges by using Equation 2.1 in each
node. Once the output layer is reached, the final prediction can be read and used

19

Neural Machine Learning

for its purpose. In contrast to forward-propagation, backward-propagation is used
in the model training. This process, instead, starts from the predicted results of
the output layer and propagates backward toward the input layer for each training
example, tuning the trainable parameters following some criteria. Given a set of
Ntrng ∈ N training examples in the form {(þa0

1,þa
L
1), ..., (þa0

Ntrng
,þaLNtrng

)} such that þa0
i

is the feature vector of the i-th example and þaLi is its label, with i = 1, ..., Ntrng, a
learning algorithm seeks a function f : X → Y where X is the input set of possible
states and Y is the output set. The function f is an element of some space of
possible functions F , usually called the hypothesis space. This hypothesis space
is determined by the network’s architecture: the number of layers, the number
of units for each layer, the activation functions, and the connections, determine
a specific family of functions where the solution is searched by tuning trainable
parameters. The design of the neural network architecture is hence a delicate task:
a wrong choice could lead the network to poor optimization, therefore low learning
capabilities. For each training input sample of the training dataset þa0

i , the neural
network is asked to try to predict an output. Predicted results are compared to
the true labels: a global loss function evaluates the quality of the results. The
loss function, described in Subsection 2.2.3, produces a scalar value called loss:
minimizing the loss allows an alignment between the network predictions and the
attended results. This process represents the training part: the neural network
tunes its trainable parameters in order to minimize the loss value. It is important
to underline that the loss function is not calculated punctually for each sample but
considers the overall loss over all the Ntrng examples. When the entire dataset is
passed forward and backward through the neural network once, literature calls it an
epoch. For large datasets one epoch could be too big to load in the computer’s RAM
at once, hence it is usually divided into several smaller batches for logistic reasons.
The tuning criteria by which parameters are updated follows the Gradient Descent
algorithm, described in Subsection 2.2.4. The training part and the application use
of the network occur in two different stages: in this sense, the supervised learning
performs offline training. The trainable parameters are changed exclusively during
the training session; once the network has achieved a sufficient accuracy, all the
parameters are frozen at their value and the network is ready to perform, so the
supervised training is an offline training since the learning stage of the network is
previous of its application.

2.2.3 Loss function
Behind the main purpose of the neural network, the loss function represents the
mathematical mean by which the learning is possible. All the parameters are tuned
with the only aim to minimize the loss function. For a fixed architecture of the
network, the class of functions is fixed, and the training process seeks for a function

20

Neural Machine Learning

among the possible choices, following the criteria explained in the Subsection 2.2.4.
The loss is calculated by comparing the predicted results of the network with the
desired results contained in the training samples. Let Y be the output set. The
loss function computes a scalar value that is representative of the quality of the
predictions: L : Y ×Y → R. For the same output set, the choice of the loss function
opens up to a wide range of possibilities, although some of them are preferred
with respect to others in machine learning applications. One fundamental property
useful is the convexity of the function, for reasons that will be clear in the following
subsection. First of all, it is important to point out that the output set is a convex
set. Let ŷ ∈ R4 be an output vector, such that ŷi ∈ [0, 1] is its i-th component.
The set Y is convex if, for each pair y1, y2 ∈ Y , their affine combination described
in Equation 2.8 is contained in Y :

(1− t) · ŷ1 + t · ŷ2 ∈ Y, (2.8)

∀ŷ1, ŷ2 ∈ Y, t ∈ (0, 1)
The set Y is a convex set since there is no way such that any component ŷi of any
vector ŷ ∈ Y lies outside the interval [0, 1] for the affine combination. The loss
function L(t, ŷ) : Y × Y → R is convex if it satisfies the inequality:

f(tŷ1 + (1− t)ŷ2) ≤ tf(ŷ1) + (1− t)(ŷ2), (2.9)

t ∈ [0, 1],
∀ŷ1, ŷ2 ∈ Y

In order to reach the minimum value of the loss function, it would be sufficient to
follow the direction of the maximum negative gradient of a convex function. The
gradient descent algorithm described in Subsection 2.2.4 aims to tune the trainable
parameters of the network in order to minimize the loss function. Unfortunately,
only a small portion of neural network applications relies on convex loss functions.
When supervised learning is applied to a binary classification, where the network
is asked to predict a true or false statement, the logistic loss function ensures
function convexity. In this work, where the neural network is asked to predict
over four different classes, the logistic loss function can’t be applied. This implies
that the solution could be stuck in a local minimum instead of a global minimum.
However, some corrective methods aim to overcome these problems as explained in
Subsection 2.2.4. The loss function is also known as the cost function since the
problem can be treated as a cost optimization problem, and it is usually indicated
with C. The selected cost function is the categorical cross-entropy, which compares
the predicted probability distribution with the target probability distribution:

C = − 1
E

EØ
e=1

NcØ
c=1

âLc,e log aLc,e (2.10)

21

Neural Machine Learning

, where E is the number of sample experiences, NC the number of output classes,
âLc,e ∈ [0,1] is the target prediction and aLc,e ∈ [0,1] is the real neural network’s
prediction. The training session revises all the network’s hyper-parameters, such
as weight and biases, in order to minimize the loss function. Moreover, the trained
network is also able to predict the best actions to take in a never-seen situation.
Apparently, it is possible to demonstrate that the categorical cross-entropy loss
function is convex with respect to the output prediction aLc,e. However, the output is
the result of a forward propagation from the input layer through the hidden layers
and the whole chain of calculus must be accounted for. If only linear activation
functions were used then the statement would be correct and the convexity property
of the loss function would be satisfied, however, for the reason explained for the
universal approximation theorem described in Subsection 2.1.5, non-linear activation
functions are needed to solve complex classification and regression problems and
increase the accuracy on predictions.

2.2.4 Gradient Descent

The loss function described in Subsection 2.2.3 creates a continuous multi-
dimensional surface that constitutes the means in which the gradient descent
finds application. For a given input vector, the neural network is always able
to predict an output. This output is combined with the target output by using
Equation 2.10 and identifies a precise point value in the multidimensional-surface:
the loss. The smaller the loss value, the more capable the network is of predicting
an output approaching the target. By revising its trainable parameters, the neural
network tends to align its prediction with the target for that particular input vector,
in order to minimize the loss function. By following the loss function’s gradient, it
is possible to reduce the loss value. In order to follow the gradient, it is necessary
to identify the set of adjustable parameters on which the loss value depends. Since
fully connected neural networks are organized in layers, it is useful to analyze the
gradient descent algorithm per each layer. The final result will link the reduction of
the loss value with an adjustment of all the trainable parameters, from the output
layer to the input layer, passing through all the hidden layers. Consider a simplified
case with the network configuration with a number of layers L = 2 with one unit
per layer, as shown in Figure 2.13. An input is fed in the first layer x0 in the first
(and only) neuron x1, and it represents the activation a0

1 ≡ x0
1. Let â2

1 ∈ R be the
label of the input, the known target prediction. In order to compute the cost C0, it
is necessary to forward propagate the input. For this simplified case, it is possible
to explicit all the equations starting from the input:

22

Neural Machine Learning

known input = a0
1

1-st neuron computation =
z1

1 = a0
1w

1
11 + b1

1

a1
1 = σ(z1

1)
(2.11)

2-nd neuron computation =
z2

1 = a1
1w

2
11 + b2

1

a2
1 = σ(z2

1)
(2.12)

C0 = (a2
1 − â2

1)2 (2.13)

Figure 2.13: Different levels of approximation and different datasets. The single-
layer network is able to classify only linear separable classes. Networks with
increasing complexity are able to group data with more articulated distribution.

It is important to keep in mind that only the external brackets’ 2 is a pow; when
associated to a trainable parameter it denotes the correspondent layer, as explained
in Subsection 2.1.3. So, for instance, w2

11 is the weight associated with layer 2
and connects neuron 1 of the 2-nd layer with neuron 1 of the 1-st layer. For this
example, the Mean Squared Error (MSE) has been used to compare the target
prediction â2

1 with the network prediction a2
1. If those two values are equal, then the

network is predicting as it should behave, and the cost C0 is zero. For a non-trained
network, it is likely that the predicted result diverges from the target; the gradient
descent offers a base to understand the influence that each trainable parameter
has on the cost. In this example, four parameters w2

11, b2
1, w1

11, b1
1 can be tuned to

reduce the cost, but generalized concepts can be applied in case of studies with
further increased complexity, as the 106˙684 parameters neural network used in this

23

Neural Machine Learning

simulation and presented in Chapter 3 - Inside the Neural Network. The gradient
of the cost function produces a four-dimensional vector field:

∇C|C=C0 = ∂C0

∂w2
11

»v1 + ∂C0

∂b2
1

»v2 + ∂C0

∂w1
11

»v3 + ∂C0

∂b1
1

»v4 (2.14)

, where nabla, ∇, denotes the vector differential operator while # »vz denotes the
z-th versor. The gradient offers a tool to measure the sensitivity to change of the
cost function in C0 with respect to a change in one of its arguments. Note that C0
identifies a specific point on the cost surface since it is the result of the cost of one
training sample. To tune the trainable parameter it is useful to start from the last
layer L and then go back toward the input layer: for this reason, this operation is
called backpropagation. Starting from the weight w2

11, the partial derivative can be
adjusted by using the rule chain:

∂C0

∂w2
11

= ∂C0

∂wL
11

= ∂C0

∂a2
1
· ∂a2

1
∂z2

1
· ∂z2

1
∂w2

11
(2.15)

Lets define the quantity δli for the l-th layer and for the i-th neuron as:

δli = ∂C0

∂zli
= ∂C0

∂ali
· ∂ali

∂zli
(2.16)

By using the equations 2.13 and 2.12, for a generic activation function σ, and for
the specific case of MSE cost function:

∂C

∂a2
1

= 2(a2
1 − t)

∂a2
1

∂z2
1

= ∂σ(z2
1)

∂z2
1

= σÍ(z2
1)

δ2
1 = 2(a2

1 − t) · σÍ(z2
1)

∂z2
1

∂w2
11

= a1
1

, resulting in:

∂C0

∂w2
11

= ∂C0

∂wL
11

= δ2
1 · a1

1 = 2(a2
1 − t) · σÍ(z2

1) · a1
1 (2.17)

24

Neural Machine Learning

For the same layer, it is possible to use similar differential relations to obtain the
partial derivative of the cost respect to b2

1, taking into account that the partial
derivative of z2

1 in relation with b2
1 is unitary :

∂C0

∂b2
1

= ∂C

∂a2
1
· ∂a2

1
∂z2

1
·
�
�
��7

= 1
∂z2

1
∂b2

1
= δ2

1 = 2(a2
1 − t) · σÍ(z2

1) (2.18)

To find the derivative of parameters that result in deeper layers than the last one,
as the first one, it is possible to lean Equation 2.16 and Equation 2.18, using the
chain rule to extend the differential calculus. Consider the parameter w1

11, that
belongs to the layer l = 1:

∂C0

∂w1
11

= ∂C0

∂z1
1
· ∂z1

1
∂w1

11
= δ1

1 ·
∂z1

1
∂w1

11
(2.19)

The differential term z1
1/w1

11 can be easily calculated by using Equation 2.11:

∂z1
1

∂w1
11

= a0
1

The δ1
1 term can be written in a form that exploits the δ2

1 term, already obtained:

δ1
1 = ∂C0

∂z1
1

δ1
1 = ∂C0

∂z2
1
· ∂z2

1
∂z1

1
= δ2

1 ·
∂z2

1
∂z1

1

The ration between the two intermediate activations z2
1 and z1

1 can be obtained
combining Equation 2.11 and Equation 2.12:

∂z2
1

∂z1
1

= ∂[σ(z1
1)w2

11 + b2
1]

∂z1
1

= w2
11 · σÍ(z1

1)

And the final expression of Equation 2.19 became:

∂C0

∂w1
11

= δ2
1 · w2

11 · σÍ(z1
1) · a0

1 (2.20)

With a similar procedure it is possible to obtain the variational expression for the
last trainable parameter b1

1:

∂C0

∂b1
1

= δ1
1 = δ2

1 · w2
11 · σÍ(z1

1) (2.21)

25

Neural Machine Learning

The Equations 2.25, 2.18, 2.20, and 2.21 form the basis with which to calculate the 4
components of the gradient for the considered example. Starting from the trainable
parameters of the last layer L, Equations 2.25 and 2.18 contain the differential of
the cost function respect to the two trainable parameters. As far as it concerns
the parameters of previous layer L − 1, the first layer, Equations 2.20 and 2.21
rely on the relations calculate for the L-th layer. The backpropagation exploits a
cascade effect for which the influence of a parameter upon the cost function relies
on the following layer. Once the gradient is calculated in all its component, it is
possible to guess how parameters can be tuned in order to reduce the loss function,
much that sometimes it is referred as the negative gradient −∇C. A generic edge
is updated by following the instruction:

wl
ij := wl

ij − α
∂C0

∂wl
ij

(2.22)

, while biases are updated with

bli := bli − α
∂C0

∂bli
(2.23)

