
Master Degree in Aerospace Engineering

A.A. 2020/2021

Iterative And Neural Network Based

Methods To Solve A Model-Free Scheme

For Flow Angles Estimation

Candidato Responsabili Scientifici

Pietro Mascolo Vitale Ing. Angelo Lerro

Matricola: 257370 Prof. Piero Gili

Ciao Papà, avrei voluto condividere

con te questo giorno speciale, sentire

ancora la tua voce, parlare con te e

festeggiare con una bella discesa in

kayak, come quelle belle che abbiamo

sempre fatto insieme, quelle che mi

hanno lasciato il più bel ricordo di te.

Un giorno magari rifaremo tutto

insieme e potrò raccontarti di questo

momento, fino ad allora, buona linea

Papà! Questo lavoro è dedicato a te.

Contents

List of Figures vii

List of Tables xii

Abstract xv

Introduction xvi

1 Model Free Scheme For AoA and AoS Estimation 1
1.1 Non Linear Equations Systems Solvers 1

1.1.1 Multi Dimensional Newton’s Method 2

1.1.2 Trust Region Method . 3

1.1.3 Trust Region Dogleg Method 4

1.2 Notation and Reference Frames . 6

1.3 Rearrangement of Flight Mechanic Equations 8

1.4 Problem Formulation . 9

1.5 Proposed Scheme . 10

1.5.1 Zero-Order ASSE Approximation 10

1.5.2 Zero-Order ASSE Scheme 11

1.5.3 Solution Existence Conditions 12

2 Zero-Order ASSE Scheme Numerical Verification 13
2.1 Maneuver Definition . 13

2.2 Linear Solution . 15

2.2.1 Zero-Order ASSE Scheme Linearization 15

2.2.2 Numerical Results . 16

2.3 Non-Linear Solution . 20

2.3.1 Levenberg-Marquardt Algorithm 21

2.3.2 Numerical Results . 22

2.3.3 Sensitivity . 25

iii

3 Neural Network Theoretical Background 29
3.1 Neural Network Characteristics . 29

3.1.1 Definition of a Neural Network 29

3.1.2 Neuron Model . 30

3.1.3 Activation Functions . 31

3.1.4 Network Architectures . 35

3.2 Neural Network Learning Process 40

3.2.1 Error-Correction Learning 40

3.2.2 Supervised And Unsupervised Learning 42

3.2.3 Online And Batch Learning 44

3.2.4 MLP Learning Algorithms 44

3.2.5 Neural Network Validation: Overfitting And Local Minima . 49

4 NN Applied To The Zero Order ASSE Scheme 52
4.1 Network Characteristics And Input Data Profile 53

4.2 Presentation Of The Results . 53

4.3 Tests . 55

4.3.1 Test Group 1: Effects Of Training Epochs 55

4.3.2 Test Group 2: Effects Of The Number Of Hidden Layers . . 64

4.3.3 Test Group 3: Effects Of The Number Of Neurons For Each

Layer . 71

4.3.4 Test Group 4: Effects Of The Number Of Training Data . . 79

4.3.5 Combined Tests . 87

4.4 Best Network Performance . 95

4.4.1 manoeuvre 3211deltae . 98

4.4.2 manoeuvre doublet deltae deltar B 101

4.4.3 manoeuvre doublet deltae deltar B bis 102

4.5 Sensitivity . 104

4.5.1 manoeuvre deltaedoublet deltardoublet 106

4.5.2 manoeuvre 3211deltae . 108

4.5.3 manoeuvre doublet deltae deltar B 110

4.5.4 Critical Noisy Data . 111

5 Radial Basis Functions Neural Networks 121
5.1 Theoretical Background . 121

5.1.1 Radial Basis Functions . 122

5.1.2 Radial Basis Functions Networks Architecture 124

5.1.3 Learning Process In RBF Networks 124

5.2 RBF Networks Applied To The Zero Order ASSE Scheme 126

iv

5.2.1 manoeuvre deltaedoublet deltardoublet 128

5.2.2 manoeuvre 3211deltae . 130

5.2.3 manoeuvre doublet deltae deltar B 132

5.3 Sensitivity . 134

5.3.1 manoeuvre deltaedoublet deltardoublet 134

5.3.2 manoeuvre 3211deltae . 137

5.3.3 manoeuvre doublet deltae deltar B 139

Conclusions 141

Appendix 144

A Linear ASSE Scheme Script . 144

B Non-Linear ASSE Scheme Script . 148

Bibliography 154

v

List of Figures

1.1 [1] Representation of a) inertial and control volume reference frames,

and b) body and wind reference frames 6

2.1 True values of the Angle of Attack (a) and Angle of Sideslip (b) of

maneuver deltaedoublet deltardoublet nodrop 14

2.2 Comparison between the true and estimated value of AoA for the

linear solution of the Zero Order ASSE Scheme 17

2.3 Comparison between the true and estimated value of AoS for the

linear solution of the Zero Order ASSE Scheme 19

2.4 Comparison between the true and estimated value of AoA for the

non-linear solution of the Zero Order ASSE Scheme 23

2.5 Comparison between the true and estimated value of AoS for the

non-linear solution of the Zero Order ASSE Scheme 24

2.6 Comparison between the true and estimated value of AoA for the

non-linear solution of the Zero Order ASSE Scheme with noisy flight

data . 26

2.7 Comparison between the true and estimated value of AoS for the

non-linear solution of the Zero Order ASSE Scheme with noisy flight

data . 27

3.1 [2] Non-linear model of a neuron . 31

3.2 [2] (a) Threshold function, (b) Piecewise-linear function, (c) Sigmoid

function for varying slope parameter a. 34

3.3 [2] Fully connect feed forward or acyclic network with one hidden

layer and one output layer . 37

3.4 [2] Recurrent network with no self-feedback loops and no hidden

neurons . 38

3.5 [2] Recurrent network with hidden neurons 39

3.6 [2] Illustration of the error correction learning 40

3.7 [2] Block Diagram of Supervised Learning 45

vii

3.8 [2] Block Diagram of Unsupervised Learning 46

3.9 [3] Flow-chart of the neural network training and validation process 50

3.10 [3] Non-linear curve-fitting problem with several local minima, high-

lighting the initial synaptic weight, winit, a local minimum point,

wmin1, and the absolute minima, wopt. 51

4.1 Group 1-Test 1: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 57

4.2 Group 1-Test 2: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 58

4.3 Group 1-Test 3: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 59

4.4 Group 1-Test 4: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 60

4.5 Group 1-Test 5: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 61

4.6 Group 1 Statistic data . 63

4.7 Group 2-Test 1: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 65

4.8 Group 2-Test 2: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 66

4.9 Group 2-Test 3: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 67

4.10 Group 2-Test 4: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 68

4.11 Group 2 Statistic data . 70

4.12 Group 3-Test 1: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 72

4.13 Group 3-Test 2: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 73

4.14 Group 3-Test 3: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 74

4.15 Group 3-Test 4: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 75

4.16 Group 3-Test 5: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 76

4.17 Group 3 Statistic data . 78

4.18 Group 4-Test 1: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 80

viii

4.19 Group 4-Test 2: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 81

4.20 Group 4-Test 3: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 82

4.21 Group 4-Test 4: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 83

4.22 Group 4-Test 5: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) 84

4.23 Group 4 Statistic data . 86

4.24 Combined Group-Test 1: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) 88

4.25 Combined Group-Test 2: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) 89

4.26 Combined Group-Test 3: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) 90

4.27 Combined Group-Test 4: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) 91

4.28 Combined Group-Test 5: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) 92

4.29 Combined group Statistic data . 94

4.30 Angle of Attack (a) and Angle of Sideslip (b) of manoeu-

vre 3211deltae .. 96

4.31 Angle of Attack (a) and Angle of Sideslip (b) of manoeu-

vre doublet deltae deltar B . 97

4.32 Comparison between the true and the network estimated value of

AoA (a) and AoS (b) of manoeuvre 3211deltae 99

4.33 Comparison between the true and the network estimated value of

AoA (a) and AoS (b) of manoeuvre doublet deltae deltar B 101

4.34 Comparison between the true and the network estimated value of

AoA (a) and AoS (b) of manoeuvre doublet deltae deltar B 103

4.35 Sensitivity Test: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) for manoeu-

vre deltaedoublet deltardoublet . 106

4.36 Sensitivity Test: Comparison between the true and the network es-

timated value of AoA (a) and AoS (b) for manoeuvre 3211deltae . . 108

4.37 Sensitivity Test: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) for manoeu-

vre doublet deltae deltar B .. 110

ix

4.38 Noisy body accelerations: Comparison between the true and the

network estimated value of AoA (a) and AoS (b) for manoeu-

vre deltaedoublet deltardoublet . 112

4.39 Noisy Angular Rates: Comparison between the true and the

network estimated value of AoA (a) and AoS (b) for manoeu-

vre deltaedoublet deltardoublet . 114

4.40 Noisy TAS: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) for manoeu-

vre deltaedoublet deltardoublet . 116

4.41 Noisy TASp: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b) for manoeu-

vre deltaedoublet deltardoublet . 118

5.1 Radial Basis Functions varying the parameter ε. Image taken

from https://en.wikipedia.org/wiki/Radial basis function/media/

File:Gaussian function shape parameter.png. Author: Shawsa7 . . . 123

5.2 Radial Basis Functions Architecture. Image taken from:

https://en.wikipedia.org/wiki/Radial basis function network/media/

File:Radial funktion network.svg. Author: SebDE 125

5.3 GRBF:Comparison between the true and the network

estimated value of AoA (a) and AoS (b) of manoeu-

vre deltaedoublet deltardoublet . 128

5.4 GRBF:Comparison between the true and the network estimated

value of AoA (a) and AoS (b) of manoeuvre 3211deltae 130

5.5 GRBF:Comparison between the true and the network estimated

value of AoA (a) and AoS (b) of manoeuvre doublet deltae deltar B 132

5.6 GRBF:Comparison between the true and the network

estimated value of AoA (a) and AoS (b) of manoeu-

vre deltaedoublet deltardoublet with white noise 135

5.7 GRBF:Comparison between the true and the network estimated

value of AoA (a) and AoS (b) of manoeuvre 3211deltae with white

noise . 137

5.8 GRBF:Comparison between the true and the network estimated

value of AoA (a) and AoS (b) of manoeuvre doublet deltae deltar B

with white noise . 139

x

List of Tables

2.1 Linear Zero Order ASSE Scheme 2σ errors 20

2.2 Non-Linear Zero Order ASSE Scheme 2σ errors 25

2.3 Non-Linear Zero Order ASSE Scheme mean and max errors 25

4.1 Training and Test data for Group 1 55

4.2 Group 1 training characteristics . 56

4.3 Statistic data for AoA of Group 1 tests 62

4.4 Statistic data for AoS of Group 1 tests 62

4.5 Training and Test data for Group 2 64

4.6 Group 2 training characteristics . 64

4.7 Statistic data for AoA of Group 2 tests 69

4.8 Statistic data for AoS of Group 2 tests 69

4.9 Training and Test data for Group 3 71

4.10 Group 3 training characteristics . 71

4.11 Statistic data for AoA of Group 3 tests 77

4.12 Statistic data for AoS of Group 3 tests 77

4.13 Training and Test data for Group 4 79

4.14 Group 4 training characteristics . 79

4.15 Statistic data for AoA of Group 4 tests 85

4.16 Statistic data for AoS of Group 4 tests 85

4.17 Training and Test data for the combined group 87

4.18 Combined Group training characteristics 87

4.19 Statistic data for AoA of combined group tests 93

4.20 Statistic data for AoS of combined group tests 93

4.21 Statistic data for AoA and AoS of manoeuvre 3211deltae 100

4.22 Statistic data for AoA and AoS of manoeuvre doublet deltae

deltar B . 102

4.23 New network parameters for testing maneuver deltae deltar B . . 102

xii

4.24 Statistic data for AoA and AoS of manoeuvre doublet deltae

deltar B .. 104

4.25 Corrupted input data . 104

4.26 Training and Test data for Sensitivity test 105

4.27 Sensitivity test training characteristics 105

4.28 Sensitivity Test: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet . 107

4.29 Sensitivity Test: Statistic data for AoA and AoS of manoeu-

vre 3211deltae . 109

4.30 Sensitivity Test: Statistic data for AoA and AoS of manoeu-

vre doublet deltae deltar B . 111

4.31 Noisy body accelerations: Statistic data for AoA and AoS of ma-

noeuvre deltaedoublet deltardoublet 113

4.32 Noisy Angular Rates: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet . 115

4.33 Noisy TAS: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet . 117

4.34 Noisy TASp: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet . 119

5.1 Statistic data for AoA and AoS of manouver deltaedoublet deltar-

doublet .. 129

5.2 Statistic data for AoA and AoS of manoeuvre 3211deltae 131

5.3 Statistic data for AoA and AoS of manoeuvre doublet

deltae deltar B .. 133

5.4 Statistic data for AoA and AoS of maneuver of manoeu-

vre deltaedoublet deltardoublet with white noise 136

5.5 Statistic data for AoA and AoS of manoeuvre 3211deltae with white

noise . 138

5.6 Statistic data for AoA and AoS of manoeuvre doublet deltae

deltar B with white noise . 140

5.7 Clear Data: Summary of the results for test maneuvers both for

MLP and RBF network . 141

5.8 Noisy Data: Summary of the results for test maneuvers both for

MLP and RBF network . 142

xiii

Abstract

Evaluation of aerodynamic, or flow, angles has always been a crucial topic since they

are necessary to pilot and control the aircraft. These angles are usually measured

using different probes attached to the vehicle fuselage surface which are surrounded

with the flow field. However, new solutions have been explored in order to reduce

this number of probes so that a better stealthiness and a less heavy impact on

the airframe, especially for small UAVs, can be achieved. For this purpose, virtual

software-based sensors, based on neural networks prediction techniques have been

developed and proven to be suitable for the aerodynamic angles estimation of small

UAVs. The aim of this work is to evaluate the accuracy in the estimation of

neural network solvers for the angle of attack and the angle of sideslip of a model

free scheme named ASSE [1]. In this work, all the tests have been carried out

considering a null wind velocity but, for sake of clarity, conclusions of this work are

also applicable when the wind speed is not zero. The suitability of the model-free

ASSE scheme will be tested for both traditional solution methods (i.e. non-linear

solver) and neaural network based methods.

xv

Introduction

Since the dawn of digital computers in 1970 a lot of research has been done over

virtual sensors based on soft computing techniques in order to substitute and sup-

port the traditional Air Data System (ADS). The ADS is essential for the flight

control computer (FCC) to instruct the autopilot in order to guarantee stability

and control during an automatic control flight. Among all the parameters provided

by the ADS there are two in particular which are the focus of this work, the Angle-

of-Attack, (AoA or α) and the Angle-of-Sideslip (AoS or β) also known as the

aerodynamic angles. Traditional Air Data Systems are based on vanes, which were

first described in detail by Ikard [4], in 1956, for both subsonic and supersonic appli-

cations. Another way is to use differential direction probes, as was well documented

by Chue [5], Pankhurst and Holder [6] and Yajnik and Gupta [7], starting back in

1952. Modern flow direction Probes are integrated in multifunction probes who can

detect both the aerodynamic angles and the static and dynamic pressure. One ex-

ample can be the measurement of the Angle-of-Sideslip by sensing the difference in

the static pressure in the two sides of the aircraft and differentiating between these

values, which represents the basic principle of multihole probes. All these sensors

are connected to an Air Data Computer (ADS) which provides the Flight Control

System (FCS) with the required data. Only slight changements have occurred in

the last decade and the basic principle of air data measurement methods have es-

sentially remained unchanged. The main issue with traditional probes is that in

order to perform correctly they must be placed in the front of the fuselage, and, as

far as small UAVs are concerned, this can cause an interference with opto-electronic

equipment and moreover it is also added weight to the structure, which is crucial

for a UAVs. If also the required redundancy of the ADS is considered in order to

comply with airworthiness regulations the situation can only get worse. All these

problems related to the traditional ADS have slowly led, as said in the beginning, to

the development of virtual sensors which allow to substitute the expensive, heavy

and voluminous traditional probes with executable software codes. Virtual sensors

have also introduced to the concept of analytical redundancy that is the process of

replacing some of the actual sensors with virtual ones, which can be used as voters

xvi

in redundant or simplex sensor systems, to detect inconsistencies of the hardware

sensors and can eventually be employed to provide alternative data. In the last

two decades, many interesting algorithms have been produced, mostly related to

a model-based approach. A practical example of a model-based algorithm is the

one developed and patented by Wise [8], which is currently used on the on the

Boeing X-45A aircraft. Using inertial data, in addition to an accurate aerodynamic

aircraft model and a Kalman filter, the virtual sensor designed by Wise is able to

predict the aerodynamic angles with good accuracy. However, the problem with

model-based algorithms are the inevitable discrepancies between the mathematical

model and the real one, which is very complex in the case of an aircraft. In order to

overcome these problems, Neural Networks have been taken into account. Rohloff

et al. [9] and Samy and Green [10] described virtual sensors, based on neural net-

works, that are able to reconstruct complete suite of air data parameters, starting

from multiple static pressure measurements on an aircraft fuselage, without using

inertial data. All the virtual sensors for aerodynamic angle estimation, whatever

the technology on which they are built, they all share the use of dynamic pressure

actual values, which is clearly a fundamental air data that is quite complex to es-

timate. A possible solution could be estimate the dynamic pressure with another

virtual sensor. An innovative idea has been introduced in the work of A.Lerro and

others [3] where the aerodynamic angles are estimated indirectly by means of neu-

ral systems which need inertial data from Attitude and Heading Reference system

(AHRS), dynamic pressure from ADS and aircraft commands from FCS as input

data. The virtual sensor solution allows one to save, or substitute, physical sensors

with software-based ones and this leads to enormous benefits for the redundant

systems of unmanned aircraft. Taking into account all the research and develop-

ment over virtual sensors based on neural network predictions for estimating the

Angle-of-Attack and the Angle-of-Sideslip described so far, the main purpose of this

work is to evaluate the level of accuracy of Neural Networks in the estimation of

the aerodynamic angles. In particular, the present work evaluates the feasibility of

neurocomputing in solving a non-linear system of equations born from a rearrange-

ment of flight mechanics equations, defined as the Zero-Order ASSE Scheme [1],

which solutions are the Angle-of-Attack and the Angle-of-Sideslip. In Chapter 1 the

Zero-Order ASSE Scheme is presented in order to show the equations of interest.

