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Abstract 

The flow field in an experimentally tested supersonic inlet operating at off-design 

conditions was investigated numerically, with particular attention to the near-critical 

and subcritical regimes. Simulations were performed exploiting a research CFD 

code based on an unstructured finite volumes discretisation scheme and on the 

Unsteady-RANS equations approach. The Spalart-Allmaras turbulence model was 

used for closure. The computed results were validated against the experimental 

findings and compared with other numerical solutions available in the literature. 

Keywords: CFD; validation process; finite volumes method; RANS equations; 

Spalart-Allmaras; supersonic inlet. 
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1. Introduction 

Computational Fluid Dynamics (CFD) is the branch of fluid dynamics that aims to solve 

the governing equations which describe the behaviour of fluids by means of numerical 

methodologies, exploiting high-performance computers. It represents an extremely 

powerful tool, capable of providing accurate and reliable descriptions of numerous 

physical phenomena, as well as dealing with complex geometrical configurations: for 

these reasons, CFD is nowadays employed in a large variety of research fields, such 

as aircraft aerodynamics, marine engineering, turbomachinery and meteorology. It 

constitutes a valid alternative to experimental studies: indeed, numerical simulations 

allow to analyse systems where experiments are difficult or even impossible to perform, 

also offering exceptionally detailed results. Furthermore, computational approaches are 

often more economical than experimental-based techniques, in terms of both time and 

costs, thus being particularly advantageous in many practical applications. 

However, before being available for use, CFD solvers must undergo a validation 

process: considering a particular test case, the computed results must be compared to 

those of one or more experiments performed on the same problem in order to 

determine the validity and accuracy of the obtained solution. This process is of 

fundamental importance, since the implementation of numerical strategies for the 

resolution of the governing equations inevitably introduces approximation errors that 

may lead to unreliable results if several possible computational issues are not properly 

tackled. 

The aim of the present work is to conduct a numerical analysis of a supersonic air flow 

entering the axisymmetric external compression inlet model from Nagashima et al.’s 

experimental work [1] operating at near-critical and subcritical conditions, with the 

purpose of validating a research CFD code. Particular attention will be given to buzz, 

an oscillatory phenomenon which represents a serious danger to the engine. 

The dissertation is organised as follows: in Chapter 2, several fundamental concepts 

regarding the aerodynamics of supersonic inlets are presented, and the buzz 

phenomenon is described in detail; in Chapter 3, the numerical schemes by which the 

governing equations of fluid dynamics have been discretised are discussed together 

with grid generation, initial and boundary conditions determination and turbulence 

modelling; the principal results of the CFD simulations are thoroughly examined and 

compared with the experimental findings as well as with other computational solutions 

in Chapter 4; lastly, conclusions and future perspectives are presented in Chapter 5. 
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2. Supersonic inlets 

Inlet aerodynamics has been studied with growing interest since World War II. Several 

authors have since then attempted to write comprehensive textbooks on this complex 

subject, and the reader is referred in particular to the works by Seddon et al. [2] and 

Mattingly et al. [3] for a detailed treatment of the numerous aspects concerning the 

design of an inlet from both a theoretical and practical perspective. 

In this research, we will focus on only one specific category of inlets, that is supersonic 

inlets, which are intended to operate within a wide range of flight conditions 

characterised by free-stream Mach number values greater than 1. In the following, we 

will first recall the definitions of the fundamental parameters by which the performance 

of an inlet is assessed; then, several basic concepts regarding the different types of 

supersonic inlets will be presented, and the physical phenomena that occur under 

various operating scenarios will be described.  

2.1. Performance parameters 

The performance of a supersonic inlet is determined by three main parameters: total 

pressure ratio (ηd), mass-flow - or capture-area - ratio (ϕd) and inlet drag (D). The 

overall efficiency and usefulness of any inlet must be evaluated by considering all 

these characteristics simultaneously, as the improvement in one of them is often 

obtained at the expense of the others: compromises are therefore needed in the design 

process. Furthermore, rapid deterioration of these parameters during off-design 

operations must be avoided in order to preserve engine function under varying flight 

conditions. 

i. Total pressure ratio 

The total pressure ratio is defined as: 

𝜂ௗ =
𝑝௫௧



𝑝
      (2.1) 

where p0
exit is the total pressure at the exit of the inlet and p0

0 is the free-stream total 

pressure. It is influenced by the shock and viscous losses generated by the interaction 

between the flow and the inlet’s walls, and its values are always lower than 1. 

ii. Mass-flow ratio 

The mass-flow ratio is defined as: 



 

where ṁ is the mass-flow rate that effectively enters the inlet and 

mass-flow rate that could enter the inlet. As represented in Figure 2.1, 

seen as the mass-flow rate associated with the entering stream tube of

area A0, whereas ṁid can be defined as the mass

sectional area Ai of the inlet’s entrance. 

 

 

 

 

 

 

The mass-flow ratio can therefore be re

continuity equation: 

The condition: 

implies that there is no flow spillage, i.e. that the entering stream tube’s cross

area is equal to the cross-sectional area of the entrance.

iii. Inlet drag 

The total drag of the inlet can be defined as the sum of several components, namely 

the wave drag (Dw), the skin friction drag (

The first two contributions are sometimes identified as cowl drag, since it is the 

interaction between the flow and the cowl that gives rise to shock waves and boundary 

layers. 

Figure 2.1. Comparison between the cross
stream tube and the 
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flow rate that effectively enters the inlet and ṁid 

flow rate that could enter the inlet. As represented in Figure 2.1, 

flow rate associated with the entering stream tube of

can be defined as the mass-flow rate associated with the cross

of the inlet’s entrance.  

flow ratio can therefore be re-written as a capture-area ratio, using the 

𝜙ௗ =
�̇�

�̇�ௗ
=

𝜌𝑉𝐴

 𝜌𝑉𝐴
=

𝐴

𝐴
     (2.3) 

𝜙ௗ = 1     (2.4) 

is no flow spillage, i.e. that the entering stream tube’s cross

sectional area of the entrance. 

The total drag of the inlet can be defined as the sum of several components, namely 

skin friction drag (Df) and the additive drag (Da):

𝐷 = 𝐷௪ + 𝐷 + 𝐷     (2.5) 

The first two contributions are sometimes identified as cowl drag, since it is the 

interaction between the flow and the cowl that gives rise to shock waves and boundary 

Figure 2.1. Comparison between the cross-sectional area of the entering 
stream tube and the cross-sectional area of the inlet’s entrance 

 is the maximum 

flow rate that could enter the inlet. As represented in Figure 2.1, ṁ can also be 

flow rate associated with the entering stream tube of cross-sectional 

flow rate associated with the cross-

area ratio, using the 

is no flow spillage, i.e. that the entering stream tube’s cross-sectional 

The total drag of the inlet can be defined as the sum of several components, namely 

): 

The first two contributions are sometimes identified as cowl drag, since it is the 

interaction between the flow and the cowl that gives rise to shock waves and boundary 

sectional area of the entering 
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The third component, on the other hand, is directly linked to spillage and accounts for a 

large part of the total inlet drag when external strong shocks are present. Additive drag 

is defined as the difference between the stream force at the inlet’s entrance and the 

stream force associated with the free-stream flow, and is often expressed in its non-

dimensional form: 

𝐷෩ ≜
𝐷

𝑝𝐴
=

𝑝

𝑝
൫1 + 𝛾𝑀

ଶ൯ − 1 − 𝜙ௗ𝛾𝑀
ଶ     (2.6) 

where Ai is the cross-sectional area of the inlet’s entrance, p0 is the free-stream static 

pressure, pi is the static pressure at the inlet’s entrance, M0 is the free-stream Mach 

number, Mi is the Mach number of the flow at the inlet’s entrance, ϕd is the mass-flow 

ratio and γ is the ratio of specific heats. It is important to notice that, in the absence of 

flow spillage, the additive drag is null. 

Minimising total drag is one of the principal project requirements. 

iv. Other design variables 

Alongside these three main characteristics, there are other factors that may have an 

influence on the inlet’s performance. 

One of them is flow distortion, which indicates an uneven pressure distribution over the 

inlet’s exit area that produces low burning efficiency, even for high total pressure ratios, 

and can in some cases lead to engine flameout: determining its magnitude is therefore 

important, especially for high values of angle of attack. 

The presence of control systems, such as boundary layer bleed and bypass, has to be 

considered as well. 

The location of the inlet on the wing or fuselage, the aircraft attitude and possible noise 

suppression requirements represent further design variables. 

2.2. Internal compression inlets 

Supersonic inlets are commonly classified into three different types - internal, external 

and mixed compression - depending on the location of the compression waves system. 

Internal compression inlets consist of a simple convergent-divergent duct: the incoming 

flow is compressed by means of multiple oblique shock waves followed by a normal 

shock, located in a stable position downstream of the throat during normal operation 

(Figure 2.2). 



 

 

 

 

 

 

 

Despite its elementary design, the usefulness of this type of sup

by several problems that arise when it faces off

flight Mach number (M) is greater than 1, but less than the normal operation value, a 

normal shock appears ahead of the cowl lip (Figure 2.3): the inlet is said to be 

unstarted. In this situation, the total pressure ratio and the mass

thus possibly causing engine flameout, while additive drag substantially increases. In 

order to start the inlet, a variation of the throat’s cross

area is made large enough for the normal shock to reach the inlet’s entrance, the 

normal operation conditions can be restored.

The need for large area variations, together with the poor performance at angles of 

attack, have led to the demise of internal compression inlets, which nowadays are 

mostly of academic interest.

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Compression waves system for an internal compression inlet 

Figure 2.3. 
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Despite its elementary design, the usefulness of this type of supersonic inlet is limited 

by several problems that arise when it faces off-design operating conditions. When the 

) is greater than 1, but less than the normal operation value, a 

normal shock appears ahead of the cowl lip (Figure 2.3): the inlet is said to be 

. In this situation, the total pressure ratio and the mass-flow ratio decrease, 

engine flameout, while additive drag substantially increases. In 

the inlet, a variation of the throat’s cross-sectional area is needed: if this 

area is made large enough for the normal shock to reach the inlet’s entrance, the 

on conditions can be restored. 

The need for large area variations, together with the poor performance at angles of 

attack, have led to the demise of internal compression inlets, which nowadays are 

mostly of academic interest. 

Figure 2.2. Compression waves system for an internal compression inlet 
during normal operation 

Figure 2.3. Unstarted internal compression inlet 

ersonic inlet is limited 

design operating conditions. When the 

) is greater than 1, but less than the normal operation value, a 

normal shock appears ahead of the cowl lip (Figure 2.3): the inlet is said to be 

flow ratio decrease, 

engine flameout, while additive drag substantially increases. In 

sectional area is needed: if this 

area is made large enough for the normal shock to reach the inlet’s entrance, the 

The need for large area variations, together with the poor performance at angles of 

attack, have led to the demise of internal compression inlets, which nowadays are 

Figure 2.2. Compression waves system for an internal compression inlet 



 

2.3. External compression inlets

External compression inlets achieve compression through either a single normal shock 

or a series of oblique shocks followed by a normal shock.

Inlets of the first type are called 

lightweight and inexpensive. Their total pressure ratio is equal to the value associated 

with the normal shock, and therefore depends solely on the free

as M increases, ηd decreases, and

parameter becomes too low, rendering Pitot inlets inefficient.

 

 

 

 

 

 

 

 

Inlets of the second type are somewhat more complex: as shown in Figure 2.5, they 

are composed of a cowl, a 

a diffuser. The ramps precede the inlet’s entrance, which often corresponds to the 

throat, and generate the oblique shocks. On

located at or very near the co

 

By compressing the flow through a series of weak oblique shocks followed by a normal 

shock instead of exploiting a single norm

Figure 2.5. External compression inlet at critical operation
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2.3. External compression inlets 

External compression inlets achieve compression through either a single normal shock 

or a series of oblique shocks followed by a normal shock. 

Inlets of the first type are called Pitot inlets (Figure 2.4), and are simple, short, 

lightweight and inexpensive. Their total pressure ratio is equal to the value associated 

with the normal shock, and therefore depends solely on the free-stream Mach number: 

decreases, and for Mach numbers above 1.6 this performance 

parameter becomes too low, rendering Pitot inlets inefficient. 