The term α is the learning rate, a configurable hyper-parameter fundamental in the
training process. It dictates the magnitude of the step by which the gradient descent
is followed. The training process aims to reduce the cost function by moving across
the multidimensional surface, but the extent to which this task can be accomplished
can’t be with analytical methods. Conversely, if on the one side numerical methods
allow the descent of the gradient, to the other the resulting descent is sharp and
only approximates the true gradient since each step follows the inline minimum
gradient. Too low learning rate will result in precise descent but long computational
time; too high learning rate will not converge in the optimal solution and could
cause numerical instability issues in the worst cases. The selection of the learning
rate is fundamental and can’t be chosen a priori. Modern solutions involve adaptive
learning rates, resulting from a gross to fine-tuning by progressively reducing a large
α during each epoch. Other methods associate a personal adaptive learning rate to
each trainable parameter and are able to distinguish among the most influential
parameters. Supervised Artificial Neural Networks are used to carry out complex
classification or regression problems and seldom have an elementary configuration
as the one shown in Figure 2.13. The following discussion aims to build a base
to generalize the concepts and equations previously introduced in this subsection.
In architecture with a multitude of output neurons, an edge in the hidden layers
influences each output through several connections, resulting in more articulated
equations. A generic trainable parameter of the last layer still influences directly
only one output of the last layer, so the equations do not change:

∂C0

∂wL
jk

= ∂C

∂aLk
· σÍ(zLk) · aL−1

j (2.24)

26

Neural Machine Learning

∂C0

∂bLk
= ∂C

∂aLk
· σÍ(zLk) (2.25)

For a generic weight of the layer L − 1, the Equations 2.20 and 2.21 get more
complicated since in the multiple output case each contribution must be accounted
and the k-th generic neuron influences all the output neurons through multiple
connections. Let Nc be the number of output classes, each deeper trainable
parameters influences all the output unit and the differential expression became:

∂C0

∂wl
jk

= ∂C0

∂aL1

∂aL1
∂wl

jk

+ ∂C0

∂aL2

∂aL2
∂wl

jk

+... + ∂C0

∂aL1

∂aLNc

∂wl
jk

=
NcØ
i

∂C0

∂aLi

∂ai1
∂wl

jk

(2.26)

This equation accounts for the interconnection between a generic hidden edge and
influences in each output. In under-bracket, each influencing term of the overall
cost function. This multi-output contribution will be involved also for a generic δ
expression. The relations obtained in Equations 2.20 and 2.21 can be generalized
for any neuron of any layer, output or hidden:

∂C0

∂wl
jk

= δlk · al−1
k (2.27)

∂C0

∂blk
= δlk (2.28)

Equations 2.27 and 2.28 are the fundamental blocks for back-propagation. Notice
that while a generic al−1

k is known, the common unknown faction is the δlk. At this
point the problem shifts to determining the value of δlj for a generic neuron in the
hidden layers. Particularly, the aim of the following manipulation is to find an
expression of δlj which relies on the terms δl+1

j of the following layer:

δlj = ∂C0

∂zlj

δlj =
Ø
k

∂C0

∂zl+1
k

· ∂zl+1
k

∂zlj
=
Ø
k

δl+1
k · ∂zl+1

k

∂zlj

Remembering the expression of zl+1
k , and differentiating respect to zlj:

zl+1
k =

Ø
j

wl+1
jk alj + bl+1

k =
Ø
j

wl+1
jk σ(zlj) + bl+1

k

∂zl+1
k

∂zlj
= wl+1

jk σÍ(zlj)

27

Neural Machine Learning

Finally the expression for a generic delta is obtained:

δlj =
Ø
k

δl+1
k wl+1

jk σÍ(zlj) (2.29)

The boxed Equations 2.27, 2.28, and 2.29 are the fundamental equations for back-
propagation thanks to which is possible to predict the negative gradient of the cost
function and tune each trainable parameter to increase accuracy on predictions.
One last remark concerns the number of labeled samples. The whole previous
discussion has been developed for one fixed target t0 from which the cost C0 was
calculated. Reducing the cost value following the gradient descent trains the
artificial neural network to predict the correct label for that specific input. But the
purpose of the network is to perform correctly among a huge quantity of data and
not only for that sample. Moreover, if the training iteration was repeated for a new
labeled sample t1, it is likely that the change of the weight set would mess up results
achieved on t0, nullifying the work already done. For that reason, the gradient
descent must be used accounting for a large set of data simultaneously, so much
so that this training technique is called batch learning. Each component of the
gradient is arithmetically averaged over the whole batch in order not to reduce the
overall cost function and resulting in improved global performance. This is possible
since the neural networks’ architecture is fixed and shared among all the forward
and backward propagation. There exist several ways to implement gradient descent:
the Batch Gradient Descent, the Mini Batch Gradient Descent, and the Stochastic
Gradient Descent, also known as SGD. The aim of each method is to minimize
the loss function in order to reach the minimum over the dataset, but the main
difference consists in the amount of data they use. The Batch GD gradient descent
uses the whole set of training data and updates the weights and biases only after the
entire dataset has been evaluated. This method would lead directly to the global
minimum only if the convexity property of the cost function exists since it would
be the only minimum. For real cases cost functions it is unlikely to obtain a convex
function over a complex, non-linear network, as explained in Subsection 2.1.5, so
the deterministic gradient descent could lead to a local minimum. Moreover, the
computational resources required to compute the gradient for a whole training
dataset that could contain million or billion of samples would be computationally
burdensome and can not be held in the RAM. The SGD overcome this problem by
updating the trainable parameters after each training sample, and not after the
whole dataset. In this way the cost function changes after each training iteration
since each input sample is unique, and the gradient descent is therefore disturbed
by a strong algorithmic noise due to a mobile target cost value. On the other side,
computational resources are damped due to the streamlined process of training.
Moreover, since the cost function changes as the current training sample changes,
this process avoids the trainable parameters being stuck in a local minimum. For

28

Neural Machine Learning

convex cost function surfaces, this method does not reach the global minimum
directly but oscillates and the result is a swinging descent. A trade-off method is
the Mini Batch Gradient Descent. Instead of updating weight and biases punctually
for each training data or updating for the whole dataset, the entire set of data is
partitioned in mini-batches. The number of entries contained in each mini-batch is
defined by a hyper-parameter called batch size. Usually, this number is equal to
a pow of 2, for the technical reason that involves the processing on a Graphical
Processing Unit (GPU). If the number of total entries does not match with a
multiple of the batch size, then the remaining entries form a separate mini-batch.
With this method, the algorithm noise is reduced and computational issues do not
arise, since the mini-batches are smaller than the batch. There is plenty of other
elegant solutions for gradient descent optimization that includes e.g. data shuffling
and momentum, but they are not discussed in this work for compactness.

2.2.5 Issues
The main purpose of the supervised trained network used in this work is to
predict the correct class given a particular state. Before using the network
in practical applications, the training session exploits the labeled training set
to achieve the required performances by tuning all the trainable parameters.
Correct predictions are achieved by training the network on the same training
data multiple and multiple times. After each training epoch, the accuracy on
predictions hopefully increases, making the network always more competitive.
If on the one hand, high accuracy is a positive network feature, on the other
hand there is the risk of overfitting. More than a high accuracy on labeled and
known sample, one fundamental property of the neural network is the ability to
generalized the acquired classification abilities also in never-seen data. It exists a
number of training epochs following which the network loses the ability to transfer
classification capabilities to more general cases, so this number should not be
exceeded. Moreover, there is not a rule of thumb to determine this value, but
must be determined by using a separate dataset, called validation set. This set
is involved for the gradient descent, but is used to monitor the ability to predict
on this set of never-seen data. When accuracy on predictions decreases both in
the training and validation set, then the network is improving, while when only
the accuracy decreases only in the training set, it means that the network is not
learning general feature but any further improvements will be tailor suited for
that specific training set: this problem is called overfitting. In opposition to the
overfitting, there exists the underfitting problem, less common, that consists in
not reaching the full potential of the training session, hence not reaching the
best accuracy on both training and validation set. Further information on the
types of dataset are contained in Subsection 3.1. In the Figure 2.14 it is shown a

29

Neural Machine Learning

Figure 2.14: An example of a neural network training session. The trend of the
cost value for the training set data, typically decreasing, is shown in blue. In red,
the cost value for the validation set data. It is noted that from a certain number of
epochs onwards the trend of the validation set first begins to become horizontal,
then even increases. The corresponding number of epochs is the one to obtain a
neural network capable of both performing on training data and on data never seen
before. Continuing the training further, we encounter what is called overfitting,
and the network gradually loses generalized learning

graphical representation of underfitting and overfitting, while the vertical dashed
line indicates the ideal perfect number of epochs. To avoid overfitting, a common
efficient technique is to use a dropout layer. The dropout layer is a fictitious layer
that is only used in the training session of the neural network. It has an associate
deactivation percentage, usually between 30% and 60%, that represents the
number of deactivated neurons on the previous layer during a forward propagation.
By randomly setting to zero a percentage of neurons equal to the deactivation

30

Neural Machine Learning

percentage, the network is tested for robustness and, in particular, its ability to
still predict the correct class also with this functional handicap. This contribution
turned out to be a key element to improve accuracy on training data and avoiding
overfitting. If on the one side, the expected accuracies with the dropout layer
are lower compared to a trained without dropout, the first type of network
showed practical advantages compared to the other type. Moreover, the randomic
deactivation introduces a further source of unpredictability on the process that
leads to network training, contributing to the use of the model as a black-box.

31

Chapter 3

Inside the Neural Network

In the context of Neural Networks, the Coverage Path Planning problem has always
been tackled with Reinforcement Learning techniques applied to the mathematical
framework of the Markov Decision Process. If, on the one hand, this approach can
model the problem successfully, on the other hand, the training session requires a
huge amount of computational resources. This chapter introduces alternative an
approach that exploits Supervised Learning techniques on the basis of imitation of
an expert system while bypassing common drawbacks such as database availability.
A detailed analysis of the architecture of the Artificial Neural Network used in the
simulations is described. Particular attention is paid to the input vector, whose
choice was crucial for the desired outcomes. Moreover, the whole data pipeline is
introduced, from the imitation framework that allows the data collection, to the
data partition over the three main data-subsets: training, validation, and testing.
Finally, an overview of data augmentation is given, describing the process that led
to the achievement of the 54,000 entries present in the current database.

3.1 Dataset

3.1.1 Dataset division
The learning mechanism behind the neural networks relies on the availability of
large labeled databases. A label is the desired output associated to an input.
Each entry of the database comes in the form (problem, solution), respectively
(network input, network output): in this sense, databases are usually structured.
Given a set of Ntrng ∈ N training examples, labeled data comes in the form
{(þx1, þy1), ..., (þxN , þyN)} such that þxi ≡ þa0 is the input vector of the i-th example and
þyi ≡ þ̂aL is its label, with i = 1, ..., Ntrng, and L = number of the last layer. For
Supervised Learning applications, the entire dataset should be broken down into

32

Inside the Neural Network

three distinct datasets: test, validation and set test - each one used for a specific
development phase of the network, as shown in Table 3.1.

Update Weights Labeled Data Proportion

Training set Yes Yes 75%

Validation set No Yes 15%

Test set No No 10%

Table 3.1: Dataset Division - the first column indicates whether weights, such as
biases, are updated after the training phase. The second column indicates whether
the data has a known associated/desired output in the database. The last column
indicates the percentage of the division with respect to the entire data collection.

The following is a general overview of the three types of datasets:

The training set is the set of data used to train the model: the neural network
is cyclically trained over and over again on this same data, and it continues to
learn about the features of this data by updating its weights, as explained in
Subsection 2.2.4. When the entire dataset is passed forward and backward through
the neural network once, an epoch is passed. The neural network aims to increase
the accuracy of the prediction on this data after each epoch. However a too high
accuracy could turn into overfitting issues and the model could not be able to
generalize the prediction on never-seen data: for this purpose, the training set is
flanked by a validation set.

The validation set is the set of data used to validate the training process. One of
the main advantages of using a neural network is the transposition of the abilities
deployed during the learning process in never-seen situations, a biologically inspired
ability known as generalized learning. Since the Validation Set is not used to train
the neural network, it is as if this set contained never-seen situations. After each
epoch, it is possible to cross-check the generalized capabilities of the network by
calculating the loss function of the prediction on the validation data. In this way,
it is possible to monitor the training session by using two parameters: the first one
is the loss calculated on the training set and used for the backpropagation; the
second is the loss calculated on the validation set and used to check generalized
learning capabilities. When both losses decrease, the accuracy is increased in both
seen and never-seen situations. From experience, the training gets to a point such
that more training epochs lead to increased accuracy in the training set and a

33

Inside the Neural Network

decreased accuracy in the validation set. This is the optimal number of training
epochs: more epochs would lead to reduced generalized learning capabilities while
fewer epochs would lead to a non-optimal accuracy.

The Test Set represents the final verification which can decrease the conclusion of
the training session. Compared to the training and validation set that are used
during the training, the test set is used once the training session is over. Although
the learning mechanism is supervised, this set represents an exception since it does
not contain any label. The neural network designer runs the neural network on
this set and personal checks if the network behaves as desired - in a certain way,
the label is implicitly known since the human can discriminate the results. If the
predictions of the neural network over the test set meet the requirements, weights
and bias are frozen at their value and the network is ready to perform off-design.
On the contrary, hyper-parameters are tuned and the training session starts over
from the beginning.