In Chapter 2 the ASSE scheme is solved in two different situations (linear case and

non-linear case) in order to show the accuracy of the scheme itself. For both the

two cases a MatLab routine has been developed. In Chapter 3 Neural Networks

characteristics are further discussed and eventually the Zero-Order ASSE scheme

is put to test with a Multilayer Perceptron neural network developed in MatLab

thanks to the Deep Learning Toolbox.

xvii

Chapter 1

Model Free Scheme For Angle-of-Attack and

Angle-of-Sideslip Estimation

The aim of this work is to evaluate the accuracy of different methods for solving

a non linear system of equation named “Angle of Attack and Sideslip Estimator”

(ASSE). Such scheme is the result of a rearrangement of flight mechanics equations,

and it has been described in detail in the work of Lerro A., Brandl A. and Gili P. :

“Model-Free Scheme for Angle-of-Attack and Angle-of-Sideslip Estimation”. This

rearrangement leads to a non linear equations system which unknowns are the angle

of attack (AoA) and the angle of sideslip (AoS). The first chapter of this work has

the purpose of showing the mathematical steps, following the work of Lerro A.,

Brandl A. and Gili P., to get from the classical flight mechanics equations to the

zero order ASSE scheme.

1.1 Non Linear Equations Systems Solvers

Since the main purpose of this work is to test neural network based methods to

solve non linear systems of equations, before going in detail on the description of the

work of Lerro A., Brandl A. and Gili P.: “Model-Free Scheme for Angle-of-Attack

and Angle-of-Sideslip Estimation”, a brief introduction on traditional mathematical

methods to solve non linear systems of equations is given.

1

Model Free Scheme For AoA and AoS Estimation

1.1.1 Multi Dimensional Newton’s Method

Given a non linear system of n equations in n unknowns:
f1 = (x1...xn) = 0

f2 = (x1...xn) = 0
...

fn(x1...xn) = 0

(1.1)

Considering:

F (x) =



f1 = (x1...xn) = 0

f2 = (x1...xn) = 0
...

fn(x1...xn) = 0

 (1.2)

The system can be written in the form: F (x) = 0. To get the iteration, F (x) is

approximated with the first order truncation of the Taylor series:

F (x) = F (xk) + F ′(xk)(x− xk) (1.3)

In order to solve the system, the Jacobian matrix F ′(xk) must be computed:

F ′(xk) =


df1
x1

(xk1, ...x
k
n) df1

xn
(xk1, ...x

k
n)

...
...

...
...

...
...

...
...

dfn
x1

(xk1, ...x
k
n) dfn

xn
(xk1, ...x

k
n)

 (1.4)

The iterative procedure can be generalized as follows:

xk+1 = xk − (F ′(xk))−1F (xk) (1.5)

Convergence is obtained when F (x) tends to zero, that means it becomes smaller

than an established value. The iterations start from an arbitrary starting point x0.

The choice of the starting point x0 is critical to determine whether the result will

converge or not, and if it does, whether it will converge to a particular solution

among all the possible ones. Newton method has a high computational cost since

the Jacobian matrix must be computed in each iteration. To solve this problem,

there are other methods which allow to approximate the the Jacobian matrix, and

these are the Newton-Jacobi and the Newton-Gauss-Seidel methods:

2

Model Free Scheme For AoA and AoS Estimation

• Newton-Jacobi: F ′(x) = D(x)

• Newton-Gauss-Seidel: F ′(x) = D(x)− L(x)

Where D(x) is the diagonal matrix and L(x) is the lower triangular matrix.

1.1.2 Trust Region Method

Given a set of n nonlinear functions Fi(x), where n is the number of components

of the vector x, the goal of equation solving is to find a vector x that makes all

Fi(x) = 0. The Trust Region Method is an optimization method used in many

computational solvers (i.e. fsolve in MatLab) which are based on the minimization

of the sum of squares of the components. If the sum of squares is zero, the system of

equation is solved. To understand the trust-region approach to optimization, con-

sider the unconstrained minimization problem, minimize f(x), where the function

takes vector arguments and returns scalars. Suppose you are at a point x in n-space

and you want to improve, i.e., move to a point with a lower function value. The ba-

sic idea is to approximate f with a simpler function q, which reasonably reflects the

behavior of function f in a neighborhood N around the point x. This neighborhood

is the trust region. A trial step s is computed by minimizing (or approximately

minimizing) over N . This is the trust-region subproblem, min(q(s)), s ∈ N . The

current point is updated to be x + s if f(x + s) < f(x); otherwise, the current

point remains unchanged and N , the region of trust, is shrunk and the trial step

computation is repeated. The key questions in defining a specific trust-region ap-

proach to minimizing f(x) are how to choose and compute the approximation q

(defined at the current point x), how to choose and modify the trust region N , and

how accurately to solve the trust-region subproblem. This section focuses on the

unconstrained problem. In the standard trust-region method, the quadratic ap-

proximation q is defined by the first two terms of the Taylor approximation to F at

x; the neighborhood N is usually spherical or ellipsoidal in shape. Mathematically

the trust-region subproblem is typically stated:

min
s
{1

2
sTHs+ sT g such that ||Ds|| ≤ ∆} (1.6)

where g is the gradient of f at the current point x, H is the Hessian matrix (the

symmetric matrix of second derivatives), D is a diagonal scaling matrix, ∆ is a

positive scalar, and ||.|| is the 2-norm. Good algorithms exist for solving 1.6; such

algorithms typically involve the computation of a full eigensystem and a Newton

process applied to the secular equation:

1

∆
− 1

||s||
= 0 (1.7)

3

Model Free Scheme For AoA and AoS Estimation

Such algorithms provide an accurate solution to Eq. 1.6. However, they require time

proportional to several factorizations of H. Therefore, for trust-region problems a

different approach is needed. Several approximation and heuristic strategies, based

on Eq. 1.6, have been proposed in the literature. The approximation approach

is to restrict the trust-region subproblem to a two-dimensional subspace S. Once

the subspace S has been computed, the work to solve Eq. 1.6 is trivial even if full

eigenvalue/eigenvector information is needed (since in the subspace, the problem is

only two-dimensional). The dominant work has now shifted to the determination

of the subspace. The two-dimensional subspace S is determined with the aid of a

preconditioned conjugate gradient process which is not described here. The solver

defines S as the linear space spanned by s1 and s2, where s1 is in the direction of

the gradient g, and s2 is either an approximate Newton direction, i.e., a solution

to:

H ∗ s2 = −g (1.8)

or a direction of negative curvature:

sT2 ∗H ∗ s2 < 0 (1.9)

The philosophy behind this choice of S is to force global convergence (via the

steepest descent direction or negative curvature direction) and achieve fast local

convergence (via the Newton step, when it exists). A sketch of unconstrained

minimization using trust-region ideas is now easy to give:

• Formulate the two-dimensional trust-region subproblem

• Solve Equation 1.6 to determine the trial step s

• If f(x+ s) < f(x), then x = x+ s

• Adjust ∆

These four steps are repeated until convergence. The trust-region dimension ∆ is

adjusted according to standard rules. In particular, it is decreased if the trial step

is not accepted, i.e., f(x+ s) ≥ f(x).

1.1.3 Trust Region Dogleg Method

Another approach is to solve a linear system of equations to find the search di-

rection, namely, Newton’s method says to solve for the search direction dk such

that:

J(xk)dk = −F (xk)xk+1 = xk + dk (1.10)

4

Model Free Scheme For AoA and AoS Estimation

where J(xk) is the n-by-n Jacobian:

J(xk) =


∇F1(xk)

T

∇F2(xk)
T

...

∇Fn(xk)
T

 (1.11)

Newton’s method can run into difficulties. J(xk) may be singular, and so the

Newton step dk is not even defined. Also, the exact Newton step dk may be

expensive to compute. In addition, Newton’s method may not converge if the

starting point is far from the solution. Using trust-region techniques improves

robustness when starting far from the solution and handles the case when J(xk)

is singular. To use a trust-region strategy, a merit function is needed to decide if

xk+1 is better or worse than xk. A possible choice is:

min
d
{1

2
F (xk + d)TF (xk + d)} (1.12)

But a minimum of f(d) is not necessarily a root of F (x). The Newton step dk is a

root of:

M(xk + d) = F (xk) + J(xk)d (1.13)

and so it is also a minimum of m(d), where:

min
d
m(d) =

1

2
||M(xk + d)||22 =

1

2
||F (xk) + J(xk)d||22 =

=
1

2
F (xk)

TF (xk) + dTJ(xk)
TF (xk) +

1

2
dTJ(xk)

TJ(xk)d

(1.14)

Then m(d) is a better choice of merit function than f(d), and so the trust-region

subproblem is:

min
d
m(d) =

1

2
F (xk)

TF (xk) + dTJ(xk)
TF (xk) +

1

2
dTJ(xk)

TJ(xk)d (1.15)

such that ||D ∗ d|| ≤ ∆. This subproblem can be efficiently solved using a dog-

leg strategy. The key feature of this algorithm is the use of the Powell dogleg

procedure for computing the step d, which minimizes Eq. 1.15. The step d is con-

structed from a convex combination of a Cauchy step (a step along the steepest

descent direction) and a Gauss-Newton step for f(x). The Cauchy step is calculated

as dC = −αJ(xk)
TF (xk), where α is chosen to minimize Eq. 1.14. The Gauss-

Newton step is calculated by solving J(xk) ∗ dGN = −F (xk). The step d is chosen

5

Model Free Scheme For AoA and AoS Estimation

so that d = dC + λ(dGN − dC), where λ is the largest value in the interval [0,1]

such that ||d|| ≤ ∆. If Jk is (nearly) singular, d is just the Cauchy direction. The

dogleg algorithm is efficient since it requires only one linear solve per iteration (for

the computation of the Gauss-Newton step). Additionally, it can be more robust

than using the Gauss-Newton method with a line search.

Another algorithm used for solving non linear systems of equations is the

Levenberg-Marquardt algorithm, which is the one used in this work. A detailed

explanation of this algorithm is presented in subsection 2.3.1.

1.2 Notation and Reference Frames

In this section the reference frame used in the work “Model-Free Scheme for

Angle-of-Attack and Angle-of-Sideslip Estimation” [1] is presented. Vectors are

indicated with bold italic lower case letters (e.g. v), vector components with lower

case letters (e.g. v), and matrices with bold-italic capital letters (e.g. A).

Figure 1.1: [1] Representation of a) inertial and control volume reference frames,

and b) body and wind reference frames

In reference to Fig.1.1, there is an inertial reference frame FI = {XI , YI , ZI} and

two non inertial reference frames: FB = {XB, YB, ZB} centered in the center of

gravity (CG) and with axes oriented along fixed directions onboard (Fig. 1.1b),

FW = {XW , YW , ZW} with axes also centered in CG and the X axis aligned to the

freestream velocity vector, the Z axis as the intersection of the plane normal to the

trajectory and the (XB, ZB) plane of the aircraft and directed downward (i.e., from

the upper to the lower wind surface). The aircraft is also considered surrounded

by an air mass enclosed in a virtual control volume that moves together with its

6

Model Free Scheme For AoA and AoS Estimation

own reference system FCV = {XCV , YCV , ZCV }. From Fig. 1.1a we can say that

the distance r between the aircraft and FI is r = rB + rW . The angular velocity

of FB with respect to FI is:

ω = pîB + qĵB + rk̂B

where îB, ĵB and k̂B are the unit vectors in FB. Deriving with respect to time [11]

it is possible to write:

ṙ = vI = ṙB + w (1.16)

ṙ = vI is the inertial velocity, ṙB is the relative velocity between the aircraft and

the surrounding air, and w is the velocity of the control volume, or wind speed. In

order to switch from FI to FB a vector transformation is applied considering the

3-2-1 ordered sequence of Euler angles: heading ψ, elevation θ, and bank φ.

CI2B =

 CθCψ CθSψ −Sθ
SφSθCψ − CφSψ SφSθSψ + CφCψ SφCθ
CφSθCψ + SφSψ CφSθSψ − SφCψ CφCθ

 (1.17)

CI2B is the full rotation matrix from FI to FB where C stands for the cosine

function and S for the sine function and arguments are indicated as subscript. The

full rotation matrix from FW to FB is:

CW2B =

CαCβ −CαSβ −SαSβ Cβ 0

SαCβ −SαSβ Cα

 (1.18)

Furthermore, it is also important to highlight that [12]:

CI2BĊB2I = ΩB (1.19)

and

ΩB =

 0 −r q

r 0 −p
−q p 0

 (1.20)

7

Model Free Scheme For AoA and AoS Estimation

1.3 Rearrangement of Flight Mechanic Equa-

tions

Eq. (1.16) can be rewritten, recalling velocity definitions [13] as

vI = CB2IvB + w (1.21)

and from Eq.(1.18):

vB = V∞îWB (1.22)

where V∞ = |vB| =
√
u2 + v2 + w2 , and îWB =

(
CβCα

)
îB +

(
Sβ
)
ĵB +(

CβSα
)
k̂B, i.e., the unit vector of the relative velocity in the body reference frame.

Multiplying CI2B to Eq. (1.21) and deriving with respect to time, considering Eq.

(1.19) we get the the inertial acceleration projected on the body reference frame:

aB = CI2BaI = v̇B + ΩBvB + CI2Bẇ (1.23)

From this, it is then possible to write:

v̇B = aB −ΩBvB −CI2Bẇ (1.24)

From Eq. (1.22) deriving with respect to time we get V̇∞ = vT
Bv̇B

V∞
and substituting

v̇B with its expression of Eq. (1.24), the following is obtained:

V̇∞V∞ = vTBv̇B = vTB (aB −ΩBvB −CI2Bẇ) = vTB (aB −CI2B) ẇ (1.25)

where vTBΩBvB is null, and all terms refer to the same time instant.

8

Model Free Scheme For AoA and AoS Estimation

1.4 Problem Formulation

The main hypothesis of this scheme is that the relative velocity vB and hence the

aerodynamic angles at a certain time t can be modelled using information from the

past. Consequently, by means of the integral definition, the relative velocity vector

at time t can be expressed starting from at a generic time τ , with t ≥ τ , as

vB (t) = vB (τ) +

∫ t

τ

v̇B (T) dT (1.26)

From Eq. (1.24) and Eq. (1.26) it can be derived that:

vB,t = vB,τ +

∫ t

τ

(aB −ΩBvB −CI2Bẇ) dT (1.27)

and

vB,τ = vB,t −
∫ t

τ

aB dT +

∫ t

τ

ΩBvB dT +

∫ t

τ

CI2Bẇ dT (1.28)

where vB,t stands for vB (t). Substituting Eq. (1.28) to Eq. (1.25) leads to:

V∞,τ V̇∞,τ =

=

[
vB,t −

∫ t

τ

aB dT +

∫ t

τ

ΩBvB dT +

∫ t

τ

CI2Bẇ dT
]T

(aB −CI2Bẇ)τ ⇒

⇒ V∞,τ V̇∞,τ +

[∫ t

τ

aB dT −
∫ t

τ

CI2Bẇ dT
]T

(aB −CI2Bẇ)τ =

=

[
vB,t +

∫ t

τ

ΩBvB dT
]T

(aB −CI2Bẇ)τ

(1.29)

Where all the terms depending from the aerodynamic angles vB are collected on

the right hand side.

