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Resumo

Os benefı́cios dos sistemas de Propulsão Eléctrica Solar já foram estabelecidos por missões como a

Deep Space 1 e a Hayabusa; sistemas deste tipo são frequentemente considerados ao nı́vel preliminar

do planeamento de missões espaciais interplanetárias. À necessidade de pôr em práctica métodos

eficientes de comparação das múltiplas opções tecnológicas disponı́veis, este trabalho responde com

uma aplicação de optimização de trajectórias de impulso contı́nuo capaz de realizar análises comparati-

vas ao nı́vel dos sistemas de propulsão. O problema de optimização de trajectórias de impulso contı́nuo

é formulado como um problema de Controlo Óptimo resolvido através de uma transcrição para um prob-

lema de Programação Não Linear. As ferramentas básicas do programa são utilizadas para o desenho

de uma trajectória para um alvo secundário da missão Comet Interceptor. A aplicação é posteriormente

estendida ao caso invulgar da trajectória principal da missão Comet Interceptor: a missão não tem um

alvo definido até à data de lançamento. As possı́veis posições de um encontro com o alvo principal

são parametrizadas de forma a mapear cada localização a um valor de ∆v necessário para a alcançar.

De seguida, os resultados são comparados com dados da performance esperada de um sistema de

propulsão impulsiva. A comparação estabelece a superioridade de um sistema de Propulsão Eléctrica

Solar na óptica da maximização simultânea da massa útil da nave espacial e do número de posições

alcançáveis para o encontro com o alvo.

Palavras-chave: Propulsão Eléctrica Solar, Optimização de Trajectórias, Análise de Missões

Interplanetárias, Comet Interceptor
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Sommario

I benefici che la propulsione elettrica solare porta alle missioni interplanetarie sono stati stabiliti da

missioni quali Deep Space 1 e Hayabusa tanto che ad oggi questa tecnologia è spesso presa in con-

siderazione durante le prime fasi di design di una missione. In questo lavoro si indaga la necessità di

confrontare diverse opzioni tecnologiche al livello di Preliminary Mission Design attraverso lo sviluppo

di un software per l’ottimizzazione di traiettorie capace di compiere studi di trade-off a livello di sistema.

Il problema dell’ottimizzazione di traiettorie a bassa spinta viene formulato come Problema di Controllo

Ottimale e risolto tramite la traduzione in un problema di Programmazione Non Lineare. L’applicazione

richiede un un input minimale da parte dell’utente per quanto riguarda le caratteristiche della missione

e usa un modello approssimato di traiettoria per generare stime iniziali per le variabili del Problema di

Controllo Ottimale. Il software viene utilizzato per il design della traiettoria preliminare della missione

Comet Interceptor. Il trasferimento supportato da energia solare verso una cometa di riserva e opzioni

alternative al sistema di propulsione elettrica di riferimento sono studiati grazie alle capacità di base

del programma. Il software è poi ampliato in modo da poter trattare le caratteristiche uniche del design

preliminare della traiettoria della missione Comet Interceptor: fino a quando il veicolo spaziale non sia

stato lanciato, non sarà possibile sapere quale sia di preciso la cometa bersaglio principale. I possibili

luoghi di incontro vengono parametrizzati in modo da essere mappati a seconda del ∆v richiesto dalla

Propulsione Elettrica Solare. I risultati sono poi confrontati con dati disponibili dalle prestazioni del sis-

tema di riferimento a Propulsione Chimica, stabilendo la superiorità del sistema a Propulsione Elettrica

Solare nel massimizzare sia la massa del payload che la distanza delle posizioni raggiungibili.

Parole Chiave: Propulsione Elettrica Solare, Ottimizzazione di Traiettoria, Analisi di Missione

Interplanetaria, Comet Interceptor
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Abstract

The benefits of Solar Electric Propulsion for interplanetary missions have been established by missions

such as Deep Space 1 and Hayabusa and the technology is now frequently considered at early mission

design phases. The need to compare multiple technological options at a preliminary mission design

stage is addressed in this work through the development of a trajectory optimization software capable of

performing trade studies at a system level. The low thrust trajectory optimization problem is formulated

as an Optimal Control Problem solved after a direct transcription into a Nonlinear Programming Problem.

The software is exploited for the preliminary trajectory design of The Comet Interceptor Mission. A solar

powered transfer to a backup target and alternative options to the reference propulsion system are

studied with the baseline capabilities of the program. The software is then extended to handle the

unique characteristics of the preliminary trajectory design of the Comet Interceptor Mission: the primary

target comet will not be known until after the spacecraft is launched. The possible encounter locations

are parametrized to map each location to a required ∆v to reach it with Solar Electric Propulsion. The

results are then compared to available performance data for the Chemical Propulsion baseline system,

establishing the superiority of the Solar Electric Propulsion option in maximizing both payload mass and

reachable locations.

Keywords: Solar Electric Propulsion, Trajectory Optimization, Interplanetary Mission Analysis,

Comet Interceptor
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Chapter 1

Introduction

In this work a fast front end tool for preliminary low thrust trajectory design is developed. Specifically, the

goal is to automate the process of generating feasible trajectories in interplanetary missions with Solar

Electric Propulsion (SEP). For a SEP trajectory to be feasible it must respect physical laws but also

stay within a spacecraft’s system limitations such as maximum engine thrust and available power. By

considering system limitations, the tool is expected to be used for Solar Electric Propulsion system-level

trade studies, preliminary trajectory design, as an initial guess for more refined optimizers or as an input

for navigation analysis tools.

1.1 Solar Electric Propulsion

Deep Space 1 was the first interplanetary mission using Solar Electric Propulsion (SEP) [1]. Launched

in 1998, the spacecraft’s ion-thruster worked for 1800 h, providing 700m s−1 of ∆v needing only 3% of its

dry mass for propellant. Numerous missions followed: Hayabusa, JAXA’s bold attempt at rendezvous

with an asteroid, was equipped with ion engines that provided 2.2 km s−1 of ∆v using only 47 kg of pro-

pellant (12% of the dry mass) [2]; ESA’s SMART-1, launched in 2003, consisted in raising the orbit of

the spacecraft from a Geostationary Transfer Orbit to a Moon Orbit to test Solar Electric Propulsion for

deep space applications [3]; NASA’s Dawn mission took off with an Ion Propulsion System that provided

an impressive 11 km s−1 of ∆v which was comparable to its launch vehicle [4]; building on the accom-

plishments of Hayabusa, JAXA launched Hayabusa 2 in 2014 which, after successfully rendezvousing

with asteroid Ryugu in 2018, returned an asteroid sample in 2020; BepiColombo is a joint effort between

ESA and JAXA [5] enroute to Mercury: interestingly, BepiColombo’s electric engines’ maximum thrust

level will increase throughout the mission, as it gets closer to the Sun and more power is available [6].

Besides deep space missions, scientific and commercial Earth Orbit missions have exploited electrical

propulsion and present satellite communication systems rely on the technology [7].

Current state-of-the-art Electric Propulsion (EP) technology provides significantly less thrust when

compared to Chemical Propulsion (CP) technologies: EP systems deliver thrust in the order of magni-

tude of mN [8] whereas CP rockets can provide up to hundreds of kN of thrust. However, EP is typically
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more efficient in terms of fuel consumption when compared to high thrust CP systems because EP

systems have higher specific impulse, Isp [8].

Besides the difference in terms of performance, EP and CP also differ in their effect on the trajectory

dynamics. In a first approximation, modelling a chemical propulsion system is unnecessary and the

maneuvers are considered impulsive. The result of an impulsive maneuver is a keplerian orbit for which

there is an analytical solution for elementary cases. On the other hand, electric engines work for longer

periods of time given their low thrust levels. Hence, a low thrust trajectory is not a keplerian orbit. This

difference means that, albeit more efficient, continuous thrust trajectories are complex to model and

optimize.

The low thrust trajectory optimization problem is nonlinear and does not have an analytical closed-

form solution for the general case [9]. Adding to the complexity of the problem, the trajectory and

the propulsion system are coupled. For each pair of spacecraft and propulsion system, the optimal

trajectory may be different and comparing different technology combinations may be a daunting task.

The optimization of a trajectory includes continuous mission variables, such as date of departure, initial

orbit energy, time-of-flight, thrust direction and thrust magnitude. Additionally, an optimizer may have to

choose bodies to perform gravity assists and decide on the number of flybys, thus the problem might

also accommodate discrete variables. There may be thousands or millions of candidate trajectories to

be evaluated for a given trajectory optimization problem [10].

The complexity of the SEP trajectory optimization problem has not hindered the technology. The

potential of SEP for interplanetary missions was foreseen by NASA’s Deep Space 1 [11] and confirmed

by numerous missions thereafter [2–5]. Naturally, more and more systems have been developed and the

technology is no longer a novelty [7]. This means that numerous options are at the disposal of spacecraft

developers suggesting the need for new tools to compare different systems during preliminary mission

design. Such tools have to be developed in the framework of the Trajectory Optimization Problem.

1.2 Review of Trajectory Optimization Methods

The Trajectory Optimization Problem has drawn a great deal of attention; numerous surveys have pro-

vided insights on the evolution of the state-of-the-art in the field [12–16]. As of 2020, the topic is still

relevant as new computation trends emerge, such as machine learning techniques [15], and innovative

propulsion technologies are developed such as solar sails [17]. The low thrust trajectory optimization

problem aims to find the trajectory path and control history that minimize a cost index while satisfy-

ing boundary conditions and following the dynamics of celestial mechanics. The dynamical system is

represented by the vector set of variables: spacecraft state (position and velocity) and the control vari-

ables (applied thrust vector). Since the problem consists in finding the control profile to minimize a cost

function, it is considered an Optimal Control Problem (OCP) [12].
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1.2.1 Optimal Control Problem

The OCP can be solved analytically or numerically [14]. As there is no closed-form solution for the

Trajectory Optimization OCP, analytical methods require limiting assumptions (such as tangential thrust

or quasi-circular trajectories) [18–21] which may lead to disagreements between simulation and reality

in spacecraft motion. Nonetheless, analytical methods provide useful insights when solving OCPs.

Numerical methods can be grouped into indirect, direct and stochastic methods [12, 14].

Indirect methods exploit the calculus of variations [22] to derive the optimality conditions of the prob-

lem and find the root of the resulting equations. The resulting equations require that a set of parameters

known as Lagrange Multipliers, or co-states, are found such that they ensure the optimality of the solu-

tion. Within this framework, emerged the primer vector theory [23, 24]: the co-states provide the optimal

thrust direction and magnitude and the optimal coast-thrust-coast structure; for the majority of the prob-

lems the optimal control profile is bang-bang, i.e., the engine is either off or at its maximum power.

Despite the utility of the co-states in finding the optimal control function, they have no physical meaning.

Additionally, to start the root solving algorithm, an initial guess must be generated for the co-states. Gen-

erating an initial guess for the co-states is not a trivial task hence some of the previous work focused on

this problem [25, 26]. Existing work in the field of indirect trajectory optimization [23–26] discretizes the

optimality conditions and employs Nonlinear Programming (NLP) solvers to find the solution. Despite

ensuring the optimality of the solution, indirect methods suffer from two hindering limitations. First, the

problems have small regions of convergence and are very dependent on the initial guess [12]. Sec-

ondly, indirect methods need analytical expressions for the optimality conditions that have to be derived

explicitly for each specific problem, thus being less versatile than direct methods [27, 28].

Contrarily to indirect methods, direct methods do not envolve the derivation of analytical optimal-

ity conditions. Consequently, the direct approach easily involves a broad number of constraints and is

preferred for trade study analysis [27], where multiple mission scenarios are to be assessed. A direct

method transforms the continuous optimal control problem into a discrete Nonlinear Programming Prob-

lem [28]; the optimization parameters are the control variables at a finite number of nodes and in some

cases the trajectory states. The baseline direct approach — often referred to as Sims-Flanagan Tran-

scription (SFT) — divides the trajectory into multiple legs with a finite number of nodes where maneuvers

are considered impulsive [29, 30]. The dynamic system equations are integrated stepwise and the con-

straints appear as nonlinear equations or inequalities. The Sims-Flanagan Transcription can then be

formulated as a NLP Problem to find the locally optimal trajectory and control profile [31–35]. The Sims-

Flanagan Transcription was exploited and extended by previous work: a combination of a NLP solver

with a globalization algorithm — Monotonic Basin Hopping — was employed to avoid convergence to

local minima [31, 32]; the assumption of impulsive maneuvers at the control nodes was exchanged for

the assumption of constant thrust between nodes for higher fidelity results [34]; the higher fidelity Sims-

Flanagan Transcription [34] was used in a target search for a small Solar Electric Propulsion spacecraft

mission leaving the Sun-Earth Lagrange Point 2 (SEL2) [35]. A direct method does not ensure the

optimality of the solution but it has been found that these methods are able to converge to bang-bang

solutions [23]. Nonetheless, direct methods are not without its shortcomings: the NLP solver can get
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stuck at a local minimum; direct methods are hampered by the large number of NLP variables as more

accuracy is desired. The direct approach does not require any guess for the co-states but it does require

so for the states and control variables.

The indirect and direct numerical methods that exploit NLP solvers are considered gradient-based

solvers. A third numerical approach exploits stochastic optimization methods. A stochastic method

relies on meta-heuristic processes: these algorithms randomly select values for the problem variables

and define decision-making policies to find the best solution. Stochastic methods are particularly useful

for problems with discrete variables [12] such as multiple gravity assist trajectory optimization problems:

these problems cannot be solved by calculus based methods and comparing all the possible solutions

is prohibitive, hence the use of stochastic methods [14]. Meta-heuristics are attractive because the

underlying algorithms ignore the dynamics of the problem and only compare stochastic solutions until

the maximum number of iterations is reached. However, for problems where a gradient is available,

calculus based methods typically converge faster [12].