3.1.2 Handwritten Digits Recognition
The Handwritten Digits Recognition problem is the equivalent Hello World for
computer vision and image recognition. This example aims to introduce a simplified
problem that benefits from strong parallelism with the coverage path planning.
The reference database is the MNIST Database, a large database that collects
more than 160000 samples of handwritten digits, as shown in Figure 3.1. Each
sample is a 28x28 pixel image in grey-scale and the correspondent label is the
number represented in the image. The output classes vary from 0 to 9, ten classes
in total. This is a classification problem: given an input image with a handwritten

Figure 3.1: MNIST Example

34

Inside the Neural Network

digit, recognize the correspondent class. Each pixel of the image is fed into the
input layer of the designed network as its correspondent gray value. The input
layer of the networks has 28 × 28 = 784 units, while the output layers have 10
units, correspondent to the 10 possible outcomes. The whole dataset can be split
using proportion presented in the Table 3.1. Suppose to use 75000 samples as the
training set and 15000 samples for the validation set. Each sample is unique and
the network will find and learn the pattern that characterizes every single digit.
During the training process, all the trainable parameters are tuned by means of the
Gradient Descent algorithm described in Subsection 2.2.4, comparing the network
prediction to the known and truth label. The network is updated on the same 75000
training sample more and more times, in order to increase the network’s accuracy.
In the meanwhile, at each iteration, the network is asked to predict also values of
the remaining 15000 validation samples for a cross-check. The prediction over the
validation samples does not influence the trainable parameters but increases the
awareness of the network Designer with respect to the network capability to predict
correct labels of "never-seen" handwritten digits, in order to avoid the overfitting
of Figure 2.14. In truth, the network has already tried to predict the class of
the validation entries, so they are not never-seen data, but since this process did
not involve parameters tuning, it is possible to use the same validation test at
each training iteration to check the generalization performances of the network.
Regardless of the network architecture, not interesting for the purposes of the
example, what governs the training is the accuracy over the training dataset and
the accuracy over the validation set. If both of them are high, then the network
can predict correct labels both on seen and never-seen data. In the coverage
path planning problem, the input is related with the state vector, described in
Subsection 3.2.1, the output classes are four, correspondent to each possible UAV
action - {Up, Right, Down, Left}, while the database is created with the imitation
framework, Subsection 3.3.1.

3.1.3 Occupancy Grids and Maps.
The coverage path planning problem is faced with a 2D approach, with UAVs flying
at a fixed height from the terrain below. Thanks to the maps, it is possible both
to train the neural network and to test its capabilities in a multitude of different
scenarios with non-convex obstacles. In this work, maps are occupancy grids
represented by matrices. Each squared element of a matrix, called cell, can be in
only one of the following three states: unexplored, explored, obstacle. Unexplored
cells turn into explored cells when being visited by at least one agent. Coverage
path planning aims to turn all the unexplored cells into visited cells with an overall
efficient strategy. As far as the obstacles are concerned, obstacle cells are fixed,
cause they are a unique feature of the environment, e.g. buildings, monuments.

35

Inside the Neural Network

There is no unexpected deviation from the original obstacles’ shape and position
which are known a priori when the simulations start, as the path is planned offline.
The only exception stands for the UAV: since each agent senses other agents as
obstacle cells to avoid, maps are dynamically updated accounting for the current
position of each agent by cyclically setting and unsetting the corresponding cell
as an obstacle cell. Since real-life obstacles are of any size shape, a matrix map
approach can only approximate their curves, hence, every cell that contains at least
a portion of an obstacle is set as an obstacle cell. Moreover, each UAV occupies
only one and only one cell per time-step, and its state is set to "obstacle cell".
The division into cells also allows treating the matrix of cells as a graph, thus
opening up to a multitude of algorithms and properties, as will be seen later. Two
macro-families of maps have been developed to train the neural network: the maps
of type I have been created to check network capabilities as proof of concepts; the
second type is inspired to real urban environments. To demonstrate the feasibility
of the application of supervised neural networks in the coverage path planning
problem, highly customizable maps were needed. The type I maps, have been
created manually. Those maps allowed the creation of ad-hoc scenarios, to deeply
understand both the weaknesses and the strengths of the model. Thanks to those
manual maps, it has been possible to explore a wide range of neural architectures.
This type of maps, of which some examples are shown in Figure 3.2, have been
used as Proof of Concept (PoC), the demonstration that neural networks can be
used in supervised learning to implement decision making. If, on the one hand,

Figure 3.2: Some example maps of type I. The figure shows 5 out of 48 total maps
created. The geometry is simple and the obstacles’ shape is basic. In black, obstacle
cells; in white, unexplored cells. To get an idea about the order of magnitude, the
last map from the right is a grid with 38x31 cells.

36

Inside the Neural Network

the maps of type I allow extremely high customization, on the other hand, the
effort needed for their creation is too high to create functional maps that can
emulate real environments. For this reason, the second generation of maps is
created automatically by using real case studies. The target has been the satellite
views, thanks to which it has been possible to create occupancy grids. Although
UAVs have the ability to fly over buildings and ground obstructions, the maps are
created setting the streets as the explorable target region. This leads to a drastic
increase in map complexity and a strict focus on urban environments. One real
urban map of type II is shown in Figure 3.3. The red rectangle shows a zoomed-in
view of the map. Comparing the grid resolution and the obstacle density with
the maps of type I, the difference is patently clear. With respect to traditional
supervised applications, where the network’ prediction is based on a single input
(e.g. image recognition: one image, one prediction), the full exploration of the map
presupposes that the network guesses the majority of actions that leads to effective
exploration, so each map is not to be considered only as a labeled example, but as
a resource capable of generating a multitude of different states in various situations
that are dynamically updated according to the mechanics of exploration.

Figure 3.3: This map of type II uses the city of Porto, Portugal, as an example.
In black, obstacle cells; in white, unexplored cells. This map is a grid with 133x199
cells, while the red rectangle contains a zoomed view of the grid.

37

Inside the Neural Network

3.2 The Neural Network

3.2.1 Network Input - State and Sensors
On the surface, the handwritten digit example presented in the Subsection 3.1.2
seems to diverge from the coverage path planning. However, the neural network
learned how to recognize a digit by using the grayscale of each pixel: the set of
pixels can be thought of as the state of the image, hence, the network learned
how to map the state to the correspondent digit. In the same way, the state
of the UAV can be associated with a determined action to take. Note that the
state can contain every kind of information and not only a grayscale value. In
this work, the state of the UAV is the set of information used to select the next
action to take but does not contain any information about the UAV’s dynamics,
since it is treated as a point-like object. That information, usually stacked in
the feature vector, can be related to the environment or can be embedded in the
drone. On the base of its state, each agent selects the best action to take: the
entire decision-making process relies then on the state, whose choice became a
crucial focal point. The state variables can be chosen arbitrarily, provided that the
information is comprehensive with respect to the purpose of the neural network.
There is a huge amount of information that can be used as the state: for this
reason, the selection of the features is not trivial at all. The state contains the
exact number of information useful for the decision-making without redundancies
- the contrary would be detrimental to the efficiency of the network. Each state
variable (or equally each element of the feature vector) is fed as an external input
to the correspondent neuron of the input layer. Once that all information has been
provided, the neural network executes a forward propagation and predicts which
one of the four is the best choice according to the input state. The final network’s
architecture uses 376 neurons in the input layer, 376 different features that drive the
choice of action. The state variable can be grouped into three distinct categories:

• The first 360 units contain information about its nearby cells, one unit per
cell. Each drone has a local view of the map: more specifically, it can sense a
squared space of 19× 19 = 361 cells . Since the local view is always centered
in the UAV, the central cell does not contain any relevant information. Each
unit can assume only one of the following values:

– unexplored cells, +1;
– explored cells, 0;
– obstacle cells, -1.

The attribution criteria aim to sort in ascending order the attractive contribu-
tion of each cell.

38

Inside the Neural Network

• The third group uses 8 units to detect unexplored cells or obstacles out of the
field of view. The detectors search these cells inline with the four directions
of movement. Four detectors are used to look for unexplored cells while the
other four are used to look for obstacle cells. When a detector encounters an
unexplored cell, then the correspondent neuron is activated. Each one of the
8 detectors can be in only one of the binary states - on or off.

According to the described input, it is possible to redirect over 3.71 · 10175 different
states with a local limited view. Moreover, each state can be associated with one of
the four actions. The state space is so huge that any tabular method, whose purpose
is to map state to actions, would fail, according to the limited RAM resources (e.g.
Q-learning method). Therefore, the only feasible way is to obtain an approximate
solution. Importantly, not all states are of interest since certain situations are not
likely to happen in any situation - consider, for example, of all those states in which
the physics of simulation would lead to a state with inconsistent information.

3.2.2 Neural Network Design
The Neural Network architecture is defined by hyper-parameters. Unlike the
trainable parameters, which are updated during the training session with the
back-propagation, hyper-parameters define the structure of the neural network
and must be chosen by design. The neural network’s behaviour will be strongly
influenced by hyper-parameters as they determine its intrinsic functioning. Below
is a list of some hyper-parameters:

• Number of neurons per layer.

• Number of hidden layers;

• Activation function per layer.

• Loss function.

• Number of epochs.

• Dropout level.

• Batch size.

• Weight initialization.

• Input vector.

• Output vector.

• Optimization algorithm.

39

Inside the Neural Network

• Learning rate.

Some hyper-parameters have already introduced described in Chapter 2. The
following overview about design parameters is referred to Standard Dense ANNs.
The number of neurons per layer is one of the most challenging design issues. For
the input and the output layer, this problem does not occur; with respect to the
number of input neurons, this parameter is completely and uniquely determined
once the shape of the training data is known, since each relevant feature is fed
as input to the network. On the other side, the number of output neurons is
determined by the nature of the problem. The problem arises when it comes to
hidden layers. The design is a mixture of experimentation and experience, intuition
and inspiration from other well-performing models. Each network has to be tailor
suited for the specif problem and it is not possible to generalize the design process.
In[15] "Effect of number of neurons and layers in an artificial neural network", the
effect of hidden units variation is highlighted by experimentation.
Theoretically, artificial neural networks with an only one-hidden layer with a
non-linear activation function are universal function approximators, as shown in
Subsection 2.1.5. However, the number of trainable parameters of those networks
might be much larger if compared with multiple-hidden layered. By adding more
hidden layers or more units per layer, the number of trainable parameters increases
anyway, but it is possible from the model to fit more complex functions. It is
possible to thinks of each layer as an abstraction level. With an image recognition
parallelism, if the input layer contains the set of pixels of the image, the first hidden
layer could detect circles, the second hidden layer might detect edges, the third
hidden layer might detect human faces, and so on toward more complex patterns
recognition.
The activation function, Subsection 2.1.4, is usually defined per layer, hence it is
the same for each unit of a layer. It is fundamental as it defines the non-linear
behavior of the model, computing the second step of calculation showed in Equation
2.1. Although linear activation functions exist, the greatest majority of models use
non-linear activation functions, as otherwise, the final result would be merely a
linear combination of the input. Moreover, the universal approximation theorem
demonstrated the function approximation capabilities of neural networks for a
non-linear activation function.
The loss function is used to evaluate a candidate solution for the target problem.
The set of all trainable parameters are iteratively updated during the training
session, seeking among the hypothesis space the best function that fits the problem.
The loss function used in Supervised Learning compares the target or labeled output
with the network’s prediction. For that reason, there are infinite functions that
can compare these two vectors. Among them, some loss functions are preferred,

40

Inside the Neural Network

as explained in Subsection 2.2.3, since they have better properties in terms of
convexity, a fundamental feature useful for the gradient descent algorithm.
The number of training epochs is the discriminating factor between an over-trained
network, which would lead to overfitting, and an under-trained network, which
would lead to underfitting. This number must be balanced to obtain a network
with high prediction accuracy, while maintaining the generalization capabilities on
the data, as shown in Figure 2.14.
To avoid overfitting, a common efficient technique is to use a dropout layer. The
dropout layer is a fictitious layer that is only used in the training session of the
neural network. It has an associate deactivation percentage, usually between 30%
and 60%, that represents the number of deactivated neurons on the previous layer
during forward propagation. By randomly set to zero a percentage of neurons
equal to the deactivation percentage, the network is tested for robustness and,
in particular, its ability to still predict the correct class also with this functional
handicap. This contribution turned out to be a key element to improve accuracy
on training data and avoiding overfitting.
The Batch size determines the number of training samples used in the training
process with the Mini Batch Gradient Descent, a trade-off method between the
Batch Learning and the Stochastic Gradient Descent described in Subsection 2.2.4.
Instead of updating weight and biases punctually for each training data or updating
for the whole dataset, the entire set of data is partitioned in mini-batches. The
number of entries contained in each mini-batch is defined by a hyper-parameter
called batch size. Usually, this number is equal to a pow of 2, for the technical
reason when the computation is carried out on a Graphical Processing Unit (GPU).
If the number of total entries does not match with a multiple of the batch size, then
the remaining entries form a separate mini-batch. With this method, the algorithm
noise is reduced and computational issues do not arise, since the mini-batches are
smaller than the batch.
Weight and biases initialization aims to prevent layer activation outputs from
exploding or vanishing. This occurs especially in deep neural networks, where the
loss of gradient might lead to slow or null backward training. To overcome this
issue, trainable parameters can be initialized with several techniques that allow
smoother training.
The state vector has been described in Subsection 3.2.1. It contains the exact
number of information useful for the decision-making without redundancies -
the contrary would be detrimental to the efficiency of the network. Each state
component is fed as an external input to the correspondent neuron of the input
layer. Once that all information has been provided, the neural network executes a
forward propagation and predicts which one of the four is the best choice according

41

Inside the Neural Network

to the input state.
The output vector contains the number of classes and depends only on the network’s
main purpose. This information should be clear from the start of the design process
in order to select the best design choices in accordance with a fair estimate of the
complexity of the model. Neural networks with only one output unit in the last
layer are called also binary classification.
The optimization algorithm selects the best weight-set in the hypothesis space of
functions, with regard to some criterion based on the loss function. In the Machine
Learning universe, the optimization algorithm is what makes the artificial neural
network learn.
Kevin P. Murphy in[16]"Machine Learning: A Probabilistic Perspective" defines the
learning rate as a hyper-parameter that determines the step size at each iteration
while moving toward a minimum of a loss function in an optimization algorithm,
as already discussed in Subsection 2.2.4. Depending on the chosen optimization
algorithm, often the learning rate has to be configured explicitly, but it is the
algorithm itself that dictates the step .
The idea is to keep the neural network architecture as simple as possible while
aiming for high accuracy rates. Complex architectures would weigh down both
forward and backward propagation but could have better-generalized performances.
There is not a rule of thumb for the design of the neural network and each problem
must treat with its singular features. The design process is usually tackled manually
with a try-and-error approach. The result is a trade-off architecture designed ad-hoc
according to the network’s purpose.