9

Model Free Scheme For AoA and AoS Estimation

1.5 Proposed Scheme

The idea behind the “Angle of Attack and Sideslip Estimator” (ASSE) is to make

the dependece from the term vB, which is further expressed in terms of the aero-

dynamic angles, explicit. For this purpose, the integral term
∫ t
τ

ΩBvB dT of Eq.

(1.29) must be explicited in the variable vB. In order to achieve this, the work of

Lerro A., Brandtl A. and Gili P. proposes an approximation identified as the zero

order approximation, based on the hypothesis that the integrand function ΩBvB is

constant in the time interval [τ, t].

1.5.1 Zero-Order ASSE Approximation

If the hypothesis that ΩBvB is constant in the time interval [τ, t] is considered,

then

∫ t

τ

ΩBvB dT = (ΩBvB)t ∆t, (1.30)

where ∆t = t− τ . Substituting the latter expression into Eq. (1.29) and recalling

matrix properties, Eq. (1.29) can be rewritten as

V∞,τ V̇∞,τ +

[∫ t

τ

aB dT −
∫ t

τ

CI2Bẇ dT
]T

(aB −CI2Bẇ)τ =

= V∞,t̂i
T
WB,t

(
I−ΩB,t∆t

)
(aB −CI2Bẇ)τ

(1.31)

Eq. (1.31) is the basic expression of the zero-order scheme referred to the generic

time τ where the aerodynamic angles α(t) and β(t) are the only unknowns and

all other terms are supposed to be measured. Basing on this scheme, in order to

calculate the aerodynamic angles, a direct measure of 1) true airspeed V∞ and its

time derivative V̇∞, 2) the inertial body acceleration aB, 3) angular rates, and 4)

the wind field, it’s needed. The wind velocity is assumed to be known in order to

be able to measure the wind acceleration term ẇ in Eq. (1.31). Conclusion of this

work can always be applicable in the case of null, steady wind field or discrete wind

change.

10

Model Free Scheme For AoA and AoS Estimation

1.5.2 Zero-Order ASSE Scheme

To ease the notation, some terms of Equations (1.31) are grouped as follows

nτ = V∞,τ V̇∞,τ +

[∫ t

τ

aB dT −
∫ t

τ

CI2Bẇ dT
]T

(aB −CI2Bẇ)τ (1.32)

and

mτ = V∞,t
(
I−ΩB,t∆t

)
(aB −CI2Bẇ)τ = hτ îB + lτ ĵB +mτ k̂B (1.33)

Eq. (1.31) can be rewritten in a more compact form

nτ = îTWB,tmτ = hτCβCα + lτSβ +mτCβSα (1.34)

Eq. (1.34) represents a generic nonlinear scalar equation in two variables α(t) and

β(t). Eq. (1.34) can be expanded back in time starting from t to n-th generic

τi with i ∈ [0, 1, . . . , n] where τ0 ≡ t. Therefore, the following system of n + 1

nonlinear equations is obtained:
nt = îTWB,tmt = htCβCα + ltSβ +mtCβSα

nτ1 = îTWB,tmτ1 = hτ1CβCα + lτ1Sβ +mτ1CβSα
...

nτn = îTWB,tmτn = hτnCβCα + lτnSβ +mτnCβSα

(1.35)

Eq. (1.35) is the generic form of the proposed zero-order ASSE scheme based

on n + 1 equations. Both an expansion in the past (τi+1 < τi) and a forward

expansion are equally feasible leading to the same conclusions. Moreover, it is

worth highlighting that no hypothesis are assumed on time spacing of time steps

considered here. In fact, even though very uncommon, nonuniform time spacing can

be considered and two subsequent equations can also be written for two nonadjacent

time steps. This latter aspect can be useful to improve the condition number of

the system in Equation (1.35). The nonlinear system of Equation (1.35) can be

rewritten in a more compact matrix form as

nn =
(̂
iTWB,tM

T
n

)T
= MnîWB,t (1.36)

11

Model Free Scheme For AoA and AoS Estimation

where nn = [nt, nτ1 , · · · , nτn]T and Mn =
[
mT
t ,m

T
τ1 , · · · ,m

T
τn

]T
. Since the com-

ponents of the unit vector are not independent, an extra condition is given by the

unit magnitude constraint. Therefore, the nonlinear system of equations based on

the zero-order ASSE scheme can be expressed as{
1 = îTWB,tîWB,t

nn = MnîWB,t

(1.37)

The most suitable solver can be adopted to solve the system of nonlinear Eq. (1.37)

for AoA and AoS estimation.

1.5.3 Solution Existence Conditions

Considering the hypothesis that the system of Eq. (1.37) could be linear, it can be

written as

n∗n = M∗
nîWB,t (1.38)

where n∗n =
[
1,nTn

]T
and M∗

n =
[̂
iTWB,t,Mn

]T
. If M∗

n was invertible, and hence

n = 1 in order to have a square matrix, the ASSE solution would be obtained as

îWB,t = M∗−1
1 n∗1 (1.39)

In order for the Eq. (1.38) to be solvable, at least two time steps are needed (τ0 ≡ t

and τ1), since there are two unknowns α(t) and β(t), thus two equations are neces-

sary. For the non linear solution, this sets only the minimum number of equations

required. Furthermore, in order to have a unique solution, the determinant of M∗
n

must not be zero. If we consider Eq. (1.32) and (1.33), it is clear that the zero

order ASSE scheme is not suitable for uniform flight conditions, since the i-th time

step τi would introduce an equation leading to a null determinant of M∗
1 . So, in

order for the matrix M∗
1 to have a full rank, it is needed that each step τi shall add

an independent equation such that M∗
1 has only linearly independent rows. Hence,

as also observed in [14], the analytical aerodynamic angle estimation (based on a

model-free approach) cannot be performed in uniform flight (or trim) conditions.

Therefore, assuming that Eq. (1.37) may be linearized, general conditions on the

existence of AoA and AoS solutions based on the proposed ASSE scheme are 1) at

least two time steps (τ0 and τ1) available, 2) not uniform flight conditions, and 3)

two independent equations.

12

Chapter 2

Zero-Order ASSE Scheme Numerical Verification

In order to test the level of accuracy of the Zero-Order ASSE scheme, different

maneuvers have been tested. Knowing the values of the variables nt, ht,lt and mt

of Eq. (1.35) for at least two time instants (section 1.5.3) of a certain maneuver, it

is possible to solve Eq. (1.35) for α(t) and β(t) and comparing this output with the

real values of the AoA and AoS. For this purpose, two MatLab scripts have been

developed: one for the linear case and the other for the non-linear case (Appendix

A/B).

2.1 Maneuver Definition

The numerical validation is performed using a flight simulator, inspired to a two-

seat light motorized aircraft. The simulator is based on a coupled six-degree-of-

freedom nonlinear aircraft model equipped with nonlinear aerodynamic and thrust

models designed accordingly to flight test results and the engine datasheet. The

maneuver performed is a stall maneuver described in figure 2.1. The maneuver

begins in trim conditions. Aileron commands are maintained to their trim positions

even though, due to gyroscopic effects, the trim flight condition is not perfectly

symmetric. For this latter reason, the aileron during the trim condition is nonzero

and both longitudinal and lateral-directional modes are always slightly coupled.

After a short dive, the stall maneuver is performed acting on the sole elevator

command producing initially an increase of airspeed and then a smooth deceleration

leading to high angle of attack with limited changes in the angle of sideslip.

13

Zero-Order ASSE Scheme Numerical Verification

(a) AoA

(b) AoS

Figure 2.1: True values of the Angle of Attack (a) and Angle of Sideslip (b) of

maneuver deltaedoublet deltardoublet nodrop

14

Zero-Order ASSE Scheme Numerical Verification

2.2 Linear Solution

The accuracy of the ASSE scheme has first been tested in the hypothesis of small

values for the Angle-of-Attack and Angle-of-Sideslip. This hypothesis allows to

consider i.e. cos(x) = 1 and sin(x) = x thus changing Eq. (1.35) from non-linear

to linear and making the solving process less complex.

2.2.1 Zero-Order ASSE Scheme Linearization

Under the assumption that α(t) and β(t) are small, it is then possible to write that:

cos(α(t)) ' 1, sin(α(t)) ' α(t) and cos(β(t)) ' 1, sin(β(t)) ' β(t). Substituting

this in Eq. (1.35) leads to:{
nt = ht + ltβ +mtα

nτ1 = hτ1 + lτ1β +mτ1α
(2.1)

As already described in sub-section 1.5.3, in case the ASSE scheme is linearized,

only two linear independent equations are needed to calculate the values of α(t)

and β(t). For this purpose, it is necessary to compute the values of the parameters

nt,ht,lt and mt at two different time steps. The MatLab algorithm developed for

this purpose (Appendix A) considers two subsequent time steps (τ = t− 1) in the

Time History of the maneuver. All the parameters are then computed, following

the equations shown in chapter 1, for both the time steps, leading to:[
lt mt

lt−1 mt−1

][
β(t)

α(t)

]
=

[
nt − ht

nt−1 − ht−1

]
(2.2)

The aerodynamic angles are then easily calculated. This process is extended, two

equations at a time, through all the Time History, thus providing the values of AoA

and AoS for each time step t.

15

Zero-Order ASSE Scheme Numerical Verification

2.2.2 Numerical Results

In this subsection the results obtained for the linear solution of the Zero Order

ASSE Scheme are presented. The computation of these results has been achieved

with a MatLab routine (Appendix A) developed for this purpose. The following

results are presented with four graphs:

1. Comparison between the true and estimated value of AoA

2. Error in the estimation of AoA, where the error is considered as

AoAerr = AoAEstimated − AoATrue

3. Comparison between the true and estimated value of AoS

4. Error in the estimation of AoS, where the error is considered as

AoSerr = AoSEstimated − AoSTrue

16

Zero-Order ASSE Scheme Numerical Verification

Figure 2.2: Comparison between the true and estimated value of AoA for the linear

solution of the Zero Order ASSE Scheme

17

Zero-Order ASSE Scheme Numerical Verification

To evaluate these results, the requirements described in the work of Lerro A.,

Brandl A., Battipede M. and Gili P. [15] are taken into account. According to

these requirements, the error probability of two standard deviations Pr(−2σ ≤
X ≤ 2σ) = 95.4% for the angle of attack in an extended flight envelope, must be

less or equal to 1.5 deg. The results shown in 2.2 have a 2σ error of 8.4273 deg, thus

making the linear solution for the angle of attack not suitable. The same conclusion

applies for the angle of sideslip, shown in figure 2.3, with a 2σ error of 16.3904 deg

over an expected value of 2.5 deg.

18

Zero-Order ASSE Scheme Numerical Verification

Figure 2.3: Comparison between the true and estimated value of AoS for the linear

solution of the Zero Order ASSE Scheme

19

Zero-Order ASSE Scheme Numerical Verification

A summary of the results is given in the following table:

Aerodynamic Angle 2σ error[deg] Required 2σ error[deg]

α 8.4273 1.5

β 16.3904 2.5

Table 2.1: Linear Zero Order ASSE Scheme 2σ errors

As expected, the simplifications introduced by the linearization of equation (1.35)

produce not suitable results. For sake of clarity, the linear approximation holds

for small values of α(t) and β(t), which is not the case of the stall maneuver here

tested. The linear scheme might result suitable for a different maneuver. Since the

results produced with correct data do not satisfy the requirements, further analysis

with white noise corrupted data haven’t been carried out for the linear case.

2.3 Non-Linear Solution

This part of the work has been dedicated at experimenting the real level of accu-

racy of the Zero-Order ASSE Scheme without considering any hypothesis on the

aerodynamic angles. The starting point in this case is equation (1.35). Since this

time the problem is non-linear, given all the conditions described in subsection

1.5.3, two equations only represent the minimum number of equations needed to

solve the system for α(t) and β(t). However, it has been proven that the estima-

tion accuracy is not significantly improved by increasing the number of equations

and that for the zero-order scheme, the best trade-off is obtained using only two

equations [1]. Because of this, the algorithm developed to test the behavior of the

non-linear Zero-Order ASSE Scheme (Appendix B) considers only two equations at

a time for two subsequent time steps, as for the linear case described in sub-section

2.2.1. The MatLab solver exploited for this purpose is the function ”fsolve” which

take as input parameters the system of equation to be solved, the starting point

X0 which is where the iterative algorithm chosen will start evaluating the solution

and the ”options” which is were such algorithm and different other parameters can

be set. The equation system is passed in the form:

[
nt
nt−1

]
−
[
ht
ht−1

] [
Cβ(t)Cα(t)

]
−
[
lt
lt−1

] [
Sβ(t)

]
−
[
mt

mt−1

] [
Cβ(t)Sα(t)

]
= 0 (2.3)

20

Zero-Order ASSE Scheme Numerical Verification

The iterative algorithm chosen for the solver is the Levenberg-Marquardt algorithm,

which is further discussed later in this work.

2.3.1 Levenberg-Marquardt Algorithm

The scope of this subsection is to give a brief description of the Levenberg-

Marquardt algorithm and it refers to the work of Lourakis, Manolis and others

[16]. The Levenberg-Marquardt (LM) algorithm is an iterative technique that lo-

cates the minimum of a multivariate function that is expressed as the sum of squares

of non-linear real-valued functions. LM can be thought of as a combination of steep-

est descent and the Gauss-Newton method. When the current solution is far from

the correct one, the algorithm behaves like a steepest descent method: slow, but

guaranteed to converge. When the current solution is close to the correct solution,

it becomes a Gauss-Newton method. Let f be an assumed functional relation which

maps a parameter vector p ∈ Rn to an estimated measurement vector x̂ = f(p),

x̂ ∈ Rn. An initial parameter estimate p0 and a measured vector x are provided

and it is desired to find the vector p+ that best satisfies the functional relation

f , i.e. minimizes the squared distance εT ε with ε = x − x̂. The basis of the LM

algorithm is a linear approximation to f in the neighborhood of p. For a small

||δp||, a Taylor series expansion leads to the approximation

f(p + δp) ' f(p) + Jδp (2.4)

Where J is the Jacobian matrix
∂f(p)
∂p . Like all non-linear optimization methods,

LM is iterative: initiated at the starting point p0, the method produces a series

of vectors p1,p2, ..., that converges to a local minimizer p+ for f . Hence, at each

step, it is required to find the δp that minimizes the quantity ||x − f(p + δp)|| '
||x − f(p) − Jδp|| ' ||ε − Jδp)||. The sought δp is thus the solution to a linear

least-squares problem: the minimum is attained when Jδp − ε is orthogonal to the

column space of J. This leads to JT (Jδp− ε) = 0 which yields δp as the solution of

the so-called normal equations:

JTJδp = JT ε (2.5)

The matrix JTJ in the left hand side of Eq. 2.5, is the approximate Hessian matrix,

i.e. an approximation to the matrix of second order derivatives. The LM method

actually solves a slight variation of Eq. 2.5, known as augmented normal equations:

Nδp = JT ε (2.6)

21

Zero-Order ASSE Scheme Numerical Verification

where the off-diagonal element of N are identical to the corresponding elements of

JTJ and the diagonal elements are given by Nii = µ + [JTJ]ii for some µ > 0.

