
POLITECNICO DI TORINO

Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

Safe Exploration with Safety Layer and
reward shaping

Supervisor

Prof. Manuela BATTIPEDE

Tutor

Andrea LONZA

Ing. Enrico BUSTO

Candidate

Alessia BASLER

April 2021

Abstract

The purpose of this Master Thesis is to investigate and improve one of the state-of-
the-art Safe Reinforcement Learning algorithms. The studied algorithm consists in
the application of a Safety Layer to classical Reinforcement Learning algorithms in
order to accomplish a Safe Exploration during learning phases, that would open
up the doors of real-world training to intelligent agents.

Safety Layer algorithm shows good performances in environments where the
danger is located on the edges, but worsens when used in environments where the
hazards permeate the space in an heterogeneous way. To improve the performances
in such peculiar situations, reward shaping has been introduced, in order to reinforce
the safety action of Safety Layer.

In the first chapters of the thesis an introduction to Artificial Intelligence, Deep
Neural Networks, classic and Deep Reinforcement Learning will be presented. This
aims to make the reader familiar with the main topics and algorithms that will be
probed and deeply analyzed later in this document.

A chapter is dedicated to the explanation of Safe Reinforcement Learning process,
in what it differs from classic Reinforcement Learning, its goals and main challenges.

The last chapters will treat the implementation of the chosen algorithm and
experiments results, with an eye towards the issues encountered and the solutions
proposed. In these chapters it will be also inserted a presentation of the technical
features inherent to the experiments performed.

Eventually, some conclusions will be deduced about the improvements obtained,
showing that reinforcing the Safety Layer action with reward shaping helps to
achieve Safe Exploration in environments with heterogeneous danger distributions,
that are more plausible representations of real-world.

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Pigmalione and his offspring . 1
1.2 What about Reinforcement Learning? 3

2 Reinforcement Learning Problem 5
2.1 Basics . 5

2.1.1 Environment . 5
2.1.2 Agent . 5
2.1.3 Reward . 6
2.1.4 Value Function . 6
2.1.5 Policy . 7

2.2 Markov Decision Processes . 7
2.2.1 Bellman Equation . 8

2.3 Dynamic Programming . 8
2.3.1 Value Iteration . 8
2.3.2 Policy Iteration . 10

2.4 Model-free Prediction and Control 12
2.4.1 Prediction . 12
2.4.2 Control . 14

3 Deep Reinforcement Learning 19
3.1 Neural Networks . 19
3.2 Value-based Algorithms . 22

3.2.1 Deep Q-Network . 22
3.3 Policy-based Algorithms . 23

iii

3.3.1 REINFORCE . 24
3.4 Actor-Critic Algorithms . 24

3.4.1 Deep Deterministic Policy Gradient 25

4 Safe Reinforcement Learning 29
4.1 Basics . 29
4.2 State of the Art . 31

4.2.1 Constrained Criterion . 32
4.2.2 Risk-directed Exploration 33

4.3 Safety Layer . 33
4.3.1 Safety Layer approximation 34
4.3.2 Safety Layer pre-training . 35
4.3.3 Action correction during training 35
4.3.4 Implementation and results 36

5 Implementation 39
5.1 Environments . 39

5.1.1 CartPole Continuous . 39
5.1.2 Safety Gym . 41

5.2 Algorithm baseline structure . 48

6 Results 51
6.1 CartPole Continuous . 51
6.2 Safety Gym - Configuration 1 . 54
6.3 Safety Gym - Configuration 2 . 59

6.3.1 Scarce dependency of the SL upon the current state 59
6.3.2 Learning of unsafe policy . 60

7 Conclusions 71
7.1 Future Work . 72

A Pseudo-codes 1

Bibliography 5

iv

List of Tables

3.1 Most used activation functions . 20

v

List of Figures

1.1 The New York Times article about perceptron, 1956 2

2.1 Value Iteration Process . 9
2.2 Initial Random Policy . 11
2.3 Policy Iteration Process . 11
2.4 SARSA structure . 16
2.5 Q-Learning structure . 16

3.1 Neural Network basic structure . 20
3.2 Forward pass and backward pass 21
3.3 Deep Neural Network . 21

4.1 Comprensive Survey of Safe Reinforcement Learning algorithms . . 30
4.2 Return . 32
4.3 Constraint violations . 32
4.4 CPO results . 32
4.5 Safety Layer algorithm structure . 33
4.6 Schematics of Safety Layer approximation 35
4.7 Ball1D (left) - Ball3D (right) tasks 37
4.8 Spaceship-Corridor (left) and Spaceship-Arena (right) tasks 37
4.9 Results taken from reference paper 38

5.1 CartPole Continuous environment 40
5.2 CartPole Continuous constrained environment 41
5.3 Goal task . 42
5.4 Button task . 42
5.5 Push task . 43
5.6 Point agent . 43
5.7 Car agent . 44
5.8 Doggo agent . 44
5.9 Level 1 . 45
5.10 Level 2 . 46

vi

5.11 Lidar rendering, yellow for the box and green for the target zone . . 47

6.1 CartPole - Cumulative violations of max constraint during training 52
6.2 CartPole - Cumulative violations of min constraint during training . 53
6.3 CartPole - Episodic reward during training 53
6.4 Configuration 1 - Episodic reward during training 54
6.5 Configuration 1 - Episodic reward during evaluation 55
6.6 Configuration 1 - Cumulative violations of constraint during training 56
6.7 Configuration 1 - Episodic violations of constraint during training . 56
6.8 Configuration 2 - Episodic violations of constraint 61
6.9 Configuration 2 - Episodic reward during training 62
6.10 Configuration 2 - Average episodic violations of constraints during

evaluation . 63
6.11 Configuration 2 - Average episodic violation rate during evaluation . 64
6.12 Configuration 2 - Cumulative violations of constraint during training 65
6.13 Configuration 2 - Episodic violations of constraints during training . 65
6.14 Configuration 2 - Average episodic task success rate during evaluation 66
6.15 Dense vs Sparse reward - Average episodic violations of constraints

during evaluation . 67
6.16 Dense vs Sparse reward - Average episodic task success rate during

evaluation . 67
6.17 Configuration 2 - Average episodic violations of constraint during

evaluation . 68
6.18 Configuration 2 - Average episodic task success rate during evaluation 68

vii

Acronyms

AI Artificial Intelligence

CMDP Constrained Markov Decision Process
CPO Constrained Policy Optimization

DDPG Deep Deterministic Policy Gradient
DDN Deep Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning

GPI General Policy Iteration

MC Monte-Carlo
MDP Markov Decision Process
ML Machine Learning
MSE Mean Squared Error

NN Neural Network

QP Quadratic Program

RL Reinforcement Learning

SGD Stochastic Gradient Descent
SL Safety Layer
SRL Safe Reinforcement Learning

TD Temporal-Differences

ix

Chapter 1

Introduction

During the last century, the world has been witnessing a techonlogical development
never seen in its history. Medicine, engineering, biology, physics and so on, every
aspect of human knowledge has improved, enjoying of progress that scientific
community has performed and shared with the whole world.

In particular, mathematics and computer science combined their efforts on a
specific research field, which showed its potentialities already in early 90’s and
experienced an exponential growth in interest since then: Artificial Intelligence
(AI). AI is currently used in a variety of real-world applications: from face recogni-
tion in social media to incredibly efficient online translators, from computer game
bots to ad-personam e-commerce advertisements, from robots playing football to
cybersecurity.

In this introduction a brief story of AI will be presented, focusing on the state-
of-the-art reached and one of the most modern approaches developed, that will be
covered in this thesis: Reinforcement Learning (RL).

1.1 Pigmalione and his offspring
The very first time that AI has been conceived, it can be associated with Greek
mythology. A sculptor named Pigmalione carved the statue of a beautiful women
- Galatea nowadays - and fell in love with her, even if she was just a piece of
marble. Pigmalione did not want to surrender, so he slept close to his lover every
night and pried Afrodite to give intelligence to his creation, in order to have the
possibility to live his life with her. Afrodite, touched by the willingness of the
artist, agreed to fulfill his wish: Galatea become a living and thinking being, the
first kind of "artificial intelligence" ever conceived, in a certain naive way, from the
human thought.

This story testify that since the ancient times, men have always been fascinated

1

Introduction

by the idea of creating intelligence or intelligent beings themselves, although only
in the last century this aspirations began to become reality. In particular, the first
modern and real concept of artificial intelligence is dated 1957, when the American
psychologist Frank Rosenblatt presented a report entitled “The Perceptron: a
perceiving and recognizing automaton” [1] to the Cornell Aeronautical Laboratory
commission in New York. The Perceptron was a an ancestry of modern softwares
capable of recognising from different marked cards. It was necessary to tune
hundreds of potentiometers to adjust parameters and find the optimal combination
to fulfill the task. [2] explicates brilliantly and concisely how perceptron used to
work

Figure 1.1: The New York Times article about perceptron, 1956

Perceptron was anything but a linear approximator, the ancestor of what
nowadays is called neuron and is the basic element of Neural Networks (NN), that
will be presented in depth in Sec. 3.1.

The creation of perceptron gave birth to the first golden era for AI, during which
the research on this field had a consistent growth that lasted until the 70’s. At this
point, expectation were too high to be satisfied by the weak computers of that age
and, trivially, the enormous efforts put in training machines were not justified by
the poor performances obtained. Funding decreased and AI research started to be
heavily criticised in computer science field; this period is called the first winter of

2

1.2 – What about Reinforcement Learning?

AI.
After winter there is spring and so it happened: in the following twenty years

the research about AI lived flashes of high trust against periods of poor funding
and expectations, but eventually confirmed itself - from the 90’s onward - as one of
the most promising technology development in computer science and engineering.

Nowadays there are innumerable applications suitable for intelligent agents,
especially for what concerns Supervised Learning. Supervised Learning is the field
of Machine Learning - the name coined for the most promising branch of AI - in
which the intelligent agent learns by observing a huge dataset, previously labeled by
a supervisor that in this way addresses the learning process. Supervised Learning
is used in image recognition, object detection, translation of texts that result much
more readable than the ones obtained by not-intelligent translators. Clearly a push
to the development of this branch of Machine Learning came from the possibility for
modern computers to use and work with big datas, that enable training processes
never achievable back in time.

1.2 What about Reinforcement Learning?
The purpose of AI has always been the one to emulate human brain, in order to
obtain an agent that could not only recognize images or patterns, but that could
also decide autonomously which action to perform.

«The cognitive process resulting in the selection of a belief or a course of
action among several possible alternative options» ([3]) is known in psychology
as decision-making and it is exactly the goal of one of the most modern Machine
Learning techniques: Reinforcement Learning. The idea behind these algorithms is
to emulate humans not only in the outcomes - the decision-making - but in the
learning process too.

But how do humans learn? It can be useful at this point proceed with some
examples: going back to the earliest day of childhood, every person has experienced
at least once the reproaches of an adult after a mischief, the words of praise when
performing a worthy action or, more pragmatically, the pain after a reckless ride
ended up in an unfortunate fall. This is how humans learn: they make mistakes,
they receive a prize or a punishment, they feel joy or pain and, after a lot of trials,
they understand their mistakes and try to act differently to avoid them. At least,
that’s the theory.

In a very similar way, in Reinforcement Learning there is an agent that moves
in an environment, it gains a reward or a penalty for each action performed and,
after multiple trials, it learns the optimal way to act.

But, as in reality, the training phase could be very dangerous: learning to ride
a bike will cost a couple of falls, probably. Therefore, some researchers tried to

3

Introduction

investigate more in depth the possibility to train agents in a safe way, without
exposing them to the dangers of the environment or, in a better way, to accomplish
a safe exploration of the environment in order to obtain a safe learning phase.
This branch of Machine Learning will be the main topic of this thesis: Safe
Reinforcement Learning.

4

Chapter 2

Reinforcement Learning
Problem

As previously presented in Sec. 1.2, Reinforcement Learning methods are based on
the concept of an agent that moves in an environment and gains a reward for each
action performed following the current policy. In the followings it will be explicated
in details the basic elements introduced.

2.1 Basics

2.1.1 Environment
It is the world that surrounds the agent and can manifest itself in different states,
the collection of which constitutes the state space and can be discrete or continuous.
The environment interacts with the agent at each iteration, modifying itself based
on the action it performed and providing it with an immediate reward. Different
problems are described by different environments, with respect to the possible
configurations in which the agent can find itself and the different kind of interactions
that describe the dynamics involved.