Inlets of the second type are somewhat more complex: as shown in Figure 2.5, they 

, a center body, on which one or more ramps are present, and 

. The ramps precede the inlet’s entrance, which often corresponds to the 

throat, and generate the oblique shocks. On-design operation is with the normal shock 

located at or very near the cowl lip: this scenario is also referred to as critical operation

By compressing the flow through a series of weak oblique shocks followed by a normal 

shock instead of exploiting a single normal shock, the total pressure ratio is increased 

Figure 2.4. Pitot inlet 

Figure 2.5. External compression inlet at critical operation 

External compression inlets achieve compression through either a single normal shock 

(Figure 2.4), and are simple, short, 

lightweight and inexpensive. Their total pressure ratio is equal to the value associated 

stream Mach number: 

for Mach numbers above 1.6 this performance 

Inlets of the second type are somewhat more complex: as shown in Figure 2.5, they 

, on which one or more ramps are present, and 

. The ramps precede the inlet’s entrance, which often corresponds to the 

design operation is with the normal shock 

critical operation. 

By compressing the flow through a series of weak oblique shocks followed by a normal 

al shock, the total pressure ratio is increased 



 

for the same free-stream Mach number (Figure 2.6). Nevertheless, due to the presence 

of the ramps, the flow is deviated from the axial direction, which has to be restored by 

the diffuser: this may lead to ad

 

 

 

 

 

 

 

 

 

The total pressure ratio for the generic external compression inlet of the second type 

can be evaluated using the well

pressure variation across a normal shock is calculated as follow

𝑝ଶ


𝑝ଵ
 = 1 +

2

𝛾

where p1
0 is the total pressure upstream of the shock, 

downstream of the shock, 

specific heats. Downstream 

Expressions (2.7) and (2.8) are formally identical for the case of an oblique shock, but 

upstream and downstream Mach numbers have to be substituted by 

numbers, defined as: 

Figure 2.6. Total pressure ratio as a function of free
inlet with one or more oblique shocks of the same strength (curve 0 is representative 
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stream Mach number (Figure 2.6). Nevertheless, due to the presence 

of the ramps, the flow is deviated from the axial direction, which has to be restored by 

the diffuser: this may lead to additional length, weight and friction and pressure losses.

The total pressure ratio for the generic external compression inlet of the second type 

can be evaluated using the well-known relations for normal and oblique shocks. Total 

pressure variation across a normal shock is calculated as follows: 

2𝛾

+ 1
(𝑀ଵ

ଶ − 1)൨

ଵ
ఊିଵ

∙ ቈ
(𝛾 + 1)𝑀ଵ

ଶ

(𝛾 − 1)𝑀ଵ
ଶ + 2



ఊ
ఊିଵ

     (2.7

is the total pressure upstream of the shock, p2
0 is the total pressure 

downstream of the shock, M1 is the upstream Mach number and γ

Downstream Mach number (M2) is determined by the relation:

𝑀ଶ = ඩ
1 + ቀ

𝛾 − 1
2

ቁ 𝑀ଵ
ଶ

𝛾𝑀ଵ
ଶ −

𝛾 − 1
2

      (2.8) 

Expressions (2.7) and (2.8) are formally identical for the case of an oblique shock, but 

upstream and downstream Mach numbers have to be substituted by 

𝑀ଵ = 𝑀ଵ sin(𝛽)     (2.9𝑎) 

𝑀ଶ = 𝑀ଶ sin(𝛽 − 𝜗)     (2.9𝑏) 

Figure 2.6. Total pressure ratio as a function of free-stream Mach number for an external compression 
inlet with one or more oblique shocks of the same strength (curve 0 is representative of a Pitot inlet)

stream Mach number (Figure 2.6). Nevertheless, due to the presence 

of the ramps, the flow is deviated from the axial direction, which has to be restored by 

ditional length, weight and friction and pressure losses. 

The total pressure ratio for the generic external compression inlet of the second type 

known relations for normal and oblique shocks. Total 

7) 

is the total pressure 

γ is the ratio of 

) is determined by the relation: 

Expressions (2.7) and (2.8) are formally identical for the case of an oblique shock, but 

upstream and downstream Mach numbers have to be substituted by normal Mach 

stream Mach number for an external compression 
of a Pitot inlet) 



 

where β is the angle of deflection of the shock with respect to the upstream flow 

direction and ϑ is the ramp angle (Figure 2.7).

 

 

 

 

 

 

Upstream Mach number (M

Mach relation: 

tan(𝜗)

which is usually plotted as a diagram (Figure 2.8): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Generic oblique shock 
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is the angle of deflection of the shock with respect to the upstream flow 

is the ramp angle (Figure 2.7). 

M1), β and ϑ are linked together by the so-called 

( ) =
2

tan(𝛽)
ቈ

𝑀ଵ
ଶ(sin(β))ଶ − 1

𝑀ଵ
ଶ(𝛾 + cos(2𝛽)) + 2

     (2.10) 

which is usually plotted as a diagram (Figure 2.8): [4] 

Figure 2.7. Generic oblique shock configuration 

Figure 2.8. ϑ-β-M diagram [4] 

is the angle of deflection of the shock with respect to the upstream flow 

called theta-beta-



 

It can be seen from Figure 2.8 that, for a fixed upstream Mach number value,

beta-Mach function has two zeros:

𝜗

The first zero corresponds to the case of a normal shock, while the second zero 

indicates an isentropic compression (

function has a maximum value (

this implies that, at a given 

angles only, whereas for ϑ 

The total pressure ratio of the inlet is finally calculated as the product of the total 

pressure variations across the different shocks:

As explained before, critical operation of the 

located at or very near the cowl lip (Figure 2.5): in this situation, the mass

reaches its peak, and the inlet is 

that, in the majority of cases, inle

touch the cowl lip at critical conditions, with the aim of avoiding shock

interactions: consequently, flow spillage is not null, as shown in Figure 2.9.

 

At a given flight Mach number, changes in engine throttle lead to off

conditions. Engine throttle variations correspond to variations in the 

flow rate, which is a function of the inlet’s exit Mach number (

Figure 2.9. External 
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It can be seen from Figure 2.8 that, for a fixed upstream Mach number value,

Mach function has two zeros: 

𝜗 = 0 → 𝛽 =
𝜋

2
     (2.11𝑎) 

𝜗 = 0 → 𝛽 = arcsin ൬
1

𝑀ଵ
൰     (2.11𝑏) 

The first zero corresponds to the case of a normal shock, while the second zero 

indicates an isentropic compression (Mach wave). It must be also noticed t

function has a maximum value (ϑmax) that changes with the upstream Mach number: 

this implies that, at a given M1, oblique shock solutions exist for a certain range of ramp 

 greater than ϑmax only detached shocks can be created.

The total pressure ratio of the inlet is finally calculated as the product of the total 

pressure variations across the different shocks: 

𝜂ௗ,௧௧ = ෑ 𝜂ௗ,



     (2.12) 

As explained before, critical operation of the inlet is achieved when the normal shock is 

located at or very near the cowl lip (Figure 2.5): in this situation, the mass

reaches its peak, and the inlet is matched to the engine. However, it must be observed 

that, in the majority of cases, inlets are designed in order for the oblique shocks not to 

touch the cowl lip at critical conditions, with the aim of avoiding shock

interactions: consequently, flow spillage is not null, as shown in Figure 2.9.

At a given flight Mach number, changes in engine throttle lead to off-design operating 

conditions. Engine throttle variations correspond to variations in the corrected

unction of the inlet’s exit Mach number (Mexit

Figure 2.9. External compression inlet at critical operation with flow spillage

It can be seen from Figure 2.8 that, for a fixed upstream Mach number value, the theta-

The first zero corresponds to the case of a normal shock, while the second zero 

). It must be also noticed that this 

) that changes with the upstream Mach number: 

, oblique shock solutions exist for a certain range of ramp 

only detached shocks can be created. 

The total pressure ratio of the inlet is finally calculated as the product of the total 

inlet is achieved when the normal shock is 

located at or very near the cowl lip (Figure 2.5): in this situation, the mass-flow ratio 

to the engine. However, it must be observed 

ts are designed in order for the oblique shocks not to 
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If the free-stream Mach number changes during flight, the strength of the shock system 

and the inclination of the oblique shocks with respect to the axial direction are modified, 

thus varying both the total pressure and mass

Figure 2.12 is translated. When in particular the free
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Cowl drag is increased as well in this situation, and the perfo

compression inlet of the second type becomes unacceptable for flight Mach numbers 

above 2.5. Moreover, since the characteristics of the entering flow vary with both 

engine throttle settings and free

sometimes needed in order to enhance the performance, and a higher degree of 

design complexity is therefore required.

2.4. Mixed compression inlets

At flight Mach numbers greater than 2.5, satisfactory performance is obtained by using 

mixed compression inlets. These inlets, as the name implies, achieve compression 

through external and internal oblique shocks followed by a terminal normal shock, 

located downstream of the throat during normal operation (Figure 2.13). The mixed 

compression inlet can be seen a fusion of the internal and external types, and is 

therefore more complex, heavier and more expensive. Similar to the internal 

compression inlet, the mixed compression inlet also requires a variable cross

Figure 2.12. Typical external compression inl
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area at the throat, although this variation is smaller in comparison to the purely internal 

compression case. 
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Figure 2.13. Mixed compression inlet during normal operation

Figure 2.14. Two
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area at the throat, although this variation is smaller in comparison to the purely internal 

sional and axisymmetric supersonic inlets 

Supersonic inlets can furthermore be classified as two-dimensional and axisymmetric 

(Figure 2.14). The former are simpler to design and are capable of providing a larger 

variation in the entering flow, whilst the latter are lighter and allow to obtain higher total 

pressure ratios for the same flight Mach number. Axisymmetric inlets, however, pose 

the problem of effectively implementing boundary layer bleed systems on the center 

body through the support struts. [5] 

Figure 2.13. Mixed compression inlet during normal operation 

Figure 2.14. Two-dimensional (top) and axisymmetric (bottom) 
supersonic inlets [5] 

area at the throat, although this variation is smaller in comparison to the purely internal 

dimensional and axisymmetric 

(Figure 2.14). The former are simpler to design and are capable of providing a larger 

latter are lighter and allow to obtain higher total 

pressure ratios for the same flight Mach number. Axisymmetric inlets, however, pose 

the problem of effectively implementing boundary layer bleed systems on the center 
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2.6. Buzz 

In Section 2.3, it has been observed that external compression inlets operating in the 

subcritical regime may reach a stability limit (Figure 2.12), i.e. a minimum mass-flow 

ratio value for which the entering flow is stable. Below this point, a new, non-stationary 

phenomenon occurs: buzz. It is characterised by high frequency and/or high amplitude 

shock oscillations about the inlet’s entrance, which cause large variations in the mass-

flow and pressure ratios over a short period of time, thus leading to thrust loss, 

inefficient combustion or flameout and, in extreme cases, structural damages to the 

engine. 

2.6.1. Buzz onset 

Buzz was first observed by Oswatitsch in 1944 [6] and has been largely investigated 

since, both experimentally and numerically. It is nowadays well established that this 

phenomenon is triggered by either a vortex sheet, generated from the intersection of 

normal and oblique shocks and moving across the cowl lip (Ferri criterion), or a shock-

induced separation, that develops on the compression surface and obstructs the inlet’s 

entrance (Dailey criterion). 

The Ferri criterion was introduced by Ferri and Nucci in 1951 [7]. They observed that 

shock oscillations are initiated when the vortex sheet generated from the intersection of 

normal and oblique shocks impinges on the cowl lip and moves from the outside to the 

inside (Figure 2.15): as soon as the vortex sheet has entered the inlet, boundary layer 

separation occurs on the cowl’s inner surface, thus increasing flow spillage and 

pushing the normal shock upstream. This, in turn, causes the vortex sheet to move 

away from the cowl, allowing the flow to reattach and the shock to travel downstream to 

its initial position. However, this implies that the vortex sheet also returns to its previous 

position, and separation is generated once again. Such oscillation cycle is sometimes 

referred to as little or low buzz. 

 

 

 

 

 Figure 2.15. Vortex sheet moving across the cowl lip, from the outside 
(top) to the inside (bottom) 
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The Dailey criterion owes its name to Charles L. Dailey, who studied the buzz 

phenomenon for his PhD dissertation in 1954 [8]. He noticed that buzz begins when 

boundary layer separation occurs at the shock foot, due to the adverse pressure 

gradient generated across the discontinuity: this separated flow area gradually grows 

and obstructs part of the inlet’s entrance, forcing the shock to move upstream towards 

the tip of the center body (subcritical phase). Then, the shock system oscillates at a 

high frequency around the tip (secondary oscillations), before moving rapidly back into 

the inlet, thus choking it (supercritical phase). Dailey explained that, during the high 

frequency oscillations phase, the inlet’s entrance is almost completely blocked: this 

situation causes the internal pressure to decrease to a point that eventually allows the 

shock to move downstream again. Finally, throughout the supercritical phase, there is a 

gradual refilling of the inlet that pushes the shock upstream to its initial position, and a 

new cycle starts. This kind of buzz is sometimes referred to as big or high buzz. Figure 

2.16 shows a complete big buzz cycle on an isentropic spike, which is a particular type 

of external compression inlet. [9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16. Schlieren images of a Dailey type buzz cycle, representing its three 
main phases: subcritical (a-b), secondary oscillations (c-e), supercritical (f) [9] 
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2.6.2. Studies on buzz 

Many researchers have focused their attention on buzz, since a thorough 

understanding of the phenomenon is fundamental to predicting and avoiding its onset 

or, possibly, tackle its detrimental effects. There is, therefore, a large number of 

experimental and numerical works on this subject. 

