
POLITECNICO DI TORINO
Aerospace Engineering

Master Degree Thesis

Identification Methods and
Simulation Modeling of a small UGV

for Indoor Applications

Supervisors
Prof. Elisa Capello
Dr. Davide Carminati
Dr. Iris David Du Mutel

Candidate
Enza Incoronata Trombetta
m.256845

April 2021

To my family,
Mum, Dad and Ni

To my grandparents,
Andrea and Antonietta

iii

Acknowledgments

The most sincere thanks are dedicated to Professor Elisa Capello for having carefully fol-
lowed the development of this thesis and for the opportunity to explore such an interesting
topic. I would like to thank Dr. Matteo Scanavino for helping me in the first steps of this
work and Dr. Davide Carminati and Dr. Iris David Du Mutel de Pierrepont Franzetti
who, with patience and kindness, guided and supported me from the beginning to the end.
Their advice and knowledge have been useful and valuable to me.
I would like to thank my life companions Sabina and Fede for always walking by my side
and my special motivator Marco. Our discussions on mathematical issues were an impor-
tant starting point for reflection.
I would also like to thank my "Northern" family Malvina, Greta, Alexandra, Valeria, Amina
and Ilaria. Our breakfasts and snacks together gave me the energy to face the difficulties
encountered.
I cannot fail to mention also my colleagues-friends thanks to whom the years of University
have been a wonderful adventure, and my companions of special dinners and evenings:
Martina, Riccardo, Alessia, Perry, Peppe, Elisa, Daniel, Fabio, Fabiano, Federico, Mario,
Fabio, Menni, Edo, Martina, Giulio, Miki.

iv

Abstract

The last few years have seen a growing interest in the development of intelligent machines
capable of moving autonomously in space and being aware of their surroundings. Their
great potential makes them ideal for the most varied fields of application: agriculture,
manufacturing, land and aerial surveillance, naval operations, commercial transport, space
exploration.
A focus on mobile robots can be observed, since they are systems able to integrate technolo-
gies related to sensing, information processing, movement on wheels, obstacle avoidance
technique and Artificial Intelligence. Their versatility makes them the test bench suitable
not only for testing high level solutions of Guidance, Control and Navigation techniques
(GNC), but also at a strictly mechanical level with the possibility of testing configurations
that include robotic arms, payloads for environmental analysis, hybrid motion mechanisms.
In a space framework, rovers can be considered as evolution of these mobile robots: these
robotic systems for the exploration of planetary surfaces are designed to move indepen-
dently in unknown environments, to conduct analysis on the ground that can identify
composition and properties, to photograph the surrounding environment and allow its
study on Earth. Given the cost associated with space operations and the rare possibility of
repair, the reliability of such systems must be of the highest level. It is therefore clear the
importance of testing their effectiveness in similar situations to those in which they will
operate on the designed mission. The tests are possible thanks to numerical simulations.
This thesis is addressed to the system identification of a mobile robot to obtain a model
that can be used in a simulation environment. The advantage offered by simulation is
linked to the possibility of carrying out tests that do not damage the real device and do
not require its continuous use. Devastator robotic platform, a tracked mobile robot con-
trolled by an on-board companion computer, is the reference used for identification and
experimental testing.
The analysis of the DC motors behavior is first performed with both a lumped parameter
approach and a data-driven approach. A comparison between the two methodologies is
carried out. A kinematic model is then adopted for the reproduction of the robot motion,
but the identification of the inertial parameters of the system has also been performed as
a basis for future development and integration of a dynamic model.
The thus obtained model is recreated in MATLAB/Simulink environment. A controller
and a path planning algorithm are also implemented to test and validate the behavior of the
plant. The selected control strategy is based on a Proportional–Integral–Derivative or PID
controller while a simple but effective Artificial Potential Field strategy is adopted for path
planning. Their performances are subsequently established through Simulink-ROS/Gazebo

vi

co-simulation; Gazebo is in fact a simulation tool for algorithms, configurations and control
strategies testing in a realistic scenario.
Finally, they are translated into executable code supported by on-board systems thanks to
the MATLAB Code Generation functions and tested in indoor applications.

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Historical background . 1
1.2 Robot and Aerospace . 5
1.3 Any robot is as good as another? . 7

1.3.1 General arrangement . 7
1.3.2 Degree of autonomy . 8
1.3.3 Mobility strategies . 10

1.4 Mobile Robot Control and Navigation . 13
1.4.1 Perception and Localization task 13
1.4.2 Trajectory planning task . 15
1.4.3 Control task . 16

1.5 Motivation and Contributions . 18
1.5.1 Outline . 21

2 Mathematical model 23
2.1 Basic concepts . 23
2.2 Motion in the space . 27
2.3 Assumptions and kinematic relationship 28
2.4 Kinematic constraints . 30
2.5 Kinematic constraints violation . 32
2.6 Dynamics . 33

2.6.1 Inertia of the System . 38
2.7 Actuation model . 39

3 System Identification 44
3.1 Model Structures . 47

3.1.1 LTI and SISO systems . 48
3.1.2 Nonlinear and SISO systems . 51
3.1.3 Nonlinear and MIMO systems . 52

3.2 Identification process . 53
3.3 Model validation . 55

viii

4 Guidance, Navigation and Control 57
4.1 Navigation . 57

4.1.1 Kalman Filter . 59
4.2 Guidance . 62
4.3 Potential Field . 63

4.3.1 Attractive Field . 64
4.3.2 Repulsive Field . 65

4.4 Reference signal generation . 66
4.5 Limitations and solutions . 67
4.6 Control . 68

4.6.1 PID Controller . 68

5 Experimental Setup 70
5.1 More about Devastator Architecture . 72
5.2 DC Motors characterization . 75
5.3 Lumped Parameters Approach . 76

5.3.1 Experiment 1: motor resistance identification 77
5.3.2 Experiment 2: current measuring 77
5.3.3 Experiment 3: angular speed measuring 78

5.4 Data-driven Approach . 85
5.4.1 Input-output data creation . 85
5.4.2 Model structure and estimation criterion selection 86
5.4.3 Identification procedure: operative guidelines 88

5.5 Results and Considerations . 89
5.6 Comparison . 91
5.7 Inertia Identification . 93

6 Simulation Model 96
6.1 Plant Model . 97

6.1.1 Lumped Parameter Approach . 97
6.1.2 Data-driven approach . 101

6.2 GNC Model . 103
6.2.1 Control . 104
6.2.2 Navigation . 110
6.2.3 Guidance . 110
6.2.4 Initial Orientation . 110
6.2.5 Reference signals . 114

6.3 Mission Planner . 118

7 ROS/Gazebo and Code Generation 119
7.1 ROS background . 119
7.2 Gazebo . 122
7.3 ROS/Gazebo-MATLAB/Simulink Co-simulation 125

7.3.1 Creation of the connections in the Simulink Model 126
7.4 Code Generation . 127

7.4.1 Guidance and Control Code Generation 129

ix

8 Simple missions in Indoor Environment 131
8.1 MATLAB/Simulink simulations . 131

8.1.1 Obstacles free path . 132
8.1.2 Environment with obstacles . 136

8.2 ROS/Gazebo simulations . 139
8.2.1 Obstacles free path . 139
8.2.2 Environment with obstacles . 143

8.3 Real Robot mission . 147
8.4 Comparisons . 149

Conclusion 153

References 155

x

List of Figures

1.1 Notable mobile robots . 2
1.2 UVs of today . 4
1.3 Mobile robots in the Space Exploration . 5
1.4 Three generations of Mars rovers [60] . 6
1.5 General Structure and Elements of a UV 9
1.6 Degree of autonomy and interaction with other UVs 10
1.7 Different mobility strategies . 11
1.8 Comparison between different mobility strategies 12
1.9 Comparison between different mechanical configurations 13
1.10 Open loop system . 17
1.11 Closed loop system . 17

2.1 Coordinate Reference System a . 23
2.2 Set of rotations from a to b . 25
2.3 Rigid body in the Inertial Reference Frame 27
2.4 Reference Frames of the robot . 29
2.5 General configuration of a wheel constrained to a robot chassis 31
2.6 Free-body diagram of tracked vehicle . 34
2.7 Shear stress for various terrains . 35
2.8 Pendulum system . 38
2.9 Simple permanent magnet DC motor-[50] 40
2.10 PM DC motor . 40
2.11 DC motor with gear and external load . 43
2.12 DC motor characteristic . 43

3.1 Model properties . 45
3.2 Identification procedure . 46
3.3 Sample data system . 46
3.4 Model representation . 48
3.5 Linear Black-Box Model structures . 51

4.1 Kalman Algorithm . 61
4.2 Configuration Space . 62
4.3 APF representation . 64
4.4 PID configuration . 69

xi

5.1 Robotics interdisciplinary . 70
5.2 Devastator . 71
5.3 Devastator structure [21] . 71
5.4 Functional scheme . 72
5.5 DC motor drive configurations . 74
5.6 PWM duty cycle . 75
5.7 Rotary Encoder [47] . 75
5.8 Voltage-Current characteristic . 78
5.9 IR sensor . 79
5.10 Voltage-Speed characteristic, no external load 80
5.11 Cm-ωm characteristic . 80
5.12 Relationship Cm-Crτ ,ω . 81
5.13 Tests (Part 1) . 82
5.14 Tests (Part 2) . 83
5.15 Torque-Speed characteristic . 84
5.16 PWM input signal: forward and backward motion 86
5.17 PWM input signal: rotation . 86
5.18 Angular speed ω output signal: forward and backward motion 87
5.19 Angular speed ω output signal: rotation 87
5.20 NARX structure . 88
5.21 Validation test 1 . 90
5.22 Validation test 2 . 90
5.23 Validation test 3 . 91
5.24 Otus Tracker sensor [73] . 93
5.25 Software RCbenchmark Tacking Lab [72] 94
5.26 Experimental setup . 94
5.27 Data collected during the experiment . 95

6.1 Complete Model . 96
6.2 Motor Scheme . 97
6.3 System response to a step of 3 V, no external load 98
6.4 System response to a step voltage input, Cr=0.017 Nm 98
6.5 Experimental and Simulation data comparison 99
6.6 Torque-Current characteristic for different Voltages and Resistant Loads . . 100
6.7 Plant Model . 101
6.8 Plant Model Inputs . 102
6.9 Plant Model Outputs . 102
6.10 Example of a mission trajectory . 103
6.11 Control Block . 104
6.12 KpV x Tuning . 105
6.13 Proportional and Integrative Part Tuning 106
6.14 KiV x Tuning . 106
6.15 Kpψ Tuning . 107
6.16 Robot path, no obstacle . 107
6.17 Robot angular position, no obstacle . 108
6.18 Robot path with an obstacle . 108

xii

6.19 Robot angular position with an obstacle 109
6.20 Space of robot mission . 111
6.21 Robot path, Goal in the front up area . 111
6.22 Robot path, Goal in the first back area . 112
6.23 Robot path, Goal in the second back area 112
6.24 Robot path, Goal in the front down area 113
6.25 Attraction Force . 114
6.26 Repulsive Force . 115
6.27 Variation of the Velocity Reference for θ ∈ [0,5] 116
6.28 Variation of the References for θ ∈ [1,3] . 117
6.29 Variation of the Velocity Reference for h ∈ [0,5] 118
6.30 Variation of the Velocity Reference for Kg ∈ [0,1] 118

7.1 ROS communication strategies . 121
7.2 Devastator Model . 122
7.3 Gazebo interface [31] . 124
7.4 Simulink ROS blocks . 125
7.5 Elements for MATLAB/Simulink communication with ROS/Gazebo envi-

ronment . 126
7.6 Code Generation Files . 129

8.1 MATLAB/Simulink Trajectory in an obstacles free environment 132
8.2 MATLAB/Simulink Position in an obstacles free environment 133
8.3 MATLAB/Simulink Orientation and Angular speed in an obstacles free en-

vironment . 134
8.4 MATLAB/Simulink Velocity in an obstacles free environment 134
8.5 MATLAB/Simulink Reference in an obstacles free environment 135
8.6 MATLAB/Simulink Trajectory in an environment with obstacles 136
8.7 MATLAB/Simulink Position in an environment with obstacles 137
8.8 MATLAB/Simulink Orientation and Angular speed in an environment with

obstacles . 137
8.9 MATLAB/Simulink Velocity in an environment with obstacles 138
8.10 MATLAB/Simulink Reference in an environment with obstacles 138
8.11 Devastator Robot and Goal . 139
8.12 ROS/Gazebo Trajectory in an obstacles free environment 140
8.13 ROS/Gazebo Position in an obstacles free environment 140
8.14 ROS/Gazebo Orientation and Angular speed in an obstacles free environment141
8.15 ROS/Gazebo Velocity in an obstacles free environment 141
8.16 ROS/Gazebo Reference in an obstacles free environment 142
8.17 Devastator Robot, Goal and Obstacles . 144
8.18 ROS/Gazebo Trajectory in an environment with obstacles 144
8.19 ROS/Gazebo Position in an environment with obstacles 145
8.20 ROS/Gazebo Orientation and Angular speed in an environment with obstacles145
8.21 ROS/Gazebo Velocity in an environment with obstacles 146
8.22 ROS/Gazebo Reference in an environment with obstacles 146
8.23 Real Robot Trajectory . 147

xiii

8.24 Real Robot Position . 148
8.25 Real Robot Orientation . 148
8.26 Comparison between trajectories . 149
8.27 Position X comparison . 150
8.28 Comparison between Simulink and Gazebo simulated trajectories 150
8.29 Velocity Reference comparison . 151
8.30 Angular Reference comparison . 151

xiv

List of Tables

5.1 External torques data . 81
5.2 Geometry and inertial data . 95

xv

List of Acronyms

AIC Akaike’s Information Criterion

ALFUS Autonomy Levels for Unmanned Systems

APF Artificial Potential Field

ARMAX Auto-Regressive and Moving Average with eXogenous input

ARX Auto-Regressive with eXogenous input

ASTM American Society for Testing and Materials International

ATT Advanced Teleoperator Technology

BIC Bayesian Information Criterion

BJ Box-Jenkins

CoM Center of Mass

DARPA Defense Advanced Research Projects Agency

EKF Extended Kalman Filter

FMKF Finite-Model Kalman Filter

FPE Final Prediction Error

RAM Random Access Memory

ROM Read Only Memory

GATERS Ground/Air TeleRobotic System

GNC Guidance, Navigation and Control

GND Ground

GPS Global Positioning System

GSR Ground Surveillance Robot

HMI Human Machine Interface

xvi

HTML Hypertext Markup Language

IAPF Improved Artificial Potential Field

IMU Inertial Measurement Unit

IR Infrared

LED Light Emitting Diode

LiPo Lithium Polymer

LS Least Squares

LTI Linear Time Invariant

MAV Micro Air Vehicle

MDL Minimum Description Length Criterion

MIMO Multi-Input Multi-Output

ML Maximum likelihood

MISO Multi-Input Sigle-Output

MMSE Minimum Mean Square Error

NARMAX Nonlinear Auto-Regressive and Moving Average with eXogenous input

NARX Nonlinear Auto-Regressive with eXogenous input

NASA National Aeronautics and Space Administration

NCAGV Network-Centric Autonomous Grounf Vehicle

ODE Open Dynamics Engine

OE Output Error

OGRE Open-source Graphics Rendering Engine

PCAGV Platform-Centric Autonomous Ground Vehicle

PEM Prediction Error Methods

PID Proportional Integral Derivative

PWM Pulse With Modulation

ROS Robotic Operating System

SISO Single-Input Single-Output

SLAM Simultaneous Localization And Mapping

xvii

TGV TeleOperated UGV

TOV TeleOperated Vehicle

TUGV Gladiator Tactical Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UGV JPO Unmanned Ground Vehicles Joint Program Office

UKF Unscented Kalman Filter

URDF Unified Robot Description Format

URI Uniform Resource Identifier

UUV Unmanned Underwater Vehicle

UV Unmanned Vehicle

VCS Version Control System

XML eXtensible Markup Language

xviii

Chapter 1

Introduction

UVs or Unmanned Vehicles: Any vehicle which operates without a human in direct physical
contact with that vehicle [34]

What in the past would have aroused amazement and unbelief is now a consolidated reality:
the existence of smart machines capable of operating without direct human intervention.
Characterized by different degrees of autonomy in navigation and in the perception of the
surrounding environment, these machines are the result of years of technological develop-
ments and scientific innovations that have reached such a maturity as to allow the absence
of direct human control on board. Despite a history strongly linked to the military environ-
ment, the use of these systems in the civilian field has grown in recent years making UVs the
answer for the most varied needs, from security to intervention accuracy, from agriculture
to commercial transport, from the exploration of remote areas not otherwise accessible
to monitoring and surveillance. The growing availability of powerful low-cost hardware
platforms and the possibility of exploiting increasingly "intelligent" and autonomous forms
of control has led to the growth of interest in UVs and paved the way for the exploration
of all kinds of possibilities, from land mobility (Unmanned Ground Vehicles or UGVs) to
marine (Unmanned Underwater Vehicles or UUVs), up to the aerial one (Unmanned Aerial
Vehicles or UAVs).
Although the spotlight nowadays is on the fascinating world of UAVs, and this is not sur-
prising given the opportunities offered by a "top view" of things, another category deserves
as much attention: the world of small UGVs.

1.1 Historical background
Sometimes also called mobile robots, UGVs are distinguished by their ability to move on
a surface and, if necessary, to transport a payload. Their versatility is such to have made
them an excellent development platform for testing algorithms related to path planning,
obstacle avoidance, control strategies, sensor testing, Artificial Intelligence, making them
over time more and more autonomous.
The concept of "autonomous vehicle" is not exactly current: as far back as 400 BC, Greeks
and Romans speculated on steam-powered robot birds and used unmanned fire ships as

1

1 – Introduction

weapons to strike enemy fleets [26]. In 1849 the Austrians used unmanned balloons to at-
tack the city of Venice, loading them with explosives, while 20 years later, in the American
Civil War, balloons were equipped with cameras to observe enemy positions from above.
Intelligent self-propelled missiles with on board guidance and control were developed dur-
ing the World Wars by Americans and Germans, such as the Flying Bombs of the former
and the V-1 missiles of the latter, improving and establishing the use of UVs in warfare.
While a considerable boost was given to the field of UAV technology, not as much luck
seems to have had the UGV sphere. The reason identified is essentially one: the complexity
of the operating and navigation environment with respect to that of their aerial analogues
([26] and [34]). The first UGVs were tanks loaded with explosives capable of approaching
close to enemy fortifications and detonated remotely. The first examples of autonomous
UVs were instead developed around 1948 in England with vehicles capable to respond to
contact with objects and able to perceive the light.
One of the first examples of a mobile robot with a notable impact was Shakey, a general-
purpose test-bed developed in the Artificial Intelligent Center at the Stanford Research
Institute in the 1960s, capable of perceive and reason about its surroundings (Figure 1.1a).
It was propelled by two stepping motors independently driving a wheel on each side of the
robot and equipped with a TV camera and ultrasonic range finder in a movable "head".
Touch sensors captured information from the environment and sent them to a mainframe
computer over special radio links for the elaboration of navigation and exploration tasks. It
was not yet an autonomous robot in the sense of completely independent and self-governed,
i.e. capable of processing information from sensors on board, but it is the first notable ex-
ample of an attempt to integrate the functionality and performance of a mobile robot with
control algorithms even if performed by an external digital computer [69]. In the 1980s

(a) Shakey the Robot [91] (b) Stanford Cart [100]

Figure 1.1: Notable mobile robots

2

1 – Introduction

at the Stanford University AI Lab it was developed the Stanford Cart, a project born to
exploring navigation and obstacle avoidance tasks (Figure 1.1b). Through the use of a
TV camera mounted on the top of the head, the robot took pictures from several different
angles and sent them to a main computer to compute the distance between itself and the
obstacles and to obtain instructions from the computer in order to avoid the impact. Al-
though the system took up to 15 minutes to make each one-meter move, it was successful
in the planning of an obstacle-free path to the destination and formed the basis for future
developments in this field. Also in the 1980s, the Autonomous Land Vehicle was developed
as part of DARPA’s Strategic Computing Program, an example of a mobile robot that,
through the processing of video and distance data, was able to generate a model of the
scene in front of it and use it for navigation. In those years, however, the attention on
UGVs did not grow exclusively from a scientific point of view, but also from a military
one. The possibility of using these vehicles to penetrate enemy lines without endangering
human lives and exploit them for surveillance, reconnaissance and target acquisition tasks,
favored the emergence of programs such as Ground Surveillance Robot (GSR) and the Ad-
vanced Teleoperator Technology (ATT) whose successes led to the birth of the Ground/Air
TeleRobotic Systems (GATERS) Program in 1985 and the development of a TeleOperated
vehicle (TOV) to test the use of UGV in the military field. TOV was a remotely piloted
vehicle controlled by a human operator in a Control Station. Visual and audio devices
provided information about what surrounds the vehicle and hand and foot controls man-
aged to the human operator constituted the means through which control the robot. Data
were exchanged via optical fiber to ensure fast and robust communication even when not
in line of sight. About its equipment, cameras, laser rangefinders and sensors capable of
detecting chemicals, as well as a 50-caliber machine gun, were installed [107]. However,
the development of such programs came to a halt in 1987 when Congressional direction
prohibited the use of weapons systems on robot: all the projects were re-targeted to other
missions.
The development of UGV continued with the birth of the Unmanned Ground Vehicles
Joint Program Office (UGV JPO), an attempt by the Department of Defense (DoD)1 to
standardize and consolidate robotic projects into a single program, and between 1990 and
1996 with the DEMO programs by DARPA, that demonstrated the adaptability of UVs in
real missions with supervised autonomous collaboration between multiple units.
Many other military examples could be cited and their number is not surprising, given
the success of such technologies in all those situations that lead to the risk of losing hu-
man lives, in particular for the detection of explosives, chemical, biological or radioactive
agents, for the breaking into enemy territory for exploration, surveillance. Alongside this,
however, there is a group of research programs created for rescue and first aid, for under-
water exploration, for space exploration, for agriculture aims, born thanks to the favorable
conditions offered by the lowering of machine prices and the increase in public interest in
this research. Precisely, as reported in [34], this transition from military to civilian use was
dictated by factors such as

- Inter-agency transfers, since UV hardware prototypes were no longer extremely ex-
pensive but mainstream military vehicles with the possibility to be "lent" for civilian

1DoD is an executive branch department of the federal USA government

3

1 – Introduction

purposes.

- Market competition, such that the price of components has dropped to the point that
they were also accessible to civil entities, not just a few military organizations.

- Public research support.

- Increase in hardware power and possibility of using "off the shelf" components.

Furthermore, among what has certainly contributed to the development of such technolo-
gies were the enormous advances in the field of robotics. In 2007 at Stanford University
the idea of a single framework that could manage the different aspects of the discipline was
developed: the Robot Operating System. ROS is an open source tool organized with li-
braries and packages to support the development of robot applications, providing hardware
abstraction, visualization tools, communication and message exchange between processes,
information management etc. In 2014, NASA announced the first robot to use ROS in
space aboard the International Space Station, and in the following years the attention
of tech giants such as Amazon and Microsoft was captured [83]. The ability to manage
robotic programming more easily and to use packages and libraries with already available
functions to focus on experimentation and innovation was certainly a significant factor in
the spread of this tool in the context of mobile robots and UVs programming in general.
Today UVs operate in a wide variety of forms and cost: they range from UAVs large enough
to fit in a bag to those comparable to manned aircraft, from small remote-controlled UGVs
to tanks of several tons. Just think of the Predator, a Medium Altitude Long Endurance
UAV, or the Global Hawk, capable of flying for 30 hours at an altitude exceeding 19000
m [34], and at the same time of the Micro Air Vehicles or MAVs with a flight duration of
just 30 minutes [26], UGVs like the Gladiator TUGV tank and small remotely controlled
tanks like Packbots (Figure 1.2).

(a) RQ-4 Global Hawk [87] (b) RQ-16 T-Hawk (MAV) [86] (c) Gladiator Tactical UGV
[33]

Figure 1.2: UVs of today

4

1 – Introduction

1.2 Robot and Aerospace
Among others there is a field that has not been purposely investigated in the last section
in which UVs have been particularly successful. In the 1970s another organization had
placed the focus on the development of unmanned vehicles, attracted to the possibility
of drastically reducing the cost of space exploration and the risks associated with human
presence on board: the National Aeronautics and Space Administration, also known as
NASA.
The knowledge associated with UGVs allowed the development of mobile robots capable of
exploring the surface of a planet to collect information useful for its study on Earth called
rovers. Among the earliest examples of successful rovers was Lunokhod 1, a Soviet Union
robot that landed on the Moon in 1970 as part of the Lunokhod Program (Figure 1.3a).
Equipped with 8 independently controllable wheels, it reached speeds of 100 meters/hour
for a weight of 756 kg. It was commanded by a team of five operators on Earth while on
board it mounted tools such as solar cells and chemical batteries, an imaging system and
countless sensors for soil characterization. It traveled around 10 km collecting more than
20.000 between TV images and high resolution panoramas with various soil analyzes before
interrupting communications in September 1971. It was a successful mission: the rover,
designed to survive only 3 lunar days (approx. 21 terrestrial days), worked for 11 [93].
The USA proposal for robot space employment came with the Pathfinder Program: it was

(a) Lunokhod 1 rover [55] (b) Sojourner rover [97]

Figure 1.3: Mobile robots in the Space Exploration

an ambitious mission consisting in the application of a lander and a remotely controlled
rover for the exploration of the Mars surface and an attempt to demonstrate the effective-
ness of using innovative low-cost technologies in space framework.
The Sojourner rover was a 6-wheeled vehicle powered by solar cells plus a non-rechargeable
lithium thionyl chloride battery, served as a backup system, equipped with a sensor system
capable of acquiring images from the surrounding environment (Figure 1.3b). An internal
computer compressed and stored an image on board: black and white images were used in
order to study the terrain, the distribution of soil and rock, the properties of the soil, the
condition of the machines after the touchdown. Communication with the Earth took place
through the Lander: the captured images were transmitted to a ground station which,
for its part, monitored the rover and the lander by giving them specific commands. The
slowness of this information exchange system marked the decline of teleoperations, in fact

5

1 – Introduction

Figure 1.4: Three generations of Mars rovers [60]

impractical over long distances given the need for the ground operations team to continu-
ously monitor the systems. For the Pathfinder mission the control station operators had
the necessity to adjust themselves to Mars time, sleeping and waking 37 minutes later each
day, for the entire mission [93]. The rover was unable to act autonomously but entered a
safe mode in case of anomalous situation and waited for the uplink of the new sequence
of commands from Earth. Sojourner’s mission ended in September 1997, when communi-
cation was lost and never recovered, but it was a success in highlighting the aspects to be
improved for future missions [93].
Experience with Sojourner provided, in fact, the basis for the development of subsequent
rovers as part of the Mars Exploration Rover, a robotic space mission involving two rovers,
Spirit and Opportunity, began in 2003 with the aim of continuing the analysis of the Mars
surface started years earlier. On their example it was realized Curiosity, a Mars Science
Laboratory, for the collection of martian soil samples and rock cores, their analysis for the
research of organic compounds and the exploration of environmental conditions that could
have supported microbial life now or in the past (Figure 1.4).
The experience of planetary exploration beyond the Moon has demonstrated the need for
UGV systems to improve key aspects of their behavior such as

- Robustness and flexibility in operation, choosing a behavior according to the sur-
rounding environment.

- Management of resources in terms of power, data storage, communication bandwidth.

- Failure recovery, the ability to recover system from faults given the costs associated
with space missions.

Everything is strongly linked to the necessity of on board autonomy in operation. Great
strides have now been made thanks to advances in path planning, obstacle avoidance and
navigation control.

6

1 – Introduction

1.3 Any robot is as good as another?
1.3.1 General arrangement
The brief look at the history of UGVs has suggested how the shapes and configurations
explored, as well as the solutions adopted for solving mobility and control problems, are
many and varied. As the degree of autonomy increases, the development of an integrated
system that can effectively manage the functions of hardware and software elements be-
comes essential [26]. Although in fact it is possible to use components that individually
perform their function in the best possible way, attention must be paid to the effectiveness
with which they are placed in relation to each other in order to obtain a globally efficient
system. A series of macro-areas essential to the definition of an autonomous system are
listed, both for the execution of high level tasks (sensing and perception, navigation and
planning, behavior, communication) and low level ones (energy, monitoring and diagnosis,
propulsion).

Sensing and Perception
The robot collects and interprets data from sensors or from the network in which it is
inserted. This information is necessary for the awareness of the situation, i.e. for the cre-
ation of a representation of the environment in which the UV operates and its recognition
through elements such as targets, obstacles, friendly units [105]. Perception is essential
to achieve autonomous mobility for which the vehicle must be equipped with on-board
sensors capable of orienting itself even in a complex environment. It is precisely the type
of operating environment, on the other hand, that determines the type of sensors required:
is the mission in sunlight? At night? In a wood? On a flat road? The identification
of the operating scenario is essential to equip the robot with the tools necessary for the
identification, classification and positioning of the elements in the space and to start its
navigation performance.
What it needs is a set of [26]

- Internal sensors: for wheel velocity such as odometers and encoders, for the steering
angle, for depth or altitude as pressure sensors, etc. They are used for low-level closed
loop control and dead-reckoning navigation.

- External sensors: such as IMU, GPS, provide position and orientation with respect
to an absolute reference frame.

- Environmental sensors: radar, IR and acoustic sensor, to create a more detailed map
of the surrounding environment.

The purpose is to estimate the vehicle’s position, orientation, speed and acceleration.

Navigation, Planning and Decision
Navigation System is concerned with the ability to move in a space toward a path of
waypoints or to the final destination detected in the meanwhile hazards and obstacles. It
takes input from perception functions and interacted with the other system to execute the
mission [26], in particular with the Planning and Decision System. The latter is related
to the trajectory to be followed and the actions to be execute to accomplish the mission,

7

1 – Introduction

i.e. to the generation of a safety path from a specified starting position to a final position
[105]. Input of the planning algorithm are a map of the environment in which obstacles
have been identified, the starting point and the final one. The major goal of both is to
provide enough information to allow near-autonomous mobility for the UGV [105].

Behavior end mobility
While Behavior is related to the combination of the outputs from Navigation, Planning
and Perception system to translate them in actuator commands for the robot, Mobility is
linked with the ability to implement these commands to really move the robot around the
environment [26]. Behavior can be also defined as the observable response of a single robot
vehicle to internal and external stimuli [105].