The strategy of altering the diagonal elements of JTJ is called damping and µ is

referred as damping term. If the updated parameter vector p+δp with δp computed

from Eq. 2.6 leads to a reduction in the error ε, the update is accepted and the

process repeats with a decreased damping term. Otherwise, the damping term is

increased, the augmented normal equations are solved again and the process iterates

until a value of δp that decreases error is found. The process of repeatedly solving

Eq. 2.6 for different values of the damping term until an acceptable update to the

parameter vector is found corresponds to one iteration of the LM algorithm. In LM,

the damping term is adjusted at each iterations to assure a reduction in the error

ε. If the damping is set to a large value, matrix N in Eq. 2.6 is nearly diagonal

and the LM update step δp is near the steepest descent direction. Moreover the

magnitude of δp is reduced in this case. Damping also handles situations where

the Jacobian is rank deficient and JTJ is therefore singular. In this way, LM can

defensively navigate a region of the parameter space in which the model is highly

non-linear. If the damping is small, the LM step approximates the exact quadratic

step appropriate for a fully linear problem. LM is adaptive because it controls its

own damping: it raises the damping if a step fails to reduce ε; otherwise it reduces

the damping. In this way LM is capable to alternate between a slow descent

approach when being far from the minimum and a fast convergence when being at

the minimum’s neighborhood. The LM algorithm terminates when at least one of

the following conditions is met:

• The magnitude of the gradient εT ε, i.e. JT ε in the right hand side of Eq. 2.5,

drops below a threshold ε1

• The relative change in the magnitude of δp drops below a threshold ε2

• The error εT ε drops below a threshold ε3

• A maximum number of iterations kmax is completed

2.3.2 Numerical Results

Results for the non-linear solution of the Zero Order ASSE Scheme are here pre-

sented as described in subsection 2.2.2.

22

Zero-Order ASSE Scheme Numerical Verification

Figure 2.4: Comparison between the true and estimated value of AoA for the non-

linear solution of the Zero Order ASSE Scheme

23

Zero-Order ASSE Scheme Numerical Verification

Figure 2.5: Comparison between the true and estimated value of AoS for the non-

linear solution of the Zero Order ASSE Scheme

24

Zero-Order ASSE Scheme Numerical Verification

A summary of the results is presented in the following table:

Aerodynamic Angle 2σ error[deg] Required 2σ error[deg]

α 0.0648 1.5

β 0.1182 2.5

Table 2.2: Non-Linear Zero Order ASSE Scheme 2σ errors

This results satisfy the prescribed requirements [15] and highlight the accuracy of

the Zero Order ASSE Scheme proving it as a suitable method for the estimation

of the aerodynamic angles. The following table gives further information on the

errors committed during the computation of AoA and AoS:

Aerodynamic Angle Mean error[deg] Max error[deg]

α -0.0078 3.6484

β -0.0152 3.1475

Table 2.3: Non-Linear Zero Order ASSE Scheme mean and max errors

2.3.3 Sensitivity

Since the non-linear solution of the Zero Order ASSE Scheme with two equations

for two subsequent time steps has proven to be a suitable method, a test with white

noise corrupted data (which resembles real flight data) as been carried out in order

to evaluate the method sensitivity. This topic is further discussed in more details in

chapter 4 and the data is here corrupted as described in 4.25. Results are presented

in the following figures.

25

Zero-Order ASSE Scheme Numerical Verification

Figure 2.6: Comparison between the true and estimated value of AoA for the non-

linear solution of the Zero Order ASSE Scheme with noisy flight data

26

Zero-Order ASSE Scheme Numerical Verification

Figure 2.7: Comparison between the true and estimated value of AoS for the non-

linear solution of the Zero Order ASSE Scheme with noisy flight data

27

Zero-Order ASSE Scheme Numerical Verification

As it is possible to see from these results, the non-linear solver with two equations

is not suitable in the presence of noisy flight data with a 2σ error of magnitude 103.

Because of this, no other maneuvers with noisy data are tested with the non-linear

MatLab routine.

28

Chapter 3

Neural Network Theoretical Background

A lot of research has been conducted over virtual sensors which exploit soft comput-

ing techniques based on neural network predictions. The main advantage of virtual

sensors is replacing traditional probes and vanes which cover part of the front sur-

face of the fuselage and can cause, especially in small UAVs, interference with

opto-electronic sensors which best placing location is the same of the traditional

sensors. Furthermore, virtual sensors have been proven as accurate as traditional

probes in measuring the aerodynamic angles for UAV applications [3]. This ex-

tended research has proven the importance and the power of neural networks in

the process of estimation of the aerodynamic angles, and they are therefore further

analyzed in this work. The aim of this part of the work is to evaluate the feasibility

of using a neural network to solve a non-linear system of equations. The main

goal is to check the level of accuracy that can be obtained by exploiting a neural

network, which characteristics will be further discussed, to estimate the aerody-

namic angles from the Zero-Order ASSE Scheme. For this purpose, a theoretical

background over neural networks is given in the next sections.

3.1 Neural Network Characteristics

To start with, a brief description of what is a neural network is given. Information

over the type of network used for this work will be later defined.

3.1.1 Definition of a Neural Network

According to the definition given by Simon Haykin [2], a neural network, sometimes

also called neurocomputer, is a massively parallel distributed processor made up of

simple processing units, called neurons, which has a natural propensity for storing

experiential knowledge and making it available for use. It resembles the brain in

29

Neural Network Theoretical Background

two aspects:

1. Knowledge is acquired by the network from it’s environment through a learning

process.

2. Interneuron connection strengths, known as synaptic weights, are used to store

the acquired knowledge.

The power of neurocomputers is the fact that, once opportunely trained with

a certain procedure, called the learning algorithm, they are able to generalize.

Generalization is the ability to produce reasonable outputs for inputs not encoun-

tered during training. The learning ability and the parallel processing allows them

to solve complex problems once they are decomposed in simple tasks, each one

assigned to a specific network. More general features of neural network showed in

the book of Hayakin [2] are not described here since they are beyond the scope of

this work.

3.1.2 Neuron Model

The schematic representation of a neuron is depicted in Figure 3.1.

A neuron has the following characteristics:

1. Connecting Links or Synapses. Each input of the input layer of signals has

it’s specific strength related to that neuron. In fact the jth signal is connected

via synapses with the kth neuron and it is multiplied by a factor Wkj , defined

Weight of the synapse. The subscripts of the synaptic weight indicate that the

particular value of the jth weight for the jth input, is related to the neuron k.

2. Adder. The adder of the neuron is a linear combiner which sums all the

weighted inputs.

3. Activation Function. The output of a neuron is limited with a particular

function, which are further discussed. The amplitude of the neuron output is

usually limited in the interval [0,1] or [−1,1].

4. Bias. The term bk of figure 3.1 is denoted as bias, and it has the effect of

increasing or lowering the net input of the activation function.

In mathematical terms a neuron can be described with the following equations:

vk =

m∑
j=0

Wkjxj (3.1)

30

Neural Network Theoretical Background

Figure 3.1: [2] Non-linear model of a neuron

where xj is the jth input, Wkj is the weight of the jth input related to neuron k,

and in the particular case of j = 0, the input x0 = 1 and the weight Wk0 = bk,

which is a compact way of including the term bk in the equation.

Then, the activation function must be applied to produce the output of the kth
neuron:

yk = ϕ(vk) (3.2)

Equations 3.1 and 3.2 represents the basic operations carried out from a neuron.

3.1.3 Activation Functions

Activation functions have the role of limiting the output of a neuron and to give the

network the ability to generalize and extrapolate beyond the limit if the training

patterns. The most common activation functions are:

31

Neural Network Theoretical Background

1. Threshold function. Also known as Heaviside function, it gives an output value

of 1 if the induced field of the neuron is non-negative, and it returns the value

of 0 otherwise. The mathematical representation is:

ϕ(vk) =

{
1, vK > 0

0, vK < 0
(3.3)

where vk is defined in Eq. 3.1.

2. Piecewise-linear function. The mathematical representation is the following:

ϕ(vk) =


1, vK > 1

2

vk, −1
2 < vk <

1
2

0, vK 6 −1
2

(3.4)

this form of an activation function can be viewed as an approximation to a non

linear amplifier. It works as a linear-amplifier if the linear region of operation

is maintained without running into saturation and it reduces to a threshold

function if the amplification factor in the linear region is made infinitely large.

3. Sigmoid function. It is the most common used activation function in neu-

rocomputing. It’s a strictly increasing function and it’s the perfect balance

between a linear and non-linear behaviour. The mathematical expression is:

ϕ(vk) =
1

1 + exp(−avk)
(3.5)

the term a represents the slope parameters. The Sigmoid function assumes a

continuous range of values between 0 and 1 and it behaves more and more like

the Heaviside function as a approaches to infinity. A really important feature

of the Sigmoid function is the fact that it is differentiable, which is also an

important characteristic for neural networks.

All the activation functions discussed so far, range in the interval [0,1]. Sometimes

it’s preferable to have a function ranging in the interval [−1,1]. In this case, the

threshold function becomes: 
1, vK > 0

0, vK = 0

−1, vK < 0

(3.6)

32

Neural Network Theoretical Background

which is also known as Signum function. The corresponding sigmoidal function is

the Hyperbolic Tangent function:

ϕ(vk) = tanh (vk) (3.7)

which is a sigmoidal type function that can assume negative values. The following

figure represents the main activation functions described above.

33

Neural Network Theoretical Background

Figure 3.2: [2] (a) Threshold function, (b) Piecewise-linear function, (c) Sigmoid

function for varying slope parameter a.

34

Neural Network Theoretical Background

Another type of activation functions are the Radial-Basis-Functions (RBF), the

most common in this new group of function is the Gaussian function:

ϕ(rk) = exp

(
r2k

2σ2

)
(3.8)

where rk = ||x − ck||, with ck being the center of the kth radial basis function of

the network.

3.1.4 Network Architectures

In this subsection the neural networks architectures are presented. A group of

neurons organized in a determined pattern becomes a neural network. Neurons are

usually grouped in subsequent layers with the last being the output layer. The

most common architectures are:

• Feed Forward Neural Networks

• Recurrent Networks

Feed forward neural networks are characterized by an absence of a feedback loop,

and they can be divided in two categories:

1. Single Layer Perceptron (SLP). These networks feature an input layer of neu-

rons which has only the purpose to collect the input data, but it doesn’t

perform any computation, and an output layer of computational neurons. It

is also sometimes referred as acyclic network.

2. Multi Layer Perceptron (MLP). The difference with the former architecture is

the fact that more hidden layers of computational neurons are present. The

hidden units act as a useful intermediary between the external inputs and the

output. The extra set of synaptic connections allows to extract higher order

statistics which is very useful in the case of a great number of inputs. In

this architecture, each layer of neurons is connected to the subsequent one,

with the output of one layer being the input of the next layer. In addition,

each neuron of a hidden layer can be connected with all the neurons of the

next layer, in which case the networks is defined fully connected, or it can be

connected with only a fraction of the neurons of the subsequent layer, in which

case the network is defined partially connected. The input vector is applied

to sensory nodes of input layers, and its effects propagates layer by layer to

the output node. Here a set of output are calculated and compared with the

35

Neural Network Theoretical Background

actual, or desired, target. In mathematical terms, for a two layer feed forward

network, in which the subscripts i, j, k and l represent respectively the input

layer, the first and the second hidden layer and the output layer, the output

yl is given by:

yl = fl(x1, ...xn) =

n∑
k=1

n∑
j=1

n∑
i=1

Wixi + b (3.9)

a MLP network can be essentially interpreted as a non-linear mapping between

the input and the target values. This architecture will be further used for the

purpose of this work.

Beside the feed forward architectures, another type of networks are the Recurrent

Networks. As described in the work of Medsker [17] recurrent neural networks have

been an important focus of research and development during the 1990’s. They are

designed to learn sequential or time varying patterns. A recurrent net is a neural

network with feedback (closed loop) connections. For example, a recurrent neural

network may consist of a single layer of neurons with each neuron feeding its output

signal back to the inputs of all other neurons. Recurrent architectures with hidden

neurons also exist. Recurrent neural network techniques have been applied to a

wide variety of problems. Simple partially recurrent neural networks were intro-

duced in the late 1980’s by several researchers including Rumelhart, Hinton, and

Williams to learn strings of characters. Many other applications have addressed

problems involving dynamical systems with time sequences of events. Recurrent

neural networks are being used to track water quality and minimize the additives

needed for filtering water. Furthermore, the time sequences of musical notes have

been studied with recurrent neural networks. The idea behind these type of net-

works is to consider the input data not individually but as part of a context in

order to produce a sequence of inputs and making predictions considering the rela-

tionship among the inputs. Mathematically speaking, the output of the network at

a certain time t is the result of a self-training of the network based on a sequence of

tests at the previous time instants. To get the output at time t, not only the input

vector at time t, xt is considered, but also the input vector xt−1 and the output

in t − 1. In order to achieve this, the feedback loops involve the use of particular

branches composed of unit delay elements (denoted z−1) which result in a non-

linear dynamical behaviour, assuming that the neural network contains non-linear

units. The network is then able to change its behaviour in a dynamic way, based

on the context in which is operating. In the next figures the basic architectures

described above are presented.

36

Neural Network Theoretical Background

Figure 3.3: [2] Fully connect feed forward or acyclic network with one hidden layer

and one output layer

37

Neural Network Theoretical Background

Figure 3.4: [2] Recurrent network with no self-feedback loops and no hidden neurons

38

Neural Network Theoretical Background

Figure 3.5: [2] Recurrent network with hidden neurons

39

Neural Network Theoretical Background

3.2 Neural Network Learning Process

The learning process of a neurocomputer can be defined as [2] a procedure by

which the free parameters of a neural network are adapted through a process of

stimulation by the environment in which the network is embedded and the different

ways of learning are determined by the manner in which the parameters changes

take place. According to this definition, there are three main steps involved in the

act of learning:

1. Stimulation, which comes from an external environment.

2. Parameters Changes, which occur as a response to the external stimulation.

3. New Response of the network to a stimulus because of the changes occurred

in its parameters.

3.2.1 Error-Correction Learning

One of the most used learning processes, which is also the one used in this work,

is the error correction method. A scheme of how this process work is depicted in

Fig. 3.6.

Figure 3.6: [2] Illustration of the error correction learning

Considering the simple case of a neuron k driven by a signal vector x(n), produced

by one or more layers of hidden neurons which are themselves driven by an input

vector applied to the input layer of the neural network. The argument n denotes

discrete time, or more precisely, the time step of an iterative process involved in

adjusting the synaptic weights of neuron k. The output signal of neuron k is

denoted by yk(n). This output signal, representing the only output of the neural

40

Neural Network Theoretical Background

network, is compared to a desired response or target output, denoted by dk(n). As

a consequence, an error signal ek(n) is produced.

ek(n) = dk(n)− yk(n) (3.10)

the error signal ek(n) actuates as a control mechanism which purpose is to apply a

sequence of corrective adjustments to the synaptic weights of neuron k in order to

make the output yk(n) come closer to the desired response dk(n) in a step by step

manner. The function to be minimized in order to get a better output is the cost

function ε(n) defined in terms of ek(n):

ε(n) =
1

2
e2k(n) =

1

2
(dk(n)− yk(n))2 (3.11)

In the simple case of a linear model with m neurons:

yk(x, n) =

m∑
k=1

wkϕk(x, n) (3.12)

the cost function can be expressed as:

ε(n) =
1

2

m∑
k=1

e2k(n) =
1

2

m∑
k=1

(dk(n)− yk(n))2 (3.13)

which represent the instantaneous value of the error energy. In both cases the step

by step process is repeated until the system reaches a steady state (the weights are

essentially stabilized). At this point, the learning process is terminated. In more

complex situations there can be extra regulations terms in Eq. 3.13. In the case

of batch learning or off-line learning, the relative errors are evaluated at different

time instants and the cost function becomes:

ε =
1

2p

p∑
n=1

m∑
k=1

e2k(n) (3.14)

where p is the total number of time instants. In addition, there are other different

kinds of cost function that is possible to use:

1. Mean Squared Error (MSE)

ε =
1

2p

p∑
n=1

e2(n) (3.15)

41

Neural Network Theoretical Background

2. Root Mean Squared Error (RMSE)

ε =

√√√√ 1

2p

p∑
n=1

e2(n) (3.16)

3. Mean Absolute Error (MAE)

ε =
1

2p

p∑
n=1

|e(n)| (3.17)

Synaptic weights are updated in each iteration in order to minimize the cost func-

tion.

∆wkj(n) = −η ∂ε

∂wkj
(3.18)

The instant difference in the value of the synaptic weight depends on the learning

algorithm used. η is a constant, and ∆wkj(n) is the variation of the synaptic weight

of the jth input at the time instant n related to the neuron k. The weight is then

updated in the next instant as follows:

wkj(n+ 1) = wkj(n) + ∆wkj(n) (3.19)

The process of updating the weights, which is the training, stops when the network

reaches a steady state in which the cost function does not change significantly

anymore because a minimum has been reached. Such a method is also know as the

Delta Rule.

3.2.2 Supervised And Unsupervised Learning

The learning process can occur with knowledge of the correct outputs or without

it. This splits the learning process in two categories: supervised and unsupervised

learning.