Regardless of the numerical method used to solve the problem, the continuous OCP has to be

transcribed into a discrete form. The transcription techniques typically used, single shooting or multiple

shooting, are compared in [28]. The single shooting technique parametrizes the controls leaving the

trajectory states as an implicit function of the controls. The trajectory is propagated from the initial to

the final time instant and the error or defect at the final boundary condition is brought to zero [36]. A

single shooting transcription requires fewer parameters when compared to multiple shooting but a small

change in the initial conditions can generate large changes in the the final conditions. As a result the

constraint equations are very nonlinear and difficult to solve [12]. The nonlinear effects that hinder

the single shooting technique are dealt with by the multiple shooting technique. The multiple shooting

technique parametrizes both the control profile and the trajectory states: the problem’s time domain is

broken into smaller segments and continuity constraints are enforced at the boundary of each segment

[28]. Although the added constraints in the multiple shooting transcription increase the problem size they

reduce the problem’s sensitivity with respect to single shooting.

The three numerical methods considered in this work can be grouped into gradient-based methods

(direct and indirect) and stochastic methods (meta-heuristics). Despite their differences, these methods

are complementary as recent work in Hybrid Optimal Control Problem (HOCP) algorithms proves [37–

39]. The meta-heuristics approach does not require an initial guess to solve the problem, however, its

superiority is limited to combinatorial problems or when a gradient is not available [12]. For gradient-

based approaches, there is the need of an initial guess for the NLP variables which is typically generated

using a simplified or approximate trajectory model.

1.2.2 Initial Guess Generation

Approximate trajectory descriptions are useful in expediting the initial search of the design space in

trajectory optimization problems [14]. The most promising trajectories can be used as an initial guess

for optimal control solvers.
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The need for high fidelity optimizers to be fed with initial guesses [12] and the recent trend in hybrid

optimization algorithms [14, 40] has driven research on the topic of automating the trajectory generation

process. When approximating a low thrust trajectory, a trade-off between fidelity and computational

cost is key since meaningful results are asked for but using complex models is time consuming when

evaluating multiple candidate solutions. This trade-off calls for the most accurate description with the

minimum number of parameters and, if possible, using linear relations: simple numerical procedures to

satisfy boundary conditions are desired. Previous research in the field can be divided into shape-based

approaches and pseudospectral methods.

The shape-based approach is widely used [14]. It assumes a predetermined shape for the solution

and defines shape parameters to satisfy boundary conditions [41–44]. The exponential sinusoid shape

model [41] describes the trajectory in terms of the polar coordinate where four coefficients are used to

satisfy boundary conditions. The inverse polynomial shape [42] extends the exponential sinusoid method

adding two parameters to fully satisfy the boundary conditions for rendezvous problems. Subsequently,

the spherical shaping model is successful in generating feasible three dimensional trajectories in a fast

way and it was shown to be a general case of the exponential sinusoid and the inverse polynomial shape

[43]. These methods have limitations inasmuch as they fail in satisfying boundary conditions such as

rendezvous [41] or require assumptions regarding thrust orientation [41–43]. Moreover, all need iterative

methods to define the shape parameters. Despite this, shape-based methods are successfully used to

automate initial search processes in trajectory optimization problems.

A distinct yet still shape-based approach is shaping the velocity instead of the position. Hodographic

shaping of the velocity is acceptable for generating feasible and near-optimal trajectories and simplifies

the satisfaction of boundary conditions of other shape-based methods [44]. However, its success relies

on a problem-dependent choice of basis functions to describe the velocity vector diagram.

Contrarily to shape-based methods, pseudospectral methods do not assume a shape for the solution;

instead they assume that the trajectory’s shape may be approximated by a series expansion of a set

of global basis functions [45–49]. Pseudospectral methods are interpolatory methods used to solve

differential equations for an unknown function [50]. In particular, Finite Fourier Series are suitable for

fast trajectory generation: a method to handle thrust constraints concurrently with the generation of

candidate trajectories was developed for the two dimensional case [45, 46] and three dimensional case

[47]. The technique was shown to be flexible in generating different trajectories both comparable and

different to state-of-the-art shape-based methods [47]. Chebyshev polynomials were found to be flexible

in approximating different continuous thrust trajectories [48, 49]. In particular, a self-contained method to

autonomously search for candidate trajectories was developed, eliminating the need for initial guesses

of the series’ coefficients. Also, to satisfy the problem’s boundary conditions, the work in [49] required

only the solution of a linear algebraic set of equations.

These methods were not developed having thrust constraints satisfaction capabilities in mind; only

the Finite Fourier Series method [45–47] incorporates the thrust constraints when computing the terms

of the Fourier Series. Their shortcomings are the need for initial guesses for the series’ coefficients

and the degrading of the technique for difficult problems such as high eccentricity and high inclination
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change transfers [45–47].

Overall, previous attempts of automating trajectory generation using approximate trajectory models

were successful. Advances on the topic have been exploited for inner loops of hybrid optimization

algorithms [31, 32, 39] or used to feed medium to high fidelity optimizers to solve for feasible thrust

profiles [41, 43, 49]. A proof of concept framework for evaluating different SEP systems [48, 49] ensures

the potential of the work done so far.

1.3 Motivation

This MSc Thesis exploits existing approximate trajectory models coupled with a NLP solver to paramet-

rically evaluate different Solar Electric Propulsion technologies. A tool is developed that allows mission

analysts to compare the benefits and costs of different trajectory, thruster and power system combi-

nations. The software shall be able to efficiently cope with the obstacles of the continuous propulsion

trajectory optimization problem: nonlinear system dynamics, possible discontinuities in the state vari-

ables, presence of time-dependent forces, boundary conditions often being optimization variables, and

the structure of the solution not being known beforehand [9].

Additionally, this work was instigated by the need to reduce the computational cost of preliminary

trajectory design while including system level constraints at an early stage of mission analysis. This

need is in contrast with the coupling between trajectory and propulsion system: a different trajectory

optimization problem has to be solved for different systems, slowing down the process of preliminary

trade studies. The software shall be able to efficiently evaluate multiple SEP technologies.

A further aim of this work is to reduce the workload of mission analysis engineers in trajectory opti-

mization problems. Low thrust trajectories require that a time-history of the control variables be specified

to perform an orbit transfer in addition to the specification of variables such as date of departure, time of

flight and initial orbit energy. To eliminate the need for analysts to possess a priori knowledge regarding

the structure of the solution the tool shall only need a parametric mission description as an input.

However, not all interplanetary missions fit into a general parametric mission description and this

should not hinder the software: the implementation of the tool must also be flexible and extensible.

Specifically, the software shall be used for a preliminary trajectory design of the Comet Interceptor Mis-

sion [51]. The Comet Interceptor trajectory in particular cannot be designed with a generic parametriza-

tion valid for other missions: until the launch the mission may not have a known target.

This called for the implementation of a fast, flexible and extensible tool, named LowWiz, with a dual

purpose: capability of providing feasible trajectories sufficiently accurate for trade studies while being

compatible with higher fidelity optimizers, hybrid optimization algorithms and navigation analysis tools.
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Chapter 2

The Comet Interceptor Mission

Previous comet exploring missions have studied Short Period Comets (SPCs) (orbital period< 200 years):

ICE performed a flyby of 21P/Giacobini–Zinner in 1985; Giotto visited the Halley comet in 1986 and 26P

in 1990; in 2014, Rosetta notably met 67P/Churyumov-Geramisenko. The success of these and other

missions to comets has returned large amounts of data that in 2020 is still generating new results on the

field of cometary physics [52]. The study of SPCs, has advanced our knowledge about the formation of

the solar system [53]. However, SPCs suffer from large transformations as a result of multiple revolu-

tions around the Sun — the comets are warmed by the Sun and release gases forming the coma and in

some cases a tail. The Comet Interceptor plans to be the first mission to visit a Dynamically New Comet

(DNC) [51] — one that, by definition, is visiting the inner Solar System for the first time.

The Comet Interceptor’s primary objective is to characterize the morphology, composition, and plasma

environment of a relatively unprocessed comet. Specifically, the mission aims to determine the bulk

composition of the nucleus’ surface, assess the molecular composition of the coma and the structure of

boundaries and regions in the plasma environment of a comet.

To fulfill its objective, the mission will be composed of three spacecraft. The three spacecraft,

sketched in Figure 2.1, will be launched together and will separate before the encounter with the comet.

Figure 2.1: Comet Interceptor preliminary design for the three spacecraft. Image from ESA’s Concurrent
Design Facility (CDF) study for the mission 1.

A comprehensive briefing on the objectives and all the guidelines for the mission analysis tasks are

established by the Comet Interceptor CReMA 2.

1https://www.cosmos.esa.int/web/comet-interceptor/mission-status, last accessed on August 28th, 2020
2Comet Interceptor Consolidated Report on Mission Analysis, Courtesy of GMV and ESA.

7

https://www.cosmos.esa.int/web/comet-interceptor/mission-status


2.1 Target Comets

The mission aims to visit a DNC. DNCs are Long Period Comets (LPCs) (period > 200yr) with hyperbolic

orbits and eccentricity close to 1 — therefore visit the inner Solar System. DNCs have yet to visit the

inner part of the Solar System and thus are preserved ever since their constitution which is presumed

to have been in the age of planetary formation. Consequently, DNCs are thought to be pristine objects

containing crucial information to understand the origins of the Solar System [54].

DNCs are comets that have not been closely seen before: historically, they have been detected just

a few months to a few years before their perihelion. However, an attractive target DNC is expected to be

found in the 2020 decade and the likely time interval between the detection and perihelion passage of

the target is five years [51].

The impromptu nature of DNCs — detected very shortly before their closest passage to the Sun

— is incompatible with the typically long time frames for space mission design. The Comet Interceptor

mission and spacecraft will have to be designed, and may be even launched, without a known target.

The unusual challenges of designing a mission for an unknown destination impacts the mission

analysis and spacecraft design. To overcome the difficulties posed by the uncertainty in the encounter

location, a parametric formulation to guide the study of transfers to different destinations was devised in

the CReMA and explained in the Transfer Geometry Section 2.3.1.

Backup Targets

Aside from the analysis to possible comet encounter locations, the mission analysis must consider the

event of not finding a suitable target in time. A probabilistic reachability analysis was made in the

CReMA relating the required ∆v and mission duration with the probability of encountering at least one

Long Period Comet during the mission timeframe: the baseline version of the mission yields a probability

of 81% of finding a Long Period Comet and 48% of finding a DNC.

To cope with a scenario where a suitable target is not found, sixty-seven backup targets are identified

in the CReMA. The list is cut down to ten and a request for community observations is issued in [55] to

help in the prioritization of the backup targets.

In the CReMA, CP transfers are analyzed for the targets highlighted in [55]. Detailed EP transfers

are optimized only for one backup target: 73P/Schwassmann-Wachmann.

2.2 Mission Timeline

The mission phases are sketched in Figure 2.2. The launch is scheduled for 2028 towards SEL2 where

the spacecraft will wait in a parking orbit before starting a transfer to its target comet.

The launch will be on-board an Ariane 62 in a dual launch configuration with the Atmospheric

Remote-sensing Infrared Exoplanet Large-survey (ARIEL) M4 mission as primary payload and the

Comet Interceptor spacecraft as a secondary payload. After launch the two spacecraft will head to-

wards SEL2 where the Comet Interceptor will wait for its target comet.
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Figure 2.2: Sketch of The Comet Interceptor Mission phases. The spacecraft trajectory is in green and
the comet trajectory in red [51].

The waiting phase in SEL2 will take up to three years. A parking orbit in SEL2 is suitable for the

mission: it is cheap to maintain in terms of ∆v and can provide favourable departure conditions for a

transfer to the encounter. The spacecraft will leave the parking orbit at the optimal date to initiate the

transfer from SEL2 to the encounter.

The transfer from SEL2 to the encounter is dependent on the encounter location and might take

between six months and four years. This phase of the mission ends with the approach to encounter

(30 d to 60 d before the flyby) and the encounter itself where the three spacecraft that compose the

Comet Interceptor mission will separate. After the encounter, the science data gathered during the

comet encounter will be transmitted by the primary.

The analysis in this work deals with the transfer from the waiting orbit at SEL2 to the target following

the guidelines described in the CReMA.

2.3 Transfer From SEL2 to Comet

The transfer from SEL2 to the comet will be either performed by a CP system or by an EP system.

The two systems require a dedicated analysis due to the distinct dynamics that apply to the respective

trajectories. The mission analysis assumptions related to the transfer geometry and dynamics and

spacecraft and propulsion system are detailed in Sections 2.3.1 to 2.3.3, respectively.

2.3.1 Transfer Geometry

The starting point of the trajectory is the SEL2. The transfer to the target is assumed to stay in the Earth

Ecliptic plane to avoid inclination change maneuvers since they require prohibitive amounts of fuel. In

the absence of a known target ephemeris to define the arrival point, the trajectory can be fully defined,

in the Sun-Earth rotating frame of reference, by two parameters: Rc and ϑ , the heliocentric radius and

the comet-Sun-Earth angle at the encounter respectively, as in Figure 2.3. In Figure 2.3, the X-axis has
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its origin in the Sun and points towards the Earth; the comet-Sun-Earth angle at encounter, ϑ, is positive

in the counter-clockwise direction. As per the CReMA specifications, the comet is said to be behind the

Earth at the encounter if ϑ > 0 and ahead of the Earth if ϑ < 0.

X

YSun
Earth
SEL2
Comet at 
encounter

Figure 2.3: Transfer geometry (not-to-scale) defining the departure (SEL2) and arrival positions. Rc and
ϑ define the encounter location relative to Earth.

The departure from SEL2 and the two encounter parameters, Rc and ϑ, set the trajectory in terms

of initial orbital state (position and velocity of SEL2) and final position but leave the arrival velocity

undefined. As specified in the CReMA, the analysis of the transfer geometries for unknown targets

should consider that the spacecraft arrives at a circular orbit with heliocentric radius Rc at the moment of

the encounter. Thus the arrival orbital velocity is fully defined by Rc and ϑ: the magnitude of the velocity

is given by the circular orbital speed equation, vf =
√
µ�/Rc, and its direction is perpendicular to the

arrival position vector and can be inferred from ϑ.

2.3.2 Transfer Dynamics

The journey from the SEL2 to the comet predominantly follows the dynamics of the Two-Body Problem

with the Sun as the central body. However, the SEL2 exists because the gravitational force of the Sun

and the Earth cancel each other; the influence of the Earth in the initial trajectory segments should not

be neglected altogether.