Communication and Human Interaction
Communication System provides the channel to exchange data between the robot and other
units, both operators or other robot in the network. When a user need to understand what
the system is doing and correct or monitor the situation, a Human Machine Interface or
HMI need to be developed [26]. Even for the highest levels of autonomy, in fact, human
intervention is required to set high-level goals, any additional limitations, problem moni-
toring and diagnosis, resource management [105].

Energy an Propulsion
It may seem trivial but even the smartest machine is unable to act unless powered. The
storage of energy on board and the efficiency with which it is spent are two key points in
the development of UVs. For small robots, electrical energy is the most used form; with
increasing size, hybrid systems are also allowed [26].

Health, Monitoring and Diagnosis
Monitoring and Diagnosis systems are used to detect and isolate failures within UVs sub-
systems. Although it is not widespread in small UGVs, it is widespread in larger ones [71].

Learining/Adaptation and Network Collaboration
Learning and Adaptation skills are essential to improve the robot performance over time
and they can have a great impact on navigation, planning and behavior tasks. The same
occurs with the possibility of exchanging information with a network of other vehicles
engaged in the execution of the same mission.

1.3.2 Degree of autonomy
Since the 1960s there has been a significant miniaturization of hardware and enormous
advances have been made in the fields of sensors, computer processing, image and signal
processing, communication and control techniques, allowing the achievement of an ever
higher degree of autonomy. It is precisely the level of autonomy possessed a first indicator
to create a classification: the one considered, although it refers to UGVs used in the
military field, highlights the essential characteristics that distinguish one type of UGV
from the other ([105] and [26]):

- Tele-operated UGVs or TGVs: robot is controlled by human operators from distance.

8

1 – Introduction

Figure 1.5: General Structure and Elements of a UV

If the distance is such that the operator cannot directly see the vehicle, it is the infor-
mation acquired through the sensors on board it and shown through a display system
that allows the display of the environment in which it is moving. The operator is
responsible for the actions of the robot, which he commands via a control interface,
and for the success of the mission, given that it is indeed the conductor of all cognitive
processes. For teleoperated robots, it is necessary to ensure a robust man-machine
communication channel, a valid interface between them, excellent mobility and ex-
cellent energy management. High operational performance is not required from the
robot itself, as well as tactical skills or cooperation with other units, learning and
adaptation or even mission and path planning (except in the case of loss of commu-
nication, where minimum performance is required) since it is the operator who takes
care of all decision-making processes.

- Semiautonomous: the robot moves using cognitive processes to select the best way to
move from one point to another. It is therefore capable of carrying out path planning
and obstacles avoidance tasks, with a more articulated suite of sensors than the TGVs,
including sensors for geolocation, night and day vision cameras, laser and spectral
sensors. It must have sufficient autonomy to select the best path and processes capable
of identifying its position independently, completing the mission with a few calls to the
operator. High performance is therefore required in the areas of navigation, mobility
and energy management, together with the need to guarantee excellent performance
also in path planning, adaptation to the environment and communication.

- Platform-centric Autonomous Ground Vehicles or PCAGVs: from DARPA definition
autonomous refers to A mode of control of a UGV wherein the UGV is self-sufficient.
The UGV is given its global mission by the human, having been programmed to learn

9

1 – Introduction

from and respond to its environment, and operates without further human interven-
tion. In order to be autonomous, the vehicle must therefore be able to independently
travel the distance from point A to point B, showing ability to detect obstacles,
navigation, reliability and robustness in crossing unknown environments, execution
of tactical maneuvers, awareness of the situation, while there is no need to ensure
excellent communication with the human operator.

- Network-centric Autonomous Ground Vehicles or NCAGVs: autonomous robots that
must stand out for their ability to operate autonomously and in a network, exploiting
the information received from the communication network and incorporating it into
their own mission execution.

Figure 1.6: Degree of autonomy and interaction with other UVs

The rapid evolution of technologies and their transition to the civil sphere have led to the
birth of other classifications capable of facing the multiplicity of nuances that such systems
have assumed, such the one of Sheridan and Verplank [92], the ALFUS (Autonomy Levels
for Unmanned Systems) classification [41] or the one defined by ASTM Commitee F45 on
Driverless Automatic Guided Industrial Vehicles [13]. The choice of one level of autonomy
over another is linked to the type of mission and surrounding conditions (operating envi-
ronment, mobility within the same, hostility, sensors available): it is therefore a real design
trade-off.

1.3.3 Mobility strategies
The choice of the type of mobility is also a key point of the design trade-offs. Aside from
the possibility of airborne and submarine systems, the most accredited and developed
alternatives for UGV are

- Wheel-enabled systems: one of the most used form of mobility in motion on the
ground.

- Leg-enabled systems: inspired to biological systems, they are designed to operate in
dangerous and rough terrain.

- Track-enabled systems: common in military vehicles, the tracks allow movement on
difficult terrain.

- Hybrid systems: they are a combination of more kind of mobility form exploiting
the advantages of each of them. Four possibilities have been studied: legs-wheels,
legs-tracks, wheels-tracks and legs-wheels-tracks [14].

10

1 – Introduction

A comparison between different strategies can be made based on a series of parameters as
reported in [90] and [14]

- Maximum speed capability: maximum speed on flat surface without obstacles.

- Obstacle traverse capability: capability to cross obstacles with random shapes.

- Slope climb capability: capability of climbing sloping surfaces maintaining a sufficient
degree of adhesion.

- Soil sinkage: ability to move on soft soil by having the least contact pressure without
large slip.

- Payload mass fraction capacity.

- Mechanical complexity: level of complexity of the system elements.

- Energy efficiency: how energy consumption is efficient related to normal operating
condition.

- Technology readiness level: level of maturity of the technologies.

The first five voices are linked to pure mobility performance (they are quantitatively mea-
surable) and the last three to a more general vision of system (considerations upon relia-
bility, for example, can be made based on them).

(a) Wheel-enabled system [19] (b) Track-enable system [27] (c) Leg-enabled system [89]

Figure 1.7: Different mobility strategies

Wheeled systems
Wheeled systems relie on a well established technology and on the ability to reach high
speeds on flat ground, with moderate sinkage on soft ground. These systems are generally
cheaper than other solutions and have shown high reliability, but their ability to overcome
obstacles is generally limited.

Tracked system
Tracked system has a better ability to climb and overcome obstacles, at the cost of a higher
energy expenditure. Generally their reliability is lower than other systems due to the pos-
sibility of track failure which brings to partial or total immobility. Only moderate speeds

11

1 – Introduction

are allowed compared with wheeled systems.

Legged systems
Legged systems are relatively recent and studies have shown high stability of movement
when overcoming obstacles [90] but higher power consumption. They are relatively slow
and characterized by high mechanical complexity which translates into the need for a com-
plex Control System.

Hybrid systems
Hybrid systems possess favorable characteristics due to the possibility of changing mobility
strategy depending on the situation. However they are extremely complex.

Summarizing and focusing on the basic three categories, the use of wheels has the ad-
vantage of guaranteeing high speed, low consumption, adequate redundancy and payload
carrying capacity but low slope climb capacity due to slippage. Tracks have good mobil-
ity in all terrains, high traction capacity even in yielding ones and good payload carrying
capacity, but they are not energy efficient due to the high friction of the tracks and charac-
terized by low speed and low reliability. Legged systems are distinguished by a good ability
to overcome obstacles but they require high energy to perform operations. With reference
to [14], a graphical comparison is proposed in Figure 1.8: along the x-axis, speed and
energetic efficiency are reported; along the y-axis, mobility in unstructured environments
is considered. Considering more properly the mechanical arrangement of the system that

Figure 1.8: Comparison between different mobility strategies

allows the mobility of the robot, different configurations for wheeled and tracked system
in particular are possible:

- Car-like vehicles

12

1 – Introduction

- Bi-wheeled vehicles

- Tracked vehicles

- Omni-wheeled vehicles

Figure 1.9: Comparison between different mechanical configurations

Again the mission conditions, costs, operating environment and technology availability
among others will guide the choice.

1.4 Mobile Robot Control and Navigation
An "intelligent" component in the robot is necessary to process information coming from
the environment and obtain commands to be sent to the actuators, responsible for the
physical movement of the body. Navigation is associated with the generation of a model
of the surrounding world in the form of a map, calculation of a safe trajectory from the
starting position to the final one and control of the movement along this trajectory avoiding
collisions with obstacles [88]. It is essential to

- provide enough information about robot’s states: Perception and Localization task.

- plan a trajectory free of obstacles: Trajectory planning task.

- control the movement along the trajectory selected: Control task.

1.4.1 Perception and Localization task
The ability of a robot to move autonomously in the environment is linked to its ability to
"perceive" what surrounds it. This is possible thanks to the use of sensors. As well as in
[88], two groups of sensors are identified:

- Proprioceptive-exteroceptive

– Proprioceptive sensors read information internal to the robot such as motor
speed, battery voltage etc.

– Exteroceptive sensors acquire information from the environment such as dis-
tances, sound and light intensity etc.

13

1 – Introduction

- Passive-active

– Passive sensors measure energy coming from surroundings such as microphones,
cameras, temperature probes etc.

– Active sensors radiate energy to measure the reaction of surroundings elements.

In [106], the most common sensors are divided in:

- Mechanical sensors: they require a physical contact with objects.

- Acoustic sensors: they employ ultrasound frequencies to sent and receive signals in
order to compute angular and linear position of the body.

- Electomagnetic sensors: they use the directionality and the time-of-flight information
to compute robot position.

- Magnetic sensors: they exploit static magnetic fields to obtain information.

- Optical sensors: they include cameras and other device sensible to light.

Within these groups they stand out

- Tactile sensors, they sense objects at a small distance around the robot.

- Encoders, they measure the angular speed of the motor shaft and constitute basic
element for motor control.

- Ultrasonic sensors, they are sound based sensors used to measure distance.

- Accelerometers, they feel acceleration.

- Gyroscopes, they measure angular velocities and orientation.

- Laser range finders, they calculate the time between the emission of a signal and its
return, obtaining the distance from the obstacle.

- Vision-based sensors, they use the electromagnetic spectrum to produce images.

- Depth sensors, able to reconstruct a 3-D view of the environment.

Localization, on the other hand, is related to the knowledge of the robot’s position. Dif-
ferent techniques [12] are available to estimate it, grouped in

- Relative position measurements or dead-reckoning, such as odometry and inertial nav-
igation;

- Absolute position measurements, such as magnetic compasses, Global Positioning Sys-
tem (GPS), landmark navigation.

14

1 – Introduction

The choice is usually associated with the availability of sensors on board, the required
accuracy, complexity, application purposes (GPS, one of the most used techniques, is not
useful for indoor missions, for example).

Odometry
One of the most widely used navigation method, it provide good short term accuracy with
a very low cost. Odometry is based on simple equations where the speed of the wheels is re-
lated to the movements of the robot and the position is obtained by integrating incremental
motion information over time [12]. It is however subject to systematic and non-systematic
errors: the former result from the kinematic imperfections of the robot (difference in wheel
diameters, different length of the tracks), the latter from dynamic interaction with the
ground.

Inertial Navigation
Gyroscopes and accelerometers are used to measure rates of rotation and accelerations,
obtaining through integration position information. They have the advantage of not re-
quiring external references but at the same time the disadvantage of accumulating and
increasing any small constant error after integration. The combination of gyroscopes and
odometry allows to immediately detect and correct orientation errors that would otherwise
be increased leading to a wrong lateral position information.

Global Positioning System
Technology available for outdoor applications. It provides to a GPS receiver information
about its location by transmitting a radio signal from a Satellites System and elaborating
it using advanced trilateration methods.

Landmark Navigation
Navigation is performed by identifying landmarks, i.e. distinct features of the environment
that robot can recognize (geometric shapes o specific code) relative to which it can localize
itself.

1.4.2 Trajectory planning task
Trajectory planning is related to find the force inputs to move actuators in order to follow
the best path and reach the target without obstacles collision [88]. There are numerous
methods developed in an attempt to solve the problem of motion planning of a mobile
robot. In [77] off-line and on-line algorithms are identified:

- Off-line path planning: complete information about stationary obstacles and moving
obstacles trajectory is known in advance.

- On-line path planning: information is acquired from the environment through sensors
and the path planned updated taking this into account.

They include ([88])

- Classical methods: roadmaps such as Visibility graphs and Voronoi diagram, potential
functions, Cell Decomposition. It is necessary to introduce the initial position, the

15

1 – Introduction

position of the goal, that of the static obstacles and the motion model of the dynamic
ones. The goal of the algorithm is the generation of the next position that the robot
must reach in order to arrive at the goal. In roadmap approach, positions that can
actually be occupied by the robot are mapped onto a network and the planning
problem degenerates to a graph-searching problem. In Cell Decomposition, the space
is decomposed into a series of cells and the path that joins the cell occupied by the
robot initially with the one containing the final arrival point is calculated, avoiding
collisions with the cells where there are obstacles. Movement is allowed based on the
relationships between adjacent cells. In the Potential Fields approach, the robot is
identified by a moving point influenced by the potential field defined by the sum of
an attractive potential towards the goal and a repulsive potential towards obstacles
[80].

- Probabilistic methods: they try to solve problems of the classical methods such as lim-
itations related to the complexity of computation in high-dimensional problems and
entrapment in local minima; they include probabilistic roadmap planners, randomized
potential planners, etc.

- Heuristic planners: they guarantee completeness, efficiency and optimality with re-
spect to the classical planner; A* algorithm is an example.

- Evolutionary algorithms: since classical approaches tend to fail in a dynamic envi-
ronment with multiple obstacles [62], evolutionary algorithms have been developed.
Genetic Algorithm and Particle Swarm Optimization are examples among the others.

- Sensor-based planners: movement is planned on the base of sensors information.

1.4.3 Control task
Controllers allow the plant to obtain the desired results in terms of achieving or maintaining
a position, a speed, an orientation. A plant is a physical entity which takes any form of
energy as input and produces an output; a system is more than a plant, it consists of a
plant together with other components around it [46]. The overall assembly constitutes the
system to be controlled. The control action is effective if it acts according to the specific
characteristics of the system. The analysis of the plant is necessary to understand which
controller is suitable based on the nature of the inputs and outputs or based on the nature
of the system itself, linear or non-linear for example. Not all controllers are suitable for all
situations.
There are two basic types of Control Systems [11]:

- Open loop in which the output from the system has no effect on the input signal to
the plant or process.

– Advantage: a simpler and cheaper plant with good reliability in case the func-
tioning of the system and its characteristics are well known.

– Disadvantage: no correction for errors in output which may result from external
disturbances, so lower accuracy.

16

1 – Introduction

- Closed loop in which the output of the system is fed back to the input and compared
with a reference. The error is used to control that the output is compliant with the
required value.

– Advantage: more accurate than the open loop solution in achieving and main-
taining the required value.

– Disadvantage: more complex and more costly than the open loop solution.

Basic elements of an open loop Control System (Figure 1.10) include:

- Control: it establishes the action to be taken as a result of the input to the system.

- Actuation: it performs the action to change the variable being controlled on the basis
of the input from the controller.

- Plant: it is the element on which the actuation block acts to obtain the desired
output.

Figure 1.10: Open loop system

Basic elements of a closed loop Control System (Figure 1.11) include:

- Comparison element: the reference value is compared with the actual output mea-
surement and an error signal is generated.

- Control: it establishes the action to be taken as a result of the error signal coming
from the comparison element.

- Actuation: it performs the action on plant on the basis of the input from the controller.

- Plant: it is the element on which the actuation block acts.

- Measurement element: it fed back a signal containing information about the actual
value of plant output in order to let it available as input for the comparison element.

Figure 1.11: Closed loop system

17

1 – Introduction

In general, feedback control is the control for which the signal relating to the current
conditions is brought back to modify the input signal [11]; forward control is the control
for which the control signal acts on the plant without any type of retraction.
There are many solutions for controlling a system. Standard robot controllers include

- PID controller.

- Computed torque controller, effective in the reduction of the effects of uncertainties
in the dynamic model.

- Sliding mode controller, based on the definition of a sliding surface in space and of a
control law that keeps the trajectory of the plant on the surface itself, causing it to
"slide" on that, possibly in a finite time [79].

- Adaptive controller, whose feature is the automatic adjustment in real time to achieve
and maintain a desired performance, especially suitable with unknown or change in
time behavior of the plant [79].

- Neural networks controller, based on the use of neural networks, algorithm able to
learn from observational data and find a solution to the problem.

- Fuzzy logic controller, using a collection of fuzzy conditional statements in the form
if (·) then (·) to decide what action perform to obtain the desired output. The
advantage in its choice is that does not depend on any mathematical model, so that
its application on non-linear systems is also effective [79].

Again, the choice of one type of control over another is a design choice.

1.5 Motivation and Contributions
This is intended to be an introduction into the world of small UGVs in order to underline
their potential: mobile robots such as Turtlebot, Husky, Jackal UGVs are widely used in
research for testing guidance strategies, control methods, Artificial Intelligence, Simultane-
ous localization and mapping or SLAM algorithms. The Devastator platform stands among
them with the aim of achieving autonomous navigation in GPS denied environments, using
only the information taken from sensors and processed by the on-board computer.
The goal is to obtain the model of the robot so that its behavior can be reproduced into
a simulation environment, taking advantage of the possibility of simulating more realistic
and complex missions than those that would be physically possible to perform in a research
laboratory.
The behavior of mobile robots has been extensively studied from many points of view:

- Kinematic description of the robot behavior

– Cerkala and Jadlovska [17] focuses on the mathematical modelling of mobile
robot with differentially driven two-wheel chassis considering the non-holonomic
constraints that characterized it.

18

1 – Introduction

– Majkut, Giergiel and Kohut [58] analyze the kinematics of a small crawler robot
assuming that it can be properly described using a two-wheeled parametrical
model. The "virtual wheels" location is found in those points where there is no
slip between the ground and the tracks.

– Nagatani, Endo and Yoshida [68] proposed a method to improve odometry accu-
racy including consideration on slippage; the kinematic model is completed with
slip values identification through a relationship that links them to the speed of
the tracks, whose parameters have been empirically calculated.

– Martinez at all [63] employ a kinematic approach for tracked mobile robots in
order to improve motion control and pose estimation based on the research of
the Instantaneous Center of Rotation position for the whole vehicle and for both
the tracks.

- Including dynamic consideration in the modeling

– Dar and Longoria [20] proposed a combination of kinematic and dynamic model
to describe robot behavior; GPS measurements and torque values obtained through
the motor model are used with an Extended Kalman Filter to estimate the un-
known parameters, especially the friction coefficients, demonstrating their rela-
tionship with the vehicle velocity and turning radius.

– Cerkala and Jadlovska [17] integrate a dynamic model together with the kine-
matic one and introduce friction effects demonstrating the serious impact on the
mobile robot final position.

– Dhaouadi and Hatab [38] develop a dynamic model for differential-drive mobile
robots based on Lagrangian mechanics and on Newton-Euler mechanics.

- Considering it as a tracked vehicle, even if in a small version

– Wong [115] extensively discusses the mechanics of vehicles equipped with wheels
as well as tracks and the complex interaction between them and the terrain.

– Wong and Chiang [114] elaborate a general theory for skid steering of tracked
vehicles under steady state conditions on firm ground, exploring the shear stress-
shear displacement relationship between the track and the ground.

- Considering robots as a input-output entities, moving towards a black box modeling

– Raafiu and Darwito [76] use input and output data sets coming from experiments
to create a MISO black box model of ARX and ARMAX type, characterized by
PWM-current inputs and angular speed of the wheel output.

– Sjijberg et al. [96] presented an unified overview of nonlinear black-box modeling
in System Identification, fundamental in the development of the mobile robot
model.

– Granja et al. [35] employ System Identification to create a controller that im-
proves the performance of the autonomous mobile robot. A second order model
is obtained with motors voltage as input and center of mass position in the
acquired image as output, since the robot is equipped with a camera.

19

1 – Introduction

– Iglesias et al. [43] propose to perform the System Identification of the robot
to obtain a transparent model to be used in control development and training;
the obtained NARMAX model allows the study of the system stability and the
individuation of the main factors involved in the execution of robot’s task.

– Kyriacou et al. [42] show how the modeling approach can be used to describe
the robot-environment-task interaction, making realistic predictions of robot’s
behavior.

- Considering them as platforms for testing Guidance, Control and Navigation algo-
rithms

– Pebrianti et al. [74] propose a mathematical modelling and a controller design
for autonomous wheeled mobile robot based on PID strategy; both a kinematic
model and a state-space model have been realized, together with a P, PD and
PID controller versions.

– Barsan [5] proposes PID controllers for the position control of a mobile robot
with differential steering and reports the implementation and tuning steps.

– G. Li and X. Li [52] exploit a sliding mode control method for trajectory tracking,
using an exponential reaching law instead of conventional laws to reduce chatter
and ensure reaching time as well.

– Ahmadi, Polotski and Hurteau [2] propose a path planning and control solution
based on a path in every point of which it is also defined the desired speed. The
objective of the controller is that of finding the tracks speed such as to minimize
the error between the desired and the actual velocity possessed by the robot and
this is reached first finding traction forces required and then the corresponding
track speed to be reached applying that forces.

– Guldner et al.[36] propose an artificial potential fields algorithm with a slid-
ing mode control strategy to improve the performance of non-holonomic mobile
robots navigation.

– Gupta et al. [37] employ an outer controller acting on positional error and a
inner PID controller acting on velocity error for the control of a non-holonomic
wheeled mobile robot.

– Ferrara and Rubagotti [25] propose a second order sliding mode control strategy
of the mobile robot based on a harmonic potential field.

– Tzafestas [106] provides a global overview of mobile robot control and navigation
methodologies developed over the last decades.

– Rubio et al. [88] present instead the state of the art, trends and novel application
upon locomotion, perception, cognition, and navigation fields.

– Sabudin et al. [66] review the traditional artificial potential field theory and the
variety of algorithms based on potential field method that have been implemented
to upgrade the potential function performance in obstacle avoidance and local
minima problem.

20

1 – Introduction

Modeling and Control of mobile robots are very complicated problems, where a general
solution has not yet been reached: this is due to the great variety of configurations that
a mobile robot can assume, to the multiple sensors it can be equipped with, to the dif-
ferent applications for which it is intended. The modeling strategy followed in the course
of this thesis is a black box modeling of the behavior of the robot associated with a kine-
matic model. The future integration of a dynamic model has been hypothesized given
the non-negligible presence of slippage, but the achievement of high tracking and control
performance is beyond the scope of this study and the effort has been directed rather to
the creation of a simple algorithm of Guidance and Control for the validation of the im-
plemented model.
The aim is to demonstrate how through the creation of a simulation model it is possible
to perform the tuning of the parameters and obtain the direct translation of the algorithm
into code that can be implemented on board the platform, with the considerable advan-
tages of not requiring continuous tests with the robotic platform, performing tests in safety,
freedom of experimentation and simplicity of integration of the solutions considered valid.

1.5.1 Outline
This thesis is structured as follows:

- In chapter 2 the mathematical model of the mobile robot is presented; first of all a
kinematic model characterized by non-honolomic constraints, subsequently a model
including the effects of slippage of the tracks and finally a dynamic model including
the friction affecting the system. An innovative method in the characterization of the
inertia of the system is presented using a composite pendulum and finally the lumped
parameter model of the DC motors, actuators of the system, is introduced.

- In chapter 3 the System Identification discipline is introduced, with a general overview
of the most used methods and in particular by introducing non-linear black-box mod-
eling; the steps necessary to create the model are summarized here, describing the
entire process from the data collection to the validation phase.

- In chapter 4 the algorithms selected for the implementation of GNC System are
widely discussed. The APF method is presented as path planning strategy while a
PID controller has been implemented for the reference tracking.

- In chapter 5 the experimental setup is presented together with all the experiments
conducted in order to obtain the robot model. For DC motors, both the model
obtained through a lumped parameter approach and that obtained through a data-
driven approach are reported. The inertia of the system is also calculated through
the pendulum experiment.

- In chapter 6 the model developed in the MATLAB/Simulink environment is intro-
duced. After a general overview of its structure, each block is analyzed and each
parameter in G&C algorithm studied in order to obtain acceptable performance.

- In chapter 7 the Gazebo environment is presented together with a timid introduc-
tion to the ROS world, indispensable tool for robotics. The goal is to ensure a good

21

1 – Introduction

behavior of the Guidance algorithm by testing it on a pre-existing model of the Devas-
tator implemented in Gazebo environment through a Gazebo-Simulink co-simulation,
in order to be able to proceed with its transformation into code through the Code
Generation function offered by MATLAB.

- In chapter 8 simple indoor missions are performed using the MATLAB/Simulink
model and Gazebo model. A real application on Devastator platform is also presented
to demonstrate the success of code generation.

Finally, a summary of what has been done and further considerations regarding the future
improvement of the presented algorithms have been reported.

22

Chapter 2

Mathematical model

Virtually every system we can think of can be described by mathematical model [8]

Cars, biological organisms, economic data flows, power plants: all these systems, although
very different for characteristics and properties, can actually be represented by mathemat-
ical relationships combined in an appropriate way inherent to the type of phenomenon
underlying each one. The set of these relations constitutes the mathematical model of the
system and the purpose of this chapter is to present the one identified for the representation
of the mobile robot behavior.

2.1 Basic concepts
Physical entities such as forces, torques, velocities and accelerations can be described by
vectors [23]. Let a Cartesian coordinate frame a (Figure 2.1) to be introduced: it can be
defined by three orthogonal unit vectors â1, â2 and â3 along the x, y, z axes of a. A vector

Figure 2.1: Coordinate Reference System a

v in a can be expressed as
v = va1 â1 + va2 â2 + va3 â3

23

2 – Mathematical model

where
vai = v · âi

with i ∈ {1, 2, 3} are the unique components of v in a. In a more compact form,

va =

va1va2
va3

If another Cartesian coordinate frame b with orthogonal unit vectors b̂1, b̂2 and b̂3 along
axes is introduced, v can equally be described by

v = vb1b̂1 + vb2b̂2 + vb3b̂3

where
vbi = v · b̂i

with i ∈ {1, 2, 3} are the unique components of v in b. Again, it is possible to compact
notation as

vb =

vb1vb2
vb3

So superscript a or b denotes that the vector v is given by the coordinates in a or in b.
It is possible to find a relation that binds the components of the vector v written in the
reference a, i.e. va, directly with those written in the reference b, i.e. vb

va = Ra
bv

b

where
Ra
b = [âi · b̂j]

is the rotation matrix Ra
b from a to b and its elements rij the direction cosines. Given that

the rotation matrix from a to b transforms a coordinate vector in b to one in a, the matrix
can also be called coordinate transformation matrix from b to a. An important property of
the rotation matrix is its orthogonality, so that the inverse passage from the coordinates
in the frame a to those in the frame b is achieved through

Rb
a = (Ra

b)−1 = (Ra
b)T

A rotation about a fixed axis is denoted as simple rotation and the coordinate transforma-
tion matrix is a function of the angle of which the two systems are rotated. Rotation from
one frame to another may also be described by a composite rotation made up of several
simple rotations between systems. Let suppose a rotation from a frame a to a frame c: it
can be obtained through a rotation from a to b and then one from b to c, i.e.

va = Ra
bv

b

vb = Rb
cv
c

24

2 – Mathematical model

Combining these two equations it is possible to write

va = Ra
bR

b
cv
c = Ra

cv
c

so that
Ra
c = Ra

bR
b
c

The rotation matrix for the composite rotation Ra
c is simply the product of the rotation

matrices from a to b and from b to c.
Consider two Cartesian reference systems a and b consisting of a set of three right-hand
axes. The rotation matrix describing the respective orientation of the frames is a 3×3
matrix with nine elements of which six are constrained given the orthogonality of the
matrix, so only 3 independent parameters are sufficient to identify it. One of the most
common parameterizations is that given by the Euler angles. The Euler angles are used
to describe the motion of rigid bodies that move freely in space: the rotation from a to b
is described as a rotation of ψ about the za-axis, a rotation of θ about the current rotated
y-axis and finally a rotation of φ about the current rotated x-axis (Figure 2.2).

Figure 2.2: Set of rotations from a to b

- From a to a1, rotation of ψ around za → va = Rz(ψ)va1

Rz(ψ) =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

- From a1 to a2, rotation of θ around ya1 → va1 = Ry(θ)va2

Ry(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

- From a2 to b, rotation of φ around xa2 → va2 = Rx(φ)vb

Rx(φ) =

1 0 0
0 cosφ −sinφ
0 sinφ cosφ

25

2 – Mathematical model

So
va = Rz(ψ)Ry(θ)Rx(φ)vb = Ra

bv
b (2.1)

where Ra
b = Rz(ψ)Ry(θ)Rx(φ) is the coordinate transformation matrix that transforms

a vector vb to a vector va. The order of the rotations is important and not random.
Suppose that the aim is to identify the change in the rotation matrix over time, that is,
define the angular velocity of one system with respect to the other. Considering a set of
simple rotations

- Angular velocity of a1 with respect to a written in frame a → ωaaa1 = ωz =

0
0
ψ̇

- Angular velocity of a2 with respect to a1 written in frame a1 → ωa1
a1a2 = ωy =

0
θ̇
0

- Angular velocity of b with respect to a2 written in frame a2 → ωa2
a2b

= ωx =

φ̇0
0

The angular velocity of frame b relative to frame a of the composite rotation written in
frame a will be

ωaab = ωaaa1 + ωaa1a2 + ωaa2b

equal to
ωaab = ωz +Rz(ψ)ωy +Rz(ψ)Ry(θ)ωx

Differentiation of a vector v with respect to a reference system can be expressed as

ad

dt
v := v̇a1 â1 + v̇a2 â2 + v̇a3 â3

where the superscript a on the differentiation operator denotes a differentiation with ref-
erence to frame a. The same can be written for differentiation with reference to frame
b:

bd

dt
v := v̇b1b̂1 + v̇b2b̂2 + v̇b3b̂3

A direct relationship can be expressed through the involvement of the angular velocity
between the two reference systems ωab

ad

dt
v =

bd

dt
v + ωab × v (2.2)

These basic concepts will be exploited for the description of the kinematic relationships of
which the model is constituted.

