
POLITECNICO DI TORINO

MECHANICAL AND AEROSPACE ENGINEERING DEPARTMENT

M.sc Degree in Aerospace Engineering

Master Thesis

Deep learning techniques for
micro-launchers branching
trajectories optimization

Supervisors
Prof. Nicole Viola
Dr. Jasmine Rimani

Candidate
Alessandro Princi
ID number: s262965

External Supervisor
Ing. Stephan Schuster
ESA’S TEC-MPA

Academic year 2020-2021

Abstract

In this thesis project, the problem of branching trajectories analysis for micro-
launchers proposed by the ESA’S TEC-MPA section is developed. The growing
interest of companies, agencies and training institutions in the small satellite mar-
ket makes these launch systems, compared to other solutions, much more suitable
and functional for this type of missions both in economic and functional terms.
Since these are new technologies that are constantly evolving, it is incumbent upon
us to study the reliability of these complex systems and to do so from both a com-
ponent and mission analysis perspective. The interest is therefore to study optimal
ascending trajectories in nominal and degraded situations, avoiding, in the second
case, corridors that could lead to catastrophic damage both for the generation of
debris and for urban protection. The solution developed is presented by Intelligent
Rocket Ascent Trajectory Optimizer (IRATO), a tool that, compared to the state
of the art of mission analysis software, is able to optimize point trajectories and
simultaneously modify them in the presence of operational failures. With respect to
the state of the art of mission analysis software, the tool proposes the possibility of
inserting failures starting from the nominal trajectory in order to give the user the
possibility of evaluating the possible risks deriving from the launch segment when
planning the mission architecture. The result is obtained by combining solutions
derived from the application of particle swarm optimization and deep learning so-
lution. The first is an algorithm inspired by the movement of flocks of birds which,
with respect to its function as an optimizer of subsystems design issues, is used in a
dynamics problem. The solution related to deep learning involves a neural network
that, instead of the propagation of the launcher after failure, will be able to predict
the maximum height reached, thus saving computational cost. The dynamic model
and the failures considered are influenced by the simplifications necessary to handle
such a problem autonomously and without the support of data provided by private
companies. Nevertheless, in order to guarantee to the work the highest possible
reliability, the results produced will be compared and validated through the use of
ASTOS software.

Acknowledgements

Un ringraziamento speciale va fatto alla Professoressa Nicole Viola per avermi
dato la possibilità di intraprendere questo lavoro coinvolgendomi da subito nel suo
gruppo di ricerca e per i suoi preziosi consigli durante questo periodo.
Grazie alla mia correlatrice Dr. Jasmine Rimani per avermi guidato con metodicità
e costanza in questo lavoro di tesi. Mi auguro che la passione e la dedizione che
applichi nel tuo lavoro possano sempre portarti grandi soddisfazioni.
Gre, Gas, Davido, Simo, Narcio e Fus. Sono stati cinque anni meravigliosi passati
insieme, ritornassi indietro non cambierei niente di tutto ciò abbiamo fatto.
Mi auguro che possiate vivere delle vite meravigliose.
Grazie ai miei genitori e a mia sorella per il loro immancabile sostegno, per quanti
mari mi auguri di vedere sarete sempre il mio porto preferito.
Grazie nonno per aver lottato tanto, questa tesi è dedicata a te.

2

Acronyms

TVC Thrust Vector Control

CoM Centre of Mass

LVLH Local Vertical Local Horizontal

RLV Reusable Launch Vehicle

LEO Low Earth Orbit

FLPP Future Launchers Preparatory Programme

Q@TS Quick @ccess To Space

POST-II Program to Optimize Simulated Trajectories II

RDS Rocket Dynamic Simulator

ISA International Standard Atmosphere

ECEF Earth Centered Earth Fixed

PID Proportional Integrative Derivative

PSO Particle Swarm Optimization

SNN Standard Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

IRATO Intelligent Rocket Ascent Optimizer

FF Fuel Fraction

LB Lower Bound

UB Upper Bound

3

DoF Degree of Freedom

FMECA Failure Modes, Effects and Criticality Analysis

FTA Failure Tree Analysis

AST Office of Commercial Space Transportation

NASA National Aeronautics and Space Administration

IEEE Institute of Electrical and Electronics Engineers

RBD Reliability block diagrams

PCA Parts Count Analysis

ETA Event Tree Analysis

4

Contents

List of Tables 7

List of Figures 8

I First Part 11

1 Introduction 13
1.1 Rocket trajectory . 13
1.2 Reference frames . 17

1.2.1 Fixed planetocentric coordinates 17
1.2.2 LVLH reference frame . 18

2 Focus on micro-launchers 19

II Second part 23

3 Problem Statement 25

4 Rocket Dynamic Simulator 27
4.1 Electron Simulink model . 30

5 Gradient-based methods 35

6 Particle Swarm optimization 39
6.1 PSO Mathematical Model . 42
6.2 Algorithm Validation . 46

7 Artifical intelligence 49
7.1 Machine learning . 49
7.2 Deep learning . 53

7.2.1 Introduction to neural networks 53

5

8 Problem resolution 59
8.1 Ascent Optimization V1 and V2 . 59
8.2 Implementation of branching trajectories 63
8.3 PSO application . 65
8.4 Intelligent Rocket Ascent Trajectory Optimizer 67

9 ASTOS Validation 83
9.1 Electron model creation . 83

9.1.1 Environment definition . 83
9.1.2 Actuators definition . 83
9.1.3 Aerodynamics definition . 84
9.1.4 Component definition . 84
9.1.5 Phase definition . 86

9.2 IRATO Validation . 87

A Reliability Analysis 91
A.1 Sistem Safety . 91
A.2 Reliability analysis methods . 94

A.2.1 Reliability Block Diagrams 94
A.2.2 Parts Count Analysis . 95
A.2.3 Failure Modes, Effects, and Criticality Analysis 96
A.2.4 Fault tree analysis . 98
A.2.5 Event Tree Analysis . 100

Bibliography 103

6

List of Tables

4.1 Electron data . 29
7.1 Machine learning algorithms . 50
8.1 Logic flow of the second optimization attempt 64
8.2 Electron data for trajectory optimization 68
8.3 Database layout . 70
9.1 Variation of resistance coefficient as a function of Mach number . . 84
9.2 1st Stage dimensions . 85
9.3 2nd Stage dimensions . 85
A.1 RBD basic layouts . 94

7

List of Figures

1.1 ∆V as a function of payload ratio and structural efficiency 17
1.2 Local Vertical Local Horizontal (LVLH) reference frame 18
4.1 Body fixed reference frame . 28
4.2 Electron rocket block . 30
4.3 Height, Velocity and mass consumption as a function of the time . . 32
4.4 3-D trajectory visualization . 32
6.1 Graphical representation of a Particle Swarm Optimization (PSO)

step executed by an agent . 43
6.2 PSO applied to Funcion 6.14 . 46
6.3 PSO applied to Funcion 6.15 . 47
7.1 Different representations of the number 3 53
7.2 Sigmoid function . 55
7.3 Neural network scheme . 56
8.1 Example of fuel consumption optimized trajectory of Ariane V launcher 60
8.2 Optimized trajectory computed through ascent optimization V2 . . 63
8.3 Failure scenario in which at t = 180 s there is a 30% deterioration

of the maximum η value . 65
8.4 Neural network configuration . 70
8.5 Neural network scheme . 71
8.6 Neural network performance . 71
8.7 Validation checks and gradient descent 72
8.8 Regressions . 72
8.9 Neural network performance . 73
8.10 Validation checks and gradient descent 73
8.11 Regressions . 74
8.12 Schematic representation of robst quantities 75
8.13 Schematic representation of branched problem identification 76
8.14 Heigth, velocity and mass consumption in branched case 77
8.15 Throttle and angle of attack as a function of the number of segments

in branched case . 78
8.16 Absolute and relative horizontal distance results in branched case . 78
8.17 Heigth, velocity and mass consumption in abort case 79

8

8.18 Throttle and angle of attack as a function of the number of segments
in abort case . 79

8.19 Absolute and relative horizontal distance results in abort case . . . 80
9.1 Electron vehicle preview . 85
9.2 Nominal trajectory scenario validation 87
9.3 Degraded trajectory scenario validation (tfailure = 100s and 30% of

throttle upper bound reduction) . 88
A.1 System safety process . 92
A.2 System safety process . 95
A.3 FMECA breakdown structure . 97
A.4 Example of FMECA worksheet . 97
A.5 Example of FTA scheme . 99
A.6 Example of ETA scheme . 100

9

10

Part I

First Part

11

Chapter 1

Introduction

In this first part, the elements that make up the branching trajectories problem
performed by a launcher are considered. It is in fact regarded in first analysis the
trajectory of a launcher and the main types of optimization. This type of analysis
is then declined in the class of microlaunchers, among which Electron is considered
as an example.

1.1 Rocket trajectory
[1] A rocket launcher is a system capable of carrying a given mass called a payload to
a certain orbital altitude thanks to the elementary use of the third law of dynamics .
This mass is typically composed of one or more satellites that, following the release,
will perform their functions.
Imagining therefore both ascent and re-entry, it is not difficult to figure out how
the external conditions to which our launcher is subjected during its flight envelope
are different and how every aspect that characterizes must take into account this
factor.
In fact, in addition to covering speed ranges from subsonic to hypersonic, it is
also necessary to consider the different characteristics of the atmosphere: from the
terrestrial one of the launch base to the more rarefied space environment. The
assumption of a flat and non-rotating Earth is taken into account to simplify the
model that will lead to the derivation of the equations of motion.
Understanding how a rocket works is the first step in being able to derive, or
simply understand, the equations that affect it. We know in fact how these systems
need a quantity of propellant, that once accelerated will produce a thrust directed
towards the opposite direction to the motion that we want to obtain. The quantities
required by orbital mechanics to leave the Earth’s sphere of influence or to orbit
around it are such that they require large quantities of fuel (and consequently large
structural masses to contain it). During the ascent phase it is understandable

13

Introduction

how, by decreasing the fuel, this structural mass becomes more of an encumbrance
than functional to the accomplishment of the mission. Therefore, once the mass
of fuel contained in a part of our vehicle (which we will call stage from now on) is
consumed, it is separated using what is technically called staging.

This study start by simply considering our body as point-like mass and associ-
ating to it a vector indicating its position þr(t), then its derivative þv(t) = dþr(t)/dt.
From now on, every discussion will refer to the center of mass of the main body
with respect to which the motion occurs, i.e. the Earth.
It’s also known how even the mass itself is a function of time due to fuel consump-
tion for this reason, neglecting the external forces considered lower order than the
thrust, the second law of dynamics can be written as:

m
dþv

dt
+ dm

dt
þv = þf (1.1)

Where the right term represents the external forces acting on the launcher.

þf = þfA + þfT +mþg (1.2)

These respectively are:

• Aerodynamic force

• Thrust force

• Weight

Orbit insertion is a process that requires a large amount of energy aimed at in-
creasing both the potential energy (desired height) and kinetic energy (velocity
competing with the orbit) of the launcher. The state of the art envisions only this
type of aircraft for insertion into orbit of a given payload. The process is relatively
simple: an oxidizer and a fuel are placed in their relative tanks. Through a feed
system they will come into contact releasing energy that will be channeled in the
opposite direction to that towards which it wants to move. In addition to the
position it is also necessary to take into account the attitude during the mission
because it is responsible for the aerodynamic loads that weigh on my structure, in
this regard the angle of attack should be kept as small as possible. While in the past
passive stabilization methods were used, nowadays Thrust Vector Control (TVC)
allows attitude control through three main methods:

• Nozzle deflection

• Fluid injection

• Flow Deflection

14

1.1 – Rocket trajectory

Nozzle deflection is a technique that allows the flow produced by the reaction
between oxidant and fuel to be directed in the desired direction, special gimbals
are used. The fluid injection is used inside the nozzle to actively modulate the
thrust levels according to the situation in which you are while the flow deflection
allows to modify the geometry of the flow thanks to special tools such as spoilers.
These tools are based on thrust reduction and not all of them allow to manage
the complete attitude of the vehicle. As mentioned earlier, optimization of the
combustion process is accomplished by dividing the launcher structure into stages.
This allows at the moment of the launch to exploit the amount of thrust produced
by a very large tank and, approaching towards the orbit, to lose this kind of weight
to fit inside it and circularize. The disadvantage of staging is to have an engine for
each stage and all the technology related to it. Considering a system on which no
forces act, in an environment completely rarefied enough to resemble space (pa = 0),
conservation of momentum says that:

(m+ ∆mf)v = m(v + ∆v) − ∆mf (ve − v) → m∆v = ∆mfve (1.3)

Where:

• ∆mf is the mass of the fuel burnt.

• ve is the velocity at which the flow exits.

Moving to infinitesimal magnitudes, Equation 1.3 becomes:

m
dv

dt
= ṁfve + peAe (1.4)

Instead, the total thrust is composed of the following contributions:

T = peAe + ṁfve = ṁfc = ṁfg0Isp (1.5)

where c is the effective exhaust velocity, g0 is the gravity acceleration of the con-
sidered planert and Isp is named specific impulse . The last one is one of the most
important performance parameters of a rocket engine. The steps that will follow
in this discussion are designed to derive the Tsiolkowski equation or fundamental
equation of the rocket, considering what has been written before is made explicit
the acceleration acting on the body.

dv

dt
= −ṁ c

m
= − c

m

dm

dt
(1.6)

Integrating Equation 1.6 over time intervals:

∆v = c log(m0

m
) = c log(m0

m0 −mf

) (1.7)

15

Introduction

The specific impulse is then introduced:

∆v = g0Isp log(m0

m0 −mf

) → mf = m0[1 − exp(− ∆v
g0Isp

)] (1.8)

Where mf is the total useful propellant mass:

mf = m0 −me (1.9)

And can be expressed in a parametric way by using Λ:

Λ = m0

me

> 1 (1.10)

The study led throught parameters is useful to discern of the reference launcher
dimensions and to generalize the problem with which the reader had to deal with. In
this part, starting from the fundamental masses which compose a general launcher,
a parametric study will be argumented using a schematic procedure. The reader
may consider the launcher as consisting of certain masses essential to its architecture
and proper operation:

m0 = mf +ms +mp (1.11)

Equation 1.11 then considers a launcher as a gathering of the fuel mf which will
lead it to the target, a structure ms which contains the fuel and other systems
and the mission payload mp. Dimensionless parameters useful for the study of a
generic launcher are introduced, respectively. These are respectively the payload
ratio (Equation 1.12), the structural efficiency (Equation 1.13) and the propellant
ratio (Equation 1.14).

λ = mp

m0
(1.12)

Ô = ms

ms +mf

(1.13)

φ = mf

m0
(1.14)

This kind of study is useful to obtain results which depends on the parameters
introduced above. Preliminary design analysis can be conducted by plotting the
trend of the interested magnitude in function of another parameter, an example is
reported in Figure 1.1.

16

1.2 – Reference frames

Figure 1.1. ∆V as a function of payload ratio and structural efficiency

1.2 Reference frames
[1] Mission analysis and related trajectory study involves the collection of data
that may change with respect to the reference system in which it is measured.
It is sufficient to know that three fundamental elements are needed to define a
right-handed oriented one of theme:

• Origin of the reference system (which is the main body Centre of Mass (CoM)).