42

Neural Network Theoretical Background

1. Supervised Learning. In Supervised Learning, the network is fed with a cor-

rect output given a determined set of inputs. The network has then to learn

the relationship between the correct input-output couples. It is like the net-

work is guided and controlled by a teacher which supervises its progresses. The

environment is, however, unknown to the neural network of interest. Suppose

now that the teacher and the neural network are both exposed to a train-

ing vector (i.e., example) drawn from the environment. By virtue of built-in

knowledge, the teacher is able to provide the neural network with a desired

response for that training vector. Indeed, the desired response represents the

optimum action to be performed by the neural network. The network param-

eters are adjusted under the combined influence of the training vector and the

error signal. The error signal is defined as the difference between the desired

response and the actual response of the network. This adjustment is carried

out iteratively in a step-by-step fashion with the aim of eventually making the

neural network emulate the teacher; the emulation is presumed to be optimum

in some statistical sense. In this way knowledge of the environment available

to the teacher is transferred to the neural network through training as fully as

possible. When this condition is reached, we may then let the neural network

deal with the environment completely by itself. As a performance measure

for the system, the mean-square error or the sum of squared errors over the

training sample, defined as a function of the free parameters of the system,

can be considered. This function may be visualized as a multidimensional

error-performance surface or simply error surface, with the free parameters as

coordinates. The true error surface is averaged over all possible input—output

examples. Any given operation of the system under the teacher’s supervision is

represented as a point on the error surface. For the system to improve perfor-

mance over time and therefore learn from the teacher, the operating point has

to move down successively toward a minimum point of the error surface; the

minimum point may be a local minimum or a global minimum. A supervised

learning system is able to do this with the useful information it has about

the gradient of the error surface corresponding to the current behavior of the

system. The gradient of an error surface at any point is a vector that points

in the direction of steepest descent. Nevertheless, given an algorithm designed

to minimize the cost function, an adequate set of input—output examples,

and enough time permitted to do the training, a supervised learning system

is usually able to perform such tasks as pattern classification and function

approximation.

43

Neural Network Theoretical Background

2. Unsupervised Learning. In unsupervised or self-organized learning there is

no external teacher or critic to oversee the learning process. Rather, provision

is made for a task-independent measure of the quality of the representation

that the network is required to learn, and the free parameters of the network

are optimized with respect to that measure. Once the network has become

tuned to the statistical regularities of the input data, it develops the ability to

form internal representations for encoding features of the input and thereby

to create new classes automatically (Becker, 1991). To perform unsupervised

learning we may use a competitive learning rule. For example, we may use a

neural network that consists of two layers, an input layer and a competitive

layer. The input layer receives the available data while the competitive layer

consists of neurons that compete with each other (in accordance with a learning

rule) for the ”opportunity” to respond to features contained in the input data.

In its simplest form, the network operates in accordance with a ”winner-takes-

all” strategy. In such a strategy the neuron with the greatest total input

”wins” the competition and turns on; all the other neurons then switch off.

3.2.3 Online And Batch Learning

Another classification of neural networks is based on the way it learns. If the

network continuously learns at each time step, then it goes under the definition of

an online training network. Online training is dynamic an changeable and it adapts

to the examples given at each time step. Such a method is of a great advantage

when it comes to computational cost since it is not necessary to memorize all the

training patterns but once defined a single pattern, it will be later useless and hence

discarded. If, on the contrary, the network is provided with all the examples needed

in order to be trained in a single instant, it is defined Batch learning, or off-line

learning. This method is much more expansive in terms of computational cost since

more memory must be allocated for all the training patterns. Furthermore, once

the training is concluded, the network is unchangeable, which can be an advantage

since it avoids non-predictable behaviours.

3.2.4 MLP Learning Algorithms

In this subsection the main learning algorithms for multi layer perceptrons are

discussed. All this methods are based on the evaluation of the cost function gradient

in order to update the weights to their new values. This kind of learning is hence

supervised, since to evaluate the cost function, examples of correct input-output

couples are needed. Considering the output of a generic neuron j, which inputs are

44

Neural Network Theoretical Background

Figure 3.7: [2] Block Diagram of Supervised Learning

the outputs of other neurons in the context of a MLP, it is then possible to write:

fj(vj) = yj = ϕj

(
m∑
i=1

wjiyi + b

)
(3.20)

where yi refers to the outputs of the previous neurons. The list of algorithms for

MLP is the following:

• Backpropagation algorithm.

• Descent or gradient based methods, such as:

1. Steepest Descent method

2. Newton’s Method

45

Neural Network Theoretical Background

Figure 3.8: [2] Block Diagram of Unsupervised Learning

3. Levenberg-Marquardt Algorithm

The Back Propagation Algorithm (BP) applies a correction, ∆wji, to the

synaptic weight, wji, proportional to the gradient
∂ε(t)
∂wji

. According to the chain

rule it may be written as:

∂ε(t)

∂wji(t)
=

∂ε(t)

∂ej(t)

∂ej(t)

∂yj(t)

∂yj(t)

∂vj(t)

∂vj(t)

∂wji(t)
(3.21)

Differentiating Eq. (3.20) with respect to vj(t) and wji(t), the following equations

can be obtained

∂yj(t)

∂vj(t)
= f ′j(vj(t)) (3.22)

and

∂vj(t)

∂wji
= yi(t) (3.23)

Differentiating both sides of Eq.(3.10) with respect to yj(t) and Eq.(3.13) with

respect to ej(t), we get respectively

∂ej(t)

∂yj(t)
= −1 (3.24)

and
∂ε(t)

∂ej(t)
= ej(t) (3.25)

46

Neural Network Theoretical Background

Therefore, the use of equations (3.22) to (3.25) in (3.21), yields

∂ε(t)

∂wji(t)
= −ej(t)f ′j (vj(t)) yi(t) = −δj(t)yi(t) (3.26)

where δj(t) is commonly defined as the local gradient. The correction to the synap-

tic weight wji(t) is established using the delta rule

∆wji(t) = −η ∂ε(t)

∂wji(t)
= ηδj(t)yi(t) (3.27)

where η is defined as the learning rate. Therefore, the updated weight is

wji(t+ 1) = wji(t) + ∆wji(t) = wji(t)− η
∂ε(t)

∂wji(t)
= wji(t) + ηδj(t)yi(t) (3.28)

As shown by several authors there is not an optimum learning rate but according to

the particular problem there is a η that assures fast and stable convergence. There

are some algorithm provided with a variable learning algorithm rate according to

the local gradient, or other parameters, to speed up the convergence. To summarise,

the local gradient is equal to:δj(t) = ej(t)f
′
j(vj(t)) j = output neuron

δj(t) = f ′j(vj(t))
∑
k

δk(t)wkj(t) j = hidden neuron (3.29)

In the second expression of 3.29 the index k refers to an output neuron, while index

j refers to the hidden neuron. The Back Propagation algorithm described above

adapts to an online learning type of network. In the case of Batch Learning, the

procedure is the same, but the cost function assumes the expression of 3.14.

The Descent methods or gradient methods aim at finding the minimum of the

cost function by solving the equation ∇ε(t) = 0 and then updating the synaptic

weights. The following discussion will refer to on-line training since it is very similar

for batch training. The gradient of the cost function with respect to the synaptic

weights is defined as:

g(t) =
∂ε(t)

∂w(t)
=

[
∂ε(t)

∂w1(t)
, . . . ,

∂ε(t)

∂wn(t)

]T
(3.30)

and hence the change in the synaptic weights can be written as:

w(t+ 1) = w(t)− ηGg(t) = w(t)− η ∂ε(t)
∂w(t)

(3.31)

where G is a positive defined matrix. As already anticipated, there are three descent

methods:

47

Neural Network Theoretical Background

1. Steepest Descent Method. In this method, the positive defined matrix G

is equal to the identity matrix I. Eq. 3.31 then becomes:

w(t+ 1) = w(t)− ηg(t) (3.32)

this methods follows the steepest descent downhill, represented in Eq. 3.32 by

the term −g(t), and hence is really sensible to the initial conditions and can

easily fall in a local minima without globally minimizing the function ε(t).

2. Newton Method. This method uses the second order derivatives of the cost

function if they are available. Considering the second order approximation of

the Taylor expansion for the error energy:

ε(t+ 1) ≈
ε(t) + gT [w(t+ 1)− w(t)]

+
1

2
[w(t+ 1)− w(t)]T H [w(t+ 1)− w(t)]

(3.33)

higher order terms are omitted with the hypothesis that [w(t+ 1)− w(t)] is

small enough and the term H(t) is the Hessian matrix:

H(t) =



∂2ε(t)

∂2w1(t)
. . .

∂2ε(t)

∂w1(t)∂wn(t)

.

∂2ε(t)

∂wn(t)∂w1(t)
. . .

∂2ε(t)

∂2wn(t)


(3.34)

differentiating and considering equal to zero Eq. 3.33 the following is obtained:

0 = g(t) +H(t) [wMIN − w(t)] (3.35)

If the inverse matrix of H exists, the Newton’s method is obtained

wMIN = w(t)−H(t)−1g(t) (3.36)

which in the case of a non quadratic function, it only represents one step

towards the minimum:

48

Neural Network Theoretical Background

w(t+ 1) = w(t)−H(t)−1g(t) (3.37)

which is the general expression (3.31), where G = −H−1 and η = 1.

3. Levenberg-Marquardt Algorithm. The LM algorithm has already been

described in detail in subsection 2.3.1. Each step is described by the equation:

w(t+ 1) = w(t)−
(
H(t) + µI

)−1
g(t) (3.38)

The LM method transits smoothly between Newton’s method, as µ approaches

0, and the steepest descent method as µ grows infinitely. The steepest descent

method is utilized at a large distance from the minimum of the considered func-

tion, to provide steady and convergent progress toward the solution. As the

solution approaches the minimum, µ is adaptively decreased, the Levenberg-

Marquardt method approaches Newton’s method, and the solution usually

converges rapidly to the local minima.

3.2.5 Neural Network Validation: Overfitting And Local

Minima

Once the network has been trained, the validation phase starts. Input data, differ-

ent from the ones given during training but within the training boundaries, are fed

to the network in order to check if it is able to respond with a correct output. The

training and validation loop process is represented in Fig. 3.9.

If the input-output patterns of the network during validation are reasonably accept-

able for input test data within the training boundaries, then it is possible to say

that the the network is able to generalize. However, when too much input-output

examples are given for training, the network might end up memorizing the data

instead of learning from it, thus loosing the ability to generalize. This problem

is known as overfitting or overtraining. Since this problem is nothing but a

deficiency stored inside the synaptic weights, there are two techniques to look for

the most suitable number of neurons which allow to keep the network as general as

possible. This techniques are:

1. Growing. The network is first built with an underestimated number of neurons,

which is then gradually increased until improvements in the extrapolation and

generalization ability of the network can be observed.

49

Neural Network Theoretical Background

Figure 3.9: [3] Flow-chart of the neural network training and validation process

2. Pruning. On the contrary, the Pruning starts with an overestimated number of

neurons which is then gradually decreased according to a regularization term

which deletes the neurons that are less activated.

As far as the Local Minima problem is concerned, it is an issue related to the

initial conditions of the network. Considering the simple example of figure 3.10

starting from the first weight attempt, winit, any deterministic training algorithms,

such as BP or LM algorithms, will always find the wmin1 as the best weight to

minimize the error, or optimize the neural network performance. This example can

be translated into multi-dimensional space and the error profile becomes a complex

hyper surface which depends on the NN free parameters, synaptic weights and

50

Neural Network Theoretical Background

biases. The neural network training will often end up in local minima points of the

hyper surface. To solve this problem, different algorithms have been developed but

are not commonly used because of their complexity and computational costs. A

solution to this problem is to carry on more parallel training of the network with

different initial conditions and then choose the one which commits the smallest

error.

Figure 3.10: [3] Non-linear curve-fitting problem with several local minima, high-

lighting the initial synaptic weight, winit, a local minimum point, wmin1, and the

absolute minima, wopt.

51

Chapter 4

Neural Network Applied To The Zero Order ASSE Scheme

This part of the work aims at testing the feasibility of using a neural network to solve

the zero order ASSE scheme, which is essentially an application of neural networks

to non-linear systems of equation. In order to achieve this, a MatLab routine

which exploits the Deep Learning toolbox has been used. Network characteristics

and further information about the MatLab routine are given in the next sections.

52

NN Applied To The Zero Order ASSE Scheme

4.1 Network Characteristics And Input Data

Profile

The Neural Network used for the purpose of this work is a Multi Layer Perceptron

(sec. 3.1.4) which uses the Levenberg-Marquardt as the learning algorithm. Thanks

to the MatLab routine, the following parameters have been modified during the

different tests in order to find the most suitable solution:

1. Number of Training Epochs.

2. Number of Hidden Layers.

3. Number of Neurons for each Layer.

4. Number of input-output examples allocated for training .

The input data received by the network corresponds to values represented in equa-

tions 1.32 and 1.33 which are the coefficients of the Zero Order ASSE Scheme

calculated for two subsequent time instants [τ, t], τ = t− 1 since two equations at

a time are considered. To summarize:

• nt−1, ht−1, lt−1,mt−1

• nt, ht, lt,mt

The computation of the input data is carried on through the same process used in

the linear and non-linear routine (Appendix A and B). To conclude, a test with

corrupted data has been carried out in order to evaluate the response of the network

when data affected by white noise is given as input.

4.2 Presentation Of The Results

In order to present the results of this work, each different test is represented with

four graphs and a table as already showed in chapter 2:

1. Comparison between the true and estimated value of AoA.

2. Error in the estimation of AoA, where the error is considered as: AoAerr =

AoATrue − AoAEstimated.

3. Comparison between the true and estimated value of AoS.

53

NN Applied To The Zero Order ASSE Scheme

4. Error in the estimation of AoS, where the error is considered as: AoSerr =

AoSTrue − AoSEstimated.

5. Table of statistic data:

• 2σ Error [deg]

• Mean Error [deg]

• Max Error [deg]

The evaluation of the results quality is done following the work of Lerro A., Brandl

A., Battipede M. and Gili P. [15] as already described in subsection 2.2.2.

54

NN Applied To The Zero Order ASSE Scheme

4.3 Tests

The test phase of this work is aimed at evaluating the feasibility of using a neural

network to solve the Zero Order ASSE Scheme. For this purpose, the maneuver

described in section 2.1 has been used both for training and testing the network.

Other tests on different maneuvers have also been carried out and are presented

further in this chapter. In order to find the most suitable network, four different

groups of tests have been done such that a best configuration of network parameters

could be found. For sake of clarity, the best network parameters configuration found

is specific for the purpose of this work and is limited to the number of tests carried

out. The four groups are:

1. Group 1: Tests with an increasing number of training epochs.

2. Group 2: Tests with an increasing number of hidden layers.

3. Group 3: Tests with an increasing number of neurons for one layer.

4. Group 4: Tests with an increasing number of training data.

Further tests with a combination of the optimal parameters found in each group

have been done and are later discussed.

4.3.1 Test Group 1: Effects Of Training Epochs

This first group of tests has been carried out in order to evaluate the effect of

training epochs on the quality of the output results produced by the neural net-

work. The maneuver used for training and test is described in subsection 2.2.2.

Such simulated maneuver has a time history of 150 seconds, and the flight data is

defined each millisecond, thus giving 1.5∗ 104 points to be distributed between test

and training. The distribution between train and test data is summarized in the

following table:

Phase tinit tstep tend
Train 100 100 length(time vect)-100

Test 100 1 length(time vect)-100

Table 4.1: Training and Test data for Group 1

where tinit is an index which represents the starting index on the time vector

(time vect), tstep represents the step between two indexes on the time vector, and

55

NN Applied To The Zero Order ASSE Scheme

tend represents the final index to be considered for collecting training data. To sum-

marize, all the data necessary, destined to training, is collected starting from an ini-

tial time corresponding to time vect(tinit), and then continues with a step equal to

tstep until the last value collected, corresponding to time vect(length(time vect)-

100). The same principle applies for the test phase: The network collects all the

points, starting from tinit all the way to tend with a step equal to tstep (which is

fixed to 1 in all the tests since the network is tested over the whole the time history)

and estimates at each step the values of the aerodynamic angles. The results of

this first group of tests are presented in the following pages.