26

2 – Mathematical model

2.2 Motion in the space
Consider a rigid body free to move in space. Let there be two reference systems, an Inertial
Reference Frame i and a Body Reference Frame b, such that (Figure 2.3)

- Inertial Reference Frame i, fixed in the space, with a right-handed set of orthogonal
axes X, Y and Z

- Body Reference Frame b, joined to the body, with a right-handed set of orthogonal
axes x, y and z

Figure 2.3: Rigid body in the Inertial Reference Frame

The position of any point P in the rigid body is given by

rP = r0 + r (2.3)

where r0 is the position of one reference point in the rigid body with respect to the origin
of the frame i and r is the vector from that point to P.
The speed of the point P with respect to the Inertial system can be expressed by differen-
tiating1 the expression (3.16)

d

dt
rP = d

dt
r0 + d

dt
r (2.4)

to obtain
vP = v0 + d

dt
r (2.5)

Similarly to what is expressed in (2.2), it is possible to differentiate r with respect to the
Inertial frame as

d

dt
r =

bd

dt
r + ωib × r (2.6)

1For simplicity of writing, the superscript i will be omitted to indicate a differentiation with respect
to the Inertial reference system

27

2 – Mathematical model

introducing the angular speed ωib of the two references.
The complete expression is shown below

vP = v0 +
bd

dt
r + ωib × r (2.7)

It is also possible to express the acceleration of P with respect to the origin of the frame i
differentiating two times (2.4).

d2

dt2
rP = d2

dt2
r0 + d

dt

1 d
dt
r

2
= d2

dt2
r0 + d

dt

1 bd
dt
r + ωib × r

2
= d2

dt2
r0 +

bd

dt

1 bd
dt
r + ωib × r

2
+ωib ×

1 bd
dt
r + ωib × r

2 (2.8)

By performing simple algebraic steps from (2.8) it is possible to obtain the final expression

aP = a0 +
bd2

dt2
r + 2ωib ×

bd

dt
r + d

dt
ωib × r + ωib × (ωib × r) (2.9)

with

- aP acceleration of P

- a0 = d2

dt2r0 acceleration of 0

- bd2

dt2 r second derivative of r in b

- 2ωib × bd
dtr Coriolis acceleration

- d
dtωib × r transversal acceleration

- ωib × (ωib × r) centripetal acceleration

2.3 Assumptions and kinematic relationship
The objective of the discussion is the modeling of the robot behavior in its motion on a
flat surface. The following assumptions are accepted:

- The robot is considered a rigid body on tracks, that is, all the dynamics relating to
the elements inside the chassis are ignored.

- The robot motion is attribute to that of its center of mass CoM .

- The degrees of freedom of the body are three, two of position in the plane and one
of orientation along the vertical axis which is orthogonal to the surface on which the
motion occurs.

28

2 – Mathematical model

Figure 2.4: Reference Frames of the robot

- The Inertial Reference System is assumed such that the plane on which the X and Y
axes lie is parallel to that of the motion (the floor), while the Body Reference System
is such that the x-axis is in the frontal direction of advancement, the z-axis parallel
to Z, y in the lateral direction to complete the right-hand triad (Figure 2.4).

- rotations around the Z-axis are assumed to be positive if counterclockwise.

The position of the CoM in the Inertial Reference Frame is expressed through the pair
of coordinates X and Y ; the speed V is expressed through the components VX and VY
referring to it, while through the components Vx and Vy referring to the local one. As seen
in Section 2.1, the relationship between them can be easily obtained by referring to (2.1)
and considering that the only significant rotation is that of entity ψ around the Z-axis. By
gathering the information necessary to establish the velocity and the angular speed of the
body in a single vector, it is possible to express it asVXVY

ψ̇

 =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

VxVy
ψ̇

 (2.10)

which, in a more compact form, becomes

ξi = Ri
bξ
b (2.11)

The forward speed of the robot depends on the speed of the tracks, which in turn is a
function of the rotational speed of the driving wheels located on the right and left side of
the body. Given r the radius of the driving wheels, B the distance between the center lines
of the tracks, ωL and ωR the angular speeds of the left and right driving wheels respectively,
it is possible to predict the speed of the body in the global reference by a relationship of
the type

ξi =

VXVY
ψ̇

 = f(B, r, ψ, ωL, ωR) (2.12)

29

2 – Mathematical model

With the same behavior, the two tracks allows the motion forward/backward of the robot
while with the difference in speed between them its rotation; furthermore neither tracks
can contribute to sideways motion in the robot’s reference frame.
By making the relation (2.12) explicit, the kinematic model in the local frame is obtained:

ξb =

VxVy
ψ̇

 =

 r
2(ωL + ωR)

0
r
B (ωR − ωL)

 (2.13)

Through (2.11), it is possible to refer the model to the Inertial frame, thus obtaining

ξi =

VXVY
ψ̇

 =

 r
2(ωL + ωR)cosψ
r
2(ωL + ωR)sinψ

r
B (ωR − ωL)

 (2.14)

2.4 Kinematic constraints
It is important to identify and define the type of kinematic constraints given that they limit
the admissible configurations in the space of the robot. A holonomic kinematic constraint
is a constraint that can be expressed as an explicit function of position variables only [94].
A nonholonomic kinematic constraint is a constraint that requires a differential relationship
to be expressed: it cannot be integrated to provide a constraint in terms of the position
variable. The sliding constraint belongs to the latter category.
Approximate the behavior of the track to that of an equivalent wheel of angular velocity
ω, whose axis of rotation always remains contained in a plane parallel to that of the
motion of the robot. Suppose that this equivalent wheel has only one point of contact
with the ground and that it does not slip with respect to the latter: this is equivalent to
affirming that pure rolling motion is performed and no lateral slippage occurs. Consider
the generic configuration shown in Figure 2.5 in which a wheel constrained to a robot
chassis is reported. It is indicated with β the angle between the x-axis of the body and the
velocity vector V , while with l the distance of the body CoM to the wheel ground point
of contact. It can be a fixed wheel, i.e. β is fixed, unable to rotate with respect to an axis
perpendicular to the plane of motion, or a car-like wheel which has this further possibility
(β is a function of time).
Mathematically the condition of pure rolling and no lateral slippage for both the type of
wheel are translated in kinematic constraints by imposing that#

cosβ sinβ −lsin(α + β)
$

·Rb
iξ
i − rω = 0 (2.15)

#
sinβ −cosβ lcos(α + β)

$
·Rb

iξ
i = 0 (2.16)

Suppose the robot has N wheels: Nf standard fixed wheels and Ns steerable ones. Indi-
cating the rotational speeds of these wheels respectively with ωf and ωs and defining the
vector ω such as

ω =
3
ωf
ωs

4
30

2 – Mathematical model

Figure 2.5: General configuration of a wheel constrained to a robot chassis

the rolling constraints of all wheels can be expressed in a single equation as

J1R
b
iξ
i − J2ω = 0 (2.17)

where
J1 =

5
J1f

J1s

6
(2.18)

with J1f constant Nf × 3 matrix made up of rows containing the three terms of matrix
in (2.15) and J1s(βs) Ns × 3 matrix made at the same way but for a steerable wheel (so
depending of βs variable over time); J2 is a constant diagonal N ×N matrix with the radii
of all the wheels.
The sliding constraints of all wheels can be instead expressed in a single equation as

C1R
b
iξ
i = 0 (2.19)

where
C1 =

5
C1f

C1s

6
(2.20)

with C1f constant Nf × 3 matrix made up of rows containing the three terms of matrix
in (2.16) and C1s(βs) Ns × 3 matrix for a steerable wheel.
In summary, (2.17) represents pure rolling constraint while (2.19) the constraint for which
no motion orthogonal to the wheel plane is allowed. Assuming a parallelism between the
tracks of a mobile robot and an equivalent wheels representation, the latter are constrained
so that β = 0 and for the right wheel α = −π/2 while for the left one α = π/2. Refor-
mulating the relations (2.17) and (2.19) with these values, model in equation (2.13) can
be obtained, thus demonstrating that the combination of wheel pure rolling and sliding
constraints can provide the kinematic behavior of the system.
From the analysis of the rank2 of the matrix C1 it is possible to trace the number of
independent constraints that characterize the motion. In general, it is between 0 and 3:

2Rank is the maximum number of linearly independent rows or columns of a matrix

31

2 – Mathematical model

- It is 0 only if there are no independent kinematic constraints and it is possible if
neither fixed or steerable standard wheels are attached to the chassis.

- It is 3 only if each of the three degrees of freedom is constrained.

It is therefore defined the degree of mobility δm as

δm = 3 − rank[C1] (2.21)

and it is a measure of the degrees of freedom modifiable by changing the speed of rotation of
the wheels. For the differential-drive robot model equivalent to the tracked one examined
earlier, matrix C1 can be expressed as

C1 =
50 1 0
0 1 0

6
(2.22)

Rank of C1 is 1, so δm = 2. It is deduced that by acting on the angular speed of the wheels
it is possible to modify both the angular speed and the velocity of forward/backward
motion. For the sake of completeness, it is reported that for vehicles with steering wheels
a degree of steerability δs can be defined: δs is equal to the rank of the C1s matrix.
The total degrees of freedom that a robot can manipulate are defined by the sum of the
terms of mobility and steerability and defined as degree of maneuverability

δM = δm + δs (2.23)

It is important to take into account the degree of maneuverability as this is connected to
the control of the robot and the possibility of achieving specific positions in space.

2.5 Kinematic constraints violation
Pure rolling and no-slip conditions considered in the realization of the model (2.13) are
assumptions whose admissibility needs to be checked given the presence of a large contact
area of the tracks with the ground and given that they cannot be applied in skid-steering
case[59]. Skid steering principle is based on controlling the relative velocities of both left
and right tracks such as for differential drive wheeled vehicles: the difference lies in the
presence of a not negligible slippage during steering [62].
Suppose to expand the previous treatment by denying the condition of pure rolling and
considering the presence of longitudinal slippage through the slip ratios i defined as

iL = vL − vÍ
L

vL
(2.24)

iR = vR − vÍ
R

vR
(2.25)

for the right and left tracks respectively, with vL = rωL and vR = rωR theoretical left and
right velocities of tracks and vÍ

L and vÍ
R left and right actual velocities of tracks respect to

the ground. The denial of the condition of no lateral motion is also possible defining a side
slip angle α, i.e. the angle between longitudinal orientation of the mobile robot and its

32

2 – Mathematical model

actual running direction (Figure 2.4), that is non zero if lateral slippage occurs. Anyway,
assuming that vehicle’s velocity is small enough and friction force large enough, lateral
slippage can be neglected and α = 0 [68].
By integrating these considerations, equations (2.14) can be reformulated as

VX = r

2(ωL(1 − iL) + ωR(1 − iR))cosψ

VY = r

2(ωL(1 − iL) + ωR(1 − iR))sinψ

ψ̇ = r

B
(ωR(1 − iR) − ωL(1 − iL))

(2.26)

If no slippage occurs, iL = 0 and iR = 0 and the model degenerates in the previous
reported.
Slip ratios are determined by physical interactions between the tracks and the ground [24],
they are very complex to predict and require dynamical consideration to be investigated.

2.6 Dynamics
The dynamics of a tracked mobile robot is linked to the forces developed by the interaction
of the tracks with the ground. Neglecting the aerodynamic resistance and the effect of
suspension, the vehicle is subject to [102]

- tractive forces FL and FR

- longitudinal resistance forces RL and RR

- lateral force Fy

- moment of turning resistance induced by resistance forces Mr

Tractive forces
The introduction of basic concepts of terramechanics is essential to understand track-
terrain interactions. For certain types of terrain the behavior of the soil is similar to that
of an ideal elastoplastic material [102]. Below a certain stress, the behavior is elastic; when
the yield point is reached, this behavior becomes plastic and the transition leads to soil
failure. The stress for which this occurs is calculated by the Mohr-Coulomb theory and is
equal to

τ = c+ σtanφ (2.27)

with τ shear stress, c apparent cohesion, σ normal stress on the sheared surface and φ
angle of internal shearing resistance.
Cohesion of the material is the bond that cements particles together irrespective of the
normal pressure between them. When it is negligible, the result is that only a normal
pressure can held together particles. Thus, for example, shear stress does not depend on
normal pressure for clayey soil, while for dry sand it clearly increases with normal load;
this difference is why the equation (2.27) includes both contributions, since the ground
surface particles usually have both cohesive and frictional properties [115].

33

2 – Mathematical model

Figure 2.6: Free-body diagram of tracked vehicle

When a torque is applied to the sprocket of a track, shearing action appears at track-terrain
interface. To predict vehicle thrust and associated slip, the shear stress-shear displacement
relationship of the terrain is required.
Homogeneous soil properties are assumed, as well as the rigidity of the tracks and the
impossibility of stretching. Slip has been defined in equation (2.24) and (2.25) for left and
right track. A general expression is here reported:

i = v − vÍ

v
= vj

v

where v is the theoretical speed of the track defined by the sprocket rotational speed and
its radius, vÍ the forward speed of the track and vj the speed of slip with respect to the
ground. Shear displacement j at a distance x from the front of the track-terrain contact
area can be found with the equation

j = vjt

with t = x/v contact time of a considered point with the terrain. Rearranged the equation

j = ix

i.e. shear displacement increases linearly with the distance from the front of the contact
area [102].
Different consideration must be done according to the type of terrain (Figure 2.7):

- loose sand, saturated clay, dry fresh snow: the shear stress initially increases rapidly
with an increase in shear displacement, and then approaches a constant value with a
further increase. This behavior is represented by Janosi and Hanamoto exponential
law

τ = τmax(1 − e−j/K) = (c+ σtanφ)(1 − e−j/K) (2.28)

34

2 – Mathematical model

with K soil shear deformation modulus. It can be considered as a measure of the
magnitude of the shear displacement required to develop the maximum shear stress
[115].

- organic terrain (muskeg) with a mat of living vegetation on the surface: the shear
stress initially increases rapidly with the increase of shear displacement, it reaches a
threshold of maximum shear stress and then it continuously decreases. This is due to
the fact that the lower layers offer lower shear strength than the surface carpet. The
equation that describes this behavior is

τ = τmax(j/Kmax)e1−j/Kmax (2.29)

where Kmax is the shear displacement where the maximum shear stress occurs.

- compact sand, silt, loam and frozen snow: the shear stress has the same behavior of
that for organic terrain, but instead of continuously decreasing it approaches a more
or less constant residual value. This behavior is represented by the equation

τ = τmaxKr{1 + (1/Kr(1 − 1/e)) − 1)e1−j/Kmax}(1 − e−j/Kmax) (2.30)

withKr ratio between the residual stress shear and the maximum one, Kmax as above.

Figure 2.7: Shear stress for various terrains

The overall generated traction force is given by the integration of the stress along the track
length L extended to its width b:

F = b

Ú L

0
τdx (2.31)

where τ has the expression reported in equations (2.28), (2.29) or (2.30) according to the
type of soil. If it is assumed that the ground is non-deformable, i.e. that the contact be-
tween the track and the ground is comparable to a rigid footprint, and that the distribution
of the normal pressure produced by the track is uniform, τ takes the expression

τ =
1
c+ W

bL
tanφ

2
(1 − e−ix/K) (2.32)

where W is the normal load and W/bL the normal pressure, independent of x given the
uniformity of the distribution. This allows to rewrite the expression (2.31) and get

F = (Ac+Wtanφ)
1
1 − K

iL
(1 − e−iL/K)

2
(2.33)

35

2 – Mathematical model

with A contact area.

Longitudinal resistance forces
The longitudinal resistance contribution is calculated as proportional to the normal load
acting on the track through a coefficient µr such as to be in the opposite direction with
respect to the direction of travel of the track:

Ri =
I

−sign(vi) mg
2 µr if vi /= 0,

0 if vi = 0
(2.34)

where vi is the speed transmitted by the tracks to the robotic platform and i stands for L
or R, left or right track respectively.

Lateral force
The lateral friction force is calculated similarly to the longitudinal resistance force. It is
proportional to the normal pressure per unit length of the track through a coefficient µl,
then integrated taking into account the distribution of lateral frictional force due to the
turning maneuver. The distribution is such as to depend of the center of instantaneous
rotation 3 position, so

Fy = −sign(Vy) 4µl
mg

2L xICRc (2.35)

with xICRc the position of the vehicle’s ICR along the x-axis.

Turning Resistance Moment
The resistance moment is due to the generation of a lateral friction force on the tracks.
Its value can be obtained by the integration of the distribution of this force over the track
length:

Mr = −sign(ψ̇) 4µl
mg

2L
1L2

4 − x2
ICRc

2
(2.36)

where again xICRc is the position of the vehicle’s ICR along the x-axis. It is such as to
oppose the rotation of the platform.

In this context, given the indoor application of the mobile robot on a flat and not de-
formable soil and the difficulty linked to identifying all the parameters necessary for the
discussion, the forces that will be responsible for traction are those generated by the driv-
ing torque applied by the sprocket to the track. Traction torques will be indicated as
τ = {τL, τR}T for the left and right track respectively.
Let m be the mass of the body, J its inertia of rotation about its center of mass along the
z-axis. Dynamic equations in Body fixed frame are reported:

max = FL + FR −RL −RR

may = Fy

Jψ̈ = (FR −RR)B2 − (FL −RL)B2 −Mr

(2.37)

3The instantaneous center of rotation (ICR) is defined as the point in the horizontal plane respect
to which the motion can be represented by a rotation without translation [61]

36

2 – Mathematical model

with ax, ay and ψ̈ acceleration along the x-axis, y-axis and angular acceleration around
the z-axis. Similarly to what done for the kinematic model in Section 2.3, the equations
can be traced from the Body system to the Inertial system:ẌŸ

ψ̈

 =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

axay
ψ̈

 (2.38)

Defining as M the matrix with mass and inertia contributionm 0 0
0 m 0
0 0 J

and as Ri

b the rotation matrix,

M

ẌŸ
ψ̈

 = MRi
b

axay
ψ̈

 = Ri
b

 FL + FR −RL −RR
Fy

(FR −RR)B2 − (FL −RL)B2 −Mr

 (2.39)

By rearranging the last term, a more compact expression can be reported:

M

ẌŸ
ψ̈

 = B

3
τL
τR

4
−C (2.40)

with

B = 1
r

 cosψ cosψ
sinψ sinψ
−B/2 B/2

C =

(RL +RR)cosψ + Fysinψ
(RL +RR)sinψ − Fycosψ

(RR −RL)B/2 +Mr

(2.41)

Summing up, the dynamic model is obtained:

Mξ̈i = Bτ −C (2.42)

37

2 – Mathematical model

2.6.1 Inertia of the System
One of the fundamental parameters for the development of the dynamic model is the robot
inertia to rotation around the Z-axis. In analogy to what reported in [16], the pendulum
method is adopted in order to identify the value of J . Let introduce a composite pendulum
made up of two bodies, respectively of mass m and m1, as well as inertia I and I1, free to
oscillate together around a hinge. Introducing an Inertial Reference System, their position
is described by a right-hand triad x, y, z with origin in the hinge and z-axis parallel to
the rotation axis (Figure 2.8). In this formulation it is neglected the motions along x and z
directions and it is indicated with θ the angle of oscillation of the pendulum. Furthermore
the effects of friction between the hinge and the support are assumed as irrelevant. The
equation of motion is evaluated through the Lagrangian dynamics as

L = K − V (2.43)

with K and V respectively kinetic energy and potential energy of the system. K is the

Figure 2.8: Pendulum system

sum of the kinetic energy of the centers of mass of the two bodies, consisting of a linear
and a rotational component

K = 1
2mẏ

2 + 1
2m1ẏ

2
1 + 1

2Iθ̇
2 + 1

2I1θ̇
2 (2.44)

reformulated as
K = 1

2
!
ml2 +m1l

2
1 + I + I1

"
θ̇2 (2.45)

where l is the center of gravity-hinge distance of the first body, l1 the center of gravity-
hinge distance of the second.
V is the sum of the potential energy of each body

V = mgl(1 − cosθ) +m1gl1(1 − cosθ) (2.46)

38

2 – Mathematical model

Applying the Lagrangian approach,

d

dt

1∂K
∂θ̇

2
+∂V

∂θ
= 0 (2.47)

that is !
ml2 +m1l

2
1 + I + I1

"
θ̈ −

!
mgl +m1gl1

"
sinθ = 0 (2.48)

Considering oscillations of small amplitude it is possible to assume the validity of the theory
of small perturbations for which sinθ ≈ θ and the expression can be reformulated as

Aθ̈ +Bθ = 0

second order equation for undamped systems with natural oscillation frequency

ω2
n = B

A
(2.49)

directly related to the period of oscillation

T = 2π
ωn

(2.50)

By substituting A and B with the respective expressions and isolating the unknown pa-
rameter of the system, it is possible to obtain the identification of the inertia of the system:

I =
1 T

2π
22

(mgl +m1gl1) −ml2 −m1l
2
1 − I1 (2.51)

2.7 Actuation model
Robot motion is allowed by the movement of the two tracks; in turn, their movement is
allowed by two DC motors. Another important element for the kinematic and dynamic
models is in fact the behavior of the actuators in terms of angular speed and driving torque.
An electric motor is an electro-mechanical device responsible of the conversion of electric
energy into mechanical energy [47]. Electric machines can be classified into two big groups
[64]: brushed and brushless machines. The difference relays in the use of mechanical contact
elements to power the machine for the former and in their absence in the latter. Brushed
DC motors are very widely used and this is linked to the easy understanding of their
operations and therefore to the ease of their control: simple speed/torque control can be
implemented with excellent drive performance [47].
To explain the working principle, let consider a "simplified motor" with one coil passing
through a space between two permanent magnets with opposite polarization [50]. Referring
to Figure 2.9, through brush X the current flows in section A of the commutator and
through the coil arrives to the other commutator half ring B and brush Y. Because of the
existence of a magnetic field generated by the permanent magnets, the current passing
through the coil generates a force that is downwards for the right side and upwards for the
left one, given that according to Lorentz law

F = iL×B (2.52)

39

2 – Mathematical model

Figure 2.9: Simple permanent magnet DC motor-[50]

with i flowing current, L vector with the length of the wire and direction of current flow,
B magnetic field vector. The coupling of the two forces generates a moment that turns
the coil and the commutator. To ensure that rotation always occurs in the same direction,
the direction of the current flowing in the commutator is switched.
In a real DC motor the rotating wire coil is wound round a piece of ferromagnetic material;
more than one coil can be used, thus having a segmented commutator and not only a two
half rings one; also more than one pair of magnets can be employed, stabilizing the output
torque [50].
An electric motor is composed of two main parts:

- a stationary part or stator

- a moving part or rotor

Figure 2.10: PM DC motor

Mechanical commutation devices are also present and consist of brushes and commutators.
Similarly to the simplified motor previously described, the stator magnetic flux, generated

40

2 – Mathematical model

by the presence of permanent magnets, interacts with the rotor one, generated by the
current flowing through the brushes and the collector, causing the birth of a force that
tends to move the rotor and create a drive torque proportional to the armature current.
The relationship between them is quantified by a coefficient, Kc, defined torque constant.
The movement of the rotor has as a secondary effect the generation of a back electromotive
force, proportional to the rotation speed ωm through a coefficient Kem depending on the
characteristics of the motor, defined constant of Back EMF or Back EMF, whose growth
determines a decrease in the output torque. Against the motion there are also countless
other phenomena that are difficult to identify, friction above all, linked to the losses in the
materials, to the heat generated, to the sparking of the collectors.
A Permanent Magnet or PM brushed DC motor is analyzed and modeled. Assume a
simplified model in which mechanical, iron and additional losses, as well as the influence
of temperature and environment on machine parameters, are neglected and a mechanical
friction is considered as a linear function of motor speed. The electric motor can be
represented by two functional blocks:

- Electromagnetic part, that represents the behavior of the stator and rotor windings,
described by a system of differential equations linked to electrical quantities.

- Mechanical part that represents the mechanical behavior of the moving parts, de-
scribed by laws of dynamic equilibrium, linked to the inertia of the rotating masses
and to the internal resisting torques.

Electromagnetic part
The DC motor is characterized by inductance La and resistance Ra. The equation describ-
ing the relationship between supply voltage Va, current ia and back EMF e is

Va = La
dia
dt

+Raia + e (2.53)

where it is suggested that the applied voltage Va is the result of the voltage drop at the
inductance, at the resistance and due to the presence of the counter electromotive force
[39]. The back electromotive force e is shown to be proportional through the Back EMF
constant to the motor rotation speed ωm

e = Kemωm (2.54)

while the driving torque Cm at the intensity of the armature current through the torque
constant

Cm = Kcia (2.55)

Although the two constants have different names, they numerically and theoretically co-
incide: the phenomenon underlying the generation of the back electromotive force is the
same underlying the production of the driving torque and is linked to the specific charac-
teristics of the motor itself. In real application this is not always true due to mechanical
imperfection, losses etc.

41

2 – Mathematical model

Mechanical part
The behavior of the rotating parts of the motor is simplified in a linear relationship by
inserting

- a term representing the driving torque Cm

- a term representing the resistant torque C1

- a term proportional to the speed of rotation through a coefficient fm of friction

- a term proportional to the derivative of the rotational speed through the moment of
inertia Jm

Cm = C1 + fmωm + Jm
dωm
dt

(2.56)

Because of the presence of a gear box, a gear ratio need to be defined:

τ = ω

ωm
(2.57)

with ωm angular speed of the motor shaft and ω angular speed of the external one. By
imposing a unitary efficiency, for conservation of power

C1ωm = C2ω (2.58)

so that the torque C1 is proportional at the one applied on the external shaft of the gear
box C2 through the gear ratio τ . When an external load is applied, at the external shaft

C2 = Cr + fω + J
dω

dt
(2.59)

where Cr is the resistant load torque, f is the friction coefficient and J the load inertia.
Reducing to the motor shaft, it is possible to find

Cm = C2τ + fmωm + Jm
dωm
dt

= (Cr + fω + J
dω

dt
)τ + fmωm + Jm

dωm
dt

= Crτ + (fτ2 + fm)ωm + (Jτ2 + Jm)dωm
dt

= Crτ + ftot ωm + Jtot
dωm
dt

(2.60)

Summarizing, the mathematical model of the DC motor-load system can be obtained:

Va = La
dia
dt +Raia + e

e = Kemωm

Cm = Kcia

Cm = Crτ + ftot ωm + Jtot
dωm
dt

(2.61)

42

2 – Mathematical model

Figure 2.11: DC motor with gear and external load

Relating the motor torque and the angular velocity, the relation in Figure 2.12 is found: this
relation is also known as the DC motor characteristic. The motor identification through a
lumped parameter approach will be addressed to its realization.

Figure 2.12: DC motor characteristic

43

Chapter 3

System Identification

Given the mathematical model and the input to a system, the system response can be com-
puted: this is the simulation problem. [...] Given measurements of the system inputs and
outputs, determine what the mathematical model of the system should be: this is ’system
identification’ [8]

System modeling is a procedure that concerns the identification of system characteris-
tics and the possibility of reproducing its behavior in a simulation environment. For a
good working model [111]

- data quality must be good enough

- model selection must be based on the intended use

- complex model does not mean better model, trade offs on appropriate complexity
must be conducted

- data must be collected in a "smart" way, i.e. with the appropriate timescale

- validation must give acceptable results

Models can be classified as

- White Box : at the bases of the system there are known physical laws which are
translated into a mathematical model.

- Grey Box : the physical laws underlying the system are known, but not all the pa-
rameters that characterize it.

- Black Box : the processes are not transparent and the physical laws are not immedi-
ately verifiable, no a priori information about the system is available.

The first type of model is linked to an approach based on the knowledge of the physical
phenomenon, the second is a mixed approach that involves both physical laws and data
analysis techniques, the last instead provides exclusively for a data-driven approach with-
out the need of identifying the basic physical phenomenon.

44

3 – System Identification

Figure 3.1: Model properties

From these considerations two fundamental approaches are highlighted [101]:

- Analytical Modeling

- Experimental Identification

The first is based on differential equations for the description of the physics of the process
and for the characterization of the mechanical, electrical, thermal and fluid response; the
second considers the system as an entity that, when prompted by data inputs, responds
with certain outputs.
Experimental identification is linked to the discipline of System Identification. System
identification is the mathematical description of a system obtained on the basis of avail-
able information, such as the knowledge of inputs and the measurement of outputs. The
identification procedure includes the following steps [51]:

- Record a data set of input-output

- Choose the class of model or model structure

- Estimate the model coefficients on the basis of certain criteria

- Validate the obtained model

A discrete time treatment is introduced given the discrete nature of the sampling performed
on the real system. A simplified scheme of the data recording process is shown in Figure 3.3:
the external input given through a computer is converted from digital to analog actuators
input that physically act on the system. The state of the former is then measured by sensors
and the information reaches the computer again through an analog-digital conversion, thus
obtaining the system outputs.
The sampling period Ts is important since it is linked to the information that can be
obtained from a signal. The availability of information defines the model identifiability,
i.e. the possibility to obtain a unique model. Identifiability is guaranteed, at least for
linear time-invariant systems, when the input is persistently exciting [104], that is when it

45

3 – System Identification

Figure 3.2: Identification procedure

contains almost all frequencies necessary to identify system dynamics.
For simplicity, let us consider linear time invariant systems with single output, single

Figure 3.3: Sample data system

input (SISO) structure. In time-domain space, the mathematical model of a physical
system is based on a set of differential/algebraic equations and can be represented both
with a Difference equation model and with a State-space model. The former focuses upon
input-output relationship, underlining the link between present and past inputs and output.
The latter includes variables or states providing an internal description of the system. The
state-variables vector x(k) is defined as the minimal set of linearly independent variables
such that knowledge of the states at any time k0 plus the information on the input u(k)

46

3 – System Identification

for subsequently applied k ≥ k0 are sufficient to determine the state of the system and the
output y(k) at any time k ≥ k0 [22]. For system identification, an input-output model is
preferred [22].