• Fundamental plane (which is the plane where x and y lies).

• Positive direction of the z axis.

Then, It’s important to go to specify the most used in the study of the rocket
motion to know how to better interpret the equations that concern its dynamics
and kinematics.

1.2.1 Fixed planetocentric coordinates
The first reference frame FP := {O, xP , yP , zP} is fixed, that means that the di-
rection of the axis respect to the fixed stars doesen’t ever change. It’s defined by
an origin O which coincides with the centre of the Earth, the fundamental plane
is the equatorial one and the third axis, being perpendicular, is directed positively
towards the Earth spin axis.
Gathering the informations mentioned until now we are able to write generic posi-
tion, velocity and angular velocity of an object in this reference frame:

þrP = (xP , yP , zP)T ; þvP = (vxP , vyP , vzP)T ; þωP = (0, 0, ω)T (1.15)

17

Introduction

The strength of the planetocentric fixed system is that it can be approximated as
almost inertial, in this way, not considering the rotation movement of the earth
and the relative atmosphere, the study of the dynamics of our launcher can be
conducted in a simplified way.

1.2.2 LVLH reference frame
The LVLH reference frame is, as the name suggests, a local reference frame which
give us mostly information about the attitude of the mass in which it is centered.
Then, it’s main features are:

• Origin in spacecraft CoM.

• The fundamental plane is formed by the z-axis which is direct towards the
centre of the Earth and by the x-axis which is directed towards the direction
of the velocity.

• The positive direction of y-axis derived from the right-hand rule.

A clearer example is provided by the following scheme 1.2.

Figure 1.2. LVLH reference frame

18

Chapter 2

Focus on micro-launchers

[3] Part of the tradition associated with putting satellites into orbit is the use of a
launcher that can carry the payload to the target orbit. Generally the launch fore-
sees the arrangement of the satellites one next to the other in order of importance
and priority according to the mission profile. In this period the access to satellites,
especially those in the small category (below 500 kg) is becoming more and more
extensive not only by companies but also in university projects and start-ups. The
micro-launcher offers a practical and satisfactory solution to this type of request.
There are generally two types of micro-launchers, the first, more traditional ones are
launched from fixed platforms on the ground. The alternative involves launching
from an aircraft. This type of solution is as practical as functional to have in orbit
a satellite or constellations as distributed and organized as possible. Between 2011
and 2015, demand for small satellite development from universities and minority
groups made up about 60% of launches with this payload. The main purpose is the
development of solutions to observe the earth, technology demonstration of new
devices and telecommunications. With fewer limitations than heavier launchers,
micro-launchers are an opportunity to make space within everyone’s reach. Over
the years, private companies have been sponsored by space agencies to develop this
type of technology. A case in point was in 2015 when NASA awarded RocketLab
for their innovative solutions introduced by Electron within this market. Given the
evolution of this technology, there could be three possible scenarios:

• Demonstration of a sustainable economic model: Despite the funding received,
the lack of a business model could cause this ecosystem to collapse. Potential
obstacles can be identified by technological burdens and different demands
from the satellite market.

• Status Quo: The market may not change further by continuing to be fueled
by customers such as small satellite operators for Low Earth Orbit (LEO)
missions.

19

Focus on micro-launchers

• Economic Boom: Thanks to technological innovation, the right economic sup-
port and a satisfactory demand from the operators of small satellites this type
of market could grow more and more bringing both government and private
interest in the development of this solution.

One of the goals with which we seek to improve the state of the art in micro-
launchers is the demonstration of increasingly autonomous guidance, navigation
and control related also to processes involving both attitude and position dynam-
ics. For now it would seem that the third scenario is taking over leading space
agencies to support feasibility studies about the scope of micro launchers creating
new business opportunities. What ESA wants to do is to strengthen the European
industry by promoting the development of these programs in order to create a tech-
nologically advanced and competitive environment. An application example of how
this type of context is looking for concrete solutions is given by Future Launchers
Preparatory Programme (FLPP). This program enabled five companies to sponsor
an economically feasible and commercially viable micro-launcher, thus not relying
on public funding. The goal, as mentioned earlier, is to place small category satel-
lites in orbit in an efficient and economically viable manner from the ground or
through an airdrop. The results were presented at a workshop in Paris where 150
participants actively exchanged ideas. From this meeting key points emerged on
which future microlancer technology will be developed including low-cost avionics,
composite engines and turbopumps. Presented projects are as following:

• Miura presented by PDL space.

• The Azµl program to allow an efficient launch system from the azore islands
thanks to the Orbex Prime launcher developed in collaboration with Deimos.

• Avio presented the remodelling of VEGA and VEGA-C.

• MT Aerospace provided plans and ideas regarding this area.

• ArianeGroup also presented within the Quick @ccess To Space (Q@TS) pro-
gram an idea regarding a prototype micro-launcher.

Starting in 2019 also, ESA has begun to fund this type of projects trying to make
then space transportation and technologies applicable in orbit increasingly afford-
able for everyone bringing benefits in a variety of fields (from agriculture to climate
change monitoring).
Since these are new technologies that are constantly evolving, it is incumbent upon
us to study the reliability of these complex systems and to do so from both a com-
ponent and mission analysis perspective. As far as the analysis of reliability that
must be made about these systems, the information present in the bibliography are
not many because commonly the data that concern this type of study remain in
confidential form inside the companies. The first analysis related to reliability is

20

Focus on micro-launchers

described in theoretical terms in the Chapter A.2, while the mission analysis and
the state of the art of the softwares that allow to realize it will be discussed below.
The problem proposed by ESA (Chapter 3) engineers that led to the realization
of this thesis requires the study of branching trajectories in order to evaluate the
ascent of a micro-launcher. As normal, it was then continued by searching the
bibliography and sitography for software that might be able to evaluate branching
trajectories in order to optimize them. Among these, not many have the possibility
to alter the characteristics of the dynamics of the body of which we want to know the
propagation by producing a multiple-shooting optimization. Produced by NASA
and very similar to this type of task is Program to Optimize Simulated Trajectories
II (POST-II)[19]. This is a discretely parameterized target point dynamics software
that allows for optimization. It is capable of studying the dynamics of bodies or-
biting planets both nominal and non nominal conditions due to the ability to keep
certain subsystems active or not within the simulation. The all happens in precise
way according to the demands of the customer that will be able to add costraints
either equality or inequality. POST-II would have been perfect for the evaluation
of the problem for which this thesis arises were it not for the fact that access to the
code is via a request to be made to NASA. In order to avoid bureaucracy and, at
the same time, to give more customization to the work performed it was decided
to start from scratch with the design of a similar program that will be explained
in Chapter 8.4. Another alternative is provided by ASTOS by ASTOS Solution,
professional software used for mission analysis that allows a complete study of the
systems and dynamics of the object concerned. This software is as complete as it
is complex and its use is subject to the possession of an appropriate license that
allows its use. Although the data provided by this tool is very reliable, branching
trajectories are not allowed. The only alternative considerable is that one to simu-
late the optimization of the same object altering of the nominal characteristics and
estimating the hypothetical ramifications that it could assume. For these reasons,
the results produced by Intelligent Rocket Ascent Optimizer (IRATO), the solution
developed by the author, will be validated in the Chapter 9 by this software. These
software, together with their more commercially known counterparts, make up the
state-of-the-art solutions currently available for conducting this type of study. The
purpose of this thesis is to increase the range of available solutions by generating a
tool that ad hoc solves a problem of optimization of branched trajectory identifying
figures of merit that can allow to continue to the target orbit despite the presence
of an operational failure or, if this is limiting the continuation of the trip, to create
a corridor of abortion for the protection of population centers. For this reason in
the next chapter a discussion around the problem faced starting from its statement
will be introduced.

21

22

Part II

Second part

23

Chapter 3

Problem Statement

In this section we get into the heart of the thesis by evaluating the proposed prob-
lem and the various attempts that were tried to arrive at the final results. The
execution was not immediate and the path to the solution was as articulate as it
was instructive from a didactic point of view. Now, let’s consider together the
problem presented by ESA:

"We need a study that considers the branching trajectories of a micro-
launcher/Reusable Launch Vehicle (RLV) during its ascent phase. In
particular, the problem needs to consider a study of how to handle abort
trajectories to avoid catastrophic situations such as impacting population
centers."

Subsequent thoughts formulated by the author, and related results, are given below.
It was known that the dismay from covering such a broad and general topic stemmed
from multiple perplexities, including:

• What branching trajectories are ?

• What is the difference between a micro-launcher and a RLV ? How can I
manage the relationship between them ?

• What kink of failure can cause an abort trajectory ? How the system is
comprimised by that ?

It was realized that this doubts could only be managed and dealt with by di-
viding the main problem into subproblems and understanding the interrelationship
between them. What was clear from the beginning was that there was a need a tool
capable of simulating the trajectory of a rocket (let’s leave RLV aside for now) in
both nominal and non nominal conditions. In this regard it was immediate to refer
to a numerical calculation software for the generation of this kind of trajectory.
The initial choice foresaw among the various available:

25

Problem Statement

• ASTOS by ASTOS Solutions

• Python

• MatLAB/Simulink by MathWorks

The first provisional choice fell on the software by ASTOS Solutions as it is
specialized in mission analysis and certainly more accurate with regard to the con-
sideration of real models that would involve both the system of interest and the
surrounding environment. This, through an already configured Electron model,
would have allowed a reliable and precise study of the nominal situation of the
flight, however not allowing too many degrees of freedom on the type of study that
we wanted to carry out. It was therefore decided to use this program not as a test
bench but as a confirmation of the results obtained through more manual codes but
no less useful for the didactic purpose of this work. Python has been considered
as a programming language given its great adaptability in any situation. Since
the work would and has involved parts of artificial intelligence a pro in favor of
this language would definitely be the community that involves and manages these
packages. However, given the large amount of information and problems to man-
age provided by the mission statement the choice of this program was excluded to
avoid problems related to the deadline of the work. The final results are in any
case accessible through this type of language given the conceptual simplicity with
which they were obtained. Last but not least, MathWorks’ solution was considered
as the only suitable candidate. This choice would have resulted in a more elastic
handling of the problem given the presence of both MatLAB and Simulink. While
the former allows for a strong tool for numerical computation and a broad spectrum
for data visualization and management including AI libraries, Simulink would have
granted a solution based on simulation and management of a fully scalable model
since it is built by the user.
The fact of managing a new work, for which we didn’t have enough knowledge
(neither personal nor bibliographical) made us choose these two softwares in order
to be as careful as possible and to guarantee a wide range of viable solutions.

26

Chapter 4

Rocket Dynamic Simulator

[12],[13] The initial reasoning in testing the trajectories of a launcher was to re-
construct a mathematical model of it. The motivation that led to this choice was
the basic idea of having an approximate model that would allow the evaluation of
the trajectory and the data that composed it instant by instant. Going to build
a precise model it would have been also easy to vary the nominal characteristics
of the launcher to appreciate not only the nominal results but also those resulting
from a possible failure thus developing the argument of branched trajectories.
In addition to the bibliography, the creation of this thesis was also made possible
by media materials found on the internet (video tutorials, online courses). What
follows is an explanation of how the Electron model was built in Simulink thanks
to the explanation of the webinair: Simulink: Rocket Launch Simulation by the
MatLAB ambassadors Marco Lombardo and Andrea Togni. Although the tutorial
leads to an inaccurate result the code has been corrected and you can evaluate
reliable results when compared to the imposed approximations.
Electron model is structured as follows: it is a multi-stage rocket in that its func-
tional operation is to release an operational payload into orbit. The goal of the
multi-stage is to maximize the amount of payload relative to the ∆V provided.
During launch, the stages, once the fuel is exhausted, are undocked, this is an
advantage because we are going to eliminate the structural masses that contain
the fuel now exhausted. To better realize how these quantities are related, the
Tsiolkowski’s equation is introduced:

∆V = ve ln(m0

mf

) = g0 Isp ln(m0

mf

) (4.1)

Where:

• ∆V is the amount of speed required to reach a given orbit

• ve is the effective exhaust velocity

27

Rocket Dynamic Simulator

• m0 is the initial mass

• mf is the final mass

• g0 is the gravitational acceleration on the planet surface

• Isp is the specific impulse

To write the equations that instead govern the dynamics of my rocket we refer to a
body fixed system with the x-axis agreeing with the longitudinal axis of the rocket,
the y-axis exiting the plane and the z-axis completing the triad. An xned is also
introduced that points by definition to the north. A clearer raffiguration is provided
by the scheme 4.1. In this way we are able to write the following equations:

T = −D −Mg cos θ (4.2)

ṁve + (pe − pa)Ae = −D −Minstg cos θ (4.3)

dm

dv
ve + (pe − pa)Ae = −1

2ρV
2CDA−Minstg cos θ (4.4)

Figure 4.1. Body fixed reference frame

A first approximation involves the fact of considering within the resistance co-
efficient only the area related to the fairing and not the effects of resistance that
are formed on the lateral part of the system. However, the body fixed reference
system does not take into account aspects related to the rotational dynamics of the
rocket. Therefore, Euler equations referred to the center of gravity of the rocket
are introduced:

I1ω̇1 + (I3 − I2)ω2ω3 = M1 with ω1 = dθ

dt
(4.5)

28

Rocket Dynamic Simulator

I2ω̇2 + (I1 − I3)ω3ω1 = M2 with ω2 = dφ

dt
(4.6)

I3ω̇3 + (I2 − I1)ω1ω2 = M3 with ω3 = dψ

dt
(4.7)

In the drafting of the equations must be taken into account that some quantities
such as the mass year non-zero derivative in time. In fact we know from the basic
working mechanism of a rocket that this quantity varies during time and is also
directed towards a certain type of orientation, for these reasons it must be assumed
as a vector and not as a scalar. Given the above equations, a keen eye might
realize the complexity of the problem that needs to be addressed, there is indeed
a system of six concatenated differential equations. As far as the state of the art
of today’s calculators can allow us to deal with this problem, we have used the
Aerospace Blockset of Simulink that solves this problem automatically, calculating
the trajectory (both in terms of pose and attitude) given certain parameters as
input.
The data set used for the construction of the Electron model concerning its nominal
characteristics is then reviewed:

Parameter Value

CD 0.25
I eye(3)

ms1 9250 + 250 Kg
ms2 2050 + 250 Kg
mp 150 Kg
ṁse 8 Kg/s
ve 3050 m/s
pe 100000 Pa

nes1 9
nes2 1

Table 4.1. Electron data

Compared to the approximation made on the aerodynamic drag (0.25 is a typical
value for a cone of that size) we notice how the inertia matrix also does not faithfully
represent the physical-geometric reality of our launcher. To obtain an even more
reliable simulation it would be necessary to perform a more in-depth structural
study. The following subchapter will consider step by step the realization of the
model used for this first phase of study.

29

Rocket Dynamic Simulator

4.1 Electron Simulink model
Since the dynamics of a variable-mass 6 Degree of Freedom (DoF) launcher can be
easily computed by the package made available by Simulink, the part on which the
study of the code focuses is the modeling of everything that is excluded outside of
the dynamics equations. It was in fact created a block called "Electron rocket" in
which this type of integration takes place. Taking a look at the figure 4.2 it can be
seen that the outer ring of the code consists of all the external forces (resistance
and control) acting on our system.