2.1.2 Agent
It is the decision-maker, which observes the current state of the environment and
tries to solve a particular problem taking the best action possible in the set of the
available actions, the action space, that can be discrete or continuous. The agent
interacts with the environment observing its reactions to the action taken, namely
the next state and the immediate reward obtained. The agent follows the current
policy and tries to optimize it upon the experience gained on the road. Different

5

Reinforcement Learning Problem

agents characterize different approaches to solve the stated problem, with respect
to the features of the dynamics involved.

2.1.3 Reward
It can be distinguished in immediate reward and cumulative (discounted) reward,
indicated in the followings as return.

2.1.3.1 Immediate Reward

It consists in a numerical value obtained by a problem-specific function, which
represents the effects of the action taken at that timestep. It can be positive,
negative or equal to zero and usually has large values in correspondence with
termination states of the environment – it tells if the agent has reached the goal or
a critical end.

2.1.3.2 Return

It is the sum of all the rewards obtained during a trajectory (sequence of states).
Since there can be infinite trajectories, it is useful to define the return as the sum
of the discounted rewards, to avoid infinite returns and introduce a factor that
permits to weight differently the rewards obtained early and late on the trajectory.

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞Ø
k=1

γkrt+k+1 (2.1)

In Eq. 2.1 Gt is the total return obtained from timestep t, rt+1 is the immediate
reward obtained by the agent when it takes an action at timestep t that leads to
the next state at timestep t + 1 and γ is a discount factor between 0 and 1. A γ
close to the unity is used in most of the RL problems.

2.1.4 Value Function
The value function represents the goodness of the state in which the agent founds
itself. It is a numerical value associated with every state of the state space, it can
be positive or negative and it provides an estimate of the expected return that the
agent could gain from that timestep to the termination of the trajectory. At this
point, it is crucial to understand the difference between return and value function.
The return is the certain sum of (discounted) rewards obtained by the agent at the
end of the trajectory, the value function is an estimation – more or less accurate,
as we will see later – of what the agent expects to gain from that moment on. The
return is calculated at the end of a trajectory, the value function is present at each
timestep and for every state of the state space.

6

2.2 – Markov Decision Processes

2.1.5 Policy

A policy is the mapping from a particular state to the probability of each action to
be performed by the agent. The RL problem consists in finding the policy that
leads the agent to achieve the best results (the highest return). The policy can
be represented as a table in which to each state-action combination corresponds
a probability, in case of discrete state and action spaces. When these spaces are
extremely large – or approximately continuous – it is convenient to represent the
policy as a distribution probability function based on a set of parameters. In this
case, the objective of the RL problem is to find the parameters that describe the
best policy, or to optimize an objective function (usually some version of the return)
w.r.t. these parameters.

2.2 Markov Decision Processes

The Reinforcement Learning problem can be formalised using a concept that puts
together the basic elements presented in the previous section: the Markov Decision
Process (MDP). An MDP is a decision making model for discrete-time stochastic
control processes, it can be uniquely defined with a tuple: <S, A, P, R>

• S is the state-space, a collection of states of the environment

• A is the action-space, a collection of actions that the agent can take

• P is the success probability of the decision-making process of the agent, in
other word the probability that the action performed is, indeed, the one chosen
by the agent (transition matrix/function)

• R is the immediate reward obtained by the agent after having performed an
action

An MDP satisfies Markov property.

Definition 2.2.1 (Markov Property). The Markov property states that given the
present, the future is conditionally independent of the past. That is, the future
state in which the process will be is dependent only from the current state.

In MDPs, as in reinforcement learning, the objective is to find the optimal policy
that permits the agent to gain the maximum cumulative reward possible.

7

Reinforcement Learning Problem

2.2.1 Bellman Equation
To obtain this optimal policy it comes to help the Bellman equation:

vπ(s) = Eπ[Gt|St = s] (2.2a)
= Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|St = s] (2.2b)
= Eπ[rt+1 + γ(rt+2 + γrt+3 + ...)|St = s] (2.2c)
= Eπ[rt+1 + γGt+1|St = s] (2.2d)
= Eπ[rt+1 + γvπ(St+1)|St = s] (2.2e)

vπ(s) =
Ø
a∈A

π(a|s)(ras + γ
Ø
sÍ∈S

P a
ssÍvπ(sÍ)) (2.3)

Where P a
ssÍ is the probability of passing from state s to state sÍ taking the action a,

π(a|s) is the probability to take action a given the state s, ras is the reward gained
taking action a in state s. If MDP was a deterministic process, P a

ssÍ would be equal
to 1 only for a particular sÍ (we are sure that if we are in state s and take action
a, there will be no accidents and we will arrive at state sÍ with probability of 1),
so the summatory will disappear and only v(sÍ) for that particular sÍ will remain.
The term P a

ssÍ appears to deal with stochasticity of the process. The main goal is
to find a parametrization for π that provides the highest probability for the action
that will lead to maximum return.

π∗(s) =
1 if a = arg maxa∈A(Ra

s + γ
q
sÍ∈S P a

ssÍvπ(sÍ))
0 if otherwise

(2.4)

The following is the Bellman optimality equation to be solved to find the optimal
policy.

v∗(s) = max
a

Ra
s + γ

Ø
sÍ∈S

P a
ssÍvπ(sÍ) (2.5)

Since there is a non-linear term – the maximization – it is not possible to solve this
equation directly, but iterative methods are needed. In the followings only tabular
MDPs will be considered, i.e. MDPs where state and action spaces are finite and
can be described in a tabular value. Later on it will be presented how to deal with
infinite and dense spaces.

2.3 Dynamic Programming

2.3.1 Value Iteration
The Bellman equation is the core of the value iteration algorithm for solving an
MDP. The objective is to find the value function for each state and it is done
following the following steps:

8

2.3 – Dynamic Programming

1. start with arbitrary initial values for the value function (usually zeros)
2. calculate the utility of a state using the Bellman equation and assign it to the

state
3. repeat step 2 until convergence (proved to converge)

Policy acts greedily with respect to value function, trying to always go in direction
of a state with higher value.
Here an example is presented to help understanding the method: the goal is to find
the optimal policy that guides the agent to the target (top-left corner) in fewer
moves possible. The environment is basic with this features:

• Determinist policy → P a
ssÍ = 1 for the given action (if acting up , the agent

goes up with probability 1)
• Undiscounted reward → γ = 1
• Reward → −1 always, 0 when reaching the target
• value function initialized to all zeros

Figure 2.1: Value Iteration Process [4]

v∗(s) = max
a

Ra
s + γ

Ø
sÍ∈S

P a
ssÍvπ(sÍ)

9

Reinforcement Learning Problem

v2(1) = max(−1 + 1 ∗ 1 ∗ 0 = −1[down],−1 + 1 ∗ 1 ∗ 0 = −1[right],−1 + 1 ∗ 1 ∗ 0 =
−1[left]) = −1
v3(1) = max(−1+1∗1∗−1 = −2[down],−1+1∗−1∗−1 = −2[right],−1+1∗1∗0 =
−1[left]) = −1
v2(2) = max(−1 + 1∗1∗0 = −2[down],−1 + 1∗−1∗0 = −2[right],−1 + 1∗1∗0 =
−1[left]) = −1
v3(2) = max(−1+1∗1∗−1 = −2[down],−1+1∗−1∗−1 = −2[right],−1+1∗1∗−1 =
−2[left]) = −2

Starting from state 9 and following the final value function, the optimal pol-
icy leads the agent to the target within 3 moves [up, up, left], the shortest path
possible. It is important to understand that eventually the algorithm provides a
mapping from states to value function, not an explicit mapping to actions; actions
will be extrapolated from the value function itself.

2.3.2 Policy Iteration

The value iteration algorithm represents a way to estimate the goodness of each
state, the policy is not expressed directly, but mainly follows the value function.
There is another way to obtain the same result, providing an explicit operator for
the policy. The objective is to find for each state explicitly the action that gets the
highest return and it is done following the following steps:

1. start with an arbitrary initial policy (usually random distribution over actions,
for each state)

2. evaluate the policy calculating the expected return (aka value function) of
each state following the current policy

Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|St = s]

3. improve the policy acting greedily with respect of the returns obtained at step
2, i.e. subscribe the old policy with a new one

4. repeat from step 2 until convergence

To explain Policy Iteration method, it will be applied to the example previously
presented. Initial policy set is a uniform distribution.

π(up|·) = π(down|·) = π(left|·) = π(right|·) = 0.25

10

2.3 – Dynamic Programming

Figure 2.2: Initial Random Policy [4]

Figure 2.3: Policy Iteration Process [4]

Starting from state 9 and following the final value function, the optimal policy
leads the agent to the target within 3 moves [up, up, left], the shortest path possible.
In contrast with what happened with value iteration, in this case eventually the
algorithm provides a direct mapping from states to actions: the policy is explicit.
Furthermore, policy iteration does not involve non-linear functions: maximum
operator disappears since the policy is fixed and the value function refers to that
particular policy; this leads to the possibility to solve analytically the problem, but
it will not be object of this study and it will be omitted.

11

Reinforcement Learning Problem

2.4 Model-free Prediction and Control
Until now MDPs have always been fully know, meaning that every element of
the tuple <S, A, P, R> was in agent’s possession. In Reinforcement Learning
typical problems this is not true, but often there is no knowledge of the model
of the environment: how it reacts to the action taken by the agent. This model
corresponds to the P of the former tuple, namely the transition function, and
the lack of this element does not allow the use of the Dynamic Programming
algorithms presented in Sec. 2.3. This is the starting point of proper Reinforcement
Learning, where an agent has to learn how to act without any prior knowledge of the
environment. Two main families of algorithms arise from this problem: model-free
and model-based Reinforcement Learning. In this work only the former will be used
and analysed, for this reason the latter will not be mentioned anymore. Beside
this division of Reinforcement Learning algorithms, it is important to explicate
the distinction between prediction and control phases. Prediction phase is the first
part of the Reinforcement Learning process, comparable with the evaluation step
of policy iteration. Control phase is the policy optimization part, where the policy
is improved.

2.4.1 Prediction
In this phase the agent starts acting within the environment, gains knowledge of
it and approximates a value function of the partially unknown MDP. There are
different methods to accomplish this result, in the following the most important
ones will be introduced.

2.4.1.1 Monte-Carlo Learning

Monte-Carlo prediction consists in learning the value function from episodic expe-
rience and then averaging the results obtained above a large number of episodes.
The process is the following:

1. the agent starts following the current policy in the environment until it reaches
an ending state or a maximum number of steps is performed

2. the return is calculated as the weighted sum of the rewards obtained along
the episode and it is assigned to that state

3. repeat step 1-2 for a large N number of episodes

4. average upon the number of episodes N the sum of returns stored in every
states

12

2.4 – Model-free Prediction and Control

The average return correspondent to every state is the approximated value function
of that state; it is proved that, for infinite episodes, the function converges to the
correct value function with respect to the current policy π (consequence of the law
of large numbers).

2.4.1.2 Temporal-Difference Learning

Similar to Monte-Carlo, Temporal-Difference consists in learning the value function
from episodic experience, but in contrast to the former it does not use the empirical
mean over complete episodes as estimator, but it learns from incomplete episodes by
bootstrapping. Bootstrap is a statistical method that uses an estimate to calculate
other estimates by resampling, in other words it “learn a guess from a guess” :

1. initialize to zero the value function

2. the agent performs an action in the environment, gaining an immediate reward
R

3. use Eq. 2.2e to approximate the value function of the current state using the
current approximation of the value function at the next state

vπ(s) = Eπ[rt+1 + γvπ(St+1)|St = s]

4. update v(s) with the difference between the old approximated value and the
new approximated value

vπ(St)← v(St) + α[rt+1 + γvπ(St+1)− v(St)] (2.6)

5. repeat steps 2-4 until a terminal state is reached

6. repeat steps 2-5 for a N number of episodes

The main differences between MC and DP prediction are the followings:

• TD can learn online after every step, while MC must wait until end of episode
before return is known

• TD can learn from incomplete sequences, while MC can only learn from
complete sequences

• TD works in continuous (non-terminating) environments, while MC only works
for episodic (terminating) environments

• TD has low variance because the estimate is made upon a target that is close
in the future and depends upon one or few actions, but it is biased since
the target is not the true value of what we are trying to estimate, but an
estimation itself (bootstrap)

13

Reinforcement Learning Problem

• MC has high variance because the estimate is made upon a target that is far
in the future and depends upon many action, but it has zero bias because the
target is the true value of what we are trying to estimate (Vπ(s) is not Gt(s))

2.4.2 Control
This is the phase in which the optimization process takes place, aiming at outputting
an improved policy. Basically it is done applying the GPI mechanism:

• evaluation of the policy done with MC or TD algorithms

• optimization using some technics to assure a good balance between exploring
the environment and exploiting the current policy

As already seen in Sec. 2.4.1.1, for its nature MC control can be done only at
the end of each episode, in an off-line manner. Hence TD learning has several
advantages over MC:

• lower variance

• on-line learning, i.e. learning performed at every timestep

• use of incomplete sequences

For this reason, only TD based control algorithms will be presented in the follow-
ings.

