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Summary

CubeSat technology has been widely studied in the last 20 years, especially for
missions in Low-Earth-Orbit (LEO). It represents an interesting alternative to
multisatellite missions with bigger spacecrafts thanks to their superior agility and
low cost. When these nanosatellites are operating to achieve a docking mission,
it is essential to carefully plan rendezvous maneuvers and proximity operations
to ensure mission safety and success. The aim of this research is to design and
evaluate the performance of guidance and control algorithms for orbital rendezvous
maneuvers. Zero-Effort-Mission/Zero-Effort-Velocity (ZEM-ZEV) guidance and
Linear Quadratic Regulator (LQR) control are investigated to achieve position and
attitude control for two 3U CubeSats in different scenarios.

The first mission scenario considers the chaser in an initial station keeping point
behind the target on a lower orbit. The approach trajectory starts with a homing
phase to rise the chaser altitude and get to the target orbit, then a closing phase
decreases the distance with the target until a final station keeping point is reached.
A ZEM-ZEV guidance is implemented to control the chaser position during the
target approach. This guidance, commonly applied to asteroids intercept and
landing, is an optimum law only if the target gravitational field is a function
of time. Moreover, this algorithm has a good accuracy, low fuel consumption,
and effectiveness in presence of external disturbances. The ZEM-ZEV guidance
is modified to adapt it to the rendezvous problem. In order to ensure that the
chaser actually follows the defined trajectory, the actual position and velocity of
the spacecraft are compared with the ideal ones at each time step. This method
also allows low control accelerations.

The second scenario is a short range maneuver. As before a homing phase followed
by the closing phase is executed to reach a final station keeping point few meters
behind the target. The objective of this mission is to test the precision of the
Guidance, Navigation and Control (GNC) system during proximity operations
before a docking. Therefor, a collision avoidance maneuver is also implemented
where the chaser moves away from the target along a semicircular trajectory. An
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LQR law is proposed to control the chaser position along the maneuver. The
LQR feedback gain is computed from the Hill equations of the relative motion and
the cost weighting matrices are chosen from a trade-off in order to balance the
requirements of following the desired trajectory and minimize the fuel consumption.

An attitude control system is finally studied for the chaser to ensure the pos-
sibility to hold or modify the orientation throughout the maneuver, acting against
the external torques. Euler’s equations are formulated for the dynamics while the
kinematics is based on quaternions to avoid rotational sequences and singularities
at any attitude. The feedback control exploits an LQR method based on the
linearized dynamics equations.
The work is completed with a proposed combination of attitude control and position
control for the second scenario.

Keywords: space, satellite, cubesat, rendezvous, proximity operations, Zero-
Effort-Mission/Zero-Effort-Velocity, guidance, LQR.
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Chapter 1

Introduction

1.1 Literature Review & Motivation

1.1.1 Rendezvous
With the terms of rendezvous and docking we refer to a typical maneuver in space
between two vehicles, in order to approach each other and join together. Since the
1960s, a lot of work have been done on how to accomplish a rendezvous and docking
maneuver, both manually and autonomously between spacecraft. It is fair to say
that most of the work and experiences in manual and automated rendezvous and
docking come from NASA and Russian space programs. Historically, U.S. followed
a manual approach to rendezvous and docking, in opposition to Russia which aimed
at developing automated and standardized maneuvers. The first successful attempt
in executing a rendezvous and docking came with the Gemini program in 1960’s,
where the spacecraft was required to dock with a second stage booster on a circular
orbit [1]. This was the first step toward the Apollo program and a rendezvous
maneuver was finally accomplished between the lunar module (LM) coming up from
the sea of Tranquility and the command/service module (CSM) on a near circular
orbit around the Moon in 1969. The LM, after the phasing, reached a position
around 50 km behind the target on a lower orbit and from here the thrusters were
fired with an elevation angle of φ = 26.5◦ to bring the spacecraft on a transfer orbit
and approach few meters in front of the CSM [2].

Later the Space Shuttle Orbiter (SSO) was developed with the objective of
carrying space systems in the space and performed maintenance. It was able to
dock with the Mir station and lately with the International Space Station (ISS).
Unlike its predecessors, the Space Shuttle was able to execute an autonomous
rendezvous, except for the last meters before the docking where the man in the
loop was needed [3]. After the SSO, many fully autonomous vehicles have been
developed to bring resources on board the ISS, such as ATV [4], HTV [5], Progress
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Introduction

Figure 1.1: Apollo 11 rendezvous seen from the CSM [2].

[6] and Cygnus [7].

Commonly, a rendezvous and docking maneuver is formed of four main parts:
phasing, far range rendezvous, close range rendezvous, and final approach [3].
The launcher places the spacecraft on an orbit but due to positioning errors is
not able to reach exactly the target orbit in Low-Earth-orbit (LEO) cases. The
chaser is usually brought on an orbit few kilometers below the target one. The first
maneuver is then the phasing where the spacecraft operates to correct eventual
imprecisions in the orbital parameters such as Right Ascension of the Ascending
Node (RAAN) and inclination and to reduce the distance of the chaser from
the target. The HTV, ATV, and SSO, for example, follow similar phase adjust-
ments. They start on a lower orbit maneuvering and they gradually increase the
apogee and perigee in order to get closer to the final orbit. Except the SSO which
reaches directly the target orbit, they stop on a lower orbit with respect to the
target and still far behind it. Here the free drift toward the target, due to their
lower position, is used to get closer to the target without fuel consumption [3],[4],[5].

After the phasing, the far range rendezvous starts. This phase, also known
as homing, is usually dedicated to bring the chaser on the target orbit, reducing
its velocity and the distance from the target. The homing also defines the point
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where the spacecraft switches from absolute to relative navigation measurement
of positions and velocities [3]. Vehicles as the ATV and HTV follow a Hohmann
maneuver to save propellant, while the SSO applies a radial boost and moves along
a semicircular trajectory [3],[4],[5]. If the target presents a safety volume around
it, as for the ISS, then a constraint is imposed to the position of the final station
keeping point reached during the homing.

Figure 1.2: HTV rendezvous, docking and reentry [5].

The next step is the close range rendezvous which allows to get from the last
station-keeping point in to the close proximity behind the target. Many are the
implementable trajectories as shown in Fig. 1.3. It is possible to get closer to
the target staying on the target orbit and sliding toward it from in front or be-
hind the target. Another strategy is to move below the target with a fly around
maneuver from the target orbit. Starting the fly around from the target orbit,
the safety factor is increased since the spacecraft starts from a station-keeping
point with a constant distance from the target, but it is also possible to reach
below the target directly from a lower orbit, where the timing is going to be
essential. The SSO moves on a semicircular trajectory and from behind it gets
few meters in front of the ISS or in other occasions it executes a fly around and
arrives under the target, depending on the docking port position [3]. The HTV and
ATV follow very similar trajectories: they fire the thrusters in a radial direction
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and move along a semicircular maneuver until they are close behind the target [3],[4].

The last maneuver is the final approach and it is used to get the spacecraft to
the docking port. It is commonly a straight-line trajectory starting from the last
close range position. This kind of approach is implemented for the last 300 m of
both the HTV and ATV. The SSO follows a similar maneuver but it is executed
manually by the crew pilot.

Figure 1.3: V-bar/R-bar approach for the close range [3].

Today, the objective would be to obtain the same results with small satellites
such as CubeSats. Due to their small dimensions, it is a challenging task: most
of the space technologies (thrusters, reaction wheels and electronics) must be
miniaturized to be mounted on small satellites so that it is hard to reach the
same level of accuracy. For these reasons, rendezvous and docking maneuver is
a topic of high interest still today. In fact, this technology could lead to many
interesting applications, such as launching a constellation of CubeSats operating
in close proximity (formation flying) or to accomplish space assembling. The
research developed in [8] and sponsored by ESA can be considered one of the
few comprehensive works on this topic. The objective is to develop a rendezvous
maneuver between two 6U CubeSats starting from the far range approach and
following a similar trajectory to the ones seen before for autonomous vehicles, such
as ATV and HTV. The maneuver ends with a full hard docking between chaser
and target.

4



Introduction

Figure 1.4: Illustration of the final approach between two 6U CubeSats [8].

1.1.2 Guidance

A guidance function in general has the aim to bring a spacecraft from an initial
angular or linear position and velocity to a final position and velocity acting against
external disturbances. The guidance must be able to minimize the fuel consumption
or the time of flight, depending on the flight purpose. Based on the chaser’s relative
position and velocity with respect to the target, the guidance will compute the
accelerations necessary to follow the trajectory and achieve the final conditions,
and the time left to accomplish the maneuver. As specified in [9], guidance laws
can be split in two different categories: predictive guidance and feedback guidance.
The last type is known to be robust against uncertainties, with low computational
cost, safe and it can be implemented to follow a desired trajectory. For all these
reasons, a feedback law is of interest in this study.

Most of the guidance laws developed in literature are for the problem of moving a
chaser in the proximity of a specified target. In many researches, such as in [9],[10],
a proportional navigation (PN) guidance is chosen for the rendezvous and dock
problem. The PN guidance computes the accelerations needed to reach the target
and controls the component of relative velocity normal to the line of sight (LOS) at
each instant. As explained in [11], this guidance method is mainly used for missile
interceptions so when applied to rendezvous and docking it must be consider to not
only drive to zero the component of relative velocity perpendicular to LOS but also
the one along the LOS, to guarantee that the chaser stops when reaches the target.
The concept of zero-effort-velocity (ZEV) error, which defines the difference between
the target and chaser velocity is introduced in [12]. It is analog to the concept of
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zero-effort-miss (ZEM) distance, which can be often found in the expression of the
PN guidance acceleration commands [10]. A zero-effort-miss/zero-effort-velocity
(ZEM-ZEV) guidance law was then derived in [10], where it is shown how this
algorithm is an optimum feedback guidance only if the gravitational field can be
considered constant or if at least it is only a function of time. As it is described in
[13],[14], the ZEM-ZEV approach has mainly been studied for asteroids interception
and proximity operations or for planetary landing. The ZEM-ZEV algorithm
computes the accelerations required to reach the final position and velocity, as well
as guarantees to optimize the fuel consumption (minimizing the required ∆V ). As
described in [9],[15], the main problem in applying this approach for a rendezvous
and docking is that it is not possible to follow the desired maneuver. In fact, a
completely different trajectory is generated if the accelerations are computed only
based on the offset in position and velocity between the target and the chaser. In
this research, a modified ZEM-ZEV guidance is implemented and its performance
is evaluated for the long-range maneuver. The major advantages of this algorithm
are the increased precision in following a specified trajectory, especially if it has a
significant curvature, as well as a reduction in fuel consumption.