The characteristic number of training epochs, hidden layers, neurons in each layer

and the training time step tstep are summarized in the following table for each test:

Test Number training epochs hidden layers neurons/layer tstep
Test 1 500 1 27 100

Test 2 1000 1 27 100

Test 3 2000 1 27 100

Test 4 4000 1 27 100

Test 5 6000 1 27 100

Table 4.2: Group 1 training characteristics

56

NN Applied To The Zero Order ASSE Scheme

Test 1

(a)

(b)

Figure 4.1: Group 1-Test 1: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

57

NN Applied To The Zero Order ASSE Scheme

Test 2

(a)

(b)

Figure 4.2: Group 1-Test 2: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

58

NN Applied To The Zero Order ASSE Scheme

Test 3

(a)

(b)

Figure 4.3: Group 1-Test 3: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

59

NN Applied To The Zero Order ASSE Scheme

Test 4

(a)

(b)

Figure 4.4: Group 1-Test 4: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

60

NN Applied To The Zero Order ASSE Scheme

Test 5

(a)

(b)

Figure 4.5: Group 1-Test 5: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

61

NN Applied To The Zero Order ASSE Scheme

The statistic data of these results is presented in the following table and graphs:

AoA 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.0862 0.0007 2.906

Test 2 0.0659 0.0023 5.9741

Test 3 0.0716 0.0017 4.2715

Test 4 0.0832 -0.0026 13.876

Test 5 0.1906 0.0024 57.7647

Table 4.3: Statistic data for AoA of Group 1 tests

AoS 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.0698 0.0008 8.8775

Test 2 0.1769 -0.0037 18.5335

Test 3 0.0721 -0.0015 7.4261

Test 4 0.1249 -0.0006 14.2399

Test 5 0.8924 0.007 229.6894

Table 4.4: Statistic data for AoS of Group 1 tests

62

NN Applied To The Zero Order ASSE Scheme

(a)

(b)

(c)

Figure 4.6: Group 1 Statistic data

63

NN Applied To The Zero Order ASSE Scheme

As it is possible to notice from these results, the first test of this group is the one

that produced the most satisfying results among all the others. As a mater of fact,

in Test 1, which corresponds to 500 training epochs, both the mean and max error

are closer to zero than the other attempts, and both AoA and AoS satisfy the 2σ

error requirements [15] with the best compromise. It is also possible to notice that

increasing the number of training epochs , on average, leads to a worse prediction

of the aerodynamic angles by the network.

4.3.2 Test Group 2: Effects Of The Number Of Hidden

Layers

The second group of tests aims at evaluating the performance of MLP neural net-

works with a different number of hidden layers.

Phase tinit tstep tend
Train 100 100 length(time vect)-100

Test 100 1 length(time vect)-100

Table 4.5: Training and Test data for Group 2

The characteristic number of training epochs, hidden layers, neurons in each layer

and the training time step tstep are summarized in the following table for each test:

Test Number training epochs hidden layers neurons/layer tstep
Test 1 1000 1 27 100

Test 2 1000 2 27 100

Test 3 1000 3 27 100

Test 4 1000 4 27 100

Table 4.6: Group 2 training characteristics

64

NN Applied To The Zero Order ASSE Scheme

Test 1

(a)

(b)

Figure 4.7: Group 2-Test 1: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

65

NN Applied To The Zero Order ASSE Scheme

Test 2

(a)

(b)

Figure 4.8: Group 2-Test 2: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

66

NN Applied To The Zero Order ASSE Scheme

Test 3

(a)

(b)

Figure 4.9: Group 2-Test 3: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

67

NN Applied To The Zero Order ASSE Scheme

Test 4

(a)

(b)

Figure 4.10: Group 2-Test 4: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

68

NN Applied To The Zero Order ASSE Scheme

The statistic data of these results is presented in the following tables and graphs:

AoA 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.0659 0.0023 5.9741

Test 2 0.0424 0.0006 4.3094

Test 3 0.0275 0.0008 1.9468

Test 4 0.0558 -0.0035 6.4501

Table 4.7: Statistic data for AoA of Group 2 tests

AoS 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.1769 -0.0037 18.5335

Test 2 0.0719 0.0037 8.268

Test 3 0.3807 -0.0152 45.0436

Test 4 0.2963 -0.0089 35.6211

Table 4.8: Statistic data for AoS of Group 2 tests

69

NN Applied To The Zero Order ASSE Scheme

(a)

(b)

(c)

Figure 4.11: Group 2 Statistic data

70

NN Applied To The Zero Order ASSE Scheme

In the case of the second group of tests, the most suitable network can be identified

in Test 2. In fact, the test with two hidden layers of 27 neurons each, shows

acceptable values of the 2σ error, with the best compromise between AoA and

AoS. The same can be noticed for the mean and max errors. In the case of these

four tests related to the effects of the number of layers, no definite trend of the

results quality can be identified when adding more hidden layers.

4.3.3 Test Group 3: Effects Of The Number Of Neurons

For Each Layer

The third group of tests aims at evaluating the effects of a different number of

neurons for one layer.

Phase tinit tstep tend
Train 100 100 length(time vect)-100

Test 100 1 length(time vect)-100

Table 4.9: Training and Test data for Group 3

The characteristic number of training epochs, hidden layers, neurons in each layer

and the training time step tstep are summarized in the following table for each test:

Test Number training epochs hidden layers neurons/layer tstep
Test 1 1000 1 10 100

Test 2 1000 1 20 100

Test 3 1000 1 27 100

Test 4 1000 1 35 100

Test 5 1000 1 50 100

Table 4.10: Group 3 training characteristics

71

NN Applied To The Zero Order ASSE Scheme

Test 1

(a)

(b)

Figure 4.12: Group 3-Test 1: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

72

NN Applied To The Zero Order ASSE Scheme

Test 2

(a)

(b)

Figure 4.13: Group 3-Test 2: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

73

NN Applied To The Zero Order ASSE Scheme

Test 3

(a)

(b)

Figure 4.14: Group 3-Test 3: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

74

NN Applied To The Zero Order ASSE Scheme

Test 4

(a)

(b)

Figure 4.15: Group 3-Test 4: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

75

NN Applied To The Zero Order ASSE Scheme

Test 5

(a)

(b)

Figure 4.16: Group 3-Test 5: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

76

NN Applied To The Zero Order ASSE Scheme

The statistic data of these results is presented in the following tables and graphs:

AoA 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.3465 -0.0025 21.4073

Test 2 0.1693 0.0001 2.1733

Test 3 0.0659 0.0023 5.9741

Test 4 0.0471 0.00003 2.8745

Test 5 0.0334 0.0009 4.7756

Table 4.11: Statistic data for AoA of Group 3 tests

AoS 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.3958 0.0045 52.8383

Test 2 0.2489 0.0023 65.5718

Test 3 0.1769 -0.0037 18.5335

Test 4 0.0526 0.0005 7.6148

Test 5 0.1236 0.0027 11.2857

Table 4.12: Statistic data for AoS of Group 3 tests

77

NN Applied To The Zero Order ASSE Scheme

(a)

(b)

(c)

Figure 4.17: Group 3 Statistic data

78

NN Applied To The Zero Order ASSE Scheme

The best network in this third group of test is the one corresponding to Test 4,

with 35 neurons for one hidden layer. The results show the best values for the 2σ

error, which satisfies the requirements, and for mean and max error. As far as the

number of neurons is concerned, neural network theory discussed in chapter 3, tells

that there is an optimal number of neurons, since increasing this number too much

leads to the problem of overfitting.

4.3.4 Test Group 4: Effects Of The Number Of Training

Data

The fourth group of tests aims at evaluating the effects of an increasing number of

training data.

Phase tinit tstep tend
Train 100 variable length(time vect)-100

Test 100 1 length(time vect)-100

Table 4.13: Training and Test data for Group 4

The characteristic number of training epochs, hidden layers, neurons in each layer

and the training time step tstep are summarized in the following table for each test:

Test Number training epochs hidden layers neurons/layer tstep
Test 1 1000 1 27 100

Test 2 1000 1 27 75

Test 3 1000 1 27 50

Test 4 1000 1 27 25

Test 5 1000 1 27 20

Table 4.14: Group 4 training characteristics

79

NN Applied To The Zero Order ASSE Scheme

Test 1

(a)

(b)

Figure 4.18: Group 4-Test 1: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

80

NN Applied To The Zero Order ASSE Scheme

Test 2

(a)

(b)

Figure 4.19: Group 4-Test 2: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

81

NN Applied To The Zero Order ASSE Scheme

Test 3

(a)

(b)

Figure 4.20: Group 4-Test 3: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

82

NN Applied To The Zero Order ASSE Scheme

Test 4

(a)

(b)

Figure 4.21: Group 4-Test 4: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

83

NN Applied To The Zero Order ASSE Scheme

Test 5

(a)

(b)

Figure 4.22: Group 4-Test 5: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b)

84

NN Applied To The Zero Order ASSE Scheme

The statistic data of these results is presented in the following tables and graphs:

AoA 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.0711 0.0001 1.3275

Test 2 0.0665 0.0001 0.8354

Test 3 0.0937 0.0002 3.4995

Test 4 0.0764 0.00008 0.5718

Test 5 0.0659 0.0023 5.9741

Table 4.15: Statistic data for AoA of Group 4 tests

AoS 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.0762 -0.00004 5.0465

Test 2 0.0883 0.0006 5.4246

Test 3 0.1564 -0.0009 10.5051

Test 4 0.1366 0.0008 8.7754

Test 5 0.1769 -0.0037 18.5335

Table 4.16: Statistic data for AoS of Group 4 tests

85

NN Applied To The Zero Order ASSE Scheme

(a)

(b)

(c)

Figure 4.23: Group 4 Statistic data

86

NN Applied To The Zero Order ASSE Scheme

The most suitable network is, as expected, Test 5. When the number of data given

for training increases, the network has more input-output examples on which it can

rely on to adjust the synaptic weights, thus making more accurate predictions.

4.3.5 Combined Tests

This last group of tests has been carried out in order to find the best possible

network for the sake of this work. The best characteristics showed in the results

of the former groups of tests have been combined to train a network which could

make the best predictions. Results and network characteristics are presented for

each test the same way as for the previous groups of tests.

Phase tinit tstep tend
Train 100 100 length(time vect)-100

Test 100 1 length(time vect)-100

Table 4.17: Training and Test data for the combined group

The characteristic number of training epochs, hidden layers, neurons in each layer

and the training time step tstep are summarized in the following table for each test:

Test Number training epochs hidden layers neurons/layer tstep
Test 1 500 2 [35 35] 100

Test 2 500 2 [25 15] 100

Test 3 500 2 [18 17] 100

Test 4 500 2 [20 20] 100

Test 5 500 2 [25 20] 100

Table 4.18: Combined Group training characteristics

87

NN Applied To The Zero Order ASSE Scheme

Test 1

(a)

(b)

Figure 4.24: Combined Group-Test 1: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b)

88

NN Applied To The Zero Order ASSE Scheme

Test 2

(a)

(b)

Figure 4.25: Combined Group-Test 2: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b)

89

NN Applied To The Zero Order ASSE Scheme

Test 3

(a)

(b)

Figure 4.26: Combined Group-Test 3: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b)

90

NN Applied To The Zero Order ASSE Scheme

Test 4

(a)

(b)

Figure 4.27: Combined Group-Test 4: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b)

91

NN Applied To The Zero Order ASSE Scheme

Test 5

(a)

(b)

Figure 4.28: Combined Group-Test 5: Comparison between the true and the net-

work estimated value of AoA (a) and AoS (b)

92

NN Applied To The Zero Order ASSE Scheme

The statistic data of these results is presented in the following tables and graphs:

AoA 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.0439 0.0005 4.2442

Test 2 0.0227 0.0005 1.9741

Test 3 0.0394 -0.0006 3.6356

Test 4 0.0253 0.0005 2.7973

Test 5 0.0333 0.0006 1.4939

Table 4.19: Statistic data for AoA of combined group tests

AoS 2σ error [deg] mean error [deg] max error [deg]

Test 1 0.0972 -0.0001 8.779

Test 2 0.0496 0.0005 7.8709

Test 3 0.0839 -0.0007 8.0382

Test 4 0.0481 -0.0012 5.0278

Test 5 0.0366 -0.0013 3.7133

Table 4.20: Statistic data for AoS of combined group tests

93

NN Applied To The Zero Order ASSE Scheme

(a)

(b)

(c)

Figure 4.29: Combined group Statistic data

94

NN Applied To The Zero Order ASSE Scheme

The most performing network, as it is possible to observe from these results, can

be identified in Test 5. In fact, Test 5 shows low and acceptable values for the

2σ error and the lowest values of the max error. Because of this, for the sake of

this work, the neural network trained in Test 5 will be used to conduct further

tests on other maneuvers in order to evaluate its response in the prediction of the

aerodynamic angles.

4.4 Best Network Performance

The neural network trained in Test 5 (Fig. 4.28) has proven to be the best per-

forming network when tested with data from maneuver deltaedoublet deltardoublet

(Fig. 2.1), which is the same maneuver with whom it has been trained. In the sec-

tion, results obtained with network from Test 5 applied to different maneuvers are

presented. The characteristics in terms of Angle of Attack and Angle of Sideslip of

the maneuvers are reported in the following figures:

95

NN Applied To The Zero Order ASSE Scheme

(a) AoA

(b) AoS

Figure 4.30: Angle of Attack (a) and Angle of Sideslip (b) of manoeuvre 3211deltae

..

96

NN Applied To The Zero Order ASSE Scheme

(a) AoA

(b) AoS

Figure 4.31: Angle of Attack (a) and Angle of Sideslip (b) of manoeu-

vre doublet deltae deltar B

97

NN Applied To The Zero Order ASSE Scheme

Results of the predictions made by the best network (Test 5) are presented in the

following subsections.

4.4.1 manoeuvre 3211deltae

98

NN Applied To The Zero Order ASSE Scheme

(a)

(b)

Figure 4.32: Comparison between the true and the network estimated value of AoA

(a) and AoS (b) of manoeuvre 3211deltae

99

NN Applied To The Zero Order ASSE Scheme

3211deltae 2σ error [deg] mean error [deg] max error [deg]

AoA 3.2489 -0.1211 12.0505

AoS 9.9768 2.9671 52.1190

Table 4.21: Statistic data for AoA and AoS of manoeuvre 3211deltae

The solution predicted by the best network when tested with manoeuvre 3211deltae

does not satisfy the requirements of the 2σ error for the Angle of Attack and the

Angle of Sideslip.

100

NN Applied To The Zero Order ASSE Scheme

4.4.2 manoeuvre doublet deltae deltar B

(a)

(b)

Figure 4.33: Comparison between the true and the network estimated value of AoA

(a) and AoS (b) of manoeuvre doublet deltae deltar B

101

NN Applied To The Zero Order ASSE Scheme

deltae deltar B 2σ error [deg] mean error [deg] max error [deg]

AoA 1.1054 -0.0719 1.3129

AoS 2.7885 -0.0079 5.1327

Table 4.22: Statistic data for AoA and AoS of manoeuvre doublet deltae

deltar B .

The solution predicted by the best network when tested with manoeu-

vre doublet deltae deltar B satisfies the requirements of the 2σ error for the Angle

of Attack but not for the Angle of Sideslip.

4.4.3 manoeuvre doublet deltae deltar B bis

In this subsection maneuver (Fig.4.31) is put to test with a new network trained

with manoeuvre 3211deltae (Fig.4.30) and manoeuvre deltaedoublet deltardoublet

(Fig.2.1). Results are here presented.

training epochs hidden layers neurons/layer tstep
300 1 25 30

Table 4.23: New network parameters for testing maneuver deltae

deltar B

102

NN Applied To The Zero Order ASSE Scheme

(a)

(b)

Figure 4.34: Comparison between the true and the network estimated value of AoA

(a) and AoS (b) of manoeuvre doublet deltae deltar B

103

NN Applied To The Zero Order ASSE Scheme

deltae deltar B 2σ error [deg] mean error [deg] max error [deg]

AoA 0.6509 -0.0159 1.2538

AoS 1.2378 -0.1089 7.2009

Table 4.24: Statistic data for AoA and AoS of manoeuvre doublet deltae

deltar B ..

The solution predicted by the new network, trained with manoeuvre 3211deltae

and manoeuvre deltaedoublet deltardoublet, when tested with manoeu-

vre doublet deltae deltar B satisfies the requirements of the 2σ error both

for the Angle of Attack and the Angle of Sideslip.

4.5 Sensitivity

Since the network obtained in Test 5 of the combined tests group (subsection 4.3.5)

has been proven as the most accurate network in the prediction of the aerodynamic

angles (in the context of the tests done in this work), it has then been tested with

data corrupted with white noise. The aim of this test is to check the accuracy of

the predictions of the neural network when the provided input data has intrinsic

errors due to the white noise. To make this test, the input data provided to the

network trained in Test 5 of the combined group has been modified as follows.

