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Abstract

In the last few years the concept of autonomous vehicle has developed significantly

and has become one of the major topics of the automotive field. Among all the

functions that a self - driving vehicle must have, the ability to correctly interpret

the sensors information and exploit them for trajectory prediction is fundamental.

This thesis work collocates itself exactly in this framework and it is developed around

two main topics. First of all, a research on motion models is conducted in order

to establish which one can better describe the analysed scenario. Then, the chosen

model, called CTRA model, is simulated with real sensor data with the purpose of

obtaining a trajectory of the same shape of the authentic one. The second phase

of the project has the goal to simulate a real - time scenario and consists in the

combination of the CTRA model and the Unscented Kalman Filter for trajectory

prediction purposes. Two different cases of application are examined and compared:

the first analysis is conducted from the vehicle point of view, while, in the second

case, the trajectory prediction is obtained thanks to the data acquired from a camera

located on the side of the road. The achieved results have shown that a more accurate

prediction is obtained when the correction done by the filter is based on a greater

number of measured variables, but they have also revealed that the assumptions

proposed by the utilized model are more suitable for short - term prediction, while

they become a burden for longer prediction horizons.
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per tutte le fasi del lavoro.

Un ringraziamento speciale va alla mia famiglia, che mi è sempre stata vicina du-
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Chapter 1

Introduction

In the last few years the concept of autonomous vehicle has become more and more

popular, leaving behind that image of a futuristic product rooted in many people’s

mind. Nowadays, great progress is being made in this area and several automobiles

companies are implementing new autonomous features in their more recent models.

Anyway, the path to reach a fully autonomous vehicle is still long and characterized

by a very high complexity, since a large variety of technologies coming from several

disciplines as computer science, mechanical engineering, electronics engineering, and

many more must converge in this type of product. In this first chapter, an overview

on the world of autonomous vehicles is presented, where their classification and main

features are described. After that, the context and scenario analysed in this project

are introduced, defining the major actors that operate in the studied situation. At

the end of this section, the challenge and goals of the thesis are specified, followed by

a brief description of the structure and topics treated in the chapters that compose

this work.
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Chapter 1 - Introduction

1.1 Autonomous vehicles overview

The definition of autonomous vehicle describes it as a self - driving vehicle that has

the capability to perceive the surrounding environment and navigate itself without

human intervention [6]. Actually, this represents only the final objective of a process

started in the last decades.

The current framework in this field is well depicted by SAE (Society of Automotive

Engineers), which has defined six levels of driving automation, spanning from 0 (fully

manual) to 5 (fully autonomous). The analysis reported in the NHTSA (National

Highway Traffic Safety Administration) website [1] describes the most recent version

of this classification, called J3016 201806 [20] and shown in Figure 1.1. This can be

summarized in the following way:

• Level 0 - No automation: the vehicle is manually controlled, so the human

driver has to manage all the driving tasks.

• Level 1 - Driver assistance: the driver and the automated system share

control of the vehicle. An ADAS (Advanced Driving Assistance System) can

sometimes assist the driver with actions like steering or braking/accelerating,

but not simultaneously.

• Level 2 - Partial Automation: the automated system can take full con-

trol of the vehicle. An ADAS can actually control both steering and brak-

ing/accelerating simultaneously under some circumstances.

• Level 3 - Conditional Automation: in some circumstances, an ADS (Au-

tomated Driving System) can perform all aspects of the driving task.

• Level 4 - High Automation: in this level, an ADS can itself perform all

driving tasks and monitor the driving environment; essentially, it can do all

the driving in certain circumstances.

• Level 5 - Full Automation: no human intervention is required at all. An

ADS is able to perform all the driving in all circumstances.

One fundamental aspect of the classification just described is that, in the transition

from Level 2 to Level 3, the human driver has not to monitor anymore the surround-

ing environment. This task is now passed to the automated system and, as levels

progress, it relieves the driver from the responsibility to intervene when requested.

2



Chapter 1 - Introduction

Figure 1.1: SAE Automation Levels [1]

The main capabilities that distinguish a self - driving car, as reported in [3], are the

ability to sense its local environment, detect and classify different kinds of objects

and interpret sensory information in order to identify appropriate navigation paths

whilst obeying transportation rules. Keeping in mind these abilities, the structure

of this type of vehicles can be represented by many building blocks [27], as shown

in Figure 1.2, distributed in the Hardware side and the Software one.

Starting from the Hardware part, one fundamental component is represented by the

sensors mounted on the vehicle, which permit to accumulate raw information about

the surrounding environment.

Another peculiarity is the V2X communication, that enables the autonomous vehi-

cle to share and receive information from other vehicles (V2V, Vehicle to Vehicle)

or from a particular infrastructure (V2I, Vehicle to Infrastructure).