1.1.3 Control
The control function has the objective to guarantee that the spacecraft follows the
required trajectory and achieves the desired attitude. To accomplish this task, the
control law produces a control force or torque as output which is then sent to the
actuators. Here a position and attitude control are implemented for a mission of
docking and rendezvous of two CubeSats.

In literature, it is possible to find a wide variety of control laws for rendezvous
operations. They are typically classified in two categories: non-linear and linear
control theories. Here only the second class is considered, in fact non-linear controls
can work correctly even for far-range rendezvous without introducing errors on the
actual position and velocity, but they introduce heavy computational effort. The
Clohessy-Wiltshire-Hill equations of the relative motion are here developed for the
problem. It is a linear model frequently used to describe the relative motion of a
chaser on a circular orbit. In [8], a linear quadratic integral (LQI), a robust H∞,
and a linear quadratic regulator (LQR) are developed for the position control of
a far and close range rendezvous. The H∞ seems to be the most robust control
among the ones analysed while the LQR lack in precision. Also, in [16], an LQR
control is tested for a rendezvous. It is observed from the results that the control
is sub-optimum, in fact a significant control action is required to reach the final
position and velocity with a consequent augmented ∆V . The final waypoints are
reached with low accuracy and the shape of the trajectories is quite different from
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the desired one. It is interesting to notice that it is possible to highly increase
the LQR performance if the gain matrix is computed with the weighting matrices
varying in time as in [17].
Unlike the Hill equations, the Euler’s equations for attitude dynamics are non-linear,
so in order to apply an LQR control they need to be linarized. In [18], it is shown
how the LQR can provide a good trade-off between time response and energy, with
an adequate tuning of the weighting matrices.

The LQR control is not in general a robust control but it is simple and easy
to tune. Additionally, it also allows to find a compromise between accuracy and
maneuver cost through the weighting matrices. Hence, in this research, an LQR
law is developed for both position and attitude control, and then their performance
is evaluated.

1.2 Overview of the Thesis
The objective of this research is to study the problem of autonomous rendezvous
and docking (RVD) between CubeSats. Two different scenarios are considered
where two 3U CubeSats are positioned far away from each other in a low Earth
orbit. It is defined at first a long-range maneuver with the chaser and target
distant with few kilometers from each other. A ZEM-ZEV guidance is chosen and
implemented for this mission because of its low computational effort and low fuel
consumption. The ZEM-ZEV guidance is initially developed to enable spacecraft
precision landing on asteroids or planets, here we try to evaluate the performance
of this closed-loop guidance applied to the RVD problem.

In the second part of the work, a close-range maneuver is developed. The chaser
is able to arrive within few meters from the target and then an abort mission
maneuver is considered to distance the chaser again and avoid a possible collision
with the target. An LQR controller is used for the position control of the chaser
along the maneuver. The choice is justified considering that LQR is widely used for
spacecrafts GNC and many examples are in literature. The attitude is controlled
with three miniaturized reaction wheels, one for each body axis. Again, an LQR
control is considered for it. Once the LQR position and attitude controllers are
developed, they are combined together to build the complete attitude and orbit
control system (AOCS).

This thesis is organised as follows:
Chapter 2 provides a description of the reference frames considered and of the
transformation matrices to pass from one frame to another. Then the relative
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motion equations, the attitude dynamic and kinematic equations are presented.
The trajectories implemented during the approach are also explained. Chapter 3
describes the methodology of the ZEM-ZEV guidance and the LQR control theory.
Chapter 4 presents the results obtained from the simulation of the case studied.
Finally, Chapter 5 provides the conclusions and future work.

8



Chapter 2

Mathematical model

In the first part of this chapter, all the mathematical instruments needed to
develop the rendezvous maneuver and the proximity operations are described. The
coordinate systems used are briefly defined, and so are also the Clohessy-Wiltshire
equations for the relative motion between the chaser and the target. The dynamics
and kinematics equations for the attitude of the chaser are also described in their
quaternion formulation.
In the second part of the chapter, the phases of a rendezvous maneuver are
explained. Also, for each of them the ideal ∆V s and accelerations are computed.
The mathematical formulation of the most relevant external disturbances for a
low-Earth-orbit spacecraft is then presented.

2.1 Reference Frames
Three main reference frames are needed to fully describe the attitude and the
relative motion of a spacecraft around the Earth:

• Earth-Centered Inertial Frame

• Orbital Frame

• Body Frame

These are the ones needed to build the orbit simulation.

2.1.1 Earth-Centered Inertial (ECI) Frame
The system, FIJK originates at the Earth center of mass. Out of simplicity the
Earth is usually defined as a sphere with an homogeneous distribution of mass so
the origin of the frame coincides with the Earth geometric center. This frame is

9



Mathematical model

Figure 2.1: Geocentric Equatorial System, IJK [19].

also often referred to as IJK. The Î axis points toward the capricornus constellation.
This orientation is defined as the direction pointing from the center of the Earth
to the center of the Sun when the Earth passes for the vernal equinox. The Ĵ
axis lays in the equatorial plane, as shown in Figure 2.1, with the Î axis. The K̂
axis instead completes the right-handed coordinates, being perpendicular to the
equatorial plane and pointing in the hemisphere where the North Pole is found.
This system is considered to be fixed in space and it is commonly used to describe
the motion of satellites around the Earth. In reality, the Earth is also moving
which means that the ECI is not actually inertial, but it can be considered as if it
was for small objects in orbit around it.

2.1.2 Orbital Frame

Also called the Local-Vertical/Local-Horizontal, FLV LH , the orbital frame is widely
used to describe the relative motion of a spacecraft, named chaser, with respect
to a second satellite, the target, which is also moving around the Earth. The
system is fixed in the target center of mass, OLV LH . The spacecraft are treated
as point masses, not as 3D bodies. The ẑLV LH axis is here considered directed
toward the Earth but there is not a fixed convention, so in literature it can be
found with opposite verse. The x̂LV LH is parallel to the spacecraft component of
velocity tangent to the local orbit track and it is always perpendicular to ẑLV LH .
Both x̂LV LH and ẑLV LH lay on the target orbit plane. Finally, the ŷLV LH is found
consequently by the right-handed rule and it is directed out of the orbit plane.
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Figure 2.2: Orbital frame [16].

2.1.3 Body Frame

Figure 2.3: Body frame [3].

The body frame, FB is typically used to describe the absolute attitude of a
spacecraft and the rotations around its center of mass. This frame is fixed in the
center of mass, OB. It is worthy to mention that in general the center of mass of
a spacecraft changes during the mission: the main reason is the lost propellant
during the maneuver which causes a mass reduction. Other secondary reasons
are also the propellant slosh, solar panel deployment or the release of a tether for
gravity-gradient stabilization. Here out of simplicity, we do not consider this effect.
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The directions of the body frame axes are not in general uniquely defined. It is
thou quite common to consider x̂B aligned with the docking axis direction at the
end of the rendezvous, which in this case is the same as the x̂LV LH . The other two
axes ŷB and ẑB are on the same plane perpendicular to the x̂B unit vector. This
coordinate system is also completely free to move with respect to the orbital frame.

2.1.4 Transformation Matrices
In the paragraph before, the coordinate frames of interest have been described.
It is useful in many occasion to express the motion of a body or its attitude in a
different reference frame from the one which has been defined in to. For this reason
transformation matrices are used to pass from one reference frame to another.
Here, the coordinate transformation from the orbital frame to the body frame is
considered. It is important to notify that the combination of Euler’s angles, φ, θ, ψ
which is possible to use to build the rotation matrices and move from one frame
to others are numerous, while the orientation between the two considered frames
is uniquely defined. Here, a yaw-pitch-roll or 3-2-1 sequence has been considered.
The order of the rotations sequence is important because rotations do not commute.
The resulting matrix rotation is then,

LBLV LH =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


− sin θ 0 cos θ

0 1 0
cos θ 0 sin θ

 ... (2.1)

...

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


so the reference transformation will have the following expression,xByB

zB

 =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


− sin θ 0 cos θ

0 1 0
cos θ 0 sin θ

 ... (2.2)

...

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


xLV LHyLV LH
zLV LH


As illustrated in Figure 2.4, a first rotation of ψ is accomplished around the

z-axis and an intermediate reference frame, F’, is reached. A rotation of θ follows
now around the y’-axis, so to get to F”. From here the last rotation of φ is executed
around x”-axis allowing to finally reach the desired orientation.
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Figure 2.4: Euler’s angles or 3-2-1 rotation [20].