2.4.2.1 SARSA

SARSA algorithm owes its name to the tuple < St, At, Rt+1, St+1, At+1 > that
defines the elements used for the learning process:

• St → state of the agent at timestep t

• At → action taken following the current policy π at timestep t

• Rt+1 → reward gained by the agent at timestep t + 1, after having performed
the action A

• St+1 → state of the agent at timestep t + 1, after having performed the action
A

• At+1 → action taken following the current policy π at timestep t + 1

14

2.4 – Model-free Prediction and Control

It is evident that there is no trace of the transition model in the optimization
process elements, so SARSA is a model-free algorithm. Another characteristic of
this learning process is that it does not rely on a state-value function, but on the
novel concept of action-value function. «The action-value function qπ(s, a) is the
expected return starting from state s, taking action a, and then following policy
π.»[4]

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.7)

As it can be seen there are some similarities between Eq. 2.2a and Eq. 2.7, the
difference between the two is that state-value function vπ(s) depends only on the
current state and provides knowledge about the goodness of that state, while
action-value function qπ(s, a) depends both on the current state and the action
taken by the agent following the current policy, returning a notion of the goodness
of that action taken in that state. To explain deeper the nature of the action-value
function, it could be possible that the same action, e.g. going up, in a particular
state is the optimal one, in another state returns very low performances. Similarly
to Eq. 2.2e, action-value function can be re-written as:

qπ(s, a) = Eπ[rt+1 + γqπ(St+1, At+1)|St = s, At = a] (2.8)

The process is similar to the one presented in Sec. 2.3.1, but instead of using Eq.
2.6 to calculate the state-value function, the following one is used:

Qπ(St, At)← Q(St, At) + α[rt+1 + γQπ(St+1, At+1)−Qπ(St, At)] (2.9)

It is now clear why in addition to St, At, Rt+1 also St+1, At+1 are required. Summa-
rizing all the steps of the algorithm, it looks like:

• move one step selecting at from π(st)

• observe Rt+1, St+1, At+1

• update the state-action function Qπ(st, at) using Eq. 2.9

• update the policy π(st)← argmax
a

Q(st, at)

Exploiting vs Exploring SARSA is assured to converge to the optimal policy
for the Russel and Norvig Greedy in the Limit of Infinite Exploration (GLIE) [5]
theorem, meaning that every state has to be visited an unbounded number of times
in order to be sure that every possible trajectory is explored and the optimal one is
found. This is the main challenge of reinforcement learning technique: balancing the
exploitation of a known policy that is proved to be good and the exploration of the
environment, in order to be sure that the current policy is indeed the optimal one.

15

Reinforcement Learning Problem

This requirement cannot be fulfilled following always greedily the current policy,
since this is mere exploitation and it misses some exploration of the environment.
In fact, it could happen that the optimal policy is hidden, so only an high level
of exploration of the environment could find it. To overcome this limit different
exploration strategies are known in literature, the simplest one is the Ô-greedy
policy: the agent follows the current policy with a probability of 1− Ô, while with
probability Ô it takes a random action.

The structure of the algorithm is the following:

Figure 2.4: SARSA structure [4]

2.4.2.2 Q-Learning

Q-learning algorithm is similar to SARSA, with slight differences that have heavy
impact on the whole optimization process. The structure is the following:

Figure 2.5: Q-Learning structure [4]

The main difference to be seen is in the update rule:

Qπ(St, At)← Q(St, At) + α[rt+1 + γ max
a∈A

Qπ(St+1, At+1)−Qπ(St, At)] (2.10)

16

2.4 – Model-free Prediction and Control

In Eq. 2.9 the target of the optimization always follows the current policy π (net
of Ô probability to chose a random action), in Eq. 2.10 the target is the maximum
value function available, without caring if it corresponds to the one indicated by the
current policy. This permits to untie the learning process from the current policy:
in this way it is possible to optimize a policy while exploiting a different one. This
process is called off-line learning and is very useful since it «dramatically simplifies
the analysis of the algorithm and enables early convergence proofs»[6] Q-learning is
at the base of the most important algorithms in Deep Reinforcement Learning,
that will be discussed in the next Chapter.

17

18

Chapter 3

Deep Reinforcement
Learning

Until now, both value function and policy function have been represented by a
lookup table in which every state maps a value V (s) or an action π(s), or a state-
action pair maps an action-value Q(s). This representation leads to several issues
when scaling up to large or continuous problems:

• heavy memory consumption when dealing with huge number of action or
states

• slowdown of learning process
Another way to represent the main function involved in Reinforcement Learning
is to find some good approximators, in order to greatly reduce the amount of
data to store and use for calculations. In this way only the parameters of the
approximator would be saved and a full family of optimization processes could be
introduced in the learning process. Deep Reinforcement Learning is the evolution
of classic Reinforcement Learning, that happens when the main functions involved
are obtained using Deep Learning techniques. In particular, the approximators
chosen are Neural Networks.

3.1 Neural Networks
Neural Networks (NN) are among the most powerful known function approximators
and are the foundation of modern Machine Learning. Neural Network have a
structure similar to the one of a brain and their behaviour mimics the learning
process of intelligent beings. In particular, NN basic element is the neuron, which
is a value that, connected with other values of other neurons, shapes a network.
The network of neurons is constituted by at least three layers:

19

Deep Reinforcement Learning

• input layer → it receives the input values

• output layer → it provides the processed values

• hidden layer(s) → each neuron of this kind of layers is a linear combination
of some (or every) neurons of the previous layer, then it is activated by a
non-linear function and passed to the next layer

output = factivation

 Ø
#neurons

inputi + bias

 (3.1)

Output

Hidden

Input

Figure 3.1: Neural Network basic structure

Therefore, Neural Networks are composed of different layers of linear combinations,
that alone could only approximate linear relations; this is the reason that leads
to the use of non-linear activation functions as already stated. Theoretically
whatsoever non-linear function could be an activation function, but in concrete
only particular ones are mostly used:

ReLU f(x) =
0 for x ≤ 0

x for x > 0

Softmax fi(þx) = exiqJ
j=1 exj

i = 1, ..., J

tanh f(x) = tanh(x) = (ex − e−x)
(ex + e−x)

Table 3.1: Most used activation functions

20

3.1 – Neural Networks

Neural Networks are used to approximate unknown functions, given an input
and the correspondent output. The learning phase consists in a minimization of the
loss between the predicted and the real output (Eq. 3.2 is MSE Loss) performed
by backpropagation (Fig. 3.2), with respect to weight and bias of each layer. The
purpose is to obtain the parameters describing the function that better predicts
the output, given the input. qN

i=1 (yi − ŷi)2

N
(3.2)

Figure 3.2: «The forward pass on the left calculates z as a function f(x,y) using
the input variables x and y. The right side of the figures shows the backward pass.
Receiving dL/dz, the gradient of the loss function with respect to z from above,
the gradients of x and y on the loss function can be calculate by applying the chain
rule.» [7] Figure from [8].

Figure 3.3: Deep Neural Network

21

Deep Reinforcement Learning

Considering the case where input and associated outputs are perfectly know
and labeled and the purpose is to find the function connecting them, this branch of
Machine Learning is called supervised learning. When Neural Networks are provided
with multiple hidden layers, they take the name of Deep Neural Networks (DNN).
When DNN are used to approximate value function, action-value function or directly
policy function, Reinforcement Learning takes the name of Deep Reinforcement
Learning.

3.2 Value-based Algorithms
Value-based algorithms rely on Value Iteration process presented in Sec. 2.3.1
and on Q-Learning presented in Sec. 2.4.2.2. In particular, the basic evolution of
Q-Learning in Deep Learning field is the Deep Q-Network

3.2.1 Deep Q-Network
Deep Q-Network uses a Neural Network to approximate the action-value function
that guides the agent through the environment. Without deepening too much in
the illustration of this algorithm, it is useful to present some elements that will be
largely used later. The structure of the algorithm is reported in Alg. 1.

In DQN the concept of replay buffer is introduced, in which < St, At, Rt+1, St+1 >
tuples are stored in order to perform the learning process on both new and old
experience. This replay buffer aims to solve instability problems that may occur
when using non-linear function approximators. Learning phase is performed after
taking an action, observing the results and storing the obtained tuple in the replay
buffer; action-value function network weights are updated in order to minimize the
indicated loss. Another interesting feature of DQN is how the target of the loss
and the loss are calculated:

yi = rit + γ max
a∈A

Q̂(sit , ait) (3.3)

L =
qN
i=1

1
Q(sit+1 , ait+1)− yi

22

N
(3.4)

In Eq. 3.3 Q̂ is the target network used only to estimate the target of the loss
function, which weights are substituted by the ones of the main network only every
C steps (Alg. 1). In Eq. 3.4 the difference is between the value estimated from the
target network Q̂ and the one provided by the current Q network, that is the one
followed as policy. In this way, target and current action-value are not correlated,
improving stability and convergence capability of the algorithm. Minimization

22

3.3 – Policy-based Algorithms

Algorithm 1 Deep Q-Network
1: Initialize network Q, target network Q̂ and empty replay buffer R
2: st ← s0 ó Reset the environment
3: while not converged do
4: Set Ô ó Ô-decay
5: Select action at following Ô-greedily max(Q(st))
6: Execute action at and observe next state st+1, reward rt and dt done signal
7: Store transition (st, at, rt, st+1, dt) in R
8: if enough experiences in R then
9: Sample a random minibatch from R

10: for every element in minibatch do
11: if done then
12: yi = ri
13: else
14: yi = rit + γ maxait+1 ∈A Q̂(sit+1 , ait+1)
15: end if
16: end for
17: Calculate the loss L =

qN
i=1 (Q(sit , ait)− yi)2

N
18: Update Q using the SGD algorithm by minimizing the loss L
19: Every C steps, copy weights from Q to Q̂
20: end if
21: end while

of the loss with respect to network weights is performed by Stochastic Gradient
Descent.

3.3 Policy-based Algorithms

Aside of value-based, there is another family of algorithms: policy-based algorithms
aim at finding the optimal policy function directly and without using any value-
function. This is a genuine result of the use of function approximators (being them
NN or other non-linear functions), that enable the learning of a function that has
a state as input and outputs directly an action or the probability distribution
over the available actions (the best action has the largest probability). Therefore
policy-based algorithms are optimization processes, in which the objective is to
maximize an objective function with respect to some parameters (that shape the
policy). The fundamental algorithm of this family is REINFORCE.

23

Deep Reinforcement Learning

3.3.1 REINFORCE
REINFORCE - or Monte-Carlo Policy Gradient - updates its parameters by stochas-
tic gradient ascent, in order to maximize the return of each episode. The optimiza-
tion step is performed at the end of every episode, leveraging on the policy gradient
theorem

∇θJ(θt) = Eπθ [∇θ log πθ(st, at)Gt] (3.5)

and updating the parameters with:

∆θt = α∇θ log πθ(st, at)Gt (3.6)

The structure of the algorithm is the following:

Algorithm 2 REINFORCE
Initialize θ arbitrarily

2: for each episode {s1, a1, r2, ..., sT−1, aT−1, rT} ∼ πθ do
for t=1,T-1 do

4: θ ← θ + α∇θ log πθ(st, at)Gt

end for
6: end forreturn θ

Though policy-based algorithms, such REINFORCE, are characterized by high
variances, they have some advantages over value-based ones:

• better convergence

• better performances for continuous action spaces

• can learn stochastic policies

3.4 Actor-Critic Algorithms
Actor-critic algorithms aim at solving the problem of high variance that characterizes
policy-based learning. In order to fulfill this objective, a critic is introduced in the
optimization process to evaluate the goodness of the current policy. As already
presented in Sec. 2.3.1, an object that has this as main objective is the value
function; from here the idea of inserting it in policy gradient algorithms to improve
them. In actor-critic algorithms, the actor is the policy function and the critic is
the action-value function, which evaluates the current policy and suggest to the
actor a direction towards to address the optimization process. Differently from

24

3.4 – Actor-Critic Algorithms

REINFORCE and other policy-based algorithms, actor-critic algorithms follow an
approximate policy gradient:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qw] (3.7)

∆θ = α∇θ log πθ(s, a)Qw (3.8)

In Eq. 3.8 and 3.7 Qw is the approximate action-value function that is used instead
of the return Gt. The actor is updated by SGD, while the critic is updated using
TD error presented in Sec. 2.4.1.2.