In 1972, Nagashima et al. [1] conducted an experiment on an axisymmetric external 

compression inlet, whose center body could be translated along the axial direction, to 

study the characteristics of buzz for different geometrical configurations and angles of 

attack. Starting from supercritical conditions and gradually reducing throttle, they 

discovered that the non-stationary phenomena occurring below the stability limit were 

characterised by different frequencies, depending on the throttle ratio value: low buzz 

was observed for relatively high throttle ratios and presented a dominant frequency 

around 120Hz, whereas high buzz arose when the throttle was further reduced and 

presented a dominant frequency around 360Hz. The amplitude of these oscillations 

was found to vary arbitrarily. Nagashima et al. also proposed a one-dimensional 

acoustic model, based on the resonance theory, in order to predict buzz characteristic 

frequencies: by considering the inlet as a circular duct, they obtained such frequencies 

as the solution of the wave equation for disturbance velocity potential with imposed 

boundary conditions, namely the presence of a shock wave at the inlet’s entrance and 

a choked rear exit. They nonetheless pointed out that their model was extremely 

simplified, since it neglected the presence of the center body, and completely 

inadequate to explain the instability of the system.  

Hankey and Shang [10] dilated upon the physical origin of buzz from an aeroacustics 

perspective and improved Nagashima’s model introducing the concept of self-excited 

oscillations, defined as motions in which the sustaining force is created by the motion 

itself. They observed that separated flows possess a relatively low natural frequency, 

for which they are likely to be self-sustained if a positive feedback mechanism from the 

acoustical field to the source is present. This feedback, consisting of standing pressure 

waves reflected by the exit throat and travelling upstream through the subsonic 

separated shear layer, is enhanced by the accumulation of acoustical energy in the 

resonator, represented by the inlet. However, such mechanism is non-linear, so it 

cannot be predicted using linear theories: for this reason, Hankey and Shang stated 

that Nagashima’s model, which was based on the linearised potential equation, was 

“doomed to failure”, and that the rotational equations should be considered instead. 

They therefore calculated the characteristic frequencies of a self-sustained oscillation 

using the modified Rossiter equation [11]: 
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𝑓 =
𝑚𝑈

𝐿(𝑀 + 𝑘ିଵ)
     𝑚 = 1,2,3 …     (2.13) 

where m is the mode number, Ue is the kinematic velocity, L is the length of the 

resonator, which separates the acoustic source from the reflection surface, M0 is the 

Mach number, defined as: 

𝑀 =
𝑈

𝑎
 

where a0 is the speed of sound, and k is a nondimensional parameter, defined as: 

𝑘 =
𝑐

𝑈
 

where cr is the speed of the pressure waves travelling downstream, i.e. before being 

reflected. Hankey and Shang concluded that if one of the resulting frequencies is 

sufficiently close to the natural frequency of the separated flow, then positive feedback 

is obtained (overblowing) and self-excited oscillations are initiated. 

Newsome [12] performed the first computational study on buzz in 1984. He chose 

Nagashima’s axisymmetric inlet as the experimental model for comparison, and 

implemented the MacCormack’s explicit finite differences scheme for the numerical 

integration of the Reynolds-Averaged Navier-Stokes (RANS) equations combined with 

the Cebeci-Smith algebraic model for the turbulent eddy viscosity. His results agreed 

well with the available data and several features of the buzz instability were 

satisfactorily represented by the numerical solution. 

Lu et al. [13] adopted Dailey’s ramjet engine as the model for their numerical 

simulations of buzz, in which they used a high-resolution total variation diminishing 

(TVD) scheme. Lu et al. also proposed another correction to Nagashima’s acoustic 

model, underlining the fact that the inflow boundary condition should be modified 

according to the phase of the buzz cycle, and that the characteristic frequencies of the 

oscillations are therefore dependent on the upstream flow. They furthermore provided a 

detailed explanation of the feedback mechanism introduced by Hankey et al. for the 

subcritical and supercritical phases of the cycle separately, partly correcting the 

American researchers. They observed that during the subcritical phase feedback is 

generated from the vortexes that impinge on the cowl lip and the center body and 

create pressure waves that travel upstream and push the shocks system towards the 

tip, whereas during the supercritical phase feedback is given by the plenum chamber, 

since the normal shock is positioned into the inlet and the vortexes at the cowl lip no 

longer exist. The source of acoustic signals throughout the supercritical phase is 
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represented by the separated area generated downstream of the internal shock: these 

signals resonate with the characteristic frequencies of the plenum chamber and 

produce an expulsive pressure that forces the shock to move back upstream. Lu’s 

explanation of the buzz cycle thus backed Dailey’s initial hypotheses, whilst offering 

further insights on the acoustic mechanisms that underlie such non-stationary 

phenomenon. 

Trapier et al. studied buzz in a rectangular mixed compression inlet, first experimentally 

[14] and then also numerically [15], for different free-stream Mach numbers. Three-

dimensional Delayed Detached-Eddy Simulations (DDES) were conducted, in order to 

combine the best features of RANS and Large Eddy Simulations (LES) approaches. 

Both little and big buzz were observed, but, contrarily to the findings of Nagashima et 

al., they were characterised by small amplitudes and high dominant frequencies and 

great amplitudes and low dominant frequencies respectively: these somewhat 

contradictory results highlight the strong dependence of the phenomenon’s features on 

the geometrical configuration. Trapier et al. furthermore studied the effect of boundary 

layer bleed on flow instability, and showed that buzz limit was shifted to a lower mass-

flow ratio value for the lowest free-stream Mach number. Bleed devices also brought 

considerable improvements in terms of pressure recovery, but at the expense of the 

captured mass flow, which was reduced. 

An axisymmetric low-boom supersonic inlet was analysed numerically by Chima in 

2012 [9], exploiting data from previous wind tunnel tests. Central difference Rusanov 

scheme was combined with Van Leer upwind scheme for unsteady simulations in order 

to avoid non-physical spatial oscillations. Although the results agreed well with Dailey’s 

description of the buzz cycle, Chima’s analysis did not back up Hankey’s acoustic wave 

model, as the modified Rossiter equation (2.13) predicted a frequency almost twice the 

computed one. This was explained by observing that the primary shock system, 

located on the isentropic spike, did not reflect the upstream-running waves, and that 

standing waves could therefore not be supported. Chima furthermore found that, 

throughout the secondary oscillations phase of the buzz cycle, fairly strong normal 

shock waves were generated at the tip and moved downstream through the inlet, 

before being partially reflected at its exit, thus creating a system of shocks travelling in 

both directions. 

In his dissertation, Hong [16] numerically investigated buzz under different throttling 

and angle of attack conditions, using Nagashima’s configuration. He attempted to find a 

connection between buzz transitional phases - from low to high buzz and vice versa - 

that occur when throttle is varied and the acoustic phenomenon of overblowing, by 

observing that decreasing throttle ratios behave analogously to increasing jet velocities 
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in wind instruments, and that the vortexes impinging on the cowl and the center body 

play the role of the edge tones, whilst the diffuser acts as a resonator. Hong noticed 

that a decrease in throttle ratio leads to a greater flow instability, thus giving rise to new 

vortexes and consequently to new pressure waves: as soon as the interaction between 

such waves and the resonator returns a positive feedback, the switch from lower to 

higher dominant frequencies is obtained. A similar analysis was conducted for 

increasing throttle ratios, the sole difference being the variation from higher to lower 

dominant frequencies: a hysteretic behaviour of buzz was therefore suggested. From a 

numerical perspective, Hong also compared the results obtained by axisymmetric and 

three-dimensional simulations using the same numerical schemes, and noticed that 

buzz in the axisymmetric case occurred at a higher throttle ratio than the three-

dimensional computation. He explained this difference by stating that axisymmetric 

simulations do not take three-dimensional flow effects into account, thus causing a 

slight reduction in the mass-flow ratio: for this reason, axisymmetric simulations were 

compared - and agreed well - with the experimental results after “shifting” the throttle 

ratio values. 

Luo et al. [17] also studied buzz in Nagashima’s inlet, implementing an Unsteady-

RANS approach with the Spalart-Allmaras turbulence model. Their aim was to describe 

static pressure oscillations analytically by using an innovative and elegant tool, known 

as Proper Orthogonal Decomposition (POD) Method [18], which allowed them to 

approximate the complex flow field with its most energetic modes only, namely the first 

and second-order POD modes, representing the average and fluctuating pressure 

distributions respectively. The evolution of the second-order mode was in particular 

identified as the most suitable to describe buzz characteristics: the fluctuating pressure 

was therefore mathematically modelled as the product of two sinusoidal waves, thus 

decoupling the spatial and temporal terms. This simplification allowed the authors to 

find an analytical expression for the pressure field inside the inlet during buzz. Luo et 

al. furthermore proposed a buzz suppression mechanism, consisting of an intermittent 

air jet positioned at the inlet’s entrance, characterised by the same frequency of the 

second-order mode’s oscillations and a phase displacement Δϕ=π. Such mechanism 

was proved capable of enhancing flow stability and partially controlling buzz, thus 

widening the engine’s operative range. 

 

 

 

 

 



 

3. Numerical methods 

Fluid motion is governed by the 

a certain flow quantity inside an arbitrary volume as the net effect of the transport of 

such quantity across the volume’s boundaries, the action of internal and/or ext

forces on the volume and the presence of sources inside the volume. These laws form 

a system of non-linear partial differential equations (PDEs), which cannot be solved 

exactly, except for a small number of particular cases: it is therefore necessary

practical applications, to implement 

solutions by means of iterative processes. The science that utilises such tools to 

simulate complex fluid flows is known as 

In the following, we will first introduce the governing equations of fluid dynamics, 

formulated as the so-called 

on the spatial and temporal discretisation schemes adopted in the present work, as 

well as on grid generation and on time step selection. Turbulence and its modelling will 

also be discussed. Finally, we will dilate upon the determination of initial and boundary 

conditions for our problem. The reader is referred to the works by Blazek 

Versteeg et al. [20] for further understanding of the numerous schemes and models 

employed in modern CFD solvers.

3.1. Governing equations

As anticipated, the dynamical behaviour of a fluid is determined by three conservation 

laws, namely the mass (or 

i. Continuity equation 

Let us consider a finite contr

 

 

 

 

 

 

The mass conservation law states that mass variations inside this volume over time are 

solely due to the mass fluxes across the control surface (

Figure 3.1. Finite control volume (Ω) bounded by a closed surface (∂Ω). Here, dS 
represents an elemental surface area, and n is the associated unit normal vector
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Fluid motion is governed by the conservation laws, which express the total variation of 

a certain flow quantity inside an arbitrary volume as the net effect of the transport of 

such quantity across the volume’s boundaries, the action of internal and/or ext

forces on the volume and the presence of sources inside the volume. These laws form 

linear partial differential equations (PDEs), which cannot be solved 

exactly, except for a small number of particular cases: it is therefore necessary

practical applications, to implement numerical methods that allow to find approximate 

solutions by means of iterative processes. The science that utilises such tools to 

simulate complex fluid flows is known as computational fluid dynamics (

he following, we will first introduce the governing equations of fluid dynamics, 

called Navier-Stokes equations. Then, we will focus our attention 

on the spatial and temporal discretisation schemes adopted in the present work, as 

as on grid generation and on time step selection. Turbulence and its modelling will 

also be discussed. Finally, we will dilate upon the determination of initial and boundary 

conditions for our problem. The reader is referred to the works by Blazek 

for further understanding of the numerous schemes and models 

odern CFD solvers. 
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Let us consider a finite control volume (Ω), fixed in space, as represented in Figure 3.1:

law states that mass variations inside this volume over time are 

solely due to the mass fluxes across the control surface (∂Ω).  

Figure 3.1. Finite control volume (Ω) bounded by a closed surface (∂Ω). Here, dS 
represents an elemental surface area, and n is the associated unit normal vector
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The time rate of change of the mass inside the volume can be expressed as: 

𝜕

𝜕𝑡
න 𝜌 𝑑𝛺

ఆ

 

where ρ is the fluid density and represents the conserved quantity. 