3.2.3 Neural Network Architecture

A visual representation of the designed neural network is shown in Figure 3.4.
For large and complex networks, as this one, the traditional representation with
neurons and edges became cumbersome, and it is replaced with a compact and
descriptive notation. The input layer uses 376 neurons according to the received
state sensed by the UAV. This state is inclusive of the local view of the map, the
two-stage memory, and the cell detector, as described in Subsection 3.2.1. A neural
network with only one hidden layer is also called a shallow network, in contrast with
deep networks which have more complex structures. For classification applications,
shallow networks are sufficient to obtain high performance. The hidden layer uses a
ReLU activation function: ReLU is the most commonly used function as it speeds
up the training process and because of its simplicity. As anticipated, ReLU is
defined as:

42

Inside the Neural Network

Figure 3.4: Neural Network’s architecture. From left to right: the feature vector
(state) is fed in the input layer. Then it gets propagated forward in the hidden
layer and finally reaches the output layer, where the softmax function normalizes
the probability distributions. For each of the four actions, it is possible to read the
percentage of prediction of the network and use it to in the algorithm to move the
correspondent agent.

f(z) = max(0, z + b)

Figure 3.5: Rectifier Linear Unit - ReLU function with a bias example of 0.5 -
reference to the Subsection 2.1.4

This function does not saturate for the large positive value of the weighted sum
of inputs and creates nonlinear relation between two consecutive layers. The last
output layer does not use the ReLU function but uses the softmax. Since the results
of the output layer can contain both very high positive values or negative ones, it is
useful to normalize the results in some way. The softmax function σ : RNc → RNc ,
with Nc ∈ N the number of output classes, is a normalized exponential function
that normalize the output vector in such a way that the four output values are
normalized into a probability distribution. In this way, it is possible to read directly
the network’s percentage prediction over the four actions. Let v be the output

43

Inside the Neural Network

vector prior to the normalization, and vi its i-th element. The softmax function is
defined as:

σ(z)i = eziqK
j=1 ezj

, for i = 1, ..., K (3.1)

The final vector has two important properties. Each element σ(zi) has a value

Figure 3.6: Softmax application example - each component of the input vector is
transformed into an exponential probability distribution using Equation 3.1.

contained in [0, 1], expressed as a probability. Moreover, the sum of all its com-
ponents is equal to 1 or 100%, as shown in Figure 3.6. In this way, it is possible
to read directly which one of the four actions has been predicted by the network
and its relative percentage of choice. Moreover, for problems like the coverage path
planning for multi-UAV, there is not only a single solution, but very divergent
trajectories could lead both to acceptable results, in accordance with the multitude
of possible scenarios. For this reason, a UAV that is using the neural network for
decision-making could predict a similar probability distribution on distinct actions.
The total number of trainable parameters, including both weight and biases, is
106˙684. The summary of the model given by Keras is shown in Figure 3.5. As for
the weight initialization of the model, Keras uses the Glorot Uniform initialization
as the default kernel, also known as Xavier Uniform. The state-space presented
in the Subsection 3.2.1 showed the enormous set of possible states. The Neural
Network searches for patterns between state and action pairs among the labeled
training dataset, and tune the neural network to execute a good classification.
The evaluation metric for the classification is accuracy, defined as the percentage
of correct predictions over the total number of labeled data. In Figure 3.8, it
is possible to visualize the increased accuracy over each epoch of training. The
accuracy is quite high since from the first epoch, 80.67%, and increases up to 92.01%
at the end of the training. The high accuracy achieved since the first epoch is not
a coincidence due to the initialization of the weights, but rather it is attributable
to learning through mini-batches. Each mini-batch contains 32 elements, equal to
25, for a total of 1692 batches, while the last mini-batch contains the remaining

44

Inside the Neural Network

28 elements coming from the division between 54000 and 32. It is noted that the
algorithm implements the gradient descent with mini-batches as the learning curve
is not monotonous increasing but is subject to the characteristic fluctuations of
an imperfect descent of the gradient typical of mini-batch learning. More over,
the training process is not deterministic, and a new training session would lead to
another accuracy of the network, around 92%. The time required for the training
session has been of 122 [seconds] on a commercial laptop with an Intel(R) Core(TM)
i5-4210U, 1.70GHz-2.40GHz CPU, and 4GB of RAM. The fast training time is one
of the biggest achievements in using Supervised Imitation Learning.

1 Model : " s e qu en t i a l "
2 ___
3 Layer (type) Output Shape Param #
4 ===
5 dense (Dense) (None , 280) 105560
6 ___
7 dense_1 (Dense) (None , 4) 1124
8 ===
9 Total params : 106 ,684

10 Trainable params : 106 ,684
11 Non−t r a i n ab l e params : 0
12 ___

Figure 3.7: Training results plotted by TensorFlow.Keras by calling the model
summary.

3.3 Expert System

3.3.1 Imitation Learning
(POV framework ...) Although the basic technical idea of artificial neural networks
has been around for decades, the reason why are the neural networks taking off only
just now lies in the availability of Big Data. The increased computing resources, the
digitization of industries, the Internet of Things (IoT) paradigm, the availability of
large databases, the development of ever smaller and more performing electronic
components, are contingent factors that have made the advent of Big Data possible,
and, with them, also the need of tools in order to fully exploit these resources. In
this work, a neural network searches and learn cross-data patterns in a database
containing over 54000 entries. What the network learns is a planning strategy
in order to carry out the coverage path planning in never-seen urban maps. To
achieve this result the dataset contains past experiences collected from an expert
system, which can be both a human or a computer algorithm. The experiences’

45

Inside the Neural Network

Figure 3.8: Increasing neural network’s accuracy over each training epoch.

collection passes through an imitation framework, whose purpose is to offer a
graphical view to the human and register its manually inserted actions. Each
action is paired with the correspondent UAV’s state and form the basis for the
creation of the dataset. A fundamental property of the framework is its inductive
approach and simplicity. Although the final simulation will involve a fleet of UAVs,
experiences are collected for the single-UAV case. In this way, the human can guide
effectively the simulation while providing a real-time critic to its strategy. Since
the human can judge the quality of the exploration, the self-critic mechanism that
he establishes during the experience collection is exactly what the neural network
aims to imitate. At each time of this offline simulation, the human can observe
the UAV’s state and select manually what action fits best in that situation; the
framework stores the state-action paired information and waits for the next action.
A fundamental feature of the framework is that the human expert must select the
best action to take with only the information provided by the state of the UAV,
hence with a limited view on the map and a point of view like interface. This
approach allows the human expert to have further feedback on the neural network
design and should be considered as a best practice for the design of state: in this
way it is possible to design a feature vector that includes the exact amount of

46

Inside the Neural Network

information needed. By using Human Priors dataset, the learning process reached
a 92.01% of accuracy over a database with 54131 labeled entries. After establishing
the quality of the training process, a key element of the UAVs’ performance relies
upon the strategy used by the human expert to create the database, hence to train
the network. Three guidelines drive the strategy:

• Minimize the expected discounted return.
• Reduce the number of turning maneuvers.
• Avoid going twice through the same cell.

The expected discounted return is defined as:

Gt =
∞Ø
t=0

γt−1Rt (3.2)

, where γ ∈ [0, 1) is the discount factor, t is the discrete time-step, Rt is the reward
at time t, equal to the number of explored cells at time-step t. Since γ < 1, future
rewards decay in time, and strategy is encouraged. If γ was equal to 1, the UAVs
would be free to explore the map without the time constraint, as long as they carry
out a full exploration of all unexplored cells. By discounting future rewards, it is
possible to select strategies able to cover the whole target area with the minimum
number of timesteps, hence distinct good strategies from bad ones. The number of
turning maneuvers is another relevant evaluation metric since the UAV’s energetic
payload is limited. Finally, not using the same cell twice should reduce the number
of redundant movements. Taking into account all these elements while manually
driving a multi-agent system in a complex environment is unsustainable for a
human. For this reason, the experiences are collected in a single-agent and single
sub-area simulation. Noticed that a human expert can’t follow strictly the three
guidelines, but the final strategy will result in a mix of all of them. The final result
of the training is a network able to choose the best action to take at each time
step and for each UAV, imitating the strategy of the expert system stored in the
database. With an accuracy of over 92%, the final result is highly reliable and, if
the network would decide to take actions that deviate from the standard strategy,
the outcome would be aligned with the learned strategy in any case, thanks to the
generalized learning capabilities. The Imitation Learning technique overcomes the
problem of pre-existing large labeled databases, while encourages its creation, as
long as there is a capable expert system able to guide the solution. When it comes
to Supervised Learning, the strategy of the expert system can be imitated at best,
without any variation or improvement. Conversely, Reinforcement Learning is able
to use the guided solution as a basis of further learning steps, and explore new
solutions, at the cost, however, of intensive use of computational resources.

47

Inside the Neural Network

3.4 Data Pipeline
Before using the labeled dataset, each entry of the database is elaborated through
two main processes: augmentation and cleaning. The term pipeline indicates serial
data processing, where the output of one elaboration is the input of the next one:
the dataset is firstly augmented and then cleared.
Data augmentation allows the creation of new data starting from existing. Since the
number of collected experiences of the dataset is limited compared to the huge set of
possible states, the neural network learns on a small subset called training dataset
and then predicts never-seen data by using generalized learning. The resulting

Figure 3.9: First four times data augmentation through mirroring process - not
only map information are mirrored, but also action memory and cell detectors.

solution is approximated since, for the majority of the use cases, the neural network
will predict solutions over never-seen data. The data augmentation allows better
training by exploring a broader segment of states. This process multiplies the
number of collected experiences by eight-time. Starting from a dataset of 6906
entries, the augmentation led to an increase of entries up to 55248. Consider a single
entry of the labeled dataset. The entry is composed of two paired information: the
state, or feature vector, and the corresponding action, or label. Since the network
will learn to predict that label when fed with that state, there is no guarantee
that the network is able to generalize to a mirrored situation. By rotating and
flipping the state, it is possible to create new data from the existing one. Usually,
those kinds of operations are associated with image elaboration. Actually, the

48

Inside the Neural Network

first 360 elements of the state, Subsection 3.2.1, can be treated as an image since
they contain relevant information about the nearby local view. Importantly, when
flipping or mirroring a state, the whole state must be accounted for, as well as the
corresponding action. An example of data augmentation is shown in Figure 3.9.
The state is mirrored three times: vertically, horizontally, and diagonally. This
leads to a fourfold increase in experiences. By rotating the original state by π/2, it
is possible to mirror again on the vertical, horizontal, and diagonal. The whole
process creates seven other experiences starting from the original.
While data augmentation leads to a drastic increase in the number of labeled
experiences, data cleaning defines the criteria by which some of the augmented
entries are deleted. Data augmentation often leads to an incongruous situation:
if several entries with different labels correspond to the same state, learning is
undermined. Database cleaning removes both redundancies and incongruous states,
resulting in increased consistency and training accuracy. Data cleaning deleted
1117 entries from the dataset, leading to a final augmented and cleaned dataset
with 54131 collected experiences, as shown in Figure 3.10

Figure 3.10: Second four times data augmentation through mirroring process -
the state of Figure 3.9 is rotated by π/2 and mirrored again.

49

Chapter 4

Algorithm

The algorithm relies on a mixed-use of decentralized Artificial Neural Networks
which confers elementary cognitive skills to each UAV, and a modified version of
the famous A* pathfinder. This chapter introduces the Explorative A* pathfinder
and how its combined use with neural networks can approach the Coverage Path
Planning problem. The whole logical flowchart is presented, highlighting both the
potential and the criticalities of the algorithm, presenting an innovative approach
that aims not only at the cooperation of UAVs but also at their collaboration.
Moreover, it is presented the algorithm designed to divide the target explorable
area into sub-zones of exploration, and the use of the Lloyd Algorithm and the
Voronoi Diagrams involved in this process.

4.1 Assumptions

In the proposed work, the simulation is discrete in time and space. The space
discretization uses an occupancy grid over a matrix. Each cell of the matrix can
be in only one of the following states: unexplored, explored, obstacle. Since maps
are inspired by real scenarios, real obstacles are approximated due to the nature
of the matrix map: if even part of the obstacle lies inside a cell, then the whole
cell is considered as an obstacle cell. The obstacle cells’ distribution and shape are
both known a priori. The path is planned offline as obstacles are fixed. The fleet
consists of a variable number of agents with the same technical capabilities - each
agent occupies always one and only one cell on the map, and the correspondent
cell is an obstacle cell. Consider one single UAV, equipped with a camera pointing
downwards to capture the scene underneath. The camera has a square footprint,
as shown in Figure 4.1. If H [m] is the height from the ground and FOV is the
camera Field Of View [deg], it’s possible to obtain the Side S [m] of the camera

50

Algorithm

footprint, by calculating:

S = 2H · tan

A
FOV

2

B
(4.1)

Figure 4.1: UAV’s camera cone of visibility: in purple, according to the Field Of View,
the camera ground footprint; in teal, a single UAV.