The structure of a generic actor-critic algorithm is the following:

Algorithm 3 Q Actor Critic
Initialize parameters s, θ, w
for t=1,T-1 do

3: Select action at ∼ πθ(s)
Observe next state st+1, reward rt
Select next action at+1 ∼ πθ(st+1)

6: θ ← θ + αθQw(s, a)∇θ log πθ(s, a) ó Update policy
δt = rt + γQw(st+1, at+1)−Qw(s, a) ó TD error for action-value function
w ← w + αwδt∇wQw(s, a) ó Update Q-function

9: st ← st+1
at ← at+1

end for

From actor-critic baseline, a whole family of algorithms arise. Expaining the
peculiarity of each exceeds the purposes of this work, hence in the followings only
the algorithm chosen to perform experiments will be presented.

3.4.1 Deep Deterministic Policy Gradient

DDPG is an actor-critic based algorithm that also exploits some features introduced
by DQN, such replay buffer and target network. DDPG structure is introduced
here and explained further:

25

Deep Reinforcement Learning

Algorithm 4 Deep Deterministic Policy Gradient
Initialize policy parameters θ, Q-function parameters φ, empty replay buffer R
θtarg ← θ, φtarg ← φ ó Target parameters equal to main ones
while episode < N do

4: s← s0 ó Reset environment state
Initialize random process N ó For action exploration
t← 0 ó Timestep set to 0
while t < Tmax and not done do

8: Select action at = clip(µθ(s) +Nt, alow, ahigh)
Execute action at and observe st+1, rt and d done signal
Store transition (st, at, rt, st+1) in R
st ← st+1

12: if time to update then
for m=1,M do

Sample a random minibatch from R
yi = rit + γ(1− d)Qφtarg(sit+1 , µθtarg(sit+1))

16: ó Target network used for target estimation
Update Qφ using ó Stochastic Gradient Descent
∇φ

1
|B|

q
(sit ,ait ,rit ,sit+1)∈B(Qφ(s, a)− yi)2

Update µθ using ó Stochastic Gradient Descent
20: ∇θ

1
|B|

q
(s)∈B Qφ(s, µθ(s))

φtarg ← ρφtarg + (1− ρ)φ
θtarg ← ρθtarg + (1− ρ)θ ó Update target networks

end for
24: end if

t← t + 1
end while
episode← episode + 1

28: end while

In Alg. 4 it can be seen that a replay buffer is also present, as it is in DQN, and
four NN are initialized:

• actor network

• critic network

• actor target network

• critic target network

The last two networks are used in the optimization phase of the process, in
particular:

26

3.4 – Actor-Critic Algorithms

• actor target network µtarget provides the action at+1 as input to the critic
target network

• critic target network Qtarget is used to obtain the target of the loss to be
minimized

The form of the gradient is due at off-policy updates with batches of experience,
hence it is necessary to take the mean of the sum of gradients calculated from
the batch. Target networks parameters are softly-updated with optimal networks
parameters at each step. The noise present when selecting the action to perform
is required in order to obtain a good exploration, in particular for DDPG the
Ornstein-Uhlenbeck Process [9] is frequently used.

27

28

Chapter 4

Safe Reinforcement
Learning

In Sec. 1.2 some hints about Safe Reinforcement Learning have been introduced
using a naive example about how to learn to ride a bike. Translating it to Machine
Learning applications, it could be the case of a robot learning on a work bench
that should stay away from the borders in order to avoid falling down. Another
example could be the one of a robotic arm that has to work in strict contact with
some humans without risking to hurt them.

In general, safety could be inherent with multiple aspects and multiple phases
of the development of an optimal policy:

• safe exploration can be referred to the case of performing a safe learning,
meaning to respect some peculiar conditions during the learning process

• safe policy learning can be referred to the case of eventually obtaining a safe
policy, namely a policy that respects some peculiar conditions as outcome of
the learning process (without the latter being safe)

This Thesis is inherent with the former option, hence the experiments will seek the
purpose of obtaining a policy that satisfies stated conditions either during or at
the end of the learning process.

In this chapter, a detailed explanation of differences and commonalities between
Safe and classical Reinforcement Learning will be presented, State-of-the-art will
be treated and the chosen algorithm will be explored in depth.

4.1 Basics
Safe Reinforcement Learning inherits the basic structure from classical Reinforce-
ment Learning, in particular the following elements are the same:

29

Safe Reinforcement Learning

• state space

• action space

• reward function

From these basics, different branches of Safe Reinforcement Learning algorithms
may be pursued.

Figure 4.1: Comprensive Survey of Safe Reinforcement Learning algorithms [10]

It is not within the purposes of this work to explore in detail all of these branches,
but an exhaustive presentation can be found in [10]. In Fig. 4.1 there is a graph

30

4.2 – State of the Art

extrapolated from the previous paper, in an effort to make the reader familiar with
the topic. Without going into too much detail, it can be seen that SRL algorithms
can be divided into two major categories.

Optimization Criteria modification regards processes in which the agent
explores the environment in the same way it would do in classical Reinforcement
Learning. The improvement in terms of safety comes from a change of the opti-
mization process. In this kind of algorithms, the optimization is subject to some
constraints, such as:

• worst case constraint, where the return obtained in the worst case by the
policy learned has to be above a threshold

• risk-sensitive criterion: where there is some parameter that can sense the risk
and the optimization is performed in order to optimize a combination of risk
and return

• constrained criterion, that will be analysed deeper in Sec. 4.2.1

Exploration Process modification concerns processes in which the learning
approach is the same as in classical Reinforcement Learning, but the agent explores
the environment in a safer way. These algorithms are the most indicated for
environments where an unconstrained exploration could lead to severe consequences.
In particular, there are different ways to modify the exploration process:

• external knowledge of the environment provided at the beginning or during
the learning process, in order to give information to the agent that prevent it
from exploring risky states

• risk-directed exploration, that will be analysed deeper in Sec. 4.2.2

4.2 State of the Art
It is worth focusing the attention on some particular branches of Safe Reinforcement
Learning, the ones that concern more than others the algorithm selected for this
work. In particular, the selected algorithm fits in the fields of Constrained
Criterion and Risk-directed exploration.

Although in the Fig. 4.1 they are located in different subsections, they still
share some peculiarities. Primarily, in both of them it is required a specific element
to measure the dangerousness of the state in which the agent finds itself or could
come across in close future. This element is called cost function or risk function
and the goal of these algorithms is to keep it below a certain threshold.

31

Safe Reinforcement Learning

4.2.1 Constrained Criterion
If classical Reinforcement Learning can be summarized as a problem of uncon-
strained optimization, Constrained Criterion SRL algorithms are constrained opti-
mization problems: to optimize the return while keeping cumulative cost below
some thresholds. Another kind of Markov Decision Process is required to describe
exactly the newfound problem, which includes constraints: Constrained Markov
Decision Process (CMDP). The general structure of a Constrained Criterion
SRL algorithm is the following [10]:
Definition 4.2.1 (Constrained Criterion). In the constrained criterion, the expec-
tation of the return is maximized subject to one or more constraints, ci ∈ C. The
general form of this criterion is shown in the following

max
π∈Π

Eπ(R) subject to ci ∈ C, ci = {hi ≤ αi} (4.1)

where ci represents the i-th constrain in C that the policy π must fulgill, with
ci = {hi ≤ αi} where hi is a function related with the return and αi i the threshold
restricting the values of this function. Depending of the problem, the symbol ≤ in
the constraints ci ∈ C may be replaced by ≥.

4.2.1.1 Constrained Policy Optimization

One of the first algorithms developed in the frame of SRL is Constrained Policy
Optimization [11], that is a Constrained Criterion process. In this algorithm the
optimization of the policy leverages on some approximations that permit to treat
the problem presented in Eq. 4.1 as a convex one and solve it using duality. This
procedure permits to solve the equations with respect of fewer variables than the
original ones (i.e. the parameters of the policy network, usually a large number).

Figure 4.2: Return Figure 4.3: Constraint violations

Figure 4.4: CPO (blue) results against two unsafe algoithms (orange, green).
Images from [11].

32

4.3 – Safety Layer

CPO is an effective method of learning a safe policy, but it has several problems:

• slow convergence (Fig. 4.2)

• degradation of the reward obtained (Fig. 4.2)

• violation of constraints during the early stages fo the training (Fig. 4.3)

For these reasons, new algorithms and strategies need to be explored in order to
obtain a safe exploration, without impacting on agent performances.

4.2.2 Risk-directed Exploration
Passing now to Risk-directed exploration SRL, it can be seen in Fig. 4.1 that
these methods lie in the category of Exploration Process modification, which is
what makes them different from classical RL. These algorithms still require a
cost function, but use it in a different way compared with Constrained Criterion
processes.

Specifically, Risk-directed exploration SRL aims to leverage on the cost function
in order to modify the exploration space, in the optical of avoiding risky states.
In Constrained Criterion SRL it is necessary to explore unsafe states in order
to learn about their dangerousness and successively act against it (in the same
way it is necessary to explore good states to obtain knowledge about reward). In
Risk-directed exploration algorithms, a part of hazardous exploration is avoided
using the cost function as a signal.

4.3 Safety Layer
Safety Layer [12] is an algorithm that lies in between the categories presented
in Sec. 4.2.1 and Sec. 4.2.2. It consists in the application of a Safety Layer to
classical Reinforcement Learning methods, that corrects dangerous actions to safe
ones before the agent performs them.

Figure 4.5: Safety Layer algorithm structure

33

Safe Reinforcement Learning

In Fig. 4.5 it can be seen that the inputs are the state s, the action selected by
the Neural Network µθ(s) and the perturbed action a. Current state and action
are the inputs of the Safety Layer, which eventually corrects µθ(s) and provides
µ̃θ(s), the new safe action to be performed.

Therefore, it would be correct to categorize the algorithm as belonging to Risk-
Constrained exploration SRL, but focusing on how an action is marked as safe
or dangerous, the Constrained Criterion (Fig. 4.1) can be recognised. Indeed, an
action is marked as dangerous only if it brings the agent to a state sÍ associated to
a cost function c(sÍ) that violates a threshold C.

c(sÍ) ≤ C (4.2)

In Constrained criterion SRL, the agent should visit the whole state space to be
able to associate a cost function to every possible state, but this is not possible -
as already stated in Sec. 3 - for continue state/action spaces. Moreover, it would
necessarily lead to numerous violations during training, as explained in Sec. 4.2.2.

Safety Layer algorithm solves both these problems using an approximation of
the cost function instead of the real one, in order to be able to predict the value of
c(sÍ) without having visited the state sÍ not even once. Moreover, in some specific
situations it is possible to obtain a closed form solution to the problem of action
correction performed by the Safety Layer, as explained in the following Sections.

4.3.1 Safety Layer approximation

In Sec. 4.3, the concept of approximated cost function has been introduced. It
is, indeed, the most important element of the algorithm discussed in this thesis.
Neural Networks are powerful approximators, as treated in Sec. 3.1, therefore the
choice easily falls on them.

The initial idea would be to use a Neural Network to associate at each state sÍ

in input an approximated cost function c̄(sÍ) as output.
In Safety Layer algorithm something different happens. First of all, the cost

function is modeled as a first-order approximation of c(sÍ) with respect to the
action a.

c̄(sÍ) , c(s, a) = c̄(s) + g(s; w)Ûa (4.3)

In Eq. 4.3 sÍ is the state reached starting at s and taking action a, c̄(s) is the
approximated cost function at the state s and g(s; w) is something that represents
how much the cost function is sensible to variations caused by actions, at state
s. In particular, the Safety Layer Neural Network will approximate the g(s; w)
function, where it is made explicit the dependency from network parameters w.

34

4.3 – Safety Layer

Figure 4.6: Each safety signal ci(s, a) is approximated with a linear model with
respect to a, whose coefficients are features of s, extracted with a NN [12]

4.3.2 Safety Layer pre-training
As stated in Sec. 4.3, Safety Layer is applied to a classical Reinforcement Learning
algorithm. The training of the neural network g is done in a phase that precedes
the learning process of the classical Reinforcement Learning algorithm, for this
reason it is called pre-training.