The mass flow through the entire control surface can be written as the sum of the 

fluxes across each elemental surface area (dS): 

− ර 𝜌�̅� ∙ 𝑛ത 𝑑𝑆
డఆ

 

where �̅� is the velocity vector and �̅� ∙ 𝑛ത represents the velocity component 

perpendicular to the surface element. The sign is determined by the convention 

imposed on the orientation of the unit normal vector (𝑛ത), that points out of the control 

volume. 

Since mass cannot be created - nor destroyed - for a single-phase fluid, and therefore 

no source terms are present, the mass conservation law can finally be written as: 

𝜕

𝜕𝑡
න 𝜌 𝑑𝛺

ఆ

+ ර 𝜌�̅� ∙ 𝑛ത 𝑑𝑆
డఆ

= 0     (3.1)  

Equation (3.1) represents the continuity equation in its integral conservative 

formulation, which is characterised by the important property of remaining valid in the 

presence of discontinuities in the flow field, such as shocks. For this reason and for its 

generality, this formulation is used in the majority of modern CFD codes. 

ii. Momentum equation 

Let us consider the finite control volume of Figure 3.1 again. The momentum 

conservation law, that descends from Newton’s second law of motion, states that 

momentum variations inside this volume over time are due to the momentum fluxes 

across the control surface and to the contribution of several source terms. 

The variation with time of momentum within the control volume can be expressed as: 

𝜕

𝜕𝑡
න 𝜌�̅� 𝑑𝛺

ఆ

 

Similarly to the case of the continuity equation, the transport of momentum across the 

control surface is given by: 
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− ර (𝜌�̅�)�̅� ∙ 𝑛ത 𝑑𝑆
డఆ

 

The source terms are represented by the external (or volume) and internal (or surface) 

forces acting on the control volume. The former are defined as forces that act on the 

system’s mass - e.g. gravitational or electromagnetic forces - and can be written as: 

𝐹௩
ഥ = න 𝜌𝑓

ഥ  𝑑𝛺
ఆ

 

where 𝑓
ഥ  is a generic volume force per unit mass. The latter, on the other hand, act 

directly on the control surface and result from the combination of the pressure 

distribution imposed by the outside fluid that surrounds the control volume and the 

shear and normal stresses caused by the friction between the fluid and the control 

surface. Internal forces can therefore be defined as the sum of two terms: 

𝐹௦
ഥ = ර ൫−𝑝𝐼 ̿ + �̿�൯ ∙ 𝑛ത 𝑑𝑆

డఆ

= ර 𝜎ധധധ ∙ 𝑛ത 𝑑𝑆
డఆ

 

where p𝐼 ̿ represents the isotropic pressure component, 𝐼 ̿being the unit tensor, and �̿� 

represents the viscous stress tensor: 

�̿� = ൫𝜏௫തതത, 𝜏௬തതത, 𝜏௭ഥ ൯ = 

𝜏௫௫ 𝜏௫௬ 𝜏௫௭

𝜏௬௫ 𝜏௬௬ 𝜏௬௭

𝜏௭௫ 𝜏௭௬ 𝜏௭௭

൩ 

This notation, that refers to a Cartesian coordinates system, indicates that the 

particular stress component (τij) acts along the j-axis direction and affects a plane 

whose normal is parallel to the i-axis. Thus, the terms on the tensor’s diagonal 

represent the normal stresses, whilst the others represent the shear stresses. 

The momentum conservation law can finally be written, in its integral formulation, as: 

𝜕

𝜕𝑡
න 𝜌�̅� 𝑑𝛺

ఆ

+ ර (𝜌�̅�)�̅� ∙ 𝑛ത 𝑑𝑆
డఆ

= න 𝜌𝑓
ഥ  𝑑𝛺

ఆ

− ර 𝑝𝐼̿ ∙ 𝑛ത 𝑑𝑆
డఆ

+ ර �̿� ∙ 𝑛ത 𝑑𝑆
డఆ

     (3.2) 

iii. Energy equation 

The energy conservation law is based on the first law of thermodynamics. Considering 

the control volume of Figure 3.1, it states that total energy variations in this volume 

over time are due to the energy fluxes across the control surface and to the 

contribution of several source terms. 

The total energy per unit mass (E) of a fluid is defined as the sum of its internal and 
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kinetic energy: 

𝐸 = 𝑒 +
|�̅�|ଶ

2
 

The total energy variation over time within the control volume can therefore be written 

as: 

𝜕

𝜕𝑡
න 𝜌𝐸 𝑑𝛺

ఆ

 

where ρE is the total energy per unit volume and represents the conserved quantity. 

Analogously to the previous cases, the energy flux across the control surface is: 

− ර (𝜌𝐸)�̅� ∙ 𝑛ത 𝑑𝑆
డఆ

 

The source terms in this case are represented by the time rate of work done by the 

internal and external forces acting on the system and by the heat flux across the 

control surface. The first two terms can be expressed as, respectively: 

�̇�௦ = ර (𝜎ധധധ ∙ 𝑛ത) ∙ �̅� 𝑑𝑆
డఆ

 

�̇�௩ = න 𝜌𝑓
ഥ ∙ �̅� 𝑑𝛺

ఆ

 

The heat flux often includes the effect of molecular thermal conduction only. Using 

Fourier’s law, it is written as: 

�̇�௦ = ර 𝑘∇𝑇 ∙ 𝑛ത 𝑑𝑆
డఆ

 

where k is the thermal conductivity coefficient and T is the absolute static temperature. 

In some cases, heating due to the absorption or emission of radiations and to chemical 

reactions has to be considered as well. These further volumetric source terms are 

usually expressed as: 

�̇�௩ = න �̇� 𝑑𝛺
ఆ

 

The energy conservation law can finally be written, in its integral formulation, as: 
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𝜕

𝜕𝑡
න 𝜌𝐸 𝑑𝛺

ఆ

+ ර (𝜌𝐸)�̅� ∙ 𝑛ത 𝑑𝑆 =
డఆ

= ර (𝜎ധധധ ∙ 𝑛ത) ∙ �̅� 𝑑𝑆
డఆ

+ න 𝜌𝑓
ഥ ∙ �̅� 𝑑𝛺

ఆ

+ ර 𝑘∇𝑇 ∙ 𝑛ത 𝑑𝑆
డఆ

+ න �̇� 𝑑𝛺
ఆ

     (3.3𝑎) 

It is sometimes preferable to reformulate this equation introducing the total enthalpy per 

unit mass (H): 

𝐻 = ℎ +
|�̅�|ଶ

2
= 𝐸 +

𝑝

𝜌
 

After some manipulation, Equation (3.3a) becomes: 

𝜕

𝜕𝑡
න 𝜌𝐸 𝑑𝛺

ఆ

+ ර (𝜌𝐻)�̅� ∙ 𝑛ത 𝑑𝑆 =
డఆ

= ර (�̿� ∙ 𝑛ത) ∙ �̅� 𝑑𝑆
డఆ

+ න 𝜌𝑓
ഥ ∙ �̅� 𝑑𝛺

ఆ

+ ර 𝑘∇𝑇 ∙ 𝑛ത 𝑑𝑆
డఆ

+ න �̇� 𝑑𝛺
ఆ

     (3.3𝑏) 

3.1.1. Navier-Stokes equations 

For Newtonian fluids, such as water and air, viscous stresses can be expressed by the 

following relation: 

𝜏 = 𝜇 ቆ
𝑑𝑣

𝑑𝑥
+

𝑑𝑣

𝑑𝑥
ቇ −

2

3
𝜇𝛿∇ ∙ �̅� 

where vi, vj are the velocity components in Cartesian coordinates, μ is the dynamic 

viscosity and δij is the Kronecker delta. If this hypothesis holds, Equations (3.1), (3.2) 

and (3.3b) can be re-written in an alternative form and are commonly known as Navier-

Stokes equations. They describe the exchange of mass, momentum and energy 

through the boundary of an arbitrary control volume, which is fixed in space. 

Navier-Stokes equations can also be written in compact form, as follows: 

𝜕

𝜕𝑡
න 𝑊𝑑𝛺

ఆ

+ ර 𝐹ത ∙ 𝑛ത 𝑑𝑆 =
డఆ

න 𝑄𝑑𝛺
ఆ

     (3.4) 

Here, vector W contains the so-called conservative variables, and for a three-

dimensional case reads: 

𝑊 = 

𝜌
𝜌�̅�
𝜌𝐸

൩ 

where the velocity vector �̅� consists of three components (u, v, w) with respect to the 
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Cartesian axes. Tensor 𝐹ത represents the flux tensor and contains both the convective 

and diffusive terms. In three dimensions it can be expressed as: 

𝐹ത = 

𝜌�̅�

(𝜌�̅�)�̅� + 𝑝𝐼 ̿ − �̿�

𝜌𝐻�̅� − �̿� ∙ �̅� − 𝑘∇𝑇

 

Lastly, vector Q contains the source terms, and can be written as: 

𝑄 = 

0
𝜌𝑓

ഥ

𝜌𝑓
ഥ ∙ �̅� + �̇�

 

The compact formulation of the Navier-Stokes equations forms the basis of the 

numerical finite volumes method, which will be discussed in detail in a following section 

of this chapter. Applying Gauss’s theorem, Equation (3.4) can also be re-written in 

differential form, which is the preferred option when turbulence modelling is concerned, 

as will be later explained. 

For a three-dimensional case, the Navier-Stokes equations represent a system of five 

scalar equations, but contain seven unknown variables, namely the density (ρ), the 

three velocity components (u, v, w), the total energy per unit mass (E), the pressure (p) 

and the temperature (T): two additional thermodynamic relations are therefore required 

for closure. Expressions for the dynamic viscosity (μ) and the thermal conductivity 

coefficient (k) have to be provided as well. Apart from those cases where particular 

thermodynamic phenomena and chemical reactions are involved, it is reasonable to 

assume that the fluid behaves like a perfect gas, for which the equation of state can be 

formulated as: 

𝑝

𝜌
= ℛ𝑇     (3.5) 

where ℛ is the specific gas constant. Furthermore, the following relation holds: 

ℎ = 𝑐𝑇     (3.6) 

where cp is the specific heat of the gas at constant pressure. The dynamic viscosity for 

a perfect gas is strongly dependent on temperature, and can be determined using 

Sutherland’s law: 

𝜇 = 𝜇 ቆ
𝑇

𝑇
ቇ

ଵ.ହ
𝑇 + 𝑆

𝑇 + 𝑆
     𝑆 = 110𝐾     (3.7) 



30 
 

where μref is the dynamic viscosity of the gas or liquid at the reference temperature 

(Tref) and S is the Sutherland constant. The thermal conductivity coefficient is also 

dependent on the temperature for gases, whereas it is almost constant for liquids. The 

relation: 

𝑘 = 𝑐

𝜇

𝑃𝑟
     (3.8) 

where Pr is the Prandtl number, is commonly used for air. Equations (3.5)-(3.8) can 

therefore be applied as closure relations if the hypothesis of perfect gas holds true. 

3.1.2. Euler equations 

Navier-Stokes equations can be simplified for the case of an ideal flow, i.e. a flow 

where viscous and thermal effects can be neglected, and are known as Euler 

equations. They describe the pure convection of the flow quantities in an inviscid fluid. 

The compact form of the Euler equations is formally identical to Equation (3.4), but the 

flux tensor contains the convective terms only: 

𝐹തா = 

𝜌�̅�

(𝜌�̅�)�̅� + 𝑝𝐼 ̿

𝜌𝐻�̅�

 

Euler equations form the basis for the development of a large variety of discretisation 

methods and boundary conditions, and their conservative formulation provides an 

accurate representation of several important phenomena, such as shocks and 

expansion waves. 

3.2. Numerical solution of the governing equations 

As explained in this chapter’s introduction, the governing equations of fluid dynamics 

cannot be solved exactly, and numerical strategies are therefore needed in order to 

find approximate solutions for complex flow fields. Nearly all these methods follow the 

same key steps, which can be summarised as follows: 

o The computational domain, i.e. the space where the flow field is to be computed, is 

divided into a certain number of geometrical entities, the so-called cells. This 

process is referred to as grid (or mesh) generation; 

o The Navier-Stokes or Euler equations are discretised in space and time separately 

(method of lines), thus becoming algebraic relations, which can be solved by 

applying iterative processes; 

o Initial and boundary conditions for the algebraic problem are defined.  
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Here, we will discuss about the first two steps, while the last step will be the subject 

matter of a following section. 