The last component of the Hardware side is represented by the actuators, which are

responsible for controlling and moving the system, and so permit to generate actions

like braking, steering, accelerating, and many more.

The Software part of the vehicle, instead, is composed by three different control

systems, which covers the phases of Perception, Planning and Control.

The Perception system refers to the capacity to understand the raw information

coming from the sensors and the V2X network, while the Planning phase consists

in the processing of that information in order to make certain decisions and achieve

some higher order goals.

The last block of the Software part of the vehicle is composed by the Control system.

3



Chapter 1 - Introduction

It is responsible for converting the intentions and decisions taken in the previous

phase into actions, which will be transformed and transmitted to the actuators in

the form of inputs that will lead to the desired motions.

Figure 1.2: Autonomous vehicles building blocks

4



Chapter 1 - Introduction

1.2 Context and scenario

This thesis work is built around the study of one frequent situation while driving,

that is the crossing of a road intersection. This scenario is analysed from two differ-

ent points of view, as showed in Figure 1.3, which are related to the vehicle and to

an external camera that is able to monitor the situation in the road intersection.

Figure 1.3: Road intersection

In order to introduce an autonomous and connected vehicle within the current au-

tomotive network, it is fundamental to be sure of its ability to understand the

surrounding environment and calculate the best trajectory that permits to travel in

the safest way. This thesis work, which is born from an idea proposed by LINKS

Foundation, collocates itself exactly in this perspective and it is strictly related to

the Perception and Planning phases described before, which allow the vehicle to

receive and understand all the information coming from different sensors, leading to

their processing and to the decision of what sort of action the vehicle should perform.

The analysed connected vehicle must be able to correctly monitor its own trajectory

and the behaviour of the different variables described by its serial communication

system, called CAN bus. Moreover, it must have the ability to adequately predict

the trajectory to achieve in the next moments. However, in a public road, this par-

ticular capability turns out to be incomplete if not supported by the vision of what

is happening around the self - driving vehicle. This knowledge can be provided by

a road infrastructure, a camera in this case, which is able to monitor the overall

situation in the analysed road intersection and provide data about longitudinal and

5



Chapter 1 - Introduction

latitudinal positions of the non - connected vehicles through the analysis of the cap-

tured images. Thanks to these information, also their trajectory can be predicted

and then compared with the one of the connected vehicle. The knowledge of the

future trajectory of the connected vehicle, in fact, represents a huge help, since it

permits to anticipate its movements, but it must be completed by the comparison

with the non - connected vehicles trajectories in order to correct in time, if necessary,

the predicted movements and avoid collisions.

In this context, one of the elements introduced in the previous section assumes a par-

ticular importance. The V2X communication, in fact, covers a fundamental role in

scenarios like the one analysed in this project, since permits to handle the exchange

of information between the vehicle and the infrastructure. This mechanism is based

on the distribution and reception of the so - called CAM (Cooperative Awareness

Messages), which share information about the status and the characteristics of the

generating station, and so details about time, position, vehicle type and role, and

many more [2]. The CAM messages are produced periodically, and so are charac-

terized by a precise sampling frequency. As explained in [10], one of the objectives

of the V2X communication consists in keeping the vehicle up to date about all the

nearby subjects that share the road, and therefore the validity and recentness of the

CAM messages assume a fundamental importance.

6



Chapter 1 - Introduction

1.3 Challenge and goals of the thesis

As introduced in the previous section, the main goals of this project are two: the

first one consists in representing the autonomous and connected vehicle through

a suitable mathematical model, able to efficiently exploit the sensor data in order

to reproduce the trajectory as close as possible to the real one; the second one,

instead, is focused on the application of the chosen model to a trajectory prediction

technique, which permit to calculate the future states and movements of the vehicle

before they are actually carried out.

For these reasons, the report is structured in the following way:

• Chapter 2 - Vehicle model: first of all, a state of the art concerning the

chosen vehicle model is presented. This is followed by the explanation of the

model implementation phase in the simulation program. At the end of the

chapter, the results of the replication of the real trajectory are illustrated.

• Chapter 3 - Vehicle path prediction: the structure of this chapter is

similar to that of the previous one. The state of the art of the used path

prediction technique is followed by its implementation, and the final results

provided by the combination of the vehicle mathematical model and the chosen

technique are presented.

• Chapter 4 - Conclusions: in the last chapter the overall results are com-

mented and the conclusions are summed up. At the end some ideas for possible

future projects are proposed.

7





Chapter 2

Vehicle model

The second chapter of this project begins with a brief outline concerning the model

analyzed before the final one, supplemented by the motivations that led to a different

choice. After that, a state of the art regarding the motion models group and the

final vehicle mathematical model is presented. Here, the assumptions at the base

are introduced, followed by the description of the selected state space variables and

by the equations that permit to perform a simulation of the trajectory. Then, the

implementation phase is inserted, in which the preparatory work done on data in

order to obtain a set concordant both with the state variables of the model and the

simulation program is described. In the same phase, the mathematical translation

and integration of the model into the simulation program are presented, followed

by the last phase, in which the results of the several tests carried out in order to

see if the model could simulate a trajectory with a shape similar to the real one are

showed.