The effects of the Earth’s gravity are mostly felt in the vicinity of SEL2. The dynamics of the Circular

Restricted Three-Body Problem (CR3BP) problem can be exploited to deliver a quasi-free escape from

SEL2 and insertion in the transfer orbit. An analysis of the escape from SEL2 is made in the CReMA

and reported here to point out how meaningful results can be derived by studying the transfer to the

comet in the simpler two-body problem with the Sun as the central body.

Escape from SEL2

The unstable manifold of SEL2 presents two directions in which the spacecraft will go after an infinites-

imal perturbation: an interior Earth bound manifold and an exterior manifold as shown in Figure 2.4.
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These SEL2 escape trajectories are reachable with only an infinitesimal ∆v.

Figure 2.4: SEL2 unstable manifolds. The Earth (blue dot) and SEL2 (purple dot) are shown in the Sun-
Earth rotating frame of reference. The interior, Earth-bound manifold is in blue and the exterior manifold
in red. Courtesy of GMV and ESA.

The study of the SEL2 escape dynamics reached the following conclusions:

• When escaping towards the I quadrant (comet ahead of Earth at encounter ϑ < 0)

– Escaping radially towards the Earth implies an Earth flyby which can be exploited to provide

a high ratio between the v∞ when leaving the Earth’s sphere of influence and the ∆v needed

to insert the spacecraft in the correct manifold trajectory;

– Escaping tangentially to the Earth’s velocity is efficient only for ∆v > 1km s−1 but avoids the

effect of Earth’s gravity;

• When escaping towards the IV quadrant (comet behind Earth at encounter ϑ > 0) a ∆v parallel to

the Earth’s velocity at SEL2 is the most efficient way to increase the heliocentric energy — thus

increasing the semi-major axis of the orbit;

Transfer Strategies

Two transfer strategies were devised in the CReMA regarding the departure from SEL2:

• Direct transfer

– A manoeuvre performed at SEL2 injects the spacecraft into a transfer orbit, drifting towards

the encounter location;

– In the CReMA, a first estimate for the size of the first manoeuvre is computed using the

Hohmann transfer formulation between SEL2 and the encounter location. The Hohmann

transfer formulation is valid in the two-body problem framework but is used with the caveat of

considering the inertial velocity of SEL2 instead of the actual velocity of a spacecraft parked in

SEL2 (the inertial velocity at SEL2 is 500m s−1 greater than the actual velocity of a spacecraft

in that point). The 500m s−1 difference in orbital speed may be seen as a ∆v saving when

increasing the semi-major axis of the orbit and as a penalty when decreasing the semi-major
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axis of the orbit. Consequently, this estimate is conservative for transfers to encounters with

Rc > 1 au and optimistic for transfers to Rc < 1 au encounters.

• Moon Gravity Assist

– Escaping SEL2 towards an Earth bound manifold trajectory (see Figure 2.4) allows for a Moon

flyby — sketched in Figure 2.5 — that can provide a v∞ of 1 km s−1 to 1.4 km s−1 at the exit of

the Earth’s sphere of influence and direction opposite to the Earth’s velocity.

– In the CReMA it is specified that “from a two-body heliocentric perspective, the Moon fly-by

can be interpreted as a free deviation of the outgoing asymptote, thus modifying the outgoing

infinite velocity [v∞] to leave Earth;”

– The Moon Gravity Assist strategy transfers are optimized within the two-body problem dynam-

ics and departing from the Earth’s sphere of influence with a v∞ < 1.4 km s−1 in the opposite

direction of the Earth’s velocity vector. The direction of the escape velocity is fixed but its

magnitude is an optimization variable with an upper bound of 1.4 km s−1. Consequently, the

net effect of the Earth-Moon system in the dynamics is accounted for in the Earth escape

velocity.

to Sun

Earth velocity

I

II Earth
SEL2
Moon orbit
Moon flyby

Figure 2.5: Sketch of the Moon flyby strategy. There is the possibility of two encounters with the Moon
to modulate the Earth escape velocity, v∞: encounter with the Moon in I or in II.

This work considers the two-body problem framework using real ephemeris from the Earth and SEL2

and carefully defining the departure conditions to replicate the Earth’s gravity net effect in the trajectory

efficiency. Nonetheless, the approach followed here regarding the spacecraft at a system level differed

from the CReMA.

2.3.3 Spacecraft and Propulsion System Assumptions

Two architectures are to be considered for the interplanetary transfer propulsion system: a CP spacecraft

configuration and a hybrid system with EP for the transfer to the target and CP for the close approach and

flyby phases. This work studies the performance of an EP system, namely a Solar Electric Propulsion

system.
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In the CReMA, two sets of assumptions are used in the trajectory optimization problem — one for

transfers to unknown targets and another for transfer to backup targets. For unknown targets, no detailed

EP trajectories were analyzed. Instead, EP results in terms of ∆v and time-of-flight were interpolated

from the results of the CP analysis. For the backup targets, specifically 73P/Schwassmann-Wachmann,

detailed EP trajectories were analysed under the assumptions in Table 2.1.

Table 2.1: CReMA assumptions for detailed EP transfers analysis for backup targets.

Constant thrust and specific impulse

Three values for thrust to mass ratio: 0.05, 0.1 and 0.2mNkg−1

Thrust applied to the trajectory assumes 100% duty cycle (no
penalty/margin included at this stage)

No thrust applied in the last 60-day arc prior to comet flyby. Re-
specting this constraint, the CReMA states the following: “[the
constraint] is not implemented in the trajectory problem, but com-
pliance has been checked a-posteriori.;”

Transfers with 2 powered arcs

For the backup target EP transfers analysis, the CReMA uses a simplified spacecraft model (see Ta-

ble 2.1). Instead, the approach followed here worked with an EP engine model (detailed in Section 3.1.1)

that allowed for variable thrust and specific impulse. The CReMA specifies a reference design point for

the propulsion system at 1 au based on a single PPS1350 engine and reported in Table 2.2.

Table 2.2: Propulsion system reference design point at 1 au.

Thrust (mN) 40
Specific Impulse (s) 1219

Input power to PPU (W) 800

A model of the PPS1350 engine was available from ESA’s SMART-1 mission [56]. At its 800W oper-

ating point, the PPS1350 engine provides 40mN of thrust and 1220 s of specific impulse, in agreement

with the reference design point in Table 2.2. The available power to the Power Processing Unit (PPU) is

800W at 1 au and proportional to 1/r2 with r the distance to the Sun.

The reference value for spacecraft mass is the wet mass which is constrained by the launcher ca-

pabilities and by the primary payload (ARIEL spacecraft). The allocated launch mass for the Comet

Interceptor spacecraft is 750 kg. Besides the constraints at the propulsion system level, the CReMA

specifies a constraint on the thrusting program: there should be a coast-arc (no thrust) of at least sixty

days before the flyby for optical navigation purposes.

The Comet Interceptor mission is in its mission design Phase A where feasibility is assessed and

requirements are specified culminating with the Preliminary Requirements Review (PRR). At this stage,

the spacecraft propulsion system is subject to trade-off and optimization. In this work, the study of a

Solar Electric Propulsion transfer is presented in terms of required propellant mass, time-of-flight and

thrusting program.
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Chapter 3

Methods and Models

3.1 Solar Electric Propulsion

Solar Electric Propulsion systems exploit electrical energy supplied by solar arrays to accelerate propel-

lant and generate a net thrust on the spacecraft. The physics of Electric Propulsion are not the subject

of this thesis, however, an overview of the different technologies is briefly provided for the sake of com-

pleteness. The underlying physical principles for electrical engines varies depending on the technology:

electrical engines are typically grouped into electrothermal, electrostatic and electromagnetic [57].

Electrothermal engines electrically heat propellant gas which is then expanded through a nozzle

where its thermal energy is converted into kinetic energy. For thermal engines, the attainable exhaust

velocity (and consequently the specific impulse) is limited mainly by the maximum temperature toler-

ated by the system’s materials and by the thermodynamic properties of the gas. To evade the thermal

limitations of electrothermal systems, electrostatic engines exploit electrostatic fields: an electric field

established between the source of ions and a negative grid electrode accelerates a beam of positive

charged ions. The exiting exhaust speed of the gas is limited by the potential drop between the source

and the exit electrode, by the charge-to-mass ratio of the ions and by the space-charge limitation on the

mass flow density defined by Child’s law [58]. To circumvent the limitations posed by Child’s law, elec-

tromagnetic engines require no macroscopic net-charge to accelerate gas. The working principle differs

depending on how the magnetic field is generated and if the engine works with steady or unsteady flows;

steady flow engines use neutral ionized gas and thus are often designated as plasma thrusters. The

free electrons in the plasma, in attempting to follow the applied electric field, are turned by the magnetic

field towards the direction of the flow. Subsequently, these electrons transfer momentum to the ions in

the neutral gas. Unsteady flow thrusters exploit transient magnetoplasmadynamic effects to improve the

efficiency relative to steady flow engines. Lastly, standing between electrostatic and electromagnetic

engines, Hall effect thrusters exploit a radial magnetic field to accelerate electrons that ionize a gas that

is subsequently accelerated by an axial electric field [57].

Despite the difference in underlying physical principles, all SEP technologies can deliver higher spe-

cific impulse than chemical propulsion but they all provide very low thrust (10× 10−4 N to 3N).
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3.1.1 Engine Model

Electric engines work at discrete operation points where the output thrust and resulting mass flow are

functions of the input power. Discrete models, however, are not suitable for gradient-based optimizers

where the thrust history is unknown a priori [59]. For optimization purposes, polynomial fits for discrete

laboratory data are used [32, 48, 56, 60]. Despite ignoring the two-dimensional nature of laboratory

models — more than one operating point can exist for the same input power — the polynomial models

in Equations (3.1) and (3.2) are continuously differentiable and suitable for gradient-based optimizers.

TE = ct0 + ct1P + ct2P
2 + ct3P

3 + ct4P
4 (3.1)

ṁE = cm0 + cm1P + cm2P
2 + cm3P

3 + cm4P
4, (3.2)

where TE , ṁE are, respectively, the thrust and mass flow from the engine model and P is the available

power. The engine’s specific impulse, Isp, is computed by Equation (3.3) where g0 is the standard

acceleration due to gravity.

Isp =
TE
ṁEg0

. (3.3)

The thrust, mass flow and specific impulse curves for the PPS 1350-G engine model are shown in

Figure 3.1. The coefficients for the polynomial model of the PPS 1350-G and other engines considered

in this work can be found in the Coefficients for the Engine Models Appendix C.
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Figure 3.1: Polynomial model of the PPS 1350-G engine [56].

At a given point in the trajectory, the polynomials in Equations (3.1) and (3.2) are evaluated at the

available power, Pav. The available power is a function of the available power at 1au, P1au and the

heliocentric distance, r as in Equation (3.4)

Pav =
P1au

r2
. (3.4)
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3.2 Interplanetary Transfers

The distances in interplanetary trajectories are such that the perturbation of departure and arrival plan-

ets or bodies can be neglected in the dynamics. In a first approximation, the departure and arrival

points of an interplanetary transfer can be considered as the ephemeris of the departure and arrival

bodies at the departure and arrival epochs respectively. This approximation is valid for the majority of

the interplanetery missions but is coarse for transfers starting in the Sun-Earth Lagrange points such

as The Comet Interceptor Mission (see Chapter 2); such missions have to account for Earth’s gravity

perturbation in the dynamics. The dynamics for a point mass approximation of a spacecraft under the

gravitational influence of the Sun and the Earth, actuated by a SEP system are defined by

r̈ = − µ�
‖r‖3

r− µ⊕
‖r− r⊕‖3

(r− r⊕) +
T

m
(3.5)

ṁ =
‖T‖
Ispg0

(3.6)

where µ� is the Sun Standard Gravitation Parameter, r is the spacecraft position vector, r⊕ is the Earth

position vector, µ⊕ is the Earth Standard Gravitation Parameter, T is the applied thrust vector and m is

the spacecraft mass. The applied thrust vector T is a function of the available thrust, TE and the control

vector, u. The control vector encodes the direction and magnitude of the applied thrust

T = TEu. (3.7)

The norm of the control should be lower or equal to the unit to ensure that the thrust magnitude upper

bound, TE , given by Equation (3.1), is respected. The SEP trajectory optimization problem consists in

finding the time evolution of the control vector, u(t), that minimizes a cost index, thus it is formulated as

an Optimal Control Problem.

3.3 Optimal Control Problem

Generally, the Optimal Control Problem can be stated as follows: find the time evolution of the controls,

u(t), that minimizes

J = φ(tf ,xf ) (3.8)

subject to

ẋ = f [x(t),u(t)] , (3.9)

x(t0) = x0, (3.10)

g [x(t),u(t), t] = 0, (3.11)

h [x(t),u(t), t] ≥ 0, (3.12)

ψ[xf ,uf , tf ] = 0, (3.13)
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where Equation (3.9) is the dynamic system, Equation (3.10) is the initial value, Equations (3.11)

and (3.12) are vector equality and inequality constraints, respectively, and Equation (3.13) are the fi-

nal boundary conditions; tf is free to vary.

Specifically, the interplanetary trajectory optimization problem seeks to maximize the payload by

maximizing the final mass, mf , consequently minimizing −mf . Hence, the cost index Equation (3.8)

becomes

J = −mf . (3.14)

The final mass is obtained after integrating the set of Ordinary Differential Equations (ODEs) that

form the Dynamic System Equation (3.15)

ẋ =



ṙ

r̈

ṁ


=



ṙ

− µ�
‖r‖3

r +
TE
m

u + Γ

− T

Ispg0


, (3.15)

where x is the state vector composed by the Cartesian position and velocity vectors and spacecraft

mass, r is the position vector, r̈ is given by Equation (3.5) with TEu substituted into T.