Figure 4.2: Top View: (a) Traditional approaches’ space discretization (b) Space
discretization in this thesis work.

At each time-step, each agent explores all nearby cells in the line of sight with
its camera FOV: the camera, always perpendicular to the ground, has a squared
footprint with side S ∈ R. Furthermore, without loss of generality, it is as-
sumed that the movement of the agent is defined with four directions, specifically
{Up, Right, Down, Left} in the adjacent cells. Since no rotation action is allowed,
the UAVs are always heading Up. The FOV takes 9× 9 cells and is always centered
in the UAV. Compared to the traditional approach, where each action would lead

51

Algorithm

to a displacement equal to S, in this work the displacement at each time-step is
equal to S/9, equivalent to 1 cell, as shown in Fig 4.2. The height of flight from
terrain is fixed so that the problem can be treated in two dimensions. Finally, it is
assumed that all unexplored cells can be reached from at least one agent.

4.2 Algorithm Overview

A trained Artificial Neural Network is the core of decision-making. It acts as the
artificial brain of the UAV and decides what action to take. The input of the ANN
is the locally sensed state of a UAV. The sensed state is then forward propagated
through all the hidden layers until it reaches the output layer, where one of the
four classes of action is selected. Despite the number of agents A being variable,
the same network is used for every UAV. This means that all agents share the
same weight set hence the same way of making decisions: at each time step, the
network performs several forwarding propagations, up to a maximum of one per
agent. Since each agent has a limited view of nearby cells, the ANN is not always
used, as described below. The discriminating factor of this choice is the state. The
state is a feature vector described in the Subsection 3.2.1. The first 360 entries
contain information about the local view of the UAV. This local view is a 19x19
matrix, reshaped into a column vector. Since the local view is always centered
on the UAV, the central cell does not contain relevant information. By counting
the number of unexplored cells in the local view, the agent decides whether to use
ANN or the A*/Explorative A*. If the number of unexplored cells inside the local
view is zero, the agent does not have enough information on unexplored areas, and
any action taken will not lead to a strategy: therefore Explorative A* is chosen.
As described in the following Section 4.4, Explorative A* is used to aid the UAV
in finding and reaching an unexplored area when no unexplored cells lie inside
the local view. The unexplored areas of the map are not explored chaotically, but
the target space is divided into several sub-areas equal to the number of drones,
and each UAV must explore its assigned area since can to sense/view only its
unexplored cells. Once a UAV completely explores its assigned area, its sight
capabilities increase as it becomes able to sense the overall status of the map,
hence exploring also other sub-areas. Increased sight capabilities should not be
confused with a wider local sight, rather than when any unexplored cell of any
sub-zone lies inside its local view, the UAV can actually sense its unexplored cell.
This mechanism enhances collaboration and synergy between parts, in addition to
cooperation. UAVs still can’t communicate with each other, but several controls
are implemented to increase trajectories’ efficiency.

52

Algorithm

4.3 Zone creation
The target explorable space is decomposed into sub-regions of exploration. The
idea is to assign each UAV to a certain sub-region of exploration: this allows
achieving a better UAVs spatial distribution while enhancing coverage performance.
The decomposition is guided by Lloyd’s algorithm, an unsupervised algorithm also
known as K-means. The K-means clustering algorithm attempts to split a given
anonymous data set into a fixed number K of clusters or subsets. In this work, the
anonymous data is the set of unexplored cells in the map that should be grouped in
a number of subsets equal to the UAVs’ number. Let X = x1, x2, ..., xU be the set
of unexplored cells, each one defined by its coordinates in term of row and column
of the matrix map, with U ∈ N the number of the target cells to be explored. Let
K be the number of clusters in which the original set will be partitioned, such that
1 < K < U . "A partition of a set is a grouping of its elements into non-empty
subsets, in such a way that every element is included in exactly one subset." Let
P = p1, p2, ..., pK be the set of partitions such that:

•
KÛ
i=1

pi = X

• pi ∩ pj = ∅, with i /= j

• ∅ ⊂ pi ⊂ X with i = 1, ..., K

The number of clusters K is equal to the UAVs’ number. Partitions can be
represented by a matrix V ∈ ZU×K , where a generic element vi,j is set to 1 if
the j-th unexplored cell belongs to the i-th cluster, otherwise is set to 0. An
unexplored cells belongs to one and only one cluster per iteration. Each cluster has
an associated centroid, an object that represents the average properties of a cluster
in terms of coordinates. Let O = o1, o2, ..., oK be the set of centroids. Each centroid
moves according to the virtual center of gravity of the correspondent cluster. The
purpose of the algorithm is to move iteratively the centroids’ position according to
the value function until convergence is achieved. The value function is described
as:

F =
UØ
i

KØ
j

ñ
x2
i − o2

j · vi,j =
UØ
i

KØ
j

D(xi, oj) · vi,j (4.2)

The value function computes the Euclidean distance D(xi, oJ) in the 2D space
between the unexplored cell xi and its assigned centroid oj. Each iteration aims
to decrease the value of the value function: when the value function comes into a
minimum value, then convergence is achieved and centroids’ position is reached an
equilibrium point. After each iteration, the partition matrix is updated and each

53

Algorithm

unexplored cell is assigned to the closest centroid, therefore:

vi,j =


1, if D(oi, xj) = arg min D(oz, xj),

with z = 1, ..., K, z /= i

0, otherwise
(4.3)

At the end of each iteration, the i-th row of the matrix V contains as many 1 as
there are unexplored cells associated with the centroid oi: let the this number be
Qi, to indicate the quantity of assigned cells to the centroid oi. Each centroid
moves toward the centre of its assigned cells by means of the average position
averaged over the number of cells:

oj = 1
Q
·
UØ
i=1

xi · vi,j, with j = 1, ..., K (4.4)

A best practice is not to use the unexplored cells as the target space to split, since
U , the number of elements in X, can be very large and the computational time
may be unnecessarily high. Instead, it is possible to approximate the space of the
unexplored cell by randomly spawning a number of Np << U points over the target
space, and then use this set of points as a representative set of unexplored cells.
The procedure can be summarized in the following pseudo-code:

Algorithm 1 K-Means clustering algorithm pseudo-code.
1: Place points x1, ..., xP over unexplored cells, randomly
2: Place centroids o1, ..., oK in each UAV’s starting position
3: while not convergence do
4: for each point xi, i = 1, ..., P do
5: find nearest centroid oj ó arg min D(xi, oj)
6: assign the point xi to cluster oj ó Equation 4.3
7: end for
8: for each centroid oj, j = 1, ..., K do
9: count the number Qj of its assigned points xassign.,
10: compute mean position of all the assigned point xa, ó Equation 4.4
11: move cj to that new mean position:
12: end for
13: Stop when none of the cluster assignment change
14: end while
15: from o1, ..., oK , calculate Voronoi Diagram and divide the target area.
16:

Once the position of all centroids does not change from one iteration to another or
is contained within a threshold value, convergence is reached. Starting from the

54

Algorithm

centroids’ final position, the Voronoi Diagram is used to achieve the partition of
the unexplored cells and create the sub-maps. Consider as an example the case
study shown in Figures from 4.3. The K-means algorithm and some of its iteration
are highlighted from Figure 4.4 to Figure 4.8.

Figure 4.3: Example case study map - In black, the target area composed by
"unexplored" cells. In gray, "obstacle" cells. In white, unreachable cells, set as
"explored" according with the assumptions described in Section 4.1. The algorithm
will attempt to create K partition of the set of unexplored cells.

55

Algorithm

Figure 4.4: In the left figure, 2000 white points are spread over the unexplored
target area. In the right figure, five centroids, represented as triangles, are positioned
in each UAV’s starting position.

Figure 4.5: In the left figure, each point is assigned to the closest centroid. In
the right figure, each centroid is moved toward the averaged points’ position. This
process represents one complete iteration of the K-means algorithm.

56

Algorithm

Figure 4.6: Second iteration of the K-means. In the left figure, each point is
re-assigned to the closest centroid. In the right figure, each centroid is moved
toward the averaged points’ position

.

Figure 4.7: Seventh and last iteration of the K-means. In the left figure, each
point is assigned to the closest centroid. In the right figure, each centroid is moved
toward the averaged points’ position.

57

Algorithm

Figure 4.8: In the left figure, the centroids’ final position cleared from the points.
In the right figure, the correspondent Voronoi tessellation.

The final centroid position is obtained in seven iterations of the K-means algorithm,
as shown in Figure 4.7. Using the final position of K centroids as seeds, a Voronoi
tessellation splits the map into K zones as shown in Figure ??. Thanks to this
algorithm it is possible to create a partition of a complex distributed target set. It
is important to underline that the partition is not unique, nor is the equilibrium
configuration of the centroids, but this depends on the initial position of the
centroids. Instead of placing them randomly on the map, it was considered more
useful to initialize them on the starting cell of the corresponding UAV. In Figure
4.11 it is shown the final partition, according to the matrix nature of the map. In
the example, each of the five UAVs will be assigned to one unique zone, and its
goal will be to fully explore it. Note that the algorithm is set as "unexplored" only
the target area of the correspondent map. Although the non-target area is set as
"explored", it is a fictitious operation, since the exploring UAV must give priority
to its partitioned zone. Explorative A*, Section 4.4 and the Flowchart, 4.5, will
describe in detail how collaboration is enhanced.

58

Algorithm

Figure 4.9: Zone visualization - every single zone is highlighted, showing in black
the correspondent target area, and in white the non-target cells. In this example,
five UAVs will explore the map, each one assigned to a particular zone.

4.4 Path-finding algorithm

The local limited sight of each UAV on the map often leads to situations where no
unexplored point lies inside their local view and for which the neural, in which case
and for which the use of neural network approach is not useful. This issue occurs
especially towards the end of the exploration when few cells are missing. In these
cases, an explicit path-finder is used to aid the UAV to find the nearest interesting
cell and reach it planning an optimal path. More specifically, the two path-finding
algorithms are Explorative A* and, in case of non-convergence, traditional A*. The
algorithm is articulated in three main steps:

59

Algorithm

Step 1: Goal cell – enlarge the local view in order to detect the nearest unexplored
point and set it as the goal.

Step 2: Explorative A* – check if Explorative A* convergences from the UAV
position toward the goal.

Step 3: A* – if Explorative A* did not converge, then try to use the classic version
of A*.

Step 4: Convergence – If neither traditional A* does not converge, then all steps
are repeated from Step 1

[17]The A* algorithm, pronounced A star, is one of the most established and efficient
search algorithm used in the path planning field, which uses a heuristic function to
guide its search. The high speed of convergence is guaranteed by construction, as it
implements a "best solutions-first" policy. This property suits perfectly the urban
scenario, where the high interconnection of streets and paths plays a fundamental
role in the speed of convergence. Since A* relies on graphs, each cell of the matrix
map is considered as a node, and the equation that governs the choice of the path
is structured as follows:

f(n) = g(n) + h(n) (4.5)

, where n is the next node, while g(n) is the cost of the path from the start node
n0 to the generic noden in terms of distance, describes as:

g(n)n0 = (n.x− n0.x) + (n.y − n0.y) (4.6)

The function h(n) is a heuristic function that estimates the cost of the cheapest
path from n to the goal. The algorithm explores the map by seeking a path that
minimize the overall overall travel cost. For matrix maps, as in our case, it is
possible to select a consistent heuristic by means of a taxicab distance between a
generic cell n and the goal cell ng:

h(n)ng = (n.x− ng.x) + (n.y − ng.y) (4.7)

Compared to the classic A*, where the aim is to find the path that minimizes the
number of movements, the Explorative A* has been developed ad-hoc for in this
work of the thesis. Its purpose is to search for the shortest path that reaches the
goal while exploring the unexplored area with continuity. A visual comparison
between A* and Explorative A* is shown in Figure 4.11. The resulting path is a
path that passes only through unexplored cells. Since this is not always possible,
when Explorative A* does not converge, the traditional A* is used. Although
dynamic versions of A* exist, capable to re-plan a route when they encounter

60

Algorithm

Figure 4.10: Traditional A* finds the path - the start cell is represented in
orange; the goal cell is represented in blue; red cells are the nodes visited by the
algorithm; green cells are the cells that the algorithm can expand; the final purple
cells represent the minimum and optimal path to reach the goal from the start.

an unexpected object, this work uses the static version. If a UAV encounters an
obstacle while following a planned path, that obstacle can only be another agent: in
those cases, the UAV hovers for a time-step and waits for the other agent to move.
Several measures are coded to improve efficiency and avoid congestion issues. For
instance, if an agent is following its A*/Explorative A* planned path towards the
goal, and another agent explores its goal cell, then a new path is planned toward a
new goal cell; if a UAV encounters unexplored cells during the planned path such
that at least one unexplored cell lies inside its local FOV, then A*/Explorative

61

Algorithm

A* is deactivated and Neural Network decision-making activates. A more precise
overview of the algorithm is shown in the following Section 4.5.