Figure 4.2. Electron rocket block

Based on the block described above we note that the most relevant part of the
code was to build inputs that would allow us to simulate the launcher as realistically
as possible. Starting from the forces we know that the most notable is the one given
by the thrust. For this purpose it was built a set for each stage that would emulate
the behavior of thrust generation through the nozzle, always updating the value
of ambient pressure and evaluating reliable values. The behavior of the motors is
also indicative of the value that the mass and its variation assume in time. Last
but not least, the effective exhaust velocity also depends on the construction of
this block. In order for the stages to assume the correct sequence, a system of
logic gates was used that would take into account the mass of fuel inside each of
them. Once finished in fact, the system updates itself by unhooking the exhausted
stage and then responding coherently with respect to the physics of the problem.
The first stage, despite being composed of 9 engines, has been treated for the total

30

4.1 – Electron Simulink model

thrust it can provide since a single block was made for all of them. Obviously
in case you want to obtain a greater accuracy, both in the results and in the
control, what you could do is to divide and manage individually each of them going
so to improve the usefulness of the code and its results. Contributions of drag,
weight force, and an attitude control force were also added to the thrust. The first
one, always keeping in mind the assumption made on the fairing, was calculated
using the aerospace blockset with the simplification that center of gravity and
center of pressure coincided. Using the International Standard Atmosphere (ISA)
atmosphere model the blockset evaluates perturbative forces and moments that
must be taken into account in the resulting total forces and moments. As far as
the weight force is concerned, the evaluation of this one was carried out taking
into account the dependence of this value with respect to the altitude at which
one is located. It is inevitable to think how in the calculation of these forces it was
necessary a constant work of transformation using the appropriate rotation matrices
that have allowed the transition from fixed and centered reference systems (Earth
Centered Earth Fixed (ECEF)) to local systems (body). A final control force was
added. Although the systems that regulate attitude are far more complex it was just
right to impose a pitch angle that would bring my launcher from 90° to horizontal
once I got to altitude. Real phenomena such as gravity turn are not handled by the
simulation. This type of control was handled by using a Proportional Integrative
Derivative (PID) in its proportional-derivative form and tuning the parameters
competing with its coefficients so that the setup would be pitch consistent. The
management and appreciation of the results has been made possible thanks to the
use of the Mapping Toolbox of MatLAB, the data are then reported about the 3-D
and 2-D nature of the problem, the latter with focus on height, speed and amount
of mass consumed as a function of time.

The final results of the simulation can be appreciated in the figures 4.3 and
4.4. Electron’s reference mission is to release the payload into a polar orbit at an
altitude of 500 km. As you can see this happens in about 1600 seconds. We will
see how in reality and for the following results are much smaller. Since there is
no propagator of the two bodies problem, once the nominal altitude is reached,
the launcher starts to lose altitude, which would not happen if the radial velocity
conditions were respected. A further validation is given by the results that will be
discussed in Section 8.4.

The purpose with which the simulation was built is to have a program that is able
to act on the characteristics that influence the thrust to evaluate how the trajectory
is modified following a failure. Having expressed a dependence in an explicit form
on what happens inside the nozzle, it would therefore not have been difficult to
go from a nominal trajectory to a degraded one by including information about
branched trajectories. However, although this method was a key part of starting
to approach the work, this turned out to be after some reasoning the not best path
on which to continue. The weakness of this method lies in the fact that there is no

31

Rocket Dynamic Simulator

Figure 4.3. Height, Velocity and mass consumption as a function of the time

Figure 4.4. 3-D trajectory visualization

control law that goes by controlling some parameter of my launcher in such a way
that a certain magnitude (such as fuel economy or mission time) is minimized. The
launcher does nothing but produce thrust as long as there is fuel inside the relevant
tank. So this reasoning leads us to appreciate a "free" behavior of my system and

32

4.1 – Electron Simulink model

not calibrated towards what could be a real need. The trajectory produced in
output is not an optimized trajectory and is also affected by the simplifications
that have been made to the model so that it can be treated with relative simplicity.
The understanding of this concept has been a fundamental step in the continuation
of the work because it is understood that a simple propagation is not enough, the
art of optimization of the trajectory is something that, compared to the ability of a
system to perform a certain task, goes to scratch the superfluous going to generate
results that in addition to having physical and geometric consistency also have a
practical implication related to the saving of a certain amount. The awareness
about the fact that this kind of solution was not the best has taken even more
way since I realized that the goodness of the results obtained also dependeds on
how well the model was built. So, although this initial step was an end in itself,
it definitely defined better how optimizing was a fundamental prerogative to give
more reality and reliability to the data presented. This change of program would
certainly have meant a move from Simulink to a numerical calculation program.
Fortunately, as mentioned earlier, the other side of the coin, MatLAB, fit like a
glove for such problems, confirming that the versatility of MathWorks’ product
was the right choice. The next chapter is an introduction to the methods used
to perform the optimization not found through this method, as well as a logical
continuation of the work performed.

33

34

Chapter 5

Gradient-based methods

[4] Consequently, the logical workflow shifted towards finding different algorithms
that would allow the optimization of a trajectory. But what does it mean to opti-
mize ? If we were to think of this action as a recipe, we would need to identify the
elements that make it up. Basically, there are two:

• The variable you want to maximize/minimize

• The variables on which you want to act with a control

Once you have identified the pivotal figures to generally obtain as output a trajec-
tory that respects the imposed constraints, you must keep in mind that the methods
to make this happen are multiple and all have pros and cons. In this section we will
focus on the so-called gradient-based methods, i.e., methods that exploit gradient
descent.
To understand how this algorithm works we can introduce a simple example: let’s
imagine we are on a mountain and we want to reach the plain (which will be con-
ceptually understood as the minimum of the function). In all this what we possess
of the environment is not a global information but, due to the presence of many
trees near us, we are able to evaluate a local information about the path in which
we are venturing. Surely the most intuitive solution would be to look around and
take a step towards the direction in which the slope seems to be the steepest be-
cause following that we will arrive quickly to our destination. Iterating in this way
we will arrive, step by step, in an area where the lowest steepness is the one linked
to a flat territory, in this way we will have reached our goal.

This is conceptually the working principle of a gradient-based algorithm. The
fundamental steps for the realization of the same are therefore:

• Search direction

• Step size

• Convergence check

35

Gradient-based methods

The first step might find its way into our example by considering the moment in
which we choose the direction in which to descend. In mathematical terms the
derivative is the tool that gives us global information about the growth/decrease
of the example function. In the simplest cases (one-dimensional functions) this is
geometrically associated with the slope of the function itself, while for functions
the operator will take the form of a gradient. The direction of maximum punctual
steepness will be identified thanks to this tool by defining the search direction.
Once the desired direction has been identified, we proceed wondering for how long
to continue towards that direction. Our function, or mountain, could change its
topological characteristics in a non-uniform manner and it is therefore not certain
that once the direction of maximum slope has been identified, this will remain
constant throughout our journey. Therefore it will be necessary to individuate
a step size suitable to avoid overshooting problems. The name that is used by
the solver to indicate this feature of my algorithm is precisely the step size. After
defining the first two elements, we have set a code that is able to identify a direction
of maximum speed towards which to descend and also a step size. These two
ingredients are necessary to arrive at an optimum, but being sure that the solution
I’ve found is the global one is the necessary condition to know that you get a global
convergence. A mathematical discussion of the above is given below.
Necessary condition sufficient for this method to be applied is, given a function
F (x1, ..., xn) is that this is continuous and differentiable around a point a. We
know that the gradient of the function calculated in this form:

− ∇F (a) (5.1)

Indicates the direction in which my function descends most steeply from the mo-
ment in which, by definition, the gradient of a function indicates the direction and
value of the steepest increase. In this way, starting from an attempt value x, we
will proceed iteratively updating the value according to the procedure:

xn+1 = xn − γn∇F (xn) (5.2)

The term γ is a real, positive and number chosen in such a way that if it is enough
small, the quantity:

an+1 = an − γ∇F (an) (5.3)

will make the function assume a smaller and smaller value than the previous one.
The speed of convergence and the reliability of a result typically relate to the
morphology of the function created, whether for example the function is convex or
not. The pseudo code for this reasoning might look as follows:

36

Gradient-based methods

Algorithm 1: Gradient descent pseudo-code
n=0; initialization;
while F(x(n)) != 0 do

instructions;
p(n) = -∇ F(x(n));
α(n) = ...;
x(n+1) = x(n) + α(n)p(n);
n=n+1;

end
The declination of this technique changes depending on the type of function

being handled. In our case, dealing with the nonlinear dynamics of a rocket, the
approach of a nonlinear problem is presented.
Given my initial system, I can write the associated function G(x). In this way, the
objective function will become:

F (x) = 1
2G(x)TG(x) (5.4)

Which we will be able to minimize. The loop can then begin to iterate starting
from an attempt value xn and thus updating the next solution as:

xn+1 = xn − γ∇F (xn) = xn − γJG(xn)TG(xn) (5.5)

Where JG(x0) is the Jacobian matrix.
The gradient descent method is therefore a mathematical tool as elementary as
it is necessary in understanding how to reach the local or global minimum of a
function. As much as this can be used directly within the nature of the problem
to solve it, its applications sometimes involve collateral aspects. In this thesis we
will appreciate a few examples. Although the optimization tools of commercial
software provide some sets of functions that exploit this type of technique (in its
declination both constrained and unconstrained) we will delve into techniques also
called non-heuristic and in the comparison between the two solutions. The mathe-
matical nature of this concept is something that will also be taken up in the later
application of the neural network. The explanation, simple, but at the base of
which lies the operation of this technique uses precisely mathematical laws such as
gradient descent to work and produce results as reliable as possible. Anticipating
the treatment of the problem, it is not difficult for us to understand how this type
of methodology did not prevail over other options. The rocket trajectory was op-
timized by dividing itself into N segments. To compose each segment a vector of
control variables (throttle, thrust angle) would be varied in order to minimize the
fuel fraction used, thus saving fuel. A gradient based solution would be fine in this
perspective because the presented problem has both control and state variables.
However, in the practical view of contemplating even abrupt variations related to

37

Gradient-based methods

the generation of an instantaneous failure, the algorithm would not be able to
switch function and identify and update the optimization conditions. A valid alter-
native remains for this type of strategy the multiple shooting optimization. Since
the mathematics of the problem is complex to deal with, in the next chapter what
is presented is an alternative, as simple as effective through which we were able to
obtain an optimization by varying in real time the characteristics of a launcher and
thus obviating the multiple shooting.

38

Chapter 6

Particle Swarm optimization

[2],[5],[6],[7],[15] This chapter introduces a relatively recent algorithm that is as
simple as it is effective in optimizing a wide range of funions. We speak in fact of
particle swarm optimization. This algorithm is mentioned for the first time in by
Kennedy, J. and Eberhart, R. in 1995. The algorithm was born from the obser-
vation of some social phenomena present both in nature (such as the coordinated
movement of schools of fish or flocks) and observations related to their collective be-
havior. Moreover, a further look is directed to the category of genetic algorithms to
which this type of strategy refers. The strength of this technique lies precisely in its
simplicity: in fact the mathematical model described uses fundamental mathemat-
ical operators limiting itself to the derivative as the most complex. Conceptually it
is very easy to understand and to implement in a few lines of code if the reader is in-
terested in declining it in his work. A further pro is that, computationally speaking,
the code is not heavy and can provide good results even in the case of very com-
plex functions with many variables. Through the use of computer simulations that
recreated the behavior of the flocks, it was possible to understand some of the logic
of the mass dynamics inherent in the flocks. Greater focus has been highlighted
in the mechanisms of movement of large numbers of particles in forming particular
choreographies. The interest was just in understanding how the coordination was
managed in moving some parts in a coordinated way of the groups but especially
because that type of disposition represented an excellent for the logic of the flock.
historical times we are living in, is that sharing information between elements is
the only way the species has to find a solution. In fact, quoting sociobiologist E.
O. Wilson, "In theory at least, individual members of the school can profit from the
discoveries and previous experience of all other members of the school during the
search for food. This advantage can become decisive, outweighing the disadvantages
of competition for food items, whenever the resource is unpedictably distributed in
patches". Sharing information is therefore, in evolutionary terms, the only way
that a group has to survive in nature. This is the cornerstone on which the particle
swarm optimization is based. The initial movement of the single agent was realized

39

Particle Swarm optimization

taking into account two aspects: the velocity of the nearest neighbor and craziness.
In fact, by initializing a species in a scattered form within a region of space, each
agent was associated with a portion of the speed of its neighbor, in order to recreate
the same natural effect of harmony. However, the effect produced was that of a
fairly monotonous motion since, as they all followed the direction of the nearest
neighbor, they lacked inventiveness about changing direction. Therefore, the second
element, craziness, was added so that a one-time agent would respond randomly
instead of following its neighbor. In this case it was possible to build a more real
mathematical model. The turning point during Happner’s simulation development
was when craziness was replaced by a goal imposed on the flock. Happner knew
that one of the many times when the flock "rests" and stops dancing is when food is
found. It may be that no member has ever been in that region before, but thanks
to an efficient exchange of information, only one agent needs to be aware of this
information to deviate the collective logic of the group in that specific region of
space. The next step of his study was then the implementation of a cornfield vector
that allegorically could represent in our case the topological optimum of any region
of space. The mutual distance between the single agent position and the cornifield,
located in (100,100), has been defined as it follows:

Eval =
ñ

(presentx − 100)2 +
ñ

(presenty − 100)2 (6.1)

Where presentx and presenty are the agent coordinates. With the inclusion of a
global optimum to be found, the individual agent will weight its movement (pose
and velocity) as a function of distance relative to the local optimum it travels. For
each agent there will be this component named pbest. As well as value, coordinates
of the best will be preserved in such a way that each agent will be defined by a
class1 composed by:

• Its current position presentx and presenty

• The best it has never met pbest

• Best coordinates pbestx and pbesty

• Its current velocity vx and vy

• The next velocity increment pincrement

In this way, the four configurations (above, below, right and left) that the agent will
assume with respect to the global best are the following according to the reciprocal
position between the two:

1In this specific example values will be expressed as vectors

40

Particle Swarm optimization

if presentx[] > pbest[gbest] then vx[]=vx[]-rand()*g_increment
if presentx[] < pbest[gbest] then vx[]=vx[]+rand()*g_increment
if presenty[] > pbest[gbest] then vy[]=vy[]-rand()*g_increment
if presenty[] < pbest[gbest] then vy[]=vy[]+rand()*g_increment

This algorithm is repeated by an arbitrary amount of time and every step is called
"epoch". Having defined the initial set of parameters, the development of particle
swarm optimization has been refined by removing both the random variable called
craziness and the information inherent in the nearest neighbour.