The initial conditions for the ODEs are given by the departure Cartesian position, [x0, y0, z0], and

velocity, [vx0, vy0, vz0] and spacecraft wet mass, mwet

x(t0) = [x0, y0, z0, vx0, vy0, vz0,mwet]
T
. (3.16)

The final boundary conditions are the arrival planet or celestial body position at tf

ψ[xf ,uf , tf ] = x(tf ) = [xf , yf , zf , vxf , vyf , vzf ,mf ]
T
. (3.17)

The dynamic evolution of the state and the control function must respect equality constraints that vary

with the problem being solved. Hence, the equality constraints will depend on the system being modeled

and on restrictions imposed by mission designers. An example of a restriction typically required is a

coast arc before arrival at destination. Such a restriction is enforced by defining the equality constraint

Equation (3.18)

u(t) = 0, t ∈ [tf − t∗, tf ], (3.18)

where the control vector u is constrained to be zero in the time interval [tf − t∗, tf ] and t∗ is the duration

of the coast arc before the arrival.

Besides equality constraints, the control vector must also respect inequality constraints. Specifically,

the norm of the control vector should be lower or equal to 1

1− ‖u(t)‖ ≥ 0, t ∈ [t0, tf ]. (3.19)
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The general formulation of the Optimal Control Problem in Equations (3.8) to (3.13) is now rewritten

as: find the control functions u(t) that minimize the cost index Equation (3.8)

J = −mf . (3.14)

subject to

ẋ =



ṙ

r̈

ṁ


=



ṙ

− µ�
‖r‖3

r +
TE
m

u + Γ

− T

Ispg0


, (3.15)

x(t0) = [x0, y0, z0, vx0, vy0, vz0,mwet]
T
. (3.16)

u(t) = 0, t ∈ [tf − t∗, tf ], (3.18)

1− ‖u‖ ≥ 0, t ∈ [t0, tf ] (3.19)

x(tf ) = [xf , yf , zf , vxf , vyf , vzf ,mf ]
T
.. (3.17)

Equations (3.15), (3.18) and (3.19) are continuous functions in time. However, to solve the problem

numerically, i.e., to find the control function u(t) that minimizes the cost function J , the problem must be

discretized and transcribed into a Nonlinear Programming problem.

3.3.1 Transcription to a Nonlinear Programming Problem

The straightforward approach — the direct approach — to solve the Optimal Control Problem in Sec-

tion 3.3 is to discretize the equations and solve a function minimization problem with a Nonlinear Pro-

gramming Solver. An alternative approach would be to derive the necessary conditions for optimality

and solve the resulting equations (the indirect methods approach) and thus ensure the optimality of the

solution. However, as observed in the Review of Trajectory Methods Section 1.2.1, the indirect approach

limits the flexibility in handling different problems efficiently because it requires the derivation of analytic

conditions for different problems. Accordingly, a direct transcription method will be used here to solve

the original Optimal Control Problem as a Nonlinear Programming sub-problem [36].

The Nonlinear Programming problem is a parameter optimization problem concerning a scalar ob-

jective function and a vector of constraints [13] where no dynamics is involved. The general Nonlinear

Programming problem is stated as [36]: find the n-vector yT = (y1, ..., yn) to minimize the scalar objec-

tive function

F (y) (3.20)

subject to the m constraints

cL ≤ c(y) ≤ cU (3.21)
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and the simple bounds

yL ≤ y ≤ yU , (3.22)

equality constraints are imposed by setting cL = cU.

The objective is to minimize the symmetric of the final mass. Hence the NLP objective function is

F (y) = −mf . (3.23)

The imposition of the dynamics when solving a NLP problem is made by the transcription method — a

direct method in this case. Direct methods handle the dynamics by transcribing the differential equations

of the Optimal Control Problem Equation (3.9) into a finite set of equality constraints Equation (3.21): if

these equality constraints are respected then the original problem is solved within the degree of accuracy

allowed by the descretization scheme [13].

The time domain is uniformly discretized as

ti = t0 < t1 < · · · < tN−1 = tf , (3.24)

where N is the number of discretization points. The discretized control and states at ti are suitable to

be treated as Nonlinear Programming variables.

The discretization of the trajectory is based on the Sims-Flanagan Transcription [29] because the

method is fast, robust and has been applied in previous works for preliminary mission design [34].

The trajectory is divided in legs limited by patch points and segments limited by N control points as in

Figure 3.2. To enforce the dynamics, the ODE system Equation (3.15) is replaced by a defect equality

constraint Equation (3.25): the discretized states at the patch points, x−p , x+
p , are Nonlinear Programming

variables; the ODE system in Equation (3.15) is propagated forward from the departure point to x−p and

backwards from the destination point to x+
p and the residuals, ∆xp, are driven to zero.

∆xp = x+
p − x−p = 0 (3.25)

Departure
Destination
control point
patch point

Figure 3.2: Sims-Flanagan transcription [29].
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The discrete controls ui = u(ti) are considered piece-wise constant over the i-th trajectory segment

and are parameters that go into the n-vector y along with the patch point states x−p , x+
p . Additionally,

since the time-of-flight was left free to vary in the original Optimal Control Problem it can be an addi-

tional parameter in y to be solved for when minimizing the cost index Equation (3.20). Moreover, if the

departure infinite velocity, v∞ is being optimized it can also be added as a parameter in y. Essentially,

any mission parameter can be included in the n-vector y as long as all the problem constraints remain

linearly independent.

The original problem constraints Equations (3.18) and (3.19) are discretized and enforced at the

control points respectively in Equations (3.26) and (3.27)

0 ≤ u(tc) ≤ 0, (3.26)

0 ≤ ‖u(ti)‖ ≤ 1, (3.27)

where tc is a time instant in the arrival coast arc.

The general NLP formulation in Equations (3.20) to (3.22) can be now rewritten as: find y that

minimizes

F (y) = −mf , (3.23)

subject to the constraints

x+
p − x−p = 0, (3.25)

0 ≤ u(tc) ≤ 0, (3.26)

0 ≤ ‖ui‖ ≤ 1, (3.27)

and the simple bounds

−1 ≤ ui,x ≤ 1, (3.28)

−1 ≤ ui,y ≤ 1, (3.29)

−1 ≤ ui,z ≤ 1, (3.30)

xL ≤ x−p ,x
+
p ≤ xU , (3.31)

∆tmin < ∆t < ∆tmax, (3.32)

where xL, xU constrain the patch point states to remain inside the solar system and with y is defined as

y =
{
u0, . . . ,uN−1,x

−
p ,x

+
p ,∆t

}T
, (3.33)

and ∆t is the time-of-flight.

The NLP solver will use gradient information on the problems functions to find y that minimizes F (y)

in Equation (3.23). To do so, an initial guess for y must be provided.
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3.4 Initial Guess Generation

The Ordinary Differential Equation requires an initial guess for the Nonlinear Programming sub-problem

variables. The process of generating an initial guess is critical because the quality of the solution is

dependent on the guess. Additionally, the initial search for the sub-problem variables may identify in-

teresting regions for the solution: an initial guess search algorithm may find an optimal arrival date or

a promising control profile. Accordingly, the initial guess generation process will serve a dual purpose:

setup the NLP sub-problem and perform an initial search on the solution space.

3.4.1 Grid Search Algorithm

In this work, the design space for a trajectory path is defined by the launch window, the range of admis-

sible time-of-flight and the number of heliocentric revolutions of the trajectory, s. The launch window —

the available dates for the mission launch — define the possible ephemeris of the departure body. The

∆t range — the admissible transfer duration interval — defines the arrival body ephemeris for every pos-

sible departure date. Evaluating each combination of departure date and time-of-flight is inconceivable

because the combinations are infinite. Hence, the design space is discretized. For each combination of

departure date, t0, and time-of-flight, ∆t, there is an additional degree of freedom: the number of helio-

centric revolutions, s, of the trajectory. A grid search evaluates the cost of each t0, ∆t and s combination

(see Algorithm 1).

The launch window and time-of-flight range represent mission specific constraints; the number of

heliocentric revolutions is related to the time-of-flight. For each ∆t a minimum and maximum number of

heliocentric revolutions, respectively, smin and smax, are computed by

smin =

⌊
∆t

maxTB

⌋
, (3.34)

smax =

⌊
0.7

∆t

minTB

⌋
+ 1, (3.35)

where TB = {Orbital Period of departure body, orbital period of target body}. Equations (3.34) and (3.35)

are based on a heuristic from [49].

The t0, ∆t, s combinations are used to generate an initial guess for the trajectory path with the Initial

Guess Generation Algorithm 2.

The trajectories generated with Algorithm 1 provide a preliminary understanding of the design space.

Additionally, these initial guesses can be reused when comparing different spacecraft systems for the

same mission because no system constraints are enforced in the trajectories in the Initial Guess Gener-

ation Algorithm 2.

3.4.2 Describing the Trajectory Path with Chebyshev Polynomials

An efficient analysis of the solution space contrasts with the constraint satisfaction requirements of

the Ordinary Differential Equation: enforcing the constraints repeatedly for all the possible solutions
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Algorithm 1: Grid search initial guess generation algorithm [49].
TB = [Orbital period of departure body, orbital period of target body]

for t0 ∈ launch window do

for ∆t ∈ [∆tmin,∆tmax] do

smin =

⌊
∆t

maxTB

⌋
smax =

⌊
0.7

∆t

minTB

⌋
for s ∈ [smin, smax] do

Trajectory Generation Algorithm 2

Store trajectory.
end

end

end

would be cumbersome. Instead, to expedite the initial search, an approximate trajectory model is used.

With the approximate trajectory model, the dynamic system equations are respected but the system

constraints are not, i.e., the physical laws of celestial motion are enforced, but the limitations on the

controls are not. Such an approximate model grants feasible computation times when searching the

entire solution space; additionally as it does not enforce system constraints, the initial guesses can be

reused when analysing different systems with different constraints. The trajectory path is approximated

using Chebyshev polynomials [48].

A generic position coordinate of the spacecraft, w, is

w(t) =

M−1∑
j=0

bw,jηj(τ), (3.36)

whereM is the number of coefficients andM−1 is the order of the polynomial , bw,j is the j-th Chebyshev

coefficient and ηj is computed recursively with

ηj(τ) =


1, if j = 0

τ, if j = 1

2τηj−1(τ)− ηj−2(τ), if j ≥ 2,

(3.37)

where τ transforms the t into [−1, 1].

The rate of change for the generic position coordinate w is the time derivative of ηj(τ)

η̇j(τ) =


0, if j = 0

τ̇ , if j = 1

2τ̇ ηj−1(τ) + 2τ η̇j−1(τ)− η̇j−2(τ), if j ≥ 2.

(3.38)

The Chebyshev polynomials are the time evolution of r, θ and ϕ from the departure to the arrival
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ephemerides. The coefficients are computed in three steps: first, the unique set of coefficients that

satisfy the boundary conditions are found by Equations (3.43) and (3.44) where it is shown that a unique

solution exists for a minimum number of coefficients.

Subsequently, the thrust imposed acceleration, a, required to maintain the path described by the

Chebyshev coefficients is computed as

a = r̈ +
µ�
‖r‖3

r, (3.39)

where r is the position vector given by the Chebyshev polynomials. The first term of the right hand

side of Equation (3.39) is the acceleration felt by a body on the trajectory described by the Chebyshev

coefficients; the second term is the acceleration due to the Sun gravity. Hence, a in Equation (3.39) is

the thrust imposed acceleration required to follow the path described by the Chebyshev polynomials for

a spacecraft subject to the gravitational pull of the Sun.

However, the acceleration required to maintain the path described by the minimum number of coeffi-

cients may not be admissible for a spacecraft system. Hence, the final step in the initial guess generation

process is minimizing a: additional coefficients are used, increasing the order of the polynomials and

allow for further degree’s of freedom that can be optimized to minimize a. Algorithm 2 describes the

algorithm that incrementally increases the polynomial order and minimizes a.

Trajectory Path: Satisfying Boundary Conditions

The boundary conditions of an interplanetary transfer vary according to the type of trajectory: the po-

sition and velocity of the spacecraft must match the target’s position and velocity at tf for rendezvous

trajectories; for flyby trajectories, only the spacecraft position at tf is required to match that of the target.

For a rendezvous trajectory, the polynomial description of the trajectory shall verify Equations (3.40)

and (3.41) to satisfy the boundary conditions

[
r(t0), ṙ(t0), θ(t0), θ̇(t0), ϕ(t0), ϕ̇(t0)

]T
=
[
r0, ṙ0, θ0, θ̇0, ϕ0, ϕ̇0

]T
(3.40)[

r(tf ), ṙ(tf ), θ(tf ), θ̇(tf ), ϕ(tf ), ϕ̇(tf )
]T

=
[
rf , ṙf , θf + s2π, θ̇f , ϕf , ϕ̇f

]T
, (3.41)

where
[
r0, ṙ0, θ0, θ̇0, ϕ0, ϕ̇0

]T
and

[
rf , ṙf , θf + s2π, θ̇f , ϕf , ϕ̇f

]T
are, respectively, the departure and ar-

rival boundary conditions in spherical coordinates. For flyby trajectories ṙ(tf ), θ̇(tf ) and ϕ̇(tf ) are free.

If B is defined as the vector with the Chebyshev basis functions ηj(τ) and its time derivative η̇j(τ)

B(τ) =

 η0(τ) . . . ηM−1(τ)

η̇0(τ) . . . η̇M−1(τ)

 , (3.42)

the satisfaction of the boundary conditions in Equations (3.40) and (3.41) is the solution of the linear

equations Equations (3.43) and (3.44), respectively for the initial and final boundary conditions.
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
B(−1) 0 0

0 B(−1) 0

0 0 B(−1)





br,0
...

br,M−1

bθ,0
...

bθ,M−1

bϕ,0
...

bϕ,M−1



=



r0

ṙ0

θ0

θ̇0

ϕ0

ϕ̇0


(3.43)


B(1) 0 0

0 B(1) 0

0 0 B(1)





br,0
...

br,M−1

bθ,0
...

bθ,M−1

bϕ,0
...

bϕ,M−1



=



rf

ṙf

θf

θ̇f

ϕf

ϕ̇f


. (3.44)

From Equations (3.43) and (3.44) two conclusions are drawn: each coordinate requires 4 Chebyshev

coefficients to satisfy rendezvous conditions (initial position and velocity plus final position and velocity)

and three coefficients for flyby trajectories (initial position and velocity plus final position); there is a

unique solution for the coefficients that satisfies the boundary conditions if the number of coefficients,

M , is equal to 4 for rendezvous trajectories or 3 for flyby trajectories.