9



Chapter 2 - Vehicle model

2.1 Single - track model

At the beginning of this thesis work the intention was to simulate the real vehicle

behavior through the single - track model, or bicycle model, which is represented

in Figure 2.1. This model assumes that the vehicle is able to move only in the

horizontal plane, which means that the vertical dynamics is neglected, and it is

composed by two main parts: the chassis, which includes also the rear wheel, and

the steering system, composed only by the front wheel [26].

Figure 2.1: Single - track model [7]

A first research was conducted in order to understand which configuration of the

bicycle model, between the kinematic and the dynamic one, could behave more

efficiently for this application case.

The kinematic bicycle model, which does not take into account the forces that act on

the vehicle, is described by the following set of nonlinear continuous time equations

[8]:

ẋ = v cos(ψ + β) (2.1)

ẏ = v sin(ψ + β) (2.2)

ψ̇ =
v

lr
sin(β) (2.3)

v̇ = a (2.4)

10



Chapter 2 - Vehicle model

β = tan−1
(

lr
lf + lr

tan(δf )

)
(2.5)

where x and y represent the coordinates of the center of mass in an inertial frame

(X,Y), while the physical lengths of the vehicle are taken into account by lf and lr,

which represent the distances from the center of mass to the front and rear axles.

The angles that show up in the equations from (2.1) to (2.5) are β, ψ, δf , which

represent respectively the angle between the velocity of the center of mass and the

longitudinal axis of the car, the inertial heading and the front steering angle. Finally,

a represents the acceleration of the vehicle.

One of the major assumptions of this configuration, as reported in [22], is that

the velocity vectors lie exactly in the direction of orientation of the front and rear

wheels, which is equivalent to assume that the slip angles at both wheels are zero.

For this reason, this simplification is reasonable only for low speed motion of the

vehicle (speed less than 5 m/s, which is approximately 18 km/h) or, as proven in

[21], with a lateral acceleration ay limited at values lower than 0.5µg, since, in this

situations, the lateral force generated by the tires is small.

At higher vehicle speeds, this assumption can no longer be made: in this case,

instead of a kinematic single - track model, a dynamic model for lateral vehicle

motion must be developed.

The paradigm adopted for the description of a dynamic bicycle model, characterized

by two degrees of freedom y and Ψ, is represented in Figure 2.2. The vehicle lateral

position y can be identified along the lateral axis of the car to the center of rotation

O, while the heading angle Ψ (in Figure 2.1 ψ was utilized for the heading angle) is

measured with respect to the global X axis.

11



Chapter 2 - Vehicle model

Figure 2.2: Lateral vehicle dynamics [22]

In this case, the differential equations for the dynamic single - track model are the

relations from (2.6) to (2.10):

ẍ = Ψ̇ẏ + ax (2.6)

ÿ = −Ψ̇ẋ+
2

m
(Fc,f cos δf + Fc,r) (2.7)

Ψ̈ =
2

Iz
(lfFc,f − lrFc,r) (2.8)

Ẋ = ẋ cos Ψ− ẏ sin Ψ (2.9)

Ẏ = ẋ sin Ψ + ẏ cos Ψ (2.10)

where ẋ and ẏ represent the longitudinal and lateral speeds, while Ψ̇ stands for the

yaw rate. The parameters m and Iz denote the vehicle mass and the yaw inertia.

The variables Ẋ and Ẏ , instead, indicate the vehicle speed with respect to the global

axes. Finally, Fc,f and Fc,r respectively describe the lateral tire forces at the front

and rear wheels.

Considering the previous equations of the dynamic model, it would therefore seem

advisable to use this configuration, but there are some disadvantages that, instead,

orient the choice to the kinematic model. In fact, the dynamic model behaves

better at higher speeds, but it is characterized by a very high computational effort.

12
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Moreover, usually this second configuration is utilized with tire models, which have

the problem to become singular at low speeds.

For these reasons, the choice initially went towards the kinematic single - track

model, since it requires less computational power and, as demonstrated in [7], can

be implemented at a wide range of vehicle speeds (better at low speeds), including

also zero speed, which is a recurrent situation in use case scenarios like the road

intersection analysed in this project.

Anyway, even if the kinematic model can behave in a proper manner in a situation

like the one analysed, it was decided not to pursue this idea in the continuation of

the project. This decision was taken due to the high presence of parameters strongly

dependant on the vehicle type and model considered. Factors like lf , lr, m, Iz and

many more do not allow to obtain a simulation extendable to as many vehicles as

possible, which is one of the major goals of this thesis.