41

Particle Swarm optimization

"The increments on pbest and gbest are necessary. Conceptually pbest resembles
autobiographical memory, as each individual remembers its own experience (though
only one fact about it), and the velocity adjustment associarted with pbest has been
called “simple nostalgia” in that the individual tends to return to the place thiat
most satisfied it in the past. On the other hand, gbest is conceptually similar to
publicized knowledge, or a group norm or standard, which individuals seek to at-
tain. In the simulations, a high value of princrement relative to g-increment results
in excessive wandering of isolated individuals through the problem space, while the
reverse (relatively high-increment) results in the flock rushing prematurely toward
local minima. Approximately equal values of the two increments Seem to result in
the most effective search of the problem domain.2"

We will now see how this type of algorithm has been declined in practical form
within the MatLAB environment to go and use it in what will be the problem of
optimizing the ascent trajectory of a launcher.

6.1 PSO Mathematical Model
Now that we understand the conceptual workings of the algorithm, we will get into
the nitty-gritty of the pseudo-code to understand the relationships that affect the
motion of the particles in search of an optimum. Each particle defined within our
N-variable space will be a candidate solution to a problem identified with a cost
function where N is the number of variable on which we want to get an optimum.
Each particle will be identified by a position þxi(t) where x belongs to the set of
real numbers and t is a discrete-time variable. The particle will also have a velocity
denoted by þvi(t) which tell us the magnitude and the direction of how the particle
is moving. In addition the "simple nostalgia", or, better to say, the memory of
the personal best reached and kept by the particle will be identified under the
variable "personal best" that, in notation, becomes þpi(t). Since the information
of the single individual is useless if it is not communicated to others, it will be
necessary to introduce a collective memory g(t) in which the best exeperience of
the whole group is stored, so that this will function as a reference. At each epoch,
the value of position and velocity will be updated. The next scheme shows in a
schematic way how these values modify the velocity of the particle after a single
step.
Then, we can write:

þxi(t+ 1) = þxi(t) + þvi(t+ 1) (6.2)

þvi(t+ 1) = wþvi(t) + c1(þpi(t) − xi(t)) + c2(g(t) − þxi(t)) (6.3)

2[5]

42

6.1 – PSO Mathematical Model

Figure 6.1. Graphical representation of a PSO step executed by an agent

The previous equations fully represent the entire mathematic law which describes
agent’s motion. Instead, the speed value at the next step will be updated as follows:

þvij(t+ 1) = wþvij(t) + r1c1(þpij(t) − þxij(t)) + r2c2(þgj(t) − þxij(t)) (6.4)

The first member to the right of the equation is called inertia term. The second
one is called cognitive component and the latter is called social component. Where:

• j is a scalar value which denotes the j-th component of þv

• c1 and c2 are the acceleration coefficients

• r1 and r2 are two evenly distributed numbers between 0 and 1

• þgj(t) is the j-th component of the global best vector

Meanwhile the equation to update the position is similarly:

þxij(t+ 1) = þxij(t) + þvij(t+ 1) (6.5)

Going to translate this kind of reasoning in the form of code the main parts that
we should go to identify are basically five:

• Problem definition: In this section to be defined is a cost function, i.e.,
a non/linear relationship that binds the state and control variables of our
problem. The goal of the algorithm will be to minimize/maximize the function,
such that a desired set of variables is obtained. Furthermore it is advisable
to start creating a vector which takes into account the number of variables on
which the problem depends by defining their domain.

• Parameter of PSO: The parameters of the algorithm involve the number
of iterations to be performed by the swarm, the number of agents composing
it, and the value of the inertia coefficients, personal and social. The choice of
these parameters is of course arbitrary and depends on the type of problem you
need to solve. Intuitively the higher the number of iterations, the greater the
accuracy of the optimum found, however this type of procedure does not ensure

43

Particle Swarm optimization

that the minimum found is global. In this regard, the more agents available,
the greater the region of space inspected, raising the probability of finding a
global optimum. The best choice is obtained by making a compromise between
these two parameters in order to obtain reliable results without increasing the
computational cost of my code.
Talking about the coefficient c1, c2 and w, they were calibrated following Clerck
and Kennedy constriction in this way:

k = 1 (6.6)

φ1 = 2.05 (6.7)

φ2 = 2.05 (6.8)

φ = φ1 + φ2 (6.9)

χ = 2k
ë 2 − φ−

√
φ2 − 4φ ë

(6.10)

In this way ...
w = χ (6.11)

c1 = χφ1 (6.12)

c2 = χφ2 (6.13)

• Initialization: In the initialization part what needs to be done is basically to
define an "agent" class consisting of: position, speed, cost, best position and
best cost. In this way all the elements we have analyzed in the theoretical part
will be evaluated. An iterative loop will repeat this type of action as many
times as there are particles that we have decided to initialize.

• Main loop PSO: In this step each particle performs what is the substantive
reasoning of PSO in which what is evaluated is the merit achieved by the
particle in its current position. Following an evaluation between the personal
optimum and the one identified by the rest of the swarm, the particles will
move to the next step according to the laws described so far.

• Results: Once the cycle is finished for the number of epochs decreed by us,
the combination of variables that lowers the cost of the merit function as much
as possible will be exposed as a solution. Of course, this does not ensure the
fact of having obtained a global minimum of our function, only a careful trade
off between the number of particles used and the number of epochs can ensure
the goodness of the results we have obtained. Usually results are plot since
the merit function is not indicative about the nature of the primary problem.

44

6.1 – PSO Mathematical Model

As general final considerations, one could say that increasing the number of particles
often has a very positive effect in avoiding premature convergence to a local solution.
Of course, if one is very confident that one has found the desired optimal solution (or
at least a satisfactory solution), increasing the number of particles is not helpful.
In principle, for a new application, it is preferable to employ a large number of
particles if you see poor/satisfactory convergence on at least 5 processes employing
a low number of particles. However, evaluating whether a solution is satisfactory
or not can be complicated, since the optimal value of the objective function is not
known a priori, unless all necessary optimal conditions are employed (and this is
the approach of the indirect heuristic method).

As much as the proposed coefficients are derived from the literature, they are
generally fine for a preliminary study. One could further improve the efficiency of
the algorithm by selecting some of them after many tests on benchmark functions.

The goodness of a heuristic algorithm for nonlinear programming is generally
tested on some benchmark problems, usually functions that admit multiple minima.
Thus, ultimately, the goodness depends on the results. The parameters by which
such an algorithm is evaluated are:

1. Convergence ability (which consists of avoiding "stagnation", i.e., the identifi-
cation of a local minimum or a non-minimizing solution)

2. Efficiency, i.e., the number of function evaluations in a single iteration and in
the entire process

3. Numerical accuracy, i.e., the ability to satisfy constraints that may be present
in the problem formulation.

It is evident that parameters 1 and 3 are closely related to the solution produced.
A further qualitative parameter is simplicity, which is certainly a strong point of
PSO, which in fact is simple to implement.

45

Particle Swarm optimization

6.2 Algorithm Validation
As anticipated, we will see how PSO will be used in solving the problem of op-
timizing a branching trajectory of a launcher ascent in Section 8.4. Since the
function related to this problem turns out to be very complex (containing from 2 to
5 variables to be optimized) it was decided to validate the algorithm with simpler
functions and with a known topology. The validation of the PSO is a fundamental
step to give as much reliability as possible to the algorithm and the results it pro-
duces for two reasons. The first problem is that of identifying a minimum of the
associated function allowing the whole population to converge to a precise region.
The latter involves a problem called "stagnation". This type of issue can be ex-
plained by imagining the population pointing to an unreliable solution once it has
found a local and not a global minimum. This drawback is solved by generating
a necessarily large population relative to the topology of the function considered.
There are two functions selected to test the goodness of the algorithm and their
equations are given below.

f(x, y) = x2 + y2 (6.14)

f(x, y) = xe(−x2−y2) (6.15)
These functions were chosen because they are relatively simple. The function 6.14
is a paraboloid with vertex in the origin of the reference system generated by the
right-hand triad (x,y,z). For this reason it is easy to imagine that the function has
only one point of minimum in the origin of the same reference system. Applying
PSO with the same parameters used in the optimization of the rocket ascent trajec-
tory, the results are reported. It can be seen that in the Figure 6.2 the population
is positioned in the region close to the vertex of the paraboloid, thus validating the
model used.

Figure 6.2. PSO applied to Funcion 6.14

The validation continued considering the second Function 6.15. Also in this case

46

6.2 – Algorithm Validation

the algorithm allowed to investigate what was the minimum global and not local of
the function going to place a flock composed of 100 particles, after 100 iterations,
in the region of interest. Also for this case the results are shown in the following
Figure 6.2.

Figure 6.3. PSO applied to Funcion 6.15

At this preliminary stage, the PSO parameters that will be used to solve the main
problem, addressed from Chapter 8, have been validated for use on more complex
functions. This type of expedient must necessarily be employed when dealing with
algorithms of this type (indirect heuristics). In the next chapter, a survey of artifi-
cial intelligence will be conducted starting with a breakdown of the various methods
that make up this relatively recent technology. The goal of this thesis is to solve
the problem of optimizing branching trajectories for a micro-launchers.PSO pro-
vides a very innovative tool in regards to the optimization part (the most common
applications in which this algorithm is usually applied involve multidisciplinary
design optimization). Artificial intelligence will come in handy in independently
understanding how, following an operational failure, our trajectory should evolve.

47

48

Chapter 7

Artifical intelligence

[16],[17] Artificial intelligence is a concept that has now become very common in
everyday language. It adds fascination to the instrumentation it supports, and some
of its applications are now essential to some commercial algorithms. However,
the use that this can have covers a wide range of areas since it should be made
a subdivision of the various categories that make up these two big words. The
following sections describe the theory I gathered through the development of this
thesis to find a suitable technique for optimizing a trajectory. More focus is given
to the neural network part which proved to be the best tool to achieve the expected
results shown in the next chapter. In addition to the bibliographic learning, I am
pleased to note that Andrew Ng’s guides and other multimedia content have been
equally helpful in discovering this field.

7.1 Machine learning
Machine learning is a rib of artificial intelligence that exploits the ability to produce
results from an algorithm that is not necessarily programmed to produce them.
This type of process is possible thanks to the use, storage and management of data
that are provided as input in a more or less organized way. After a certain time
our algorithm, provided a different data set from the training one, will be able
to predict and reconstruct logical patterns that will lead to the association of a
certain output. This association will be as reliable as the better the algorithm has
been trained. It’s easy to see how the state of the art in computers today allows
for enough cumulative and computational capacity to handle and train quantities
of data that, through machine learning, manage to be very commercially useful.
Every mechanism at the base of anti-spam systems for email or the associations that
are made in suggesting products similar to those we use in fact use large amounts
of data and through the use of machine learning produce very useful results for
large and small companies. This type of mechanism will only get better given the

49

Artifical intelligence

ability of modern systems to handle and accumulate ever larger amounts of data.
To implement a machine learning algorithm, typically there are always four steps
to follow and they are described below:

• The training data set: The preparation of a data set is very important
because based on the goodness of the internal organization of the database
will depend on the reliability and goodness of our algorithm. This phase,
for the reason described above, is therefore expensive in terms of time and
attention. It typically involves collaboration between the programmer and
the data collector. These last ones can in fact derive from market analysis
or simulations of the phenomenon considered in various conditions. The data
can be managed either as a "label", i.e. identified within a category in order to
make its classification even more streamlined or, in some cases, unlabeled. A
machine learning algorithm is able to manage both these resources in a more
or less efficient way, reconstructing, for the latter, a logical path at the end of
which it is able to categorize even the unclassified data.

• Algorithm choice: Based on the type of problem, e.g. labeled or unlabeled
data/quantity of data, the best algorithm strategy with which to approach
the problem can be identified. Based on the type of problem, e.g. labeled or
unlabeled data/quantity of data, the best algorithm strategy with which to
approach the problem can be identified. The most classic scheme to follow is
summarized in the table 7.1

Labeled data Unlabeled data

Regression algorithms Clustering algorithms
Decision trees Association algorithms

Instance-based algorithms Neural netowrks

Table 7.1. Machine learning algorithms

– Regression algorithms: Regression is a linear or non-linear relationship
that links a certain input to a certain output. According to the number
of elements this can be linear (an input and an output) or not. Given
therefore a certain amount of data it will be possible to reconstruct with
accuracy a function that is in a position to binding the information de-
riving from these and, in case a new input came supplied, it will come
supplied a value of output that follows the best possible the constructed
model. An example would be an algorithm that is able to predict the cost
of a house based on certain characteristics of the house. Let’s consider
the simple case in which the only variable is the square footage of the

50

7.1 – Machine learning

house. In this case we find ourselves in a situation in which I will have to
construct a linear relationship between the cost of the house (independent
variable) and price (dependent variable). Using as much data as possible
already collected on this pair, we will be able to build a function that,
when we insert a square footage never seen before, will estimate the most
reliable price value possible. This is the case where the regression is linear
because we have a single independent variable that grows linearly with
the expected output. It would be enough to add another variable (such
as the crime rate of the neighboring area) to realize that, as this vari-
able increases, intuitively the price could go down. In this case one would
have to deal with a multi-variable non-linear regression. Both cases are
handled in an almost equal way and there are already function packages
(both MatLAB and Python) able to reconstruct a regression given a set
of initial data.

– Clustering algorithms: Clustering is a technique that rather than pro-
ducing a result, catalogs an existing piece of data within a category. For
this reason it is very convenient when dealing with unlabeled data. By
identifying the common "characteristics" it will be possible to perform this
type of subdivision using ad hoc algorithms such as K-means1.

– Decision trees: decision trees are algorithms that exploit labeled data in
such a way that a particular type of executive decision can be determined
on it. The algorithm will identify some characteristics of the relative data,
each of them will give a relative weight to a function of merit that, weighed
against the others, will be able to estimate a relative decision about the
data itself. An example can be given by an algorithm that decides whether
to bet or not on a soccer team based on parameters such as goals conceded
in previous games, injured players, etc.

– Association algorithms: Association algorithms rely on connections
of unlabeled elements by exploiting the "If-Then" nexus. For example,
within a supermarket it can be useful to identify the type of recipe that
the consumer will want to prepare based on part of the ingredients al-
ready bought to suggest other products to complete it. If, for example,
it turns out that the binomial "flour" and "sauce" ("If") is associated with
the preparation of "pizza" ("Then"), the supermarket can place another
ingredient similar to the recipe next to them, such as, for example, the
most expensive yeast in stock.

– Instance-based algorithms: This type of algorithm is able to produce

1At a glance certain attributes are associated to the data in terms of vectors that will position
it within a class defined as a vector space.

51

Artifical intelligence

a classification of the data considered within a category based on its char-
acteristics and how similar these are to those of other data.

– Neural netowrks: Neural networks, compared to the above types, have
different behavior and utility. It is fair to classify them within machine
learning when they are single layer or simple neural networks. For more
elaborate types it is more correct to refer to the Deep Learning section
where the mathematical theory behind this tool will be treated more
openly. Their structure allows, through the activation of neurons, to eval-
uate the classification of a certain data within a class or to make a certain
decision based on the fate provided as input.

• The training: The training part is fundamental because on the basis of this
process is based the real intelligence of our algorithm. Generally speaking, in
fact, on the basis of the data presented, the algorithm will associate to each
item a certain weight or bias in such a way as to produce a function as reliable
as possible in the case where a data never seen before is used. Of course the
accuracy with which weights and biases are chosen depends on the quantity
and quality of data provided, for this reason it is very important to ensure an
effective collection of the latter. Of course, depending on the type of algorithm
used it will be possible to evaluate the goodness with which this works using
certain evaluation criteria that we will see in the case of multi-layer neural
networks.