The presence of a unique solution for the coefficients eliminates the need for an initial guess for the

coefficients. Further, the linear relations are simple and thus can be efficiently evaluated. After satisfying

the boundary conditions, additional coefficients can be added to the series to minimize a.

Optimizing the coefficients

The optimization of the coefficients seeks to increase the likelihood of the initial guess being transformed

into a feasible spacecraft trajectory, by minimizing the acceleration required to maintain the trajectory.

The coefficients optimization problem may be seen as a parameter optimization problem suitable to be

solved by a NLP solver.

The Nonlinear Programming problem for the Chebyshev coefficients can now be defined as: find the

3M -vector y that minimizes

J =

∫ tf

t0

‖a‖2dt, (3.45)
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subject to

B(τ = −1)y =
[
r0, ṙ0, θ0, θ̇0, ϕ0, ϕ̇0

]T
(3.40)

B(τ = 1)y =
[
rf , ṙf , θf , θ̇f , ϕf , ϕ̇f

]T
, (3.41)

where y is defined as

y = {br,0, . . . , br,M−1, bθ,0, . . . , bθ,M−1, bϕ,0, . . . , bϕ,M−1}T . (3.46)

Equation (3.45) is used as it is smooth and quadratic and it is numerically simple to solve [49].

When the number of coefficients is equal to four, there is only one solution that satisfies the ren-

dezvous boundary conditions; oppositely, when the number of coefficients is higher than four, there are

infinite solutions for the coefficients. The four coefficients unique solution can be used as an initial guess

for a path described by five coefficients: the linear equations Equations (3.43) and (3.44) are solved with

four coefficients; a fifth coefficient with initial value equal to zero is added; an optimization process takes

place to find the five coefficients solution that minimizes a performance index. The process is repeated

until a satisfactory solution is achieved: the five coefficients optimized solution serves as the initial guess

for the six coefficients path and so on. This incremental search, summarized in Algorithm 2, eliminates

the need for a user supplied guess for the coefficients solution.

Algorithm 2: Chebyshev coefficients optimization algorithm [49].
Get boundary conditions

Solve linear relations Equations (3.43) and (3.44) for Mmin = 4 (rendezvous) or Mmin = 3 (flyby)

M = Mmin

while M < Mmax do
set the first M coefficients equal to the previous solution

add (M + 1)th coefficient to each coordinate and set it to zero

compute thrust imposed acceleration, a, required to maintain the trajectory

optimize (M + 1) coefficients that minimize J subject to Equations (3.40) and (3.41)

M = M + 1

end

Typically, for M > 10 the solution does not improve [48]. Hence, the NLP problem in the coefficients

only has 3M = 30 variables. Because the problem is small, an algorithm that efficiently searches for

solutions in the launch window and time-of-flight ranges supplied by the user can be employed for a

preliminary search of the solution space.

3.4.3 Initial Guess Selection Policy

From the initial guesses generated with Algorithms 1 and 2, more than one initial guess is subject to

further optimization because the best trajectory from the grid search may not be close to the optimal

trajectory to be performed by a spacecraft, i.e., the optimal solution of the OCP in Section 3.3 may
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not be obtained with the best solution from the grid search. The set of initial guesses that are further

optimized is obtained from the resulting set of Algorithm 1 after applying a selection policy. Two selection

policies are considered in this work with the goal of diversifying the pool of trajectories to be considered

in the OCP: selection by number of revolutions and selection by time-of-flight.

The selection by number of revolutions policy divides the initial guesses set into subsets of trajecto-

ries with the same number of heliocentric revolutions. From each of the subsets, the lowest ∆v trajectory

is selected and fed to the NLP solver. The selection by time-of-flight policy divides the initial set of tra-

jectories into j subsets. The i-th subset contains trajectories with a time-of-flight

∆t ∈
[
∆tmin + ∆trange

i

n
,∆tmin + ∆trange

i+ 1

n

]
, with i ∈ [0, j − 1]. (3.47)

From each subset, the lowest ∆v trajectory is selected and fed to the NLP solver.

3.4.4 Computing the Initial Guess Control Profile

The final step in the generation of the initial guess for y in Section 3.3.1 is to compute the control

variables ui. This step is specific to the spacecraft system being analysed, namely it requires the initial

spacecraft mass and specific impulse of the propulsion system.

Algorithm 3: Algorithm to convert the acceleration profile of the initial guess into a thrust profile

based on the spacecraft system [49].
Get propulsion system Isp

Get m0 = mwet

for t ∈ ti do
∆vi =

∫ ti+1

ti
‖a‖dt

mi+1 = mi exp

(
− ∆vi
Ispg0

)
ui =

1

TE

a(ti)

‖a(ti)‖
mi −mi+1

ti+1 − ti
Ispg0

end
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Chapter 4

Implementation

One of the goals of this work is to implement the algorithms to generate feasible Solar Electric Propul-

sion trajectories given the departure and arrival bodies, the launch window and a desired time-of-flight

range. The software should be able to perform trade studies, specifically, compare the performance of

different engines and different available power conditions. The software is called LowWiz. LowWiz is de-

veloped in Python because it is open source and a mature programming language. Besides the built-in

python functions, the software extensively uses the standard python libraries NumPy [61] for numerical

operations, numba [62] for just in time compilation of computationally intensive functions and matplotlib

[63] for plotting.

4.1 External software

The majority of the software was developed by the author of this work, namely, the architecture design

and the implementation of the algorithms from Chapter 3. The ephemeris system, the NLP solver and

the trajectory propagator are implemented using external software.

ESA’s PyKEP [64] library is used for trajectory propagation.

Ephemerides

The ephemeris for departure and arrival bodies are obtained using SpiceyPy [65], a Python wrapper for

JPL’s Navigation and Ancillary Information Facility (NAIF) named SPICE [66, 67].

The ephemeris information is stored in kernels. The baseline box version of LowWiz is provided

with the kernels for solar system ephemerides; for smaller bodies, Near-Earth Asteroid (NEA), comets

and even spacecrafts, the appropriate kernel has to be fetched from the NAIF database and loaded to

LowWiz.

Nonlinear Programming Solver

The Ordinary Differential Equation and the Chebyshev coefficient optimization problem are transcribed

to Nonlinear Programming Parameter Optimization problems solved with the Python Parallel Global
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Multiobjective Framework for Optimization (PyGMO), the python wrapper for ESA’s Parallel Global Mul-

tiobjective Framework for Optimization (PaGMO) [68]. From the algorithms in pygmo, the Sequential

Least-Squares Quadratic Programming (SLSQP) [69] is used. The stochastic optimization algorithms

available with PyGMO were considered but not used as the problem’s nature was not combinatorial and

a gradient was available which made convergence faster [12].

PyGMO requires that the problems are translated into a class that implements the software’s problem

interface. Specifically, objects of the class problem should possess a fitness method that returns the

fitness vector

f =

 J

c

 , (4.1)

where J is the objective function being minimized and c is the constraints vector both evaluated for a

given value of the n-vector of problem variables. Additionally, as the SLSQP algorithm is a gradient-

based solver, it accepts gradient information. The gradients were computed using PyGMO’s builtin finite

differences capabilities for numerical differentiation.

4.2 Architecture

The software has two entry points: a command line interface and a toolbox. The command line interface

encapsulates the complexity of the software, described in Section 4.2.1, and only requires the user to

define configuration files. The command line interface runs the set of operations that form the basic

capabilities of the software — optimize trajectories and perform trade studies. Oppositely, the toolbox

directly exposes the different modules of LowWiz in Figure 4.1 to the user. The toolbox requires the user

to understand at least the high level functionalities of the software modules. Nonetheless, the added

flexibility of the toolbox can be exploited to develop new applications or to analyse missions with unusual

characteristics, such as the Comet Interceptor mission which does not have a known target until the

launch.

4.2.1 Command Line Interface

The software should have a command line interface to encapsulate the complexity of the algorithms and

release the work load of mission analysis engineers.

The command line interface is configured through two input files: one for the software’s settings and

one for the mission scenario. The settings available for the user to configure are: maximum number of

Chebyshev coefficients for the initial guess (Mmax in Section 3.4); initial guess selection policy; number

of discretization points; maximum number of iterations for the optimizers; post-processing flags to select

which plots to store. Regarding the scenario configuration file, the user is required to define the following:

departure and target bodies; trajectory type (rendezvous or flyby); flyby relative velocity range (for flyby

trajectories); departure escape velocity; duration of arrival coast arc; launch window; minimum and

maximum time-of-flight (∆trange = [∆tmin,∆tmax]); spacecraft dry mass; spacecraft input power at 1 au
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Figure 4.1: LowWiz architecture.

and electric propulsion engine. Additionally, for trade studies, the user shall define the available engines

and the range to vary the input power at 1 au.

After parsing the input files, LowWiz follows the logic outlined in Figure 4.2: initial guesses from

previous runs are loaded if they were stored, or computed if no previous results are available; a set of

trajectories is filtered from the pool of initial guesses according to a selection policy from Section 3.4.3

specified by the user; the initial guesses are transformed into feasible trajectories; the data are post-

processed to generate the outputs.

Configuration
files parsing

Load initial
guesses

yes

no select initial
guesses

trajectory
optimization

Initial guesses
available

grid search
algorithm

post
processing

Figure 4.2: LowWiz Command Line Interface Logic
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4.2.2 Software Modes

LowWiz can be executed in three modes: Trajectory Optimization, Engine Trade Studies, Input Power

Trade Studies. The Trajectory Optimization mode generates feasible spacecraft trajectories given the

defined mission constraints; the Engine Trade Studies mode compares the performance of different EP

engines in the defined mission scenario; the Input Power Trade Studies mode analyzes the impact on

performance of increasing or decreasing the input power to the engine.

Trajectory Optimization

The trajectory optimization mode solves an optimal control problem for each of the pre-selected initial

guesses. Feasible spacecraft trajectories are displayed by way of plots of the trajectory in two and three

dimensions (see Figures A.1 and A.2), thrust profile plots (see Figure A.3) and required power plots (see

Figure A.4). The trajectory and control profile may also be stored as python objects or written into tables

in binary files. The initial set of trajectories obtained with the Grid Search Algorithm 1 is also used to plot

a ∆v contour (Pork Chop Diagram) for the launch window, such as Figure 4.3, mapping each departure

date and time-of-flight combinations to an estimate of the ∆v required to reach the target.
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Figure 4.3: Earth to Didymos transfer ∆v contour (Pork-Chop Diagram). A transfer to Didymos presents
low ∆v (∆v < 1 km s−1) opportunities over the entire launch window if the time-of-flight, ∆t, is allowed to
vary between 200 d and 1000 d.

Engine Trade Studies

The engine trade studies mode selects the initial guess using the time-of-flight selection policy. The

software runs the Trajectory Optimization mode with the same initial guesses, varying the engine model
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being used. This strategy results in curves where the propellant mass is a function of time-of-flight for

each of the engines, shown in Figure 4.4.
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Figure 4.4: Engine Trade Studies mode output example.

Typically the engine that is able to operate at the highest specific impulse, given the power constraints

of the trajectory, will correspond to the best solution in Figure 4.4, i.e., the engine that is able to operate

at a highest efficiency regime will correspond to lower values in terms of propellant mass.

Input Power Trade Studies

The available input power for the engine is a function of solar panel area, Apanel, solar panel efficiency

η(t), the Sun incidence angle, Θ, and spacecraft position, r(t), given by

Pav = GSC
Apanels
‖r(t)‖2

η(t) cos Θ, (4.2)

where GSC is the solar constant, the solar energy flux per unit of area measured at 1 au.

In a first approximation, some terms in Equation (4.2) might be neglected: the solar panel area is

constant for a given trajectory and solar panel efficiency can be considered constant too. Additionally, the

cosine loss, cos Θ, can be neglected as it can be assumed that the attitude constraints allow for proper

spacecraft orientation. Consequently, for a single trajectory, the numerator terms in Equation (4.2) are

grouped into a constant value, equivalent to the available power at 1 au, P1au, yielding

Pav ∝
P1au

‖r(t)‖2
. (4.3)
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The available power in Equation (4.3) is a function of the spacecraft position and thus time. Com-

paring transfers based on the available power throughout the trajectory is not representative, given the

coupled nature of system and trajectory described in the Solar Electric Propulsion Section 1.1. Instead,

the available input power at 1 au, P1au, is the reference to compare the trajectories in the trade studies.

For the input power trade studies mode, the user supplies the range of available input power at

1 au and the initial guess selection policy. After selecting the trajectories, LowWiz runs the trajectory

optimization mode for 10 linearly spaced values in the available power range. If the trajectories are

selected according to time-of-flight, the result is displayed as propellant mass curves which are functions

of input power for each time-of-flight value of the initial guess; if the selection policy is in accordance

to the number of revolutions, the different curves in Figure 4.5 refer to the number of revolutions of the

originating initial guess.
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Figure 4.5: Input Power Trade Studies mode output example.

Typically, from a certain value of available input power, the trajectories do not improve, as the engine

will already have all of its operating power range below the available power for the entire trajectory.

4.3 Software Validation

LowWiz was tested against scenarios found in the literature to validate the software: a comet rendezvous

mission (Section 4.3.1), and a Near-Earth Asteroid Flyby (Section 4.3.2). For each scenario, the solu-

tions obtained with LowWiz are compared with solutions available in the literature. The comparison is

quantitative in terms of time-of-flight and propellant mass and qualitative in the analysis of the shape of

the trajectory and of control profile solutions.
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4.3.1 Comet Rendezvous Mission

A Comet Rendezvous scenario available from [60] was simulated in LowWiz to evaluate the program’s

behaviour when dealing with a a target in an eccentric orbit: the comet Kopff’s orbit has an eccentricity of

e = 0.54. Accordingly, the data extracted from [60] for a LowWiz scenario file is summarized in Table 4.1.

Table 4.1: Kopff rendezvous scenario configuration.

Parameter Value

Engine NEXT
Spacecraft launch mass (kg) 1030

Input power at 1 au (kW) 9
time-of-flight range (d) 1100 to 1900

Maximum departure v∞ (km s−1) 4
Launch window [2006-JAN-01, 2007-JAN-01]

The optimal solution found by LowWiz, shown in Figure 4.6, is comparable to the best result in [60]

(see Table 4.2).