3.1 Model Structures
Basic structures can be employed to describe system dynamics, even if it is characterized
by strong non-linearity. The objective is in fact to develop a model in order to predict
the behavior of the system with an approximation: in some applications the shape of the
model is not even important [8], as long as this is functional for the designer’s purpose.
System output depends on the input, on the disturbances and on the measurement noise.
Signals, noises or more generally the uncertainties of the system can be managed with two
different approaches:

- Deterministic approach

- Stochastic approach

Deterministic signals include constant signals, exponential ones, sinusoids and their com-
binations. The basic deterministic signal capable of generating an output y(k) is an input
u(k) modeled as a delta function δ(k) equal to

u(k) = δ(k) =
; 1 if k = 0

0 else
(3.1)

Stochastic signals are signals that at a fixed time instant k are random and their behavior
is determined by their PDF of Probability density function1. The elementary signals
analogous to the delta function for the deterministic case is the white noise, a sequence of
independent and identically distributed random variables

e ∼ WN(0, σ2) (3.2)

with zero mean (E[e] = 0) and autocorrelation2 matrix in the form σ2I, I identity matrix
[113]. White noises are used to model the uncertainties that characterize the system.
The basic idea in modeling is to identify a process by splitting itself in a predictable and
an unpredictable component [104]:

y(k) = ỹ(k) + ν(k) (3.3)

with ỹ(k) the predictable part and ν(k) the ideal random process with white noise charac-
teristics.

1PDF is a function whose value at any given sample in the sample space (the set of possible values
taken by the random variable) can be interpreted as providing a relative likelihood that the value of
the random variable would equal that sample [75]

2Autocorrelation is the cross-correlation of the signal with itself; considering a sample and another
one of the same signal delayed by a quantity τ of time, autocorrelation can verify how similar the two
values are to the progress of time [4]

47

3 – System Identification

Figure 3.4: Model representation

3.1.1 LTI and SISO systems
In a more extended form LTI systems can be described by difference equations such as

y(k) + a1y(k − 1) + ... + anay(k − na) = b0u(k) + b1u(k − 1) + ... + bnbu(k − nb) (3.4)

with [ai] and [bi] multiplicative coefficients, y(k) the output of the system, u(k) the input,
na and nb non negative integers denoted as orders of the polynomials or model orders. In
particular na is linked to the number of past outputs that have a link with the actual one,
nb is the number of past inputs that affect the output. Introducing the backward shift
operator q−1 such that

q−1x(k) = x(k − 1) (3.5)
and the forward shift operator q as

qx(k) = x(k + 1) (3.6)

with x a generic signal, equation (3.4) can be re-written as

(1 + a1q
−1 + ... + anaq

−na)y(k) = (b0 + b1q
−1 + ... + bnbq

−nb)u(k) (3.7)

Returning to a synthetic form,

y(k) = G(q−1)u(k) (3.8)

where
G(q−1) = (b0 + b1q

−1 + ... + bnbq
−nb)

1 + a1q−1 + ... + anaq
−na

= B(q−1)
A(q−1) (3.9)

is also known as plant model. From the analysis of the poles and zeros of the plant model
it is possible to determine the stability of the discrete system:

- Asymptotic stability if all poles lie inside the unit circle.

- Marginal stability if all poles lie strictly inside or on the unit circle and the ones on
the unit circle are simple.

- Instability if at least one pole lies outside the unit circle.

48

3 – System Identification

Noise in the system can be represented in a similar way of equation (3.8) as

ν(k) = H(q−1)e(k) (3.10)

where the white noise signal e(k) is considered as an "input" of the stochastic process ν(k)
and H(q−1) the noise model.
Assuming that the process evolves as a linear combination of M past values of the input
plus an uncertainty, a Moving Average (MA) model can be obtained

ν(k) = H(q−1)e(k) =
1
1 +

MØ
i=1

ciq
−i

2
e(k) (3.11)

Supposing that the process evolves instead as a linear combination of P past values of the
output plus an uncertainty, an Auto Regressive (AR) model can be obtained

ν(k) = H(q−1)e(k) = 1
1 +

qP
j=1 djq

−j
e(k) (3.12)

More often a combination of the two is found: it is the Auto Regressive Moving Average
(ARMA) model, with

ν(k) = H(q−1)e(k) = 1 +
qM
i=1 ciq

−i

1 +
qP
j=1 djq

−j
e(k) (3.13)

A superimposition of the predictable and unpredictable parts is made to obtain a more
realistic behavior of the system: in other words, it is equivalent to say that the output
measurement y(k) is the result of a combination between the response of the deterministic
process ỹ(k) and the noise process ν(k) [104]

y(k) = G(q−1)u(k) +H(q−1)e(k) e(k) ∼ WN(0, σ2) (3.14)

On the basis of the form presented in the equation (3.14) and assuming possible a para-
metric representation for G(q−1) and H(q−1) as rational polynomial transfer functions, it
can be written that

A(q−1)y(k) = B(q−1)
F (q−1)u(k) + C(q−1)

D(q−1)e(k)

G(q−1) = B(q−1)
A(q−1)F (q−1)

H(q−1) = C(q−1)
A(q−1)D(q−1)

(3.15)

with y(k) and u(k), k = 1, 2, ..., the system output and input signals, e(k) the noise
sequence with white noise characteristics and A(q−1), B(q−1), C(q−1), D(q−1) and F (q−1)
polynomial expressed as

A(q−1) = 1 + a1q
−1 + ... + anaq

−na

B(q−1) = b1q
−nk + ... + bnbq

−nb+1−nk

C(q−1) = 1 + c1q
−1 + ... + cncq

−nc

D(q−1) = 1 + d1q
−1 + ... + dndq

−nd

F (q−1) = 1 + f1q
−1 + ... + fnf q

−nf

(3.16)

49

3 – System Identification

with [ai], [bi], [ci], [di] and [fi] coefficients, na, nb, nc, nd and nf the model orders, nk the
input-output delay.
Different models are available:

- Auto-Regressive with eXogenous input model or ARX

- Auto-Regressive and Moving Average with eXogenous input model or ARMAX

- Output Error model or OE

- Box-Jenkins model or BJ

ARX → noise filter has the same characteristics as the process

y(k) = B(q−1)
A(q−1)u(k) + 1

A(q−1)e(k) (3.17)

or in difference equation form

y(k)+a1y(k − 1) + ... + anay(k − na) =
b1u(k − nk) + ... + bnbu(k − nk − nb + 1) + e(k)

(3.18)

This structure is also denoted as ARX(na, nb) with nk as delay.

ARMAX → a moving average part for the noise model is considered

y(k) = B(q−1)
A(q−1)u(k) + C(q−1)

A(q−1)e(k) (3.19)

or in difference equation form

y(k)+a1y(k − 1) + ... + anay(k − na) = b1u(k − nk) + ... +
bnbu(k − nk − nb + 1) + c1e(k − 1) + ... + cnce(k − nc) + e(k)

(3.20)

This structure is also denoted as ARMAX(na, nb, nc) with nk as delay.

OE → noise directly affects the output

y(k) = B(q−1)
F (q−1)u(k) + e(k) (3.21)

or in difference equation form

y(k)+f1y(k − 1) + ... + fnf y(k − nf) = b1u(k − nk) + ... +
bnbu(k − nk − nb + 1) + f1e(k − 1) + ... + fnf e(k − nf) + e(k)

(3.22)

This structure is also denoted as OE(nb, nf) with nk as delay.

BJ → independent parametrization of plant and noise model

y(k) = B(q−1)
F (q−1)u(k) + C(q−1)

D(q−1)e(k) (3.23)

50

3 – System Identification

or in difference equation form
ỹ(k) + f1ỹ(k − 1) + ... + fnf ỹ(k − nf) = b1u(k − nk) + ... + bnbu(k − nk − nb + 1)
ν(k) + d1ν(k − 1) + ... + dndν(k − nd) = c1e(k − 1) + ... + cnce(k − nc) + e(k)

y(k) = ỹ(k) + ν(k)
(3.24)

This structure is also denoted as BJ(nb, nc, nd, nf) with nk as delay.

Figure 3.5: Linear Black-Box Model structures

3.1.2 Nonlinear and SISO systems
Models for linear time invariant SISO type systems have been analyzed. A linear model is
often sufficient to capture the dynamics of the system but sometimes nonlinear models are
required. When does it happen? [54]

- Linear model is not good enough, i.e. poor fit between measured output and model
output is provided.

- Weakly nonlinear characteristics affect the system, for which dynamics is not well
captured.

51

3 – System Identification

- Physical system is inherently non linear, such as for dry friction, saturation.

For each of these situations, a non-linear solution is offered: NARMAX, NARX, Hammerstein-
Wiener models, Nonlinear State-Space models, etc.

A NARMAX model is defined as
y(k) = F (y(k − 1), y(k − 2), ..., y(k − ny),

u(k − nk), u(k − nk − 1), ..., u(k − nk − nu),
e(k − 1), e(k − 2), ..., e(k − ne)) + e(k)

(3.25)

where y(k), u(k) and e(k) are the system output, input and noise, respectively; ny, nu
and ne are the orders for system output, input and noise respectively; F (·) is a nonlinear
function and nk the system delay [8].

A NARX model is defined as
y(k) = F (y(k − 1), y(k − 2), ..., y(k − ny),

u(k − nk), u(k − nk − 1), ..., u(k − nk − nu)) + e(k)
(3.26)

where again y(k), u(k) and e(k) are the system output, input and noise respectively, ny
and nu are the orders for system output and input, F (·) a nonlinear function and nk the
system delay [1].

Hammerstein-Wiener models describe dynamic systems using a nonlinear and linear
blocks in series as shown below [54]:

u(k) → input nonlinearity F → linear block → output nonlinearity H → y(k) (3.27)

When the model contains only nonlinearity in input, it is called a Hammerstein model;
when only in output, it is called a Wiener model. It is particularly useful when there is
the need to model a nonlinear element while keeping the dynamics of the system linear.
For example, for modeling of saturations or almost linear inputs/outputs that can be
approximated with a piece-wise linear function [54].
Many types of model structures are available to approximate the unknown function F (·),
such as polynomial models, neural networks, fuzzy logic-based models, wavelet expansions
[8].

3.1.3 Nonlinear and MIMO systems
In subsection 3.1.1 the linearity of the system and a SISO structure of it have been assumed.
In subsection 3.1.2 the discussion has been extended to nonlinear systems; in the following
section, MIMO or multi-input multi-output systems are considered. Focus the attention on
a system with m outputs and r inputs. In analogy with the equation (3.25), it is possible
to write [6]

y(k) = F (y(k − 1), y(k − 2), ... , y(k − ny),
u(k − nk), u(k − nk − 1), ... , u(k − nk − nu),
e(k − 1), e(k − 2), ... , e(k − ne)) + e(k)

(3.28)

52

3 – System Identification

where

y(k) = [y1(k) ... ym(k)]T

u(k) = [u1(k) ... ur(k)]T

e(k) = [e1(k) ... em(k)]T
(3.29)

are the system output, input and white noise respectively; ny, nu and ne are the orders
for system output, input and noise; F (·) is a matrix of nonlinear functions F1(·), F2(·), ...,
Fm(·) that can be implemented based on any of the model types discussed and expressed
in a more extended form as [104]

y1(k) = F1(y1(k − 1), ... , ym(k − ny),
u1(k − nk), ... , ur(k − nk − nu), e1(k − 1), ... em(k − ne)) + e1(k)

y2(k) = F2(y1(k − 1), ... , ym(k − ny),
u1(k − nk), ... , ur(k − nk − nu), e1(k − 1), ... , em(k − ne)) + e2(k)

...

ym(k) = Fm(y1(k − 1), ... , ym(k − ny),
u1(k − nk), ... , ur(k − nk − nu), e1(k − 1), ... , em(k − ne)) + em(k)

(3.30)

3.2 Identification process
The problem of System identification is to find the optimal estimate of the system given N
observations of the input-output data. Estimation is about inferring unobserved data from
a given information set using a mathematical relationship and a precise estimate criterion
[104]. Important elements are

- the information set of input-output data Z

- the model M chosen (see subsection 3.1.1, subsection 3.1.2 and subsection 3.1.3)

- the objective function J , a mathematical statement used to establish the criterion for
the "best" selection

- the predictor, a mathematical entity that generate the estimation through the previous
elements

The parameter or vector of parameters to be estimated is denoted by θ, the estimated one
with θ̂. It is

θ̂ = g(Z) (3.31)

where g(Z) implicitly depends on J and M.
Suppose the model class and its orders have been identified. Consider a set Z ofN measures
such that

Z = {u(k), y(k)}Nk=1 (3.32)

and indicate with
ŷ(k, θ) = f(θ, Zk−1) (3.33)

53

3 – System Identification

the predictor resulting from the model. It is possible to express it in a form more suitable
for the estimation methods application: for example, the ARX structure in equation (3.18)
can be rewritten, underlining the regressors vector, as

φ(k) = [−y(k − 1), ... ,−y(k − na), u(k − nk), ... , u(k − nk − nb)]T

and the unknown parameters vector

θ = [a1, ... , ana , b1, ... , bnb]

as
ŷ(k, θ) = φ(k)T θ (3.34)

In order to fit the calculated values ŷ(k, θ) as near as possible to the measured outputs, a
series of criteria can be used:

- Least squares (LS) criterion: minimization of the sum of squared errors, where an
error is the difference between an observed value and the fitted one proposed by the
model.

- Minimum mean square (MMSE) criterion: minimization of the mean square error of
the fitted value.

- Maximum likelihood (ML) criterion: maximization of the likelihood function, a mea-
sure of the agreement of the selected model with the observed data.

They involve in the minimization of the objective function J and in the identification of θ
such that

θ̂ = arg minθ J(θ, Z) (3.35)
The general term Prediction Error Methods or PEM is used for the family of estimation
methods with an approach like the one in the relationship (3.35) [95].
The extension to multi-variable or non linear cases is possible by redefining the regression
vector φ(k). A vector in the form of equation (3.34) is known as linear regressor, but other
possibilities can be explored.
For nonlinear model such as NARX model, for example, a different function can be chosen:
recalling the general form in equation (3.33), it can be written that

ŷ(k, θ) = f(θ, Zk−1) = f(φ(k), θ) (3.36)

where φ(k) is the regression vector. It creates a map between the past inputs and outputs,
while the nonlinear function f creates a map between the regressor and the output space.
The former can be also expressed as

f(φ(k), θ) =
Ø

akfk(φ)

where fk are referred as basis functions. The key point of the identification is their selection:
usually fk is formed by a mother basic function and the other are generated by dilation
and scaling of this. Examples are the Fourier series and Piecewise Constant Functions, but
also Wavelets and Neural Networks [53].
Model structure is usually determined by the choice of the regression vector, the basic
function and the number of elements or nodes in the expansion. Once this is done, the
following steps need to be performed:

54

3 – System Identification

- From observed data, estimate the predictor ŷ(k, θ)

- Calculate the difference between the measured output and the predictor: this is known
as prediction error

e(k, θ) = y(k) − ŷ(k, θ)

- Choose a function to measure the norm of the prediction error

- Minimize the sum of these norms to find θ

If ŷ(k, θ) is not linear, minimization must be done with numerical search procedure [53].
The followed iterative scheme is like

θ̂i+1 = θ̂i − µiR
−1
i ĝi

where θ̂i is the parameter estimate after i iteration, µi the step size, ĝi the estimate of the
gradient of the function J and Ri a matrix that modifies the search direction. According
to the expression of Ri, different search methods can be identified:

- Gradient method

- Gauss-Newton method

- Levenberg-Marquard method

The estimation of θ is linked to the initial choice of the model: how is it possible to
"quantify" the correctness of that choice?

3.3 Model validation
Model quality is tested in the validation step. On the one hand, there is the need to ensure
that the model output actually matches the working data (a small prediction error) through
tests such as the residual analysis or fitting, and on the other hand that it accurately
responds to a new data set, defined as validation data, by performing a cross-validation
[104].
The residual analysis quantify the goodness of a model observing the correlation between
the residuals and the time-shifted inputs. A significant correlation implies that the effects
of input on system have not been completely explained. Auto-correlation of residuals is
also useful to understand if the stochastic part of the model has been modeled in the
correct way: if non-zero correlation occurs, this means that a predictable part has not
been identified.
In order to understand if the model "works" in an acceptable way, a check about its ability
to "reproduce" data must be performed. A set of validation data is used for this purpose.
As reported in [53], in System identification it is common practice to simulate the model
using validation data and inspect the agreement between the outputs. This agreement is
usually measured by an approximation criterion. It measures the similarity between the
model output and the actual system one, allowing to define how good the estimation of
the system is [18].

55

3 – System Identification

Let us define the cost function J(θ) as a function of the error between the model output
and the measured response. For a model with ny outputs

J(θ) = 1
N

NØ
1
ε(t, θ̂N)(ε(t, θ̂N))T (3.37)

with N number of values in the estimation data set, ε(t) a ny × 1 vector of prediction
errors, θ̂N the estimated parameters. This expression is also known as Loss function. A
group of criteria, also known as information criteria, are introduced as aids for choosing
between models:

- FitPercent, or Normalized Root Mean Squared Error expressed as a percentage, de-
fined as

FitPercent = 100
1
1 − ||y − ŷ||

||y − ȳ||

2
(3.38)

with y measured output data, ŷ simulated response of the model, ȳ mean of the
measured data, || · || the 2-norm of the vector [3].

- Akaike’s information criterion or AIC, it describes the tradeoff between accuracy and
complexity in model construction [18]; it is given by

AIC = N log(det(J)) + 2np +N(ny log(2π) + 1)) (3.39)

with N number of values in the estimation data set, V loss function, np the number
of estimated parameters and ny the number of model outputs [3]. The most accurate
model has the smallest AIC.

- Final Prediction Error or FPE,

FPE = det(J)1 + np/N

1 − np/N
(3.40)

where N is again the number of values in the estimation data set, V the loss function
and np the number of estimated parameters. The most accurate model has the
smallest FPE [28]

- Minimum Description Length Criterion or MDL, according to which the best model
is the one with good predictive performance on unseen data [18];

- Bayesian Information Criteria or BIC

BIC = N log(det(J)) +N(ny log(2π) + 1)) + nplog(N) (3.41)

56

Chapter 4

Guidance, Navigation and
Control

The path planning might be defined as: "A finding safe obstacle-free road from initial state
to target" [49]

Path planning is a necessary skill that an autonomous mobile robot must possess to suc-
cessfully accomplish its missions. It is a complex task that requires the processing of all
the available information from sensors in order to trace the most appropriate and safe path
from a starting point to a final one.
In the process of path panning it is necessary to define [78]

- The state: a model of the robot and some characteristics from the environment in
which it operates. From the robot, one must mainly consider its degrees of free-
dom, mathematical model and sensors’ errors. The environment can be identified
by the number and complexity of the obstacles as well as the possible enviromental
uncertainty.

- The action: guiding/tracking/control algorithms and their effects. It is related to the
knowledge of the kinematic and dynamic constraints and uncertainty in the robot’s
operations.

For mobile robots it is essential to develop a path planning algorithm efficient in both com-
putational time and complexity, since it will be executed on board by embedded processors
with a specific computational power.

4.1 Navigation
Localization is the problem of individuation of a robot pose referenced to given landmarks
[49]. A pose with respect to a coordinate frame in a 2D space is defined as

q = {X Y ψ}T (4.1)

57

4 – Guidance, Navigation and Control

where X and Y are the Cartesian Coordinates of the CoM with respect to the Inertial
System and ψ the orientation angle.
Localization can be classified as

- indoors or outdoors, depending of the target applications

– indoors: man-created environment
– outdoors: open terrains

- local or global, depending of the reference

– local: use of local data, encoders, sensors
– global: state in a global system

Usually a combination of the local and global localization is used in order to perform
efficient global localization.
One of the most used localization systems is the Global Positioning System (GPS). It is
a powerful instrument to obtain information about the position of an object on the Earth
surface, but its use is however not allowed in indoor applications, where other methods
must be exploited. Some of them are listed below:

- Odometry
Information about the platform motion can be obtain from encoders attached to the
motor shafts. The velocity of the robot and its rotational speed are obtained through
the kinematic model presented in chapter 2: indicating with VR and VL the right and
left speed of the two tracks

Vxenc = 1
2(VR + VL)

ψ̇enc = 1
B

(VR − VL)
(4.2)

with r and B radius of the wheels and distance between track’s centerline, respec-
tively.
The estimation of the robot pose by integration of these variables is referred as odom-
etry. Odometry is a simple method to obtain the location of the robot, but reliable
only in the short term due to the accumulation of errors. These can arise due to the
approximation made in the models, e.g. wrong radius of the wheel, inaccuracy in the
calculation of the geometric parameters, or due to measurement error, for example in
presence of slippage [48]. A filtering action is required for long term navigation.

- Inertial Measurement
Accelerometers and gyroscopes are used to measure accelerations and angular veloci-
ties. A double integration of the information from the sensors provides robot position
and orientation, while a single integration linear and angular velocities. The use of
the integration action is the main cause of errors accumulation, so again, the use of
a filter is required to improve navigation tasks.

58

4 – Guidance, Navigation and Control

- Orientation Measurement
Several sensors can be used to estimate the orientation of the robotic platform, such as
magnetometers, gyroscopes and accelerometers. Magnetometers provide an absolute
measurement of the Earth’s magnetic field. An estimation of the orientation angle
can be obtained through the relationship

ψmagn = atan
1−By
Bx

2
(4.3)

with Bx and By components of the magnetic vector. An accurate orientation estimate
is important to assure better performance of odometry or inertial navigation [48].

4.1.1 Kalman Filter
A filter is an algorithm for the processing of noisy input data in order to generate accurate
estimates of unknown variables. Kalman filters are ideal for the use in real-time applications
and embedded systems due to their low computational cost [57]. The algorithm uses a series
of measurements with statistical noise and inaccuracies and produces an estimation of the
unknown states. It is an optimum filter in the sense that it is obtained by the minimization
of the mean square error of the estimate with respect to the real value [81].
Let us describe the dynamics of a system with the expression

x(k) = F (k)x(k − 1) + B(k)u(k) + w(k) (4.4)

where

- x ∈ RN is the system state vector

- F (k) is the state transition model applied to the previous state x(k − 1)

- u ∈ RM is the control vector

- w ∈ RN is the process noise, a Gaussian random state noise vector with zero mean
and covariance matrix Q

The observation at time k is done according to

y(k) = H(k)x(k) + v(k) (4.5)

where

- y ∈ RR is the measurements vector

- H(k) denotes the observation model

- v ∈ RR is the observation noise, a Gaussian random measurement noise vector with
zero mean and covariance matrix R

The initial state and noise vectors at each step are assumed to be mutually independent.
The algorithm works in two steps:

59

4 – Guidance, Navigation and Control

- Prediction step: an estimation of the current state variables is produced by using the
state estimate from the previous step. This is known as a priori estimate, indicated
with the notation x̂(k|k − 1), because it doesn’t include observation of the current
time step. An a priori estimation of the error covariance matrix P (k|k − 1) is also
calculated.
A priori state estimate

x̂(k|k − 1) = F (k)x̂(k − 1|k − 1) + B(k)u(k) (4.6)

A priori error covariance

P (k|k − 1) = F (k)P (k − 1|k − 1)F (k)T + Q(k) (4.7)

- Update step: the estimation is updated using weighted average on the basis of the
observed measurement. This estimate is known as a posteriori estimate, indicated
with the notation x̂(k|k). The a posteriori estimate of the error covariance matrix is
instead indicated as P (k|k).
Innovation

e(k) = y(k) −H(k)x̂(k|k − 1) (4.8)
Kalman gain

K(k) = P (k|k − 1)H(k)T (H(k)P (k|k − 1)H(k)T +R(k))−1 (4.9)

A posteriori estimate
x̂(k|k) = x̂(k|k − 1) +K(k)e(k) (4.10)

A posteriori error covariance

P (k|k) = (I −K(k)H(k))P (k|k − 1) (4.11)

The algorithm is recursive.
The optimality of the filter is guaranteed if the system model is linear and precisely known
a priori, with process and measurement noises characterized by zero mean, completely
unrelated, with known covariance matrices. In practice, this is not always possible [57]
since

- Systems are usually nonlinear.

- System models may have inaccuracies in the parameters that characterize them.

- Process and measurement noises may not be white.

- Covariance matrices are not known a priori.

In particular, the main challenge in Kalman filter creation is the identification of the
statistical properties of the system, i.e. the knowledge of the process and measurement
noise matrix. There is usually no way to directly isolate the noise from measurement signals
and this could lead to the wrong choice of Q and R, thus degrading the performance of
the state estimation [57]. However, some solutions are available for the problems reported
above:

60

4 – Guidance, Navigation and Control

Figure 4.1: Kalman Algorithm

- EKF or Extended Kalman Filter can be used for non-linear systems: it is based on
the idea of using a Taylor expansion to obtain a local linearization of the system.

- FMKF or Finite-Model Kalman Filter can be employed if large model uncertainties
occur: it is based on the idea of restricting them by a finite set of known different
models.

- UKF or Unscented Kalman Filter is used when non-linear and non-Gaussian systems
are involved.

61

4 – Guidance, Navigation and Control

4.2 Guidance
Motion planning requires the determination of an optimal path in two or three dimensional
domain such to avoid any collision with static or dynamic obstacles [45]. Optimality refers
to the minimization of a parameter that works as a cost function for the motion like length
of path, energy consumption, duration of the mission. In addition, a number of constraints
generally exist, limiting the possible configurations.
The configuration space C or C − space is a n-dimensional space that includes all the
configuration or system’s state q that can be assumed by the robot in a operating world
W [49] and it should be simple enough to maintain path planning computationally feasible
[78]. The robot is denoted by A and can be represented as a point or as a body with a
certain shape, depending on the size, and A(q) is the subset of the world occupied by the
robot configuration q. Obstacles are denoted by Oi, i = 1, 2, ..., No, with N0 their total
number.
In motion planning

C = Cfree ∪ Cobs (4.12)

where Cfree is the free space configuration and Cobs is the obstacles space configuration
defined by

Cobs = {q ∈ C | Aq ∩ O /= 0} (4.13)

with O ∪ Oi, so
Cfree = C \ Cobs (4.14)

In the general case, computing the configuration space obstacle region is intractable and

Figure 4.2: Configuration Space

one reason is linked to the exponential growth of its complexity with an increase in the
number of degrees of freedom [99], so the problem of planning is instead solved without an

62

4 – Guidance, Navigation and Control

explicit construction of this space.
From a mathematical point of view, path planning is related to generate an optimal path
from an initial configuration q0 ∈ Cfree to a final one qg ∈ Cfree with the minimization of
a cost function c [45].
There are four main situations in which the problem falls:

- Environment is perfectly known and represented by a map

- Positions of the robot and the obstacles are perfectly known

- Only simplistic geometries of the robot and the obstacles are known

- Only simplistic dynamic model of the robot is known

The focus will be on solving the path planning problem in known environments where both
the position of the obstacles and that of the robot are known at all times.

4.3 Potential Field
The exploration of the Cfree space can be done with a search algorithm whose aim is to
discover the best path to be followed by the minimization of a cost function. It is possible
to assume two cost-functions to be optimized: an obstacle function to help the robot to
avoid the obstacles and a goal function that would continually attract the robot to the goal
[78]. This aspect is well captured in potential field method.
The artificial potential field method is based on the idea of constructing a function that
serves as a "surface" on which the motion occurs from a starting configuration to a final
one [45]. The robot motion occurs because of the influence of an artificial potential field
U . This field consists in one component that attracts the robot to the final configuration
qg and a second one that repels it from the boundaries of Cobs:

U(q) = Uatt(q) + Urep(q) (4.15)

Path planning can be seen as the problem related to find the global minimum in U , starting
from the initial configuration q0, given that U is constructed in such a way that this
minimum corresponds to the final configuration [99].
One of the easiest algorithms to solve the problem is the gradient descent, in which the
negative gradient of U is calculated and considered as a force acting on the body

F (q) = −∇U(q) = −∇Uatt(q) − ∇Urep(q) (4.16)

One of the prerequisites for the correct functioning of the algorithm is the existence of a
global minimum that coincides with the configuration of the goal and this happens only
by appropriately choosing the potential fields.

63

4 – Guidance, Navigation and Control

Figure 4.3: APF representation

4.3.1 Attractive Field
Uatt(q) should be monotonically increasing with distance from qg [99]. A first possible
choice is a linear growth (conic potential) but this led to poor results; a field that grows
quadratically with distance (parabolic potential) can instead be adopted:

Uatt(q) = 1
2Këq − qgë2 = 1

2Kρf (q)2 (4.17)

where ρf (q) = ëq − qgë is the Euclidean distance between the actual configuration q and
the final one qg and K a parameter used to define the intensity of the attractive field. So
the attractive force can be expressed as

Fatt(q) = −∇U(q) = −K(q − qg) (4.18)
and it is a vector directed toward qg linearly related to the distance. The advantage of this
choice is that Fatt linearly converges to zero as the robot approaches the final configuration.
However, if on the one hand the behavior of the function is optimal, on the other, it may
not be because the attractive force tends to grow when the robot moves away from the goal,
risking to reach a value too high. As a consequence, it leads the robot to move too close
to obstacles. A solution is the combination of the two presented fields: a conic potential
when the robot is very far from the final configuration and a parabolic one when it is near
it, such as

Uatt(q) =

1
2Kρf (q)2 for ρf (q) ≤ d

dKρf (q) − 1
2Kd

2 for ρf (q) > d

(4.19)

64

4 – Guidance, Navigation and Control

so that

Fatt(q) = −∇Uatt(q) =

−K(q − qg) for ρf (q) ≤ d

−dK(q−qg)
ρf (q) for ρf (q) > d

(4.20)

where d is the distance value which discriminates against the application of one kind of
potential respect to the other. The gradient is well defined at the boundary.

4.3.2 Repulsive Field
Urep(q) should repel the robot from obstacles but should not affect motion when it is far
from them [99]. One possible choice is a potential that goes to infinity at the obstacle
boundaries and zero far from it. Let us define as ρ0 the limit of the region in which the
motion is affected by the presence of the obstacle:

Urep(q) =

1
2η

1
1

ρ(q) − 1
ρ0

22
for ρ(q) ≤ ρ0

0 for ρ(q) > ρ0

(4.21)

where ρ(q) is the shortest distance from the actual configuration to the obstacle space
one while η is a gain coefficient used to define the intensity of the repulsive field. So the
repulsive force can be expressed as

Frep(q) = −∇Urep(q) =

η

1
1

ρ(q) − 1
ρ0

2
1

ρ(q)2 ∇ρ(q) for ρ(q) ≤ ρ0

0 for ρ(q) ≤ ρ0

(4.22)

where
∇ρ(q) = q − qobs

ëq − qobsë
(4.23)

with qobs is the point in Cobs that is nearest to the actual configuration. The advantage is
a simple solution to obstacle avoidance.