3.2.1. Grid generation 

Grids commonly consist of triangles or quadrilaterals for two-dimensional problems, 

whereas tetrahedral, hexahedra, prisms or pyramids are used in three-dimensional 

cases. Specific requirements are to be satisfied when the domain is discretised: first 

and foremost, cells must not overlap nor leave any “holes”; additionally, no abrupt 

changes in their volume or stretching ratio are allowed, and their shape should be as 

regular as possible, so as not to generate unacceptable numerical errors. 

Grids can be generated to closely resemble the physical boundaries (body-fitted grids), 

as shown in Figure 3.2a, or to follow the Cartesian coordinates (Cartesian grids), as 

shown in Figure 3.2b: 

 

 

 

 

 

 

 

 

 

On the one hand, Cartesian grids are easily created and allow for a straightforward 

evaluation of the fluxes in Equation (3.4), but do not permit a rigorous treatment of the 

boundaries. On the other hand, body-fitted grids are adaptable to almost every 

geometry, and therefore accurately resolve boundaries, but are more complex to 

generate. Nowadays, the body-fitted approach is preferred, since in engineering 

applications boundaries are often geometrically elaborate. 

Figure 3.2. Body-fitted (top) and Cartesian (bottom) 2D grids 
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Grids can furthermore be divided into structured and unstructured (Figure 3.3). In 

structured meshes, each grid point, called vertex or node, is uniquely defined by a 

certain number of indices (i, j, k) and the corresponding Cartesian coordinates, 

whereas in unstructured meshes cells and nodes do not have a particular order. 

Unstructured grids are also characterised by the presence of different types of cells, 

which are needed to accurately simulate the boundary layer: for this reason, they are 

sometimes called hybrid or mixed grids. 

 

 

 

 

 

 

 

 

 

 

 

In the present work, an unstructured mesh has been generated. This choice is 

motivated by the numerous advantages that this grid type offers: an unstructured mesh 

can deal with complex geometries with a significant reduction in cells number in 

comparison to the structured approach, and the time required for its creation is 

significantly lower. Moreover, grid refinements can be easily constructed. 

Figure 3.4 shows the discretised computational domain for the test case of Nagashima 

et al.’s axisymmetric external compression air inlet model [1] in his Spacer No. A 

configuration. The grid has been realised with Gmsh, an open source mesh generator 

[21]: it contains approximately 107000 cells - mainly quadrangles - and has been 

created using the Frontal-Delaunay for Quads [22] and Blossom recombination [23] 

algorithms. 

Figure 3.3. Structured (top) and mixed unstructured (bottom) 2D grids 
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It can be seen from Figure 3.4 that the mesh is refined in the areas over the 

compression ramp, around the cowl and in the duct, since the most important 

variations in the flow quantities are expected here, especially during subcritical 

operations (see Sections 2.3 and 2.6). Figure 3.5 shows the compression ramp 

refinement more clearly: 

 

The boundary layers on the center body and on the cowl have been discretised using 

rectangular cells, which are orthogonal to the walls (Figure 3.6). The first cell’s wall 

spacing has been determined for y+=5, and a constant stretching ratio of 1.2 has been 

used. The boundary layer on the center body has been constructed using 18 layers, 

whereas the boundary layer on the cowl’s inner and outer surfaces contains 16 layers. 

 

 

Figure 3.4. Computational domain and unstructured mesh for the air inlet model 

Figure 3.5. Compression ramp refinement 
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Particular attention has been given to the sharp cowl lip, which has been discretised 

creating a mesh fan in the boundary layer (Figure 3.7): 

 

3.2.2. Finite volumes method 

The second key step is the spatial and temporal discretisation of the governing 

equations. Three different methodologies can be chosen, namely finite differences, 

finite volumes and finite elements: in the present work, the finite volumes method has 

been implemented. This method is extremely flexible and can be utilised on both 

structured and unstructured grids: it is therefore suitable for the description of complex 

geometries. Moreover, since it is based on the conservative form of the governing 

equations, it guarantees that mass, momentum and energy are numerically conserved. 

This is not the case, for instance, when a finite difference scheme is implemented: in 

fact, substitutive relations, namely the Rankine-Hugoniot relations, have to be locally 

used to resolve discontinuities in such schemes. This represents an enormous 

Figure 3.6. Boundary layer on the center body 

Figure 3.7. Cowl lip refinement 
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advantage of the finite volumes method. 

As anticipated in Section 3.1.1, the finite volumes method is based on the compact 

integral formulation of the Navier-Stokes equations (Equation (3.4)), which are 

discretised by first dividing the domain into a certain number of control volumes. There 

exist two main possibilities for the definition of each control volume’s shape and 

position: the cell-centred scheme (Figure 3.8a), in which the flow quantities are stored 

at the centroids of the grid cells, and the cell-vertex scheme (Figure 3.8b), in which the 

flow quantities are stored at the grid points. Thus, the control volumes are identical to 

the cells for a cell-centred scheme, whilst they can either be the union of all the cells 

that share the grid point (overlapping control volumes) or some particular volumes 

defined around the grid points (dual control volumes) for a cell-vertex scheme. A cell-

centred scheme has been chosen for our discretisation process. 

 

 

 

 

 

 

Equation (3.4) is then applied to each control volume (Ωi) individually, and reads: 

𝜕

𝜕𝑡
න 𝑊𝑑𝛺

ఆ

+ ර 𝐹ത ∙ 𝑛ത 𝑑𝑆 =
డఆ

න 𝑄𝑑𝛺
ఆ

     (3.9) 

The volume integral of the conservative variables vector (W) can be approximated 

introducing a mean value: 

𝑊 =
1

𝛺
න 𝑊𝑑𝛺

ఆ

 

Analogously, the source terms vector (Q) becomes: 

𝑄 =
1

𝛺
න 𝑄𝑑𝛺

ఆ

 

The surface integral can be split into the sum of the fluxes across the control volume’s 

faces: 

Figure 3.8. Cell-centred (left) and dual control volumes 
cell-vertex (right) schemes 
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ර 𝐹ത ∙ 𝑛ത 𝑑𝑆 =
డఆ

 න 𝐹ത ∙ 𝑛ത 𝑑𝑆
௦

 

and, for sufficiently small volumes, the flux across each face is supposed to be 

constant. This hypothesis allows us to introduce another approximation: 

 න 𝐹ത ∙ 𝑛ത 𝑑𝑆
௦

=  𝐹ത ∙ 𝑛ത ∆𝑆

௦

 

where ΔS is the area of the particular face, 𝑛ത being its unit normal vector. Finally, 

Equation (3.9) becomes: 

𝜕

𝜕𝑡
(𝛺𝑊) +  𝐹ത ∙ 𝑛ത ∆𝑆

௦

= 𝛺𝑄     (3.10) 

Equation (3.10) represents the general expression on which the finite volumes 

schemes are based. It describes the evolution of the mean conservative variables (Wi) 

over time as a function of the fluxes across the volume’s faces (𝐹ത) and the source 

terms (Qi). Under the assumption that the control volumes do not change with time, 

Equation (3.10) can furthermore be reformulated as: 

𝛺

𝜕𝑊

𝜕𝑡
+  𝐹ത ∙ 𝑛ത ∆𝑆

௦

= 𝛺𝑄     (3.11) 

The crucial aspect of the finite volumes method is the evaluation of the convective 

fluxes at all faces of each control volume; however, since the flow variables are not 

univocally defined here, interpolation strategies are needed. There are several ways to 

obtain the fluxes at a cell face for a cell-centred scheme: 

o by an average of the fluxes evaluated at the centroids of the cells adjacent to the 

face; 

o by an average of the conservative variables associated with the centroids of the 

cells adjacent to the face; 

o by considering the fluxes as a function of the flow variables associated with the 

centroid of only one of the cells adjacent to the face, taking the characteristics of 

the equations into consideration. 

Depending on the adopted spatial discretisation strategy, the resulting finite volumes 

scheme will be identified as central or upwind. The central schemes require less CPU 

time per evaluation in comparison to the upwind schemes, but are characterised by an 
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intrinsic instability, which has to be suppressed with the introduction of the so-called 

artificial dissipation. The upwind schemes, on the other hand, are constructed by 

considering the physical properties of the Euler equations - which contain the 

convective terms only (see Section 3.1.2) - and distinguish between upstream and 

downstream signal propagation directions, thus being more costly. Nonetheless, due to 

their reduced numerical diffusion, they are able to describe flow discontinuities more 

accurately than the central schemes, and can resolve boundary layers using less grid 

points. An extremely important problem arises, however, when a second or higher 

order spatial accuracy is required for an upwind scheme: in these cases, limiter 

functions must be implemented in order to avoid spurious oscillations near flow 

discontinuities, with negative consequences on the convergence and on the 

computational effort, especially for unstructured grids. In the present work, a second-

order accuracy upwind scheme with the Barth and Jespersen limiter [24] has been 

used. Barth’s limiter enforces a monotone solution in the presence of discontinuities, 

but tends to smear them and is somewhat dissipative. Furthermore, it is activated by 

numerical noise in smooth flow regions, thus preventing the full convergence to the 

steady state in some problems. 

Besides fluxes evaluation, the time derivative in Equation (3.11) has to be 

approximated as well. Temporal discretisation techniques are based on the idea of time 

as a series of discrete time steps: applying the definition of derivative as rate of change 

and using Taylor expansions, different first or second-order accurate schemes can be 

obtained. Once the time derivative has been substituted by an algebraic expression, 

the temporal instant at which the fluxes and source terms are evaluated has to be 

chosen. In order to dilate upon this fundamental decision, let us consider two 

successive instants, namely tk and tk+1: if the fluxes and source terms in the discretised 

equation are calculated considering the flow variables evaluated at tk, the scheme is 

called explicit; on the other hand, if these quantities are evaluated at tk+1, the scheme is 

said to be implicit. Explicit schemes are numerically economical, but the maximum 

allowable time step is severely limited by stability restrictions, thus significantly slowing 

down the convergence to the steady state in some simulations, although several 

acceleration techniques are nowadays implemented to partially overcome this limitation 

[25], [26], [27]. Implicit schemes, on the other hand, permit to select larger time steps 

without affecting the stability of the method; moreover, they are faster and more robust 

than explicit schemes in many cases. However, computational costs are considerably 

higher, due to the fact that a system of linear algebraic equations has to be solved at 

each temporal instant using an iterative strategy. The decision whether to use an 

implicit or explicit scheme is therefore dependent on the particular problem as well as 
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on the fluid dynamicist’s necessities. A first-order accurate implicit scheme has been 

implemented for our near-critical case simulations, whereas a second order implicit 

scheme has been used for the investigation of the subcritical operating conditions. 

As explained above, the time step in CFD simulations cannot be selected arbitrarily, 

but has to be determined in order to meet the method’s stability requirements. This 

particularly applies to explicit schemes, where the so-called Courant-Friedrichs-Lewy 

(CFL) condition [28] must be satisfied. It states that the domain of dependence of the 

numerical method must contain the physical domain of dependence, i.e. the domain of 

dependence of the differential equation. Such condition is easily expressed for the one-

dimensional linear scalar advection equation: 

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 0     (3.12) 

as: 

𝜎 = |𝑎|
∆𝑡

∆𝑥
≤ 𝜎௫     (3.13) 

where Δt is the time step, Δx is the cell size and a is the velocity at which the quantity u 

is transported. σ is the CFL or Courant number and is always positive, and σmax is a 

limit value determined by the von Neumann stability analysis. The stability condition is 

thus translated into a limitation to the Courant number’s values: depending on the 

scheme that has been used, different values of σ may be chosen. The time step is 

consequently obtained from the inverse formula of (3.13). Nevertheless, for more 

complex cases, such as the non-linear Navier-Stokes equations system, finding an 

expression for the stability condition is not straightforward, since it is strongly 

dependent on the implemented scheme. For this reason, the time step cannot be 

calculated exactly, but has to be determined empirically: its selection therefore 

becomes an engineering judgement. This holds true for implicit schemes as well, but 

the restrictions on the Courant number values are less severe. In the present work, a 

variable CFL number, ranging between 5 and 100, has been used for the treatment of 

the near-critical case, whilst a constant CFL number σ=5 has been selected for the 

subcritical regime simulations. 

3.3. Turbulence and its modelling 

Most of the fluid dynamics phenomena encountered in engineering applications are 

turbulent. Turbulent flows are characterised by a quasi-random and chaotic behaviour, 

and are intrinsically unsteady: all the flow variables vary with time in an a somewhat 



 

arbitrary manner (Figure 3.9).