2.2 Relative Motion Dynamics
To study the problem of rendezvous and proximity operations, a set of equations is
derived to describe the motion of a chaser with respect to a target object. Many
are the relative motions modeled which can be found in literature: one example
is the Tschauner-Hempel (TH) equations which are used to describe the relative
motion on an elliptical orbit [21]. Here out of simplicity the Hill equations are
considered. They are applicable under two main conditions: the distance between
the chaser and the target must be small compared to the distance between the
target and the center of mass of the attracting planet and the considered orbit is
circular or near-circular. To derive the Hill equations, a spacecraft is imagined
immerse in a spherical gravitational field and acting on it are the forces due to
external disturbances and from the thrusters. It is possible to write the Newton’s
law of gravitation as,

F̄g(r) = −GMm

r2
r̄

r
= −µm

r3 r̄ (2.3)

where r̄ is the position vector of the object in an inertial fame, G is gravitation
universal constant, M is the Earth mass and m is the object’s mass under the
Earth’s gravitational force. Hence, using this equation the accelerations acting on
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Figure 2.5: Target, rt, and chaser, rc, position in ECI frame [3].

the chaser and target are computed,

¨̄rc = F̄g
mc

+ F̄

mc

= − µ

r3
c

r̄ + F̄

mc

(2.4)

¨̄rt = F̄g
mt

= − µ

r3
t

r̄ (2.5)

for the target is imagined that only the gravitational force is present, while for the
chaser the effect of other forces, such as external disturbances and actuation, are
considered. At this point, the relative position between target and chaser can be
expressed as

s̄ = r̄c − r̄t (2.6)

where the vector s̄ is now differentiated two times to find the accelerations and
then the component of the gravitational force per unit mass, fg(r̄), is linearised
for small values of r̄t (for a full discussion see reference [3]). As a result a new
expression of ¨̄s is obtained and it is then transformed in a relative reference frame
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with origin fixed on the target

¨̄s∗ + ω̄ × (ω̄ × s̄∗) + 2ω̄ × ˙̄s∗ + ω̇ × s∗ + µ

r3
t

Ms̄ = F̄

mc

(2.7)

where s∗ is the distance between target and chaser expressed in the relative frame
and ω is the target angular velocity. Finally, it can be found the system of equations
describing the relative motion, the Hill’s equations

ẍ− 2ωż = Fx
mc

ÿ + ω2y = Fy
mc

(2.8)

z̈ + 2ωẋ− 3ω2z = Fz
mc

In Equation 2.8, ω = 2π
T

represents the angular velocity of the target orbit and
mc is the chaser mass. The relative motion can be influenced by the accelerations
γx,y,z = Fx,y,z

mc
which are the sum of the external disturbances acting on the chaser

and the applied thrust. ẍ, ÿ and, z̈ represent the relative accelerations. This
solution does not take in count the orbit curvature so the results have an error
which grows with the distance from the target coordinate system. For this study,
the CW equations are considered later for the ZEM-ZEV guidance and the LQR
control. The resulting integrated equations are:

x(t) = (4ẋ0

ω
− 6z0) sinωt− 2ż0

ω
cosωt+ (6ωz0 − 3ẋ0)t+ (x0 + 2z0

ω
) + ...

+ 2
ω2γz(ωt− sinωt) + γx(

4
ω2 (1 − cosωt) − 3

2t
2)

(2.9)

y(t) = y0 cosωt+ ẏ0

ω
sinωt+ γy

ω2 (1 − cosωt) (2.10)

z(t) = (2ẋ0

ω
− 3z0) cosωt+ ż0

ω
sinωt+ (4z0 − 2ẋ0

ω
) + ...

+ 2
ω2γx(sinωt− ωt) + γz

ω2 (1 − cosωt)
(2.11)

deriving the equations above, the velocities are also determined at each instant,
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ẋ(t) = (4ẋ0

ω
− 6z0)ω0 cosωt+ 2ż0 sinωt+ (6ωz0 − 3ẋ0) + ...

+ 2
ω
γz(1 − cosωt) + γx(

4
ω

sinωt− 3t)
(2.12)

ẏ(t) = − y0ω sinωt+ ẏ0 cosωt+ γy
ω

sinωt (2.13)

ż(t) = − (2ẋ0

ω
− 3z0)ω sinωt+ ż0 cosωt+ ...

+ 2
ω
γx(cosωt− 1) + γz

ω
sinωt

(2.14)

2.3 Attitude equation of motions

2.3.1 Spacecraft attitude dynamics
To define the attitude dynamics, the rigid body equation of motion is given by,

ḣtot = Ne − ω × htot (2.15)

The equation above is also known as Euler’s equation and the term htot = qN
i=1(Iiωi)

is the sum of the angular momentum of all the N rotating parts of the satellite. Ne

is the sum of all the external torques acting on the spacecraft and ω is the angular
velocity. All the quantities are expressed in the body reference frame. For the
attitude control three reaction wheels are used, each positioned along the principal
axes of the spacecraft. Thus, in this case, the chaser has a total angular momentum
which depends on its inertia matrix, Is, and the reaction wheels angular momentum,
hw. The satellite inertia matrix, Is, is a 3 × 3 matrix and it is in general expressed
as

Is =

 Ix −Ixy −Ixz
Iyx Iy −Iyz

−Izx −Izy Iz

 (2.16)

The matrix above is symmetric and Ixy, Ixz, Iyz are the products of inertia, while
Ix, Iy, Iz are the moments of inertia. Here, it is considered a simple case where the
body frame axes coincide with the principal axes of inertia, which means it can be
simplified as

Is =

Ix 0 0
0 Iy 0
0 0 Iz

 (2.17)
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The Euler’s equation can be then expanded as

d

dt
(Isω) + hw = Ne − ω × Isω − ω × hw (2.18)

and the angular acceleration can be expressed as

ω̇ = I−1
s Ne − I−1

s (ω × Isω) − I−1
s ω × hw (2.19)

It is common to rewrite the equation replacing the cross product with a skew
matrix, S(),

S(ω) =

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

 (2.20)

The Euler’s equation can be rewritten as

ω̇ = I−1
s Ne − I−1

s (S(ω)Isω) − I−1
s S(ω)hw (2.21)

where ḣw denotes the rate of change of the angular momentum from the reaction
wheels and it is equal to the opposite of the control torque from the reaction wheels,

ḣw = Nc (2.22)

2.3.2 Spacecraft attitude kinematics

Figure 2.6: Quaternion rotation [22].

The spacecraft kinematics description is based on quaternions. The use of
quaternions instead of Euler’s angles to compute angular rotations results particu-
larly convenient to avoid singularities and to reduce the computational effort of
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integration in time. The quaternions are commonly defined as a 4 × 1 matrix

q =


q0
q1
q2
q3

 (2.23)

where it is present a scalar part, q0, and a vectorial part, [q1, q2, q3]T . A property
of quaternions is that the unit quaternion must satisfy the following

q2
0 + q2

1 + q2
2 + q2

3 = 1 (2.24)

and it can be also express as qT q = 1 which represents a rotation. The kinematics
of the spacecraft can then be expressed as

q̇0
q̇1
q̇2
q̇3

 = 1
2


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2
ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0



q1
q2
q3
q4

 (2.25)

it is possible to rewrite the equation above in a compact way as,

q̇ = 1
2Ω(ω)q (2.26)

When an attitude control is implemented the quaternions computed at each
instant, from (2.25), representing the current orientation, must be compared and
subtracted to the desired set of quaternions. To do so, it is convenient to introduce
the expressions of some operations between quaternions. The quaternion error
defines the rotation needed to get from an initial orientation to a final one. To
obtain the error it is actually required the use of the quaternion product,

qe = q−1
des ⊗ qtrue (2.27)

where the inverse of a quaternion is expressed as

qd = q−1
des = [q0,−q1,−q2,−q3]T

qT q
(2.28)

The quaternion multiplication to find the error can then be written in this way

qe = qd ⊗ qtrue =


qd0 −qd1 −qd2 −qd3
qd1 qd0 −qd3 qd2
qd2 qd3 qd0 −qd1
qd3 −qd2 qd1 qd0



qtrue0
qtrue1
qtrue2
qtrue3

 (2.29)
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As seen for the Euler’s angles, it is possible to use quaternions as well to define
a rotation matrix between the orbit frame and the body frame

LBLV LH =

q
2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) q2
0 − q2

1 − q2
2 − q2

3

 (2.30)

Quaternions are not visually intuitive so at the end they are usually converted
back in Euler’s angles to better understand the rotation

φ = arctan
A

2(q0q1 + q2q3)
q2

0 + q2
1 − q2

2 − q2
3

B
θ = arcsin (−2(q1q3 + q0q2)) (2.31)

ψ = arctan
A

2(q1q2 + q0q3)
q2

0 − q2
1 − q2

2 + q2
3

B

2.3.3 Actuation, Reaction Wheels
A Reaction wheel is a device which is used in order to control the attitude of a
spacecraft. It consists of a wheel built to have a large inertia and a low mass, which
is connected to an electric motor. As any other forms of actuation in space, it
is based on momentum exchange and in particular a reaction wheel redistributes
the momentum within the satellite body. The wheel produces a torque along its
axis, so to enable a full attitude control at least three of them are required. The
main advantage of reaction wheels is that they do not consume propellant. They
only need energy for the DC motor which a battery can provide. The battery
can be then simply recharged by the solar panels. Reaction wheels are commonly
controlled in terms of torque and velocity. In fact, they can reach saturation both
in terms of torque and velocity. Each reaction wheel is connected to an electric
motor which is able to generate a desired torque and to transmit it to the reaction
wheel. The latter will then produce an equal and opposite torque on the motor
(Newton’s third law) which will start to spin in the opposite direction with the
entire spacecraft. The torque saturation happens when the couple required is bigger
than the one that the motor is able to produce. In the specific case of an electric
motor it means too much current is asked. This problem is avoided with a correct
design of the reaction wheel. Hence, to obtain a torque the disk has to accelerate
which means that during its life the reaction wheel increases the rotation velocity
until the friction acting on the motor becomes too big, and velocity saturation
occurs. At this point the reaction wheel must be stopped and discharged. To avoid
that during this operation the satellite changes the attitude, counteractions must
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be taken: commonly thrusters or magnetorquers. In the paragraph below, the
torque coming from the reaction wheel is derived.

Reaction Wheels control loop

Consider a single reaction wheel having a given inertia, Iw, and with an angular
velocity ωw. Based on this information it can be determined the torque acting on
the disk from the motor

Nw = ḣ = d

dt
(Iwωw) (2.32)

This means that the torque acting on the spacecraft will be the opposite based on
what has been said before. The control torque, Nc, is equal to the actuation torque
coming from the reaction wheel, Nw,

Nc = −Nw (2.33)
Until now a simplified case has been considered while in reality a control torque

has a limited bandwidth and the control loop is defined by a low-pass filter between
Nc and Nw,

τwḧ = −ḣ+Nw (2.34)

Nc = −ḣ (2.35)

h(t) =
Ú t

0
h(τ)dτ + h(0) (2.36)

From the equations above the low-pass filter is obtained in frequency domain,

Nc = − 1
1 + sτw

Nw (2.37)

To be able to fully control the attitude of a spacecraft, at least one reaction
wheel for each axis is needed. To derive the total contribution, a 3D model must
be consider. The direction along which the reaction wheels are oriented can differ
from the axis of the body frame so a rotation matrix has to be used. Using a
vectorial form the full model for a total number of nwheel can be defined

Nw =
è
Nw1 Nw2 ... Nwnwheel

é
hw =

è
hw1 hw2 ... hwnwheel

é
(2.38)

ωw =
è
ωw1 ωw2 ... ωwnwheel

é
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Figure 2.7: 3-axis reaction wheels for CubeSats and DC motor [23].