Variable Corruption measure unit

p p + randn(size(p))*0.01 deg/s

q q + randn(size(q))*0.01 deg/s

r r + randn(size(r))*0.01 deg/s

ax ax + randn(size(ax))*0.01 m/s2

ay ay + randn(size(ay))*0.01 m/s2

az az + randn(size(az))*0.01 m/s2

TAS TAS + randn(size(TAS))*0.1 m/s

TASp TASp + randn(size(TASp))*0.1 m/s2

Table 4.25: Corrupted input data

104

NN Applied To The Zero Order ASSE Scheme

where [p, q, r] is the vector of the angular velocities and [ax, ay, az] the vector of

the components of the body acceleration. The command ”randn” is a MatLab

command which generate a random value for all the values of the vector chosen

(size(.)). The maneuvers tested with the corrupted data are the same maneuvers

used in the previous subsection (sec. 4.4). The network characteristics are the one

corresponding to Test 5 of subsection 4.3.5 and are summarized in the following

tables:

Phase tinit tstep tend
Test 100 1 length(time vect)-100

Table 4.26: Training and Test data for Sensitivity test

Sensitivity Test training epochs hidden layers neurons/layer tstep
Test 5 500 2 [25 20] 100

Table 4.27: Sensitivity test training characteristics

105

NN Applied To The Zero Order ASSE Scheme

4.5.1 manoeuvre deltaedoublet deltardoublet

(a)

(b)

Figure 4.35: Sensitivity Test: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b) for manoeuvre deltaedoublet deltardoublet

106

NN Applied To The Zero Order ASSE Scheme

Statistic data are presented in the following table:

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.2021 0.0014 2.9062

AoS 2.5948 -0.0073 8.9006

Table 4.28: Sensitivity Test: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet

The results show an oscillatory behaviour in the predictions of the network when

provided with corrupted input data. The solution predicted by the network satisfies

the requirements of the 2σ error for the Angle of Attack but not for the Angle of

Sideslip.

107

NN Applied To The Zero Order ASSE Scheme

4.5.2 manoeuvre 3211deltae

(a)

(b)

Figure 4.36: Sensitivity Test: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b) for manoeuvre 3211deltae

108

NN Applied To The Zero Order ASSE Scheme

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 5.3145 -0.2779 8.6605

AoS 11.3197 2.3135 21.3524

Table 4.29: Sensitivity Test: Statistic data for AoA and AoS of manoeu-

vre 3211deltae

The results show an oscillatory behaviour in the predictions of the network when

provided with corrupted input data. The solution predicted by the network does

not satisfy the requirements of the 2σ error for the Aerodynamic angles.

109

NN Applied To The Zero Order ASSE Scheme

4.5.3 manoeuvre doublet deltae deltar B

The network described in subsection 4.4.3 has been here tested with data of ma-

noeuvre doublet deltae deltar B corrupted with white noise (tab. 4.25).

(a)

(b)

Figure 4.37: Sensitivity Test: Comparison between the true and the network esti-

mated value of AoA (a) and AoS (b) for manoeuvre doublet deltae deltar B ..

110

NN Applied To The Zero Order ASSE Scheme

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 1.1070 -0.0315 2.8758

AoS 4.1259 -0.0632 8.9518

Table 4.30: Sensitivity Test: Statistic data for AoA and AoS of manoeu-

vre doublet deltae deltar B

The results show an oscillatory behaviour in the predictions of the network when

provided with corrupted input data. The solution predicted by the network satisfies

the requirements of the 2σ error for the Angle of Attack but not for the Angle of

Sideslip.

4.5.4 Critical Noisy Data

Since the results with noisy data have proven to be not adequate, other tests have

been carried out in order to identify the critical variables which influence the quality

of the network predictions the most. In order to achieve this, only a few variables

at a time have been corrupted with white noise and used to test the network.

Referring to table 4.25, four test have been carried out:

• Corrupted Body Accelerations (ax, ay, az).

• Corrupted Angular Rates (p, q, r).

• Corrupted True Air Speed (TAS).

• Corrupted Derivative Of True Air Speed (TASp).

This analysis has been carried out on manoeuvre deltaedoublet

deltardoublet with the best network obtained in section 4.3. Results are presented

in the following pages.

111

NN Applied To The Zero Order ASSE Scheme

Corrupted Body Accelerations (ax, ay, az)

(a)

(b)

Figure 4.38: Noisy body accelerations: Comparison between the true

and the network estimated value of AoA (a) and AoS (b) for manoeu-

vre deltaedoublet deltardoublet

112

NN Applied To The Zero Order ASSE Scheme

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.1766 0.0008 3.0637

AoS 2.5906 -0.0008 8.2622

Table 4.31: Noisy body accelerations: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet

113

NN Applied To The Zero Order ASSE Scheme

Corrupted Angular Rates (p, q, r)

(a)

(b)

Figure 4.39: Noisy Angular Rates: Comparison between the true and the network

estimated value of AoA (a) and AoS (b) for manoeuvre deltaedoublet deltardoublet

114

NN Applied To The Zero Order ASSE Scheme

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.0416 0.0006 2.8779

AoS 0.1291 -0.0016 9.0724

Table 4.32: Noisy Angular Rates: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet

115

NN Applied To The Zero Order ASSE Scheme

Corrupted True Air Speed (TAS)

(a)

(b)

Figure 4.40: Noisy TAS: Comparison between the true and the network estimated

value of AoA (a) and AoS (b) for manoeuvre deltaedoublet deltardoublet

116

NN Applied To The Zero Order ASSE Scheme

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.0721 0.0009 2.8781

AoS 0.2331 -0.0012 9.0724

Table 4.33: Noisy TAS: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet

117

NN Applied To The Zero Order ASSE Scheme

Corrupted True Air Speed Derivative (TASp)

(a)

(b)

Figure 4.41: Noisy TASp: Comparison between the true and the network estimated

value of AoA (a) and AoS (b) for manoeuvre deltaedoublet deltardoublet

118

NN Applied To The Zero Order ASSE Scheme

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.0711 0.0006 2.8801

AoS 0.3214 -0.0011 8.9902

Table 4.34: Noisy TASp: Statistic data for AoA and AoS of manoeu-

vre deltaedoublet deltardoublet

119

NN Applied To The Zero Order ASSE Scheme

As it is possible to notice from these results, the body accelerations have proven

to be the most critical variables when it comes to the quality of the predictions of

the aerodynamic angles, while the angular rates, True Air Speed and it’s derivative

seem to produce no significant errors.

120

Chapter 5

Radial Basis Functions Neural Networks

In this chapter neural networks based on Radial Basis Functions, introduced in

chapter 3, are shortly described with more theoretical details and are then tested

with the Zero Order ASSE Scheme.

5.1 Theoretical Background

While Multi Layer Perceptrons networks under supervised learning are based on

stochastic approximation, which means that the network looks for the solution by

making statistically optimal choices based on techniques of statistical inference,

Radial Basis Functions (RBF) networks are based on a different approach by view-

ing the design of a neural network as a curve-fitting (approximation) problem in

a high-dimensional space. According to this view point, learning is equivalent to

finding a surface in a multidimensional space that provides a best fit to the train-

ing data, with the criterion for ”best fit” being measured in some statistical sense.

Correspondingly, generalization is equivalent to the use of this multidimensional

surface to interpolate the test data. In the context of a neural network, the hidden

units provide a set of ”functions” that constitute an arbitrary ”basis” for the input

patterns (vectors) when they are expanded into the hidden space; these functions

are called Radial Basis Functions. The construction of a radial basis function net-

work, in its most basic form, involves three layers with entirely different roles. The

input layer is made up of source nodes (sensory units) that connect the network to

its environment. The second layer, the only hidden layer in the network, applies

a non-linear transformation from the input space to the hidden space; in most ap-

plications the hidden space is of high dimensionality. The output layer is linear,

supplying the response of the network to the activation pattern (signal) applied

to the input layer. A mathematical justification for the rationale of a non-linear

transformation followed by a linear transformation may be traced back to an early

121

Radial Basis Functions Neural Networks

paper by Cover (1965). According to this paper, a pattern-classification problem

cast in a high-dimensional space is more likely to be linearly separable than in a

low dimensional space, hence the reason for frequently making the dimension of

the hidden space in an RBF network high. Another important point is the fact

that the dimension of the hidden space is directly related to the capacity of the

network to approximate a smooth input-output mapping (Mhaskar, 1996; Niyogi

and Girosi, 1996); the higher the dimension of the hidden space, the more accurate

the approximation will be. When a radial basis function (RBF) network is used

to perform a complex pattern-classification task, the problem is basically solved

by transforming it into a high-dimensional space in a non-linear manner. The un-

derlying justification is found in Cover’s theorem on the separability of patterns,

which in qualitative terms, may be stated as follows (Cover, 1965): A complex

pattern-classification problem cast in a high-dimensional space non-linearly is more

likely to be linearly separable than in a low-dimensional space. Further explanations

on this theorem can be found in the work of Haykin [2].

5.1.1 Radial Basis Functions

The following description is taken from the work of Simone Giannattasio [18]. A

radial basis function is a particular real function φ which depends on the distance

between an input value x and a fixed value xi which is defined as the center of

the radial function. In the case of multiple input patterns, x is a vector and the

distance between x and the center of the radial basis function corresponds to the

Euclidean distance:

φ(x) = φ(||x− µ||) (5.1)

Given two n-dimensional vectors p,q, their euclidean distance is calculated as fol-

lows

√
(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 =

√√√√ n∑
k=1

(pk − qk)2 (5.2)

The distance between the x vector and the center µ can be also intended as the

radius of the radial function.

r = ||x− µ|| (5.3)

Some of the most common radial basis functions are:

122

Radial Basis Functions Neural Networks

• Gaussian

ϕ(r) = e(−εr)
2

(5.4)

• Multiquadric

ϕ(r) =
(
1 + (rε)2

) 1
2 (5.5)

• Tin Plate Spline

ϕ(r) = r2 log r (5.6)

• Inverse Multiquadric

ϕ(r) =
1

(1 + (rε)2)
1
2

(5.7)

where ε is a shape parameter.

Figure 5.1: Radial Basis Functions varying the parameter ε. Image

taken from https://en.wikipedia.org/wiki/Radial basis function/media/

File:Gaussian function shape parameter.png.

Author: Shawsa7

these functions are usually strictly positive, hence the use of the shape parameter

ε. The most used RBF is the Gaussian.

123

Radial Basis Functions Neural Networks

5.1.2 Radial Basis Functions Networks Architecture

The problem of multivariate interpolation in a highly dimensional space has been a

subject of many studies. Referring to David’s theory of 1963, an exact interpolation

occurs when the interpolating surface goes through all the training points. This

solution is only theoretical because it implies to have as many radial functions and

hidden units as the number of input patterns given to the network. To avoid this

problem, an approximate interpolation method will be further presented. Consid-

ering f̂ as the interpolating function, it follows that:

f̂(xi) = di (5.8)

where xi is a generic value of the input vector, and di is the corresponding de-

sired output. The interpolation technique of the radial basis functions implies that

the estimated output of the network is calculated as a linear combination of the

multiplication between the synaptic weights and the radial basis functions (which

depends from the radius, hence the distance between the input vector and the cen-

ter of the radial function). In this approach the input vector data are chosen as the

centers of the radial basis functions. However, there are also other criteria for the

choice of the RBF centers.

f̂(x) =

n∑
i=1

wiφ(||x− xi||) (5.9)

What has been shown so far equals to create a network with a single hidden layer.

This network has the purpose of making a non-linear mapping of the input data (in-

side the hidden layer) by applying the radial basis functions, together with a linear

mapping (which consists in multiplying the output of the jth neuron of the hid-

den layer with a synaptic weight). The radial basis functions are different for each

neuron and they are distributed such that they cover the entire input hyperspace.

5.1.3 Learning Process In RBF Networks

As already showed in general for neural networks, even for the RBF networks the

learning process is based on minimizing the error, hence the cost function. The

parameters that characterize the network learning process are the following:

• Number of neurons inside the hidden layer.

• The center coordinates of each radial basis function inside the hidden layer.

• The radius of every radial basis function in each dimension.

124

Radial Basis Functions Neural Networks

Figure 5.2: Radial Basis Functions Architecture. Image taken from:

https://en.wikipedia.org/wiki/Radial basis function network/media/

File:Radial funktion network.svg. Author: SebDE

125

Radial Basis Functions Neural Networks

• The synaptic weights applied to the outputs of the radial basis function when

they transfer to the summation layer.

The RBF can be trained with different techniques. The most common approach

is to use an hybrid algorithm which implies a non-supervised learning for the de-

termination of the centers and a supervised learning for determining the optimal

synaptic weights of the network. The main steps to follow are:

• To fix the number of hidden neurons.

• To assign center and radius to the radial basis functions of each unit.

• To calculate the optimal synaptic weights (which minimize the cost function).

• To verify the generalization performance of the network and possibly to apply

optimization techniques of the architecture.

As far as the non-supervised determination of the centers and variances of the ra-

dial functions are concerned, the algorithm usually used is called Kmeans [19]. The

purpose is to find the clusters centers first, which are then used as centers for the

radial basis functions. Anyway, the clustering K-means has a high computational

cost and it often does not generate the optimal number of centers. Another ap-

proach is to use a random subset of training data as centers. The computation

of the optimal synaptic weights among the neurons of the hidden layer and of the

summation layer is done by using the Least Squares or the Ordinary Least Squares

algorithm. The number of neurons inside the hidden layer can vary depending on

the approach used. The most common choice, which optimizes the network in the

best way, consists in using a training algorithm which relies on an evolutionary

approach based on a forward or backward selection logic. This methods checks the

performance of the network by adding or subtracting a single neuron each time.

The process of adding neurons (in the case of a forward logic) stops when the error

starts increasing because of the overfitting.

More theory about Radial Basis Functions can be found in the work of Simone

Giannattasio [18] and in the book of Haykin [2] and it is not discussed here since

it is beyond the purpose of this work.

5.2 RBF Networks Applied To The Zero Order

ASSE Scheme

In this section the maneuvers previously tested in chapter 4 with MLP networks

are here tested with a GRBF neural network. Results are presented and evalu-

ated as already described for MLP networks in chapter 4. The GRBF network

126

Radial Basis Functions Neural Networks

has been developed with the Deep Learning MatLab Toolbox and it has different

characteristics for the estimation of AoA and AoS:

• AoA: number of neurons in the hidden layer is 200

• AoS: number of neurons in the hidden layer is 145

The aim of this chapter is to compare the performance of MLP and GRBF networks,

especially in the case of white noise corrupted data. Results are presented in the

following subsections:

127

Radial Basis Functions Neural Networks

5.2.1 manoeuvre deltaedoublet deltardoublet

(a)

(b)

Figure 5.3: GRBF:Comparison between the true and the network estimated value

of AoA (a) and AoS (b) of manoeuvre deltaedoublet deltardoublet

128

Radial Basis Functions Neural Networks

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.2743 -0.0221 2.2135

AoS 0.5932 -0.1224 1.3246

Table 5.1: Statistic data for AoA and AoS of manouver deltaedoublet

deltardoublet ..

The result predicted by the GRBF network satisfies the 2σ requirements both for

AoA and AoS.

129

Radial Basis Functions Neural Networks

5.2.2 manoeuvre 3211deltae

(a)

(b)

Figure 5.4: GRBF:Comparison between the true and the network estimated value

of AoA (a) and AoS (b) of manoeuvre 3211deltae

130

Radial Basis Functions Neural Networks

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.2411 -0.0513 5.0621

AoS 0.2512 0.0414 0.3422

Table 5.2: Statistic data for AoA and AoS of manoeuvre 3211deltae

The result predicted by the GRBF network satisfies the 2σ requirements both for

AoA and AoS.

131

Radial Basis Functions Neural Networks

5.2.3 manoeuvre doublet deltae deltar B

(a)

(b)

Figure 5.5: GRBF:Comparison between the true and the network estimated value

of AoA (a) and AoS (b) of manoeuvre doublet deltae deltar B

132

Radial Basis Functions Neural Networks

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.4432 -0.0223 1.3331

AoS 2.4211 0.3942 3.9413

Table 5.3: Statistic data for AoA and AoS of manoeuvre doublet

deltae deltar B ..

The result predicted by the GRBF network satisfies the 2σ requirements both for

AoA and AoS.