Ideally, the purpose of the writers of [12] was to execute the learning process
upon an existing database of tuples < s, a, sÍ > (where the cost function c(s) is
considered as part of the state s), in order to perform the pre-training on offline
data rather than simulating new ones. While this is applicable and even advised
when a database is effectively available, usually it is not the case. Therefore, to
simulate the required data, the strategy is to run a random policy and store in
a buffer the single-step tuples < s, a, sÍ >. In this way, the randomness of data
present in a database is properly simulated. In fact data can be obtained and saved
in very different times and manners, hence the neural network has to be able to
learn from this random distribution of data.

Pre-training consists in applying Supervised Learning presented in Sec. 3.1 to
the data stored in the buffer D.

argmin
w

Ø
(s,a,sÍ)∈D

(c̄(sÍ)− (c̄(s) + g(s; w)Ûa)) (4.4)

Eq. 4.4 shows that the objective of pre-training phase is to find the parameters w
that minimize the difference between the predicted cost function (c̄(s) + g(s; w)Ûa)
and the real one c̄(sÍ), where the latter is considered as part of the state sÍ present
in the tuple. Once pre-training is complete, the policy learning process can start.

4.3.3 Action correction during training
Every classical Reinforcement Learning algorithm can be used to train the policy,
since the action of the Safety Layer does not influence the optimization process.

35

Safe Reinforcement Learning

In fact, Safety Layer only performs a correction on the output of policy neural
network, but never interacts with the parameters describing it or other functions
involved in the policy learning process. In [12] DDPG (Sec. 3.4.1) has been chosen,
hence in this thesis the same algorithm is kept as the preferred one.

During each step in the environment, the policy function µθ(s) takes a state
s as input and outputs an action a. Associated with the state s there is a cost
function c̄(s) that describes the dangerousness in which the agent finds itself. At
this point, the following optimization process takes place:

a∗ = argmin
a

1
2ëa− µθ(s)ë2

s.t.c̄i(s) + g(s; wi)Ûa ≤ Ci∀i ∈ [K]
(4.5)

where the subscript indicates the constraint number i. Eq. 4.5 shows that the
Safety Layer corrects the original action as little as possible in the Euclidean norm
in order to make it safe, i.e. compliant with the constraints. Eq. 4.5 is a quadratic
problem, therefore it is possible to find the global solution. In the paper a QP-solver
[13] is indicated, but its application exceeds the goals of this thesis. Going one step
further and making the assumption that no more than a single constraint is active
at a time it is possible to reach a closed-form analytical solution for Eq. 4.5. This
assumption is suitable in many physical domains, for example the ones in which
the agent has to avoid some obstacles (since it can be too close just to an object
per time). The solution found is the following (proof of its validity can be found in
[12] and will be omitted):

a∗ = µθ(s)− λ∗
i∗g(s; wi∗) (4.6a)

where λ∗
i∗ =

g(s; wi∗)Ûµθ(s) + c̄i(s)− Ci

g(s; wi∗)(s; wi∗)

+

(4.6b)

and i∗ = argmax
i

λ∗
i∗ (4.6c)

If predicted cost function c̄(s) + g(s; w)Ûµθ(s) is above the threshold Ci, then it
means that action a = µθ(s) leads to a dangerous state. In this case the multiplier
λi correspondent to that constraint is positive, hence a correction is performed
(as in Eq. 4.6a); otherwise the numerator of Eq. 4.6b is negative or null and no
correction is activated. In case there is only one constraint, Eq. 4.6c loses sense
and only one multiplier λ is present.

4.3.4 Implementation and results
The following images and captions are taken from [12] and describe the environments
used to implement the algorithm.

36

4.3 – Safety Layer

Figure 4.7: Ball1D (left) - Ball3D (right) tasks [12]

«The goal is to keep the green ball as close as possible to the pink target ball
by setting its velocity. The safe region is the [0, 1] interval in Ball-1D and the [0,
1] cube in Ball-3D; if the green ball steps out of it, the episode terminates [12]»

Figure 4.8: Spaceship-Corridor (left) and Spaceship-Arena (right) tasks [12]

« The goal is to bring the green spaceship to to the pink rounded target
by controlling its thrust engines. Touching the walls with the spaceship’s bow
terminates the episode. [12]»

37

Safe Reinforcement Learning

Figure 4.9: Results of [12] per each task. (Top) Sum of episodic discounted
rewards. (Bottom) Cumulative constraint violations occurred during training.

Safety Layer is able to ensure safe exploration as presented in Sec. 4. In Fig. 4.9
Safety Layer is compared to unsafe DDPG and DDPG supported by reward shaping.
The latter is a modification of the classical algorithm where a penalty is associated
to states whose cost function violates the constraints, in order to deter the agent
to reach those states later in the future. Safety Layer shows promising results both
in terms of safety, both in terms of reward gained. In fact, as it can be seen from
the graphs in Fig. 4.9, blue line performs well in all four environments tested,
even when classic algorithm demonstrates to struggle. The authors of the [12]
explicate this unexpected result in the following way: «[...] our method promotes
more efficient exploration – it guides the exploratory actions in the direction of
feasible policies. [12]»

This capability of Safety Layer of "guiding" the exploration process is typical of
Risk-directed exploration SRL.

38

Chapter 5

Implementation

Before starting the detailed description of the environments and agents used for
the implementation and modification of the Safety Layer algorithm, it is necessary
to explicate the reasoning behind the different choices made.

The main purpose of this thesis is to obtain an algorithm that improves state-
of-the-art safe exploration in some particular environments that try to represent
realistic dangers configurations. These environments are the ones in which dangers
fill the space in a heterogeneous way and that will be called, borrowing a mathe-
matical term for informal use, non-convex environments. If convex environments
are perfectly practicable from a large family of agents, for non-convex environments
this is not the case since they are "drilled" by dangers that the agent should avoid.

The environments explored in the reference paper [12] were convex since the only
dangers were the external walls and that the target was always within them. This
thesis implementation started from a simple environment very similar to the ones
used in the reference paper [12] and then passed to a more complex non-convex
environment, more representative of the real world.

5.1 Environments
The two environments chosen for implementation are:

• CartPole Continuous as convex environment

• Safety Gym as non-convex environment

5.1.1 CartPole Continuous
CartPole is an environment provided by OpenAi Gym [14], corresponding to the
problem treated in [15]. It consists of a cart with a pole upon it, linked by a

39

Implementation

hinge that leaves it free to oscillate around the vertical position (Fig. 5.1); the
cart itself can move horizontally towards left or right. The task to be learned by
the agent is to keep the pole balanced (its angle with the vertical must remain
below a threshold) moving the cart within the edges of the environment. The
original version of this environment was discrete in action, meaning that the agent
could decide only between −1 (left) and 1 (right), but for the experiments of
this thesis, a continuous version has been used [16], in which the action space is
continue and a ∈ [−1,1]. Detailed physical background and equations involved can
be found in [15]. The environment is provided of reward function, but neither of

Figure 5.1: CartPole Continuous environment

constraints neither of cost function, therefore it has been necessary to implement
them manually. The constraints set for the agent were:

• to not go beyond the left edge of the screen (1st constraint)

xpos −margin > xedgeinf → −xpos + margin + xedgeinf < 0 (5.1)

• to not go beyond the right edge of the screen (2nd constraint)

xpos + margin < xedgesup → xpos + margin− xedgesup < 0 (5.2)

The cost function has been rewritten adapting the one used in the reference paper
[12]:

c1 < C1 with c1 = −xpos + margin + xedgeinf and C1 = 0 (5.3a)
c2 < C2 with c2 = xpos + margin− xedgesup and C2 = 0 (5.3b)

In Eq. 5.3a and Eq. 5.3b, the following terms indicate:

40

5.1 – Environments

• xpos: the position of the cart on the horizontal rail, going from negative values
(left part of the screen) to positive values (right part of the screen)

• margin: constant value required to consider some "inertia" and give the agent
time to counterattack the danger

• xedge: constant value that indicates where the end of the screen is located on
the x axes (i.e. the edge not to be crossed)

Fig. 5.2 shows a clarifying visualization of CartPole Continuous constrained
environment.

Figure 5.2: CartPole Continuous constrained environment

5.1.2 Safety Gym
The second environment selected to host the experiments has been Safety Gym.
Developed by OpenAI, it is specifically designed to support the benchmarking of
Safe Reinforcement Learning inherent algorithms.

Safety Gym is a suite that offers several tools and items, configurable in a variety
of ways that enable a multitude of experiments. Three tasks built upon three levels
offer the baseline configurations for the three agents available, even if every feature
and item is customizable. In the following Sections, the different configurations
will be presented in detail.

41

Implementation

5.1.2.1 Tasks

Goal

The objective is for the agent to reach a target zone in the state space as soon as
possible, the target changes each time that an episode ends or the agent succeeds.

Figure 5.3: Goal task

Button

The objective is for the agent to hit a target button while avoiding fake buttons,
the target button changes each time that an episode ends or the agent succeeds

Figure 5.4: Button task

Push

The objective is for the agent to push a box towards a target zone, the location of
the box and of the target zone changes each time that an episode ends or the agent
succeeds

42

5.1 – Environments

Figure 5.5: Push task

5.1.2.2 Agents

Point

It is the simplest of the three agents available. It is provided of two actuators:
one for turning and another for moving forward or backward. The action is bi-
dimensional a = a1, a2 where a1, a2 ∈ [−1,1]. This agent is fixed in the plane and
does not have possibility to move in z direction.

Figure 5.6: Point agent

Car

This agent is more realistic than Point since it is not fixed on the bi-dimensional
plane, in fact it can move in z direction, if forced by the environment. It is provided
of two actuators: one for turning and another for moving forward or backward.
Both the actuators have to be coordinated to permit movement. The action is
bi-dimensional a = a1, a2 where a1, a2 ∈ [−1,1].

43

Implementation

Figure 5.7: Car agent

Doggo

It is the most complex agent available, it has bilateral symmetry and it is controlled
by 12 actuators: three for each of the four leg. As for the other agents, it needs
to learn how to move before starting learning the task; this objective is already
difficult, differently from the other agents.

Figure 5.8: Doggo agent

5.1.2.3 Levels ans obstacles

In Safety Gym it is possible to insert several objects as obstacles to the agent,
each of them with different customizable features. Also cost function is completely
customizable and it can be tuned as sparse or dense. Safety Gym uses sparse cost
function as a baseline, meaning that cost is 0 when constraints are not violated
and 1 when a violation occurs. For this work, cost function has been set dense and
represents the distance of the agent from the closer obstacle (changed of sign and

44

5.1 – Environments

with some margin as in Sec. 5.1.1).
c < C with c = −distance + margin and C = 0 (5.4)

No obstacles - Level 0

Level "zero" is basic, no objects that hinder the robot are present and the only
objective is for the agent to learn the assigned task. This level is useful for debugging
purposes and to focus on the agent learning capabilities. Fig. 5.3, Fig. 5.4, Fig.
5.5 represent this level, free of any obstacle.

Single kind of obstacle - Level 1

In level "one" two kinds of obstacles are inserted, but only one is "activated" with
constraints. One element of the "inactive" obstacle is present and eight elements of
the "active" one. The former is a rigid box that can be pushed and moved by the
agent and no cost is associated to it, the latter are hazardous areas that the agent
should avoid while learning the main task, indeed a cost is associated with them.
These obstacles are not rigid, meaning that the agent can invade them but cannot
move them.

Figure 5.9: Level 1

45

Implementation

Different kinds of obstacles - Level 2

This is the most complex level of the pre-configured ones. Several types of obstacles
are present, different in kind and numbers for each baselined configuration and
main task. For the goal task, level 2 consists in inserting ten hazards (two more
than level 1) and ten boxes (nine more than level 2). Every type of obstacle has
an associated cost and is constrained, the agent has to avoid each of them while
learning the main task.

Figure 5.10: Level 2

5.1.2.4 Sensors

Agents are provided of different sensors in order to be conscious of the surrounding
environment, each of them measures some features and these values are part of the
state vector, which is the input of the policy neural network. The sensors available
are:

• accelerometers

• gyroscopes

46

5.1 – Environments

• magnetometers

• velocimeters

• joint position trackers

• joint velocity trackers

• compasses for pointing to goals

• lidars (one for each kind of object present in the environment)

Compasses and lidars are renderizable, in order to provide to humans a clear
visualization of what the agent is perceiving at that moment.