A transformation matrix LBw ∈ Ù3×nwheel is considered to pass from the reaction
wheels reference frame to the body frame. Finally, it can be written

NwB
= LBwNw (2.39)

hwB
= LBwhw

In this research, a 3D model with three reaction wheels aligned along the body
axis is developed. In this case, LBw becomes a 3 × 3 identity matrix.

2.4 Rendezvous and Proximity Operation Ma-
neuver

In this section a brief description of the most common ideal maneuvers for ren-
dezvous and proximity operations is presented and their respective accelerations
and ∆V s are reported. This description is useful for a better understanding of the
relative motion of the chaser with respect to the target and of the performance of
the different maneuvers. The trajectories described below are later used to build
the entire maneuver of the mission. These maneuvers are developed in an ideal
case without considering the effect of disturbances. It is possible to find more
information in this reference [3].

Tangential Boost Maneuvers

The chaser starts a transfer along the V-bar when a tangential boost is fired. In
fact if the ∆V is generated in the same verse of the velocity (a positive boost), then
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Figure 2.8: V-bar impulsive maneuver [3].

the spacecraft accelerates and rises on a higher orbit, while also moving away from
the target. The opposite happens with a negative ∆V where the chaser instead
gets closer to the target. So after an entire orbit period T the chaser translates of
a distance equal to

∆x = 6π
ω

∆Vx (2.40)

where ω = 2π
T

is the target angular velocity. The ∆Vx must be generated two times,
once at the start and once at the end to stop the maneuver. Of course, based
on the amount of ∆V generated, the spacecraft will be able to cover a bigger or
smaller longitudinal space. The total ∆V required is then

∆V = ω

3π∆x (2.41)

If the maneuver is instead just stopped after half an orbit period, then it can be
used in order to get a spacecraft from a starting orbit to a final orbit at a different
altitude. The maneuver can be executed with an impulsive thrust along the x axis
at the beginning and then at the end to stop the spacecraft once the final orbit has
been reached. This maneuver is famously known as a Hohmman transfer and it
only lasts half the time than the previous one [3].

There is a fixed relation between the distance traveled along the x-axis and
z-axis with a Hohmann transfer

∆x = 3π
4 ∆z (2.42)

This expression can be used in (2.41) to find the cost of each tangential boost. The
cost in ∆V is the same at the start and the end in the approximation of the CW
equations, for small changes in altitude. Once the final position is reached and the
maneuver stopped, the chaser will keep moving only of a free drift motion.
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Figure 2.9: Impulsive Hohmann transfer [3].

Here a CubeSat mission is considered and the thrust which a nanosatellite is able
to generate is limited. So, instead of an high impulsive boost at the beginning
and at the end of the maneuver, it is thought instead to apply a continuum thrust
through all the Hohmann transfer.

Figure 2.10: Continuous acceleration along V-bar [3].

The ∆V s are still the same for the continuous and impulsive maneuver but the
continuous one needs double the time to complete the transfer. Hence, the thrust
per unit mass needed is then,

γx = −ω2

4π∆z (2.43)
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This unit thrust operates for an entire period, T, to get the spacecraft to the final
position and once the target point is reached the acceleration is set to zero, γx = 0,
and the maneuver stops. The ∆V can be derived as

∆V = γxT = ω

2 ∆z (2.44)

Radial Boost Maneuver

A widely used maneuver to approach a target on the same orbit of the chaser is
to thrust along the radial direction. In its impulsive formulation a first boost is
required to start the maneuver and one at the end to stop the motion [feshe].

Figure 2.11: Impulsive boost along R bar [3].

This maneuver requires half an orbit period to be executed and the cost for
each boost is shown in the following expression

∆V = ω

4 ∆x (2.45)

It can be noticed from the equation above that the maneuver cost changes as a
function of the translation required along the V-bar. As for the previous case the
maneuver can be also continuous if needed for thrust limitations and in this case
the maneuver lasts an entire orbit period.

The actual unit thrust that has to be fired in this case is then,

γz = ω2

4π∆x (2.46)

where ∆x is the shift needed along x axis. From here considering that the maneuver
is accomplished in one period time, the ∆V is,

∆V = γzT = ω

2 ∆x (2.47)
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Figure 2.12: Continuous boost along R bar [3].

This maneuver is particularly interesting if compared to other similar trajectories
do to safety reasons.

Figure 2.13: Comparison between tangential and radial maneuvers [8].

As depicted in Fig. 2.13, a closing phase along the target orbit can be usually
executed with a tangential or a radial maneuver. In the tangential case, a ∆V
is generated along the V-bar to start the maneuver. Once the chaser begins the
approach, it will not stop until a second ∆V equal and opposite to the first one
is executed. This behaviour creates a possible safety issue because in case of full
or partial malfunction from the thrusters, the chaser will not be able to stop with
the consequent risk of collision. The radial boost instead allows an higher level of
safety because if a failure happens the chaser does not continue the closing but
it remains on a passive orbit at a constant distant from the target. The main
disadvantage of this maneuver is the cost. In fact it requires a ∆V which is 3π

2
times bigger than the one needed by a tangential transfer. Many examples of real
closing phase maneuvers, such as for ATV, HTV, SSO, show that in general it is
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preferable to accept a more expensive maneuver but safer.

2.5 Environmental Disturbances
2.5.1 Aerodynamic Torque
The Earth is surrounded by a layer of air and its density decreases while moving
further from the planet surface. The air produces aerodynamic resistance on the
spacecraft which can cause orbit lowering and ultimately decay. The contribution
of the aerodynamic drag depends strongly from the altitude. In fact spacecrafts,
which operate in LEO, are mainly affected by aerodynamic resistance due to the
still high density of air, while its contribution tends to lose importance with the
orbit radius increase. A typical expression for the aerodynamic force is

FD = 1
2ρV

2SCDV̂ (2.48)

where ρ is the air density at the orbit altitude, V is the relative velocity of the
spacecraft respect to the atmosphere, S is the spacecraft surface perpendicular to
the velocity vector and CD = 2.2 for a LEO orbit is the drag coefficient. Out of
simplicity the surface is considered constant but, in reality, it depends from the
orientation of the spacecraft with respect to the velocity vector. If the aerodynamic
force is expressed in the orbital reference frame and the orbit is circular, then the
unit vector, V̂ can be defined as

V̂ =

−1
0
0

 (2.49)

In fact the aerodynamic force always acts parallel to the velocity, which is
tangent to the the orbit, and in the opposite direction. The drag force can in
general causes a disturbance torque in presence of an offset between the spacecraft
center of mass and the aerodynamic center of pressure. The latter is the point
where the aerodynamic force acts on the spacecraft. The result is a torque which
can be written as

Ta = rcp × FD (2.50)

2.5.2 Magnetic Torque
One of the most significant disturbances in LEO is the magnetic torque. This effect
is often used, especially on CubeSats, to actively orientate the spacecraft using
magnetic coils, also known as magnetorques. However, also electronic devices and
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Figure 2.14: Earth magnetic field [24].

ferromagnetic materials on board of the spacecraft create a magnetic field which
is able to interact with the Earth magnetic field, generating a torque acting on
the spacecraft and changing its attitude. This contribution must be considered to
guarantee an adequate attitude control. The magnetic torque can be expressed as

Tm = m×B (2.51)
where B is the Earth magnetic field and m is the residual dipole.
The Earth presents a magnetic south pole which is around 11.5° below the geographic
north pole and a magnetic north pole, close to the south pole. The Earth magnetic
field has a quite complex distribution. It decreases with the distance and, especially
at high altitudes, it is strongly influenced by the solar magnetic field and by the
occasional solar events. The magnetic poles are also not fixed in their positions,
but tend to move, changing the magnetic field distribution. The International
Geomagnetic Reference Field (IGRF) model is typically applied to determine
the value of the magnetic field in the surrounding of the Earth. This model is
periodically updated to consider the continuous variations in the field. It can be
expressed as

V (r, φ, θ, t) = a
kØ

n=1

3
a

r

4n+1 nØ
m=0

(gmn cosmφ+ hmn sinmφPm
n (θ)) (2.52)
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where θ is the latitude minus 90°, φ the longitude, r the distance from the Earth
and a the equatorial radius. gmn and hmn are the Gaussian coefficients, and Pm

n is
the Schmidt function. This model is very accurate but also quite complicated, so
in this research a simplified dipole model [25] is considered to describe the Earth
magnetic field

B =

B1
B2
B3

 = µ

r3

 cosω0t sin im
− cos im

2 sinω0t sin im

 (2.53)

where µ is the field dipole strength, r is the orbit radius, im is the orbit inclination
with respect to the magnetic equator and µ = 7.9×1015Wbm. is the dipole strength
of the field.
The residual dipole moment is not commonly known for a spacecraft. To obtain
precise values of this field, it is necessary to build the system at first and then
measure it in a lab. In an initial phase then, an estimate must be done. Based on
the results in [26], for a 3U CubeSat can be considered a residual dipole of around
0.1 Am2.

2.5.3 Gravity Gradient

Figure 2.15: Gravity gradient effect [27].