 

 

 

 

 

 

 

Turbulent flows are furthermore three

the typical rotational structures, called 

with a wide range of different length scales. Turbulent eddies interact in a dynamically 

complex way: an economical description of every fluid particle’s motion is therefore 

often unachievable. 

 

 

 

 

 

 

 

3.3.1. Reynolds and Favre decompositions

For the aforesaid reasons, a simplified approach to turbulence is frequently used, in 

which the flow variables are seen as the sum of a mean value and a fluctuation about 

it: this strategy is known as 

decomposition of the velocity (

fluctuating component (u’(t)

(φ) can be written as: 

Figure 3.9. Typical point velocity measurement in a turbulent flow
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rary manner (Figure 3.9). 

Turbulent flows are furthermore three-dimensional and multi-scale phenomena, since 

the typical rotational structures, called turbulent eddies (Figure 3.10), are associated 

with a wide range of different length scales. Turbulent eddies interact in a dynamically 

complex way: an economical description of every fluid particle’s motion is therefore 

3.3.1. Reynolds and Favre decompositions 

For the aforesaid reasons, a simplified approach to turbulence is frequently used, in 

which the flow variables are seen as the sum of a mean value and a fluctuation about 

known as Reynolds decomposition. Figure 3.9 shows the Reynolds 

decomposition of the velocity (u(t)) into its steady mean value (U) and a superimposed 

u’(t)). Generalising, an arbitrary scalar or vector flow quantity 

𝜑 = 𝜑ത + 𝜑ᇱ     (3.12) 

Figure 3.9. Typical point velocity measurement in a turbulent flow 

Figure 3.10. Turbulent eddies visualisation 

scale phenomena, since 

(Figure 3.10), are associated 

with a wide range of different length scales. Turbulent eddies interact in a dynamically 

complex way: an economical description of every fluid particle’s motion is therefore 

For the aforesaid reasons, a simplified approach to turbulence is frequently used, in 

which the flow variables are seen as the sum of a mean value and a fluctuation about 

. Figure 3.9 shows the Reynolds 

) and a superimposed 

). Generalising, an arbitrary scalar or vector flow quantity 
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If the mean flow is steady, the mean value (𝜑ത) in (3.12) is defined as: 

𝜑ത = lim
்→ஶ

1

𝑇
න 𝜑 𝑑𝑡

௧ା்

௧

 

This process is called time averaging. On the other hand, if the mean flow is time-

dependent, the mean value (𝜑ത) has to be determined using an ensemble average: 

𝜑ത = lim
ே→ஶ

1

𝑁
 𝜑

ே

ୀଵ

 

and still remains a function of time and space. The fluctuations (φ’) are therefore 

defined as: 

𝜑ᇱ = 𝜑 − 𝜑ത 

and their average is always null. The spread of fluctuations about the mean value is 

described by the variance and the root mean square (rms), respectively defined as: 

(𝜑ᇱ)ଶതതതതതതത =
1

∆𝑡
න (𝜑ᇱ)ଶ 𝑑𝑡

∆௧



 

𝜑௦ = ට(𝜑ᇱ)ଶതതതതതതത = ඨ
1

∆𝑡
න (𝜑ᇱ)ଶ 𝑑𝑡

∆௧



 

The variance is alternatively called second moment of the fluctuations. It can also be 

defined when two different variables (φ and ψ) are considered: 

𝜑′𝜓′തതതതതത =
1

∆𝑡
න 𝜑ᇱ𝜓ᇱ 𝑑𝑡

∆௧



 

Since in turbulent flows the velocity fluctuations in different directions (u’, v’, w’) are not 

independent, the second moments obtained considering their products are non-zero, 

and contain important information on the flow physics, as will be later explained. 

When the flow density is not constant, the Reynolds averaging is usually combined with 

another decomposition, known as Favre averaging [29]: 

𝜃 = 𝜃෨ + 𝜃ᇱᇱ     (3.13) 

where θ can be either a scalar or a vector quantity. 𝜃෨ represents the mean value, while 

θ’’ indicates the fluctuating part, analogously to the Reynolds decomposition. The mean 

value for Favre-average quantities is defined as: 
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𝜃෨ =
1

�̅�
lim

்→ஶ

1

𝑇
න 𝜌𝜃 𝑑𝑡

௧ା்

௧

 

where the overbar indicates the Reynolds-averaged density. 

3.3.2. Favre- and Reynolds-Averaged Navier-Stokes equations 

Following the Reynolds and Favre decompositions approach, the Navier-Stokes 

equations (Equation (3.4)) can be re-written and averaged in order to obtain a new 

system of equations, known as Favre- and Reynolds-Averaged Navier-Stokes (RANS) 

equations, which describe the effects of turbulence on the mean flow properties for 

compressible flows. Considering a Cartesian coordinates system, they read1: 

𝜕�̅�

𝜕𝑡
+ ∇ ∙ (�̅�𝒗) = 0     (3.14) 

𝜕(�̅�𝑢)

𝜕𝑡
+ ∇ ∙ (�̅�𝑢𝒗) = = −

𝜕�̅�

𝜕𝑥
+ ∇ ∙ (𝜇∇𝑢) + ቈ−

𝜕(�̅�𝑢′′ଶ෫ )

𝜕𝑥
−

𝜕(�̅�𝑢′′𝑣′′෫ )

𝜕𝑦
−

𝜕(�̅�𝑢′′𝑤′′෫ )

𝜕𝑧
 + 𝑄ெ,௫      (3.15𝑎) 

𝜕(�̅�𝑣)

𝜕𝑡
+ ∇ ∙ (�̅�𝑣𝒗) = = −

𝜕�̅�

𝜕𝑦
+ ∇ ∙ (𝜇∇𝑣) + ቈ−

𝜕(�̅�𝑢′′𝑣′′෫ )

𝜕𝑥
−

𝜕(�̅�𝑣ᇱᇱଶ෫ )

𝜕𝑦
−

𝜕(�̅�𝑣′′𝑤′′෫ )

𝜕𝑧
 + 𝑄ெ,௬     (3.15𝑏) 

𝜕(�̅�𝑤)

𝜕𝑡
+ ∇ ∙ (�̅�𝑤𝒗) = = −

𝜕�̅�

𝜕𝑧
+ ∇ ∙ (𝜇∇𝑤) + ቈ−

𝜕(�̅�𝑢′′𝑤′′෫ )

𝜕𝑥
−

𝜕(�̅�𝑣′′𝑤′′෫ )

𝜕𝑦
−

𝜕(�̅�𝑤′ᇱଶ෫ )

𝜕𝑧
 + 𝑄ெ,௭     (3.15𝑐) 

𝜕(�̅�𝜑)

𝜕𝑡
+ ∇ ∙ (�̅�𝜑𝒗) = ∇ ∙ (𝛤ః∇𝜑) + ቈ−

𝜕(�̅�𝑢′′𝜑′′෫ )

𝜕𝑥
−

𝜕(�̅�𝑣′′𝜑′′෫ )

𝜕𝑦
−

𝜕(�̅�𝑤′′𝜑′′෫ )

𝜕𝑧
 + 𝑄ః      (3.16) 

where the energy equation has been substituted by a transport equation for a generic 

scalar quantity (φ). Here, ρ is the flow density, p is the pressure, v is the velocity 

vector, whose components are u, v and w, and u’’, v’’ and w’’ are the velocity 

fluctuations. QM and QΦ are generic source terms. The overbar indicates a Reynolds-

averaged variable, whereas the tilde indicates a Favre-averaged quantity. 

Equations (3.14)-(3.16) are formally similar to the Navier-Stokes equations, but the 

averaging process has introduced new terms in the momentum and scalar transport 

equations: these terms, grouped in square brackets, involve the product of fluctuating 

velocities, and represent the convective momentum and scalar quantity transport due 

to turbulent eddies. With respect to the momentum equation, these terms are called 

Reynolds stresses, since they act as additional turbulent stresses on the mean velocity 

components. They are usually large in comparison to the viscous stresses, and 

                                                           
1 As anticipated in Section 3.1.1, the equations are written in differential form, which is usually preferred to the 
integral formulation when turbulence modelling is discussed, since it allows the notation to be compact and clear. 
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therefore have a dominant effect on the flow field - except for an extremely small region 

near the body, as we will later see. The Reynolds stresses and the turbulent scalar 

transport terms represent additional unknowns in the RANS equations, and cause the 

system to be non-closed: for this reason, they have to be mathematically modelled. 

The so-called RANS turbulence models are commonly classified according to the 

number of additional transport equations that need to be solved together with 

Equations (3.14)-(3.16), as shown in Table 3.1, and are characterised by different 

ranges of applicability, degrees of accuracy and computational costs. 

Number of extra equations Turbulence model 

0 Mixing length model 

1 Spalart-Allmaras 

2 k-ε, k-ω, Algebraic stress model 

7 Reynolds stress model 

 

 

3.3.3. Turbulent flows near solid walls 

Before discussing turbulence models in more detail, we shall describe the 

characteristics of turbulent flows near solid walls, since the presence of such 

boundaries strongly influences the flow’s structure and behaviour. 

Let us consider the simplified case of a uniform air flow (ρ=1.225 kg/m3, μ=1.84×10-5 

Pa∙s) over a flat plate, whose characteristic length is L=1.0 m, with no angle of attack. If 

the mean flow velocity is U=10 m/s, the Reynolds number based on the characteristic 

length is: 

𝑅𝑒 =
𝜌𝑈𝐿

𝜇
≈ 6.7 × 10ହ 

above the critical value Recrit=105 at which the transition from laminar to turbulent flow 

takes place. This implies that the inertial forces are much larger than their viscous 

counterpart. On the other hand, the Reynolds number based on the distance from the 

wall (y), defined as: 

𝑅𝑒௬ =
𝜌𝑈𝑦

𝜇
 

varies with the coordinate y, and can therefore be greater than Recrit if the distance 

from the wall is large enough, but also tend to zero for sufficiently small values of y. In 

the latter case, the viscous forces are of the same magnitude or even larger than the 

Table 3.1. RANS turbulence models 
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inertial forces: this means that, in turbulent flows along solid bodies, there is a thin 

region, inside the boundary layer, where viscous effects are important, while inertia is 

dominant everywhere else. 

The turbulent boundary layer is divided into two particular regions, namely the inner 

layer and the outer layer. Introducing two new dimensionless variables: 

𝑦ା =
𝑦𝑢ఛ

𝜈
 

𝑢ା =
𝑈

𝑢ఛ
 

where: 

𝑢ఛ = ඨ
𝜏௪

𝜌
 

is the friction velocity, and: 

𝜈 =
𝜇

𝜌
 

is the kinematic viscosity, dimensional analysis shows that the flow variables in the 

inner layer do not depend on any free stream parameters, and that the mean velocity is 

a function of y, ρ, μ and τw only, the last quantity being the wall shear stress. Thus: 

𝑢ା = 𝑓(𝑦ା)     (3.17) 

Relation (3.17) is called law of the wall. The inner layer can furthermore be divided into 

three sub-layers, namely the viscous, buffer and logarithmic layers. The viscous 

sublayer, as the name implies, is dominated by viscous effects, and is characterised by 

a linear relationship between the dimensionless variables: 

𝑢ା = 𝑦ା     (3.18𝑎) 

This relation is valid for 0≤y+≤5. The logarithmic layer is, on the other hand, dominated 

by the Reynolds stresses. Here, a logarithmic relationship between u+ and y+ holds: 

𝑢ା =
1

𝑘
ln(𝑦ା) + 𝐶     (3.18𝑏) 

where k≈0.41 is the von Karman constant and C≈5 is the Coles constant. Relation 

(3.18b) is valid for 30≤y+≤100 and is often referred to as log-law. Outside the 

logarithmic layer, i.e. in the outer layer, where inertial effects prevail, the law of the wall 



 

is not valid and has to be substituted by the so

where Ue is the mean external flow velocity, 

A is a constant. Relationships (3.18a), (3.18b) and (3.19) are

logarithmic diagram (Figure 3.11):

 

 

 

 

 

 

 

 

 

 

The multi-layer structure is a universal feature of turbulent boundary layers near solid 

surfaces. 

3.3.4. The Boussinesq hypothesis

As explained above, momentum transfer in a turbulent flow is mainly due to the action 

of the eddies, especially the largest and most energetic ones. In 1877 Boussinesq 

formulated an important hypothesis, based on this observation, in which he stated that 

the turbulent shear stress and the mean rate of strain are linearly related, analogously 

to laminar flows, and that the proportionality factor is represented by the so

turbulent or eddy viscosity 

characteristics of the fluid: in fact, it is a f

affected by “flow history” effects. 