Figure 5.11: Lidar rendering, yellow for the box and green for the target zone

5.1.2.5 Chosen configurations

Two options have been chosen for the implementation part of this thesis.
In the first configuration (Configuration 1 from now on) the purposes were to

understand limits of the algorithm and its applicability to Safety Gym suite, to
identify which metrics to store, to tune specific hyperparameters.

47

Implementation

Configuration 1 features are:

• Task: Goal

• Agent: Point

• Level: 1

• Sensors: accelerometers, gyroscopes, magnetometers, velocimeters, lidars for
target and obstacles

The second configuration (Configuration 2 from now on) is the one used for the
effective improvement phase, in which some features of the algorithm have been
modified and the effects of these changes have been analysed.

Configuration 2 features are:

• Task: Goal

• Agent: Car

• Level: 1 (without inactive box)

• Sensors: accelerometers, gyroscopes, magnetometers, velocimeters, lidars for
target and obstacles

5.2 Algorithm baseline structure
The baseline structure of the algorithm can be resumed as:

• pre-training exploration: the agent collects samples about the surrounding
environment following a random policy

• pre-training learning process: offline optimization of the SL network

• policy learning: each step of this phase is also divided in:

– action selection: the policy network takes the current state as input and
provides an action

– risk estimation: the SL network takes as inputs the current state, its
associated cost function and the action selected and estimates the future
cost function

– action correction: if the cost function predicted exceeds the threshold,
the SL corrects the action towards a safe one

– action execution: the agent follows the corrected action and prosecutes in
the exploration phase

48

5.2 – Algorithm baseline structure

– policy optimization (if any): at determined steps, optimization of the
policy parameters is performed

The previous structure is the one used for the experiments performed on CartPole
environment, Safety Gym Configuration 1 and as the starting point for Safety
Gym Configuration 2. In the latter environment indeed, some variations have been
actuated in order to improve the performances.

Detailed pseudo-code of the algorithm can be found in Appendix A.

49

50

Chapter 6

Results

In this Chapter, the results of the different experiments performed will be presented
and analysed. For the experiments presented in Sec. 6.1 and Sec. 6.2 only the
baseline algorithm has been applied, whose structure can be found in Appendix A.
In Sec. 6.3 the reader will find the explanation of the issues encountered during
training and the variations applied to solve them, such as:

• cleansing of pre-training database

• modification of pre-training process

• transition to sparse reward

• insertion of reward shaping, a particular technique that operates on the
episodic reward in order to guide the agent in the exploration process

Each curve reported in the following graphs represents the average of three identical
experiments with different seeds, the shaded area represents the interval built with
standard deviation.

6.1 CartPole Continuous
As previously explained in Chapter 5, the implementation started with CartPole
Continuous environment to understand potentialities of the algorithm, debug the
code, acquire knowledge on the logic behind it, verify functionalities. Since this
environment is not provided of its own constraints, it has been necessary to construct
some and associate them with a cost function; the constraints were for the cart
to not run outside of the borders of the screen and the cost function was dense,
representing the distance from the borders changed of sign (detailed explanation in
Sec. 5.1.1).

51

Results

Several experiments have been done, tuning the different parameters of DDPG
(learning rates, γ, τ , buffer size), SL neural network and pre-training (size of the
NN, batch size, number of samples, optimization epochs). The results found were
in line with the ones stated in the SL reference paper [12]: the algorithm converges
to an optimal policy, with no violations of constraints during training (Fig. 6.3,
Fig. 6.1 and Fig. 6.2). Fig. 6.1 and Fig. 6.2 show the total violations done by

Figure 6.1: CartPole - Cumulative violations of max constraint during training

the agent during the training phase, both with safe and unsafe approaches. It can
be seen that without SL, the agent is not protected from taking unsafe actions,
indeed it has to commit them in order to learn that they are provided by a bad
policy. Indeed, violating constraints means ending the episode and preventing the
reward growing higher. For this reason, a policy that does not avert this behaviour
cannot be an optimal policy. In unsafe DDPG, the agent eventually learns an
optimal policy that avoids the edges of the screen, as can be seen in Fig. 6.3 where
both processes end in an optimal behaviour, but it is not because it is conscious
about some kind of "safety" of the environment. The agent stays far from the
constraints because the optimal policy - keeping the pole vertical for as long as
possible - implicates not running outside the screen, in order to not terminate the
episode and make more reward. The optimal policy is itself implicitly safe. This
incapability of learning implicitly unsafe policy is one of the limit of the baseline
algorithm, as it will be explained more in details in further Sections.

52

6.1 – CartPole Continuous

Figure 6.2: CartPole - Cumulative violations of min constraint during training

Figure 6.3: CartPole - Episodic reward during training

53

Results

6.2 Safety Gym - Configuration 1
After having verified the functionalities of the algorithm on the basic CartPole
Continuous, the SL layer has been applied to a more complex environment, namely
Configuration 1 of Safety Gym (Point agent). Although this is not the final
environment where the majority of the experiments have been performed, due to
its low complexity, it has been useful to test the application of SL at this level
before deploying it on the definitive configuration. In this way, indeed, the most
serious issues have been discovered and in the successive phase it has been possible
to start investigating about solutions. In the followings, three processes will be
presented:

• NO SL: DDPG without Safety Layer

• SL suboptimal : DDPG with a suboptimal Safety Layer, where optimization
of the margin was not tuned properly

• SL optimal : DDPG with optimal Safety Layer

It can be useful to remind that the margin is a constant to be added to the
constraint equation in order to take into account some "inertia" of the agent (Eq.
5.3a for details).

Figure 6.4: Configuration 1 - Episodic reward during training

Fig. 6.4 shows that unsafe DDPG converges to an optimal policy after 300k
steps (interactions with the environment), reaching a reward of 25 (i.e. 4/5 catches
of the target for each 1000 steps episode). It is evident that the application of
the SL affects negatively the agent performances, it is promptly explained in the

54

6.2 – Safety Gym - Configuration 1

followings. By default, the agent would look for the shortest way to get to the
target, and it is well know that the shortest way between two points is the straight
line that connects them. This is exactly what the agent does in the unsafe case: it
turns itself and goes straight to the target, without caring about invading hazardous
areas on the road. When the SL is applied, this behaviour is modified by the
correction performed, that gives precedence at preventing the agent from violating
the constraints (namely stepping inside hazardous areas) rather than leading it
towards the target. To confirm this thesis, in Fig. 6.5 it can be seen that during
the evaluation episodes, where both the safe and unsafe algorithms are performed
without SL, the reward obtained by the agents reaches similar levels. This validates
the idea that the correction action of the SL is the responsible of the degradation
of performances.

Figure 6.5: Configuration 1 - Episodic reward during evaluation

Having a look on the safety performances, more issues arise. Looking at Fig.
6.6, it can be seen that no mayor differences are present between the safe and
unsafe algorithms, meaning that although the SL executes some corrections on the
policy actions, this is not enough to significantly prevent the agent from violating
constraints. On the other hand, a suboptimal SL can even increase the violations
due to its incapability to promptly stop the agent before stepping inside hazardous
areas, not taking properly into account inertia.

Investigating more in detail, it can be seen that the effect of SL is more important
in the early phases of the training, where instead the unsafe algorithm performs a
huge number of violations. In Fig. 6.7 it can be seen that both safe and unsafe
processes reach a similar level of violations during the majority of the training, but

55

Results

in the early stages a decreasing of the 80% is appreciable with an optimal SL.

Figure 6.6: Configuration 1 - Cumulative violations of constraint during training

Figure 6.7: Configuration 1 - Episodic violations of constraint during training

56

6.2 – Safety Gym - Configuration 1

Issues and challenges
From the results obtained during experiments on Configuration 1 environment,
several problems arose and were challenged with different tentative solutions. The
issues concerned both reward and safety performances and are:

1. learning of an unsafe policy once removed the SL

2. learning of a suboptimal policy

3. scarce dependency of the SL neural network with respect to the current state,
leading to almost constant g(s; w) values (from now on, dependency upon
parameters w will be omitted in the writing for the seek of simplicity)

4. SL occasionally providing not feasible actions (not in the range [−1,1])

Learning of an unsafe policy

The original idea of the application of a SL during training was to protect the
agent until it learned a policy safe enough, then it could have proceeded without
needing shielding anymore. It can be seen from Fig. 6.7 that there is no decreasing
in the violations pattern during training, meaning that the policy does not learn
any safe behaviour. This is the consequence of what already mentioned in Sec.
6.1: SL succeeds in finding an optimal safe policy only when the optimal policy is
intrinsically safe. An explanation of this behavior could be that SL does not affect
the learning process of the policy, but it just prevents the agent to run in dangerous
states during exploration; when learning a policy that naturally leads away from
dangers, SL will eventually not be called anymore, but when this does not happen
SL will continue to be needed and to impact on main policy performances.

Learning of a suboptimal policy

It can be seen from Fig. 6.4 that, nonetheless safety performances are not sig-
nificantly improved, there is a degradation in terms of reward obtained when
applying the SL. This is a direct consequence of inserting obstacles in the space
of the environment: the optimal policy should not lead on the shortest way to
the target, but rather to circumnavigate the obstacles and lengthen the trajectory.
Without any safe constraints, the agent learns only to reach the target without
considering the hazardous areas, which do not impact in any way on the agent.
When these obstacles have to be avoided, they become rigid in the point of view of
the agent and they start to affect its trajectory, blocking it and precluding some
roads that would otherwise be accessible. Therefore, the degradation of policy
performances is natural in some limits and should not be considered a consequence
of SL application.

57

Results

Scarce dependency of the Safety Layer upon the current state

In order to help the reader understand this issue, it may be useful to repeat that
the SL neural network is the g(s) function, which describes the variation of the
cost when a specific action is taken in a specific state (Eq. 4.3). The original idea
was to have different values for different states, in order to be able to approximate
a large variety of responses to the action provided by the policy and, consequently,
a wide range of safety corrections (Eq. 4.6a). The issue arose concerns the output
of the g(s) function, which is supposed to variate with respect to the state space,
but that during experiments resulted quite constant. The scarce dependency of
the g(s) function upon the current state involves a linearity of the cost function
with respect to the action, which is not theoretically wrong, but that limits the
correction capability of the SL: very dangerous and slight dangerous actions are
treated in the same way. For this reason, the behaviour found in the renderings
was of an agent that stops itself in proximity of the hazardous areas and gets stuck
there, trapped by the same SL that protects it. The SL does not distinguish a slight
dangerous action, useful to escape from the edge of the hazardous area, from a very
dangerous one, that would lead it inside the said zone. An extreme consequence of
trapping the agent on the border of the obstacle is that it will eventually violate it
and get stuck there; when this happens it is possible to have spikes in the episodic
violations (Fig. 6.7), although those violations are quite small in magnitude.

Safety Layer correction providing not feasible actions

This issue is strongly connected with the previous one, since it depends on the
outputus provided by the g(s) neural network. In every environment considered,
every component of the action is in the range [−1,1], characteristic that can be
easily achieved using hyperbolic tangent (tanh) as activation function of the last
layer of the policy network. When the correction of the SL is applied to a dan-
gerous action, the safe output is the solution of Eq. 4.6a, which lies in the range
[−∞, +∞] and is clipped in [−1,1] in order to provide the agent with a compatible
input. Unfortunately, this operation leads to a loss of information, since a value
slightly larger than the upper bound is truncated in the same way of a value
that strongly exceeds it. The visible consequence of this issue is that when the
agent is located in a very dangerous state and it should perform a strong safe
action, eventually it executes just the largest action possible, that cannot save
it. Hence, in some situations it is very hard for the agent to act towards a safe state.

To solve such problems, different strategies have been followed, impacting both
training and pre-training processes, but also environmental structure, reward and
cost functions.

58

6.3 – Safety Gym - Configuration 2

6.3 Safety Gym - Configuration 2
In the Configuration 2 of Safety Gym the number and nature of obstacles is the
same as in Configuration 1, but the agent is car. Some preliminary experiments
have been done to tune the parameters of the different operators and, after having
identified the features of an optimal SL, the modification of the algorithm started,
in order to improve performances in terms of reward obtained and safety. This
last environment is also the one that has been explored the most, in order to find
solutions to the problems explained in Sec. 6.2, whose proposed solutions will be
explained in the following Sections.