The Earth is a geoid with a non uniform distribution of mass, so the gravity
field potential has a quite complicate expression in reality. However as a first ap-
proximation the Earth can be considered a sphere with a homogeneous distribution
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of mass. This makes the gravitational field uniform and easy to study. According
to Newton’s gravitational law, the gravitational force reduces with the square of
the distance, so a spacecraft will experience an higher force at the extremity closer
to the planet, while a smaller one at the extremity further away. This effect can
produce a torque acting on the spacecraft. In fact the torque will change its attitude
trying to align the minimum inertia axis along the gravitational field direction. It
has to be noticed that this couple is present only if the principal moment of inertia
are unequal. The gravity-gradient torque is typically expressed as

Tg = 3µ
r3 r̂ × [I]r̂ (2.54)

where µ is the Earth gravitational parameter, r is the distance of the spacecraft
from the Earth center of gravity and I is the principal moment of inertia.
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Chapter 3

Guidance and Control
System Design

In this chapter two algorithms are described: a ZEM-ZEV guidance and an LQR
controller. The first is referred to the long-range mission and the second is developed
for the short-range mission. The focus is on the implemented algorithms, after a
general introduction to the theories.

3.1 Zero-Effort-Mission/Zero-Effort-Velocity

3.1.1 Classic ZEM-ZEV

The Zero-Effort-Mission/Zero-Effort-Velocity (ZEM-ZEV) is a feedback guidance
law widely known and studied for its analytical simplicity and its robustness
against external perturbations. It has been particularly successful for applications
like missile guidance and planetary landing, where the gravitational field can be
considered constant and the ZEM-ZEV can give an energy optimal solution. The
objective of this law is to guide a spacecraft with a certain initial position and
velocity to a final aim point. Usually, the equations can be developed both in a
relative or inertial reference frame fixed within the target. The control acceleration
computed by the ZEM-ZEV algorithm is classically defined as

a = 6
t2go
ZEM − 2

t2go
ZEV (3.1)

where tgo is the so called time-to-go. This variable defines the difference between
the final time, at the end of the trajectory, and the elapsed time from the start of
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the maneuver, and it is expressed as

tgo = tf − t (3.2)

As all the other optimal feedback guidance algorithms, also the ZEM-ZEV is
optimal for a specific time duration of the maneuver. In many applications, such
as asteroid interceptions, it is not important the time needed to reach the target,
so for these cases the optimal time of flight can be applied. The computation of
the optimal flight duration is not trivial though: it requires to find the minimum of
the performance index with respect to the time-to-go [28]. Once the tgo has been
determined it can be used as an input to find the control acceleration. If instead
the time of flight is of specific interest, then it can be fixed to the desired value, but
this means that more fuel will be consumed to slow down or speed up the chaser
during the approach in order to reach the target at the required time.

Another reason why this parameter is particularly relevant and problematic in
the computation of the control accelerations is that, as the elapsed times grows,
the time-to-go gets smaller causing a considerable increase of the control signal
which can tend to infinite. So it is important to pay particular attention while
choosing the tgo value, in order to avoid a consequent high fuel consumption.

The ZEM distance is defined as the difference between the desired final position
and the predicted final position if no acceleration is applied to the spacecraft. In a
similar way the ZEV is the error between the desired and the actual velocity at the
final instant, t = tf , if no control action is applied. They are commonly formulated
as

ZEM = r − r̃f (3.3)

ZEV = v − ṽf (3.4)

In the equations above for the ZEM and ZEV, the expressions of the predicted
final position, r̃, and velocity, ṽ, can be rewritten. To do so the dynamic equations
of motion are considered in an inertial reference frame, if no control action is
applied

ṙ = v

v̇ = g

where g is the gravitational force, while r and v are the position and velocity of
the chaser. So knowing the initial conditions at the time t, the dynamic equations
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above are integrated to find the position, r̃f , and velocity , ṽf , at the defined final
time, tf . Substituting in the the ZEM and ZEV expressions, it is possible to derive

ZEM = rf − [r + tgov +
Ú tf

t
(tf − τ)g(τ) dτ ] (3.5)

ZEV = vf − [v +
Ú tf

t
g(τ) dτ ] (3.6)

where g(τ) is the gravitational field of the target as a function of time. Its intensity
depends on the target mass and it can be omitted if it is sufficiently small, like for
an asteroid or for a spacecraft rendezvous.

The ZEM-ZEV is not in general an optimal guidance law, but it becomes so
if the gravitational field is uniform or if it varies only as a function of time. In
these cases the optimal time-to-go can be computed for the maneuver. In reality
though, most of the time, the gravitational field in the equations depends also on
the position, g(x, t), like during a transfer maneuver. Then the optimal time-to-go
can not be found and the guidance is not an optimal law. In some cases though,
near-optimal results can be achieved introducing waypoints along the trajectory, as
it is discussed in the next paragraph.

3.1.2 Modified ZEM-ZEV
The classical formulation of the ZEM-ZEV is modified to be adapted to the problem
of rendezvous. As previously seen, in the classical guidance formulation the final
position and velocity to reach are fixed and compared with the predicted final
position and velocity, while the tgo is computed with respect to the expected final
maneuver time. Following this approach it would not be possible to control the
shape of the trajectory and the accelerations could grow significantly. In fact
the classic ZEM-ZEV, based on the initial conditions, will produce a correction
acceleration to guide the chaser to the desired final conditions but, doing so, the
spacecraft will start moving on a different path from the one desired. If, for example,
the spacecraft starts the maneuver from a lower orbit respect to the target, it
will have an initial free drift velocity along the V-bar. Imagining to execute a
Hohmann transfer to reach the target orbit, then the ZEM-ZEV guidance, in order
to accomplish the approach, will compute at first an acceleration command to
reduce the velocity along the Vbar and one to rise the chaser up along the Rbar. The
result is a trajectory much different from the desired one.

Hence, instead of having as a reference the final station keeping points for
each segment of the whole maneuver, a time-to-go of only a fraction of seconds is
considered. As a result the aimed position will be a waypoint not much far from
the current position.
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The scenario considered in this work is a rendezvous between two CubeSats
and for this reason the effect of the gravitational field acting on the chaser can be
neglected. So the expressions of the ZEM and ZEV errors can be simplified as

ZEM = r − r̃f = rf − r + tgov (3.7)

ZEV = v − ṽf (3.8)

In order to find the desired position, r, and velocity, v, in the relations above,
the Clohessy-Wiltshire equations are considered. Following a similar approach as
in [15], the position can be expressed as

x(t) = Ax sinωt− cosωt+ Cxt+Dx + ...

+ Ex(ωt− sinωt) + Fx(
4
ω2 (1 − cosωt) − 3

2t
2)

(3.9)

y(t) = Ay cosωt+By sinωt+ Cy(1 − cosωt) (3.10)
z(t) = Az cosωt+Bz sinωt+ Cz + ...

+Dz(sinωt− ωt) + Ez(1 − cosωt)
(3.11)

and in a similar way the velocity are

ẋ(t) = Axω0 cosωt+Bxω sinωt+ Cx + ...

+ Exω(1 − cosωt) + Fx(
4
ω

sinωt− 3t)
(3.12)

ẏ(t) = − Ayω sinωt+Byω cosωt+ Cyω sinωt (3.13)
ż(t) = − Azω sinωt+Bzω cosωt+ ...

+Dzω(cosωt− 1) + Ezω sinωt
(3.14)

where the coefficients Ax, Bx, Cx, Dx, Ex, Fx, Ay, By, Cy, Az, Bz, Cz, Dz, Ez, are de-
fined as the following
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Ax = (4ẋ0

ω
− 6z0)

Bx = 2ż0

ω
Cx = (6ωz0 − 3ẋ0)

Dx = (x0 + 2z0

ω
)

Ex = 2
ω2γz

Fx = γx

Ay = y0

By = ẏ0

ω

Cy = γy
ω2

Az = (2ẋ0

ω
− 3z0)

Bz = ż0

ω

Cz = (4z0 − 2ẋ0

ω
)

Dz = 2
ω2γx

Ez = γz
ω2

The accelerations γx, γy and γz in the Clohessy-Wiltshire equations are the
one derived for the ideal case and computed in the relations (2.43) and (2.46).
These in fact, as specified before, are the accelerations needed to follow the desired
trajectory for an open-loop. The resultant position and velocity from the equations
are treated as the final position and velocity to reach. The Clohessy-Wiltshire
equations are a function of time. In order to obtain correct results the time used
in the equations must have the following expression

t = (tsim − t0i
) + tp (3.15)

where the simulation time, tsim, is the time from the start of the simulation, t0i
is

the time at which the current part of the maneuver starts, and tp is the prediction
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time. Hence, the time considered in Eq.(3.15) is the elapsed time from the last
station keeping point where the current trajectory is started, plus the prediction
time which coincides with the defined time-to-go. As seen in the last chapter
a rendezvous maneuver is developed using different types of trajectories, such
as a Hohmann transfer or a radial boost approach. Thus, at the beginning of
each of these phases is necessary to change the initial conditions before running
the guidance algorithm, and t0i

must restart from zero at each station-keeping point.

The predicted position, r̃, and velocity, ṽ, are again estimated from the Clohessy-
Wiltshire equations but here the ideal accelerations, γx, γy and γz, are neglected
and the actual position and velocity are propagated of tgo if any control acceleration
is acting on the spacecraft. Thus, as for the ideal case the equations of relative
motion are implemented

x(t) = Ax sin (ω∆t) − cos (ω∆t) + Cx∆t+Dx (3.16)
y(t) = Ay cos (ω∆t) +By sin (ω∆t) (3.17)
z(t) = Az cos (ω∆t) +Bz sin (ω∆t) + Cz (3.18)

(3.19)

and in a similar way the velocities are

ẋ(t) = Axω0 cos (ω∆t) +Bxω sin (ω∆t) + Cx (3.20)
ẏ(t) = − Ayω sin (ω∆t) +Byω cos (ω∆t) (3.21)
ż(t) = − Azω sin (ω∆t) +Bzω cos (ω∆t) (3.22)

(3.23)

The time variation, ∆t, in the equations above is the propagation time from the
current time. This time exactly corresponds to the time-to-go. As a result, from
these equations the position and velocity of the chaser propagated in time of tgo, if
no control acceleration is applied, are obtained.
It is now possible to compute the ZEM and ZEV errors inserting the desired and
predicted position and velocity, computed from the Clohessy-Wiltshire equations,
in the relations (3.7) and (3.8), which are then used in (3.1) to find the the guidance
control accelerations.