Table 4.2: Kopff scenario validation results.

Parameter LowWiz Literature Result

arrival mass (kg) 732 784
time-of-flight (d) 1350 1387

departure v∞ (km s−1) 4.0 3.7
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Dep: 17-NOV-2006
v : 4.0 km/s
Arr: 28-JUL-2010
vrel: 0.13 km/s
t: 1350 days
v: 12.93 km/s

m0: 1030.00 kg
mf: 732 kg

coast thrust Earth 22P Kopff

Figure 4.6: Interplanetary transfer to the comet Kopff in the Heliocentric Earth Ecliptic reference frame.

The LowWiz solution, shown in Figure 4.6, delivers less mass to the destination (6.5% less compared
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to [60]). The LowWiz trajectory leaves Earth with with a higher escape velocity (4.0 km s−1 against

3.7 km s−1 from [60]); the destination is reached in less than 37 d compared to the literature solution (3%

reduction in ∆t compared to [60]).

Additionally, the control profile for the LowWiz solution, shown in Figure 4.7, is bang-bang. The

bang-bang feature is also noticed in the solutions in [60] and indicates at least local optimality for the

solution.
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Figure 4.7: Thrust magnitude profile for an interplanetary transfer to the comet Kopff. The available
maximum thrust varies with the spacecraft to Sun distance.

4.3.2 Near-Earth Asteroid Flyby Mission

The DART mission was chosen to test the optimization of flyby trajectories. The mission is not exactly

a flyby mission — it aims at impacting the smaller asteroid in the binary system Didymos — but the

spacecraft is expected to encounter the system with a net relative velocity. The scenario was simulated

extracting data from [70], summarized in Table 4.3.

Table 4.3: Didymos flyby scenario configuration.

Parameter Value

Engine PPS 1350G
Spacecraft wet mass (kg) 354
Input power at 1 au (kW) 10

Flyby velocity range (km s−1) 5 to 6
time-of-flight range (d) 400 to 750

Maximum departure v∞ (km s−1) 0
Launch window [2020-JUL-01, 2020-DEC-01]

The optimal solution found by LowWiz, shown in Figure 4.8, is compared to the literature solution in

Table 4.4. The trajectory from [70] is concerned with maximizing the relative momentum for the asteroid

impact (thus the solution in [70] arrives with a higher relative velocity at the asteroid) and also takes into
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account an intermediate interception of another asteroid; this intermediate encounter and the higher

arrival relative velocity in the literature solution should be considered when comparing the difference in

the arrival mass.
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Figure 4.8: Interplanetary transfer to Didymos in the Heliocentric Earth Ecliptic reference frame.

Table 4.4: Didymos scenario validation results.

Parameter LowWiz Literature Result

arrival mass (kg) 331 316
time-of-flight (d) 669 636

arrival vrel (km s−1) 5.42 6.02

Adding to the high level validation tests performed in Sections 4.3.1 and 4.3.2, the unitary tests

performed at the software elements’ level grant a fair degree of confidence to exploit the software in the

preliminary mission analysis of The Comet Interceptor.
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Chapter 5

Application to The Comet Interceptor

Mission Transfer

The Comet Interceptor transfer optimization is separated into two problems: transfer to main target and

transfer to backup targets. As the main target is not yet defined, the respective analysis is concerned with

evaluating the cost of reaching possible encounter locations (Section 5.1); preliminary backup targets

are already identified — a transfer to 73P/Schwassmann-Wachmann is analysed (Section 5.2).

The assumptions followed for the trajectory optimization results — described in the Transfer Ge-

ometry, Transfer Dynamics and Spacecraft and Propulsion System in Sections 2.3.1 to 2.3.3 — are

summarized in Table 5.1.

Table 5.1: Trajectory Optimization Assumptions for the Comet Interceptor EP analysis.

Encounter

Unknown target Arrival at a circular orbit with final position defined by Rc-ϑ

Backup target Match comet position ephemeris, free arrival velocity

Navigation constraint 60 days coast arc prior to encounter

Dynamics

Two-Body Problem Sun as central body, ephemeris for Earth and SEL2

Direct Transfer Departure from SEL2 ephemeris (position and velocity)

Moon Gravity Assist Departure from Earth ephemeris with v∞ < 1.4 km s−1 opposite
to Earth’s velocity

Spacecraft

Engine PPS1350 engine model from SMART-1, 100% duty cycle

Power at 1 au (W) 800, P ∝ 1/r2

Mass (kg) 750 wet mass

The spacecraft EP reference design point in the Spacecraft and Propulsion System Assumptions

Section 2.3.3 is used for all the results here discussed. The trajectory optimization problem is solved

with LowWiz (see Implementation Chapter 4). Unless indicated otherwise, each trajectory is divided into

40 segments and the optimizer is allowed to go up to 1000 iterations.
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5.1 Probing Encounter Locations

As explained in the Target Comets Section 2.1, the mission is being designed without a specific target

hence without a specific encounter location. To understand the reachability of encounter locations, the

CReMA performs a parametric study relating the impulsive ∆v (CP) and time-of-flight to reach a set

of positions defined by Rc and ϑ. The encounter locations probe here presented expands the CReMA

analysis to continuous propulsion.

The encounter locations are considered for Rc ∈ [0.9, 1.2]au with 0.1 au steps and ϑ ∈ [−150◦, 150◦]

with 15◦ steps yielding a total of 80 points. Encounter locations outside the Rc range are too costly in

terms of ∆v; ϑ’s near or close to 0◦ or 180◦ are not considered to avoid comet encounters during a solar

conjunction.
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Figure 5.1: Results for a LowWiz run searching for 1-revolution trajectories with the Moon Flyby ap-
proach: not all the search grid points are reachable with a 1-revolution transfer.

To assess the cost in terms of propellant mass to reach the 80 encounter locations, LowWiz ran eight

times: four runs (0 to 3 revolution trajectories) for the direct transfer strategy, with SEL2 as the departure
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point; four runs (0 to 3 revolution trajectories) for the moon gravity assist, departing from Earth’s SOI

with a v∞ < 1.4 km s−1. Each LowWiz run solved 80 trajectory optimization problems yielding feasible

trajectories as shown in Figure 5.1 for a Moon Flyby 1-revolution transfer run. The optimization was not

concerned with the arrival velocity. The CReMA assumes that a spacecraft arriving to a circular orbit

with r = Rc is expected to encounter the Comet at a relative velocity under 70 km s−1.

The ∆v required to perform the trajectories in Figure 5.1 are used to generate ϑ-mp maps, i.e.,

maps that specify the propellant mass required to reach a given Comet-Sun-Earth angle. The maps are

divided into 0, 1, 2 and 3 revolution trajectories plots. Each map shows the results for different values of

Rc and the trajectories obtained with the Direct Transfer strategy and Moon Flyby strategy.

0-revolution transfers

For 0-revolution transfers twenty trajectories were made feasible covering seventeen Rc-ϑ pairs of the

80 points in the search grid. Encounters with Rc < 1 au and ϑ < 0◦ are reachable with a Moon gravity

assist, whereas transfers to Rc > 1 au and ϑ > 0◦ are favored by a Direct Transfer.
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Figure 5.2: 0-revolution propellant mass map for EP transfers. Dir are direct transfers; MGA are Moon
Gravity Assist transfers.

1-revolution transfers

1-revolution transfers reach more encounter locations: feasible trajectories were found for all but four of

the encounter locations, specified in Table 5.2. For 1-revolution transfers, the patterns identified for the

0-revolution case are reiterated: the Moon gravity assist favours encounters with Rc < 1 au and ϑ < 0◦

transfers and the direct transfer strategy favours Rc > 1 au and ϑ > 0◦. The data in Figure 5.3 exhibit

encounter locations reachable with both transfer strategies. Also, the two strategies complement each
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other: the Moon gravity assist strategy allows for encounters where they are not possible with a direct

transfer and vice-versa.

Table 5.2: Unfeasible encounter locations for 1-revolution trajectories.
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Figure 5.3: 1-revolution propellant mass map for EP transfers. Dir are direct transfers; MGA are Moon
Gravity Assist transfers.

2-revolution transfers

With 2-revolution trajectories, both strategies cover almost the entire search grid but still the comple-

mentary behaviour is noted: the Moon gravity assist strategy performs better where the direct transfer

strategy performs poorly and vice-versa. To reach the same encounter location, the 2-revolution trajec-

tory requires less propellant mass than a 1-revolution trajectory.

3-revolution transfers

Transfers with 3-revolutions reach the entire search domain with both strategies. The complementary

behaviour noted in the 1 and 2-revolution case is again present and the propellant mass requirements

are lowered with respect to the 0, 1 and 2-revolution trajectories.

42



-150 -120 -90 -60 -30 0 30 60 90 120 150
Comet-Sun-Earth angle @ encounter [deg]

0
20
40
60
80

100
120
140
160
180
200

pr
op

el
la

nt
 m

as
s [

kg
]

Comet ahead of Earth Comet behind Earth

Rc - 0.9 au | Dir.
Rc - 1.0 au | Dir.
Rc - 1.1 au | Dir.

Rc - 1.2 au | Dir.
Rc - 0.9 au | MGA
Rc - 1.0 au | MGA

Rc - 1.1 au | MGA
Rc - 1.2 au | MGA

Figure 5.4: 2-revolution propellant mass map for EP transfers. Dir are direct transfers; MGA are Moon
Gravity Assist transfers.
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Figure 5.5: 3-revolution propellant mass map for EP transfers. Dir are direct transfers; MGA are Moon
Gravity Assist transfers.

5.1.1 Selected transfers

As observed in Figures 5.1 to 5.4, not all the combinations of Rc, ϑ and number of revolutions yield

feasible EP trajectories: the encounter locations defined by these combinations are not reachable, given

the propulsion system constraints. When more than one trajectory is found for an Rc-ϑ combination the

need to define a criteria to select the appropriate solution appears. The criteria can be according to
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propellant mass or time-of-flight. If the criteria is the former, the trajectory that minimizes the propellant

mass is selected and a bias towards longer, more fuel efficient trajectories is introduced; if it is the latter,

the shortest trajectory is selected and a bias to less efficient but shorter trajectories is introduced.

Figure 5.6 illustrates the selection process according to propellant mass. From the set of trajectories

in Figures 5.2 to 5.5, if more than one solution for a Rc-ϑ pair exists, the one that minimizes mp is se-

lected, originating the maps for propellant mass and time-of-flight, respectively in Figures 5.6a and 5.6b.
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Figure 5.6: Selected EP transfers (lowest propellant mass trajectory is selected for each Rc-ϑ pair). Dir
are direct transfers; MGA are Moon Gravity Assist transfers.

Figure 5.6a shows that all the encounter locations are reached with a propellant mass under 160 kg;

Figure 5.6b shows that all encounter locations are reached with a time-of-flight under 5 years.

Figure 5.7 illustrate the selection process according to time-of-flight. From the set of trajectories in
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Figures 5.2 to 5.5, if more than one solution for aRc-ϑ pair exists, the one that requires the lowest time-of-

flight is selected, originating the maps for propellant mass and time-of-flight, respectively in Figures 5.7a

and 5.7b.
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Figure 5.7: Selected EP transfers (lowest time-of-flight trajectory is selected for each Rc-ϑ pair). Dir are
direct transfers; MGA are Moon Gravity Assist transfers.

Figure 5.7a shows that the propellant mass to reach all the encounter locations increases in compar-

ison with Figure 5.6a (260 kg against 160 kg); Figure 5.7b shows that all encounter locations are reached

with a time-of-flight under 4 years if the bias towards shorter trajectories is chosen.
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5.1.2 Comparison with Chemical Propulsion transfers

CP systems generally perform high thrust impulsive maneuvers; EP systems work for longer periods of

time as a result of their low thrust capabilities hence are continuous propulsion systems. The trajectory

dynamics are different.

Considering CP maneuvers as instantaneous is a good first approximation. Consequently, the re-

quired ∆v for a CP transfer can be easily related to the required propellant mass using the Tsiolkovsky

Rocket Equation (5.1)

∆v = Ispg0 ln

(
mf

m0

)
, (5.1)

which can be rewritten as Equation (5.2) to yield the propellant mass, mp.

mp = m0 −mf = m0

(
1− exp

(
− ∆v

Ispg0

))
(5.2)

For EP continuous propulsion trajectories, the ∆v is suitable as a measure of the change in velocity

to accomplish a given trajectory. However, there is no direct relation to compute the propellant mass from

the ∆v for continuous propulsion trajectories. Also, EP trajectories typically have a higher ∆v than CP

trajectories: EP systems apply thrust in non-optimal locations whereas CP typically perform ∆v optimal

or close-to-optimal maneuvers at the perigee and apogee of the transfer orbit (Hohmann transfers).

Additionally, a greater ∆v does not imply higher propellant mass demands thanks to the typically high

Isp values of EP.

The fundamental difference in how the ∆v relates to propellant mass for CP and EP systems distorts

a comparison between both systems if such comparison is made based on ∆v. Instead, the propel-

lant mass itself is a comparable metric for the performance of each of these systems. Moreover, by

comparing both systems in terms of required propellant mass, the choice between CP and EP can be

objectively assessed in terms of its impact on the spacecraft dry mass.

The available data in the CReMA for CP transfers reports the ∆v required to reach different encounter

locations. To extract the values for propellant mass the ∆v values in the CReMA Data Appendix B,

Figure B.1a were inserted in the rewritten Tsiolkovski Rocket Equation (5.2) with an initial mass, m0, of

750kg and the Isp was assumed to be 300s, a typical value for chemical propulsion systems [71, p. 688].

Besides the propellant mass comparison, both systems were compared in terms of time-of-flight.

The CReMA results for propellant mass (extrapolated here from the ∆v maps) and time-of-flight are

available for reference in Figures B.2a and B.2b, respectively. From Figure B.2a the CReMA concludes

that 280kg of propellant are required to cover the search domain and from Figure B.2b that transfer times

under 4.6yr suffice to reach all the Rc-ϑ points.

The results from the selected EP trajectories — for minimum propellant in Figure 5.6 and minimum

for time-of-flight in Figure 5.7a — were superimposed to the CReMA results from Figure B.2a and Fig-

ure B.2b.