For the Favre- and Reynolds

reads: 

Figure 3.11. Law of the wall and law of the wake
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valid and has to be substituted by the so-called law of the wake: 

𝑈 − 𝑈

𝑢ఛ
= −

1

𝑘
ln ቀ

𝑦

𝛿
ቁ + 𝐴     (3.19) 

is the mean external flow velocity, δ is the boundary layer total thickness and  

is a constant. Relationships (3.18a), (3.18b) and (3.19) are usually plotted on a semi

logarithmic diagram (Figure 3.11): 

layer structure is a universal feature of turbulent boundary layers near solid 

3.3.4. The Boussinesq hypothesis 

As explained above, momentum transfer in a turbulent flow is mainly due to the action 

of the eddies, especially the largest and most energetic ones. In 1877 Boussinesq 

formulated an important hypothesis, based on this observation, in which he stated that 

he turbulent shear stress and the mean rate of strain are linearly related, analogously 

to laminar flows, and that the proportionality factor is represented by the so

 (μt) [30]. The eddy viscosity does not represent any physical 

characteristics of the fluid: in fact, it is a function of the local flow conditions and is 

affected by “flow history” effects.  

and Reynolds-Averaged Navier-Stokes equations, this hypothesis 

Figure 3.11. Law of the wall and law of the wake 
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As explained above, momentum transfer in a turbulent flow is mainly due to the action 

of the eddies, especially the largest and most energetic ones. In 1877 Boussinesq 

formulated an important hypothesis, based on this observation, in which he stated that 

he turbulent shear stress and the mean rate of strain are linearly related, analogously 

to laminar flows, and that the proportionality factor is represented by the so-called 
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−�̅�𝑣ప′′𝑣ఫ′′෫ = 2𝜇௧𝑆ሚ − 𝛿

2

3
𝜇௧

𝜕𝑣

𝜕𝑥
− 𝛿

2

3
 �̅�𝐾෩ 

where 𝑆ሚ and 𝐾෩ are the Favre-averaged strain rate and turbulent kinetic energy 

respectively. By applying the Boussinesq hypothesis to Equations (3.15a), (3.15b) and 

(3.15c), the dynamic viscosity (μ) is thus replaced by the sum of a laminar and a 

turbulent contribution: 

𝜇 = 𝜇 + 𝜇௧ 

where the laminar viscosity can be determined, for example, using the well-known 

Sutherland formula (Equation (3.7)). 

By analogy, the turbulent transport of the scalar quantity in Equation (3.16) is assumed 

to be proportional to the gradient of its mean value: 

−�̅�𝑢ప′′𝜑′′෫ = 𝛤௧

𝜕𝜑

𝜕𝑥
 

where Γt represents the eddy diffusivity. Its value is close to that of the eddy viscosity, 

since the transport of the scalar quantity is also dominated by the action of the eddies: 

this assumption is known as Reynolds analogy. The ratio between eddy viscosity and 

eddy diffusivity is called Schmidt number: 

𝜎௧ =
𝜇௧

𝛤௧
 

and is often approximated as constant and equal to unity in CFD solvers. 

Despite several limitations, mainly caused by the assumption of equilibrium between 

the turbulence and the mean strain field, the Boussinesq hypothesis is adopted by a 

large variety of turbulence models, since it only requires the determination of the eddy 

viscosity. 

3.3.5. The Spalart-Allmaras model 

As anticipated in Section 3.3.2, turbulence models are necessary for the closure of the 

RANS equations system (Equations (3.14)-(3.16)). They are able to predict the 

Reynolds stresses and the scalar transport terms, and form the basis of the turbulence 

calculation procedures implemented in numerous modern CFD codes. 

In the present work, the Spalart-Allmaras model has been used [31]. It involves one 

transport equation for the kinematic eddy viscosity parameter (𝜈) and provides the 

definition of a length scale through an algebraic formula. 

The kinematic eddy viscosity parameter is related to the eddy viscosity (μt) by the 
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relationship: 

𝜇௧ = 𝜌𝜈𝑓ఔଵ 

where 𝑓ఔଵ is a wall damping function which tends to unity for high Reynolds numbers, 

so that the kinematic eddy viscosity parameter is equal to the kinematic eddy viscosity 

(νt), and tends to zero at the wall. Following the Boussinesq hypothesis, the Reynolds 

stresses in Equations (3.15a), (3.15b) and (3.15c) are therefore computed as: 

−�̅�𝑣ప′′𝑣ఫ′′෫ = 2𝜇௧𝑆ሚ = 𝜌𝜈𝑓ఔଵ ቆ
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑥
ቇ 

The differential form of the transport equation for the kinematic eddy viscosity 

parameter reads: 

𝜕(𝜌𝜈)

𝜕𝑡
+ ∇ ∙ (𝜌𝜈𝒗) =

1

𝜎௩

∇ ∙ (𝜇 + 𝜌𝜈)∇(𝜈) + 𝐶ଶ𝜌
𝜕𝜈

𝜕𝑥

𝜕𝜈

𝜕𝑥

൨ + 𝐶ଵ𝜌𝜈Ω෩ − 𝐶௪ଵ𝜌 ൬
𝜈

𝑘𝑦
൰

ଶ

𝑓௪     (3.20) 

or, in words: 

𝑅𝑎𝑡𝑒 𝑜𝑓
𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝜈

 +  
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝑜𝑓 𝜈 𝑏𝑦
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

 =  

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑜𝑓 𝜈 𝑏𝑦

𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
 +  

𝑅𝑎𝑡𝑒 𝑜𝑓
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑜𝑓 𝜈
 −  

𝑅𝑎𝑡𝑒 𝑜𝑓
𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

𝑜𝑓 𝜈
 

The rate of production of 𝜈 is related to the local mean vorticity (Ω) by the relationship: 

Ω෩ = 𝛺 +
𝜈

(𝑘𝑦)ଶ
 𝑓௩ଶ 

The functions fv2 and fw are further wall damping functions, and σv, k, Cb1, Cb2 and Cw 

are model constants. These parameters are usually determined by best practices. The 

term ky, where y represents the distance from the solid wall, is used as the length scale 

and is equal to the mixing length assumed to derive the log-law presented in Section 

3.3.3 (Equation (3.18b)). 

The Spalart-Allmaras model provides economical and accurate computations of 

turbulent boundary layers in external aerodynamics applications, especially where 

adverse pressure gradients are present, and is capable of describing the transition 

from laminar to turbulent flow smoothly. It is a local model, i.e. the solution of Equation 

(3.20) at one point in the flow field does not depend on the solution at other points: for 

this reason, it can be implemented on both structured and unstructured grids. The 

Spalart-Allmaras model is furthermore robust, fast-converging and requires moderate 

grid resolutions in the region near the solid wall. On the other hand, it is somewhat 

insensitive to transport processes in rapidly changing flows and is generally 
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inappropriate for the description of internal flows. 

3.4. Determination of initial and boundary conditions 

When implementing a finite volumes scheme for the resolution of the Navier-Stokes 

equations, Equation (3.11) must hold for all the control volumes (Ωi) into which the 

domain is divided. Thus, a system of ordinary differential equations (ODEs), hyperbolic 

with respect to time, is obtained, and a known initial solution is needed in order to 

advance in time. Such solution defines the state of the fluid at the first step of the 

iterative scheme, and can be determined following several different approaches: in 

external aerodynamics applications, for instance, a uniform initial condition is usually 

prescribed, and the free-stream values of the flow variables are assigned to all the 

control volumes; in numerous turbomachinery applications, on the other hand, it is 

preferable to specify the flow direction in the domain, and physically meaningful initial 

conditions are usually generated. In the present work, a uniform initial condition has 

been defined, and an initial Mach number Minit=2 has been assigned to the entire flow 

field. The Reynolds number has been set to Re≈1.0×107, in accordance with the 

experimental data. 

In addition to the initial solution, the so-called boundary conditions must be determined, 

since computational processes cannot afford to simulate the entire physical domain, 

which in turn has to be truncated, thus generating “artificial” boundaries at which some 

flow quantities need to be defined. Bearing in mind that the computed solution should 

be as accurate as possible, however, these boundaries are usually located at a 

distance from the object of the investigation, so as not to interfere with the structure of 

the flow field in the critical areas. Clearly, an exception to this rule is represented by the 

object’s walls. The numerical treatment of these conditions requires particular attention, 

as an improper implementation would lead to erroneous results, and may influence the 

scheme’s stability and convergence speed. Moreover, depending on the type of 

boundary condition - i.e. depending on the area of the flow field that they simulate 

numerically - and on the selected scheme, different discretisation techniques have to 

be used. With respect to Figure 3.12, the following boundary conditions have been 

implemented in the present work: AB is a supersonic inlet, where the free-stream Mach 

number (Minlet), reference total pressure (p0
ref) and reference total temperature (T0

ref) 

values have been specified; CD is a supersonic outlet, while EF is a subsonic outlet, 

where the value of the local normalised mean static pressure (pn=ps/p
0
ref) has been set; 

BC and AG are symmetry planes, since there is no angle of attack (α) between the flow 

direction and the inlet’s axis; finally, all the remaining boundaries are solid walls, where 

a no-slip condition has been imposed. 
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The selected initial and boundary conditions are summarised in Table 3.2: 

Parameter Value 

Minit 2.0 

Re 1.0×107 

Minlet 2.0 

p0
ref 3 [atm] 

T0
ref 271.36 [K] 

pn variable 

α 0 [deg] 

 

Note that the normalised static pressure in Table 3.2 is specified as variable because, 

depending on its values, different operating regimes can be simulated, as will be shown 

in Chapter 4. 

 

 

 

 

 

 

 

Figure 3.12. Computational domain and boundaries 

Table 3.2. Initial and boundary conditions 



 

4. Results and discussion

In this chapter, the results of our numerical simulations will be discussed in detail and 

compared with Nagashima et al.’s experimental findings 

solutions obtained in other computational studies.

The flow field images have been generated with VisIt, an open source visualisation, 

animation and analysis tool 

4.1. Near-critical case (TR=

The first case concerns a 

Nagashima’s work by a throttle ratio 

static pressure pn≈0.65 at the subsonic outlet of our computational domain (see Section 

3.4). This configuration has also been investigated numerically by Newsome 

Figure 4.1 shows the Mach number distribution over the flow field. The represented 

shock waves system is typical o

oblique shock, generated from the ramp tip and propagating downstream, and a 

terminal shock, located within the duct, can be observed (see Section 2.3). 

 

Figure 4.2 illustrates the internal flow’s structure more clearly, and highlights the 

interaction between the shock wave and the boundary layer, which separates on the 

center body and the cowl as a result of the local high adverse pressure gradi

interaction causes the expected single normal shock to be substituted by multiple weak 

shocks, as already suggested by Newsome: the Mach number consequently oscillates 

Figure 4.1. Mach number distribution 
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4. Results and discussion 

In this chapter, the results of our numerical simulations will be discussed in detail and 

compared with Nagashima et al.’s experimental findings [1], as well as with several 

solutions obtained in other computational studies. 

The flow field images have been generated with VisIt, an open source visualisation, 

animation and analysis tool [32]. 

critical case (TR=1.42) 

The first case concerns a near-critical, steady-state operating condition, identified in 

throttle ratio value TR=1.42, corresponding to a normalised 

≈0.65 at the subsonic outlet of our computational domain (see Section 

3.4). This configuration has also been investigated numerically by Newsome 

Figure 4.1 shows the Mach number distribution over the flow field. The represented 

shock waves system is typical of the supercritical regime: indeed, the presence of an 

oblique shock, generated from the ramp tip and propagating downstream, and a 

terminal shock, located within the duct, can be observed (see Section 2.3). 

Figure 4.2 illustrates the internal flow’s structure more clearly, and highlights the 

interaction between the shock wave and the boundary layer, which separates on the 

center body and the cowl as a result of the local high adverse pressure gradi

interaction causes the expected single normal shock to be substituted by multiple weak 

shocks, as already suggested by Newsome: the Mach number consequently oscillates 

Figure 4.1. Mach number distribution (TR=1.42) 

In this chapter, the results of our numerical simulations will be discussed in detail and 

, as well as with several 

The flow field images have been generated with VisIt, an open source visualisation, 

state operating condition, identified in 

=1.42, corresponding to a normalised 

≈0.65 at the subsonic outlet of our computational domain (see Section 

3.4). This configuration has also been investigated numerically by Newsome [12]. 

Figure 4.1 shows the Mach number distribution over the flow field. The represented 

f the supercritical regime: indeed, the presence of an 

oblique shock, generated from the ramp tip and propagating downstream, and a 

terminal shock, located within the duct, can be observed (see Section 2.3).  