The modified ZEM-ZEV, as will be better shown in the next chapter, allows
to correctly execute the rendezvous maneuver and to follow the desired trajectory.
This is the result of a reduction in the propagation time, tgo, which significantly low-
ers the errors in position and velocity measured by the ZEM and ZEV respectively.
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Additionally, in this way, the control acceleration from the guidance is then kept low.
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3.2 Linear Quadratic Regulator
A control law, in general, has the objective to govern the input signal to drive the
dynamic system to a desired final state. So with a control function it is possible
to bring a spacecraft from an initial to a final state following a specific path, or
to change the orientation of a satellite against external disturbances. A widely
known algorithm is the linear quadratic regulator (LQR) control. This control
can be only applied to linear systems, so if a non-linear system is considered, it
must be linearised first. A linear or linearised system is commonly represented as a
state-space system

ẋ = Ax+Bu

ẏ = Cx+Du

where

• x is named state vector, ∈ Ùm

• y is named output vector, ∈ Ùq

• u is named input/control vector, ∈ Ùn

• A is named state matrix, ∈ Ùm,m

• B is named input matrix, ∈ Ùm,n

• C is named output matrix, ∈ Ùq,m

• D is named feedthrough matrix , ∈ Ùq,n

In many applications, as the one considered in this research, the system written
above can be simplified, considering it as a full-state feedback. Under this condition,
the matrix [C] = I, which is the identity matrix, and [D] = 0. As a result the
state vector and the output vector coincide. The objective of the control is to bring
the state vector to converge, but without consuming too much fuel. Hence, the
ideal would be to find a balance between the fast regulation and the cost of the
maneuver. A cost function is then defined

J = 1
2

Ú t

0
[xTQx+ uTRu] dt (3.24)

In this function, Q and R are two matrices which are used to regulate performance
and cost of actuation respectively, and they are commonly known as weighting
matrices. So acting on the Q matrix, it is possible to decide how aggressive is going
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to be the controller response in reducing the state error. The R matrix, instead,
defines the actuators effort, which translates in how much propellant is needed for
the operation. On a spacecraft if thrusters are considered for the actuation, it is
then preferable to increase the R matrix to save fuel. If, instead, reaction wheels
are used, the energy comes from batteries charged by the solar panels, so in this
case the consumption is not that relevant, while it is more important to increase
the Q matrix to decrease the error control. The weighting matrices are typically
diagonal, and each element can be tuned to change the relative contribution of
each of them.

Once the feedback law has been defined as u = −Kx, the aim is to find the
optimal control gain , K, which minimizes the cost function, J . The gain which
allows to minimizes the cost function is so defined

K = R−1BTX (3.25)

where X is a unique semi-definite solution of the Riccati equation

ATX +XA−XBR−1BTX +Q = 0 (3.26)

After the K matrix has been found, it is also important to check the stability of
the system, evaluating the eigenvalues

λ = eig(A−KB) (3.27)

The gain can be computed as a time-varying function, as it is explained in [17],
so in this case the K matrix is update during the maneuver. The other option is to
solve the problem off-line and keeping fixed the gain value. The first choice allows
to obtain better performance and less fuel consumption but at the same time it
introduces a significant increment in computation effort. In this work, the simpler
second approach has been followed, in fact it is reasonable to think that a CubeSat
has a limited on-board computational power.

u = −Kx ẋ = Ax+Bu
u y

Figure 3.1: LQR block diagram for a full state feedback problem.
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3.2.1 Position Control
An LQR control has been developed in this work to bring a spacecraft from an
initial position and velocity to a final one, following a specified trajectory. To
describe the relative motion of the chaser respect to the target, the Hill equations
are implemented. They are already linear by definition, so the LQR control can be
applied without problems. The state-space representation can be defined as

ẋ = Ax+Bu (3.28)

where x is the state-space vector and it defines a error

x =



xd
yd
zd
ẋ
ẏ
ż


−



xr
yr
zr
ẋ
ẏ
ż


(3.29)

which is the difference between the desired state that the chaser aim to reach and
the one where the chaser actually is at the considered instant. The input to the
Hill equations are the forces computed by the controller and are expressed as

u =


Fx
Fy
Fz

 (3.30)

The components of the force are expressed in the orbital reference frame. Finally
the state matrix, A, and input matrix, B, are

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω
0 −ω2 0 0 0 0
0 0 3ω2 −2ω 0 0


(3.31)

B = 1
m



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


(3.32)
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where ω is the target angular velocity and m is the chaser mass.
For the rendezvous maneuver six different trajectories are implemented and for
each of them a different gain matrix, K, has been computed. In fact, for each
trajectory, different cost matrices must be applied in order to succeed in making
the LQR controller follow the desired path. A reasonable initial assumption for the
cost matrix Q is the identity matrix, while R, as shown in [8], can be expressed as

R =

1/(u2
1max

) 0 0
0 1/(u2

2max
) 0

0 0 1/(u2
3max

)

 (3.33)

where umax represents the maximum thrust that the actuators are able to generate.
Starting from these values the matrices can then be modified to optimize the
trajectory shape and fuel consumption.

3.2.2 Attitude Control

The orientation of a spacecraft and its attitude change are described by the Euler’s
equations for a rigid body. These are a set of non-linear equations, so to apply
an LQR control the system has to be linearised. The aim of the attitude control
is to bring the state vector to zero, which means to nullify the error in angular
position and velocity respect to the desired final state. As for the position control,
the state-space equation is

ẋ = Ax+Bu (3.34)

In this case though, the state vector is expressed as

x =
î
q1 q2 q3 ω1 ω2 ω3

ïT
(3.35)

This vector is the input of the gain matrix, S, and it shows the quaternion and
angular velocity error. In the state vector only the vectorial components are
considered and not the scalar part. This can be explained considering that once the
vectorial part is determined, the scalar part is linearly dependent from the other
components, in fact the condition ëqë = 1 must always stand true. The control
action, instead, is given by the torques computed by the LQR, u = −Kx,

u =


Tx
Ty
Tz

 (3.36)
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The state matrix, A, and the input matrix, B, obtained from the Euler’s
equations linearisation can be expressed as

A =



0 0 ω 1 0 0
0 0 0 0 1 0

−ω 0 0 0 0 1
0 −3ω2

Jx
0 0 0 (Jz−Jy)ω

Jx
3ω2

Jy
0 0 0 0 0

0 0 0 (Jy−Jx)ω
Jz

0 0


(3.37)

B =



0 0 0
0 0 0
0 0 0
1
Jx

0 0
0 1

Jy
0

0 0 1
Jz


(3.38)

For the cost matrices a starting condition can be defined, as before. Q can
be initially expressed as an identity matrix, I, while R can be written as for the
position control

R =

1/(u2
1RWmax

) 0 0
0 1/(u2

2RWmax
) 0

0 0 1/(u2
RW3max

)

 (3.39)

In this case to be considered are instead the maximum torque which the reaction
wheels are able to produce along each axis.

3.2.3 Discrete-time Linear Model

Figure 3.2: Continuous/discrete-time transformation [29].

Due to the fact that the controllers on board of a spacecraft are commonly digital,
it is necessary to approximate the continuous feedback system previously defined
using a discrete data model. Once the system has been discretized the feedback
gain is changed so to obtain a response similar to the original one. In this research,
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the sampled-data model has been obtained starting from the continuous model
which has been defined before. A simple built-in MATLAB function, c2c, has been
used for this purpose which needs three arguments: a sample time has to be chosen
for the discretization of the controller, the matrices previously defined for the state-
space model (A,B,C,D) and the type of hold circuit. For the latter specification
the default one is left, which is a zero-order hold (ZOH) method. The MATLAB
function gives as an output the discrete state-space matrices, Ak, Bk, Ck, Dk. Using
these results the state-space model can be rewritten as

ẋk+1 = Akxk +Bkuk (3.40)

here again is presented the case of a full-state feedback, where Ck and Dk are
null matrices. Once all the matrices describing the system have been recomputed,
the new gain matrix for the LQR control can be found.

42



Chapter 4

Simulation Results

In this chapter a brief description of the major characteristics of the spacecraft
used to accomplish the rendezvous mission is provided. Then the results from the
simulations are shown for each scenario, in order to validate the performance of
the guidance and control algorithms previously discussed.

4.1 Spacecraft Model

Satellites can be divided in different categories based on their mass. Spacecrafts
with a mass higher than 1000 kg are commonly considered large. Medium satellites
are instead in a range between 1000 kg and 500 kg, while with the term small
spacecrafts in general are considered all those space vehicles having a mass lower
than 500 kg. If their mass is higher than 100 kg than they are called mini satellites,
and if it is between 100 kg to 10 kg, they are referred to as micro satellites. The
category which most of the CubeSats are part of are the nanosatellites. They range
over masses between 1 kg and 10 kg. The process of miniaturization of spacecrafts
went even further in the last few years, with pico and femto satellites which brought
the operative mass to 0.1-1 kg and less than 0.1 kg respectively.

CubeSats are standardized nanosatellites with a unit dimension of cubic shape.
This unit cube presents a dimension of 10 × 10 × 10 cm and a mass of 1.33 kg.
Starting from a single unit, more of these cubes can be added to obtain bigger
CubeSats and carry larger payloads. In this research the rendezvous maneuver
and proximity operations are exploited between two 3U CubSats. A simplified
representation is shown in Fig. 4.1. Its dimensions are then of 10×10×10 cm, while
the mass is around 4 kg. Out of simplicity the components of the inertia matrix
are evaluated with respect to the body frame, which is a principal frame, and also
the CubeSat is considered as a simple rectangular prism with an homogeneous
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Figure 4.1: Schematic CAD representation of the chaser.

distribution of mass. It can be then expressed as

I =

m
a2+b2

12 0 0
0 ma2+l2

12 0
0 0 m b2+l2

12

 (4.1)

where a = b = 10 cm and l = 30 cm. The inertia values are Iy = Iz = 0.0333
kgm2 and Ix = 0.00667 kgm2. The solar panels contribution to the momentum of
inertia is neglected in order to simplify the computation. A first estimate of their
dimension is still considered to obtain more realistic results in the computation of
the aerodynamic resistance and torque acting on the chaser during the maneuver.
Two solar panels are applied and their dimension is posed equal to 10 × 30 cm each,
in a similar way as in [8].
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4.2 Mission Profiles
Two trajectories have been studied: a long-range maneuver and a short-range
maneuver. For the first case a ZEM-ZEV guidance is developed, while the second
one uses an LQR control. For the short-range scenario an attitude control is
also implemented considering the action of the external disturbances. Here these
missions are described. For each of them the simulation results are shown and the
performance of the algorithms is evaluated.