• Improve the model: As soon as you begin to see that the algorithm con-
verges to a sensible solution, you can reinforce it by adding data during the
training phase and evaluate relative improvements. It doesn’t exist in fact a
solution that can be globally evaluated as the best one but it will be up to
the skill and the experience of the user to modify the parts of code in order to
obtain a predictive/classificative model as accurate as possible.

In addition, we can say that typically the methodology with which a machine
learning algorithm is trained can be of two types: supervised and unsupervised.
The first category includes the use of the data set not only for training, but also
as a confirmation that the output generated by the computer is correct. This type
is very convenient when you have a database that is not too rich in data, but each
of them is defined by precise labels. On the other hand, the unsupervised method
produces the same result with the difference that the data fed to the algorithm are
not cataloged with so much information. All these declinations of machine learning
were investigated in order to find an application that could be functional to the basic
problem, i.e., optimization of a trajectory that could include ramifications arising
from failure generation. As we will see in the following chapters, the optimization
has been possible thanks to PSO of which the theoretical functioning is widely
described in the homonymous chapter. At this point it was thought that the utility

52

7.2 – Deep learning

of AI could be employed in the generation and prediction of launcher behaviors
from certain non-nominal throttle and thrust angle parameters. We will see how to
accomplish this task, the use of a multi-layer neural network was the best choice.
In the next chapter, the substantial difference between machine and deep learning
is explained with subsequent theoretical discussion of this type of network.

7.2 Deep learning
Deep learning is a subgroup of machine learning that involves the use of algorithms
inspired by the mechanism that the human brain uses in learning and predicting
more or less elaborate concepts. This imitation mechanism takes the name of neural
network and basically can be divided into three categories:

• Standard Neural Network (SNN)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

The first category is the most generic and can potentially solve most problems since
there is no application limitation. CNNs are a type of network that exploits the
superposition of matrices, very useful in solutions that involve the recognition of
images since the three matrices can work according to RGB coding. RNNs are func-
tional for the recognition of digital signals such as voice recognition. Starting from
this simple subdivision it will be easy to understand how our choice has fallen in
the first group (Standard neural network) of NNs, however the theoretical descrip-
tion of their operation in the following subchapters will take as an initial example
a CNN to understand its operation and then extend it to a global treatment.

7.2.1 Introduction to neural networks
Let’s start understanding how neural networks works starting from an example:

Figure 7.1. Different representations of the number 3

53

Artifical intelligence

Although it is handwritten and each handwriting is different from the previous
and following ones, we have no problem in stating with certainty that the number
represented in the figure 7.1 is the number 3. This type of calculation is performed
by our brain in a fraction of a second and this is possible because some neurons
collaborate in defining the black pixels as the number to be identified while associ-
ating to the white ones an empty space not to be considered in a space that will be
composed of NxN pixels. So by identifying each pixel according to a coding such
that if the pixel is black its value is 1 while if the pixel is white this value is 0 we are
able to mathematize the problem and make it more "digestible" even to a computer.
At this point we can associate to each neuron a pixel of my grid and insert within
it the value of the gray scale that we have defined above. If then our image will be
composed of 28x28 pixels, we will have 784 neurons each with a number between
0 (white) and 1 (black) composing the first layer of our neural network. We also
know that the single digits that can be identified by our eye are the numbers from
0 to 9, so the last layer will be composed of 10 neurons, each always containing a
number between 0 and 1, the closer to 1 the number considered, the greater the
probability that the written digit corresponds to that number. In the middle of
these two extremes we could define some structures known as hidden layers, their
number and the neurons that compose them are arbitrary although there are some
rules in literature based on the type of problem considered. To sum up, the first
layer identifies the areas of space that define my number, these in turn will activate
the next layer to get to have a solution that identifies one, of the ten possible, as
the best candidate for the written number identified in the last layer of the net-
work. The function of hidden layers is functional to the extent that a number is a
combination of several symbols that can repeat each other. Take for example the
number "6" and the number "8", while the first is composed of a loop and a line,
the second is given by the superposition of two loops. Also the "9" in the same way
as the "6" is composed of the same elements with a different positioning in space of
them. The hidden layer deals with this, considering the largest problem (the entire
number), it selects the most detailed details of it in order to make a more precise
subdivision and categorization. Imagining that the neurons of the previous layer
are all connected to each of the next layer, it might be natural to ask what kind of
information travels between these elements in order to exchange information with
each other. This type of connection is achieved by associating to each neuron of
the next layer a weight from each of the previous ones. The weight is a number
that is then multiplied by the activation of the neuron. Referring to the activation
of the j-th neuron of the second layer2 we could write:

a2
j = a1

1w1,j + a1
2,jw2 + ...+ a1

nwn,j (7.1)

2In notation the superscript represents the layer referred to while the subscript refers to the
neuron under consideration.

54

7.2 – Deep learning

We are looking at a weighted average of real numbers. To restrict this type of
solution to the domain of real numbers between 0 and 1, the result of this operation
will be calculated within the sigmoid function described in figure 7.2.

Figure 7.2. Sigmoid function

In this way, equation 7.1, can be rewritten as:

a2
j = σ(a1

1w1,j + a1
2,jw2 + ...+ a1

nwn,j) (7.2)

In addition, to prevent our neuron from reaching its activation threshold beyond a
certain value, what can be done is to add a term known as bias to 7.2. In this way
we can write:

a2
j = σ(a1

1w1,j + a1
2,jw2 + ...+ a1

nwn,j − bn) (7.3)
So the weigths tell you what pixels pattern this neuron in the second layer is picking
up and the bias tells you how high the weighted sum needs to be before the neuron
starts getting meaningfully active.

So writing our problem in a compact notation we will have for the second layer:

a(1) = σ(Wa(0) + b) (7.4)

With:

• W is a k × n matrix where k and n are respectevly the number of neurons of
the previous and the considered layer.

• b is a n-dimensional vector

Thus, we were able to circumscribe a slightly complex concept within a very simple
equation. This, in addition to facilitating learning towards this solution strategy,
makes us understand how in a programming logic is easy to implement and does

55

Artifical intelligence

not require the use of external libraries. In the next subchapter we will try to
understand how the descent of the grandient is also essential for this type of solution
and why.

Gradient descent applied to neural networks

The weights and biases, once initialized, will have to change their value in order
to produce, given an initial layer (image of the number) a correct output (value
of the number itself). But then, how do you find the best combination of these
two elements so that most of the data is read and processed correctly? Because
randomly initialized in the first attempts weights and biases will give naturally
unreliable results. To train the net to identify the connection between input and
correct output what we do is to introduce a function of cost to make it understand
the times in which, at least initially, it guesses the number or not. Using the

Figure 7.3. Neural network scheme

diagram in the figure 7.3, our goal is to go minimize w and b in order to minimizes
the error block. By considering our cost function as:

C(w) (7.5)

where w is the entire set of weights and biases, we can use the notion learned in
Chapter 5 "Gradient-based methods" to understand how to find the minimum
of 7.5. In fact if we move, starting from a point and imagining the function in
a variable, towards the direction with greater slope and with a step proportional

56

7.2 – Deep learning

to it, after a certain number of iterations we will satisfy this type of requirement
related to the minimization of C(w). A problem with more variables will have to
consider instead the direction of maximum descent, given by the operator:

− ∇C(w) (7.6)

Despite its derivative. Equation 7.6 will tell us if the corresponding element should
increase or decrease its value depending on the sign while the value will tell us how
high the relative increase will be.

Backpropagation

The backpropagation is a technique that allows to use methods like the descent of
the gradient to obtain in this way a set of weights and bias such to minimize the
function of cost. The term "back" derives from the fact that the calculation of the
descent of the gradient is performed from the last layer of the net, until the first
one, in order to avoid redundancies. Let’s consider the concrete case in which our
newly initialized network is given the image of a "2". Naturally, due to the nature
of the network itself, weights and biases will be initialized randomly, so we should
not be afraid to find an output that does not necessarily converge on the neuron
associated with the same number of the image. With respect to the process that
will be calculated, what will have to be done is a modification on the weights of the
final layer in such a way that they "understand" that when the image is similar to
the one proposed, a priority is given to the desired number. The weights and biases
will then be raised/lowered according to their value. If the activation relative to
the desired neuron is low because the output is in fact another the choices we have
are basically three, in fact we can:

• Increase b

• Increase wi

• Change ai

A useful solution could be given by modifying, wanting to concentrate only on the
weights, those values that have more influence on the previous layer, consequently
a solution could be to act directly on those that, associated to the number of
interest, weigh more than the others. In this way it would be proceeded therefore
to backward going to modify the weights of the previous layer "adjusting them" in
the measure in which the produced result is that one expected. In this way it will
be easier to understand which direction every single weight and bias will have to go,
if therefore this will have to increase or decrease suggesting to the function of cost
a direction towards which to move using therefore algorithms based on gradient
descent.

57

Artifical intelligence

With this small parenthesis it is concluded the second part of the thesis in which
to be described is the theory that is at the base of the instruments used in the
realization of the tool IRATO. We will see, in the successive part as some of these
techniques have been functional to the realization of the same one while others
have been revealed not adapted to the resolution of the problem but not for this
didactically useless. I would like to underline how the contact with this kind of tools
would never have been so effective if, in addition to the bibliography, I had not also
consulted the excellent multimedia material present on the platforms and made
even better thanks to the concessions that some sites have deliberated because of
the health emergency.

58

Chapter 8

Problem resolution

Starting from this chapter all that we have seen previously will be resumed and
explained in the declination of the resolution of the problem. We review the for-
mulation of this in the form of a mission statement:

"To develop a tool which exploits branching trajectories in cases of failures, trying
to obtain the best possible corridors by minimizing the failure impact."

Starting from this we tried to develop through MatLAB a solution that could be
as effective as possible. In the following chapter will be described the types of
algorithms used and their results.
Regardless of the optimization algorithm employed, as a first step it is fair to explain
and show the basic structure of the problem and the mathematical framework
behind it. This reasoning would never have been possible if it were not for the
advice of my supervisor Jasmine Rimani who provided me with a tool from which
to start, what follows is the the chronological evolution of the progress made up to
the creation of IRATO.

8.1 Ascent Optimization V1 and V2
[11] Without external advice, what I thought was that having a simulator that could
reconstruct the behavior of a launcher could be useful for two reasons: the first
related to versatility, working in fact with degraded trajectories the fact of having
something that allowed a study not nominal would be as useful as the original
trajectory. The second is related to the scalability of the model, to which it would
have been sufficient to add elements to improve reliability. In this regard the first
solution proposed was the Rocket Dynamic Simulator (RDS), which is discussed in
more detail in Chapter 4. Regardless of the conceptual complexity of the program
this was quickly debunked. The main reason was the fact that a simulator, as
accurate as it can be, is not born with the purpose of "optimizing" a trajectory,

59

https://www.linkedin.com/in/jasminerimani/

Problem resolution

but more to simulate it. Only after having understand the binomial "optimization-
useful" I have married this type of objection trying to reimpose therefore a strategy
for the elaboration of a job that, instead of analyzing the "free" behavior of my
system, it controlled it to the aim to produce the profit of the mission statement.
The starting point after gaining this kind of awareness was a set of tools produced
by my supervisor called ascent optimization V 1 and V 2. Both codes produce
an optimized trajectory, respectively the first one returns in output the maximum
attainable height given the nominal characteristics of a launcher while the second,
with the addition of a target height, tries to produce a trajectory minimizing the
amount of fuel used.

Figure 8.1. Example of fuel consumption optimized trajectory of Ariane V launcher

Although the function of these two tools is slightly different, the way in which
the trajectory is reconstructed is the same and is described below. A number of
segments Nseg are initially defined in which our trajectory will be decomposed.
To increase Nseg means to have a higher reliability since there is a more precise
discretization but it also means to increase a lot the computational cost of the tool
itself. Each segment is defined by three main parameters:

• η which is the throttle.

• α which is the thrust angle.

• FF which is the amount of fuel fraction1 used in that segment.

1In ascent optimization V1 there are just η and α because fuel fraction is not a control variable.

60

8.1 – Ascent Optimization V1 and V2

Each segment is given as input to a function named trajectory that will calculate
its resulting trajectory and the amount of mass consumed to make sure that subse-
quent segments have physical and geometric consistency with each other in order to
recreate a continuous result. There is, in fact, the continuous integration of these
parameters within characteristic equations of motion that will return in output a
state vector p that contains within it the information of:

• r is the radius vector connecting the launcher taken as a point to the center
of the Earth.

• θ is the pitch angle.

• Vr is the radial component of rocket velocity.

• Vt is the tangential component of rocket velocity.

• m is the rocket mass.
Equations of motion used are the following:

dr = Vr (8.1)

dθ = Vt
r

(8.2)

dVr = V 2
t

r
+ ηT

m sinα − µ

r2 − 1
2ρ0

e
Rearth−r

h

m

ñ
V 2
t + V 2

r CDAVr (8.3)

dVt = −VrVt
r

+ ηT

m cosα − 1
2ρ0

e
Rearth−r

h

m

ñ
V 2
t + V 2

r CDAVt (8.4)

dm = − ηT

g0Isp
(8.5)

At this point we have therefore present how using a set of values of η, α and FF , it
is possible to reconstruct the stretch of trajectory that competes with the relevant
segment. The task of selecting suitable values to achieve maximum height in the
case of the first version and fuel fraction savings for the second, will be the burden
of the optimization technique employed. For both versions of the tool the technique
used is the gradient descent, accessible and declined in an optimization problem
thanks to the set of functions of the optimization toolbox of MatLAB. Among
the various functions provided by this toolbox has been used fmincon, function
used to find minimum of constrained nonlinear multivariable function. The general
problem solved by fmincon is the following:

minf(x) =
I c(x) ≤ 0

ceq(x) = 0
A · x ≤ b

Aeq · x = beq
lb ≤ x ≤ ub

(8.6)

61

Problem resolution

This kind of problem is easily solved and described by this line of code [18]:

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(objective,x0,[],...
...[],[],[],lb,ub,@(x) mycon(x,data),options);

Speaking as a human, one might say that to produce an optimal set of two Nsegment

× Nstage matrices and possibly a fuel fraction value (all contained within the x
vector), what is needed is an initial attempt, an objective, i.e., the value you in-
tend to minimize2, and a limitation to the control parameters in such a way as to
preserve a geometric and physical consistency with the reality of the problem I am
addressing. To also communicate to the code the fact that we impose some equality
constraints on the minimization process in order to make sure that the problem is
done within a mission logic we use the following function, also belonging to the
input of fmincon. Lingering on the function:

mycon(x,data);

We can see how this, received as input the set of control parameters, makes sure that
this leads to a trajectory on a circular orbit at a more or less desired distance. These
type of condition is imposed by three equality constraints that are represented by
the following equations:

Vr
Vscale

= 0 (8.7)

Vt −
ñ

µ
r

Vscale
= 0 (8.8)

r − rtarget
rearth

= 0 (8.9)

Focusing then on the second version of the program we can analyze in Figure 8.2
the results that the program offers us taking as a reference model a mission in which
Ariane-V aims at an altitude of 1030 km. The execution time is 196.0 s.