Figure 4.2 illustrates the internal flow’s structure more clearly, and highlights the 

interaction between the shock wave and the boundary layer, which separates on the 

center body and the cowl as a result of the local high adverse pressure gradients. Such 

interaction causes the expected single normal shock to be substituted by multiple weak 

shocks, as already suggested by Newsome: the Mach number consequently oscillates 



 

around unity in the initial part of the divergent duct before decreasing to s

values. 

The interaction between the external oblique shock and another shock, generated from 

the sharp cowl lip, can furthermore be noticed. The resulting discontinuity is 

subsequently weakened by the two expansion fans that originate from the cowl’s 

external surface. 

 

Mach contours at the inlet’s entrance region are visible in Figure 4.3: 

results agree well with Newsome’s s

Nagashima et al.’s experiment.

The normalised static pressure field inside the inlet is shown in Figure 4.4. Pressure 

values taken at the locations of the experimental sensors 

Nagashima’s findings (Table 4.1

was also observed by Newsome, and might be due to the particular position of the 

probe, which is located near the internal shock waves system region.

 

 

 

 

Figure 4.2. Internal shock structure (TR=1.42)
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around unity in the initial part of the divergent duct before decreasing to s

interaction between the external oblique shock and another shock, generated from 

the sharp cowl lip, can furthermore be noticed. The resulting discontinuity is 

subsequently weakened by the two expansion fans that originate from the cowl’s 

Mach contours at the inlet’s entrance region are visible in Figure 4.3: 

results agree well with Newsome’s solution and with the Schlieren images

experiment. 

lised static pressure field inside the inlet is shown in Figure 4.4. Pressure 

values taken at the locations of the experimental sensors are in accordance with 

Nagashima’s findings (Table 4.1), with the exception of sensor P3. This discrepancy 

rved by Newsome, and might be due to the particular position of the 

probe, which is located near the internal shock waves system region. 

Figure 4.2. Internal shock structure (TR=1.42) 
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interaction between the external oblique shock and another shock, generated from 

the sharp cowl lip, can furthermore be noticed. The resulting discontinuity is 

subsequently weakened by the two expansion fans that originate from the cowl’s 

Mach contours at the inlet’s entrance region are visible in Figure 4.3: the computed 

olution and with the Schlieren images from 

lised static pressure field inside the inlet is shown in Figure 4.4. Pressure 

are in accordance with 

), with the exception of sensor P3. This discrepancy 

rved by Newsome, and might be due to the particular position of the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3. Schlieren photograph (
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Figure 4.3. Schlieren photograph ([1], top) vs. Mach contours ([12], middle; bottom) (TR=1.42), middle; bottom) (TR=1.42) 
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4.2. Subcritical case (TR=0.67)

The steady-state solution of the near

the simulation of a subcritical operating condition, referred to as 

Nagashima’s paper, which has also been analysed by Hong 

This throttle ratio value corresponds to a normalised mean static pressure 

the subsonic outlet of our domain.

As explained in Section 2.6, changes in engine throttle that cause a decrease in the 

mass-flow ratio value may lead, under certain circumstances, to the onset of an 

oscillatory phenomenon known as 

Dailey type were experimentally observed. 

Figure 4.5 shows the comparison between the computed flow field and the Schlieren 

images from Nagashima’s work, and demonstrates that the 

cycle is accurately described by the numerical solution. A shock

Figure 4.4. Normalised static pressure

Table 4.1. Normalised static pressure values at the experimental sensors’ locations: 
comparison between experimental and 
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Experimental value Computed value

0.30 0.30 

0.32 0.30 

0.26 0.38 

0.65 0.64 

0.67 0.65 

4.2. Subcritical case (TR=0.67) 

state solution of the near-critical case has served as the starting point for 

the simulation of a subcritical operating condition, referred to as 

Nagashima’s paper, which has also been analysed by Hong [16] and Luo et al. 

This throttle ratio value corresponds to a normalised mean static pressure 

the subsonic outlet of our domain. 

As explained in Section 2.6, changes in engine throttle that cause a decrease in the 

o value may lead, under certain circumstances, to the onset of an 

oscillatory phenomenon known as buzz: in this particular case, buzz cycles of the 

were experimentally observed.  

Figure 4.5 shows the comparison between the computed flow field and the Schlieren 

images from Nagashima’s work, and demonstrates that the subcritical phase

cycle is accurately described by the numerical solution. A shock-induced boundary 

Figure 4.4. Normalised static pressure field (TR=1.42) 

Table 4.1. Normalised static pressure values at the experimental sensors’ locations: 
comparison between experimental and numerical results (TR=1.42) 

Computed value 

critical case has served as the starting point for 

the simulation of a subcritical operating condition, referred to as TR=0.67 in 

and Luo et al. [17]. 

This throttle ratio value corresponds to a normalised mean static pressure pn≈0.77 at 

As explained in Section 2.6, changes in engine throttle that cause a decrease in the 

o value may lead, under certain circumstances, to the onset of an 

: in this particular case, buzz cycles of the 

Figure 4.5 shows the comparison between the computed flow field and the Schlieren 

subcritical phase of the 

induced boundary 

Table 4.1. Normalised static pressure values at the experimental sensors’ locations: 
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layer separation, which progressively obstructs the inlet’s entrance, and the terminal 

shock wave moving towards the ramp’s tip can be noticed. 

 

 

A further comparison between our results and Hong’s Mach number distribution for the 

subcritical phase, presented in Figure 4.6, shows that the two numerical solutions 

agree well. 

 

 

 

Figure 4.5. Computed Mach number distribution vs. Schlieren 
photographs [1] - subcritical phase (TR=0.67) 
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However, during the shock’s retreat stage, which theoretically precedes the 

supercritical phase, several oscillations of the system are observed in the numerical 

flow field as the terminal shock wave moves back and forth on the compression ramp 

(Figure 4.7). This motion, which does not reproduce the experimentally observed 

behaviour of the fluid, is characterised by an increasing amplitude and is somewhat 

irregular, as shown by the computed pressure histories in Figure 4.8. The 

contemporaneous presence of a separated flow area that blocks the inlet’s entrance 

furthermore prevents the shock from reaching its supercritical position: the last part of 

the buzz cycle is not faithfully replicated. 

 

 

 

 

 

Figure 4.6. Mach number distribution: comparison between two different 
numerical solutions [16] - subcritical phase (TR=0.67) 



 

 Figure 4.7 (a
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Figure 4.7 (a-c). Shock oscillations during the retreat phase (TR=0.67)  



 

 Figure 4.7 (d
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Figure 4.7 (d-f). Shock oscillations during the retreat phase (TR=0.67)  



 

 Figure 4.7 (g
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Figure 4.7 (g-i). Shock oscillations during the retreat phase (TR=0.67) 



 

 Figure 4.7 (j-
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-l). Shock oscillations during the retreat phase (TR=0.67) 



 

 

 

 

 

 

 

 

The numerical results for sensors P2 and P3 are also compared with the experimental 

solution in Figure 4.9, where the non

emphasised. 

 

 

Figure 4.8. Computed pressure histories at the experimental sensors’ locations (TR=0.67) 
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The numerical results for sensors P2 and P3 are also compared with the experimental 

solution in Figure 4.9, where the non-cyclic pattern of the computed pressure signals is 

Figure 4.8. Computed pressure histories at the experimental sensors’ locations (TR=0.67) 

The numerical results for sensors P2 and P3 are also compared with the experimental 

computed pressure signals is 

Figure 4.8. Computed pressure histories at the experimental sensors’ locations (TR=0.67)  
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Despite the solver’s capability to capture flow instability under this specific subcritical 

operating condition, the obtained results appear to be distant from the experimental 

findings. The behaviour of the numerical solution can be attributed to different causes. 

Firstly, the relatively coarse mesh (see Section 3.2.1) generated for this preliminary 

analysis of the buzz phenomenon may have negatively influenced the computed flow 

field: a grid convergence study should therefore be conducted in order to investigate 

the effects of further mesh refinements on the solution. Additionally, physics-based 

explanations can be provided considering an aeroacustics perspective. Due to 

computational reasons, mainly associated with the limited available time for the running 

of our simulations, the inlet’s length in the present work has been reduced in 

comparison with Nagashima’s experimental model. However, as highlighted in Section 

2.6.2, buzz is regarded as a self-excited phenomenon, which can only be sustained if a 

positive feedback mechanism is present: since such mechanism is dependent on the 

geometrical features of the inlet [10], [13], the computed buzz cycle may have been 

affected by the length modification. Furthermore, it can be noted that the shortened 

inlet’s exit is located at a position where large static pressure variations throughout a 

single buzz cycle have been observed in Luo et al.’s analysis [17] (Figure 4.10): the 

imposed pressure outlet condition has therefore acted as a non-physical constraint, 

Figure 4.9. Comparison between the experimental ([1], top) and numerical 
(bottom) pressure histories (TR=0.67) 



 

forcing the local pressure oscillations to be reduced in magnitude. This limiting action 

can be seen from probe P5’s pressure history (Figure 4.8), which highlights that the 

signal’s amplitude is rather small in comparison to the nearest sensor P4.

 

 

 

 

 

 

 

 

Lastly, it must be noticed that, starting from the onset of the instability, only a brief 

period of physical time has been simulated: a much larger number of iterations might 

be needed in order to observe an evolution of the flow field towards a 

periodical solution. Clearly, additional computational resources are necessary to fulfil 

such requirement. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Pressure standard deviation distribution inside the inlet 
(TR=0.67). Here, L=0.635m is the experimental inlet model’s leng
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forcing the local pressure oscillations to be reduced in magnitude. This limiting action 

P5’s pressure history (Figure 4.8), which highlights that the 

signal’s amplitude is rather small in comparison to the nearest sensor P4.

Lastly, it must be noticed that, starting from the onset of the instability, only a brief 

period of physical time has been simulated: a much larger number of iterations might 

be needed in order to observe an evolution of the flow field towards a 

periodical solution. Clearly, additional computational resources are necessary to fulfil 

Figure 4.10. Pressure standard deviation distribution inside the inlet [17]
(TR=0.67). Here, L=0.635m is the experimental inlet model’s length 

forcing the local pressure oscillations to be reduced in magnitude. This limiting action 

P5’s pressure history (Figure 4.8), which highlights that the 

signal’s amplitude is rather small in comparison to the nearest sensor P4. 

Lastly, it must be noticed that, starting from the onset of the instability, only a brief 

period of physical time has been simulated: a much larger number of iterations might 

be needed in order to observe an evolution of the flow field towards a possible 

periodical solution. Clearly, additional computational resources are necessary to fulfil 

[17] 
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5. Conclusions and future perspectives 

The flow field in an experimentally tested axisymmetric, external compression 

supersonic inlet operating at near-critical and subcritical off-design conditions has been 

investigated numerically. 

The simulations have been performed exploiting a research CFD code, based on an 

unstructured finite volumes method and on the Unsteady-RANS approach combined 

with the Spalart-Allmaras turbulence model. A second-order accurate upwind scheme 

has been used for the spatial discretisation of the governing equations, and the Barth 

and Jespersen limiter has been implemented in order to avoid spurious oscillations in 

the computed solution. Moreover, depending on the simulated regime, different implicit 

temporal discretisation schemes and Courant numbers have been chosen. 

The solver has been successfully validated for the near-critical, steady-state condition: 

the obtained results are in good agreement with the experimental findings, as well as 

with a previous numerical analysis performed on the same case. Nevertheless, the 

unstable subcritical regime, for which buzz cycles of the Dailey type were 

experimentally observed, has not been correctly reproduced: notwithstanding the 

solver’s capability to capture flow instability under this specific operating condition, the 

computed solution appears to be distant from the experimental results. Explanations for 

the behaviour of the numerical flow field can be provided considering different 

perspectives: on the one hand, the relatively coarse mesh generated for this 

preliminary analysis of buzz may have negatively influenced the solution; on the other 

hand, buzz characteristics might have been affected by the reduced length of the 

computational inlet model and by the imposed constant static pressure at the inlet’s 

exit, which acts as a constraint on the local pressure variations. 

In view of the above, a grid convergence analysis should be conducted in order to 

carefully investigate the impact of further mesh refinements on the computed results; 

different lengths of the inlet should also be considered, so as to locate its exit in a 

position where pressure oscillations during buzz are a minimum: a deeper knowledge 

of the phenomenon from an analytical point of view is therefore desirable. Lastly, a 

much larger number of iterations might be needed in order to observe an evolution of 

the flow field towards a possible periodical solution. Undoubtedly, additional 

computational resources, in terms of both time and power, are necessary for the 

accomplishment of these tasks. 
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