4.2.1 Long-range Mission

Guidance Hill eqs.u

Disturbances

Fd, Fr

y

Figure 4.2: LQR, position control block diagram.

The block diagram shows a schematic representation of the simulation. The
motion of the chaser is defined relative to the target, and the system is represented
using the Hill equations. So this block contains the dynamic equations of motion and
is the plant of the system. The input to the plant is the acceleration or force vector
coming from the guidance block and the output is the actual position and velocity of
the chaser at each instant. The control accelerations are computed by the ZEM-ZEV
guidance which receives in input the actual position and velocity from the plant.
For the simulation a block containing some of the external disturbances is also
considered: here the aerodynamic drag and a random perturbation are implemented.
The random disturbance is defined as 0.1 times the control acceleration from the
guidance.

The maneuver is started at the first station keeping point, 11 km behind and 2
km below the target. The chaser is at first on a lower orbit respect to the target
and it is drifting toward it with an initial velocity of 3

2wZ0, computed from Hill
equations. Where ω is the target angular velocity and Z0 is the chaser distance
from the target in the radial direction. In the ideal case, a continuum V-bar thrust
is fired to bring the chaser closer to the target and reach the final orbit. The chaser
turns off the thrusters once the station keeping point S1 is reached, 500 m behind
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the target. Here the closing phase begins and a series of semicircular trajectories
are followed from S1 until the final station keeping point, S5, is reached. These
maneuvers are all executed with a continuum R-bar thrust. The approach ends
with the chaser 15 m behind the target. All the station keeping points are shown
in the table below.

Table 4.1: Station-keeping points in orbit frame.

SK Definition Position [m]
S0 V-bar maneuver starting position [-11456,0,2325]

S1
V-bar maneuver final position/1° R-bar maneuver
initial position [-500,0,0]

S2
1° R-bar maneuver final position/2° R-bar maneu-
ver initial position [-300,0,0]

S3
2° R-bar maneuver final position/3° R-bar maneu-
ver initial position [-150,0,0]

S4
3° R-bar maneuver final position/4° R-bar maneu-
ver initial position [-50,0,0]

S5 4° R-bar maneuver final position [-15,0,0]

In the graphs below are shown the trajectories obtained from the simulations:
the homing phase from S0 to S1 in Fig. 4.3 and the closing phase from S1 to S6 in
Fig. 4.4.

Figure 4.3: Long-range maneuver, continuum V-bar thrust trajectory.

It can be already noticed from Fig. 4.3 and 4.4 how the ZEM-ZEV shows
excellent performance, in fact it is robust against the external disturbances and it
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Figure 4.4: Long-range maneuver, continuum R-bar thrust trajectories.

is able to follow the desired trajectory with high precision. As it was explained in
the last chapter, to make the chaser follow the desired trajectory the time-to-go
must be reduced and fixed only few seconds ahead of the elapsed time.

Figure 4.5: Precision in reaching a waypoint as a function of the tgo.

The choice of the tgo has in fact a direct effect on the precision of the chaser in
following the trajectory. It is interesting to show this behaviour in the vicinity of a
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station-keeping point. In Fig. 4.5, for example, the waypoint S2 = [−300, 0, 0]m is
considered. Different values of tgo are chosen for each simulation, and what can
be observed is that the tgo has a direct effect on the precision in reaching the final
state. In fact a lower tgo guarantees a smaller error, but at the same time, more
time is needed for the computation. So, choosing wisely the tgo, it is possible to
balance between computational effort and guidance precision.

The control accelerations computed by the modified ZEM-ZEV guidance result
close to the one obtained for the ideal case. Using equations (2.43) and (2.46), the
accelerations for the open-loop maneuvers can be computed: γx = 2.38×10−4 m/s2

for the Hohmann transfer, while for the closing phase γzS1−2
= 2.04 × 10−5m/s2,

γzS2−3
= 1.53 × 10−5m/s2, γzS3−4

= 1.02 × 10−5m/s2, γzS4−5
= 3.58 × 10−6m/s2.

If these values are compared with the one obtained from the simulations, it can
be observed that they are quite similar. This behavior can be shown in Fig. 4.6,
where the guidance accelerations are shown.

Figure 4.6: ZEM-ZEV accelerations.

It can be noticed that at the start of each trajectory there is an overshooting,
which is clearly visible for the maneuvers with higher accelerations required. This
error on the fired thrust is corrected along the path and it is related to the tgo. In
fact, reducing the tgo, the overshoot on the acceleration signal is lowered and the
guidance is able to compute a better value for the unit thrust from the start.

In Fig. 4.7 and 4.8 the positions and velocities through all the maneuver are
shown as a function of time. It can be noticed that the position and velocities
are null along the H-bar. This is due to the fact that the maneuver is completely
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Figure 4.7: Chaser positions along the orbital frame axes.

Figure 4.8: Chaser velocities along the orbital frame axes.
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executed in the plane V-R of the orbital frame. In fact, in the simulation the
position and velocities are null both at the start and at the end of the maneuver
along the H-bar, so the control acceleration stays zero. It can be noticed that
during the homing phase, which is the first maneuver executed, the velocity is
different from zero along the V-bar. This is the drifting velocity of the chaser
respect to the target. When the maneuver starts, the velocity grows at first, but
then it begins to decrease because of the orbit rising that slows the spacecraft.
Instead the velocity along the R-bar, which was initially zero, grows in magnitude
until it reaches a pick and then tends to zero again while moving toward the target
orbit. The closing phase is executed with radial boosts, so the chaser starts moving
along a semicircular orbit toward the target. The velocity profile along the V-bar
sees an increase in the first half and then it decreases until it reaches zero relative
velocity at the next station-keeping point.

∆V s maneuver

The ∆V s are now computed applying the equations (2.44) and (2.47) to all the
parts of the open-loop maneuver when no disturbances are acting on the spacecraft

Table 4.2: ∆V s, ideal case.

From S0
To S1

From S1
To S2

From S2
To S3

From S3
To S4

From S4
To S5

From S5
To S6

∆V 1.317 m/s 0.113 m/s 0.0850
m/s

0.0567
m/s

0.0198
m/s

0.0153
m/s

Summing all the contributions the total cost of the ideal maneuver is obtained,
∆V s = 1.5921m/s. The Modified ZEM-ZEV shows to be very efficient in terms
of fuel consumption, in fact a ∆V s = 1.6338m/s can be found if the external
disturbances are applied and a tgo of 300 sec is fixed. It is interesting to notice how
the cost also depends on the choice of tgo. Higher values of tgo mean a superior cost
for the maneuver. As it was shown in Fig. 4.6, if the tgo grows, the accelerations
tend also to increase and to get farther from the ideal value. As a result the cost of
the maneuver increase. If instead the tgo is reduced, the chaser is forced to follow
the desired trajectory with higher accuracy and the accelerations get closer to the
ideal one. In this way the cost is reduced and the ∆V tends to the open-loop value.
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4.2.2 Short-range Mission

K Hill eqs.u

Disturbances

XerXdes

Fx, Fy, Fz

y

y

Figure 4.9: LQR, position control block diagram.

This maneuver was developed to describe the proximity operations between the
two CubeSats. The Hill equations are still the plant of the system and they describe
the relative motion of the chaser. In this case, differently from the long-range
maneuver, an LQR controller is developed to make the chaser reaches the final
state. The block K represents the gain matrix computed by the LQR theory and
it receives as input the state error. As seen in the last chapter, the state error
is obtained as a difference between the actual state, y, of the chaser and the one
which has to be achieved, Xdes. Eventual disturbances acting on the chaser are
summed to the control action, u, and are the input to the plant block.

The chaser starts its trajectory at the first aim station-keeping point, S1, 300 m
behind the target and 50 m below it. After a continuous V-bar thrust maneuver
the chaser reaches the second station keeping point, S2, on the target orbit. Here a
closing phase is started where a series of radial boost maneuvers are implemented
until the CubeSat reaches 3 m behind the target in S5. After the first part of
the approach, an escape maneuver is tested. In this scenario it is considered the
eventuality of a failure occurring and causing a safety hazard when the chaser
is in the proximity of the target. To avoid a possible collision, a maneuver is
implemented where the chaser starts moving away from the target reaching a final
position of 50 m behind it, or 30 m as an alternative. With these escape trajectories
then it can be evaluated the ability of the chaser to abort a docking maneuver in
case of collision risk.

Here below in Table 4.3 all the station keeping points are reported. In Fig. 4.11
and 4.12 the complete maneuver is shown from the start to the end (homing, closing
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and collision avoidance) with the two different collision avoidance maneuvers.

Table 4.3: Orbit frame Station Keeping points.

SK Definition Position [m]
S1 V-bar maneuver starting position [-300,0,50]

S2
V-bar maneuver final position/1° R-bar maneuver
initial position [-64,0,0]

S3
1° R-bar maneuver final position/2° R-bar maneu-
ver initial position [-50,0,0]

S4
2° R-bar maneuver final position/3° R-bar maneu-
ver initial position [-15,0,0]

S5
3° R-bar maneuver final position/Escaping trajec-
tory initial position [-3,0,0]

S6 Escaping trajectory final position [-50/30,0,0]

Figure 4.10: Short-range maneuver second case

Figure 4.11: Short-range maneuver first case.

For each part of the maneuver the weighting matrices, Q and R, are tuned and
the gain matrix is computed off-line. The main advantage of the controller is the
simplicity and the low computational effort, although it does not seem to be very
precise in following the desired trajectory. In the first maneuver, for example, it
can be clearly observed how the chaser tends to lower its altitude before starting
to rise toward the target orbit. In fact, if the shape of this path is compared with
the ideal one shown in Fig. 2.10 a visible error can be observed.
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Figure 4.12: Short-range maneuver second case.