Figure 4.11: Traditional A* and Explorative A* in comparison, same situation.
The UAV is located in the orange square; the goal cell to reach is represented in
blue. The left figure shows the path with Traditional A*, which is the shortest
path; the right figure shows the path with Explorative A*, which accounts for both
the length of the path and the exploration of new cells (in grey).

4.5 Flowchart
The complete flowchart is shown in Figures 4.12 and 4.13: it describes how the
coverage path planning is carried out, highlighting the dual use of neural networks
and path-finders. Before the exploration starts, the target explorable map is split as
described in Section 4.3. Once obtained N different zones, each of the N agents are
assigned to one of those, prioritizing the exploration in the correspondent area. Each
agent has a limited view on the map, and it represents a consistent part of the input
state fed into the network, as explained in Subsection 3.2.1. The UAVs can sense
as "unexplored" only the cells that belong to their assigned zone. Thanks to this
artifice of sight, each agent will be focused on the exploration of its correspondent
zone. The iteration continues until the map is fully explored. At each time-step,
each agent is asked to take one of the four actions {Up, Right, Down, Left} over
the 2D map. In the initial time-step, it is assumed that each agent does not have
any planned path, so A* flag is set to False. If the local view of the i-th UAV
contains unexplored and visible cells, then the decision-making is entrusted to the

62

Algorithm

neural network; conversely, the path-finding algorithms aid the UAV to search
the closest unexplored cell. When it uses the neural network approach, the UAV
senses the information needed for the input state, and then a forward propagation
predicts the probability distribution over the four actions. The agent is encouraged
to take the action with the highest value, checking in advance if that action would
lead to a crash. If the action is admissible, then it is selected, otherwise, the next
action with the highest probability is considered and analyzed. If the local view
does not contain unexplored cells, the UAV is guided toward an unexplored cell:
Explorative A* and traditional A* aid the UAV in this task. First of all, since there
are not any target cells in view, the algorithm searches for a potential goal cell
that is unexplored, enlarging progressively the view of the UAV. When the closest
potential goal cell is founded, then the algorithm checks the convergence with the
path-finding algorithms. It is sufficient that at least one of the two converges to
be able to set the flag Aj∗ to "true" since the path toward the goal cell is planned.
This is the process described in Figure 4.12. On the other hand, if the Aj∗ flag
is true at the start of the iteration, then a path has been already planned. The
first conditional block checks if the UAV has encountered unexplored cells during
the planned path. If so, then the neural network approach is followed since the
unexplored cell is in the local view, and the selection of action is the one described
below. Conversely, if the path is planned toward a goal cell and no unexplored cells
are in view, then the algorithm checks if the goal cells have been already explored
by another agent. In this case, the path is re-planned toward a new goal cell. Once
a UAV explores entirely its assigned zone, then its sight capability increase as it
becomes able to explore each unexplored cell of each zone. In this way, UAVs can
help each other as they finish their exploration. This cycle iterate until the map is
fully explored. Further improvements are not showed in the flowchart include an
anti-congestion function, activated during the research of a goal cell that avoid two
UAVs to plan a path toward the same cell or nearby. The combination of those
elements allows the coverage path planning of a fleet of UAVs, the results of which
are presented in the next chapter.

63

Algorithm

Figure 4.12: Flowchart - Part 1

64

Algorithm

Figure 4.13: Flowchart - Part 2

65

Chapter 5

Results & Simulation

The performance evaluation of a coverage path planning algorithm is not trivial at
all, especially when it comes to multi-agent systems where a consistent number of
good solutions can coexist. Furthermore, the determination of a good trajectory is
linked to the type of final application. For UAV applications, a good trajectory
manages to minimize turnovers, as well as being efficient and minimizing flight
time. This chapter presents the simulation results, following the basis of evaluation
metrics. The algorithm is tested over real urban case studies, with a particular
focus on Leonardo’s indoor case study. For this latter map, it is presented also a
trajectory corrector whose purpose is to smooth the simulated trajectory. Moreover,
UAVs are simulated in a 3D environment run with ROS - Robotic Operating
System.

5.1 Evaluation Metrics

The evaluation metrics offer a clear and objective basis to judge the quality of the
results. Six parameters are considered. These parameters can be grouped into two
main categories, as a function of the time interval considered. Some parameters
are averaged over the whole simulation regime, hence at each time-step; other ones,
indicated with an asterisk*, account for only a part of the time-steps. For the latter
category, it is considered only the steady-state exploration, empirically defined as
the set of time-steps in which the exploration percentage is contained between 40%
and 70% of the complete exploration: in this way metrics are not influenced by
the boundary starting conditions of the simulation, e.g. UAVs’ starting position,
thus isolating the performance characteristics of the algorithm and resulting in a
more clear and accurate performance evaluation. The following table introduces
the evaluation basis:

66

Results & Simulation

Mean Moves Number. (MMN)
Ø
i

Mi
1
A

Trajectory Efficiency (TE)
Ø
i,t

Ei,t

9 · 1
A ·MMN

%

Mean Number of Turnovers(MNT)
Ø
i,t

Ti,t · kθ
1

A ·MMN
%

Mean UAV s Distance∗ (MUD)
Ø
i,j,t

D(ai,t, aj,t)
2

(A2 −A) · Tr

Mean Distance from Unexplored cells∗(MDU)
Ø
i,j,t

min(D(ai,t, uj,t))
1

Ut · Tr

• Mean Moves Number (MMN): the smaller MMN, the more successful the
overall strategy is: the parameters is calculated dividing the sum over the number
of total moves Mi of the i− th UAV by the UAV number A. Reducing the flight
time is mandatory due to energetic constraints in UAV application.
• Trajectory Efficiency (TE): considers the exploration quality: since each UAV
can explore up to 9 cells for action, the exploration rate Ei,t of the i− th UAV at
timestep t is divided by 9. The overall sum of Ei, t is then divided by both the
number of agents A and the MMN . The reference trajectory is an ideal trajectory
where each UAV explores 9 cells per timestep for all timesteps, TE = 100%. Since
the map features make it impossible to reach this percentage, it is desirable to
obtain a high TE value anyway.
• Mean Number of Turns (MNT): this metric is considered since the energetic
constraints must be accounted for: turnovers are one important factor of energy
dissipation. For this reason, the sum of all turnovers Ti,t at time t by the agent
i− th, is multiplied by a factor kθ which can be equal to 1 if the turnover is a 180°
or equal to 0.5 if the turnover is a 90°. The overall sum is divided by the number
of agents A and by the Mean Moves Number. The lower MNT, the smoother
trajectory is planned.
• Mean UAVs Distance (MUD∗): indicates how distributed are the UAVs at
steady-state exploration. The function D(ai, aj) is the Euclidean distance between
the agent ai and the agent aj . The positions are given in terms of the correspondent
row and column of the UAV position in the matrix map so the MUD is expressed
using the distance between two adjacent cells as the unit of measurement. The
sum of distances is then divided by the number of all possible combinations of the
relative distances between the UAVs. For A UAVs, the number of possible pairs is
(A)(A − 1)/2. The larger the MUD, the more the drones are spaced. To get an
idea of the strategic distribution that can cover all areas of the map, the MUD
must be considered in conjunction with the MDU.

67

Results & Simulation

• Mean Distance from Unexplored cells (MDU∗): considers the overall coverage at
steady-state exploration. For each unexplored cell of the map uj, it is considered
the Euclidean distance between the cell uj and the nearest UAV ai. The overall
sum of these distances is then divided by the number of timesteps a regime Tr and
the number of Ut at timestep t. The smaller the MDU, the better distributed are
the UAVs since each unexplored cell can be rapidly reached and explored.

5.2 Results
The algorithm focuses on occupancy grids inspired by real urban maps. Results
are presented in four case study maps. Each map is simulated four times, with
an increasing number of agents from 3 to 6, and results are compared in terms of
evaluation metrics. Particular attention is paid to Case Study I, whose relative grid
is representative of Leonardo Drone Contest indoor scenario presented in October
2020. This map covers a 20× 10[m2] area and has been modeled with an 84× 42
cells matrix. A 3D model of this map is shown in Figure 5.1. Other maps include
a more complex occupancy grid since they are inspired by real urban maps.

Figure 5.1: Case study I - a 3D view of the Leonardo Drone Contest urban environment

The first batch of results is presented in Leonardo’s Case Study, as it presents a
simple geometry to appreciate a visual representation of the trajectories. Figure
5.1 shows how the 3D model of the environment is modeled with the matrix map:
the tighten grid offers a wide range of trajectory planning possibilities. Since
the exploration is bi-dimensional, the grid is created for a fixed height following
the assumptions introduced in 4.1; unreachable cells are considered as explored,
represented in white in Figure 5.2, since there is no interest in visiting them and
avoiding the neural network to predict wrongly. In the following table, evaluation

68

Results & Simulation

Figure 5.2: In the left figure, Case Study I - inspired by Leonardo Drone Contest. In
the right figure, the matrix map used in the simulation.

metrics are implemented for the Case Study I map, with an increasing number of
agents from 3 to 6:

Table 5.1: Case study 1: Leonardo’s Map - Fig 5.2
Num. of UAV s 3 4 5 6

MMN 183 168 133 126
TE 41.1% 32.8% 32.4% 27.1%

MNT 6.73% 7.21% 6.31% 5.88%
MUD 22.25 31.48 38.54 35.31
MDU 19.55 14.04 13.39 13.61

The Figure 5.3 contains a plot of the metrics with an increasing number of agents.
As shown in Table 5.1, the higher the number of UAVs that simultaneously
explore the map, the lower the number of movements is required for the complete
exploration, as expected. On the other hand, the increased number of agents
leads to a performance reduction in terms of trajectory efficiency - UAVs tend
more frequently to pass over cells that have been already explored. The weighted
number of turning maneuvers appears to be independent of the UAV’s number
and the behaviour does not allow to go for a generalization of concepts: this is a

69

Results & Simulation

consequence of sharing a single neural network hence that same way of acting.
For tiny maps as this Case Study 1, both Mean UAVs’ Distance (MDU) and

Figure 5.3: Case study I - results in terms of evaluation metrics

Mean Distance from Unexplored cells (MUD) are dependent on the UAVs starting
position. However, to achieve performing explorations, MDU should be high and
MUD low, simultaneously, in order to have scattered UAVs in strategic positions.
In Figure 5.4 it is shown the track of each UAV’s trajectory for the complete
coverage path planning with a number of agents/UAVs equal to 5 over the Case
Study I. For the same simulation, in Figure 5.5 it is shown the frequency by which
Neural Network and A*/Explorative A* are used during the simulation: the graph
shows an increased use of A*/Explorative A* towards the end, as expected, since
the number of unexplored is reduced and the UAVs need the aid from an explicit
path-finding algorithm.

70

Results & Simulation

Figure 5.4: Case study I - trajectories in the simulation with 5 agents. The upper left
image shows the area division, according to the K-means algorithm . In the other images,
the overall UAVs’ track, where each singular UAV trajectory is highlighted.

Figure 5.5: Case study I, 5 agents - On the x axis, the time-steps. For each time-step,
the graphic shows the number of agents that use the neural network approach, in orange,
and the explicit path-finders, in blue.

71

Results & Simulation

The second case study is inspired by a view of Porta Nuova, Turin, as shown in
Figure 5.6, modeled with a matrix of 195× 247 cells. This case study results more
complex compared to the first one. but the urban structure of Turin preserves
sharp curves as Case Study I. Note that the density of obstacles and buildings in
the real map is drastically higher compared with the Case Study I. Results are
shown in Table 5.2 and plotted in Figure 5.7. In this case study, the high density

Table 5.2: Case study 2- Results - Turin, Porta Nuova - Fig 5.6
Num. of UAV s 3 4 5 6

MMN 1019 854 827 591
TE 37.5% 33.5% 27.5% 32.1%

MNT 4.01% 4.51% 5.27% 4.01%
MUD 153.10 118.96 132.97 120.33
MDU 72.61 54.18 50.37 48.76

of obstacle and the structure of the explorable space is very rigid. Since streets
are very long, the path must be planned carefully, since a single wrong turning
maneuver could lead to several time-steps without exploration. The Mean Moves
Number parameter decreases as expected, showing a drastic reduction when the
number of UAV is equal to 6, from 827 to 591 moves per agent. The trajectory
efficiency has been strongly influenced by the MMN, showing that six agents
performed better than five agents. As anticipated, this could be attributed to a
combination of some sub-optimal planned maneuvers and the nature of the map
which does not allow mistakes. The MNT is in the order of 4% due to the multitude
of straight paths, less if compared to Case Study I, in which it reached the 7.2%.
Note that the original scale of the map has a strong influence on the resolution
of the grid. In each map, the step of movement has an amplitude determined
by the height from which the UAVs fly; a possible solution to avoid those long
straight corridors could be a change in grid resolution hence higher UAVs, to
achieve a wider step. The MUD and MDU must be analyzed in conjunction with
the dimensions of the map. Both MDU and MUD decrease drastically when the
number of agents passes from 3 to 4, while for a higher number of UAVs the
coverage appears to be uniform and well distributed. The track of the UAVs is
not showed for real urban maps since it would be difficult to understand the path
from a figure. Comparing each metric, it seems that for a number of agents equal
to 5 the exploration was not completed efficiently since the correspondent point
shows the worst performances and it can be considered an outlier. Particularly,
the number of turning maneuvers is particularly high, leading to less trajectory
efficiency.

72

Results & Simulation

Figure 5.6: In the left figure, a satellite view of Porta Nuova, Turin. In the right figure,
the Case Study II map used for the simulation.