A proper choice for K and η must be done to define the intensity of the attractive and
repulsive force. Furthermore, since it is highly unlikely that in reality the condition q = qg
will be satisfied, it is possible to define a tolerance within which the objective of the mission
is considered to have been achieved. The extent of this tolerance is obviously linked to the
type of application.
To simplify the discussion, the passage from the space of configurations to that of the world
W is introduced. W is assumed to be the Cartesian domain, so they will be indicated as
X and Y the position of the robot with respect to the Inertial Frame, with Xg and Yg the
one of the goal and with Xoi and Yoi the one of the i-esimal obstacle.
It is possible to express the attractive potential force in equation (4.18) in components in
the form [67]

FattX = −K(X −Xg)
FattY = −K(Y − Yg)

(4.24)

65

4 – Guidance, Navigation and Control

and in a similar way for the repulsive potential force in equation (4.22)

FrepX =

η

1
1

ρ(q) − 1
ρ0

2
1

ρ(q)2
X−Xobs
ëq−qobsë for ρ(q) ≤ ρ0

0 for ρ(q) ≤ ρ0

FrepY =

η

1
1

ρ(q) − 1
ρ0

2
1

ρ(q)2
Y−Yobs

ëq−qobsë for ρ(q) ≤ ρ0

0 for ρ(q) ≤ ρ0

(4.25)

where qobs = {Xobs Yobs}T is the obstacle closest to the actual position and ρ(q) is the
Euclidean distance from them.
The total force is the sum of the attractive and repulsive forces:

F (q) = Fatt(q) + Frep(q) (4.26)

4.4 Reference signal generation
Reference signals of velocity and orientation can be generated at each step of the path and
transmitted to the Control System as desired value to achieve.

Orientation signal
The desired orientation is defined at each point of the path by the analysis of the resultant
force direction. As seen in section 4.3, it is possible to obtain a representation of the
attractive and repulsive forces as components in X and Y direction. The total force on X
direction is obtained by

FX(q) = FattX(q) + FrepX(q) (4.27)

and in a similar way, on Y direction

FY (q) = FattY (q) + FrepY (q) (4.28)

The desired orientation is the angle between the resultant force components in the X
direction and in the Y direction. In other words

ψd = atan
FY (q)
FX(q) (4.29)

where the atan(·) function is such that ψd ∈ (−π, π], returning the angle in a 4-quadrant
representation.

Velocity signal
It is desired to modify the velocity reference signal so that it takes into account where
the robot is with respect to the goal and obstacles positions: the robot should go faster

66

4 – Guidance, Navigation and Control

when far from obstacles or from the final point, slower in their proximity in order to avoid
collision or to overtake the objective. As reported in [25], a function ∆(q) is defined as

∆(q) = Kg

ρg
+

NoØ
i−1

Ki

ρobsi
(4.30)

where ρg is the distance from the goal point, ρobsi the one from the i-esimal obstacle with No

the number of obstacles, Kg and Ki positive parameters. The desired velocity is obtained
as

Vd = Vxmax θ
h

θh + ∆h(q) (4.31)

with h a positive integer number, θ a positive parameter and Vxmax the maximum desired
reachable velocity.
It is interesting to note that:

- Vd is exactly Vxmax when ∆h(q) tends to zero: this happens when the distances
between the robot and the obstacles and between the robot and the goal are very
high.

- Vd tends to zero when ∆h(q) tends to infinity: this happens when the distances
between the robot and the obstacles and between the robot and the goal are very
low.

- θ and h can be chosen to model the value and the way in which the speed increases
or decreases in the presence of the goal and obstacles.

4.5 Limitations and solutions
The artificial potential field is a simple but effective method for path planning, appreciated
for its simplicity, mathematical elegance and low computational cost [67]. However some
problems can arise:

- local minima

- oscillation in the presence of obstacles

- no path between closely spaced obstacles

- oscillation in narrow passages

Solutions for these problems have been proposed. For example, the combination of an
artificial potential field method and a control strategy based on harmonic functions could
contribute to the elimination of local minima. Also an IAPF, which is an improved version
of the APF method for environments in which dynamic obstacles are considered could be
useful in rapidly changing environments. The choice, once more, depends on the application
as well as on the design requirements.

67

4 – Guidance, Navigation and Control

4.6 Control
The design of the Control System involves aspects related to system dynamics, actuator
behavior, noise characteristics [103]. It is necessary to fix the primary goal of control and
identify the major restrictions, such as nonlinearities, disturbances, process uncertainty
among others in order to design the best controller for the system. It is also required to
quantitatively express the control specifications:

- What are the desired time or frequency response characteristics?

- How good are the tracking performance of a reference?

- Is the Controller able to face up the uncertainties of the model?

- Is it sensitive to noise?

PID control strategies are presented given PID simplicity in design, analysis and imple-
mentation [112].

4.6.1 PID Controller
The Proportional Integral Derivative PID controller is one of the most widely used control
technique in industrial control systems [98]. As the name suggests, it is made up of a

- P part: proportional control, the action is based on the current behavior of the
system.

- I part: integral control, the action is based on the past values of the signal.

- D part: derivative control, the action is based on the predicted future values of the
signal.

A mathematical representation of the three parts is given by

u(t) = Kpe(t) +Ki

Ú t

0
e(τ)dτ +Kd

de(t)
dt

(4.32)

where Kp, Ki and Kd are denoted as proportional, integral and derivative gain respectively,
while e(t) is the input signal and u(t) the output signal. The proportional control generates
a signal

up(t) = Kpe(t) (4.33)
proportional to the input through the gain Kp: the choice of the proportional gain must be
carefully made, since it is linked with the dynamic response characteristics and the steady
state error.
The integral control generates a signal

ui(t) = Ki

Ú t

0
e(τ)dτ (4.34)

proportional to the integral of the input through the gain Ki. The steady state error is
reduced to zero when a step reference signal is applied, thus correcting the problem of a

68

4 – Guidance, Navigation and Control

Figure 4.4: PID configuration

proportional-only control.
The derivative control generates a signal

ud(t) = Kd
de(t)
dt

(4.35)

proportional to the derivative of the input through the gain Kd. The derivative action
mitigates the unstable behavior that an excessive value of the proportional and integrative
gain can bring, improving the characteristics of the system response. Its value must be
carefully chosen since it is correlated to critical issues in control practice [98], so that it is
frequently unused [103].
Three different alternatives to a complete PID controller can be evaluated:

- Proportional P controller is usually implemented when no particular performance is
required: it has the advantage of having only one parameter to be set, but it might
not get rid of the steady-state error;

- Proportional and Integrative PI controller is usually the best choice to eliminate
steady-state error. However, it has the disadvantage of accentuating the overshoot of
the system response, an undesirable feature for a Control System;

- Proportional and Derivative PD controller is usually required to achieve stabilization
or adequate damping for the closed-loop system.

The process of finding the optimal values for the PID coefficients is called tuning. A
"manual" search of the parameters can be carried out, although in the literature there
are empirical methods based on the observation of a large number of cases that help
the designer in this difficult choice. The Ziegler-Nichols tuning rule, Cohen-Coon rule
and the Wang-Cluett rule are widely used methods for PID tuning based on LTI system
requirements. For nonlinear systems, however, these methods are not suitable and the
research must be done differently.

69

Chapter 5

Experimental Setup

Robot: a mechanical device that works automatically or by computer control [82]

Robotics as a discipline is based on the interaction of notions deriving from the fields
of electronics, mechanics, control and software. The design of a robotic system requires
the study not only of high-level Software Subsystems such as the ones for Navigation or
Control, but also that of Hardware Subsystems necessary for the operation of the platform
such as sensors, mechanisms, materials [29]. The Devastator robotic platform is a small

Figure 5.1: Robotics interdisciplinary

tracked vehicle made from high strength aluminum alloy and equipped with the necessary
tools to carry out missions in an indoor environment in total autonomy, thanks to the pres-
ence on board of the Lattepanda computer and the Freedom microcontroller. The ground
movement of the Devastator is allowed by the use of two DC brushed motors: each output
shaft is engaged by a driving wheel on the right and left side of the robot and thanks to
their rotation it is possible to have the motion of the two tracks. Consequently, through
to the aid of four other driven wheels for each side, the movement of the entire platform is
possible (Figure 5.3). In addition to the possibility of moving forward and backward, the
use of the tracks allows the rotation in place through differential control for the two sides,

70

5 – Experimental Setup

thus constituting a considerable advantage over the use of wheels in a classic configuration.

Figure 5.2: Devastator

Figure 5.3: Devastator structure [21]

A list of components and on board sensors of the robot is here reported:

- LattePanda companion computer, it constitutes the "brain" of the system, processes
the information made available by sensors and allows autonomous control of the robot.

- NXP Freedom-k64f, the platform which deals with the execution of lower level pro-
cesses with low energy consumption, equipped with accelerometers and magnetome-
ters.

- LiPo battery, it provides the energy necessary to the platform operations.

- DC-DC module, it allows adjustment of output voltage and current in order to supply
the H-bridge with 7.5 V necessary for its ideal operation.

- H-Bridge, it deals with the driving of the motors and their power supply at the
appropriate voltage.

- DC brushed motors, necessary to move the tracks and consequently the robot.

- Encoders, they are indispensable for obtaining information from the rotation of the
driving wheels.

71

5 – Experimental Setup

- Depth detection camera, it is employed to obtain information from the surrounding
environment.

Figure 5.4: Functional scheme

5.1 More about Devastator Architecture
An embedded system is an electronic system designed to perform dedicated function through
combined use of software and hardware. A generic embedded system is composed by

- Microprocessor : it deals with processing the inputs to provide the outputs on the
basis of the needs required by the system.

- Memory: it is composed of a non-volatile part, in which the software code for the
execution of the process to input the information and set the output is stored, and a
volatile part, usually flash memory or read-only memory (ROM). The random-access
memory (RAM) provides the run-time computation.

- Input and Output: the input is usually an information provided by sensors, the output
a variable of actuation. They are managed by dedicated peripherals such as general-
purpose input/output (I/O), timers, analog-to-digital converter (A/D).

When integrated in a single chip, they form a microcontroller [65].
The Devastator microcontroller is responsible for managing the various components of
the system, including the control of the DC motors. In general, a motor drive system is
composed by [47]

- Power Supply, i.e. the energy source of the system, usually battery.

- Electric Motors, chosen according to size, cost, operating condition.

- Power Electronic Converters, device that takes electrical energy from the power source
and turning it in a form suitable to be used by the motor.

- Digital Controllers, based on microprocessor, to adjust the voltage provided to the
motor.

72

5 – Experimental Setup

- Sensors, necessary to obtain information about the state of the motor.

Devastator power supply is a LiPo battery chosen as a compromise to guarantee the right
autonomy and ensure dimensions compatible with the platform. The installed motors are
instead two geared DC brushed motors with encoders, whose characteristics have been
identified during the system identification experiments. The main feature of these is their
compactness and the possibility of easy integration into the structure, allowing efficient
use of the space on board the robot. Regarding the practical control of motors, several
suggestions are available in the literature [56]:

- Direct driving from a microcontroller pin: the motor is connected on one side to the
voltage supply and on the other to a microcontroller digital output pin. The switching
action of the pin between low and high impedance activates and deactivates the motor.

- Current amplification with a switch: this device, an electromechanical relay or a
transistor, can be used to switch on and off the motor driving the current flow; often
a protection diode is placed in the circuit to prevent the instantaneous change in
current and sparking when it is opened. This configuration can be used to modulate
the input voltage to the motor by rapidly changing the state of the switch. Only one
direction of rotation of the motor is allowed.

- Bidirectional operation with switches and bipolar supply: it is a solution to allow the
motor to rotate in both directions. By employing a bipolar supply (+V,-V, GND)
and two switches controlled by independent signal, it is possible to have the current
flow in one direction and the other, letting clockwise or counterclockwise rotations.
However, this solution is not very common due to the lack of availability of bipolar
power supplies.

- H-bridge: it is one of the most popular choices for the motor driving. It uses a
unipolar power supply but both the direction of rotation are possible thanks to the
control of four switches with little voltage drop. A microcontroller is used to pilot
the switches: according to Figure 5.5d,

S1, S4 Forward rotation
S2, S3 Reverse rotation
S1, S3 Short-circuit braking
S2, S4 Short-circuit braking
None Open circuit

In low power applications, an integrated circuit is available.

The control of the Devastator DC motors takes place through the last solution, that is the
use of an H-bridge, in particular a double H-bridge giving that the controls of both the
motors are integrated in a single component. In detail, the microcontroller independently
drives the two motors by sending a signal through the pins to the switches in the circuits.
From the combination of these signals it is possible to have operative conditions that fall
into one of the previously mentioned cases, i.e. forward and reverse operation, brake or

73

5 – Experimental Setup

(a) Direct driving from a
microcontroller pin

(b) Current amplification
with a switch

(c) Bidirectional operation with
switches and bipolar supply

(d) H-bridge

Figure 5.5: DC motor drive configurations

immobility. PWM signal generation is also possible thanks to the use of particular pins
suitable for this application.
The goal of the Pulse With Modulation technique is to generate pulse signals such to
produce an output voltage with the desired amplitude and frequency [47]. The Digital
Control creates a square wave signal given that only two states are possible, on or off, but
it is possible to get the output voltage between the power supply value and 0 by simply
changing the time the signal is on versus the time it is off in a given sampling period.
The duration of the signal on is called pulse width, while the inverse of the sampling period
PWM frequency.
The operating condition of motors is controlled through the use of sensors. For the

Devastator, two rotary encoders, one for each motor, have been installed. A rotary encoder
is a sensor that generates digital signals as a consequence of the rotation of the shaft [47].
These signals are made up of a series of pulse that are used to measure position, speed
and direction: their number is related to the resolution of the encoder. Let us consider a
simple configuration to understand its working principle: an optical incremental encoder
is presented. It consists in a moving disc with slits mounted on the rotating shaft, light
sources and receivers: when the light emitted by the light source passes through the slits
and gets to the receiver, an electric signal is generated. As result, a square-wave signal

74

5 – Experimental Setup

Figure 5.6: PWM duty cycle

of pulses is obtained. Usually two signals are employed: A and B. The total number of
A and B pulses per revolution are used to obtain the angular position and the speed of
the motor, while the comparison between them allows the identification of the rotation
direction, given that they are out of phase. If the motion is forward, pulse A is ahead of
pulse B; in the opposite case, the motion is reverse. There are actually various versions
of encoders available in addition to the optical ones: magnetic, capacitive, inductive, etc.
The working principle is almost the same.

Figure 5.7: Rotary Encoder [47]

5.2 DC Motors characterization
The first step in System Identification is the characterization of the behavior of the motors.
The objective is to obtain a relationship that can describe the system’s output behavior
based on certain inputs. In other words, the purpose of the experiments carried out on the
DC motors is the identification of the necessary parameters to predict the angular speed
of the driving wheel and the developed torque, so as to adequately describe the dynamics
of the track and consequently that of the robot.

75

5 – Experimental Setup

A lumped parameter approach has been chosen for this purpose: based on the knowledge
of the motor mathematical model described in chapter 2, a series of experiments have been
conducted in order to identify the main parameters and allow the creation of a Simulink
model. The challenge has been that of reaching the goal by using low-cost sensors that are
easily available, exploiting the potential of an Arduino microcontroller for the management
of inputs and data collection. A voltage-angular velocity and voltage-torque relationship
has been obtained. During the experiments, however, it was decided to change the motors
and to replace them with motor units integrated with encoders: the choice was dictated by
the need to include sensors capable of referring to the Control System feedback information
regarding the speed of the tracks, thus allowing navigation based on odometry. This has
offered the opportunity to approach the problem of identification in a new way, comparing
the previously used method and the new one selected, i.e. a data-driven approach. A first
section dedicated to the experiments conducted for the realization of the lumped parameter
model follows. A second section concerning the data-driven approach is reported, while
a third section proposing instead a comparison between the techniques and reporting the
reached conclusions is also presented.

5.3 Lumped Parameters Approach
The reference model is the one presented in chapter 2 and reported below:

V = L di
dt +Ri+ e

e = Kemωm

Cm = Kc

Cm = Crτ + ftot ωm + Jtot
dωm
dt

(5.1)

The goal is to identify the unknown parameters in order to obtain a voltage-angular velocity
and voltage-torque relationship. In light of this, it is convenient to reorganize the equations
so as to highlight the inputs and outputs of the system:

- Inputs of the system are the voltage V and the resistant load Cr.

- Outputs of the system are the angular speed seen at the external shaft ω and the
"useful" torque.

Some consideration must be done:
- used sensors and conducted experiments did not make possible to carefully study
the transients; quantities linked to them has been neglected (as in the case of the
inductance L) or indirectly estimated (as in the case of the inertia of the rotating
parts Jtot).

- the term Cr is linked only to a possible clearly identifiable external antagonist load,
while all the other phenomena not individually identifiable of friction and opposition
to motion have been considered in an additional term C0.

76

5 – Experimental Setup

- great attention has been paid to the motor speed behavior in normal operating con-
ditions rather than extreme operating situations (for very low voltage values as well
as for voltages such as to bring the angular velocity close to its maximum value).

Consequently, a steady-state analysis has been conducted. Taking into account these con-
siderations, the previously presented model is reduced to

V = Ri+ e

e = Kemωm

Cm = Kci

Cm = Crτ + C0 + ftotωm + Jtot
dωm
dt

(5.2)

with parameters such as
- R motor resistance, to be determined [Ω]

- Kem Back EMF constant, to be determined [V/rad/s]

- Kc torque constant, to be determined [Nm/A]

- Cr resistant torque, known during the experiments [Nm]

- C0 friction torque, to be determined [Nm]

- ftot equivalent friction constant, to be determined [Nm/rad/s]

- Jtot equivalent motor inertia, to be determined [kgm2]
The reduction gear mechanism placed as interface between the motor and the driving wheel
has a gear ratio of τ = 1/120.
The identification of the unknown parameters took place essentially in three steps:

- 1) Identification of the motor resistance R through the use of a bench power supply,

- 2) Measurement of the motor current, again with the help of a bench power supply,

- 3) Measurement of the angular velocity of the shaft to which the drive wheel is
connected through the use of an IR sensor.

5.3.1 Experiment 1: motor resistance identification
The simplest method of finding motor resistance is blocking the shaft so that the back
EMF component is canceled. By measuring through a bench power supply the steady
current and knowing the power supply voltage input (a low value in order not to damage
the motor), it is possible to trace the resistance of the windings. A value of R=3.1 Ω has
been found.

5.3.2 Experiment 2: current measuring
Through the use of the bench power supply the motor has been supplied at different
voltages and the measured current value at steady state have been recorded. The selected
condition is that of zero resistant external load, with no track (Cr = 0). The results are
shown in the table below.

77

5 – Experimental Setup

Voltage [V] Current [mA]
3 170
3.5 180
4 190
4.5 200
5 210

Figure 5.8: Voltage-Current characteristic

5.3.3 Experiment 3: angular speed measuring
In order to obtain the angular speed of the motor unit shaft an IR module has been used.
The sensor essentially consists of an LED and an IR detector that interact with a marker
positioned on the motor shaft. While the marker is made of reflective material, the surface
not marked is black and inert to the action of the sensor. Since black material absorbs
light, when the IR emission hits any point other than the marker, the reflected light is
below the sensor activation threshold and therefore the emitted signal is a high signal and
the indicator LED turns off. Conversely, when it hits the marker surface, the reflected
light is such that it emits a low signal and the indicator LED turns on. The recording of
these signals has been entrusted to a computer interfaced with an Arduino microcontroller,
which is also necessary for sending driving signals to the motor. The angular speed of the
shaft is calculated on the basis of the time that elapses between one passage of the marker
and the next: in this time the shaft has made one revolution and it is therefore possible to
trace its speed.
An important note concerns the sampling time: the reading from the sensor occurs every
2 milliseconds but the data on the angular velocity, being calculated on the basis of the
number of marker passes, is not uniformly distributed in time. A linear interpolation was
performed to obtain a more regular characteristic.

78

5 – Experimental Setup

Figure 5.9: IR sensor

No load experiments
It is a series of experiments conducted with the aim of evaluating the performance of the
motor at zero external resistant load. The angular velocity values in steady-state according
to the voltage input are reported.

Voltage [V] Steady-state ω [rpm]
3 85.3476
3.5 101.7996
4 117.9596
4.5 132.3505
5 149.4196

Knowing the angular velocity ω, the gear ratio and the steady current i it is possible to
trace the value of the back EMF constant Kem through the relation

V = R i+Kemω (5.3)

getting the average value of Kem=0.0023 V/rad/s.

Max load experiments
It is a series of experiments conducted with the aim of evaluating the performance of the
motor when the shaft is blocked, that is, evaluate the maximum torque that can be reached
with a specific supply voltage (if the shaft is stationary, the contribution of the counter-
electromotive force is canceled). A dynamometer has been employed. It is now possible to

Voltage [V] Cm [Nm]
3 6.95e-04
3.5 9.0334e-04
4 9.73e-4
4.5 1.042e-03
5 1.1e-03

trace the motor torque-angular speed characteristic (Figure 5.11). From the interpolation
of the points characterized by the same supply voltage it is possible to obtain the torque
constant, equal to Kc=8.6626e-04 Nm/A.

79

5 – Experimental Setup

Figure 5.10: Voltage-Speed characteristic, no external load

Figure 5.11: Cm-ωm characteristic

Experiments with external loads
It is possible to express the steady-state mechanical equation such as

Cm = C0 + ftotωm + Crτ (5.4)

in which Cm is known since it is calculated as the product between the previously identified
torque constant Kc and the current, in turn evaluated through the electrical relationship
knowing the supply voltage, the speed reached at steady-state and the resistance; Cr is
also a known quantity, so the net difference between them is equal to the unknown torque
dissipated in friction and in secondary effects which are not clearly identifiable. Different
experiments have been carried out introducing as a resistant load a weight hooked to
the output shaft by an inextensible cable. Several voltages and six load values has been
evaluated. The results of these tests are shown in the graphs of Figure 5.13 and Figure 5.14,
the values of Cr in the Table 5.1. The area in evidence with respect to the background is

80

5 – Experimental Setup

Figure 5.12: Relationship Cm-Crτ ,ω

Torque Cr [Nm] 0.0108 0.0135 0.0152 0.0169 0.0187 0.0209

Table 5.1: External torques data

the region of variability of the data given by the multiple tests carried out, in other words
it is a measure of the repeatability and objectivity of the data themselves.
By exploiting a least squares formulation, a linear relationship has been identified between
Cm−Crτ difference and the motor speed in order to find how they are related: in Figure 5.12
is reported the relation that has been obtained for Cr=0.0209 Nm at 3, 3.5, 4, 4.5 and 5
V. The angular coefficient is representative of the friction constant ftot while the known
term of the torque C0. It can be found that f=1.0651e-07 Nm/rad/s and C0= 2.9658e-05
Nm (mean values between the different tests).
The last parameter to identify is the inertia J : it has been estimated on the basis of
the motor and system geometry and set at a value of 1e-7 kg m2. Finally the complete
characteristic of the motor is reported (Figure 5.15).

81

5 – Experimental Setup

(a) (b)

(c) (d)

Figure 5.13: Tests (Part 1)

82

5 – Experimental Setup

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Tests (Part 2)
83

5 – Experimental Setup

Figure 5.15: Torque-Speed characteristic

84

5 – Experimental Setup

5.4 Data-driven Approach
An overview of System Identification theory has been presented in chapter 3. Methods
differing in complexity, effectiveness and suitability have been analyzed. Among them, the
black box modeling is the one on which the attention has been concentrated. The required
procedure to identify the System Model is reported below:

- Record a data set of input-output

- Choose the class of model or model structure

- Estimate the model coefficient on the basis of certain criteria

- Obtain a model

- Validate the obtained model

5.4.1 Input-output data creation
Through the use of encoders, the response of the system in terms of angular speed of the
driving wheels to a PWM input has been recorded. PWM signals have been chosen as
input signals given their direct relationship with the Control System and the effectiveness
of a command managed through this strategy. The angular speed of the driving wheels has
been chosen as the output signal given the possibility of obtaining, through the kinematic
model extensively discussed in chapter 2, both robot linear and yaw velocities. An example
of input signal is shown in Figure 5.16: it is a forward command, a pause and a subsequent
retraction command for the robot. A command of the type in Figure 5.17 is instead a
differential command that generates a rotation on the robot’s place: the PWM intensity
is equal and opposite for the two motors. Input values can range from 0 to 20000 µs, both
positive and negative. At a PWM input equal to 0, the platform is immobile; positive
inputs lead to direct operation for the motor, negative inputs lead to retrograde operation.
The experimental data collected in output are shown in Figure 5.18 and Figure 5.19:

these are the angular speeds of the right and left driving wheels.
Some observation about the sampling time must be done, according also with [7]:

- By increasing the sampling time, the best model tends to have more terms and require
more degrees of freedom.

- By decreasing excessively the sampling time, the measures tend to be correlated and
problems of bad conditioning and insufficient computational resources to record and
process the data arise.

- The choice of the sampling period depends on the frequency of the system: the
sampling should be such as to represent all the frequency components in the final
data sets.

- Short sampling period favors the estimation of the parameters but not the correct
selection of the structure; on the contrary, the selection of the structure is simplified
but the accuracy of the parameters deteriorated.

85

5 – Experimental Setup

Figure 5.16: PWM input signal: forward and backward motion

Figure 5.17: PWM input signal: rotation

Summarizing, too short sampling period means highly correlated data, i.e. redundancy
phenomenon; too big sampling period, data jammed and chaotic, i.e. irrelevance phe-
nomenon.

5.4.2 Model structure and estimation criterion selection
Model structure selection is probably among the most important step. Two paths have
been explored: one based on linear identification methods and a second one on non-linear
methods. For the former an ARMAX model has been selected, for the latter a NARX one.

86

5 – Experimental Setup

Figure 5.18: Angular speed ω output signal: forward and backward motion

Figure 5.19: Angular speed ω output signal: rotation

According to what reported in chapter 3, the general structure of an ARMAX model is

y(k) = B(q−1)
A(q−1)u(k) + C(q−1)

A(q−1)e(k) (5.5)

also denoted as ARMAX(na, nb, nc) with nk as delay. For multi-input multi-output cases,
i.e. when y and u are Ny and Nu column vectors, A, B and C are matrix of row vectors
where each terms is a coefficients of the polynomial that relates input, output and noise.
In particular [54]

87

5 – Experimental Setup

- A(i, j) contains coefficients of the relation between output yi and output yj . na is a
Ny − by −Ny matrix containing the degree of the corresponding A polynomial.

- B(i, j) contains the coefficients of the relation between output yi and input uj . nk is
a Ny − by − Nu matrix containing the input delay, while nb is also a Ny − by − Nu

matrix.

- C(i) contains the coefficients of the relation between output yi and noise ei. nc is a
Ny − by − 1 matrix containing the degree of the corresponding C polynomial.

A NARX model is instead represented by the structure

y(k) = F (y(k − 1), y(k − 2), ..., y(k − ny),
u(k − nd), u(k − nd − 1), ..., u(k − nd − nu)) + e(k)

(5.6)

In a different way, it can be seen as the set of two components as reported in Figure 5.20
[54]:

- Regressors block, where a relationship is calculated based on the current and the past
input values and past output data.

- Nonlinearity Estimator block, which maps the regressors to the model output using
a combination of nonlinear and linear functions.

For the case in exam, a standard regressor has been selected, while a wavelet network has
been chosen as nonlinear estimator. A PEM approach has been applied for the analysis.

Figure 5.20: NARX structure

5.4.3 Identification procedure: operative guidelines
MATLAB System Identification Toolbox1 has been used for the identification procedure.
The essential steps listed above are reformulated based on the steps followed in the MAT-
LAB application:

- Loading of the input-output data

1For more information [54]

88

5 – Experimental Setup

– Input data → PWM values
– Output data → ωL and ωR, angular speed of the left and right drive wheels
– Selection of the sampling interval
– Selection of the starting time

- Organization of the estimation data set

– Creation of Working Data
– Creation of Validation Data
Two different data sets or alternatively a single split data set.

– Data preparation: normalization, possible removal of outliners, media, etc.

- Estimation of Parametric Model

– Choice of the model structure
– Choice of the model characteristics (orders, regressor proprieties)
– Choice of the estimation method: PEM approach is the one adopted in this case

- Validation

– Validation by using the Validation Data
– Validation criteria evaluation
– Comparison between models on the basis of the selected criteria

After several attempts, the need to turn to a non-linear identification method has emerged.
The linearity path has proved unsuitable for the system in question given the many non-
linearities that characterize it, such as friction between track and ground, PWM-voltage
relationship, wheel speed saturation, etc.

5.5 Results and Considerations
The model with the best results obtained from the procedure is reported, where the best
means that best satisfied the selected validation criteria (FIT, AIC, FPE, residue analysis).
It is a NARX model with

na =
51 0
0 1

6
nb =

51 1
1 1

6
nk =

51 1
1 1

6
and

FitPercent [91.474; 91.8968]
LossFcn 1.2013e-06
FPE 1.2013e-06
AIC -4.2330+04

89

5 – Experimental Setup

Some validation tests are reported in Figure 5.21, Figure 5.22, Figure 5.23.
It is possible to notice that the model quite faithfully simulates the behavior of the robot,

Figure 5.21: Validation test 1

Figure 5.22: Validation test 2

both when it moves forward and backward and when it turns. It slightly overestimates
its performance in reverse motion, where it provides a more immediate response to PWM
input which, in reality, comes with a slight delay. The most reliable results are those
concerning the PWM input range from 5000 to 18000, resulting instead less precise in the
two areas of very low and very high PWM. This is not surprising: at very low PWM, the

90

5 – Experimental Setup

Figure 5.23: Validation test 3

friction and resistances in general that the motors must overcome to move the platform
are responsible for a behavior that is difficult to predict; at high PWM, on the other hand,
there are saturation phenomena.
However, the model has been accepted with the foresight to prevent reaching the maximum
speed under standard operating conditions and by assuming that the GNC is robust enough
to guide the robot even in the area of very low PWM in which the simulation tests are
ineffective.