6.3.1 Scarce dependency of the SL upon the current state
6.3.1.1 Cleansing of the pre-training database

The first modification conducted to solve the issue was about the SL pre-training
process, cleaning the database of tuples (< s, a, sÍ >) upon which the optimization
of the g(s) network is based. During pre-training, the agent is governed by a
random policy, as explained in Sec. 4.3.2, and for this reason it is prone to make a
lot of violations if left free to move for long episodes. Hence, with the purpose of
reducing this risk, the episodes are truncated in a short time (20/30 steps), allowing
the agent to explore the environment without giving it the time to invade hazardous
areas. As a matter of fact, this collection of samples was strongly dominated by
similar values of cost representing safe states, in which the agent was located for
most of the time. This led to the idea that cleaning the database could have helped
the optimization process of the SL, making it more variable with respect to the
input state.

To find a trade-off between risky exploration and useful samples collection, the
number of steps for each episode have been increased and the database has been
cleaned of a large number of similar values, resulting in a more uniform one (same
number of safe and unsafe states). Unluckily, this cleaning process did not show
improvements in performances, and it was found that short episodes are enough to
obtain a good approximator, with a number of samples in the order of 105.

No modifications have been kept for the future.

6.3.1.2 Dependency of the Safety Layer network upon the action

This modification consisted in reviewing the whole SL concept: while it usually
takes only the current state as input, in this upgrade it took also the action provided
by the policy.

g(s)→ g(s, a)→ g(s, µ(s))

59

Results

In this way it was introduced an indirect dependency of the SL on policy parameters.
As a consequence of this modification, g(s, a) outputs are less constant than before
and this permits an higher flexibility to the SL, in particular to the correction
executed on dangerous actions. It was seen on renderings that the agent does not
get stuck on the edges of the hazardous area as often as before, but this is at the
cost of the precision of the SL, that is not activated in correspondence of every
obstacle and at times lets that the agent invades them. This behaviour leaves the
agent freer to explore the environment and find other trajectories to the target.
The results are of a better policy in terms of reward obtained, but a poorer one in
terms of safety.

Since this work is mostly focused on improving the safety, also in spite of a loss
of reward, no modification have been kept for the future.

6.3.2 Learning of unsafe policy

This issue leads to the most critical consequences on the performances of the selected
algorithm, it factually states the failure of the SL in granting a safe exploration
during training. For this reason, most of the efforts have been focused on trying to
solve or at least mitigate this problem.

6.3.2.1 Conversion of hazardous areas into rigid obstacles

The first tentative made has been substituting the dangerous areas with rigid walls
(pillars in Safety Gym) that cannot be invaded by the agent. In this case, the
violation occurred whenever the agent touched the pillar. The idea was to force the
agent to avoid the “fastest wrong way” (going straight to the target), prompting it
to learn the “fastest correct way” (circumnavigating obstacles without touching
them). No evident improvements have been observed during the evaluation episodes,
which are identical for each experiments and involve the use of nonrigid obstacles.
On the contrary, worst results in terms of violations have been found. When using
hazards (no rigid areas), the SL used to stop the agent, that started to turn on
itself and get stuck on the edge of the obstacle; with pillars (rigid walls) the SL
provide a correction of the action that “rebounds” the agent in order to avoid it to
touch the obstacle. In this scenario, the agent learns to leverage on the “rebound”
provided by the SL to turn itself towards the target, so it does not learn to avoid
the obstacle, on the contrary it looks after them to get the “rebound” it needs; this
often leads to larger violations than before.

No modifications have been kept for the future.

60

6.3 – Safety Gym - Configuration 2

6.3.2.2 Continue training of the Safety Layer

Another strategy used to solve the problem of the agent not learning a safe policy
was to perform the training of the SL not only in the pre-training phase, but also
during the DDPG optimization process. In this way, the SL neural network could
benefit of a database of new trajectories, drawn by an optimized policy and not
a random one. In this way, performing an optimization of the SL on the current
capability of the agent, the hope was to obtain a weakier effect of the correction in
the later epochs that could have gradually lead to an independence of the agent
from the SL. No improvements were found, on the contrary if during pre-training

Figure 6.8: Configuration 2 - Episodic violations of constraint during training
when continuous optimization of the SL is performed

the g(s) network was optimal, an high risk arose of spoiling it with successive
iterations. It can be seen in Fig. 6.8 a consistent increasing of episodic violations
in correspondence with an update of the SL during training (∼ 100k step).

No modifications have been kept for the future.

6.3.2.3 Retention of the Safety Layer during the evaluation

Until this moment, SL was always removed during evaluation episodes, in order to
analyse the capability of the policy learned to follow safe trajectories. Safe and
unsafe algorithms always had very similar trends in terms of reward obtained and
also in violations performed: without SL it was evident that the agent alone could

61

Results

not fulfill safety requirements since it was acting exactly as its unsafe counterpart.
It was clear also looking at the various charts of episodic and total violations
committed during training: no decreasing patterns were present, meaning that the
policy itself did not learn to act safely. For this reason it has been chosen to retain
the SL during evaluation episodes as a concrete feature of the final policy to be
deployed, in order to provide protection to the agent not only during training, but
in general.

No real modification have been executed on the algorithm with this strategy,
except that from this point the SL is not considered anymore a temporary addition
to the main algorithm (DDPG), but one of its consistent features.

6.3.2.4 Application of reward shaping

Reward shaping is a technique used in classical Reinforcement Learning to guide
the agent during the training process. It relies on the idea that some peculiarities
of the environment are well known and it consists in manipulating the reward
obtained by the agent based on some heuristics. In the case treated in this work,
reward shaping consists in the insertion of a penalty on the reward whenever the
SL is used, in order to teach the agent to gradually become independent from it.
In particular, if SL is used, a penalty of −1 is added once per step to the current
reward accumulated by the agent during that episode.

Detailed structure of the modified algorithm can be found in A.

Figure 6.9: Configuration 2 - Episodic reward during training

This led to several changes either in the visualization either in the analysis of

62

6.3 – Safety Gym - Configuration 2

the results: reward during training is heavily penalized by the reward shaping (Fig.
6.9). A clearer representation of agent performance is the success percentage during
evaluation, consisting in the ratio between targets reached upon total targets of
the epoch: each evaluation epoch consist in five episodes (terminating when the
target is reached or after 1000 steps), hence five possibility to catch the target; if
the agent catches 4 targets, its success percentage is of 4

5 = 80% (e.g. Fig. 6.14, Fig.
6.16, Fig. 6.18). Furthermore, it can be useful to visualize violations happened
during evaluation episodes too, to understand how the retention of the SL and the
reward shaping impact on the safety performances of the learned policy.

Three algorithms will be compared in the followings:

• NO SL: DDPG without Safety Layer

• SL: DDPG with optimal Safety Layer

• SL + reward shaping: DDPG with optimal Safety Layer and reward shaping

Figure 6.10: Configuration 2 - Average episodic violations of constraints during
evaluation

Starting from the episodic violations during evaluation, in Fig. 6.10 it can be
seen that unsafe DDPG performs a rather constant number of violations for each
episode, while the SL algorithm has a more oscillating trend, that varies from zero
to a large number of violations. This behaviour confirms the observation previously
done about the agent getting stuck on the edges of the obstacle, that leads to an

63

Results

increase of violations for that episode. As a last observation, the average of SL and
NO SL algorithm episodic violations is similar. Looking instead to the upgraded
version of SL algorithm, it can be observed that it is equal to zero always except
for just a few occasions, testifying the capability of the SL to keep the agent far
from dangers.

Figure 6.11: Configuration 2 - Average episodic violation rate during evaluation

In Fig. 6.11 a magnitude of the violations executed is reported, representing how
heavily the agent invaded the hazardous areas. It is evident that, when applying
the SL, this rate hugely decreases, validating the hypothesis that the violations are
performed mostly on the borders of the obstacles (i.e. the agent is trapped and
keeps turning on itself to get free, occasionally violating the constraints); moreover,
the violations with SL and reward shaping are even lighter.

Focusing now on the training part, it can be seen in Fig. 6.12 that a massive
decrease of violations during training is obtained when using SL + reward shaping,
indeed in some cases a safe exploration with no violations has been achieved. This
behaviour is testified by Fig. 6.13, where the episodic violations is represented and
that shows no initial spikes in none of the following stages:

• SL pre-training: no spike during this early phase, meaning that the SL
neural network can be optimized even with a random policy and without the
need of performing violations to know the environment

• DDPG training: no spike, confirming that the agent do not need to violate
the constraints to recognize dangerous states

64

6.3 – Safety Gym - Configuration 2

Figure 6.12: Configuration 2 - Cumulative violations of constraint during training

Figure 6.13: Configuration 2 - Episodic violations of constraints during training

At this point, it may be useful to concentrate on the task success, with the
purpose to understand if the improvements in terms of safety are followed by actor
performances at least as valid as the ones of the original algorithm.

65

Results

Figure 6.14: Configuration 2 - Average episodic task success rate during evaluation

In Fig. 6.14 it can be seen that unsafe DDPG quickly achieves 100% task success,
while original SL and upgraded SL algorithms struggle, not overtaking an average
of 55 − 60% of success. Although this could seem an unacceptable loss, it must
be noted that, for the configuration of the environment, it is impossible to avoid
some decreasing of the performances. As already explained, the introduction of
obstacles modifies the structure of the task, causing the lengthen of trajectories to
get to the target, that sometimes cannot be reached in the time of an episode. For
this reason, a task success of more than 50% is considered satisfactory, especially
in light of the improvements obtained on the safety side.

Taking into account the previous considerations, it has been chosen to apply
reward shaping for the followings experiments, with the purpose of validate the im-
provements found and explore more strategies to enhance further the performances.

Transition to sparse reward In order to amplify the effect of the penalty
provided by the reward shaping and therefore to encourage the agent in learning a
safer policy, some experiments have been performed with sparse reward instead
of the dense one. In this configuration, the agent gains a huge reward only when
reaching the target (+1000), obtaining instead a penalty each times it uses the SL
(−0.1). Looking at the episodic violations, reported in Fig. 6.15, it can be seen
that the safest configuration is the one with the dense reward.

Looking at the task success, the loss of safety is not justified by an improvement
in agent performances: Fig. 6.16 shows clearly that the best policy is the one

66

6.3 – Safety Gym - Configuration 2

obtained with dense reward.

Figure 6.15: Dense vs Sparse reward - Average episodic violations of constraints
during evaluation

Figure 6.16: Dense vs Sparse reward - Average episodic task success rate during
evaluation

67

Results

Final comparison To assert the reliability of the improvements obtained by
using reward shaping with SL, a final comparison have been done.

Figure 6.17: Configuration 2 - Average episodic violations of constraint during
evaluation

Figure 6.18: Configuration 2 - Average episodic task success rate during evaluation

68

6.3 – Safety Gym - Configuration 2

The model of the best performing SL has been used, without any further training,
with and without reward shaping in the optical of having a definitive confrontation
between the two alternatives.

In Fig. 6.17 it can be noted the superiority of the algorithm with reward shaping
in terms of safety performances, especially in the early stages. Even if an increase
of violations can be found later during the training phase, it should be observed
in Fig. 6.18 that the learning process could be stopped earlier, since the task is
learned long before, already after a million of steps. The same graph also shows
that the two algorithms reach a similar satisfactory level in terms of task success.

69

70

Chapter 7

Conclusions

The purpose of this work was to find an algorithm that succeeded in:

• performing a safe exploration of the environment during training

• deploying of a safe policy

• learning of a satisfactory policy in terms of task success

To introduce the topic to the reader, a brief presentation of Artificial Intelligence and
Reinforcement Learning technique has been provided. After that, the peculiarities
of Safe Reinforcement Learning have been treated more in depth, followed by the
presentation of the environments and algorithms implemented for the experiments.

The chosen algorithm is called Safety Layer and consists in inserting a correction
layer that modifies the dangerous action outputted by the policy into a safe one.
To do so, the SL utilizes a neural network to obtain an approximation of the cost
function that is linear with respect to the action; the same neural network (g(s)) is
used in the correction process previously explained.

Although the selected algorithm performs well in environments where the optimal
policy is implicitly safe (CartPole Continuous), several issues have been found when
developing it in a non-convex environment (Safety Gym). The main problems are
the followings:

• learning of unsafe policy without Safety Layer

• learning of a sub-optimal policy

• scarce dependency of the Safety Layer neural network on the current state

• Safety Layer providing not feasible actions

71

Conclusions

While for the last two issues no practical solutions have been found, and the second
has been classified as an unavoidable consequence of inserting obstacles in the
environment, strong improvements have been obtained for the first and most severe
problem.