It is also interesting to evaluate the control accelerations generated by the controller.
It can be seen in Fig. 4.13 how the LQR law tries to follow the desired trajectory
firing in the same direction as for the ideal case: during the rising orbit maneuver
the main acceleration is the one along the V-bar, while during the closing the thrust
is directed along the R-bar.

Figure 4.13: LQR control thrust.
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Differently from what it was observed with the modified ZEM-ZEV, here the
controller tends to generate an high acceleration peak to start the maneuver, fol-
lowed by lower commands to adjust position and velocity while moving toward the
final state. The consequence is that in media the accelerations are higher and the
fuel consumption grows.

In Fig. 4.14 and 4.15 the positions and velocities are shown as a function of
time. The motion of the chaser stays on the Vbar-Rbar plane, in fact position and
velocities along the H-bar are very small. As a consequence of the accelerations
applied from the controller, it can be observed that during the rising orbit maneuver
the velocities along the V-bar and R-bar tend to increase. In fact the controller
initially applies a negative acceleration along the V-bar in order to slow down the
chaser which is moving with an initial drifting velocity. So the chaser moves to a
slightly lower orbit, as can be observed in the positions plot, and this causes an
increase in velocity both along the V- and R-bar. After few seconds in fact the
acceleration along the V-bar becomes positive and the spacecraft starts to rise his
position toward the target orbit. The V-bar velocity starts then to decrease while
the R-bar component turns negative. The behavior during the closing phase is
instead very similar to what observed in the ideal case.

Figure 4.14: LQR positions along local orbital frame axes.
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Figure 4.15: LQR velocities along local orbital frame axes.

∆V s maneuver

So based on the maneuver defined above and applying the equations (2.44) and
(2.47), the ∆V s are computed for each part of the maneuver and then the total
cost is obtained. The results are for the ideal case with no disturbances considered.

Table 4.4: ∆V s, ideal case.

From
S1 To
S2

From
S2 To
S3

From
S3 To
S4

From
S4 To
S5

From
S5
To S6
(First
sce-
nario)

From
S5 To
S6 (Sec-
ond
sce-
nario)

∆V 0.0283
m/s

0.0079
m/s

0.0198
m/s

0.0068
m/s

0.0266
m/s

0.0153
m/s

In the table above the partial ∆V s for each part of the maneuver are computed,
so it is now possible to sum them up and show the total ∆V s for the first and
second scenarios, Table 4.5.

In terms of ∆V s it can be noticed from the simulations that the LQR control
does not perform in a very efficient way in terms of fuel consumption, if the results
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Table 4.5: ∆Vtot for first and second scenario, ideal case.

First scenario Second scenario
∆Vtot 0.0894 m/s 0.0781 m/s

are compared with the values above. In fact, trying to balance the weighting
matrices to obtain a good compromise between precision and cost, it was not
possible to obtain ∆V s lower than three times the ideal values in the tables.

4.2.3 Attitude control

K RWs Euler’s eqs.
uc uRW

Disturbances

XerXd

Md

y = [q, ω]T

y

Figure 4.16: LQR, attitude control block diagram.

For the short-range maneuver an attitude control is also implemented. The
algorithm developed is again an LQR control. In this case though, the dynamic
equations are non-linear, so to compute the gain matrix it was first necessary to
linearise the Euler’s equations. The input to the controller is the state vector which
is given by the difference between the actual and the desired state. A control
torque is produced by the controller and it is also the input of the reaction wheels
block which is designed as a simple low-pass filter to consider the limitations in
the acceptable bandwidth. The output of the plant is the orientation and angular
velocity of the chaser in the body reference frame, while the input is the torque
from the reaction wheels and the external disturbances.

To test the behavior of the attitude control, an initial rotation of 20 degrees
is given to the chaser respect to the desired orientation, in which the spacecraft
x̂B axis in body frame should be aligned to the orbital frame V̂ -bar. Quaternions
and quaternion error are shown in Fig. 4.17 and 4.18. The starting orientation is
expressed as qin = [0.9848, 0,−0.9848, 0]T and the one to reach is qf = [1, 0, 0, 0]T .
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Figure 4.17: Quaternions.

Figure 4.18: Quaternion errors.
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In the figures below, the torques from the reaction wheels, Fig. 4.19, and the
angular velocities, Fig. 4.20, are shown. As can be seen from the quaternions, the
spacecraft starts with a counter-clock wise orientation of -20 degree along the ŷB
axis, so the reaction wheels act to bring the chaser to the desired orientation. The
more significant torque component is then My, because along that axis the reaction
wheel needs to stabilize the spacecraft against the external torques and, at the
same time, actively change its orientation. A typical shape can be observed in the
torque, My: an initial peak to start the chaser rotation, followed by an overshoot in
the opposite direction to reduce the angular velocity and stop the spacecraft once
the final state is reached. Along the other axes, instead, the control torques are
used only to counteract the external disturbance effects, so the values registered
are very low. This can be clearly observed looking at the angular velocities, ωx and
ωz. In fact they are very low which means that only a small variation of angular
momentum is needed along x̂B and ẑB axes.

Figure 4.19: Torques from the reaction wheels.
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Figure 4.20: Angular velocity along the body axes.

4.2.4 Attitude and Orbit Control System

Position Control LLV LHB Hill’s eqs.
uB uLV LH

Attitude Control

q

Xerr Xreal

Figure 4.21: Attitude and position control block diagram.

In order to consider the spacecraft as a 3D body during the rendezvous ma-
neuver, the attitude control block is added to the scheme. The position control
provides the thrust needed in the body reference frame, so, knowing the spacecraft
orientation, it is possible to find the components of the thrust vector in the orbit
frame. These components are then the input to the Hill’s equations which give the
position and velocity of the chaser. A transformation matrix is defined, LLV LHB .
The orientation of the spacecraft is influenced by the environmental disturbances
and the reaction wheels act to minimize the state error and keep the chaser along
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the desired orientation.

As it can be seen in Fig. 4.22, with the position and attitude algorithms together,
it is still possible to obtain for the maneuver a shape very similar to the one achieved
before for the position control only. The most visible difference in the trajectory
is during the homing phase, where the chaser tends to reach a lower minimum
before starting to raise. This is mainly an effect of the initial error in the spacecraft
orientation. In fact, as shown in Fig. 4.23, the initial acceleration along the V-bar is
doubled respect to the case without attitude control, and this is due to the fact that
the position control has to overcome the initial error in orientation which reduces
the effective thrust component. Once the chaser reaches the final orientation, the
effect of the external disturbances is not so relevant and the control thrust required
for the maneuver results very close to the case without attitude control. This is
clear from Fig. 4.13.

Figure 4.22: AOCS maneuver.
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Figure 4.23: AOCS thrust.

In Fig. 4.22 and 4.25 the position and velocities as a function of time are
shown. The shape of the maneuver here depicted is the same described before. It
is interesting though, to notice that the oscillations in position of the chaser along
the H-bar are bigger than the one observed for the position control alone. This is a
consequence of the error in orientation caused by the external torques, which also
generates a component of thrust out of the maneuver plane.

Figure 4.24: AOCS positions as function of time along the orbital frame axes.
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Figure 4.25: AOCS velocities as function of time along the orbital frame axes.

In Fig. 4.26, the external disturbances are shown as a function of time. As it
can be seen, in this research the aerodynamic torque, the gravity gradient and the
magnetic torque are considered. These are the most relevant disturbances for a
spacecraft on a LEO orbit.

Figure 4.26: Disturbances: Aerodynamic Torque, Gravity Gradient, Magnetic
Torque.
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Chapter 5

Closing and Future Work

In this research, the problem of rendezvous between two CubeSats has been
studied. The aim is to develop and test the performance of guidance and control
algorithms for different approach scenarios. The simulations are designed using
MATLAB/Simulink.

The first presented case is a long-range maneuver and a modified ZEM-ZEV
guidance is applied to control the position and velocity along the trajectory. The
obtained results are very promising, in fact the guidance allows the chaser to follow
the desired maneuver with high precision, the control accelerations tend to the ideal
values and the fuel consumption is optimized. On the other side, the performance
of the ZEM-ZEV strongly depends on the time-to-go. So to obtain high accuracy
and low impulse of velocity, it is necessary to choose low values of time-to-go with
an inevitable increase in the computational effort. Then a balance has to be found
based on the processing capabilities of the on board computer.

The other developed case is an LQR controller for a short-range maneuver. Both
a position and an attitude control are designed for this scenario. The considered
approach is to compute the weighting matrices and the gains for each trajectory
off-line, during the variables initialization. The main advantages of this approach
are the simplicity in tuning and the low computational effort, considering that all
the gains are computed before the simulation starts. The results of the position
control show that the chaser is able to follow the desired trajectory but with a
reduced precision if compared to the ZEM-ZEV. Higher accuracy can be obtained
only accepting an increase in fuel consumption, which is in general avoided for
CubeSat missions. For the attitude control, instead, three reaction wheels are
implemented and tested to maintain the desired orientation acting against the
external disturbances. From the simulations it can be observed that the disturbances
are damped quite fast and the state error tends to zero.

For the future it could be interesting to design the final approach for both the
maneuvers and test if the guidance and controller are able to guarantee a sufficient
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level of accuracy to accomplish the docking between the CubeSats. A path planning
algorithm could be studied to avoid collisions during the last phase. The modified
ZEM-ZEV as studied in this research presents some significant problems that
have to be resolved. As explained in [16] and [30], the algorithm is not robust to
uncertainties and, it also lacks in flexibility and capacity to adapt in real time.
Other researches have considered these problems and improved the ZEM-ZEV
combining it with a sliding mode control [31] or with a model predictive approach
[32] or with machine learning [30]. All of them are applied to the landing problem,
so it could be interesting to study these algorithms for the rendezvous maneuver.
For the short-range maneuver a possible improvement could be to redesign the LQR
controller online, with different gain matrices. As shown in [17], this solution seems
to produce results with high accuracy and, at the same time, with a sub-optimal
fuel efficiency.
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