2In Ascent Optimization V2 this will be the fuel fraction

62

8.2 – Implementation of branching trajectories

Figure 8.2. Optimized trajectory computed through ascent optimization V2

8.2 Implementation of branching trajectories
What we have seen so far regarding the two tools we have just discussed is useful in
understanding how an optimization problem is addressed within a mission analysis
discussion. We need a data set to start with, state variables and control variables.
However, our reasoning must take into account the fact that at a certain time
a failure occurs that alters the initial characteristics of my starting problem. It is
obvious therefore like there is the necessity to intervene in the middle of the process
of optimization in order to communicate to my code the fact that some condition
must be modified.
The logical process through which it has been applied this type of reasoning has
carried first of all to ask itself like a failure could be represented and interpreted from
the code. A solution that turned out to be quite simple was to reduce the field of my
state variables (η and α) that could derive from an operational failure, respectively
two example cases could be a problem related to the propulsion feed system for
the first and a problem related to the gimbal lock of the thruster for the second.
With this reasoning the problem was carried forward by adding to the optimization
seen in the section 8.1 another additional optimization step. Compared to the
previous code the use of fmincon was used not once, but twice so that the second
optimization could take as initial conditions not those of the launcher at the moment
of lift off, but those at a specific time that will coincide with our failure. Consistently
with what has been said before, not only the initial values of the state vector have
been modified assuming a certain percentage of deterioration resulting from the
operational failure. Therefore to appreciate this type of modification the outgoing

63

Problem resolution

trajectory will be organized according to the nominal optimization until the time of
failure, after which the data of the second optimization will be used. This type of
solution unfortunately did not seem to be consistent with the constraints imposed
by using fmincon. A further problem, more of a conceptual nature, arose since it
would have been impossible to predict and therefore tell the algorithm what the
maximum altitude reachable after failure would be, thus leading to non-convergence
of the code. So a new type of solution was immediately considered that would take
into account both giving a physically and geometrically consistent connection to
the true branches of my trajectory, and directing my launcher to a new type of
maximum attainable altitude. The second strategy took the utility of the two
codes in section 8.1 to set up the problem as it is described in table 8.2:

Code Usage
Ascent Optimization V2 Generates the nominal trajectory with possible fuel savings.

FAILURE

Ascent Optimization V1
After the failure, Lower Bound (LB) and Upper Bound (UB) change.
The maximum height that can be reached is calculated
and it will be compare to the previous target.

Ascent Optimization V2 Generates the branched trajectory with possible fuel savings
towards the new target.

Table 8.1. Logic flow of the second optimization attempt

Following the scheme of the table 8.2 it is easy to understand how the problem
has been set up by playing with the results provided by the single codes. Without
changing the anatomy of the code, a first use of ascent optimization V2 will calculate
the nominal trajectory, then, after a failure will be modified lower and upper bound
of my state variables and ascent optimization V1 will update the value of maximum
height reachable to intervene with a last use of the first code and then update,
always optimizing, the trajectory with the new values. This type of strategy has
turned out not suitable for two reasons: the first tied up to the fact that, even
if degraded, the maximum attainable height in some cases exceeded that target
going therefore to make to lose to the code a coherence from the conceptual point
of view. The second deriving from the double use of fmincon that, for connection
problems, has not produced reliable results (as you can see in Figure 8.3) from the
physical point of view.

64

8.3 – PSO application

Figure 8.3. Failure scenario in which at t = 180 s there is a 30% deterio-
ration of the maximum η value

8.3 PSO application

[5],[6],[7],[15] Given the previous results, it became clear that applying a gradient-
based algorithm was not the best way to proceed with producing reliable results.
We have seen like the first attempt has used the employment of ascent optimization
V2 for two times in concatenated way while in the second case products from both
versions of the tool have been used . However this has not seemed to be the best
way. Taking a step back was the only plausible solution, investigating even deeper
the nature of the optimization algorithms, considering this time also those not
necessarily based on gradient descent. This type of process first involved research
into commercial software that can solve so-called "multiphase" problems. Although
these are present, the cost to make them accessible is too high, so I preferred to
continue on my way producing a result probably less accurate but certainly more
open to the community. The strength and difficulty in tackling this thesis topic was
just that: although the reader can realize the simplicity of the results and how they
were derived, it was difficult to investigate what was the best method for solving
the problem. This, in addition to being challenging, was at the same time very
important to the didactic learning that took place for the most part independently.
The PSO algorithm carries with it a very nice moral: collaboration between indi-
viduals is the only way to achieve an optimum. A swarm paradoxically composed
of one element does not have the same effectiveness as one composed of a hundred,
not because the intrinsic ability of the unit increases, but because by exchanging

65

Problem resolution

information between them a group is better oriented towards the solution of a prob-
lem. This feeling of sharing was the same sense that brought me to this algorithm.
In addition to a great step forward for the thesis results, it was a wonderful human
lesson and I hope that I learned a lot from this experience for what will be my
future path.
For what concerns the theory behind the code we refer to section 6. What will be
described in this section is how this algorithm was declined in the optimization of
the branched trajectories of a launcher and the related discussion of the results.
Let’s briefly reconstruct the logic of the problem to understand how this tool was
applied: throttle η, thrust angle α and fuel fraction were chosen as state variables.
The trajectory is managed in a discrete way by dividing each section, defined by its
stage, into N segments. Considering for example Nsegment = 4, our state variables
will be:

Stage 1 Stage 2
η1,1 η1,2
η2,1 η2,2
η3,1 η3,2
η4,1 η4,2

Stage 1 Stage 2
α1,1 α1,2
α2,1 α2,2
α3,1 α3,2
α4,1 α4,2

Another scalar value indicates the amount of fuel saved (varying therefore be-
tween 0 and 1) that we will indicate in notation as FF. In our case, taking Electron
as a reference, a set consisting of Nstage = 2 and Nsegment = 8 was chosen.we are
going to define the variables contained within each particle and their relative max-
imum and minimum values. From the previous reasoning, it is not difficult to see
how these are:

2(Nsegment ×Nstage) + 1

Then in our specific case, each particle will be composed by 33 variables (16 η
values, 16 α values and one related to the fuel fraction saved).
Variables will be respectively constrained within a field of existence so that the
assumed values are consistent with the physics of the problem, these are:

• 0.01 ≤ η ≤ 1

• − π
18 ≤ α ≤ π

2

66

8.4 – Intelligent Rocket Ascent Trajectory Optimizer

• 0.95 ≤ FF ≤ 0.99

Since each particle contains a potential trajectory, a cost function will be defined
within this section that, given the trajectory, will weight both its physical consis-
tency with the nature of the problem and its actual savings in terms of fuel fraction.
The figures of merit that make up the cost function are normalized quantities that
will compare the final velocity and position values of my launcher against the refer-
ence imposed by the mission with the addition of the Fuel Fraction (FF) used. In
this way for the nominal trajectory the following equation was chosen as the cost
function:

C = 25 FF + 2 ëVr,normë + 2 ëVt,normë + 40 ërnormë (8.10)

By associating weights with each figure of merit, we are able to establish a hierarchy
of importance of the conditions that must be met depending on the situation in
which we are dealing with (nominal or degraded trajectory). We note from the
equation 8.10 how achieving the desired height is the priority with eventual savings
of a certain amount of fuel. Radial and tangential velocity conditions do not have
much weight as long as they are respected without any particular imposition. This
strategy produced results that are proposed as the final solution to the problem,
consequently the logical procedure will be described in detail in the next section.

8.4 Intelligent Rocket Ascent Trajectory Opti-
mizer

IRATO is the acronym of the tool that allowed to produce the results that will be
proposed to the reader built on the theoretical concepts of which we have spoken so
far and their relative collaboration. Let’s move on to the scheme of our algorithm
which will be divided as follows:

1) Data definition

To build a model that was as accurate as possible, reference was made to the
data that make up Electron and its standard missions. 500 Km have been consid-
ered as target altitude since the Electron reference mission sees it at this altitude in
sun-synchronous orbit. The launcher data are described in Table 8.4. For consis-
tency issues in this section, the number of segments into which the trajectory (both
nominal and degraded) will be divided is defined so that the relative accuracy does
not change from one to the other.

2) Nominal problem definition

This section defines my problem from the elementary unit of PSO: the particle.

67

Problem resolution

Environment data
g0 9.80665m

s2 Standard gravity
µ 3.98600441810 × 1014 km3

s2 Standard gravitational parameter of the Earth
Rearth 6371 km Radius of Earth
ρair,0 1.2754 kg

m3 Air density at sea level
ASH 8.5 km Atmosphere scale height

Launcher data
T1 224190.37 N 1st stage thrust at sea level
T2 25799.69 N 2nd stage thrust in vacuum
Isp,1 311 s 1st stage specific impulse
Isp,2 343 s 2nd stage specific impulse
m1,fuel 9250 kg 1st stage fuel mass
m1,structure 950 kg 1st stage structure mass
m2,fuel 2050 kg 2nd stage fuel mass
m2,structure 250 kg 2nd stage structure mass
mpayload 150 kg Payload mass
CD,1 0.5 1st stage aerodynamic drag coefficient
CD,2 0.25 2nd stage aerodynamic drag coefficient
A 1.13 m2 Cross section area

Table 8.2. Electron data for trajectory optimization

It will then be defined how many variables it should contain and what are their
boundaries. The best combination of parameters, which will then have minimized
my cost function3, will be the solution to our problem when the rocket is in nominal
phase.

3) Nominal trajectory optimization

Before iterating we need to define how many particles our swarm will be com-
posed of and how many iterations to do. To define whether an attempt is a reliable
choice we use benchmark functions whose global minima are known. To increase
the number of particles means to obtain a wider coverage of the topology of the
studied function but also to increase the computational time of the code. In our
case a set of 100 particles and 100 iterations was chosen, this combination provides
reliable results when compared to those produced by fmincon and an acceptable
computational time (about two minutes). The choice of parameters related to par-
ticle dynamics were selected from the results of Clerck and Kennedy showed in
6.11, 6.12 and 6.13. Then the algorithm starts running by initializing the values

3For the nominal trajectory the equation is 8.10

68

8.4 – Intelligent Rocket Ascent Trajectory Optimizer

contained in the particles in a uniformly random pattern in the space in which they
are confined. After each iteration, the i-th particle will compare the score derived
from the cost function with two values: the first relative to its personal best and
the second relative to the global best identified by the group. On the basis of this
type of correspondence will be decreed the area towards which to move and the
relative speed with which to do so. At the end of the iteration process the lowest
score that the cost function has reached and its coordinate within the space defined
by the state variables is saved. A function named trajectory will receive in input
the final values of α, η and FF in order to reconstruct the trajectory providing in
output the relative quantities:

• r is the radius vector connecting the launcher taken as a point to the center
of the Earth.

• θ is the pitch angle.

• Vr is the radial component of rocket velocity.

• Vt is the tangential component of rocket velocity.

• m is the rocket mass.

4) Failure generation

The first step toward conceptualizing a failure was to find a link between an op-
erational error related to the mission phase and a numerical value of performance
degradation. This type of step was covered theoretically in later chapters and for
now the explanation will bypass this process. The idea is to find a class of accidents
that will limit the range of existence of the control variables, especially η and α in
order to observe how the trajectory changes. These two limitations can respectively
result from a feed system related problem in the case of η while for α the problem
can be traced back to the thruster gimbal. It is important for the algorithm to
know how to estimate, given the time istant at which the failure occurs and the
percentage lost of the two control variables, what the maximum attainable height
is. In this way it will be possible to have a prediction of what will happen and
consequently decide on the future of the mission. Since the optimization process
would have required a third use of the PSO thus increasing the computational time
of the final product, it was decided to adopt a neural network for the prediction
of this value. Based on what was said in the section 7.2.1 to train such a network
we start with a data set that will be used to train weights and biases that, once
optimized, will weigh a new input in order to provide a solution that is as accurate
as possible. The code, in order to carry out this study, was therefore momentarily
repurposed as follows. Fixed a nominal trajectory was varied the range of tfailure,
ηmax and αmax in a random way. Then the final height value was saved within a
text file in such a way as to create a database as shown in Table 8.3.

69

Problem resolution

tfailure(s) ηub percentage decrease αub percentage decrease Final height (km)
263 51 82 499.99
451 44 25 483
27 54 80 351.47
...

Table 8.3. Database layout

Considering the scenario in the first row as an example, we can see that at time
t = 263s the upper bound of the angle of attack goes from the value α = π/2
to approximately α = π/4 while the throttle is limited to a maximum value of
η = 0.82. The dataset used consists of 987 events calculated over a three-day
computation period. Data processing through AI techniques is made easier by
tools and libraries available for programming languages and numerical computing
software. For coherence reasons we have always chosen the MatLAB environment
which, thanks to nntool, allows the setup and training of a neural network. Setting
up the neural network is done according to Figure 8.4.

Figure 8.4. Neural network configuration

The input is given by the tern tfailure, α and η while the target will be the final
height. The type of network follows the model of feed backpropagation and is
composed of two layers, the first consisting of 10 neurons with sigmoid activation,

70

8.4 – Intelligent Rocket Ascent Trajectory Optimizer

while the second consists of 2 and linear activation. A graphic concept of the
structure is shown in Figure 8.5. In this case, as in the nominal, the cost function

Figure 8.5. Neural network scheme

used is always the 8.10. In both cases (nominal and branched) what is prioritized
is the fuel fraction savings, which occurs on average with a 5% fuel saving relative
to total mass. Neural network performance from training with the dataset named
earlier was not great. This may be justified by the fact that the combinations
of tfailure, and upper bound reduction of α and η are too many to be evaluated
with only 987 different scenarios. This can also be demonstrated by the network
performance shown below.

Figure 8.6. Neural network performance

71

Problem resolution

Figure 8.7. Validation checks and gradient descent

Figure 8.8. Regressions

The alternatives in order to improve this type of result are two: the first one
increase the number of simulations while the second one is to reduce the field of
the considered variables. Since the computational power available has resulted
insufficient to continue with the first way it has been decided to discretize the
quantities in the following way:

• tfailure from 20 s to 500 s with step 10 s

• ηub and αub percentage decrease from 0.2 to 1 with step 0.1

72

8.4 – Intelligent Rocket Ascent Trajectory Optimizer

In this way, more circumscribed and better catalogued data were obtained. The
simulated scenarios numbered more than 1000 and took a computational time of
four days to compute. The results for the performance of the second version of the
network are shown below.