Figure 5.7: Case study II - results in terms of evaluation metrics

73

Results & Simulation

The third case study is inspired by Porto Antico, Genoa, as shown in Figure 5.8.
Compared to Case Study II, this presents a strong interconnection between the
various areas although the dimension of the map is 104 × 161 cells. Results are
presented in Table 5.3 and plotted in Figure 5.9. The number moves per agent
decreases as the number of agents increases, with a drastic reduction when the
number of agents passes from 3 to 4. On the other hand, the simulation with 3
agents presents a very low trajectory efficiency, which raises for the simulation with
4 and 5 agents and then collapses when the number of agents becomes 6. The
5 agents case is particularly interesting since both trajectory efficiency and the
number of turns are low, while also preserving excellent coverage on the map. The

Table 5.3: Case study 3- Results - Genova, Porto Vecchio Fig 5.8
Num. of UAV s 3 4 5 6

MMN 1012 674 553 482
TE 23.6% 26.3% 26.4% 24.23%

MNT 21.2% 20.8% 19.39% 20.40%
MUD 53.76 69.48 62.99 65.73
MDU 41.91 25.33 26.96 22.09

Figure 5.8: In the left figure, a satellite view of Porto Antico, Genoa. In the right
figure, the Case Study III map used for the simulation.

fourth case study is inspired by Porto, Spain, as shown in Figure 5.4. Results are
presented in Table 5.4 and plotted in Figure 5.11. This map presents a new critical
issue since the Douro rivers that cross the entire map splits the explorable surface
in two. These two areas are connected only by a bridge so the crossing is forced. It
should also be noted that drones are not bound to fly over only the walking areas
but could use virtual corridors to fly across the river and access the other side more
easily. Although the grid is not the thickest, with only 133× 199 cells, the covered
areas are the larger of all the four case studies. For this reason, UAVs have an easier
possibility of planning the route between urban blocks, although the movement step

74

Results & Simulation

Figure 5.9: Case study III - results in terms of evaluation metrics

is much larger than in previous cases. This property flows into a more homogeneous
distribution, showing the actual improvements in exploration performances brought
about by the addition of every single UAV. The MMN decreases in a quasi-linear
way, while the other parameters highlight an increased performance trend as the
number of agents increases, with a particular efficient trajectory planned with 5
UAVs. The exploration has given excellent results despite the constraint of the
river, whose merit is also attributable to the division algorithm by areas, which
has managed to divide the areas to avoid that the same area does not correspond
to unexplored points straddling the river.

Table 5.4: Case study 4- Results - Porto, Douro River - Fig 5.10
Num. of UAV s 3 4 5 6

MMN 1537 1157 911 791
TE 21.7% 21.6 % 21.9% 20.8%

MNT 19.43% 18.56% 17.56% 18.05%
MUD 131.11 98.27 95.34 90.13
MDU 46.01 38.01 38.45 32.71

75

Results & Simulation

Figure 5.10: In the left figure, a satellite view of Porto, Portugal. In the right figure,
the Case Study IV map used for the simulation.

Figure 5.11: Case study IV - results in terms of evaluation metrics

Finally, the overall results are showed in Figure 5.12, where each of the previous
tables from Table 5.1 to 5.4 are plotted together. The results are not normalized
to the size of the map, as the density and distribution of obstacles are much more
influential on the performance results. The number of UAVs influences positively
the Mean Moves Number, MMN, decreasing the time required to achieve the
complete exploration. For larger areas, this performance characteristic is inhibited
by a decrease in the efficiency of the trajectory which makes the UAVs tend to

76

Results & Simulation

explore areas already explored several times. On the other side, the energetic
constraint must be accounted for, and the mean number of turnovers seems to
be independent of the number of UAVs. A trade-off analysis also considers the
contribution to a homogeneous distribution of UAVs in space, thus showing how
the algorithm is effectively able to plan a trajectory capable of intercepting the
criticalities of the maps presented and adapting the path even to unconventional
obstacles.

Figure 5.12: Case study from I to IV - results in terms of evaluation metrics

77

Results & Simulation

5.3 Simulation in ROS

The coverage path planning for cooperative UAVs has been simulated in a 3D
environment using a reconstruction of Leonardo Drone Contest scenario. The
path is the one shown in Figure 5.4, but in the following images, it is possible
to appreciate also the dynamics of movement of each drone in accordance with
the flight mechanics. The simulation has been developed using Gazebo, a 3D
simulation of rigid body robots, and ROS, acronym of Robot Operating System,
a framework for development and programming of any kind of robotics. ROS is
an open-source meta-operating system for robotic systems[18]. Practically, ROS is
a standard for robot programming and offers a general-purpose robotics library
for robotic applications. Gazebo is an open-source multi-robot simulator fully
compatible with ROS[19] able to simulate robots, sensors, and rigid body dynamics.
In Figure 5.13 the 5 UAVs are shown in the idle state on the ground. Figure 5.14
shows the engines’ start and the take-off phase, up to the initial hover state. Finally,
Figures from 5.15 to 5.17 show different views angle of the exploration.

Figure 5.13: Case Study I - Leonardo Drone Contest - The UAVs are in a state of
IDLE on the ground. The angled view allows a more complete perspective on the
urban case, of which the occupancy grid used in the simulation allowed a planar
visualization of the obstacles

78

Results & Simulation

Figure 5.14: Case Study I - Leonardo Drone Contest - The UAVs in-flight
formation after the take-off.

Figure 5.15: Case Study I - Leonardo Drone Contest..

79

Results & Simulation

Figure 5.16: Case Study I - Leonardo Drone Contest.

Figure 5.17: Case Study I - Leonardo Drone Contest.

80

Chapter 6

Conclusion

The study conducted on the planning of the path of unmanned aerial vehicles has
made it possible to identify a possible area of intervention in urban scenarios. The
high density of complex obstacles requires detailed planning, making the best use
of spatial discretization. The simulations of this thesis project use satellite urban
maps with very tight occupancy grids, in which the movement step allows precise
planning even on non-convex geometries, and in which traditional approaches are
unfruitful, especially in the multi-UAV case. The simulation is discrete in time and
space, and each UAV is asked to select one of the four actions at each time-step,
coordinating with the other agents to achieve congestion and collision-free path.
The selection of the movements renders the coverage path planning a decision
problem, usually tackled with Reinforcement Learning techniques and Artificial
Neural Networks, where strong decisions mathematical frameworks as the Markov
Decision Process allow modeling the problem to achieve Artificial Intelligence. In
this work of thesis, the problem has been reformulated, transforming the decision
problem into a classification problem, exploiting the state of the art algorithm to
train the neural networks with the Supervised Learning.
Potentially, the neural network model that underlies both Reinforcement Learning
and Supervised Learning can be almost the same, with some changes on the
output layer, while there is a substantial difference in the approximated function.
The purpose of Multi-Agent Reinforcement Learning is to maximize the expected
reward interacting with the environment in terms of exploration, implementing
exploring paradigms as the "exploration vs exploitation", in which the network tries
to predict which action might lead to the best strategy according to the designed
rewarding policies. In the Supervised Learning, used in this thesis, the policy of
the network does not receive any feedback from the environment, but the network
is trained to imitate a pre-existing strategy, recorded from an experience basis
of an expert system prior. This technique is referred to as Supervised Imitation

81

Conclusion

Learning.
Supervised learning has an excellent optimization framework and libraries, so
much so that the transition from Reinforcement to Supervised Learning has made
it possible to reduce the training time of the network from several tens of days on
a supercomputer cluster to a couple of minutes on a domestic computer.
A strong requirement of supervised networks is the need for a large labeled
database for the training session. By taking advantage of a framework designed
ad-hoc for the collection of data, it is possible to record in a precise and orderly
way every single action of an expert system, and thus create the dataset. This
system allows an autonomous generation of data, satisfying the numbers necessary
to obtain high-performance networks.
The expert system can be both a human or an expert algorithm. In this work,
the experiences were collected based on human priors, in which each action was
entered manually from the keyboard and coupled to the current state of the UAV.
The imitation framework is used to collect the experiences from the expert system
records entries for a single-agent case in simplified environments. This inductive
approach shows further generalized learning capabilities of the networks, which is
trained over single-agent case collected data while the final applications involve
multi-agent scenarios.
The data augmentation was explored, allowing the creation of new experiences
based on those already registered and gross multiplication leverage of 8 times the
size of the initial database. The final database contains a total of 54131 entries,
structured as pairs containing the UAVs state and the correspondent action taken
by the expert system.
The network learnt the strategy of the expert system stored in the database by
seeking hidden patterns and cross information among the data. The final network
is capable of coupling the state of the UAV with the same action that the expert
system would carry out to reproduce them when it is in the same situation and
not only. The network manages to internalize the method with which the path
was planned by the expert system and to propose it again in situations never seen
before, thanks to the identification of recurring decision-making patterns within
the database.
Thanks to an iterative try and error process, the network configuration has
been designed ad-hoc to ensure excellent predictions on known data but also
to preserve the generalization capabilities. The learning results are very good,
reaching 92.01% percent accuracy over the 54131 entries of the database. The
configuration of hyper-parameters was detailed in Chapter 3, with a total of
106684 trainable parameters. The simulations were carried out on occupancy
grids inspired by satellite view on urban scenarios, some of which were virtualized

82

Conclusion

in three-dimensional environments using Gazebo and ROS. Particularly, for the
Leonard Drone Contest map, the simulation has been analyzed from multiple
points of view, from coverage performances to the efficiency of trajectories, from
the frequency of usage of the neural network to the complete 3D simulation.
A basis of evaluation metrics has been defined to monitor both energy constraints
and the distribution of agents on the map. The exploration performances show that
the network, trained in the single-agent case, is also versatile in the multi-agent
case, performing optimally on the satellite maps. Furthermore, the network is
able to generalize planning concepts to scenarios never seen before, being able to
guess the presence of other UAVs in motion and intercepting future actions in a
coordinated, clean, and efficient way.
The network performs in a satisfactory manner and the output trajectories offer
strategic coverage according to the limited view on the map. This feature has been
tested in several scenarios with the most various obstacles, including town squares,
alleys, and rivers. The simulations highlighted better performances where the step
of movement was wide, hence planning with a resolution of the grid that allows
the modeling of the underneath map with sufficient accuracy in which the urban
blocks are not too distant and therefore the UAV is able to have a sufficiently wide
local view on the set of buildings.
A drawback of having replaced Reinforcement Learning with Supervised Learning
is certainly the absence of improvements compared to the strategy of the expert
system. For problems such as coverage path planning, there is no single optimal
solution, but the range of possibilities must be explored in accordance with the
boundary conditions of the problem, for example by favoring the reduced number
of turnover rather than flight time. In the case supervised by imitation, the agent
does not learn to know or interact with the environment, but thanks to a training
process the neural network is made capable of guaranteeing excellent predictions
on both known and unseen data, preserving the capacity for generalization. Final
planning then occurs with the same strategy as to how the expert system would
have performed it. Moreover, an expert system is always needed to guide the
solution. Conversely, in Reinforcement Learning the agent is free to explore new
policies, hence improving its strategy and self-induce learning, always provided the
onerous requirements of time and computational resources
It would certainly be interesting to see how imitation learning could perform
in conjunction with reinforcement learning techniques, so that the agent does
not have to build a strategy from scratch, but can already start from the one
of the expert system, and then develop further improvements autonomously.
Another point of improvement is certainly the neural network and in particular, its
configuration, exploring the vast universe of neural networks and the countless

83

Conclusion

other architectures that guide modern cutting-edge robotics. Instead of using
human priors, it could be possible to collect experiences from the most advanced
coverage algorithms and their unique strengths together using a neural network.
Moreover, also convolutional neural networks could be used in the classification
operation, thus allowing to isolate the interesting features on which to base the
decision-making process.

84

Acknowledgements

Vorrei dedicare questo spazio a chi, con dedizione e pazienza, ha contribuito alla
realizzazione di questo elaborato.

Un sentito grazie al mio relatore Prof. Giorgio Guglieri, per me un mentore, per
l’infinita disponibilità e tempestività dimostrate nella stesura di questo documento,
oltre che per gli insegnamenti e la passione trasmessi con le sue lezioni.

Ringrazio il mio correlatore, Simone Godio, che in questi sette mesi di lavoro ha
saputo guidarmi, con suggerimenti pratici e preziosi consigli, nelle ricerche e nella
stesura dell’elaborato con professionalità, chiarezza e pazienza. A Simone va inoltre
attribuito il merito per la simulazione 3D presentata nel Capitolo 5.

Ringrazio anche gli amici e colleghi come Michele Pio, Carlotta, Ludovico, Alice,
Ginaluca che ogni giorno hanno condiviso con me gioie e sacrifici senza voltarmi
mai le spalle, rendendo questo traguardo ancora più speciale.

Ringrazio i miei fedeli amici di adolescenza, Filippo e Antonello, per essermi rimasto
accanto durante i miei brevi rientri a casa

Per ultima, ma non per importanza, ringrazio tutta la mia famiglia, soprattutto
Nonno Giovanni che dal cielo festeggierà insieme a me questo grande traguardo.

Giovanni Sanna.