The addition of reward shaping and the retention of the SL as a concrete feature
of the policy proved to be a successful strategy in the solution of the issue arose. A
significantly safer exploration has been achieved during training, with a massive
reduction of violations of constraints. This can be explained considering that the SL
protects efficiently the agent in nominal situations, but struggles when it gets stuck
on the edges of the obstacles and does not provide any danger knowledge, since it
is not explicitly involved into the policy optimization process. Adding a penalty for
every time that the SL is called has the effect of discourage the agent in visiting
dangerous states (that are the ones in which the SL acts with correction), reducing
the time spent close to the borders of the obstacles and therefore leading to a
strong improvement of safety. Looking at the same time at the reward obtained,
it can be seen that there is no unacceptable loss in performances, since the task
success percentage is the same as when not using the reward shaping.

Taking into account the previous considerations, it can be stated that adding
reward shaping at the original SL algorithm, a significantly safer exploration of
the environment can be achieved, while not having a severe deterioration of agent
performances.

7.1 Future Work
Although satisfactory results in terms of safe exploration have been achieved, further
improvements may be sought in future work. Some suggestions about strategies to
be investigated are the followings:

• use of recurrent neural networks for the policy, in order to provide sort of a
long short memory during the training and help the agent to gain more safety
knowledge

• to investigate the possibility of a Safety Layer dependent on policy parameters,
in the context of finding a g(s, θµ) network that leads to corrections compatible
with the agent (not exceeding the range [-1,1]); an idea could be to have first
layers in common between Safety Layer and policy networks

• to improve data collection process during pre-training of the Safety Layer, in
order to enhance the efficiency of sample usage in this phase

72

Acknowledgements

In the course of the development of this Thesis, I had the chance to meet and
be constantly in touch with AddFor team. I want to thank Ing. Enrico Busto,
who gave me the opportunity to work in his Company and has always been open
and available for me, even for the most unexpected requests. I want to thank
Sonia Cannavò, that treated me like a friend and reassured me in some particular
moments. Most of all, I want to thank Andrea Lonza, that helped me from the
very beginning of this work to the last written line, the last experiment performed,
the last video-call with my broken webcam and TensorBoard acting crazy. Thank
you for having given to me such a great possibility to work on this fascinating field.

I want to thank Professoressa Manuela Battipede, who put me in contact with
AddFor, allowing this great experience, and has always guided me in these months
of hard work.

I want to thank Nicola, who helped me reach the end of this project in so many
ways, also the very pragmatical ones.

I want to say thank you to my family, that during these hard times has always
managed to be close to me even when far, even when DPCM and pandemic
separated us, even when a video-call was all we had to share.

Last but not least, I need to thank my friends, the ones I know since my first
breath and that support me since my first step, my first problem, my first exam,
my first thesis, my first work. Thank you for being there since the first "first" of
my life.

Finally, to all the people I got to know in the crazy worldwide adventures of the
last five years,

grazie, gracias, thank you, danke, ačiū, obrigada.

Appendix A

Pseudo-codes

Algorithm 5 Safety Layer neural network pre-training
1: Initialize parameters w of g(s; w) (Eq. 4.3), a random policy µ(s), a replay

buffer D
2: while episode < N do
3: s← s0 ó Reset environment state
4: c← c0 ó Reset environment cost
5: t← 0 ó Timestep set to 0
6: while t < Tmax and not done do
7: Select action at = µ(s)
8: Execute action at and observe new state st+1 and new cost ct+1
9: Store transition (st, at, ct, ct+1) in D

10: t← t + 1 ó Update timestep
11: end while
12: episode← episode + 1 ó Update episode
13: end while
14: epoch← 0 ó Epoch set to 0
15: while epoch < M do
16: Sample batch from D
17: for element in batch do
18: Calculate cpred = ct + g(st; w)Ûat (Eq. 4.4)
19: Calculate loss = ||ct+1 − cpred)||2
20: end for
21: Update parameters w of g(s; w)
22: epoch← epoch + 1 ó Update epoch
23: end while
24: return g(s; w) ó Optimized SL approximator is returned

1

Pseudo-codes

Algorithm 6 Deep Deterministic Policy Gradient with Safety Layer
function Safety Layer pre-training

2: return g(s; w) ó see Alg. 5
end function

4: Initialize policy parameters θ, Q-function parameters φ,empty replay buffer R
θtarg ← θ, φtarg ← φ ó Target parameters equal to main ones

6: while episode < N do
s← s0 ó Reset environment state

8: c← c0 ó Reset environment cost
Initialize random process N ó For action exploration

10: t← 0 ó Timestep set to 0
while t < Tmax and not done do

12: Select action at = clip(µθ(s) +Nt, alow, ahigh)
if c̄(s) + g(s; w)Ûat(s) Ci then ó Action at is not safe (Eq. 4.5)

14: λ∗
i∗ =

g(s;wi∗)Ûµθ(s)+c̄i(s)−Ci
g(s;wi∗)(s;wi∗)

+

ó Eq: 4.6b

i∗ = argmax
i

λ∗
i∗ ó Eq: 4.6c

16: at = µθ(s)− λ∗
i∗g(s; wi∗) ó Correct the action (Eq: 4.6a)

end if
18: Execute action at and observe st+1, ct+1 and d done signal

Store transition (st, at, rt, st+1) in R
20: st ← st+1

ct ← ct+1
22: if time to update then

for m=1,M do
24: Sample a random minibatch from R

yt = rt + γ(1− d)Qφtarg(st+1, µθtarg(st+1))
26: ó Target network used for target estimation

Update Qφ using ó Stochastic Gradient Descent
28: ∇φ

1
|B|

q
(s,a,r,sÍ)∈B(Qφ(s, a)− yt)2

Update µθ using ó Stochastic Gradient Descent
30: ∇θ

1
|B|

q
(s)∈B Qφ(s, µθ(s))

φtarg ← ρφtarg + (1− ρ)φ
32: θtarg ← ρθtarg + (1− ρ)θ

end for
34: end if ó Update target networks

t← t + 1
36: end while

episode← episode + 1
38: end while

2

Pseudo-codes

Algorithm 7 DDPG with Safety Layer and reward shaping
function Safety Layer pre-training

2: return g(s; w) ó see Alg. 5
end function

4: Initialize policy parameters θ, Q-function parameters φ,empty replay buffer R
θtarg ← θ, φtarg ← φ ó Target parameters equal to main ones

6: while episode < N do
s, c← s0, c0 ó Reset environment state and cost

8: Initialize random process N ó For action exploration
t← 0 ó Timestep set to 0

10: while t < Tmax and not done do
Select action at = clip(µθ(s) +Nt, alow, ahigh)

12: if c̄(s) + g(s; w)Ûat(s) Ci then ó Action at is not safe (Eq. 4.5)

λ∗
i∗ =

g(s;wi∗)Ûµθ(s)+c̄i(s)−Ci
g(s;wi∗)(s;wi∗)

+

ó Eq: 4.6b

14: i∗ = argmax
i

λ∗
i∗ ó Eq: 4.6c

at = µθ(s)− λ∗
i∗g(s; wi∗) ó Correct the action (Eq: 4.6a)

16: end if
Execute action at and observe st+1, ct+1 and d done signal

18: if λ∗
i∗ > 0 then
rt ← rt − penalty ó Reward shaping

20: end if
Store transition (st, at, rt, st+1) in R

22: st, ct ← st+1, ct+1
if time to update then

24: for m=1,M do
Sample a random minibatch from R

26: yt = rt + γ(1− d)Qφtarg(st+1, µθtarg(st+1))
Update Qφ using ó Stochastic Gradient Descent

28: ∇φ
1

|B|
q

(s,a,r,sÍ)∈B(Qφ(s, a)− yt)2

Update µθ using ó Stochastic Gradient Descent
30: ∇θ

1
|B|

q
(s)∈B Qφ(s, µθ(s))

φtarg ← ρφtarg + (1− ρ)φ
32: θtarg ← ρθtarg + (1− ρ)θ

end for
34: end if ó Update target networks

t← t + 1
36: end while

episode← episode + 1
38: end while

3

4

Bibliography

[1] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957 (cit. on p. 2).

[2] Massimiliano Patacchiola. Dissecting Reinforcement Learning. url: https:
//mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforceme
nt-learning.html. 2016 (cit. on p. 2).

[3] Wikipedia contributors. Decision-making — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Decision- making&
oldid=1012387521. [Online; accessed 17-March-2021]. 2021 (cit. on p. 3).

[4] David Silver. Lectures on Reinforcement Learning. url: https://www.david
silver.uk/teaching/. 2015 (cit. on pp. 9, 11, 15, 16).

[5] Stuart Russell and Peter Norvig. «Artificial intelligence: a modern approach».
In: (2002) (cit. on p. 15).

[6] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge, 1998 (cit. on p. 17).

[7] Mayank Agarwal. Back Propagation in Convolutional Neural Networks —
Intuition and Code. url: https://becominghuman.ai/back-propagation-
in-convolutional-neural-networks-intuition-and-code-714ef1c381
99. 2017 (cit. on p. 21).

[8] Frederik Kratzert. Understanding the backward pass through Batch Normal-
ization Layer. url: https://kratzert.github.io/2016/02/12/unde
rstanding- the- gradient- flow- through- the- batch- normalization-
layer.html. 2016 (cit. on p. 21).

[9] George E Uhlenbeck and Leonard S Ornstein. «On the theory of the Brownian
motion». In: Physical review 36.5 (1930), p. 823 (cit. on p. 27).

[10] Javier Garcıa and Fernando Fernández. «A comprehensive survey on safe
reinforcement learning». In: Journal of Machine Learning Research 16.1
(2015), pp. 1437–1480 (cit. on pp. 30, 32).

5

https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html
https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html
https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html
https://en.wikipedia.org/w/index.php?title=Decision-making&oldid=1012387521
https://en.wikipedia.org/w/index.php?title=Decision-making&oldid=1012387521
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

BIBLIOGRAPHY

[11] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. «Constrained
policy optimization». In: International Conference on Machine Learning.
PMLR. 2017, pp. 22–31 (cit. on p. 32).

[12] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin
Paduraru, and Yuval Tassa. «Safe exploration in continuous action spaces».
In: arXiv preprint arXiv:1801.08757 (2018) (cit. on pp. 33, 35–40, 52).

[13] Brandon Amos and J Zico Kolter. «Optnet: Differentiable optimization as a
layer in neural networks». In: International Conference on Machine Learning.
PMLR. 2017, pp. 136–145 (cit. on p. 36).

[14] Alex Ray, Joshua Achiam, and Dario Amodei. «Benchmarking Safe Explo-
ration in Deep Reinforcement Learning». In: (2019) (cit. on p. 39).

[15] Andrew G Barto, Richard S Sutton, and Charles W Anderson. «Neuronlike
adaptive elements that can solve difficult learning control problems». In:
IEEE transactions on systems, man, and cybernetics 5 (1983), pp. 834–846
(cit. on pp. 39, 40).

[16] Ian Danforth. CartPole Continuous code. url: https://gist.github.com/
iandanforth/e3ffb67cf3623153e968f2afdfb01dc8. 2018 (cit. on p. 40).

6

https://gist.github.com/iandanforth/e3ffb67cf3623153e968f2afdfb01dc8
https://gist.github.com/iandanforth/e3ffb67cf3623153e968f2afdfb01dc8

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Pigmalione and his offspring
	What about Reinforcement Learning?

	Reinforcement Learning Problem
	Basics
	Environment
	Agent
	Reward
	Value Function
	Policy

	Markov Decision Processes
	Bellman Equation

	Dynamic Programming
	Value Iteration
	Policy Iteration

	Model-free Prediction and Control
	Prediction
	Control

	Deep Reinforcement Learning
	Neural Networks
	Value-based Algorithms
	Deep Q-Network

	Policy-based Algorithms
	REINFORCE

	Actor-Critic Algorithms
	Deep Deterministic Policy Gradient

	Safe Reinforcement Learning
	Basics
	State of the Art
	Constrained Criterion
	Risk-directed Exploration

	Safety Layer
	Safety Layer approximation
	Safety Layer pre-training
	Action correction during training
	Implementation and results

	Implementation
	Environments
	CartPole Continuous
	Safety Gym

	Algorithm baseline structure

	Results
	CartPole Continuous
	Safety Gym - Configuration 1
	Safety Gym - Configuration 2
	Scarce dependency of the SL upon the current state
	Learning of unsafe policy

	Conclusions
	Future Work

	Pseudo-codes
	Bibliography