Figure 8.9. Neural network performance

Figure 8.10. Validation checks and gradient descent

73

Problem resolution

Figure 8.11. Regressions

5) Branched problem definition

The definition of the branching problem follows almost the definition of the nominal
problem with some modifications. The number of segments is kept equal to that
of the starting problem to avoid problems arising from inconsistency between the
discretization of the two trajectories, therefore, according to what has been said,
it has been chosen a Nsegment = 8. The definition and limitation of the control
variables has remained constant while the cost function has undergone modifica-
tions, which, following the type of phase in which we find ourselves, will allow the
execution of the relative trajectory. The fact that the optimization takes place by
modifying only the coefficients linked to the figures of merit of the cost function is
a strong point of the program, in fact there will be no need to change other charac-
teristics of the code, thus lightening the programmer’s task. After receiving from
the neural network the updated information about the target height after failure
the user can decide whether to continue the mission or abort, to make this process
happen automatically was set the condition:

ë r − rtarget ë< 100 (8.11)

If respected, it means that the height at which my launcher can arrive after failure
is between 400 km and 600 km considering a target of 500 km, in this case it
will continue to orbit excluding the condition on fuel saving. The merit function
associated to this situation is the following:

Cbranched = 2 FF + 10 ë Vr,norm ë +10 ë Vt,norm ë +30 ë rnorm ë (8.12)

74

8.4 – Intelligent Rocket Ascent Trajectory Optimizer

As can be seen the structure is similar to 8.10 but the figures of merit are weighted
differently, in fact more importance is given to the achievement of the final orbit
close to the fuel consumption used. This kind of result will almost completely
zero out the importance given to fuel economy focusing the mission objective on
reaching orbit. In an abort trajectory scenario modifications more relevant have
been executed altering the structure of the functions of cost seen until now. A
prerogative of the problem statement is that the branched trajectory went, in the
case of abortion, to limit the damages caused by the launcher. An example provided
was the impact with population centers, consequently the study focused on this
aspect with the introduction of a new figure of merit.

robst = 1 − ëdFC − dFSë
dFS

(8.13)

Where:

• dFC is the horizontal distance between the launch site facility and the inter-
ested city.

• dFS is the horizontal distance travelled by the launcher starting from the launch
site.

The information to avoid the obstacle is not passed as quantitative but qualitative,
in fact it will be the launcher, evaluating the instant in which the failure occurs
and what kind of limitations this implies, to decide autonomously and to maximize
as much as possible the distance to that ground obstacle. A schematization of the
geometric problem is shown below in figure 8.12.

Figure 8.12. Schematic representation of robst quantities

The figure of merit that has been associated with this type of situation is the
equation 8.14 :

Cabort = 30 ë rnorm ë +30 ë robst ë (8.14)

75

Problem resolution

The geometry of the new problem is also defined at this stage. Once the user has
entered the time at which the failure occurs, a function (findsegment) will asso-
ciate the input to the relative segment. The previous values of α and η will be saved
as they are constituents of the trajectory that until that moment is carried out in
nominal phase. The number of variables will be given instead by the total number
of segments to which the nominal part is subtracted. There is also an update of
the upper bound values resulting from the failure.

6) Branched trajectory optimization

At this step the PSO is applied for the second time. Each particle, compared
to the previous case, will have a smaller number of variables since all throttle and
thrust angle values prior to failure will have already been calculated by the first
iteration of the algorithm. Although my problem is discretized in segments it is
evident how this algorithm is useful in multiphase optimization of a problem. The
schematic layout of this process is showed in figure 8.13.

Figure 8.13. Schematic representation of branched problem identification

7) Results

Once the nominal and branched process has been optimized, the results of the
analysis can be appreciated. The trajectory study was conducted by considering
the launcher dynamics as point-like. Performing a 6-DoF analysis would take a
lot of time and data resources involving the geometry of the considered launcher.
Launchers, unlike payloads and other spacecraft, require less accuracy in terms of
attitude precision due to their inherent nature. However, it might think about
combining the results from IRATO combined with RDS (Chapter 4) to set the con-
tinuation of the work toward this direction. The work produced is a non-ballistic
multiphase trajectory analysis (thus implementing staging) . Results as a function
of two main quantities are shown below:

• Time

76

8.4 – Intelligent Rocket Ascent Trajectory Optimizer

• Number of segment

The results as a function of time show how the position (and its derivatives) varies
. In this way it is possible to appreciate the time evolution of the 3-D trajectory
decomposed into its horizontal and vertical components. The number of segments
was chosen to instead appreciate how the state variables change along the segment
considered. Of course, the link between time and number of segments is present
since each segment consists of a certain amount of seconds that vary depending
on the optimization. A scenario is shown below as an example case, failure data
are tfailure = 120s, ηub and αub percentage decrease are respectively 0.3 and 0.5.
The new target predicted by the neural networks is 487 km thus the mission will
continue toward its completion.

Figure 8.14. Heigth, velocity and mass consumption in branched case

77

Problem resolution

Figure 8.15. Throttle and angle of attack as a function of the number of
segments in branched case

Figure 8.16. Absolute and relative horizontal distance results in branched case

For completeness it is brought back the same result considering a failure with
different data. tfailure = 120s, ηub and αub percentage decrease are respectively
0.3 and 0.5. The new target predicted by the neural networks is -35.0.2 km thus
the mission will abort avoiding population center 250 km away from the launch site.

78

8.4 – Intelligent Rocket Ascent Trajectory Optimizer

Figure 8.17. Heigth, velocity and mass consumption in abort case

Figure 8.18. Throttle and angle of attack as a function of the number
of segments in abort case

79

Problem resolution

Figure 8.19. Absolute and relative horizontal distance results in abort case

This part concludes after showing the theory behind the tools used in producing
the final results and the application, with related theoretical insight, of the best
strategy. In the next chapter, the methods that provide most reliability to this
product are shown.

80

Chapter 9

ASTOS Validation

[12] In this chapter difference between ASTOS scenarios and IRATO results will
be presented. ASTOS is software used for a complete mission analysis overview for
the most of vehicles. Through the creation of an environment, either related to the
vehicle or the external environment allows an overall study with results concerning
dynamics, aerothermodynamics, attitude dynamics, and control theory. For this
reason, it has been used as a confirmation software to validate the results produced
by IRATO. The following chapter is arranged to present to the reader a step by
step process of the model building, then the comparison between the two models
will be introduced.

9.1 Electron model creation

9.1.1 Environment definition
To be modeled for first it is the atmosphere, that is the universe in which my
simulation comes tested. Within this section the celestial bodies present within my
study and their atmospheric characterization can be defined. Since the problem
related to the ascent of a launcher involves the Earth up to its LEO orbit, this is
the only planet that is defined. The geometry connected to it is the spheroid going
to define an equatorial radius of 6378.137 Km and a polar radius of 6356.752 Km.
The modeling is done with zonal coefficients making non-zero as the only coefficient
J2 = 0.0010827. The atmosphere inserted is the default US Standard 76.

9.1.2 Actuators definition
In this section to be defined are all the elements of the system that act on it in such
a way as to generate a control. The simplicity of Electron is in its architectural
simplicity since the motor used is always the same, that is the Rutherford. A system

81

ASTOS Validation

of 9 motors will power the first stage while the second stage will consist of only
one. The engine 1st stage input specifications are as follows :

• Nozzle area = 0.0345 m2

• Vacuum thrust = 21.11 kN

• Vacuum Isp = 303 s

Meanwhile the engine 2nd stage input specifications are as follows:

• Nozzle area = 0.0345 m2

• Vacuum thrust = 25.8 kN

• Vacuum Isp = 343 s

9.1.3 Aerodynamics definition
The aerodynamic force was entered simply by referring to a 1.2 m diameter profile.
Next, a list of force coefficients was introduced as the Mach varies along the xbody
axis of the rocket as follows:

Name Mach Number Data
Unit None None
1 0.1 0.3224
2 0.4 0.3108
3 0.8 0.2864
4 1.0 0.7373
5 1.2 0.7994
6 2.0 0.6086
7 3.0 0.4622
8 4.0 0.3767
9 6.0 0.2904
10 10.0 0.2904

Table 9.1. Variation of resistance coefficient as a function of Mach number

9.1.4 Component definition
Components are the active and non-active parts that make up the system under
consideration. For the sake of simplicity, only the two stages and the payload will
be defined without taking into account additional components such as the fairing

82

9.1 – Electron model creation

and the jettisonable batteries. The data entered for the first and second stage are
respectively:

Dimension Value Unit
X 12.0 m
Y 1.2 m
Z 1.2 m

Structural Mass 950 kg
Propellant Mass 9250 kg

Table 9.2. 1st Stage dimensions

Dimension Value Unit
X 2.4 m
Y 1.2 m
Z 1.2 m

Structural Mass 200 kg
Propellant Mass 2300 kg

Table 9.3. 2nd Stage dimensions

Next, after defining components and engines in section 9.1.2, these will be assembled
both geometrically and physically in the Vehicles and POI definition section.
Once this segment is finished it is available to appreciate through a GUI the product
of what has been built as shown in Figure 9.1.

Figure 9.1. Electron vehicle preview

83

ASTOS Validation

9.1.5 Phase definition
At this step it is necessary to define the various phases that characterize the mission.
Regarding the study of the dynamics of a launcher this process is very complicated
because, regardless of the nominal phases that make up its trajectory, estimating a
range within which these dynamics occur is never easy. Moreover, to characterize
the various phases there are discontinuities due to events typical of this rocket
launcher such as:

• Change in attitude control laws due to different maneuvers.

• Change of forces and aerodynamic laws acting on the launcher.

• Change in boundary conditions

• Mass change due to detachment of launcher parts

The steps that typically involve the trajectory of a launcher will now be examined.
This investigation is useful on a theoretical level and serves to better understand
how this section was set up in the Electron case study. Typical phases are as follows
[9]:

• Launcher locked at the pad during the ignition

• Vertical ascent with constant yaw pointing in the desired direction (90° orbit
inclination) until a certain altitude is reached to avoid the collision with the
launch pad.

• The pitch over maneuver is used to give the rocket a direction. It uses a linear
pitch law and a constant yaw law. The pitch rate is characteristic for specific
launchers: heavy launchers (Ariane 5) around -1°/sec, small launchers up to
-3°/sec or more.

• An intermediate constant pitch phase is required to meet the gravity turn
conditions: flight path angle equal to pitch angle or angle of attack equal to
zero. The yaw angle is constant.

• The gravity turn phase follows until the aerodynamic forces are small enough
for high angles of attack. In the beginning the yaw angle remains constant. It
depends on the launcher, how many phases fly with gravity turn and at which
time point yaw control is allowed.

• For sure after jettisoning the fairing (low dynamic pressure) the attitude con-
trol is free. During the initial guess, required-velocity guidance can be used.
An optimizable configuration normally uses optimizable controls for yaw and
pitch.

• Coast arcs should be modeled using a linear law.

84

9.2 – IRATO Validation

9.2 IRATO Validation
The validation is a very important process because it allows to judge the data
obtained in an amateur way and to compare them with a simulation produced by
an advanced software, in this case ASTOS. The model described in Section 9.1.1 if
optimized produces reliable results given the more than accurate description of the
micro launcher, the environment and the systems that compose it. As an example,
three examples are reported that show the comparison between scenarios produced
through the use of IRATO and ASTOS in order to validate the results of the first
tool.
The first case shown in Figure 9.2 compares an ascent scenario with a target height
of 200 km during which no failure occurs in a way that validates the nominal
situation.

Figure 9.2. Nominal trajectory scenario validation

85

ASTOS Validation

The second case shows the same mission but with a failure at t = 100s that will
limit its maximum value in terms of throttle percentage to 30%. Considering the

Figure 9.3. Degraded trajectory scenario validation (tfailure = 100s and 30% of
throttle upper bound reduction)

two examples cited in Figure 9.2 and 9.3 the reader has demonstration of how the
results were validated using professional mission analysis software.

86

Conlusions

This thesis presents a summary of the work performed over seven months work-
ing independently following a request from ESA’s TEC-MPA department with the
engineers Stephan Schuster and Guillermo Ortega. The solution presents a method-
ology to study the branching ascent trajectories of a micro-launcher in nominal and
degraded phases. There were several benefits to this study, the first coming from
the nominal trajectory study.
Taking Electron as an example, it has been demonstrated how an efficient opti-
mization can save, relatively to the simplified model considered in the analysis, up
to 5% of fuel compared to the datasheet. At the same time it has been possible
to study the behavior of the launcher when an operational failure is generated, the
optimization will take into account from that moment the new altered characteris-
tics evaluating if the launcher can still reach the target or abort.
In the first case the fuel saving information will be left out in order to fulfill only
the orbit achievement while in the second case the distance to a population center
will be requested as input and the algorithm will avoid it guaranteeing a mission
profile in respect of safety and reliability.
The realization of this process was possible first of all by investigating the various
optimization methods and selecting among them the particle swarm optimization.
The algorithm provides, compared to the more classic gradient descent based, an
effective method to alter the conditions of the problem in view of an operational
failure and at the same time its use is exclusive since it is usually used in problems
of multiple subsystem design optimization.
The background of the tools used is expanded through the use of a neural network
that will aim to predict, given an operational failure, whether the studied launcher
will be able to continue to orbit or abort. Also this solution gives the tool a com-
putational cost efficiency since, through deep learning, the part dedicated to the
propagation of the launcher will be bypassed.
The final result is a tool that, given the nominal characteristics of a micro-launcher,
allows to study, with respect to a nominal mission in which a target orbit is reached,
the branches that this could undergo depending on operational failures that limit
the range of the thrust angle or the throttle. This first strength that, if compared
to the state of the art of commercial software, is a novelty goes to add up with

87

Conlusions

a computational cost reduced to a few minutes (about 2) for the calculation of a
trajectory compared to methods based on gradient descent (about 8 minutes). The
conclusion of this work led to the comparison of the results produced by IRATO
with those of ASTOS to give the work more reliability. The work set up in this way
is scalable to any class of launcher, from micro to super-heavy with the caveat of
training the neural network each time a new launcher is inserted. This procedure
requires a database that the more consistent it will be, the more reliable it will be,
for this reason a production of about 1000 scenarios (24 hours) can be considered
sufficient. The work produced opens avenues for future implementations to the
work presented here that will be shown below:

• The implementation of a rigid body dynamics could bring to the dynamic
analysis performed on the launcher relevant information also the attitude of
the considered vehicle adding new constraints to the considered problem.

• A study conducted through in-company access could provide more reliable
information about the failures characterizing the class of micro-launchers by
identifying the most likely failures and the organs involved. This type of study
and the methods that characterize the study of the reliability of a system are
discussed in theoretical terms in Appendix A.

• The tool could be rewritten as an add-on for commercial software using a
python interface. Software such as STK allows this type of implementation.

88

Appendix A

Reliability Analysis

[10] This part will deal with the connections between the assumptions made for the
creation of IRATO and the actual effects that affect the trajectory of an Electron-
like launcher. The aspects on which this type of analysis will be based are basically
two: the first will be to find a link between the operational failures that may occur
during the launch and the values with which it was decided to define it. The second
one will see a comparison between the trajectories computed by the tool and those
computed by the ASTOS program that, being naturally more precise, will show us
if what has been produced can be assumed to be correct. Following chapters are
dedicated to the theoretical discussion of everything related to safety analysis and
the methodologies used for risk prediction. This will be followed by more emphasis
on risk analysis methods and then move on to application in our study.

A.1 Sistem Safety
In this part the study will be focused on the phase of the mission when, from
an ascent trajectory, due to abortion issues or because a RLV is being analyzed,
it is pointing towards the Earth’s surface. This type of study is part of systems
engineering and involves methods, techniques, and analysis that involve the object
of study throughout its life cycle. A system safety process involve the following
items:

• Identification of safety-critical events.

• Subsystem and system analysis to identify failure modes.

• Validation and verification throught pratical methods.