Computational resources provided by hpc@polito (http://hpc.polito.it)

Acronyms

A* A star

AI Artificial Intelligence

ANN Artificial Neural Network

CPU Central Processing Unit

CS Case Study

DLS Deep-Limited Search

DNN Deep Neural Networks

DQN Deep Q Network

GB Giga-Byte

GHz Giga-Hertz

GD Gradient Descent

GPU Graphic Processing Unit

IoT Internet of Things

MDP Markov Decision Process

MLP Multi-Layer Perceptron

MNIST Modified National Institute of Standards and Technology

MSE Mean Squared Error

MS MicroSoft

86

Acronyms

NN Neural Network

OOP Object Oriented Programming

PoC Proof of Concept

ROS Robotic Operating System

SAR Search And Rescue

SL Supervised Learning

RAM Random Access Memory

RL Reinforcement Learning

SGD Stochastic Gradient Descent

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

VP Vice President

87

List of Symbols

A Number of exploring agents/UAVs

þal activation vector, also knwon as input vector or
feature vector or state vector, containing all the
activation components alj of the layer l

alj activation of the of the j-th neuron of the l layer
C Cost function or loss function
C0 Cost value for a particular prediction
E number of collected experiences. Usually referred

to the number of training samples plus the number
of validation samples

K number of clusters in the K-means algorithm
l generic layer l of the the neural network
L number of total Layers of an artificial neural net-

work
Ntrng number of total training samples
Nc number of total output classes
oi a generic i-th centroid
O total centroids set
pi a generic i-th partition of a set
P total partition set
U number of unexplored/target cells of a map
wl
ij weight of the edge connecting the i-th neuron of

the l − 1 layer with the j-th neuron of the l layer
zli intermediate value of the first step of calculus

of Equation 2.1. This value belongs to the i-th
neuron of the l − 1 layer

88

List of Symbols

89

List of Tables

3.1 Dataset Division - the first column indicates whether weights, such
as biases, are updated after the training phase. The second column
indicates whether the data has a known associated/desired output
in the database. The last column indicates the percentage of the
division with respect to the entire data collection. 33

5.1 Case study 1: Leonardo’s Map - Fig 5.2 69
5.2 Case study 2- Results - Turin, Porta Nuova - Fig 5.6 72
5.3 Case study 3- Results - Genova, Porto Vecchio Fig 5.8 74
5.4 Case study 4- Results - Porto, Douro River - Fig 5.10 75

90

List of Figures

2.1 [12] UAV engaged in a SAR operation - neural networks aid the
computer vision to recognize injured. Thanks to convolutional
layers, pattern recognition can occur on multiple objects (classes) in
the same image. 7

2.2 The Perceptron - visualization of the computational unit. The
perceptron, represented through the circle, is connected with the
outside through several incoming edges and one outgoing connection
edge. Inbound links provide inputs to the computational unit, i.e.
the activation of the previous level, which the perceptron uses to
produce the output through Equations 2.1 (a) and (b). The output
is then propagated toward the next unit thanks to the outbound
connection. Figure 2.3 shows an example of a perceptron immersed
in a network. 9

2.3 A perceptron immersed in a network - it is shown its connection
with the input layer. The input layer has n several units which are
activated from an external source: a0

1, a0
2, ..., a0

n. The input propa-
gates toward the perceptron using the edges, where the Equation
2.1 computes the output a1

1. Noticed that while the weight values
are proper of each edge, the bias term is contained in the perceptron
and not visible, as well as the activation function. 9

2.4 On the right, the XOR Boolean truth table. On the right, the
function represented on the Cartesian plane. 10

2.5 A Standard Fully Connected Artificial Neural Network with four
output. This network has an architecture with 3 computational
layers, two of which are hidden and the last one is the output.
The input vector contains 17 feature information, each of which
constitutes the activation of a neuron. 11

2.6 Step function with a bias example of 0.5 - this was the first activation
function used in the pioneering perceptron model, although the non-
differentiable point in z = b. 13

91

List of Figures

2.7 Logistic or Sigmoid activation function. Note that the output is
contained in (0, 1), with horizontal tangent to plus and minus infinity. 14

2.8 Hyperbolic tangent activation function over the range [6, 6]. Note
the admissibility of negative values when compared with Figure 2.7. 14

2.9 Rectifier Linear Unit - ReLU function with a bias example of 0.5 -
note the linear behaviour the follows the bias/activation point. This
activation function is particularly important since the network used
for the coverage path planning uses exploits ReLU in most of the
layers. 15

2.10 The purpose of this simple neural network is to divide the data
shown in Figure 2.11. The equation that governs its behaviour has
been made explicit in Equation 2.7. 16

2.11 In this case, the solid and empty dots can be correctly classified by
any number of linear classifiers. H1 (blue) classifies them correctly,
as does H2 (red). H2 could be considered "better" in the sense that
it is also furthest from both groups. H3 (green) fails to correctly
classify the dots. 17

2.12 Different levels of approximation and different datasets. The single-
layer network is able to classify only linear separable classes. Net-
works with increasing complexity are able to group data with more
articulated distribution. 18

2.13 Different levels of approximation and different datasets. The single-
layer network is able to classify only linear separable classes. Net-
works with increasing complexity are able to group data with more
articulated distribution. 23

2.14 An example of a neural network training session. The trend of the
cost value for the training set data, typically decreasing, is shown
in blue. In red, the cost value for the validation set data. It is
noted that from a certain number of epochs onwards the trend of the
validation set first begins to become horizontal, then even increases.
The corresponding number of epochs is the one to obtain a neural
network capable of both performing on training data and on data
never seen before. Continuing the training further, we encounter
what is called overfitting, and the network gradually loses generalized
learning . 30

3.1 MNIST Example . 34

92

List of Figures

3.2 Some example maps of type I. The figure shows 5 out of 48 total
maps created. The geometry is simple and the obstacles’ shape is
basic. In black, obstacle cells; in white, unexplored cells. To get an
idea about the order of magnitude, the last map from the right is a
grid with 38x31 cells. 36

3.3 This map of type II uses the city of Porto, Portugal, as an example.
In black, obstacle cells; in white, unexplored cells. This map is a
grid with 133x199 cells, while the red rectangle contains a zoomed
view of the grid. 37

3.4 Neural Network’s architecture. From left to right: the feature vector
(state) is fed in the input layer. Then it gets propagated forward
in the hidden layer and finally reaches the output layer, where
the softmax function normalizes the probability distributions. For
each of the four actions, it is possible to read the percentage of
prediction of the network and use it to in the algorithm to move the
correspondent agent. 43

3.5 Rectifier Linear Unit - ReLU function with a bias example of 0.5 -
reference to the Subsection 2.1.4 . 43

3.6 Softmax application example - each component of the input vector
is transformed into an exponential probability distribution using
Equation 3.1. 44

3.7 Training results plotted by TensorFlow.Keras by calling the model
summary. 45

3.8 Increasing neural network’s accuracy over each training epoch. . . . 46
3.9 First four times data augmentation through mirroring process - not

only map information are mirrored, but also action memory and cell
detectors. 48

3.10 Second four times data augmentation through mirroring process -
the state of Figure 3.9 is rotated by π/2 and mirrored again. . . . 49

4.1 UAV’s camera cone of visibility: in purple, according to the Field Of
View, the camera ground footprint; in teal, a single UAV. 51

4.2 Top View: (a) Traditional approaches’ space discretization (b) Space
discretization in this thesis work. 51

4.3 Example case study map - In black, the target area composed by
"unexplored" cells. In gray, "obstacle" cells. In white, unreachable
cells, set as "explored" according with the assumptions described in
Section 4.1. The algorithm will attempt to create K partition of the
set of unexplored cells. 55

93

List of Figures

4.4 In the left figure, 2000 white points are spread over the unexplored
target area. In the right figure, five centroids, represented as triangles,
are positioned in each UAV’s starting position. 56

4.5 In the left figure, each point is assigned to the closest centroid.
In the right figure, each centroid is moved toward the averaged
points’ position. This process represents one complete iteration of
the K-means algorithm. 56

4.6 Second iteration of the K-means. In the left figure, each point is
re-assigned to the closest centroid. In the right figure, each centroid
is moved toward the averaged points’ position 57

4.7 Seventh and last iteration of the K-means. In the left figure, each
point is assigned to the closest centroid. In the right figure, each
centroid is moved toward the averaged points’ position. 57

4.8 In the left figure, the centroids’ final position cleared from the points.
In the right figure, the correspondent Voronoi tessellation. 58

4.9 Zone visualization - every single zone is highlighted, showing in black
the correspondent target area, and in white the non-target cells. In
this example, five UAVs will explore the map, each one assigned to
a particular zone. 59

4.10 Traditional A* finds the path - the start cell is represented in orange;
the goal cell is represented in blue; red cells are the nodes visited
by the algorithm; green cells are the cells that the algorithm can
expand; the final purple cells represent the minimum and optimal
path to reach the goal from the start. 61

4.11 Traditional A* and Explorative A* in comparison, same situation.
The UAV is located in the orange square; the goal cell to reach is
represented in blue. The left figure shows the path with Traditional
A*, which is the shortest path; the right figure shows the path with
Explorative A*, which accounts for both the length of the path and
the exploration of new cells (in grey). 62

4.12 Flowchart - Part 1 . 64
4.13 Flowchart - Part 2 . 65

5.1 Case study I - a 3D view of the Leonardo Drone Contest urban environment 68
5.2 In the left figure, Case Study I - inspired by Leonardo Drone Contest. In

the right figure, the matrix map used in the simulation. 69
5.3 Case study I - results in terms of evaluation metrics 70
5.4 Case study I - trajectories in the simulation with 5 agents. The upper

left image shows the area division, according to the K-means algorithm .
In the other images, the overall UAVs’ track, where each singular UAV
trajectory is highlighted. 71

94

List of Figures

5.5 Case study I, 5 agents - On the x axis, the time-steps. For each time-step,
the graphic shows the number of agents that use the neural network
approach, in orange, and the explicit path-finders, in blue. 71

5.6 In the left figure, a satellite view of Porta Nuova, Turin. In the right
figure, the Case Study II map used for the simulation. 73

5.7 Case study II - results in terms of evaluation metrics 73
5.8 In the left figure, a satellite view of Porto Antico, Genoa. In the right

figure, the Case Study III map used for the simulation. 74
5.9 Case study III - results in terms of evaluation metrics 75
5.10 In the left figure, a satellite view of Porto, Portugal. In the right figure,

the Case Study IV map used for the simulation. 76
5.11 Case study IV - results in terms of evaluation metrics 76
5.12 Case study from I to IV - results in terms of evaluation metrics 77
5.13 Case Study I - Leonardo Drone Contest - The UAVs are in a state

of IDLE on the ground. The angled view allows a more complete
perspective on the urban case, of which the occupancy grid used in
the simulation allowed a planar visualization of the obstacles 78

5.14 Case Study I - Leonardo Drone Contest - The UAVs in-flight forma-
tion after the take-off. 79

5.15 Case Study I - Leonardo Drone Contest.. 79
5.16 Case Study I - Leonardo Drone Contest. 80
5.17 Case Study I - Leonardo Drone Contest. 80

95

List of Figures

96

Bibliography

[1] H. Choset. Coverage for robotics - A survey of recent results. Springer, 2001
(cit. on p. 1).

[2] E. Galceranm M. Carreras. A Survey on Coverage Path Planning for Robotics.
ScienceDirect, 2019 (cit. on p. 1).

[3] X. Zhou et al. Survey on path and view planning for UAVs. ScienceDirect,
2019 (cit. on p. 2).

[4] Lisane B. Brisolara Tauã M. Cabreira and Ferreira Paulo R. Jr. Survey on
Coverage Path Planning with Unmanned Aerial Vehicles. ResearchGate, 2019
(cit. on p. 2).

[5] S. Godio et al. A Bioinspired Neural Network-Based Approach for Cooperative
Coverage Planning of UAVs. information, 2021 (cit. on p. 2).

[6] Valent et al. Near-optimal coverage trajectories for image mosaicing using a
mini quad-rotor over irregular-shaped fields. information, 2013 (cit. on p. 2).

[7] Sadat et al. Fractal Trajectories for Online Non-Uniform Aerial Coverage.
information, 2015 (cit. on p. 2).

[8] L. Marques S. Dogru. A*-Based Solution to the Coverage Path Planning
Problem. Springer, 2017 (cit. on p. 2).

[9] J. Valente et al. Aerial coverage optimization in precision agriculture man-
agement: A musical harmony inspired approach. IEEE, 2013 (cit. on p. 2).

[10] M. Kapanoglu et al. Pattern-Based Genetic Algorithm Approach to Coverage
Path Planning for Mobile Robots. IEEE, 2020 (cit. on p. 2).

[11] et al Z. Chibin. Complete Coverage Path Planning Based on Ant Colony
Algorithm. IEEE, 2008 (cit. on p. 2).

[12] S. Gotovac et al. Visual-Based Person Detection for Search-and-Rescue with
UAS: Humans vs. Machine Learning Algorithm. Research Gate, 2020 (cit. on
p. 7).

[13] F. Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. 1958 (cit. on pp. 8, 13).

97

BIBLIOGRAPHY

[14] H. White K. Hornik M. Stinchcombe. Multilayer feedforward networks are
universal approximators. 1989 (cit. on p. 15).

[15] M. Adil et al. Effect of number of neurons and layers in an artificial neural
network for generalized concrete mix design. 2020 (cit. on p. 40).

[16] K. P. Murphy. Machine Learning: A Probabilistic Perspective. 2012 (cit. on
p. 42).

[17] P. Hart et al. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE, 1968 (cit. on p. 60).

[18] M. Quigley et al. An open-source Robot Operating System. In Proceedings of
the ICRAWorkshop on Open Source Software. 2009 (cit. on p. 78).

[19] et al N.P. Koenig. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. 2004 (cit. on p. 78).

98