5.6 Comparison
Interesting points of discussion can be drawn from the comparison between the two ap-
proaches. First of all, on the one hand there is the creation of a model that has its roots in
the solid physical knowledge of the phenomenon underlying the system. On the other hand
the creation of a model that is independent of the individual parts of which it is composed
and of the laws that govern the single elements, favoring an overall vision of the system as
a unit capable to process inputs and provide outputs in response to them.
A lumped-parameter approach is preferable if the interest is in the cause-effect relationships
that govern the elements of the system: it is easier than a black-box model to understand
what happens on a physical level when a parameter changes and give a satisfactory expla-
nation. The outputs are more easily interpretable since the relationships that bind them to
the inputs are known and above all the background of the physical phenomenon underlying
the process is known. As the complexity of the system grows, however, it becomes difficult
to trace these relationships and the attempt leads to poor results given the multitude of
parameters to be identified and the series of assumptions that have to be made for all those
that cannot be identified. On the contrary, a data-driven approach is preferable given its
ability to manage all the components of the system as a single entity and regardless of the
characteristics of each, providing instead an overview. Unfortunately this happens to the
detriment of the immediate understanding of the functioning of the system: for a black-box
parameterization it is more difficult to interpret the input-output relationship given the

91

5 – Experimental Setup

computational complexity introduced by the use of non-linear structures or wavelet-type
functions, neural networks, etc. , in opposition to the case of lumped parameters in which
the interpretation is usually of greater immediacy. Summarizing, the following would be
the key points of discussion:

- Ease of understanding how the system works: generally understanding the physics of
the phenomenon makes understanding the behavior of the system itself more immedi-
ate; in this, lumped-parameter systems are favored. However, when the system itself
is complex, a data-driven approach is better and the model is more easily obtained.

- Computational complexity: lumped-parameter models are usually lighter than black-
box models since physical relations are for the most part algebraic or differential
relations. Black-box models usually are complex mathematical functions.

- Quality of the model: if correctly performed, both approaches lead to a quality result.
The choice depends on the tools available, the purpose of the model, the development
time required, etc.

In the case in question, the data-driven model has been preferred due to the possibility of
using a PWM-angular velocity relationship without the need to characterize each element
in the ideal line that connects the input to the output; a further advantage is to have
obtained, in reality, not only the behavior of the DC motors, but in fact a model of the
entire platform given the influence that the output of one track has on the behavior of the
other.

92

5 – Experimental Setup

5.7 Inertia Identification
For simulation a kinematic model has been adopted; nevertheless, in view of a future inte-
gration of the dynamic model, the identification of the system inertia J has been performed.
The complex construction architecture of the real model and its innumerable components
justified the adoption of an identification method that did not require the disassembly
and analysis of the individual elements, but that allowed, through the measurement of the
vehicle’s oscillation period on a pendulum, to go back to the desired parameter. For this
purpose, in analogy to what reported in [16], the composite pendulum method has been
used.
In order to capture the robot CoM position, the Otus Tracker sensor has been employed:
the reasons are related to the ease of installation on the robotic platform and the ease of
acquiring the data detected thanks to the use of the RCbenchmark Tracking Lab software.
Otus tracker sensor uses two base stations appropriately positioned as tracking references.

Figure 5.24: Otus Tracker sensor [73]

The base stations are passive emitters of infrared light and interacting with the sensor allow
the identification in the space of the body. In detail, it is possible to obtain

- position of the CoM

- translational speeds

- angular velocities

- orientation of the body through a representation in quaternions, subsequently recon-
verted in terms of Euler angles φ, θ, ψ respectively around the x, y and z axes

captured at a specific frequency, 200 Hz in this case. The experiment has been conducted
with the use of a pendulum to which the robotic platform has been connected by means
of a rigid aluminum bar of known size and mass. Figure 5.26 shows the experimental
setup: the support holds the bar-robot system which is free to oscillate with negligible
friction around the upper hinge. The extent of the oscillation is captured by the Otus
Tracker sensor whose local reference axes have been oriented parallel to the body axes of
the robot system, i.e. with the x axis directed along the local vertical, the z axis parallel

93

5 – Experimental Setup

Figure 5.25: Software RCbenchmark Tacking Lab [72]

to the rotation axis and y axis to complete the triad. It is also assumed that the origin
of the robot’s local reference system is in the robot center of gravity. An angle close to

Figure 5.26: Experimental setup

10° has been provided and the system has left free to oscillate for a time of 35 seconds,
while the recording of position and oscillation angle θ over time has been carried out. The
analysis of the temporal variation of θ has made possible to trace the period of oscillation
T : different tests have been conducted in order to obtain a more accurate result (errors
linked to phenomena of friction, vibrations, uncertainties in the calculation of distances
and weights have been ignored for simplicity of treatment). By the analysis of the temporal
distance between the first and second positive peaks of the angular position, a period of
oscillation of T=1.735 s has been found.

94

5 – Experimental Setup

(a) Y position (b) Yaw angle

Figure 5.27: Data collected during the experiment

In Table 5.2 it is possible to find the data necessary to calculate the unknown I: these
data are related to the geometry of the system and the mass of the elements. The inertia

Data
robot mass m kg 1.592
bar mass m1 kg 0.146
center of gravity-hinge distance of robot CoG l m 0.7
center of gravity-hinge distance of bar CoG l1 m 0.455
Inertia of the bar I1 kg m2 0.0078

Table 5.2: Geometry and inertial data

of the aluminum bar has been evaluated taking into account its mass and its geometry;
homogeneity of the body has also assumed, so the center of gravity has assumed to coincide
with the midpoint of the bar.
Reporting the expression obtained in subsection 2.6.1

I =
1 T

2π
22

(mgl +m1gl1) −ml2 −m1l
2
1 − I1 (5.7)

an inertia value of J = 0.0652 kgm2 has been calculated.

95

Chapter 6

Simulation Model

A model plays the role of a surrogate for the system it represents and its purpose is to
replace the system in experimental studies [10]

MATLAB/Simulink is the modeling, simulation and analysis environment of dynamic sys-
tems chosen for the creation of the Simulation Model of the robot. Its functions are
countless, including solution of algebraic equations, management of the state variables, nu-
merical integration with several methods, "block" diagram representation of equations. The
advantage is that of clearly distinguishing the different components of the system (Plant,
Control, Guidance etc.) and exploiting a simple graphical interface with the potential of
the MATLAB environment behind it. This makes it one of the most versatile and useful
tools in the widest variety of application fields, from the aerospace sector to the electronic,
mechanical, automotive, etc.
In the previous chapters the mathematical model has been introduced and the essential
elements for its implementation in a simulation environment have been obtained: now it
is presented the model realized in the Simulink environment together with the implemen-
tation of the selected algorithms as the robot’s guidance, control and navigation strategy.

Figure 6.1: Complete Model

96

6 – Simulation Model

6.1 Plant Model
The identification of the robot model has been conducted through a lumped-parameter
approach and through a data-driven one.

6.1.1 Lumped Parameter Approach
Based on the model in (2.61), the blocks diagram in Figure 6.2 has been created. Model
inputs are the supply voltage V and the external resistant torque Cr, model outputs the
useful torque Cm and the angular speed of the driving wheel ω. A representation of this
type offers the possibility of implementing both a kinematic and dynamic model thanks
to the calculation of torque and speed; however, it has the disadvantage of requiring a
relationship that can convert the PWM signal into a voltage signal. Figure 6.3 shows an

(a) Block scheme

(b) Block scheme detail

Figure 6.2: Motor Scheme

example of the behavior of the model at a voltage step of 3 V without applying any external
load. In Figure 6.4 an external load of Cr= 0.017 Nm is applied at the external shaft: it
is plotted the response of the system in angular speed terms at different voltage inputs.

97

6 – Simulation Model

(a) Angular speed (b) Torque

Figure 6.3: System response to a step of 3 V, no external load

Voltage
3 blue
3.5 red
4 green
4.5 magenta
5 cyan

Figure 6.4: System response to a step voltage input, Cr=0.017 Nm

98

6 – Simulation Model

The graph in Figure 6.5 is a comparison between the speeds reached by the drive wheel
in steady state and those predicted by the model for different voltage values and external
loads applied. It can be seen that the agreement of the results is generally good, with
misalignments only in the case of a higher supply voltage. The graph in Figure 6.6 shows
the current and drive torque values at steady state based on the external load applied:
note that although the useful torque is zero in the absence of an external load, the current
is not, given the need to compensate for the internal resistance of the motor.

Figure 6.5: Experimental and Simulation data comparison

99

6 – Simulation Model

Figure 6.6: Torque-Current characteristic for different Voltages and Resistant Loads

100

6 – Simulation Model

6.1.2 Data-driven approach
The model adopted for the simulation, however, is the one obtained through a data-driven
approach: the choice is due to the advantage of a direct PWM-ω relationship and the
possibility of immediate use without the need to identify additional parameters such as,
for example, the external resistance that is exerted on the motor as the robot advances.
The NARX model has been imported in MATLAB/Simulink thanks to the appropriate
non-linear block available in System Identification Toolbox Library. The Plant model is
shown in Figure 6.7:

- a first block represents the behavior of the motors

– inputs are PWM command to left and right motors
– outputs are the left and right angular speeds

- a second block is the mathematical model of the plant (2.13)

– inputs are left and right angular speeds
– outputs are the body velocity vector Vx and the angular yaw speed ψ̇

Figure 6.7: Plant Model

As an example of the plant behavior, a simulation is performed based on the PWM step
input in Figure 6.8: results are shown in Figure 6.9.

101

6 – Simulation Model

Figure 6.8: Plant Model Inputs

Figure 6.9: Plant Model Outputs

102

6 – Simulation Model

6.2 GNC Model
Alongside the Plant, a model of the Guidance, Navigation and Control Systems has been
implemented:

- The Control block takes care of converting the references generated by the Guidance
into commands to the system actuators: the extent of these commands depends on
the information generated by the Navigation block, in particular on the comparison
between the desired state and the one currently possessed by the robot.

- The Navigation block receives the information coming from the plant model and
processes them in order to provide the status of the system.

- The Guidance block is responsible for generating the references in order to provide
the robot with a direction to follow and the speed profile to adapt to.

The robot is considered as a point that moves in space. Obstacles are reported as points
surrounded by a circular area of influence, the navigation within which is considered dan-
gerous for the robot. Usually this area is larger than the size of the obstacle itself to ensure
more safety: a value of 70 cm has been chosen calibrated on the robot’s performance. The
goal is also a point. The color code is reported:

- Green point: initial point, always in the origin of the Inertial Frame

- Blue point: actual position of the robot

- Red point: goal position

- Orange points: obstacles position

- Dashed orange circle: obstacles area of influence

- Blue continuous line: robot’s path

Figure 6.10: Example of a mission trajectory

103

6 – Simulation Model

6.2.1 Control
It deals with the generation of a command for the actuators, i.e. the electric motors, based
on the difference between the desired and the states currently owned by the robot. It
consists of two main parts:

- a first block represents the Controller

– inputs:
· Reference from Guidance: Vxref , reference velocity along the x-axis, and

ψref , reference orientation.
· Navigation information: estimated Vx, velocity along the x-axis actually

owned by the robot, and ψ, estimated orientation.
· Eos signal: signal that decrees the achievement of the objective and the

consequent end of the simulation.
– outputs:

· Command signal generated by the velocities comparison Vxcmd.
· Command signal generated by the orientations comparison ψcmd.

- a second block is the Command Module, responsible for translating the command
signal into a PWM signal for the motors

– inputs are the Command signals
– outputs are motors’ PWM

Figure 6.11: Control Block

The Controller block is made up of two PID controllers:

- A PI controller for the speed, responsible for the generation of Vxcmd.
The error signal in input to the PI is the difference between the desired and the actual
velocity of the robot

eV (t) = Vxref − Vx (6.1)
while its output the sum of a proportional part made up of the input signal multiplies
by a gainKpV x and a part equal to its integral multiply by the gainKiV x. A saturation
has been imposed to prevent excessive command.

104

6 – Simulation Model

- A P controller for the orientation, responsible for the generation of ψcmd.
The error signal in input to the PID made up of only the proportional part (Kpψ is
the value of the gain) is the difference between the desired and the actual orientation
of the robot

eψ(t) = ψref − ψ (6.2)
The generated ψcmd is again subjected to saturation.

The Command Module block is characterized by the transformation of the command signals
in PWM signals:

PWMl = (Vxcmd − ψcmd) · 20000
PWMr = (Vxcmd + ψcmd) · 20000

(6.3)

A manual tuning of the PID parameters has been carried out in order to obtain the response
with the desired characteristics for the system: in particular, the priority is to ensure
maneuver stability, avoiding excessive commands and consequently the missing of the goal
or the lengthening of the time necessary to achieve it. PID tuning in nonlinear system is not
simple; the search for the most optimized solution is not the aim of this treatment, so here
are presented gains values that have been demonstrated to be acceptable in simulations.
Figure 6.12 shows the response of the system to the variation of the gain value KpV x given
as input to the system a reference speed of 0.25 m/s. With the proportional term alone,
it is necessary to considerably increase the entity of the proportional part of the PID to
get closer to the reference; with the addition of the integrative term, for example a value
of KiV x of 0.5 like the one adopted in Figure 6.13, the situation improves allowing the
achievement of the objective with a lower KpV x. In Figure 6.14, setting the proportional
gain at 2, it is possible to observe how the response of the system changes as the integrative
term increases. As can be seen, the effect is twofold: first, the cancellation of the error at
steady state; secondly, the increase of KiV x brings the speed up of the system thus reaching
the desired speed in a shorter time. On the basis of these considerations, the gain values

Figure 6.12: KpV x Tuning

have been set as 2 for KpV x and 1.85 for KiV x; the derivative term has instead been set to
zero.

105

6 – Simulation Model

Figure 6.13: Proportional and Integrative Part Tuning

Figure 6.14: KiV x Tuning

106

6 – Simulation Model

Figure 6.15 shows a series of curves representing the responses of the system to a step
reference (in dashed black) obtained for different values of the proportional gain of the
PID controller. If only the first part of the graph is observed, the response of the system
speeds up as the gain Kpψ increases and it would therefore seem advantageous to adopt a
high gain; on the other hand, if the reference inversion zone is observed, for high Kpψ an
unwanted overshoot appears and this is not favorable considering that the risk would be
to collide with obstacles in the proximity.
Let us observe what happens using a lower and a higher Kpψ value in the case of a simple

Figure 6.15: Kpψ Tuning

mission without obstacle and one with an obstacle along the robot trajectory. Figure 6.16
reports the two path obtained in the former case with a value of 0.3 and a value of 0.6 for
Kpψ, Figure 6.18 the two path in the latter case again with values of 0.3 and 0.6 for Kpψ.

(a) Kpψ=0.3 (b) Kpψ=0.6

Figure 6.16: Robot path, no obstacle

107

6 – Simulation Model

(a) Kpψ=0.3 (b) Kpψ=0.6

Figure 6.17: Robot angular position, no obstacle

(a) Kpψ=0.3 (b) Kpψ=0.6

Figure 6.18: Robot path with an obstacle

The variation of the orientation is instead shown in Figure 6.17 and Figure 6.19 both for
the first and for the second case. Here are some considerations:

- Case without obstacles: the most evident difference is in the time it takes for the
system to approach the reference. It is observed that while with a Kpψ equal to 0.6
in the first two seconds there is the entrance in a band of about ±10 degrees from the
reference, for 0.3 this happens beyond and maintaining a generally greater error. The
trajectory is less optimized in terms of distance from the shortest path for a value of
0.3 of Kpψ, while the result is better in the 0.6 case.

- Case with an obstacle: for a value of 0.6 of Kpψ the excess of overshoot leads the
system to perform more than one turn to assure the robot to reach the goal, so more
time to complete the mission. A value of 0.3 ensures the achievement of the reference
and the completion of the mission in a shorter time even if the reference is followed
less faithfully.

108

6 – Simulation Model

(a) Kpψ=0.3 (b) Kpψ=0.6

Figure 6.19: Robot angular position with an obstacle

Based on these considerations, an intermediate value of 0.4 for Kpψ has been considered.
The possibility of using the other gains has been also evaluated, but the poor results have
led to the conclusion that the proportional part alone is sufficient to ensure the desired
performance.

109

6 – Simulation Model

6.2.2 Navigation
It deals with the determination of robot actual state and the closing of the system loop
through its feedback. It takes as inputs the speed in the body system Vx and the angular
speed ψ̇ and translate them into quantities referring to the Inertial system. Through
integration, it deals with tracing the position of the body and its orientation, information
which it then feeds back so to be exploited by the Guidance and Control Systems. By
considering the future integration of a dynamic model, a Kalman filter can be implemented
for merging data from the two models (kinematic and dynamic) in order to provide greater
accuracy in determining the state of the robot.

6.2.3 Guidance
The objective of the robot’s mission is to reach a certain position avoiding collision with
any obstacles present in the environment in which it operates. The creation of the path
from the initial to the final position is entrusted to the Guidance block: thanks to the
information on the current state of the robot, the guidance algorithm is able to generate
a reference in terms of orientation and speed to satisfy the achievement of the goal. This
block is made up of

- Initial Orientation Block

– Inputs are the goal position and the estimated orientation
– Outputs are the reference for the orientation and a signal to enable the APF
guidance algorithm once certain criteria have been satisfied

- APF Block

– Inputs are the goal position, obstacles position and the estimated position
– Outputs are the reference for orientation, velocity and a signal that establishes
the arrival to the goal

6.2.4 Initial Orientation
The initial correction of the orientation allows to shorten the time necessary to reach the
goal if it is located in an unfavorable point with respect to the initial orientation of the
robot (behind, for example). The idea behind the algorithm is that the robot is always
in the initial position at the origin of the Inertial Reference System and that its initial
orientation is entered by the user (estimated by on-board sensors in the real case). The
space is divided into 3 areas:

- a front area, characterized by orientations between −π/2 and π/2

- a first back area, characterized by orientations between π/2 and π

- a second back area, characterized by orientations between −π/2 and −π

110

6 – Simulation Model

Figure 6.20: Space of robot mission

Based on the goal position, the robot receives as a reference an orientation to follow: none
if it is already oriented in the most favorable area to achieving the goal, ±π if this is not
verified. Once returned to the correct area, the enable signal activates the actual guidance
algorithm and disables the functioning of the block.
Below there are some examples by which to observe what is the behavior of the Guidance
block based on the different positioning of the goal: Figure 6.22 for the first back area,
Figure 6.21 and Figure 6.24 for the front one, Figure 6.23 for the second back area.

(a) Trajectory (b) References

Figure 6.21: Robot path, Goal in the front up area

111

6 – Simulation Model

(a) Trajectory (b) References

Figure 6.22: Robot path, Goal in the first back area

(a) Trajectory (b) References

Figure 6.23: Robot path, Goal in the second back area

112

6 – Simulation Model

(a) Trajectory (b) References

Figure 6.24: Robot path, Goal in the front down area

113

6 – Simulation Model

6.2.5 Reference signals
Once the optimal state for achieving the goal in terms of initial orientation is reached,
the guidance algorithm is activated. It is based on an Artificial Potential Field method
already introduced in chapter 4: it receives information on the current position and on the
goal and obstacles positions and traces the path to follow by exploiting the intensity of
the potential field generated by the elements present in environment. In particular, for the
generation of the orientation signal reference, the relationship is

ψd = atan
FY
FX

(6.4)

where FY and FX are the sum of repulsive and attractive force along the X and Y axes.
The values of the attraction and repulsion coefficientsK and η have been identified through
a series of tests, favoring those for which navigation proceeded smoothly without sudden
changes in orientation. Below there are some graphs that show the studies conducted in
order to determine the most appropriate values for the case in question.
Suppose that the aim is to determine what is the force of attraction that the goal exerts on
the robot. For simplicity, let us assume that the robot moves exclusively along the X-axis
and that the goal is located 4 m in this direction from the starting point of navigation, that
is 0. The force that the robot feels is reported at each point as the K coefficient changes
(Figure 6.25). First of all, to avoid that the attraction is excessive when the robot is very
far from the goal, a function of the type described in section 4.3 is adopted, indicating a
distance of 2 meters as the one in which the potential becomes parabolic again. The choice
of the value K depends on the needs of the project: one could, for example, establish a
value of K equal to 0.15 and impose that the speed follows this reference; in this case over
a K equal to 0.2 it makes no sense to go as the maximum speed of the robot is around
43 cm/s. A value of K=0.15 has been chosen. Suppose now that the aim is to determine

Figure 6.25: Attraction Force

what is the force of repulsion that the obstacles exerts on the robot. For simplicity, let us

114

6 – Simulation Model

assume that the robot moves exclusively along the X-axis and that the obstacle is located
1 m in this direction from the starting point of navigation, that is again 0. The force that
the robot feels is reported at each point as the η coefficient changes (Figure 6.26). It is

Figure 6.26: Repulsive Force

possible to notice how as the robot approaches the area of influence of the obstacle, setting
at 70 cm, the felt repulsion force increases hyperbolically. In light of this, an eta coefficient
of 0.05 has been considered sufficient.
For the velocity reference, a different approach has been employed: a relation like the one
in section 4.4 has been adopted and an in-depth study has been conducted in order to
identify the most suitable values for the parameters involved.
It is here reported the expression of Vd:

Vd = Vxmax θ
h

θh + ∆h(q) (6.5)

with

∆(q) = Kg

ρg
+

NoØ
i−1

Ki

ρobsi
(6.6)

where q is the current position of the robot, ρg is the distance from the goal point, ρobsi the
one from the i-esimal obstacle with No number of obstacles, Kg andKi positive parameters,
h positive integer number, θ positive parameter and Vxmax the maximum desired reachable
velocity. The term

qNo
i−1

Ki
ρobsi

disappears if the robot is not in the area where there is the
obstacle influence.
Some considerations are reported:

- Vxmax is set at 0.3 m/s to ensure acceptable mission times and prevent a not too high
destabilising speed.

- Kg, Ki, h and θ have been chosen so as to have a speed profile not too strongly
decreasing in the vicinity of obstacles and goal.

115

6 – Simulation Model

Suppose a goal 5 meters in a straight line from the robot. For simplicity, consider the path
free of obstacles. All the coefficients are fixed except for the θ parameter (Figure 6.27, with
Vxmax=0.3 m/s and a value of 1 for Kg and h). It can be noticed that as the parameter

Figure 6.27: Variation of the Velocity Reference for θ ∈ [0,5]

increases, the steepness of the curve increases near 0, i.e. the deceleration required to stop
at the goal increases. A trade off is necessary: if the aim is to shorten the travel time of
the stretch that separates the robot from the goal, then a higher value must be chosen.
However, it must be taken into account that the probability of goal overcoming increases.
When the aim is the reaching of a physical object in order to picked it up with a robotic
arm, then the risk of collision increases if the system is not promptly reactive in stopping.
Consider three references for comparison (Figure 6.28): they have been obtained by sim-
ulating a mission with the objective of reaching a goal at 5 m from the robot in the
X direction, with initial orientation equal to 0. Values of 0.3 and 1 for Kg and h and
Vxmax=0.3 m/s have been set. Figure 6.28a has been obtained for a value of 1 for θ, Fig-
ure 6.28b for a value of 2 and Figure 6.28c for a value of 3. From the first mission to the
second the time necessary to reach the goal has been shortened (21.5 seconds in the first
case, while 19.6 in the other), but by increasing up the θ value problems in reaching the
goal arise: the latter is in fact surpassed in the third case and a turning maneuver has been
required to complete the mission. A value of 2 has been chosen as a compromise.

116

6 – Simulation Model

(a) θ=1 (b) θ=2

(c) θ=3

Figure 6.28: Variation of the References for θ ∈ [1,3]

Let us repeat the same mission, this time varying the value of h (Figure 6.29). The
deceleration effect near the goal is even more pronounced. A value of 1 has chosen such
as to ensure an adequate decline of the curve. The last two parameters investigated have
been the coefficients Kg and Ki. For the sake of simplicity, only the curve relating to a
path without obstacles is shown again (Figure 6.30). As the coefficient increases, the slope
of the velocity curve near the origin softens. A value of 0.4 for Kg has been assumed so
that at a distance of 20 cm the speed drops to around 50% of the maximum established. A
value of 1 for Ki has been instead assumed in order to have a slowdown near the obstacle
without causing the robot to stop.
Finally, a tolerance value has chosen in achieving the goal: the mission ends when the
robot reaches an area around the goal of 10 cm in radial width.

117

6 – Simulation Model

Figure 6.29: Variation of the Velocity Reference for h ∈ [0,5]

Figure 6.30: Variation of the Velocity Reference for Kg ∈ [0,1]

6.3 Mission Planner
A Mission Planning block has been included in order to provide the interface through
which to establish the mission goal: in order to implement the guidance algorithms it is
necessary to enter the coordinates of the final point to be reached and the position of the
obstacles that must instead be avoided.

118

Chapter 7

ROS/Gazebo and Code
Generation

From the robot’s perspective, problems that seem trivial to humans often vary wildly between
instances of tasks and environments [...]. As a result, ROS was built from the ground up
to encourage collaborative robotics software development. [84]

Robotic simulation is a process of emulation of the real world behavior of a robot in a
virtual environment. The aim is to test its design and programming code without the
necessity to use a real expensive prototype [44], with the possibility to modify its configu-
ration with no additional cost, change its characteristics to meet the specifications, perform
tests in different scenarios.
Gazebo is a a multi-robot simulator environment which offers such possibilities in com-
plex indoor and outdoor applications [30]. Its strength is its compatibility with the Robot
Operating System, one of the most popular frameworks for robotic software.

7.1 ROS background
ROS official definition is [85]

An open-source, meta-operating system for your robot. It provides the services you would
expect from an operating system, including hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-passing between processes, and
package management. It also provides tools and libraries for obtaining, building, writing,
and running code across multiple computers.

More in detail, it is a Meta-Operating System [85], i.e. a system that performs scheduling,
loading, error handling and monitoring running on the existing operating system and of-
fering robot application programs as libraries.
At the base of its success are the possibilities of

- Distributed computation: since different processes can run across several different com-
puters, ROS can provide communication between them allowing an orderly exchange

119

7 – ROS/Gazebo and Code Generation

of information.

- Software reuse: if a basic algorithm has already been implemented for a certain
need, why not reused it when it reappears? The idea of ROS is to provide basic
functions for navigation, motion planning, mapping, etc. via packages to leave space
for experimentation with new ideas [70].

- Rapid testing: experimenting with high-level algorithms is easier since it is not nec-
essary to have the real prototype available.

- Writing easily: Python and C++ can be used as program languages.

ROS is composed by three levels of concepts: File-system level, Computation Graph level,
Community level.
Components of File-system level are [85]

- Packages: collection of run time processes, data-sets, configuration files and anything
else organized in an orderly way.

- Metapackages: set of packages with common purposes.

- Repositories: collection of packages with a common VCS1 system.

- Package Manifests: documents providing metadata about a package, i.e. name, ver-
sion, description.

- Message (msg): data exchanged between ROS elements, they can be variables such
as integer, floating point, and Boolean [9].

- Service (srv): a synchronous bidirectional communication between the service client
and the service server that is responsible for responding to requests. In particular

– Service client: it is a client that requests service to the server and receives a
response as an input in form of message.

– Service server : it is a server that receives a request as an input and transmits a
response as an output in the form of message.

Services are one-time message communication: when the request and response of the
service is completed, the connection between two nodes is disconnected [9].

Components of Computation Graph level are [85]

- Master : it is responsible for node-to-node connections and messages communication.
The command roscore is used to run the master: without it, nodes would not be
able to find each other and exchange messages. A URI address is also configured
(ROS_MASTER_URI) to let slave nodes to access and register their own information
or request information from other nodes.

1Version Control System, class of systems responsible for managing changes to computer programs,
documents, etc. [110]

120

7 – ROS/Gazebo and Code Generation

- Nodes: they are the smallest unit in ROS [9]. They are processes that perform
computation. A variable called ROS_HOSTNAME, which is stored on the computer
where the node is running, is created and used as the URI address to communicate
with Master.

- Parameter Server : store of the data required by the execution of nodes.

- Topic: a name used to identify the content of the message. Like in a conversation,
there are nodes that publish on a given topic and nodes that subscribe to it.

– Publisher : it is a node that registers its own information with the master and
sends messages to subscriber nodes interested in the same topic.

– Subscriber : it is a node that registers its own information with the master and
receives publisher information about a specific topic.

Topic communication is an asynchronous communication: there is a continuous trans-
mission and reception of data between the connected nodes.

- Bag: format for saving and playing back ROS messages data.

- Action: message communication method used for an asynchronous bidirectional com-
munication. The structure of action file is also similar to that of service and it is
used where it takes longer time to respond after receiving a request and intermediate
responses are required until the result is returned [9].

Community level is linked to the possibility of relying on a large community active in the
exchange of software, knowledge and information benefiting users in the creation of their
projects.
The ROS Master acts a nameservice in ROS Computation Graph that stores topics and
services registration information for nodes. Nodes communicate with the Master to give
and obtain information.

Figure 7.1: ROS communication strategies

121

7 – ROS/Gazebo and Code Generation

7.2 Gazebo
Gazebo is an open source robot simulator built in a robust physics engine that offers a
very practical programmatic and graphical interface. The interesting features of Gazebo
for the purposes of this thesis are:

- Dynamic simulation, obtained through the use of physics engine such as Open Dy-
namics Engine (ODE), Bullet, Simbody, DART.

- 3D Graphics, with high quality rendering of light, shadow and texture using Open-
source Graphics Rendering Engines (OGRE).

- Sensors and Noise Simulation, given that it is possible to exploit a wide range of
sensors importing their features as plug-ins.

- Robot Model, with the possibility of using a preset or a customized one. An already
available virtual model of the Devastator robot has been used (Figure 7.2).

Figure 7.2: Devastator Model

Robot model in ROS contains packages to reproduce in the virtual environment the real
robot configuration and proprieties: in particular, the package required to construct an
object model is the URDF or Unified Robot Description Format, containing

- Kinematic and dynamic description of the robot

- Visual representation on the robot

- Collision model of the robot

122

7 – ROS/Gazebo and Code Generation

Xacro files are used along with URDF files to simplify them; Xacro is a XML2 macro lan-
guage that makes it easier to manage robot description files [108]. Robot_state_publisher
allows to publish the state of the robot and make it available to all the components in
the system. What is called a robot is a collection of link parts and joint elements that
connected them: for every joint it is possible to defined some characteristics and store them
in the Robot model package.
Let us analyze the main package file extensions and elements:

- .urdf.xacro: it contains the kinematic model of the robot and attaches meshes to each
link.