The system safety process provides inputs which are useful to expect failure modes,
choose among different conceptual design with safety-driven methodology and de-
fine operational test. After this step, the analyst can go on with a study based on

89

Reliability Analysis

subsystem hazard analysis by using the probability data on the interested failure.
This technique is useful to involve by the combinations of failures deriving from
environment, software and human error. Some practical methods for obtaining

Figure A.1. System safety process

useful data for risk analysis and safety assessment are provided by methods such as
Failure Modes, Effects and Criticality Analysis (FMECA) and Failure Tree Anal-
ysis (FTA). These methods, starting with design analyses, highlight critical issues
in the system or subsystem that could lead to a dysfunction of the affected vehicle.
From a practical point of view this leads to the generation of schemes that must
be followed by flight operators in order to avoid certain types of choices that could
lead to the malfunctioning of some subsystems or parts of it such as the cockpit
producing catastrophic effects on populated areas. It is usually rare for a compro-
mised element to generate a failure. In fact, what is considered is the fallout that
the damage of a component has on its children. The purpose of the above men-
tioned techniques is precisely to understand the link between the damage of the
component and the external and internal environment involving mechanical failure,
software, human error and the system design. Going to identify what the regula-
tions require within a reliability analysis document makes it easier to break down
the work that should be done sequentially. This guidelines are provided by Office of
Commercial Space Transportation (AST) in collaboration with National Aeronau-
tics and Space Administration (NASA) and Institute of Electrical and Electronics

90

A.1 – Sistem Safety

Engineers (IEEE).

1. Item identification and description: When one intends to proceed with
a reliability analysis, what must be specified as the first element is the item
with which we are dealing. This, as well as being understood as a system,
must also be highlighted for the subsystems that make it up. Each product
must be described in terms of its function and the level of performance it
can provide. If hardware and software are present, they should be described
in detail, including the relationships between them. In addition, there will
be additional details from environments such as the human factor, which will
include interfaces and operating conditions.

2. Intended Use of the Reliability Analysis Results: The use for which a
reliability analysis is performed should be expressed. For example, one reason
why this type of analysis could be useful in this thesis is to prevent the launcher
from crashing in a populated area. It is important to specify which uses the
outputs of the thesis should be used for and which should not.

3. Analysis Methods: The description of the methods used must include a
summary of the methodology by which they are to be applied. It is important
to specify the assumptions that were made within the project and the software
used to implement the project.

4. Analysis Inputs: In this part the difference between the value of the data
collected when the aircraft is in nominal phase compared to the data collected
in that particular situation must be highlighted. This allows the study to be
approached from a theoretical perspective.

5. Analysis Results: The report form should include in this section the find-
ings, theoretical conclusions, and recommendations from the presenter. Fig-
ures of merit are used to express the magnitudes derived from the study in
their entirety (e.g., by defining their range of existence). Tipically outputs
expected are:

• Failure modes and effects
• Criticality of failure modes
• Single-point failure modes
• Areas requiring redundancy
• Functions that cannot be tested
• Mitigations to minimize or eliminate risk, and combinations of events that

could lead to system failure.

91

Reliability Analysis

A.2 Reliability analysis methods

This section describes the various reliability analysis methods, what kind of inputs
and outputs they manage to generate, and how the results can be interpreted.
Nomenclature of the quantities involved in the various methods will be introduced
as these are encountered.

A.2.1 Reliability Block Diagrams

The Reliability block diagrams (RBD) technique allows you to interpret my system
and the interconnections of its subsystems as blocks linked by elements of logic.
This technique is useful for evaluating and confirming the reliability of my system in
different configurations. The logic flow that must be followed is as follows requires
the division of the system into blocks. Then, a certain reliability is assigned to
the relevant block so that the global values of different system configurations can
be tested. The simplest configurations involve arranging these blocks in series or
parallel, or sometimes both. Using the electrical analogy, we are able to determine
the overall reliability of the system according to Table A.1.

Type System reliability (Rs)
Series Rs = RA RB

Parallel Rs = 1 - (1-RA)(1-RB)

Table A.1. RBD basic layouts

As a pratical example, a scheme which involves main and the redundant sub-
sytems working together is an active parallel one. On the other hand, a system
which has an alternate usage of these ones (stand-by redundancy) turns on the
redundant system only when the main one is comprimised. This process is in fact
called "switching" and, since it can fail, the linked realiability will need an addi-
tional study. The advantage of using this technique is the conceptual simplicity
with which the system and the connections between its components are configured.
However the fact to trace a good subdivision, above all as far as very complex
systems are concerned, can be very expensive in terms of work and not all the
systems are predisposed to this type of working. In addition, some parts such as
the human variable and software components are particularly difficult to model.
For these reasons, a study was conducted, qualitative rather than quantitative in
nature, using other types of techniques that will be analyzed later.

92

A.2 – Reliability analysis methods

A.2.2 Parts Count Analysis
Parts Count Analysis (PCA) is able to assess the reliability of a system when it is
in the preliminary stage of its development and when therefore the number of parts
is fixed. This technique allows at the same time to manage in a weighted way the
risk that a certain failure will occur taking into account also elements such as the
environment and the human factor. With a required amount of data, PCA is a tool
that analyzes the electronic and mechanical components of my system in relative
detail. Even if they are not, it is assumed that the components of my system are
in series. It is shown in Figure A.2 the logical flow that this procedure requires to
be applied. The generic PCA expression is as follows:

λs =
zØ
i=1

Ni(λGπQ)i (A.1)

Where:

• λs is the system rate failure

• λGi is the average failure rate of the ith component

• πQi is the quality adjustment factor relative to the ith component

• Ni is the quantity of the ith component

• z is the number of the different part categories

Figure A.2. System safety process

93

Reliability Analysis

The major disadvantage of this procedure is that not all components can be
interpreted according to the PCA declination. However, this tool allows to highlight
areas of my system that could potentially create a failure.

A.2.3 Failure Modes, Effects, and Criticality Analysis
The FMECA analysis is a qualitative process based on a bottom-up approach anal-
ysis of the system architecture, the starting point is a class of failure scenarios.
Throught this study the analyst is able to identify the various failures modes bas-
ing them on a gravity hierarchy and probability of occurance. This tool is useful in
predicting the most critical areas of the system under consideration and highlights
the points where failure is most likely to occur. The scheme that is adopted in
applying this type of technique is as follows:

1. In the first phase is defined the main system, the subsystems that compose
it and the active and passive interfaces between them. It is also necessary
to highlight the various phases that constitute the mission performed by the
main body.

2. A breakdown structure of the components and parts of my system is defined
according to Figure A.3.

3. Associate to every part of my structure an identification coding.

4. It is necessary to associate a description of the type of failure that may occur
to the relevant block both in terms of frequency and severity according to the
two tables below.

5. It is necessary to associate a description of the type of failure that may occur
to the related block both in terms of frequency (from unlikely to frequent) and
in terms of severity (from neglible to catastrophic).

6. For each analyzed component:

• Identify how the component may generate a failure.
• Identify the consequences and the people and objects affected by this type

of failure.
• Identify the worst-case scenario.
• Use the risk acceptability matrix to classify the risk class in order to decide

either to mitigate or to move forward the failure.
• Reiterate with the new measures. also be specified.

7. Document the analysis throught a FMECA worksheet (Example in Figure
A.4).

94

A.2 – Reliability analysis methods

Figure A.3. FMECA breakdown structure

Figure A.4. Example of FMECA worksheet

Thanks to the military standard 1629A, FMECA is a technique that also produces
quantitative results by adopting the following convention, system reliability is ex-
pressed as:

Cm = αβλpt (A.2)

95

Reliability Analysis

Cr =
jØ

n=1
(Cm)n (A.3)

Cs =
kØ
i=1

(Cr)i (A.4)

Where:

• Cm is the critical number for a failre mode.

• Cr is the critical number for a failre item.

• Cs is the critical number for a failre system.

• α is the probability of failure due to the selected mode.

• β is the probability of the mission loss.

• λ is the part failure rate.

• t is the operational time.

• j is the part failure modes.

• k is the number of the parts.

The advantages involving the use of this technique allow to highlight the most
critical points of the single component and to have a wider view on the reliability
analysis resulting from the use of other techniques. However, it does not take into
account what will be the effect over time of the failure considered (as we will see
for future techniques) and also elements such as the external environment and/or
the human factor require the use of other techniques.

A.2.4 Fault tree analysis
In contrary to FMECA, FTA is a technique with an up-down approach that allows
to trace back, through the use of logic gates, the generation of a failure. The result
of this chain of events takes the name of faul tree. It succeeds therefore to render
clear the hierarchy of processes that carry to the generation of an undesired event.
Typically, the logic gates that are used refer to the minimal use of "AND" or "OR"
constructs and their combinations. The logical structure with which an FTA must
be executed is then reported.

1. It is necessary to individuate the pivotal event, that is the undesired event
that is wanted to be avoided in order to reconstruct the logical procedure of
the actions that involve its occurrence. This type of element can derive from
reliability studies such as FMECA.

96

A.2 – Reliability analysis methods

2. Define the level of accuracy of the analysis by specifying whether the results
produced should be qualitative, quantitative or both.

3. Define the chain of events from the high-level actions that lead to the creation
of the failure.

4. Going down a level by analyzing the internal causes of the previous point.

5. Connecting second level contributions with first level contributions.

6. Repeat the previous processes until you are satisfied with the accuracy of the
work.

7. Document process inputs and outputs.

A scheme of a possible operational failure involving the feed system of the launcher
engine is reported as follows in Figure A.5 The parameters used to calculate indi-

Figure A.5. Example of FTA scheme

vidual node data are difficult to find. Their inspection requires the use of advanced
techniques, and the data is sometimes kept within the business circuit that per-
forms the testing. This type of difficulty is addressed through the use of statistical
analysis such as Monte Carlo simulations. In order to better understand how the
single node influences the behavior of my logical construct sensitivity anlysis are
conducted . If during the investigation the reader is looking for a type of analysis
that allows risk assessment, to identify couplings and relationships between com-
ponent operational errors and single-point failures, FTA is a consistent technique.

97

Reliability Analysis

However, it must be remembered that finding the data necessary to use it is not
easy and that to get a complete overview, FMECA or Event Tree Analysis (ETA)
must be used.

A.2.5 Event Tree Analysis
Event Tree Analysis is a technique used to permorm inductive investigations on the
reliability of the interested system. This kind of analysis includes either hardware or
non-hardware components. The gravity of the event considered is not relevant, the
only necessary action is to propagate the interested paths and combine the branches
with other attempts results in order to notice any success or failure. One positive
aspect is the fact that it can be tested combinations where some components may be
on standby while others are not. By analyzing the results of the hazard analysis, it is
possible to identify the "Success/Failure" ramifications starting from an "Initiating
Event" of which one is interested in its propagation. The transition from one
event to the next is dictated by engineering links (such as the activation of valves
or sensors) that consequently bind a system to the environment in which it is
inserted. Each branch can have one or two outputs depending on the event, once
this process is complete it is useful to remove redundant information to have a clear
structure. By assigning a probability that the branch under consideration tends
towards success or failure, it will be possible to calculate which scenarios are more
likely to occur than others, reporting everything on an appropriate documentation.
In the example shown in A.6 an application case of a scenario of interest is shown.

Figure A.6. Example of ETA scheme

Although this technique has some good points in its favor, it must be taken into
account that the detailed analysis of a complex system requires many attempts

98

A.2 – Reliability analysis methods

in order to identify as many scenarios as possible. Moreover, it remains strictly
dependent on the results of techniques such as FTA or FMECA both in terms of
statistics and providing new scenarios.
After this review it is natural to understand how a reliability analysis is necessary
to want to better categorize the class of operational failures that could compromise
my mission and the probability with which these could occur. Despite this, the
availability of data is not easy for two reasons: the first is inherent to the large
amount of combinations and data required by the techniques mentioned above,
while the second is related to the availability of the first that is kept limited within
the company environment. Implementation of the procedures resulting from these
techniques would make for an even more accurate and simulatively reliable lens for
IRATO.

99

100

Bibliography

[1] Avanzini G., Entry, Descent, Landing and Ascent, Politecnico di Torino, V
Edition 2009

[2] Castellini F., Multidisciplinary Design Optimization For Expendable Launch
Vehicles, 2012

[3] Dy D., Perrot Y., Pradal R., Micro-launchers: what is the market?, 2017
[4] Curry A., Haskell B., The Method of Steepest Descent for Non-linear Mini-

mization Problems, Quart. Appl. Math. 2
[5] Kennedy J., Eberhart R.Particle Swarm Optimization, Neural Networks, 1995.

Proceedings., IEEE International Conference
[6] Pontani M., Conway B.Particle Swarm Optimization Applied to Space Trajec-

tories, Journal of Guidance, Control and Dynamics, 2010
[7] Pontani M., Particle Swarm Optimization of Ascent Trajectories of Multistage

Launch Vehicles, Acta Astronautica, 2014.
[8] Olds J.R, Ledsinger L.A, Multidisciplinary Optimization Techniques for

Branching Trajectories, AIAA, 1998
[9] ASTOS Solution, Conventional Launcher Tutorial
[10] FAA, Guide to Reusable Launch and Reentry Vehicle Reliability Analysis, Fed-

eral Aviation Administration, 2005.
[11] Ascent Optimization V1 and V2 are MatLAB tools developed by Jasmine Ri-

mani.
[12] Electron Data
[13] Simulink Rocket Dynamic Model
[14] Gradient descent additionary notes
[15] PSO MatLAB Architecture
[16] Neural Network Architecture
[17] Artificial Intelligence Introduction
[18] fmincon Description
[19] POST II website

101

https://www.linkedin.com/in/jasminerimani/
https://www.linkedin.com/in/jasminerimani/
https://www.rocketlabusa.com/electron/
https://www.youtube.com/watch?v=LrgYp7goMIE&t=3116s&ab_channel=MATLABAmbassador-Italy
https://en.wikipedia.org/wiki/Gradient_descent
https://www.youtube.com/watch?v=sB1n9a9yxJk&t=3s&ab_channel=Yarpiz
https://www.youtube.com/watch?v=aircAruvnKk&t=994s&ab_channel=3Blue1Brown
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://it.mathworks.com/help/optim/ug/fmincon.html
https://post2.larc.nasa.gov/

	List of Tables
	List of Figures
	I First Part
	Introduction
	Rocket trajectory
	Reference frames
	Fixed planetocentric coordinates
	LVLH reference frame

	Focus on micro-launchers

	II Second part
	Problem Statement
	Rocket Dynamic Simulator
	Electron Simulink model

	Gradient-based methods
	Particle Swarm optimization
	PSO Mathematical Model
	Algorithm Validation

	Artifical intelligence
	Machine learning
	Deep learning
	Introduction to neural networks

	Problem resolution
	Ascent Optimization V1 and V2
	Implementation of branching trajectories
	PSO application
	Intelligent Rocket Ascent Trajectory Optimizer

	ASTOS Validation
	Electron model creation
	Environment definition
	Actuators definition
	Aerodynamics definition
	Component definition
	Phase definition

	IRATO Validation

	Reliability Analysis
	Sistem Safety
	Reliability analysis methods
	Reliability Block Diagrams
	Parts Count Analysis
	Failure Modes, Effects, and Criticality Analysis
	Fault tree analysis
	Event Tree Analysis

	Bibliography