46



Comparison of minimum propellant mass trajectories

In Figure 5.8a, the accumulation of red points (EP) below the cluster of black points (CP) asserts the

overall tendency: the EP system requires less propellant mass than CP for transfers to the same en-

counter position. Figure 5.8b shows the boxplot for the propellant mass saving when using EP: each

datum in the set of CP and EP solutions corresponding to the Rc-ϑ pairs and transfer strategy (direct

or moon gravity assist) are compared; positive values in Figure 5.8b (propellant mass) and Figure 5.9b

(time-of-flight) correspond to encounter locations where EP reduce the propellant mass and time-of-

flight, respectively.
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Figure 5.8: CP vs EP propellant mass comparison for minimum propellant mass trajectories.

Particularly, Figure 5.8b tells that the propellant mass saving for 75% of the encounter locations is

greater than 125 kg; for 50% of the encounter locations the mass saving when using EP is more than

150 kg. In the worst case scenario, the spacecraft would not improve the propellant mass requirements

compared to a CP trajectory.

Figure 5.9 shows the time-of-flight comparison between EP and CP transfers. Positive values in

Figure 5.9b correspond to trajectories that required less time-of-flight with EP than with CP; negative

values correspond to trajectories that require more time using EP. Notably, EP transfers require less

time-of-flight for at least 50% of the encounter locations; the time of flight for 25% of the encounter

locations is decreased in more than 6months. In the worst case scenario an EP trajectory would require

3 years of additional time-of-flight. The data shows that the savings in propellant mass observed in

Figure 5.8 carry an increase in time-of-flight for the remaining 50% of the trajectories.
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Figure 5.9: CP vs EP time-of-flight comparison for minimum propellant mass trajectories.

Comparison of minimum time-of-flight trajectories

The overall tendency from Figure 5.8a is maintained in Figure 5.10a, i.e., the propellant mass require-

ments are lowered by EP. Figure 5.8b shows that minimizing time-of-flight carries penalties in the pro-
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Figure 5.10: CP vs EP propellant mass comparison for minimum time-of-flight trajectories.
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pellant mass: in the worst case scenario in Figure 5.10, the spacecraft carries an additional 50 kg of EP

propellant to reach the same encounter location with CP. Still, for more than 75% of the trajectories the

propellant mass savings are higher than 90 kg.

Figure 5.9 shows that, when minimizing the time-of-flight, in the worst case scenario EP still under

performs compared to CP (more than 1 year). Nonetheless, the, 75% of the trajectories require less

time-of-flight with EP compared to CP.
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Figure 5.11: CP vs EP time-of-flight comparison for minimum time-of-flight trajectories.

The overall performance comparison is shown in Table 5.3. If the main objective is to minimize the

propellant mass, the worst case scenario takes 3 additional years with EP compared to CP. Nonetheless

all the EP trajectories improve on the CP solutions. Oppositely, if the main objective is to minimize the

time-of-flight, the worst case scenario requires additional 50 kg to perform the transfer. Also, the EP

trajectories that minimize time-of-flight do not improve every CP solution: in the worst under-performing

case the EP trajectory requires an additional year to reach the target.

Nonetheless, the gains provided by EP can reach 250 kg in propellant mass savings and up to 2.6

years of time-of-flight reduction.

Table 5.3: Overall comparison of EP against CP.

Selection criteria Minimum mp Minimum ∆t

Propellant mass savings (kg) 0 to 250 −50 to 220
Time-of-flight difference (years) −3 to 2.4 −1.3 to 2.6
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5.1.3 Full Engine Capacity

The Electric Propulsion results obtained in Section 5.1.2 simulated the baseline version of an EP system

specified in the CReMA. However, the baseline version does not leverage the engine’s full capacity

because, at 1 au, it only provides half of the engine’s maximum input power. To quantify the possible

propellant mass savings of using the engine at its full capacity, the baseline version is compared to an

alternative system that provides 2 kW at 1 au.

Figure 5.12a shows that using the engine at its full capacity brings net gains on propellant mass

savings. Specifically, Figure 5.12a tells that all encounter locations are reached with less propellant

mass with the alternative system; for 50% of the trajectories, the mass saving is higher than 15 kg.

Regarding time-of-flight, the improvements cannot be generalized and two encounter locations even

require up to 6months of additional time-of-flight.
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Figure 5.12: Comparison between baseline engine power and engine at full capacity (positive values
are a decrease in the quantities for the engine at full capacity system).

5.2 Transfer to backup target 73P/Schwassmann-Wachmann

An analysis for the backup target 73P is made in the CReMA. The CReMA analysis considered the

propulsion system’s limitations in terms of maximum thrust; limited the coast-thrust-coast structure to

only two thrust arcs; did not include the pre-arrival coast-arc in the optimization (but verified this a

posteriori); included the Earth’s effect on the dynamics. The analysis made with LowWiz and here

presented aims at expanding the results in the CReMA. Specifically, this analysis considers the available

engine model for the propulsion system; does not limit the coast-thrust-coast structure; includes the pre-
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arrival coast-arc in the optimization; includes the Earth’s effect in the dynamics.

LowWiz searched for trajectories departing in or after 2030 and before 2034 with a time-of-flight

between 100 and 1200 days with a step of 20 days for both the departure and time-of-flight search.

The search yielded 4478 candidate trajectories using the approximate trajectory model described in the

Initial Guess Generation Section 3.4. Approximate trajectories with a ∆v below 20km s−1 were used to

plot the ∆v contour of the departure window in Figure 5.13.
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Figure 5.13: ∆v contour for candidate trajectories for a 73P transfer.

Figure 5.13 shows that low ∆v transfers (∆v < 2 km s−1) are possible for a wide range of departure

dates and transfer duration. These low ∆v trajectories, accumulated in the darkest area of the contour

correspond to transfers that encounter the comet at it’s crossing of the ecliptic in April 2033. By meeting

the target at the ecliptic, an inclination change is not required to reach the comet and less ∆v is needed.

From the 4478 candidate trajectories, 10 were selected for further optimization, 9 of which were found

to be feasible; the optimized trajectories are listed in Table 5.4. The optimization uses 200 discretization.

The discretization points are not spaced evenly: at the beginning of the trajectory the segments are

shorter (smaller time step) to account for rapidly changing dynamics caused by the Earth’s gravity effect

when departing from SEL2. The optimized trajectories differ in terms of launch dates, time-of-flight, ∆v

requirements and coast-thrust-coast structure. However, as predicted by Figure 5.13, all the solutions

encounter the comet in April 2033 because this period contains the asteroid’s crossing of the ecliptic.

The trajectories in Table 5.4 are ordered according to increasing propellant mass. It was expected

that the time-of-flight evolved inversely: the higher the time-of-flight, the lower the required propellant

mass. However, the trade-off between time-of-flight and propellant mass is not noticeable in the trajecto-

ries in Table 5.4. This behaviour was predicted in the contour plot Figure 5.13, where low ∆v trajectories

were possible for the the majority of the time-of-flight values.
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Table 5.4: Feasible trajectories for 73P.

Departure Encounter time-of-flight (d) ∆v (km s−1) Propellant Mass (kg) # thrust arcs

29-MAY-2032 08-APR-2033 314 0.29 16 1

18-SEP-2030 28-APR-2033 954 0.29 17 2

18-JUN-2032 05-APR-2033 291 0.30 17 1

09-AUG-2030 29-APR-2033 995 0.36 20 3

24-JUN-2031 08-APR-2033 654 0.58 32 3

12-NOV-2031 11-APR-2033 516 0.61 33 3

15-JUL-2031 11-APR-2033 637 0.63 34 3

07-DEC-2030 26-APR-2033 871 1.12 61 4

10-APR-2030 15-APR-2033 1100 1.66 85 4

Comparison with the CReMA solutions

The solutions presented in the CReMA for the transfer to 73P are grouped into 0 and 1-revolution trans-

fers where three solutions were presented for three different values of the thrust-to-mass ratio, T/m. The

thrust-to-mass ratio restriction is actually a simplification and is not implemented in LowWiz. Instead,

LowWiz uses the engine performance model. The T/m value for the LowWiz trajectories is computed a

posteriori. Additionally, the thrust program of the trajectories are compared; in Tables 5.5 and 5.6, T and

C indicate respectively, a thrust and a coast arc.

Quantitatively, the performance metrics to compare the trajectories are the time-of-flight and required

∆v. Comparing the propellant mass as in the Probing Encounter Locations Section 5.1 is not possible

because there is no available data to integrate the acceleration profile of the CReMA solutions. Never-

theless, the ∆v comparison is fair because both solutions simulated an EP system.

The 0-revolution trajectories are reported in Table 5.5. The trajectory obtained with LowWiz requires

less ∆v and time-of-flight than the trajectories proposed in the CReMA. Additionally, the trajectory re-

quires only one thrust arc at the start of the transfer, shown in Figure 5.14. Figure 5.15 shows that the

initial thrust arc exploits the Earth’s gravity and sets the spacecraft on course to encounter the target,

delivering the best trajectory in terms of ∆v.

Table 5.5: 0-revolution transfers from the CReMA (CR) and best LowWiz solution (L).

Source T/m (mNkg−1) Thrust Program (Arc duration in days) ∆t (d) ∆v (km s−1)

CR 0.05 T-C-T-C (187-106-215-48) 452 1.036

CR 0.1 T-C-T-C (93-144-166-19) 384 0.985

CR 0.2 T-C-T-C (50-168-49-3) 359 0.923

L 0.065 T-C (50-264) 314 0.29

For 0-revolution transfers (see Table 5.5), a significantly cheaper trajectory (requiring 30% of the ∆v
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from the CReMA solutions) is found with LowWiz: this result is possible because there is no constraint

on the number of thrust arcs, whereas the CReMA solutions assume two powered arcs.
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Figure 5.14: Thrust profile for minimum ∆v transfer for 73P
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Figure 5.15: Minimum ∆v trajectory for a 73P transfer.

1-revolution solutions are listed in Table 5.6. As in the 0-revolution case, the LowWiz solution re-

quires less than 200 d of time-of-flight compared to the CReMA trajectories; in terms of ∆v the CReMA

solution for T/m = 0.05 performs the transfer with 20m s−1 less than the LowWiz solution but the LowWiz

trajectory requires 60m s−1 less than the remaining trajectories. Additionally, the thrust program of the

solution here presented differs to the solutions from the CReMA: all the 1-revolution trajectories require

two short thrust arcs (∆tthrust < 100 d) whereas the LowWiz trajectory implements one thrust arc to
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leave SEL2, a second thrust-arc when leaving the Earth’s Sphere of Influence and a mid-course thrust

arc, show in Figure 5.17. Thus the solution found by LowWiz favours a longer intermediate coast arc

(∆tcoast > 200 d) delivering an arrival coast-arc more than 300 d shorter than all the CReMA solutions

and consequently reducing the transfer duration.

Table 5.6: 1-revolution transfers from the CReMA (CR) and best LowWiz solution (L).

Source T/m (mNkg−1) Thrust Program (Arc duration in days) ∆t (d) ∆v (km s−1)

CR 0.05 T-C-T-C (86-173-43-496) 798 0.56

CR 0.1 T-C-T-C (57-170-20-528) 775 0.677

CR 0.2 T-C-T-C (29-205-10-527) 771 0.691

L 0.075 T-C-T-C-T-C (15-15-30-285-63-108) 516 0.61

The best 1-revolution solution from LowWiz is shown in Figure 5.16 where the initial thrust arc is

shown to drift the spacecraft towards positions that exploit the dynamics of the three-body problem.

When compared with the 0-revolution solution, the 1-revolution trajectory requires ≈ 200 d of additional

time-of-flight and twice the ∆v but the arrival velocity relative to 73P is decreased from 14.65 km s−1 to

11.49 km s−1.
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Figure 5.16: Best 1-revolution solution found with LowWiz.

The control profile for the best 1-revolution solution, show in Figure 5.17, is made of three powered

arcs: one to leave SEL2 and drift towards Earth; one to leave the Earth SOI and a third to adjust the

trajectory before the arrival coast arc. Despite the irregularities in the control, the solution in Figure 5.17

is still very close to a bang-bang control profile.
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Figure 5.17: Thrust profile for minimum ∆v transfer for 73P

5.3 Trade Studies

For the backup target analysis the baseline capabilities of LowWiz — engine and input power trade

studies — were exploited to perform trade studies. These two analysis are relevant to quantify the

performance gain of realistic alternatives to the baseline propulsion system.

Alternative engines

From the available engines in LowWiz, the choice for the trade study are the XIPS and NSTAR engines.

These two engines, together with the BPT-4000 have operating power ranges compatible with the mis-

sion baseline. The chosen engines are preferred over the BPT-4000 because they deliver approximately

twice the specific impulse of the BPT-4000 at nominal input power.

Table 5.7: Considered engines data for the engine trade study.

Engine PPS 1350-G XIPS NSTAR

Thrust (mN) 40 29 28
Specific Impulse (s) 1219 2550 2174

Operating Power Range (kW) 0.46 to 1.5 0.436 to 5.03 0.450 to 3.8
EP Unit Mass (kg) 29 112 151

Reference [56] 1 [60, 72] 2 [60]

The output of the analysis are propellant mass curves as a function of time-of-flight for the different

engines. These results were obtained incrementally: a first LowWiz run was made neglecting the Earth’s

1EP Unit Mass obtained from https://earth.esa.int/web/eoportal/satellite-missions/s/smart-1, last accessed on
December 20th, 2020.

2EP Unit Mass computed with data from [72] following the method in [60].
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gravity effect on the dynamics, bringing forth the results in Figure 5.18; subsequently, a new run where

the Earth effect was included generated the curves in Figure 5.19.

In Figure 5.18 a clear trend emerges: the required propellant mass decreases as the time-of-flight

increases. This trend is expected as more time-of-flight leaves a bigger margin for the optimization to

turn on the engine only at optimal segments of the trajectory. Also, for shorter trajectories (time-of-flight

below 800 d) only the PPS 1350-G engine delivers feasible trajectories: for the nominal input power the

PPS 1350-G engine delivers approximately 40% more thrust as the other two engines. For time-of-flight

values above 800 d the XIPS and NSTAR engines deliver feasible trajectories, decreasing the required

propellant mass by at least 15 kg (25%) compared to the baseline option. The difference in specific

impulse explains the decrease in propellant mass relative to the PPS 1350-G engine and also the better

performance of the XIPS compared to the NSTAR.
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Figure 5.18: Engine trade study output (neglecting Earth’s gravity).