- .gazebo.xacro: it contains Gazebo model representation and properties of each link.

- meshes folder: it contains all the robot 3D part elements such as structure, motors,
sensors.

- .xacro files: they are used to define other characteristics, such as color for each meshes
and so on.

In these files all the essential features of the robot model are specified, in particular col-
lision and inertial properties are necessary to introduce the robot model to the Gazebo
environment because they are required by the physics engine for simulation [9]. A generic
element in .urdf.xacro file is usually defined with a

- Collision section:
<l i n k name="cube_base">

<c o l l i s i o n name="cube_base_co l l i s i on ">
<o r i g i n xyz="0 0 0 " rpy="0 0 0"/>
<geometry>

<box s i z e ="0.19 0 .134 0.047"/>
</geometry>

</c o l l i s i o n >
</l ink>

- Inertial section:
<l i n k name="cube_base">

<i n e r t i a l >
<o r i g i n xyz="0 0 0" rpy="0 0 0"/>
<mass value ="8.2573504 e−01"/>
<i n e r t i a ixx ="2.2124416 e−03"

ixy="−1.2294101e−05" i x z ="3.4938785 e−05"
iyy ="2.1193702 e−03" i y z ="−5.0120904e−06"
i z z ="2.0064271 e−03" />

</ i n e r t i a l >
</l ink>

2eXtensible Markup Language, it defines a set of rules for encoding documents in a format that is
both human-readable and machine-readable [116]

123

7 – ROS/Gazebo and Code Generation

It is also possible to define how the links behave when they are in contact with one another
and how the joint moves in Gazebo environment by defining

- friction properties

- stifness properties

- dampening properties

<gazebo r e f e r e n c e="wheel_right_l ink">
<mu1>0.1</mu1>
<mu2>0.1</mu2>
<kp>500000.0</kp>
<kd>10.0</kd>
<minDepth>0.001</minDepth>
<maxVel>0.1</maxVel>
<!−− <mater ia l>Gazebo/FlatBlack</mater ia l> −−>

</gazebo>
with mu1 and mu2 the friction parameter in the first and second direction respectively,
kp and kd the coefficients for stiffness and damping characteristics, MinDepth the param-
eter indicating the minimum allowable depth before contact correction action is applied,
MaxV el the maximum contact correction velocity truncation term [44]. Once the model
is available, a .launch file can be created to include all its component in the Gazebo envi-
ronment.
Another element of fundamental importance is the modeling of the environment in which
the mission will be carried out. By default this environment is an empty world: it appears
as reported in Figure 7.3, i.e. essentially as a gray surface with basic reference. It con-
stitutes the space in which the mission takes place and can be populated with elements,
faithfully reproducing a real environment.

Figure 7.3: Gazebo interface [31]

124

7 – ROS/Gazebo and Code Generation

7.3 ROS/Gazebo-MATLAB/Simulink Co-simulation
Gazebo is a very useful tool for testing algorithms in a realistic simulation environment;
MATLAB/Simulink on the other hand is a very powerful modeling tool capable of faithfully
reproducing the real behavior of the robot. It is therefore clear the advantage offered
by a co-simulation that allows to integrate the functionalities of the two environments.
By exploiting the potential offered by communication through ROS framework and the
Robotics System Toolbox in Simulink, a link has been established between the two softwares
in order to perform rapid tests on the functionality of the GNC algorithms.
ROS Toolbox creates a network of ROS nodes linked to Simulink models constituting the
communication layer that allows the exchange of information through messages. A message
in Simulink is represented by a bus signal [15] and manages by

- Bus Creator block: it creates a bus signal.

- Bus Assignment block: it receives as input a bus and allows the assignment of the
selected signal in it with new values coming from Simulink environment.

- Bus Selector block: it accepts a bus as input and allows to select the output signals
to be used in Simulink environment.

It is possible both to send messages by publishing them on an particular topic and to
receive them by subscribing to that topic [32]. This happens thanks to the use of publisher
and subscriber blocks:

- Publisher block: it sends message to ROS network. It is necessary to specify the topic
and the message type.

- Subscriber block: it receives messages from ROS network. Two port are available: Msg
port which outputs the new message and IsNew port that indicates if a new message
is received (0 if not, else 1). It is necessary to specify the topic and the message type.

(a) Subscriber (b) Publisher

Figure 7.4: Simulink ROS blocks

The time of Simulation has been instead managed thank to the Clock Message block, whose
output is a signal corresponding to the current time in seconds and nanoseconds.

125

7 – ROS/Gazebo and Code Generation

7.3.1 Creation of the connections in the Simulink Model
The Guidance block used for the Devastator Simulink model has been adapted to make it
suitable for communication with the ROS network. In particular the following blocks have
been added:

- a subscriber for Time information: it receives a signal about the /clock topic, with
rosgraph_msgs/Clock message type.

- a subscriber for State information: it receives a signal from /odom topic, with
nav_msgs/Odometry message type.

- a blank message for the Reference Signal to be send back to Gazebo: the message
type is geometry_msgs/Twist.

- a publish block for Reference: it sends the reference signals elaborated by the Guid-
ance Block to Gazebo, under the custom message /simulink_references with geome-
try_msgs/Twist as message type.

Figure 7.5: Elements for MATLAB/Simulink communication with ROS/Gazebo environ-
ment

The main elements necessary to start a joint simulation have been introduced. With the
command

r o s i n i t
in the workspace, the connection is effectively established allowing communication between
the elements of the ROS network. Guidance algorithm tests are ready to be performed.

126

7 – ROS/Gazebo and Code Generation

7.4 Code Generation
Another important possibility offered by the use of MATLAB/Simulink framework is the
obtainment of the code of the developed algorithms ready to be directly integrated with
Devastator system. The Code Generation function is part of the series of processing algo-
rithms available thanks to MATLAB Coder and Simulink Coder: starting from a Simulink
model it is possible to obtain the algorithms transcription in C or C ++ code and deploy
it in a wide variety of applications, including the loading of GNC algorithms on the robot’s
on-board computer so to make its navigation autonomous.
First of all, the GNC blocks have been rearranged so to have a single Guidance and Control
block. The Navigation block has been completed by the introduction of a Kalman filter to
provide system status. The compatibility of the blocks that make up the system has been
checked, bearing in mind that plot or communication functions with the workspace such
as Scope or To and From workspace are ignored.
In order to configure a model for Code Generation, in the Model Configuration panel it has
been specified a solver that is compatible with the system target; the mainly used solver
type is the Fixed-step solver (few systems support variable-step ones). After selecting the
solver, the Hardware Implementation panel must be opened to select [109]

- Hardware board, where the code generated from the model will run

- Device Vendor, for the selection of the available microprocessors

- Device type, associated with the device vendor

In Code Generation panel the System target file browser and configuration parameter must
be set. It is possible to choose between

- grt.tlc generic real-time target

- ert.tlc embedded real-time target

- ert_shrlib.tlc embedded real-time target shared library

- Other

The second one is chosen for Devastator GNC conversion. C++ language is also selected.
In the Interface panel the voice Reusable function is selected: in this way I/O values are
passed as arguments to the function and not as global data such as for Non-reusable function.
The way in which inputs and outputs are managed is defined choosing between Individual
arguments, Structure reference and Part of model data structure: in the first case input and
output arguments are passed individually, in the second as part of separate structures while
in the last as model data structure.
Once all the parameters have been set, it is possible to proceed with the generation of the
code.
Several files are created from the Code Generation process, the function of which is [109]

- to provide the public interface to the model entry points

- to list the types corresponding to built-in data types

127

7 – ROS/Gazebo and Code Generation

- data structures describing model signals, states and parameters

In the generated folder there are a series of model.* files that have been created in order
to support shared utilities and model references. Among them, a set of HTML3 files are
created containing the description of every source file plus a general summary. In particu-
lar, when the model_contents is opened, two section are present:

Contents

- the Summary contains information on the model and the code:

– Model information such as author, model version, tasking mode.
– Code information such as system target file, hardware device type, Simulink Coder
version, type of build.

- the Subsystem Report reports information about the model subsystems and their
reusability.

- the Code Interface Report contains the structures of

– Entry-Point Functions
– Inports
– Outports
– Interface Parameters
– Data Stores

- the Traceability Report provides a complete mapping between model elements and
code thanks to its structure of the type Traceable Simulink Blocks/Stateflow Object-
s/MATLAB Scripts.

- the Static Code Metrics Report provides generated code statistics.

- the Code Replacements Report contains information about code replacement library
functions that were used during code generation.

- the Coder Assumptions is a list of assumptions respected in the generation of the
code for the selected target environment, in particular about the type of data, their
characteristics, etc.

Generated Code

- the Main file

– ert_main.cpp, an example main program for the model, it controls model code
execution.

- the Model files

3Hypertext Markup Language (HTML) is the standard markup language for documents [40]

128

7 – ROS/Gazebo and Code Generation

– model.cpp, the model file.
– model.h, it defines model data structures and the interface to the model entry
points.

– model_private.h, with the local define constants and local data for the model
structure and the constant block I/O data structure.

– model_types.h, with forward declarations for the real-time model data structure
and parameters.

- the Data files

– model_data.cpp, with declarations for the parameters data.

- the Utility files

– rt.* files for initialization of inf, minus inf and nan, and the management of the
parameters required by the code.

Figure 7.6: Code Generation Files

The obtained files can be recalled and integrated into the processes that characterize the
robotic platform. Once the information exchange interface has been configured, i.e. the
inputs assigned and the outputs defined, it is possible to immediately test the functionality
of the translated algorithm.

7.4.1 Guidance and Control Code Generation
As previously introduced, the Guidance and Control blocks have been merged into a single
subsystem that is responsible for generating the speed and orientation references starting
from the estimated state of the system and able to control the actuators in order to follow
the references. Goal and obstacles positions as well as the value of all the controller parame-
ters have been defined in the data file. As input the G&C block receives the state estimated
by the Kalman filter (fusion of the odometry data from the encoder, accelerometers, mag-
netometers and the visual odometry from the depth detection camera), i.e. position X, Y ,

129

7 – ROS/Gazebo and Code Generation

orientation ψ and speed of the robot Vx, while in output provides PWM values for the left
and right motors.

130

Chapter 8

Simple missions in Indoor
Environment

In chapter 6 the Robot model realized in the MATLAB/Simulink environment has been
presented. In chapter 7 the possibility of testing the Guidance algorithm on a pre-existing
model in ROS/Gazebo framework has been introduced and its effectiveness evaluated. The
Code Generation of the Guidance and Control algorithm has been performed so to have
its integration into the on-board processes of the robotic platform.
Let us consider two simple missions for the Devastator:

- Reaching a Goal point in a free save environment

- Reaching a Goal point in an environment with obstacles

Both missions are carried out indoors, thus excluding the possibility of navigating using
tools such as GPS (widely used in outdoor applications). A combination of the informa-
tion coming from sensors performed by the Kalman filter is required for the activation of
the Guidance and Control algorithms. In particular, the data fusion involves encoders,
accelerometers, magnetometers and a depth detection camera with the aim of obtaining
the position in the Inertial Frame of the robot, its linear and angular velocity and its ori-
entation. Thanks to the possibility of exploiting a set of different sensors, it is possible
to correct the errors intrinsically linked to their use. Information coming only from the
encoders would lead to an incorrect calculation of the position given the presence of slips
that they are not able to identify, but the use of the depth detection camera allows the
integration of the position information to obtain a more reliable status. The filter per-
formance optimization path has been undertaken, which is why the mission subsequently
presented performed with the Devastator platform shows little accuracy in achieving the
goal.

8.1 MATLAB/Simulink simulations
Some tests have been carried out using the model presented in chapter 6. The obtained
results and some considerations are reported below.

131

8 – Simple missions in Indoor Environment

8.1.1 Obstacles free path
A simple mission is considered: the aim is to achieve a goal placed 1 meter in front of the
robot. Below there are the simulation input parameters, i.e. the coordinates of the goal and
obstacles, and the gain values that characterize the orientation and speed controllers, i.e.
the proportional and integrative gains for the PI that involves speed and only proportional
gain for the P that involves orientation.
%% Mission Parameters
X_goal=1; % Desired X position [m]
Y_goal=0; % Desired Y position [m]
X_0=0; % Initial X position [m]
Y_0=0; % Initial Y position [m]
psi_0=0; % Initial orientation [rad]
ox=−; % Obstacle X position [m]
oy=−; % Obstacle Y position [m]

%% Controller
% PID section, Speed
Kp_Vx=2;
Kd_Vx=0;
Ki_Vx=1.85;

% PID section, Orientation
Kp_psi=0.4 ;
Kd_psi=0;
Ki_psi=0;

Figure 8.1: MATLAB/Simulink Trajectory in an obstacles free environment

132

8 – Simple missions in Indoor Environment

The path followed by the robot to complete the mission is shown in Figure 8.1. The reason
why the final position is not exactly in the goal is linked to the tolerance imposed on
reaching the final point: once a distance contained in a circle of 10 cm from the desired
arrival is reached, the mission is considered concluded. The total time taken by the robot
is 4.9 seconds, with a displacement of approximately 91 cm in the X direction and a final
position of approximately 2.8 cm in the Y direction (Figure 8.2). The lateral movement
during the path is a characteristic of the robot itself: due to a different tension of the tracks,
a slight difference in their length, a distribution of mass that is not perfectly symmetrical
and so on, an identical command to the right and left motors generates a slight rotation
of the robot to the left, bringing a small shift of some centimeters in the Y direction (in
this case about 4 cm at most). As it can be seen, this shift increases in the first 4 seconds
approximately, then decreases: this can be explained by observing what happens in the
orientation reference (Figure 8.5). In the first seconds the ideal orientation and the robot
one coincide, so no inputs are applied (it can be observed in Figure 8.4 that the PWM
signals for the right and left motors are identical). When the orientation error begins to
increase, the Control System is activated to increase the speed of the left track and decrease
that of the right one: this generates the creation of a slight negative angular speed which
leads to the clockwise rotation of the robot (Figure 8.3) and the decrease of the error with
the reference. In such a short mission and for such a close distance, given the limitations
on the maximum speed imposed, the "jagged" behavior of the speed is not surprising: on
the one hand, there is the data sampling period (0.1 second), on the other hand the model
itself, not perfectly reliable for PWM below 5000 µs.

(a) Position X (b) Position Y

Figure 8.2: MATLAB/Simulink Position in an obstacles free environment

133

8 – Simple missions in Indoor Environment

(a) Orientation ψ (b) Angular speed ψ̇

Figure 8.3: MATLAB/Simulink Orientation and Angular speed in an obstacles free envi-
ronment

(a) PWM (b) Velocity

Figure 8.4: MATLAB/Simulink Velocity in an obstacles free environment

134

8 – Simple missions in Indoor Environment

(a) Velocity reference (b) Orientation reference

Figure 8.5: MATLAB/Simulink Reference in an obstacles free environment

135

8 – Simple missions in Indoor Environment

8.1.2 Environment with obstacles
It is imposed the presence of obstacles in the environment. The goal is positioned 6 meters
in the X direction and 3 m in the Y one. The controller values are the same as in the
previous mission.

%% Mission Parameters
X_goal=6; % Desired X position [m]
Y_goal=3; % Desired Y position [m]
X_0=0; % Initial X position [m]
Y_0=0; % Initial Y position [m]
psi_0=0; % Initial orientation [rad]
ox=[2 3 4 5] ; % Obstacle X position [m]
oy=[3.5 1 2 .5 3] ; % Obstacle Y position [m]

%% Controller
% PID section, Speed
Kp_Vx=2;
Kd_Vx=0;
Ki_Vx=1.85;

% PID section, Orientation
Kp_psi=0.4 ;
Kd_psi=0;
Ki_psi=0;

Figure 8.6: MATLAB/Simulink Trajectory in an environment with obstacles

The trajectory followed in this case is reported in Figure 8.6. The obstacle in position
(3, 1) and the one in position (2, 3.5) do not in any way influence the path of the robot,

136

8 – Simple missions in Indoor Environment

(a) Position X (b) Position Y

Figure 8.7: MATLAB/Simulink Position in an environment with obstacles

(a) Orientation ψ (b) Angular speed ψ̇

Figure 8.8: MATLAB/Simulink Orientation and Angular speed in an environment with
obstacles

while the other two obstacles prevent the achievement of the goal by continuing to follow
the undertaken trajectory and force the robot to deviate to avoid a collision. However,
the mission is a success: the final position of the robot is 5.97 m in the X direction and
2.9 m in the Y one (Figure 8.7), reached in 34.1 seconds. Faithful tracking of the speed
reference can be observed as well as, although less rapidly, that of orientation. Obstacles
represent a disturbance in the path: after about 15 seconds the robot enters the area of
influence of the obstacle, becomes aware of its presence and undertakes an orientation
change maneuver such as to take it out of the danger area and resume navigation. The last
part of the mission is characterized by a "lively" behavior of the speed signal: this is again
due to the fact that the PWM signal has dropped below the threshold which guarantees

137

8 – Simple missions in Indoor Environment

(a) PWM (b) Velocity

Figure 8.9: MATLAB/Simulink Velocity in an environment with obstacles

(a) Velocity reference (b) Orientation reference

Figure 8.10: MATLAB/Simulink Reference in an environment with obstacles

optimal behavior of the model (Figure 8.9), but on the other hand this is unavoidable given
the constraints imposed by safety. If the robot enters a dangerous area and is close to an
obstacle, the reference speed is considerably reduced to avoid that, when attempting to
carry out the escape maneuver, it gets too close to the obstacle and does not have the time
to avoid it.

138

8 – Simple missions in Indoor Environment

8.2 ROS/Gazebo simulations
In order for the simulation to take place, it is necessary to enter the inertial parameters
and the friction characteristics of the robot: a mass of 1.5 kilograms and a friction of 0.1
for the interaction of the tracks with the ground have been considered. The reason for the
latter value is linked to the low grip that the track exhibits on a paved surface.

8.2.1 Obstacles free path
Again it is considered a simple mission in an obstacle-free environment. The aim remains
to reach a goal located 1 meter in front of the robot, defined in Figure 8.11 with a red
square.
%% Mission Parameters
X_goal=1; % Desired X position [m]
Y_goal=0; % Desired Y position [m]
X_0=0; % Initial X position [m]
Y_0=0; % Initial Y position [m]
psi_0=0; % Initial orientation [rad]
ox=−; % Obstacle X position [m]
oy=−; % Obstacle Y position [m]

Figure 8.11: Devastator Robot and Goal

Contrary to the MATLAB/Simulink model, the Gazebo model does not exhibit the lateral
displacement caused by the asymmetry of the behavior of the two tracks: it could be
interpreted as the ideal behavior that the robot would have if construction imperfections
or disturbances were not present. The goal is reached in about 5 seconds, with a straight
trajectory and a final position of 93 cm in the X direction and 0 cm in the Y direction
(Figure 8.12 and Figure 8.13). The reference is faithfully followed (Figure 8.16) and only
a unusual behavior near the goal is observed, probably a small impulse of the propulsion
system in an attempt to get slightly closer to the goal.

139

8 – Simple missions in Indoor Environment

Figure 8.12: ROS/Gazebo Trajectory in an obstacles free environment

(a) Position X (b) Position Y

Figure 8.13: ROS/Gazebo Position in an obstacles free environment

140

8 – Simple missions in Indoor Environment

(a) Orientation ψ (b) Angular speed ψ̇

Figure 8.14: ROS/Gazebo Orientation and Angular speed in an obstacles free environment

(a) Velocity

Figure 8.15: ROS/Gazebo Velocity in an obstacles free environment

141

8 – Simple missions in Indoor Environment

(a) Velocity reference (b) Orientation reference

Figure 8.16: ROS/Gazebo Reference in an obstacles free environment

142

8 – Simple missions in Indoor Environment

8.2.2 Environment with obstacles
The goal is positioned 6 meters in the X direction and 3 m in the Y one such as for
the mission performed in MATLAB/Simulink environment. A series of obstacles with the
following characteristics have been added, represented by orange cylinders of 25 cm in
height and 15 cm in radius.

%% Mission Parameters
X_goal=6; % Desired X position [m]
Y_goal=3; % Desired Y position [m]
X_0=0; % Initial X position [m]
Y_0=0; % Initial Y position [m]
psi_0=0; % Initial orientation [rad]
ox=[2 3 4 5] ; % Obstacle X position [m]
oy=[3.5 1 2 .5 3] ; % Obstacle Y position [m]

% Obstacles Definition in Gazebo world
<model name="Obstac le ">

<s t a t i c >False </s t a t i c >

<l i n k name=" ob s t a c l e ">
<i n e r t i a l >

<mass>15</mass>
<o r i g i n xyz="0.0 0 0" rpy=" 0 0 0"/>
<in e r t i a >

<ixx >1.0</ ixx> <ixy>0</ixy> <ixz >0</ixz>
<iyy >1.0</ iyy> <iyz >0</iyz>
<izz >1.0</ izz>

</ i n e r t i a >
</ i n e r t i a l >
<pose>2 3 .5 0 .5 0 0 0</pose>
<c o l l i s i o n name=" c o l l i s i o n ">
<geometry>

<cy l inde r>
<length >0.25</ length>
<radius >0.15</ radius>

</cy l inde r>
</geometry>
<sur face>

<f r i c t i o n >
<ode>

<mu>1</mu>
<mu2>1</mu2>

</ode>
</ f r i c t i o n >

</sur face>
</c o l l i s i o n >

143

8 – Simple missions in Indoor Environment

<v i s u a l name=" v i s u a l ">
<geometry>

<cy l inde r>
<length >0.25</ length>
<radius >0.15</ radius>

</cy l inde r>
</geometry>
<mater ia l>

<sc r i p t >
<name>Gazebo/Orange</name>

</s c r i p t >
</mater ia l>

</v i sua l >
</l ink>

</model>

Figure 8.17: Devastator Robot, Goal and Obstacles

Figure 8.18: ROS/Gazebo Trajectory in an environment with obstacles

144

8 – Simple missions in Indoor Environment

The followed path is very similar to that generated by the same mission carried out in
MATLAB/Simulink. Contrary to that case, however, the lack of lateral movement leads
the robot to intercept also the area of influence of the obstacle in position (3, 1), making a
deviation necessary to move the robot away from the obstacle. Similarly it happens near
the following obstacles. A final position of 5.94 m along X and 2.95 m along Y is reached
in 34 seconds.

(a) Position X (b) Position Y

Figure 8.19: ROS/Gazebo Position in an environment with obstacles

(a) Orientation ψ (b) Angular speed ψ̇

Figure 8.20: ROS/Gazebo Orientation and Angular speed in an environment with obstacles

145

8 – Simple missions in Indoor Environment

(a) Velocity

Figure 8.21: ROS/Gazebo Velocity in an environment with obstacles

(a) Velocity reference (b) Orientation reference

Figure 8.22: ROS/Gazebo Reference in an environment with obstacles

146

8 – Simple missions in Indoor Environment

8.3 Real Robot mission
In order to validate the successful translation of the G&C algorithm and demonstrate that
the tuning carried out using the simulation model is effective, a simple mission has been
performed with the Devastator robot.

%% Mission Parameters
X_goal=1; % Desired X position [m]
Y_goal=0; % Desired Y position [m]
X_0=0; % Initial X position [m]
Y_0=0; % Initial Y position [m]
psi_0=0; % Initial orientation [rad]
ox=−; % Obstacle X position [m]
oy=−; % Obstacle Y position [m]

%% Controller
% PID section, Speed
Kp_Vx=2;
Kd_Vx=0;
Ki_Vx=1.85;

% PID section, Orientation
Kp_psi=0.3 ;
Kd_psi=0;
Ki_psi=0;

Figure 8.23: Real Robot Trajectory

The mission is a success: the robot stops at 1.03 m in the X direction and at 0.07 m in the
Y direction (Figure 8.23 and Figure 8.24), with a mission duration of about 5 seconds, in

147

8 – Simple missions in Indoor Environment

accordance with the simulations performed in the MATLAB/Simulink and ROS/Gazebo
environments. A faithful representation of the state of the robot is not available due to the
Kalman filter optimization still in progress, however it is observable that the real behavior
of the robot is in line with what was expected.

(a) Position X (b) Position Y

Figure 8.24: Real Robot Position

(a) Orientation ψ

Figure 8.25: Real Robot Orientation

148

8 – Simple missions in Indoor Environment

8.4 Comparisons
The following discussion aims to compare simulations conducted in MATLAB/Simulink
and ROS/Gazebo environments with the Devastator robotic platform mission.
For the first mission, the paths described in the three cases are shown in Figure 8.26.
The ideal trajectory is represented by a straight line connecting the starting point to the
ending point. The velocity reference is such that the speed decreases along the path until
it disappears near the arrival, while the orientation reference suggests to keep the initial
orientation until the goal.
The trajectory that is the most faithful to the reference is the one followed by the model
in Gazebo simulation: the approach is perfectly straight and the stop occurs at 93 cm, i.e.
within the tolerance area around the goal in which the mission is considered completed.
The trajectory followed by the Simulink model instead shows a shift to the left of a few
centimeters, which is then recovered near the goal: as previously reported, this behavior is
to be attributed to the imperfections of the robot found during the identification process,
imperfections for which the two tracks show a slightly different behavior although the input
is identical. The mission is concluded at a distance of 91 cm, i.e. as soon as the Guidance
and Control System reveals that the robot is inside the arrival area. The trajectory actu-
ally followed by the robot is characterized by uncertainties due to the noise of the sensors
used for navigation. The true trajectory approximates the one represented and highlights
the same shift to the left already observed in the model. The finish is at 1.03 m.

Figure 8.26: Comparison between trajectories

In particular, the Figure 8.27 reports the position in the X direction for the Simulink model
simulation and for the real robot mission. The behavior of the robot is very close to that
expected by the simulation. The timing of the mission is also similar for all three cases.
For the second mission, a comparison is only possible between the simulations carried out
in the MATLAB/Simulink and ROS/Gazebo environments. The described trajectories are

149

8 – Simple missions in Indoor Environment

Figure 8.27: Position X comparison

reported in Figure 8.28.

Figure 8.28: Comparison between Simulink and Gazebo simulated trajectories

Interesting considerations can be reported by observing the behavior of the Guidance
System in the two cases (Figure 8.29 and Figure 8.30). In the first 6 seconds of the
mission the references are identical: a speed close to 0.3 m/s and an orientation of about
27 degrees are required. The initial trajectory of the two models is in fact very similar,
but as the mission proceeds, a more pronounced deviation to the left of the model created
in the Simulink environment is noted. The deviation is such that it does not intercept
the danger area around the first obstacle, so no discontinuity appears in the references.

150

8 – Simple missions in Indoor Environment

Figure 8.29: Velocity Reference comparison

Figure 8.30: Angular Reference comparison

On the other hand in the Gazebo simulation the robot intercepts this area: the Guidance
System is activated and the velocity reference is immediately lowered in an attempt to
decrease the speed of the robot. The orientation reference suggests an increase of the ψ
angle of about 30 degrees in order to make a left turn and move the robot away from the
obstacle. In the Gazebo simulation the robot overcomes the obstacle, meanwhile in the
one performed in Simulink the robot encounters its first one. Again the Guidance System
suggests a decrease in speed and a change of direction. These are changes of greater entity
than the ones suggested in the Gazebo simulation due to the fact that the robot risks

151

8 – Simple missions in Indoor Environment

a head-on collision with the obstacle. Thanks to these indications, the robot is able to
change its trajectory and move away from the obstacle, avoiding the impact. After around
17 seconds the robot in the Gazebo Simulation enters the area of influence of the second
obstacle. Similarly the speed is decreased and a slight right turn is suggested. The same
happens with the third obstacle encountered after 26 seconds. The robot in the Simulink
simulation encounters its second obstacle after around 27 seconds: this time the Guidance
System imposes a change of direction of about 30 degrees to the right, an orientation which
then suggests to decrease in view of reaching the goal.
The two missions end at about the same time, with a final position differing by a few
centimeters.

152

Conclusion

This thesis is intended to be an introduction into the world of small UGVs and an attempt
to create a model to be studied in a simulation environment. The mathematical model
of a tracked mobile robot such as the Devastator has been introduced, as well as a series
of Modeling and System Identification techniques to identify its characteristics. A change
in the robot’s design strategy provided the opportunity to compare two completely dif-
ferent identification methods: the lumped parameter technique and the data-driven one.
The former provided the characterization of the brushed DC motors and their response in
terms of angular velocity and torque to a variation of external load and supply voltage.
The latter provided the behavior of the entire platform based on a change of PWM signal
in input to the motors.
The black-box approach has been preferred given the immediate availability of the PWM-
angular speed relationship and in order to not require further experiments to characterize
the drag exerted by the track on the motor. This led to the abandonment of a dynamic
modeling of the body, the bases of which have however been defined by identifying the
inertia to the rotation of the system through the experiment of the composite pendulum.
A simple Guidance and Control algorithm has been implemented with the aim of trans-
lating it into executable code for the robot’s on-board computer and validating the model
obtained by experimentation. An APF strategy has been developed: an attractive field to-
wards the goal and a repulsive one towards obstacles have been defined, while the tracking
of references has been ensured thanks to the implementation of a PI for the speed and a P
controllers for the orientation signals.
The effectiveness of the algorithm has been validated in Gazebo environment using a pre-
existing model of the Devastator with the same geometric characteristics of the real one
by a ROS/Gazebo-MATLAB/Simulink co-simulation.
Through the MATLAB Code Generation function, the transformation of the Guidance and
Control System into executable code has been prepared. The success of parameters tuning
carried out by simulation has been also demonstrated though experimental tests.
Future projects will include the integration of a dynamic model to identify slippage and
improving navigation performance, the optimization of the Kalman filter implemented for
the fusion of the information coming from sensors and the inclusion of further of them in
order to obtain a more precise mapping of the surrounding environment, letting different
Guidance and Control algorithms to be tested (Sliding mode Controllers, for example).
The development possibilities are various and this is one of the several potentialities offered
by mobile robots, i.e. lending themselves to the experimentation of many different Guid-
ance, Control and Navigation strategies. The System Identification procedure has been

153

8 – Simple missions in Indoor Environment

only the first step towards the birth of an autonomous and intelligent system.

154

Bibliography

[1] L.A Aguirre and S.A Billings. Relationship Between the Structure and Performance
of Identified Nonlinear Polynomial Models. eng. Department of Automatic Control
and Systems Engineering, 1993.