133

Radial Basis Functions Neural Networks

5.3 Sensitivity

In this section the maneuvers presented in the previous section are tested with data

corrupted with white noise in order to evaluate the performance of GRBF networks.

Test data are corrupted as described in table 4.25. Results are presented in the

following subsections.

5.3.1 manoeuvre deltaedoublet deltardoublet

134

Radial Basis Functions Neural Networks

(a)

(b)

Figure 5.6: GRBF:Comparison between the true and the network estimated value

of AoA (a) and AoS (b) of manoeuvre deltaedoublet deltardoublet with white noise

135

Radial Basis Functions Neural Networks

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.8613 -0.1624 5.5516

AoS 0.7746 -0.1136 10.1734

Table 5.4: Statistic data for AoA and AoS of maneuver of manoeu-

vre deltaedoublet deltardoublet with white noise

The result predicted by the GRBF network satisfies the 2σ requirements both for

AoA and AoS.

136

Radial Basis Functions Neural Networks

5.3.2 manoeuvre 3211deltae

(a)

(b)

Figure 5.7: GRBF:Comparison between the true and the network estimated value

of AoA (a) and AoS (b) of manoeuvre 3211deltae with white noise

137

Radial Basis Functions Neural Networks

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 1.2232 -0.1264 4.8211

AoS 0.4445 0.0431 5.2912

Table 5.5: Statistic data for AoA and AoS of manoeuvre 3211deltae with white

noise

The result predicted by the GRBF network satisfies the 2σ requirements both for

AoA and AoS.

138

Radial Basis Functions Neural Networks

5.3.3 manoeuvre doublet deltae deltar B

(a)

(b)

Figure 5.8: GRBF:Comparison between the true and the network estimated value

of AoA (a) and AoS (b) of manoeuvre doublet deltae deltar B with white noise

139

Radial Basis Functions Neural Networks

Aerodynamic Angle 2σ error [deg] mean error [deg] max error [deg]

AoA 0.5818 -0.1227 1.4921

AoS 2.4453 -0.6047 3.9435

Table 5.6: Statistic data for AoA and AoS of manoeuvre doublet deltae

deltar B with white noise

The result predicted by the GRBF network satisfies the 2σ requirements both for

AoA and AoS.

140

Conclusions

A summary table with the results obtained both with MLP and RBF networks for

test maneuvers: maneuver 3211deltae, maneuver doublet deltae deltar B is here

presented.

CLEAR DATA

maneuver 3211deltae

MLP

AoA AoS

2σ error [deg] 3.2489 9.9768

mean error [deg] -0.1211 2.9671

max error [deg] 12.0505 52.1190

RBF

AoA AoS

2σ error [deg] 0.2411 0.2512

mean error [deg] -0.0513 0.0414

max error [deg] 5.0621 0.3422

maneuver doublet deltae deltar B

MLP

AoA AoS

2σ error [deg] 1.1054 2.7885

mean error [deg] -0.0719 -0.0079

max error [deg] 1.3129 5.1327

RBF

AoA AoS

2σ error [deg] 0.4432 2.4211

mean error [deg] -0.0223 0.3942

max error [deg] 1.3331 3.9413

Table 5.7: Clear Data: Summary of the results for test maneuvers both for MLP

and RBF network

141

Conclusions

NOISY DATA

maneuver 3211deltae

MLP

AoA AoS

2σ error [deg] 5.3145 11.3197

mean error [deg] -0.2779 2.3135

max error [deg] 8.6605 21.3524

RBF

AoA AoS

2σ error [deg] 1.2232 0.4445

mean error [deg] -0.1264 0.0431

max error [deg] 4.8211 5.2912

maneuver doublet deltae deltar B

MLP

AoA AoS

2σ error [deg] 1.1070 4.1259

mean error [deg] -0.0315 -0.0632

max error [deg] 2.8758 8.9518

RBF

AoA AoS

2σ error [deg] 0.5818 2.4453

mean error [deg] -0.1227 -0.6047

max error [deg] 1.4921 3.9435

Table 5.8: Noisy Data: Summary of the results for test maneuvers both for MLP

and RBF network

As it is possible to notice from these results, radial basis function networks seem to

produce more accurate results in terms of the 2σ error, according to [15], compared

to the multi layer perceptron. Both the MLP and RBF network have been trained

with the training maneuver deltaedoublet deltardoublet (Fig. 2.1). Furthermore,

it is also possible to observe that the RBF network seems to be more tolerant to

white noise input data since the the 2σ does not increase as much as it does for the

MLP network.

142

Appendix

Linear ASSE Scheme Script

clear all

close all

clc

filename=’manoeuvre deltaedoublet deltardoublet nodrop.mat’

load(filename)

t init=sync.time(2);

t step=0.001;

t end=sync.time(end);

time vect = t init:t step:t end;

np=length(time vect);

H1=0.*time vect;

L1=H1;

M1=H1;

N1=H1;

H2=H1;

L2=H1;

M2=H1;

N2=H1;

144

Appendix

%% COEFFICIENTS COMPUTATION

for ii=2:np

t = ii %index of the variables of the first equation, subscript ”t”

tau = t - 1; %index of the variables of the second equation,

%subscript ”tau”

% EQUATION 1

I=eye(3);

a b1=[sync.ax(t) sync.ay(t) sync.az(t)]’;

Vinf1=sync.TAS(t);

Vinfdot1=(sync.u(t)*sync.udot(t) + sync.v(t)*sync.vdot(t)...

+sync. w(t)*sync.wdot(t)) / Vinf1;

% OMEGA

OM B1=[0 -sync.r(t) sync.q(t); sync.r(t) 0 -sync.p(t);...

-sync.q(t) sync.p(t) 0];

dt1=0;

% coeff ASSE

N1(tau) = Vinf1 * Vinfdot1/Vinf1 ;

m1 = Vinf1 * (I-OM B1*dt1) * a b1/Vinf1 ;

H1(tau) = m1(1);

L1(tau) = m1(2);

M1(tau) = m1(3);

% EQUATION 2

I= eye(3);

a b2 = [sync.ax(tau) sync.ay(tau) sync.az(tau)]’;

145

Appendix

Vinf2 = sync.TAS(tau);

Vinfdot2 = (sync.u(tau)*sync.udot(tau) + sync.v(tau)*sync.vdot(tau)...

+sync. w(tau)*sync.wdot(tau)) / Vinf2;

% OMEGA (tau)

OM B2=[0 -sync.r(tau) sync.q(tau); sync.r(tau) 0 -sync.p(tau);...

-sync.q(tau) sync.p(tau) 0];

dt2 = sync.time(t)-sync.time(tau);

ix = trapz(sync.time(tau:t), sync.ax(tau:t), 1);

iy = trapz(sync.time(tau:t), sync.ay(tau:t), 1);

iz = trapz(sync.time(tau:t), sync.az(tau:t), 1);

int a b=[ix iy iz];

N2(tau) = (Vinf2*Vinfdot2 + int a b*a b2)/Vinf1;

m2 = Vinf1 * (I - OM B1*dt2)*a b2/Vinf1;

H2(tau) = m2(1);

L2(tau) = m2(2);

M2(tau) = m2(3);

end

%% LINEAR SYSTEM SOLUTION

np2=length(H1);

146

Appendix

for ii=1:np2

ii

A=[L1(ii) M1(ii);L2(ii) M2(ii)];

B=[N1(ii)-H1(ii);N2(ii)-H2(ii)];

x=A\B;

x prova=[sync.beta(ii)*pi/180,sync.alpha(ii)*pi/180];

difff=(x-x prova).*180/pi

Beta(ii)=x(1)*180/pi;

Alfa(ii)=x(2)*180/pi;

Alfa max = 40;

if abs(Alfa(ii)) > Alfa max

Alfa(ii) = NaN;

end

Beta max = 40;

if abs(Beta(ii)) > Bet max

Beta(ii) = NaN;

end

AoA err(ii)=Alfa(ii)-sync.alpha(ii);

AoS err(ii)=Beta(ii)-sync.beta(ii);

end

147

Appendix

figure(1)

plot(sync.time(1:t),Alfa(1:end),’co’)

hold on

plot(sync.time(1:t),sync.alpha(1:t),’r’)

title(’AoA’)

legend(’AoA {LinEstimated}’,’AoA {TRUE}’)

figure(2)

plot(sync.time(1:t),Beta(1:end),’co’)

hold on

plot(sync.time(1:t),sync.beta(1:t),’r’)

title(’AoS’)

legend(’AoS {LinEstimated}’,’AoS {TRUE}’)

figure(3)

plot(sync.time(1:t),AoA err,’r’)

title(’AoA error deg’)

figure(4)

plot(sync.time(1:t),AoS err,’r’)

title(’AoS error deg’)

Non-Linear ASSE Scheme Script

clear all

close all

clc

148

Appendix

filename=’manoeuvre deltaedoublet deltardoublet nodrop.mat’

load(filename)

t init=sync.time(2);

t step=0.001;

t end=sync.time(end);

time vect = t init:t step:t end;

np=length(time vect);

H1=0.*time vect;

L1=H1;

M1=H1;

N1=H1;

H2=H1;

L2=H1;

M2=H1;

N2=H1;

%% COEFFICIENTS COMPUTATION

for ii=2:np

t = ii %index of the variables of the first equation, subscript ”t”

tau = t - 1; %index of the variables of the second equation,

%subscript ”tau”

% EQUATION 1

I=eye(3);

a b1=[sync.ax(t) sync.ay(t) sync.az(t)]’;

Vinf1=sync.TAS(t);

Vinfdot1=(sync.u(t)*sync.udot(t) + sync.v(t)*sync.vdot(t)...

149

Appendix

+sync. w(t)*sync.wdot(t)) / Vinf1;

% OMEGA

OM B1=[0 -sync.r(t) sync.q(t); sync.r(t) 0 -sync.p(t);...

-sync.q(t) sync.p(t) 0];

dt1=0;

% coeff ASSE

N1(tau) = Vinf1 * Vinfdot1/Vinf1 ;

m1 = Vinf1 * (I-OM B1*dt1) * a b1/Vinf1 ;

H1(tau) = m1(1);

L1(tau) = m1(2);

M1(tau) = m1(3);

% EQUATION 2

I= eye(3);

a b2 = [sync.ax(tau) sync.ay(tau) sync.az(tau)]’;

Vinf2 = sync.TAS(tau);

Vinfdot2 = (sync.u(tau)*sync.udot(tau) + sync.v(tau)*sync.vdot(tau)...

+sync. w(tau)*sync.wdot(tau)) / Vinf2;

% OMEGA (tau)

OM B2=[0 -sync.r(tau) sync.q(tau); sync.r(tau) 0 -sync.p(tau);...

-sync.q(tau) sync.p(tau) 0];

dt2 = sync.time(t)-sync.time(tau);

ix = trapz(sync.time(tau:t), sync.ax(tau:t), 1);

iy = trapz(sync.time(tau:t), sync.ay(tau:t), 1);

iz = trapz(sync.time(tau:t), sync.az(tau:t), 1);

150

Appendix

int a b=[ix iy iz];

N2(tau) = (Vinf2*Vinfdot2 + int a b*a b2)/Vinf1;

m2 = Vinf1 * (I - OM B1*dt2)*a b2/Vinf1;

H2(tau) = m2(1);

L2(tau) = m2(2);

M2(tau) = m2(3);

end

%% NON LINEAR SYSTEM SOLUTION

np2=length(H1);

x0=[sync.beta(1)*pi/180,sync.alpha(1)*pi/180];

for ii=1:np2

ii

H=[H1(ii);H2(ii)];

L=[L1(ii);L2(ii)];

M=[M1(ii);M2(ii)];

N=[N1(ii);N2(ii)];

asse=@(x)...

[N-H.*cos(x(1)).*cos(x(2))-L.*sin(x(1))-M.*cos(x(1)).*sin(x(2))];

151

Appendix

options =optimoptions(...

’fsolve’,’Algorithm’,’levenberg-marquardt’,...

’Display’,’none’,’SpecifyObjectiveGradient’,false,...

’OptimalityTolerance’,1E-10,’StepTolerance’, 1e-10,...

’MaxIterations’, 1000,’MaxFunctionEvaluations’, 1000);

x=fsolve(asse,x0,options);

x prova=[sync.beta(ii)*pi/180,sync.alpha(ii)*pi/180];

difff=(x-x prova).*180/pi

Beta(ii)=x(1)*180/pi;

Alfa(ii)=x(2)*180/pi;

AoA err(ii)=Alfa(ii)-sync.alpha(ii);

AoS err(ii)=Beta(ii)-sync.beta(ii);

x0=x;

end

figure(1)

plot(sync.time(1:t),Alfa(1:end),’co’)

hold on

plot(sync.time(1:t),sync.alpha(1:t),’r’)

title(’AoA’)

legend(’AoA {NonLinEstimated}’,’AoA {TRUE}’)

152

Appendix

figure(2)

plot(sync.time(1:t),Beta(1:end),’co’)

hold on

plot(sync.time(1:t),sync.beta(1:t),’r’)

title(’AoS’)

legend(’AoS {NonLinEstimated}’,’AoS {TRUE}’)

figure(3)

plot(sync.time(1:t),AoA err,’r’)

title(’AoA error deg’)

figure(4)

plot(sync.time(1:t),AoS err,’r’)

title(’AoS error deg’)

153

Bibliography

[1] A. Lerro, A. Brandl, and P. Gili, “Model-free scheme for angle-of-attack and

angle-of-sideslip estimation,”

Journal of Guidance, Control, and Dynamics, 2020.

[2] S. Haykin, “A comprehensive foundation,” Neural networks, vol. 2, no. 2004,

p. 41, 2004.

[3] A. Lerro, P. Gili, and M. S. Caselle, “Development and evaluation of neural

network-based virtual air data sensor for estimation of aerodynamic angles,”

Politecnico di Torino, 2012.

[4] W. L. Ikard, An Air-Flow-Direction Pickup Suitable for Telemetering Use on

Pilotless Aircraft. National Advisory Committee for Aeronautics, 1956.

[5] S. Chue, “Pressure probes for fluid measurement,” Progress in aerospace

sciences, vol. 16, no. 2, pp. 147–223, 1975.

[6] R. C. Pankhurst and D. W. Holder, Wind-tunnel technique: an account of

experimental methods in low-and high-speed wind tunnels. Pitman, 1952.

[7] K. Yajnik and R. Gupta, “A new probe for measurement of velocity and flow

direction in separated flows,” Journal of Physics E: Scientific Instruments,

vol. 6, no. 1, p. 82, 1973.

[8] K. A. Wise, “Computational air data system for angle-of-attack and angle-of-

sideslip,” Aug. 9 2005. US Patent 6,928,341.

[9] T. J. Rohloff, S. A. Whitmore, and I. Catton, “Air data sensing from surface

pressure measurements using a neural network method,” AIAA journal, vol. 36,

no. 11, pp. 2094–2101, 1998.

[10] I. Samy, I. Postlethwaite, D.-W. Gu, and J. Green, “Neural-network-based

flush air data sensing system demonstrated on a mini air vehicle,” Journal of

aircraft, vol. 47, no. 1, pp. 18–31, 2010.

[11] B. K, “Inertial navigation systems analysis,”

Wiley Canada,Norwood, 1971.

[12] O. Salychev, “Applied inertial navigation:problems and solutions,” BMSTU

Press, Moscow, Russia, 2004.

154

Bibliography

[13] R. C. Nelson et al., Flight stability and automatic control, vol. 2.

WCB/McGraw Hill New York, 1998.

[14] K. Sun, C. D. Regan, and D. G. Egziabher, “Gnss/ins based estimation of air

data and wind vector using flight maneuvers,” in 2018 IEEE/ION Position,

Location and Navigation Symposium (PLANS), pp. 838–849, IEEE, 2018.

[15] A. Lerro, A. Brandl, M. Battipede, and P. Gili, “Preliminary design of a

model-free synthetic sensor for aerodynamic angle estimation for commercial

aviation,” Sensors, vol. 19, no. 23, 2019.

[16] M. I. Lourakis et al., “A brief description of the levenberg-marquardt algorithm

implemented by levmar,” Foundation of Research and Technology, vol. 4, no. 1,

pp. 1–6, 2005.

[17] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and

Applications, vol. 5, 2001.

[18] S. Giannattasio, “Sviluppo di un sensore sintetico per la stima dell’angolo

d’attacco tramite rete neurale generalized radial basis function. = develop-

ment of a synthetic sensor for the estimation of the angle of attack using the

generalized radial basis function neural network.,” 2020.

[19] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algo-

rithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

155