The minimum propellant mass savings for the XIPS and NSTAR engines are in Table 5.8; Table 5.8

also shows the net mass gain on the spacecraft mass computed by

Net mass gain = mbaseline −malt.engine + ∆mp, (5.3)

where mbaseline and malt.engine are, respectively, the PPS 1350 and alternative engine EP unit mass

and ∆mp is the propellant mass saving when using the alternative engine.

The net mass gain informs on the performance impact after taking into account the EP unit mass of

each propulsion system: despite the alternative options providing minimum propellant mass savings of

25 kg and 19 kg — respectively for the XIPS and NSTAR engins —, the additional unit mass of these sys-

tems outweighs their performance gains thus increasing the overall mass of the propulsion subsystem

(negative Net mass gain).
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Table 5.8: Minimum propellant mass savings for the different engines compared to the baseline option
(neglecting Earth’s gravity).

Engine PPS 1350-G XIPS NSTAR

∆mp (kg) - 25 19
Net mass gain (kg) - −58 −103

The results considering Earth’s gravity are in Figure 5.19: there is no longer a trend for the evolution

of propellant mass with time-of-flight. The effect of the Earth’s gravity coupled with the target’s trajectory

is the most likely cause and this is investigated after. Two major considerations are now possible by

inspecting the effect of Earth’s gravity in the curves: the propellant mass is decreased by at least 50%

for analogous trajectories and now the alternative engines (XIPS and NSTAR) deliver trajectories across

a wider range of time-of-flight (between 300 d and 1100 d). Besides increasing the fidelity of the analysis,

the results in Figure 5.19 show that the dynamics of SEL2 are being leveraged to decrease propellant

mass requirements. Additionally, the highest propellant mass saving in Figure 5.19 (31 kg) is not enough

to compensate the additional mass of the alternative engines (83 kg and 122 kg for the XIPS and NSTAR,

respectively).
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Figure 5.19: Engine trade study output (considering Earth’s gravity).

A careful inspection of the Earth’s effects on the trajectories explains the difference between the

curves in Figure 5.18 and Figure 5.19. Specifically, in Figure 5.20, by analysing the first three trajec-

tories for the PPS 1350-G curve in Figure 5.19 the decrease in propellant mass and the absence of a

monotonic curve of propellant mass versus time-of-flight is justified.

The trajectories shown in Figure 5.20 are the first three trajectories of the PPS 1350-G curve in

Figure 5.19. These trajectories have similar encounter positions with the comet: the optimization pushes

the arrival date to April 2033, as expected from the results in Figure 5.13. Consequently, because the
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Figure 5.20: Trade study trajectories for the baseline engine (thrust arcs in red).

departure date is fixed by the initial guess, it is concluded that the trajectories are optimal or close

to optimal in terms of time-of-flight (or arrival date). Further, the absence of monotonically descendent

curves in Figure 5.19 is explained by the relative geometry of the departure position and comet encounter

and how this geometry impacts the escape from the Earth’s sphere of influence: trajectories with longer

time-of-flight values might start the transfer in less favorable positions compared to shorter trajectories.

In Figure 5.20a it is shown that the 521 d trajectory requires a second thrust-arc to match the comet

position at the encounter. Further, in Figure 5.20b it is shown that the same trajectory requires the

longest powered arc to start the interplanetary trajectory leveraging Earth’s gravity. Subsequently, the

521 d trajectory, despite taking more time to reach the target, requires more propellant mass than the

312 d and 298 d trajectories. The same rationale explains why the 312 d trajectory needs less propellant

than the 298 d: both trajectories only need one powered arc leaving SEL2 but the longer trajectory does

so with a shorter thrust arc.

Following the analysis of the Earth’s gravity on the results, a closer inquiry into the quality of the solu-

tions of the individual trajectories was made. From it emerged a common element across the solutions:

all the control profiles possessed a bang-bang feature. This feature grants at worst an indication of local

optimality and at best it is an assurance of a global optimum. Another common feature across the tra-

jectories was that the engines were not working in the optimal regime, i.e., at maximum power. Hence,

an examination of the available input power impact on trajectory performance is deemed relevant.

Increasing the Input Power

The baseline input power at 1 au to be delivered to the engine as per the CReMA specifications is 800W.

This value corresponds to 53% of the engine’s maximum power. Consequently, the full potential of

the engine is not leveraged: the engine’s highest specific impulse is obtained when the input power is
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equal to the maximum engine power. Specifically, at 800W the specific impulse is 78% of the maximum

specific impulse obtained with 1500W, the maximum engine power for the PPS 1350-G.

The range of values where the input power at 1 au varies is P1au ∈ [800, 2700]W. The input power

at 1 au is varied up to a value higher than the maximum engine power because the available power

varies with P1au/r
2: 1500W at 1 au would not allow the engine to work at maximum power at distances

r > 1 au. The choice of 2700W, allows the spacecraft to deliver the maximum engine power up to 1.3 au.

The results in Figure 5.21 show the evolution of propellant mass with available input power at 1 au; the

five lines in Figure 5.21 correspond to trajectories generated using different initial guesses.
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Figure 5.21: Propellant mass vs. Available input power at 1 au for different time-of-flight trajectories.

The overall trend in Figure 5.21 is of decreasing propellant mass requirements with increasing avail-

able power. Missing data points or points opposing the overall trend correspond to trajectories where the

solver did not converge. Additionally, the curves asymptotically converge to a constant value: increasing

the available power beyond a certain point does not carry further gains as the engine has its maximum

power available for the entire trajectory. The minimum possible gain by increasing the available input

power from baseline (800W) to 1500W is 6 kg.

5.4 Discussion

A few caveats that define the scope of this work must be established. Firstly, a cost analysis is not done;

different propulsion systems carry different costs that vary with technology readiness level, production

costs and system integration and validation processes. The long SEP maneuvers may also have an

effect in the overall mission cost because Deep Space Maneuvers are typically monitored by teams in

the mission’s ground segment thus carrying increased personnel costs. Further, the continuous nature of

low-thrust propulsion brings navigation concerns where they were not present with impulsive propulsion:
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the spacecraft’s GNC system has to assure the correct attitude profile for the thrust to be applied in the

appropriate direction throughout the powered arcs. Hence the analysis here presented is concerned

with assessing the requirements for a Comet Interceptor transfer made by a SEP system in terms of

propellant mass and time-of-flight.

It should be further noted that theoretical results were not always confirmed by the numerical simula-

tions in this work: in theory, longer trajectories are more efficient for low thrust propulsion systems; also,

relaxed constraints on the system — such as more available power — should give room for increasingly

optimal solutions to be found. Nevertheless, problem constraints such as departure windows and impo-

sition of coast arcs or problem particularities such as optimal arrival dates, as seen in Figure 5.13, and

peculiar departure dynamics, as observed in Figure 5.15b, blur the first order phenomena predicted the-

oretically and enforce the need for numerical modelling at a preliminary mission design stage to either

confirm or refute theoretical results.

The fundamental question of this analysis is “Is a Solar Electric Propulsion System better for the

Comet Interceptor transfer?” The answer to the question within the scope of this analysis is yes. The

CReMA reference design point for SEP system delivers trajectories with higher payload mass fractions

(less propellant mass) to a wider range of encounter locations — when compared to a chemical propul-

sion system. Figures 5.8 and 5.9, respectively, show that using SEP allows for a saving of more than

125 kg for 50% of the encounter locations and that 75% of the encounter locations do not require ad-

ditional time-of-flight compared to CP transfers.Table 5.3 shows that the worst case scenario takes 3

additional years with EP compared to CP, if the main objective is to minimize the propellant mass. Op-

positely, if the main objective is to minimize time-of-flight, the worst case scenario requires additional

50 kg to perform the transfer. However, the gains provided by EP can reach 250 kg in propellant mass

savings and up to 2.6 years of time-of-flight reduction.

The savings in propellant mass are possible because SEP systems have at least twice the specific

impulse of chemical propulsion systems. The baseline electric engine for the mission has a specific

impulse of 1219 s whereas the chemical propulsion system was assumed to have 300 s.

Regarding the performance when reaching different encounter locations, Figures 5.2 to 5.5 show that

encounter locations farther from the Earth are harder to achieve, i.e., they require more fuel mass and

time-of-flight. Nonetheless, the entire range of encounter locations is reachable with less than 200 kg for

2-revolution trajectories and less than 160 kg for 3-revolution trajectories.

Additionally, increasing the available power to the engine from 800W at 1 au to 2000W decreases the

required propellant mass (more than 15 kg for 50% of the trajectories).

For backup targets, the results confirm if not improve the CReMA solutions. Contrarily to the CReMA,

the optimization in Section 5.2 does not assume any coast-thrust-coast structure and uses the variable

specific impulse polynomial engine model from LowWiz instead of a fixed thrust magnitude assumption.

The difference in the approach results in a better trajectory for 0-revolution transfers in Table 5.5: the

LowWiz trajectory requires 30 d less than the CReMA solution and only 1/3 of the ∆v; for 1-revolution

trajectories in Table 5.6, no major improvements are brought by the followed approach. By including the

Earth’s ephemerides in the simulations, the optimizer finds solutions that leverage the Earth’s gravity
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field to lower the propellant mass required to reach the target, as seen in Figure 5.15.

From the two delta analysis performed on the transfer to backup targets two conclusions emerge: the

XIPS and NSTAR engine reduce the required propellant mass up to 30 kg but are too heavy to provide a

net mass saving on the overall propulsion system; increased available power to the engine reduces the

propellant mass between 6 kg and 18 kg compared to the baseline system.
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Chapter 6

Conclusions

The design and implementation of a Solar Electric Propulsion optimization software was carried out

successfully. The software’s dual implementation — toolbox and command line interface — leveraged

PyGMO’s Nonlinear Programming Solver SLSQP to solve Optimal Control Problems with a direct tran-

scription method. The formulation of initial guesses for the Optimal Control Problem was automated

using Chebyshev polynomials and simple algebraic relations, eliminating the need for a priori user in-

formation regarding the solution. After validation, the software was used for a preliminary analysis of

the Comet Interceptor transfer to the main target and a backup target, and to perform trade studies on

the backup target scenario; the toolbox was extended to deal with the particularities of the mission (un-

known target) mapping each possible encounter location to a value of propellant mass and time-of-flight

required to reach it.

The preliminary analysis of a Comet Interceptor transfer concluded that Solar Electric Propulsion,

when compared to Chemical Propulsion, delivers trajectories that require less propellant mass. Addi-

tionally, it was shown that:

• encounter locations farther from the Earth are harder to achieve, i.e., they require more fuel mass

and time-of-flight;

• a SEP system allows savings of more than 125 kg for 50% of the comet encounter locations; 75%

of the encounter locations do not require additional time-of-flight compared to CP transfers;

• the entire range of encounter locations is reachable with less than 160 kg and a time-of-flight under

4 years for an EP system compared to 280 kg and 4.6 years with CP;

• Earth’s gravity field can be leveraged when departing SEL2 to lower the propellant mass required

to reach the target;

• for the backup target 73P, the XIPS and NSTAR performance gains do not compensate the addi-

tional mass associated with these systems;

• for the backup target 73P, increased available power to the engine results carries a performance

gain between 6 kg and 18 kg compared to the baseline system.
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Future Work

Future work should include improved thruster modelling [59]. The software should also be extended

to deal with multiple gravity assists missions such as Bepi-Colombo: this could be done by employing

a hybrid optimization approach with Genetic Algorithms in an outer loop to solve the discrete problem

(number and combination of gravity assists) and an inner loop (to solve for the control profile) using

the gradient-based strategy already implemented in the software. Additionally, the optimization can be

tweaked to take into account missed thrust scenarios [73]. Finally, implementing a sparse NLP solver

would decrease computation times.
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Appendix A

Trajectory Optimization Mode outputs
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Figure A.1: Earth to Kopff transfer.
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Figure A.2: Earth to Kopff transfer (3D).
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Figure A.3: Control profile for a transfer to Kopff.
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Figure A.4: Required power profile for a transfer to Kopff.
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Appendix B

CReMA data

(a) Impulsive ∆v.

(b) Time-of-flight.

Figure B.1: Selected CP transfers.
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Figure B.2: Selected CP transfers. Data from the CReMA. Dir are direct transfers; MGA are Moon
Gravity Assist transfers.
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Appendix C

Coefficients for the Engine Models

Table C.1: Engine Model Coefficients: Mass Flow

Engine cm,0 cm,1 cm,2 cm,3 cm,4 Source

NEXT 1.944 0.1768 −0.1898 0.076 37 −0.006 02 [60]
NSTAR 0.3594 1.5665 −0.5941 0.157 74 −0.016 47 [60]
XIPS 0.8211 0.0426 0.5402 −0.1219 0.0091 [74]

BPT-4000 1.653 105 1.998 082 1.328 508 −0.727 280 0.086 106 [75]
PPS 1350-G 1.935 2.545 −0.3716 - - [56]

Table C.2: Engine Model Coefficients: Thrust

Engine ct,0 ct,1 ct,2 ct,3 ct,4 Source

NEXT −0.089 54 52.32 −14.02 2.926 −0.1889 [60]
NSTAR −2.2822 38.4804 0.082 67 −1.554 0.2340 [60]
XIPS −0.3984 35.3591 1.4111 −0.4966 0.0367 [74]

BPT-4000 −1.454 064 47.927 765 19.422 224 −10.102 479 1.174 296 [75]
PPS 1350-G 4.68 60.94 −5.10 - - [56]

Table C.3: Engine Model: Minimum and Maximum Power

Engine Pmin (kW) Pmin (kW) Source

NEXT 0.620 7.3 [60]
NSTAR 0.450 3.8 [60]
XIPS 0.436 5.03 [74]

BPT-4000 0.302 4.839 [75]
PPS 1350-G 0.46 1.5 [56]
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