[2] M. Ahmad, V. Polotski, and R. Hurteau. “Path tracking control of tracked vehicles”.
In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 3.
2000, 2938–2943 vol.3. doi: 10.1109/ROBOT.2000.846474.

[3] AIC. https://it.mathworks.com/help/ident/ref/idgrey.aic.html.
[4] Autocorrelation. https://en.wikipedia.org/wiki/Autocorrelation.
[5] Alexandru Barsan. “Position Control of a Mobile Robot through PID Controller”.

In: Acta Universitatis Cibiniensis. Technical Series 71 (Dec. 2019), pp. 14–20. doi:
10.2478/aucts-2019-0004.

[6] S. A. Billings, S. Chen, and M. J. Korenberg. “Identification of MIMO non-linear
systems using a forward-regression orthogonal estimator”. In: International Journal
of Control 49.6 (1989), pp. 2157–2189. doi: 10.1080/00207178908559767.

[7] S.A Billings and L.A Aguirre. Effects of the Sampling Time on the Dynamics and
Identification of Nonlinear Models. eng. Department of Automatic Control and Sys-
tems Engineering, 1994.

[8] Stephen Billings. Nonlinear System Identification: NARMAX Methods in the Time,
Frequency, and Spatio–Temporal Domains. eng. John Wiley & Sons, Inc, 2013. isbn:
1-119-94359-0.

[9] Kumar Bipin. Robot Operating System Cookbook. eng. 1st ed. Packt Publishing,
2018. isbn: 1783987448.

[10] Louis G Birta and Gilbert Arbez. Modelling and Simulation: Exploring Dynamic
System Behaviour. eng. London: Springer London, Limited, 2007. isbn: 184996629X.

[11] William Bolton. Control Systems. eng. Oxford: Newnes, 2002. isbn: 0-7506-5461-9.
[12] J Borenstein et al. “Mobile robot positioning: Sensors and techniques”. eng. In:

Journal of robotic systems 14.4 (1997), pp. 231–249. issn: 0741-2223.
[13] R. Bostelman et al. “A-UGV capabilities”. In: 2019 Third IEEE International Con-

ference on Robotic Computing (IRC). 2019, pp. 1–7. doi: 10.1109/IRC.2019.00130.

155

https://doi.org/10.1109/ROBOT.2000.846474
https://it.mathworks.com/help/ident/ref/idgrey.aic.html
https://en.wikipedia.org/wiki/Autocorrelation
https://doi.org/10.2478/aucts-2019-0004
https://doi.org/10.1080/00207178908559767
https://doi.org/10.1109/IRC.2019.00130

BIBLIOGRAPHY

[14] L Bruzzone and G Quaglia. “Review article: locomotion systems for ground mobile
robots in unstructured environments”. eng. In: Mechanical sciences (Göttingen) 3.2
(2012), pp. 49–62. issn: 2191-916X.

[15] BUS. https : / / it . mathworks . com / help / simulink / slref / simulink - bus -
signals.html.

[16] Elisa Capello and Giorgio Guglieri. Development of a Ground Test Concept Based
on Multi-Rotors for In-Flight RVD Experimentation. eng. 2015.

[17] J. Cerkala and A. Jadlovsk’a. “NONHOLONOMIC MOBILE ROBOT WITH DIF-
FERENTIAL CHASSIS MATHEMATICAL MODELLING AND IMPLEMENTA-
TION IN SIMULINK WITH FRICTION IN DYNAMICS”. In: 2016.

[18] Badong Chen et al. System Parameter Identification: Information Criteria and Al-
gorithms. eng. Saint Louis: Elsevier, 2013. isbn: 012404574X.

[19] Curiosity rover. https://en.wikipedia.org/wiki/Curiosity_(rover)#/media/
File:PIA19808- MarsCuriosityRover- AeolisMons- BuckskinRock- 20150805.
jpg.

[20] Tehmoor Dar and Raul Longoria. “Estimating Traction Coefficients of Friction
for Small-Scale Robotic Tracked Vehicles”. In: vol. 2. Jan. 2010. doi: 10.1115/
DSCC2010-4228.

[21] Devastator. https://www.dfrobot.com/product-1477.html.
[22] Rajamani Doraiswami. Identification of Physical Systems: Applications to Condition

Monitoring, Fault Diagnosis, Soft Sensor and Controller Design. eng. John Wiley
& Sons, Inc, 2014. isbn: 1-119-99012-2.

[23] Olav Egeland and Jan Gravdahl. Modeling and Simulation for Automatic Control.
Jan. 2002.

[24] D. Endo et al. “Path following control for tracked vehicles based on slip-compensating
odometry”. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2007, pp. 2871–2876. doi: 10.1109/IROS.2007.4399228.

[25] Antonella Ferrara and Matteo Rubagotti. “Second-order sliding-mode control of a
mobile robot based on a harmonic potential field”. In: Control Theory & Applica-
tions, IET 2 (Oct. 2008), pp. 807 –818. doi: 10.1049/iet-cta:20070424.

[26] A. Finn and S. Scheding. Developments and Challenges for Autonomous Unmanned
Vehicles: A Compendium. Intelligent Systems Reference Library. Springer Berlin
Heidelberg, 2010. isbn: 9783642107047. url: https://books.google.it/books?
id=TbHo4n4YrZ4C.

[27] Foster Miller TALON SWORDS. https://en.wikipedia.org/wiki/Foster-
Miller_TALON#/media/File:Foster-Miller_TALON_SWORDS.jpg.

[28] FPE. https://it.mathworks.com/help/ident/ref/idmodel.fpe.html.
[29] Yang Gao. Contemporary Planetary Robotics: An Approach Toward Autonomous

Systems. eng. Weinheim: JohnWiley & Sons, Incorporated, 2016. isbn: 9783527413256.
[30] Gazebo. http://gazebosim.org/tutorials?cat=install.

156

https://it.mathworks.com/help/simulink/slref/simulink-bus-signals.html
https://it.mathworks.com/help/simulink/slref/simulink-bus-signals.html
https://en.wikipedia.org/wiki/Curiosity_(rover)#/media/File:PIA19808-MarsCuriosityRover-AeolisMons-BuckskinRock-20150805.jpg
https://en.wikipedia.org/wiki/Curiosity_(rover)#/media/File:PIA19808-MarsCuriosityRover-AeolisMons-BuckskinRock-20150805.jpg
https://en.wikipedia.org/wiki/Curiosity_(rover)#/media/File:PIA19808-MarsCuriosityRover-AeolisMons-BuckskinRock-20150805.jpg
https://doi.org/10.1115/DSCC2010-4228
https://doi.org/10.1115/DSCC2010-4228
https://www.dfrobot.com/product-1477.html
https://doi.org/10.1109/IROS.2007.4399228
https://doi.org/10.1049/iet-cta:20070424
https://books.google.it/books?id=TbHo4n4YrZ4C
https://books.google.it/books?id=TbHo4n4YrZ4C
https://en.wikipedia.org/wiki/Foster-Miller_TALON#/media/File:Foster-Miller_TALON_SWORDS.jpg
https://en.wikipedia.org/wiki/Foster-Miller_TALON#/media/File:Foster-Miller_TALON_SWORDS.jpg
https://it.mathworks.com/help/ident/ref/idmodel.fpe.html
http://gazebosim.org/tutorials?cat=install

BIBLIOGRAPHY

[31] Gazebo interface. http://gazebosim.org/tutorials?tut=build_world&cat=
build_world.

[32] Get started with ROS/Simulink. https://it.mathworks.com/help/ros/ug/get-
started-with-ros-in-simulink.html.

[33] Gladiator Tactical UGV. https://en.wikipedia.org/wiki/Gladiator_Tactical_
Unmanned_Ground_Vehicle#/media/ile:Gladiator_240G.jpg.

[34] Brendan Gogarty and Isabel Robinson. Unmanned Vehicles: A (Rebooted) History,
Background and Current State of the Art. 2011. url: https://search.informit.
org/doi/10.3316/ielapa.034249957187447.

[35] A. Granja et al. “Improving navigation of an Autonomous Mobile Robot using
System Identification and Control”. In: 2007 IEEE International Symposium on
Industrial Electronics. 2007, pp. 2948–2953. doi: 10.1109/ISIE.2007.4375083.

[36] J. Guldner et al. “Tracking gradients of artificial potential fields with non-holonomic
mobile robots”. In: Proceedings of 1995 American Control Conference - ACC’95.
Vol. 4. 1995, 2803–2804 vol.4. doi: 10.1109/ACC.1995.532361.

[37] V. Gupta et al. “Three-stage computed-torque controller for trajectory tracking in
non-holonomic wheeled mobile robot”. In: 2018 IEEE 15th International Workshop
on Advanced Motion Control (AMC). 2018, pp. 144–149. doi: 10.1109/AMC.2019.
8371077.

[38] Rached Hatab. “Dynamic Modelling of Differential-Drive Mobile Robots using La-
grange and Newton-Euler Methodologies: A Unified Framework”. In: Advances in
Robotics & Automation 02 (Jan. 2013). doi: 10.4172/2168-9695.1000107.

[39] Victor Manuel Hernández-Guzmán and Ramón Silva-Ortigoza. Automatic Con-
trol with Experiments. eng. Advanced Textbooks in Control and Signal Processing.
Cham: Springer International Publishing. isbn: 9783319758039.

[40] HTML. https://en.wikipedia.org/wiki/HTML.
[41] Hui-Min Huang et al. “Autonomy levels for unmanned systems (ALFUS) framework:

an update”. eng. In: Proceedings of SPIE. Vol. 5804. 1. Bellingham WA: SPIE, 2005,
pp. 439–448. isbn: 0819457892.

[42] R. Iglesias et al. “Task identification and characterisation in mobile robotics through
non-linear modelling”. In: Robotics and Autonomous Systems 55.4 (2007), pp. 267–
275. issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.2006.11.007.

[43] Roberto Iglesias Rodriguez et al. “Training and Analysis of Mobile Robot Behaviour
Through System Identification”. In: vol. 4177. Jan. 2006, pp. 470–479. isbn: 978-3-
540-45914-9. doi: 10.1007/11881216_49.

[44] Lentin Joseph. Learning robotics using Python: design, simulate, program, and pro-
totype an interactive autonomous mobile robot from scratch with the help of Python,
ROS, and Open-CV! eng. 1st ed. Community experience distilled. Birmingham, UK:
PACKT Publishing, 2015. isbn: 9781783287536.

[45] Eugene Kagan, Nir Shvalb, and Irad Ben-Gal. Autonomous Mobile Robots and Multi-
Robot Systems: Motion-Planning, Communication, and Swarming. eng. Newark:
John Wiley & Sons, Incorporated, 2019. isbn: 9781119212867.

157

http://gazebosim.org/tutorials?tut=build_world&cat=build_world
http://gazebosim.org/tutorials?tut=build_world&cat=build_world
https://it.mathworks.com/help/ros/ug/get-started-with-ros-in-simulink.html
https://it.mathworks.com/help/ros/ug/get-started-with-ros-in-simulink.html
https://en.wikipedia.org/wiki/Gladiator_Tactical_Unmanned_Ground_Vehicle#/media/ile:Gladiator_240G.jpg
https://en.wikipedia.org/wiki/Gladiator_Tactical_Unmanned_Ground_Vehicle#/media/ile:Gladiator_240G.jpg
https://search.informit.org/doi/10.3316/ielapa.034249957187447
https://search.informit.org/doi/10.3316/ielapa.034249957187447
https://doi.org/10.1109/ISIE.2007.4375083
https://doi.org/10.1109/ACC.1995.532361
https://doi.org/10.1109/AMC.2019.8371077
https://doi.org/10.1109/AMC.2019.8371077
https://doi.org/10.4172/2168-9695.1000107
https://en.wikipedia.org/wiki/HTML
https://doi.org/https://doi.org/10.1016/j.robot.2006.11.007
https://doi.org/10.1007/11881216_49

BIBLIOGRAPHY

[46] Jagannathan Kanniah, M Ercan, and Carlos Calderon. Practical Robot Design. eng.
1st ed. CRC Press, 2013. isbn: 9781439810330.

[47] Sang-Hoon Kim. Electric motor control : DC, AC, and BLDC motors / Sang-Hoon
Kim. eng. Amsterdam: Elsevier, 2017. isbn: 978-0-12-812138-2.

[48] Gregor Klancar et al. Wheeled Mobile Robotics: From Fundamentals Towards Au-
tonomous Systems. eng. Oxford: Elsevier Science & Technology, 2017. isbn: 9780128042045.

[49] Andrii Kudriashov et al. SLAM Techniques Application for Mobile Robot in Rough
Terrain. eng. Vol. 87. Mechanisms and Machine Science. Cham: Springer Interna-
tional Publishing. isbn: 9783030489809.

[50] James Larminie and John Lowry. Electric vehicle technology explained, second edi-
tion. eng. 2nd ed. Chichester, West Sussex, U.K: Wiley, 2012. isbn: 111994273X.

[51] Lauer. Hybrid System Identification. eng. Springer International Publishing, 2019.
isbn: 3-030-00192-X.

[52] Guodong Li and Xiaolong Li. “Research on trajectory tracking of crawler robot
based on sliding mode control”. In: May 2014, pp. 518–523. isbn: 978-1-4799-3708-
0. doi: 10.1109/CCDC.2014.6852203.

[53] Lennart Ljung. “System Identification”. In: Wiley Encyclopedia of Electrical and
Electronics Engineering. American Cancer Society, 2017, pp. 1–19. isbn: 9780471346081.
doi: https : / / doi . org / 10 . 1002 / 047134608X . W1046 . pub2. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W1046.pub2.
url: https://onlinelibrary.wiley. com/doi/abs/10.1002/ 047134608X .
W1046.pub2.

[54] Lennart Ljung. “System Identification Toolbox for use with MATLAB”. In: 21 (Jan.
2011).

[55] Lunokhod_1 rover. https://en.wikipedia.org/wiki/Lunokhod_1#/media/
File:Soviet_moonrover.JPG.

[56] Kevin Lynch, Nicholas Marchuk, and Matthew Elwin. Embedded Computing and
Mechatronics with the PIC32 Microcontroller. eng. Oxford: Elsevier Science & Tech-
nology, 2015. isbn: 0124201652.

[57] Ma. Kalman Filtering and Information Fusion. eng. Springer Singapore, 2020. isbn:
981-15-0805-4.

[58] Konrad Majkut, Mariusz Giergiel, and Piotr Kohut. “Crawler robot kinematics mod-
eling by using a two-wheeled approach”. In: Journal of Mechanical Science and
Technology 31 (Feb. 2017), pp. 893–901. doi: 10.1007/s12206-017-0142-0.

[59] A Mandow et al. “Experimental kinematics for wheeled skid-steer mobile robots”.
eng. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE, 2007, pp. 1222–1227. isbn: 9781424409112.

[60] Mars rover generations. https : / / mars . nasa . gov / resources / 3792 / three -
generations-of-rovers-in-mars-yard/.

[61] J. L Martínez et al. “Approximating Kinematics for Tracked Mobile Robots”. eng.
In: The International journal of robotics research 24.10 (2005), pp. 867–878. issn:
0278-3649.

158

https://doi.org/10.1109/CCDC.2014.6852203
https://doi.org/https://doi.org/10.1002/047134608X.W1046.pub2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W1046.pub2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W1046.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W1046.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W1046.pub2
https://en.wikipedia.org/wiki/Lunokhod_1#/media/File:Soviet_moonrover.JPG
https://en.wikipedia.org/wiki/Lunokhod_1#/media/File:Soviet_moonrover.JPG
https://doi.org/10.1007/s12206-017-0142-0
https://mars.nasa.gov/resources/3792/three-generations-of-rovers-in-mars-yard/
https://mars.nasa.gov/resources/3792/three-generations-of-rovers-in-mars-yard/

BIBLIOGRAPHY

[62] Jorge Martínez et al. “Approximating Kinematics for Tracked Mobile Robots”. In:
The International Journal of Robotics Research 24 (Oct. 2005), pp. 867–878. doi:
10.1177/0278364905058239.

[63] Jorge Martínez et al. “Approximating Kinematics for Tracked Mobile Robots”. In:
The International Journal of Robotics Research 24 (Oct. 2005), pp. 867–878. doi:
10.1177/0278364905058239.

[64] Rubén Molina Llorente. Practical Control of Electric Machines: Model-Based Design
and Simulation. eng. Advances in Industrial Control. Cham: Springer International
Publishing. isbn: 9783030347574.

[65] Rubén Molina Llorente. Practical Control of Electric Machines: Model-Based Design
and Simulation. eng. Advances in Industrial Control. Cham: Springer International
Publishing AG, 2020. isbn: 3030347575.

[66] Sabudin elia nadira, Rosli Omar, and Che Ku Nor Hailma. “Potential field methods
and their inherent approaches for path planning”. In: 11 (Jan. 2016), pp. 10801–
10805.

[67] Sabudin elia nadira, Rosli Omar, and Che Ku Nor Hailma. “Potential field methods
and their inherent approaches for path planning”. In: 11 (Jan. 2016), pp. 10801–
10805.

[68] K. Nagatani, D. Endo, and K. Yoshida. “Improvement of the Odometry Accuracy
of a Crawler Vehicle with Consideration of Slippage”. In: Proceedings 2007 IEEE
International Conference on Robotics and Automation. 2007, pp. 2752–2757. doi:
10.1109/ROBOT.2007.363881.

[69] Nils J Nilsson. Shakey the Robot. eng. 1984.
[70] J.M. O’Kane. A Gentle Introduction to ROS. Jason M. O’Kane, 2014. isbn: 9781492143239.

url: https://books.google.it/books?id=OzFHngEACAAJ.
[71] Committee on Autonomous Vehicles in Support of Naval Operations et al. Au-

tonomous Vehicles in Support of Naval Operations. eng. Washington, D.C: National
Academies Press, 2005. isbn: 9780309096768.

[72] Otus. https://www.rcbenchmark.com/blogs/other/otus-tracker-documentation-
and-software-download-deprecated.

[73] Otus sensor. https://www.rcbenchmark.com/pages/otus-tracker.
[74] Dwi Pebrianti et al. “Motion Tracker Based Wheeled Mobile Robot System Iden-

tification and Controller Design”. In: Intelligent Manufacturing {&} Mechatronics.
Ed. by Mohd Hasnun Arif Hassan. Singapore: Springer Singapore, 2018, pp. 241–
258. isbn: 978-981-10-8788-2.

[75] Probability density function. https://en.wikipedia.org/wiki/Probability_
density_function.

[76] B. Raafiu and P. A. Darwito. “Identification of Four Wheel Mobile Robot based on
Parametric Modelling”. In: 2018 International Seminar on Intelligent Technology
and Its Applications (ISITIA). 2018, pp. 397–401. doi: 10.1109/ISITIA.2018.
8710761.

159

https://doi.org/10.1177/0278364905058239
https://doi.org/10.1177/0278364905058239
https://doi.org/10.1109/ROBOT.2007.363881
https://books.google.it/books?id=OzFHngEACAAJ
https://www.rcbenchmark.com/blogs/other/otus-tracker-documentation-and-software-download-deprecated
https://www.rcbenchmark.com/blogs/other/otus-tracker-documentation-and-software-download-deprecated
https://www.rcbenchmark.com/pages/otus-tracker
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://doi.org/10.1109/ISITIA.2018.8710761
https://doi.org/10.1109/ISITIA.2018.8710761

BIBLIOGRAPHY

[77] P. Raja and S. Pugazhenthi. “Optimal path planning of mobile robots: A review”.
In: International Journal of the Physical Sciences 7 (Feb. 2012). doi: 10.5897/
IJPS11.1745.

[78] Jitendra R Raol. Mobile Intelligent Autonomous Systems. eng. CRC Press, 2016.
isbn: 1-4398-6300-8.

[79] Jitendra R Raol and Ramakalyan Ayyagari. Control Systems: Classical, Modern,
and AI-Based Approaches. eng. 1st ed. Milton: CRC Press, 2020. isbn: 0815346301.

[80] Jitendra R Raol and Ajith K Gopal. Mobile Intelligent Autonomous Systems. eng.
1st ed. Baton Rouge: CRC Press, 2013. isbn: 1439863008.

[81] Maria Ribeiro and Isabel Ribeiro. Kalman and Extended Kalman Filters: Concept,
Derivation and Properties. Apr. 2004.

[82] Robot. https://dictionary.cambridge.org/it/dizionario/inglese/robot.
[83] ROS. https://en.wikipedia.org/wiki/Robot_Operating_System#OSRF_and_

Open_Robotics_(2013-present).
[84] ROS. https://www.ros.org/about-ros/.
[85] ROS introduction. http://wiki.ros.org/ROS/Introduction.
[86] RQ-16 T-Hawk. https://en.wikipedia.org/wiki/Honeywell_RQ-16_T-Hawk#

/media/File:MicroAirVehicle.jpg.
[87] RQ-4 Global Hawk. https://en.wikipedia.org/wiki/Northrop_Grumman_RQ-

4_Global_Hawk#/media/File:Global_Hawk_1.jpg.
[88] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. “A review of mobile

robots: Concepts, methods, theoretical framework, and applications”. eng. In: In-
ternational Journal of Advanced Robotic Systems 16.2 (2019), p. 172988141983959.
issn: 1729-8814.

[89] Scorpion Robot. https : / / robotik . dfki - bremen . de / en / research / robot -
systems/scorpion.html.

[90] Aravind Seeni, Bernd Schäfer, and Gerd Hirzinger. “Robot Mobility Systems for
Planetary Surface Exploration – State-of-the-Art and Future Outlook: A Literature
Survey”. In: Jan. 2010, pp. 189–208. isbn: 9 789537 619961. doi: 10.5772/6930.

[91] Shakey the Robot. https://www.sri.com/hoi/shakey-the-robot/.
[92] Thomas B Sheridan and William L Verplank. Human and Computer Control of

Undersea Teleoperators. eng. 1978.
[93] A.A. Siddiqi and United States. NASA History Program Office. Beyond Earth: A

Chronicle of Deep Space Exploration, 1958-2016. NASA SP. National Aeronautics
and Space Administration, Office of Communications, NASA History Division, 2018.
isbn: 9781626830431. url: https://books.google.it/books?id=tSzeswEACAAJ.

[94] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction
to Autonomous Mobile Robots. eng. 2nd ed. Intelligent Robotics and Autonomous
Agents series. Cambridge: MIT Press, 2011. isbn: 0262015358.

160

https://doi.org/10.5897/IJPS11.1745
https://doi.org/10.5897/IJPS11.1745
https://dictionary.cambridge.org/it/dizionario/inglese/robot
https://en.wikipedia.org/wiki/Robot_Operating_System#OSRF_and_Open_Robotics_(2013-present)
https://en.wikipedia.org/wiki/Robot_Operating_System#OSRF_and_Open_Robotics_(2013-present)
https://www.ros.org/about-ros/
http://wiki.ros.org/ROS/Introduction
https://en.wikipedia.org/wiki/Honeywell_RQ-16_T-Hawk#/media/File:MicroAirVehicle.jpg
https://en.wikipedia.org/wiki/Honeywell_RQ-16_T-Hawk#/media/File:MicroAirVehicle.jpg
https://en.wikipedia.org/wiki/Northrop_Grumman_RQ-4_Global_Hawk#/media/File:Global_Hawk_1.jpg
https://en.wikipedia.org/wiki/Northrop_Grumman_RQ-4_Global_Hawk#/media/File:Global_Hawk_1.jpg
https://robotik.dfki-bremen.de/en/research/robot-systems/scorpion.html
https://robotik.dfki-bremen.de/en/research/robot-systems/scorpion.html
https://doi.org/10.5772/6930
https://www.sri.com/hoi/shakey-the-robot/
https://books.google.it/books?id=tSzeswEACAAJ

BIBLIOGRAPHY

[95] A. Simpkins. “System Identification: Theory for the User, 2nd Edition (Ljung, L.;
1999) [On the Shelf]”. In: IEEE Robotics Automation Magazine 19.2 (2012), pp. 95–
96. doi: 10.1109/MRA.2012.2192817.

[96] Jonas Sjöberg et al. “Nonlinear black-box modeling in system identification: a
unified overview”. In: Automatica 31.12 (1995). Trends in System Identification,
pp. 1691–1724. issn: 0005-1098. doi: https://doi.org/10.1016/0005-1098(95)
00120 - 8. url: https : / / www . sciencedirect . com / science / article / pii /
0005109895001208.

[97] Sojourner rover. https://mars.nasa.gov/MPF/roverpwr/power.html.
[98] Yong-Duan Song. Control of Nonlinear Systems Via PI, PD and PID : Stability and

Performance. eng. CRC Press LLC. isbn: 1-138-31764-0.
[99] Mark W Spong. Robot modeling and control / Mark W. Spong, Seth Hutchinson,

M. Vidyasagar. eng. Hoboken: Wiley, 2006. isbn: 0-471-64990-2.
[100] Stanford Cart. https://www.computerhistory.org/revolution/artificial-

intelligence-robotics/13/293/1277.
[101] Starr. Introduction to Applied Digital Controls. eng. Springer International Publish-

ing, 2020. isbn: 3-030-42809-5.
[102] Natalia Strawa et al. “On-Line Learning and Updating Unmanned Tracked Vehicle

Dynamics”. eng. In: Electronics (Basel) 10.187 (2021), p. 187. issn: 2079-9292.
[103] Karl J Ström. PID controllers / Karl J. ström, Tore Hägglund. eng. Research Tri-

angle Park: Instrument Society of America, 1995.
[104] A.K. Tangirala. Principles of System Identification: Theory and Practice. CRC

Press, 2018. isbn: 9781439896020. url: https://books.google.it/books?id=
aUHOBQAAQBAJ.

[105] Committee on Army Unmanned Ground Vehicle Technology et al. Technology De-
velopment for Army Unmanned Ground Vehicles. eng. Washington, D.C: National
Academies Press, 2002. isbn: 9780309086202.

[106] S. G Tzafestas and Spyros G Tzafestas. Introduction to Mobile Robot Control. eng.
Elsevier Insights. Amsterdam: Elsevier, 2014. isbn: 0-12-417049-8.

[107] A Y Umeda, S W Martin, and J O Merritt. Remote Vision Systems for Teleoperated
Ground Vehicles. eng. 1991.

[108] URDF. http://wiki.ros.org/urdf.
[109] User Guide. https://it.mathworks.com/products/ros.html.
[110] VCS. https://en.wikipedia.org/wiki/Version_control.
[111] Vyas. Electro-Hydraulic Actuation Systems. eng. Springer Singapore, 2019. isbn:

981-13-2546-4.
[112] Wang. PID Control System Design and Automatic Tuning using MATLAB/Simulink.

eng. John Wiley & Sons, Inc, 2020. isbn: 1-119-46934-1.
[113] White Noise. https://en.wikipedia.org/wiki/White_noise.

161

https://doi.org/10.1109/MRA.2012.2192817
https://doi.org/https://doi.org/10.1016/0005-1098(95)00120-8
https://doi.org/https://doi.org/10.1016/0005-1098(95)00120-8
https://www.sciencedirect.com/science/article/pii/0005109895001208
https://www.sciencedirect.com/science/article/pii/0005109895001208
https://mars.nasa.gov/MPF/roverpwr/power.html
https://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/293/1277
https://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/293/1277
https://books.google.it/books?id=aUHOBQAAQBAJ
https://books.google.it/books?id=aUHOBQAAQBAJ
http://wiki.ros.org/urdf
https://it.mathworks.com/products/ros.html
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/White_noise

BIBLIOGRAPHY

[114] J Y Wong and C F Chiang. “A general theory for skid steering of tracked vehicles
on firm ground”. In: Proceedings of the Institution of Mechanical Engineers, Part
D: Journal of Automobile Engineering 215.3 (2001), pp. 343–355. doi: 10.1243/
0954407011525683. eprint: https://doi.org/10.1243/0954407011525683. url:
https://doi.org/10.1243/0954407011525683.

[115] Jo Yung Wong. Theory of ground vehicles / J.Y. Wong. eng. 2nd ed. New York:
Wiley, 1993.

[116] XML. https://en.wikipedia.org/wiki/XML.

162

https://doi.org/10.1243/0954407011525683
https://doi.org/10.1243/0954407011525683
https://doi.org/10.1243/0954407011525683
https://doi.org/10.1243/0954407011525683
https://en.wikipedia.org/wiki/XML

	List of Figures
	List of Tables
	Introduction
	Historical background
	Robot and Aerospace
	Any robot is as good as another?
	General arrangement
	Degree of autonomy
	Mobility strategies

	Mobile Robot Control and Navigation
	Perception and Localization task
	Trajectory planning task
	Control task

	Motivation and Contributions
	Outline

	Mathematical model
	Basic concepts
	Motion in the space
	Assumptions and kinematic relationship
	Kinematic constraints
	Kinematic constraints violation
	Dynamics
	Inertia of the System

	Actuation model

	System Identification
	Model Structures
	LTI and SISO systems
	Nonlinear and SISO systems
	Nonlinear and MIMO systems

	Identification process
	Model validation

	Guidance, Navigation and Control
	Navigation
	Kalman Filter

	Guidance
	Potential Field
	Attractive Field
	Repulsive Field

	Reference signal generation
	Limitations and solutions
	Control
	PID Controller

	Experimental Setup
	More about Devastator Architecture
	DC Motors characterization
	Lumped Parameters Approach
	Experiment 1: motor resistance identification
	Experiment 2: current measuring
	Experiment 3: angular speed measuring

	Data-driven Approach
	Input-output data creation
	Model structure and estimation criterion selection
	Identification procedure: operative guidelines

	Results and Considerations
	Comparison
	Inertia Identification

	Simulation Model
	Plant Model
	Lumped Parameter Approach
	Data-driven approach

	GNC Model
	Control
	Navigation
	Guidance
	Initial Orientation
	Reference signals

	Mission Planner

	ROS/Gazebo and Code Generation
	ROS background
	Gazebo
	ROS/Gazebo-MATLAB/Simulink Co-simulation
	Creation of the connections in the Simulink Model

	Code Generation
	Guidance and Control Code Generation

	Simple missions in Indoor Environment
	MATLAB/Simulink simulations
	Obstacles free path
	Environment with obstacles

	ROS/Gazebo simulations
	Obstacles free path
	Environment with obstacles

	Real Robot mission
	Comparisons

	Conclusion
	References