This project aims to realize a scheme capable of representing a situation no matter

the actor who plays it, so as to be able to apply it not only to a specified vehicle.

For this number of reasons, this project is build following another model, which can

be applied to several realities, not being linked to specific factors of the vehicle that

faces these situations.

13
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2.2 Motion models

In order to extend the analysis and build an application case independent from the

vehicle type, another mathematical model instead of the single - track one has been

chosen. This thesis work is then based on the performances and characteristics of

the so - called CTRA model (Constant Turn Rate and Acceleration model), which

belongs to the group of the physics - based motion models.

2.2.1 Classification

The motion models are mainly divided into three levels, showed in Figure 2.3. As

well described in [9], these are characterized by the following aspects:

• Physics - based motion models describe the vehicles as dynamic entities

dependant on the laws of physics. The prediction of the future movement of

the vehicle is conducted using kinematic and dynamic models characterized

by some control inputs, car properties and external conditions, which permit

to calculate the evolution of the main state variables of the vehicle.

• Maneuver - based motion models consider that the future movements

of the vehicle strongly depends on the maneuver that the driver plans to

carry out. They represent vehicles as independent maneuvering entities, which

means that they assume that the actions performed by one entity correspond

to a series of known maneuvers independent from the route taken by the other

vehicles. In practice, this strong assumption of independence between vehicles

fatigue to remain valid, since the analysed subject share the road with other

actors and the maneuvers performed by one vehicle necessarily influence the

path of the others.

• Interaction - aware motion models take into account the several interac-

tions between vehicles. They develop the analysis conducted by the maneuver

- based motion models and improve it, since they represent vehicles as entities

that interact with each other, and so the movements and the taken path of

the analysed subject is influenced by the motion of the other vehicles on the

road.

This classification shows that the interaction - aware motion models are the most

complete level of description, since they allow a more complete analysis with respect

to the ones conducted for the physics - based and maneuver-based motion models.

However, also this third classification is characterized by some drawbacks, among
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Figure 2.3: Motion modeling overview [9]

which the most relevant is the expensive computation effort. This aspect makes

the interaction - aware models not compatible with real - time prediction and risk

assessment.

It was then decided to build this thesis project around a physics - based motion

model since, as said before, the goal is to work on an application independent not

only from the vehicle type, but also from the path performed by the analysed sub-

ject, which also excludes the choice of maneuver - based models.

This means that with this work it has been tried to create a model able to adapt to

many possible situations, being able to work and simulate a real - time trajectory

working only on sensors information and by exploiting the equations of which the

chosen model is composed.

2.2.2 Physics - based motion models

The motion models that belong to this group are numerous. A first classification,

as proposed in [23], can be made on the basis of the assumptions that characterize

each model and on their level of complexity.

The lower level is occupied by the linear motion models, which have the advantage

of the linearity of the state transition function, responsible for the evolution of the

state variables. However, their drawback is that they consider always a straight
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motion, and so are not able to take into account motions like rotations.

1) One of the main linear models is the CV model, which assume Constant Ve-

locity of the vehicle. It is described by the following state space:

~x(t) = (x vx y vy)
T (2.11)

where x and y represent the longitudinal and latitudinal positions of the vehicle,

while vx and vy are the speed components on the x and y axes.

The linear state transition function of the CV model is given by:

~x(t+ T ) = A(t+ T )~x(t) (2.12)

where T represents the sample time.

In order to be used with the framework of the trajectory prediction technique anal-

ysed in the following chapter, the previous state transition function can be modified

in the following way:

~x(t+ T ) =


x(t) + Tvx

vx

y(t) + Tvy

vy

 (2.13)

Increasing the complexity of the models, also rotations around the z - axis must be

considered. This is the case of the curvilinear models, which can be further classified

on the basis of which state variables are assumed to be constant.

2) The simplest model of this level is the so - called CTRV model, which assumes

Constant Turn Rate and Velocity. It is described by the following state space

variables:

~x(t) = (x y θ v w)T (2.14)

where θ is the heading angle and w represents the yaw rate.
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The evolution of the state is managed by a non - linear state transition function:

~x(t+ T ) =



v
w
sin(wT + θ)− v

w
sin(θ) + x(t)

− v
w
cos(wT + θ) + v

w
sin(θ) + y(t)

wT + θ

v

w

 (2.15)

3) By deriving the velocity and considering also the acceleration as a state variable,

as reported in [29], the CTRA model can be obtained, which assume Constant

Turn Rate and Acceleration. This particular model expands the previous one’s

state space:

~x(t) = (x y θ v a w)T (2.16)

Now, the state transition function is given by:

~x(t+ T ) =



x(t+ T )

y(t+ T )

θ(t+ T )

v(t+ T )

a

w


= ~x(t) +



∆x(T )

∆y(T )

wT

aT

0

0


(2.17)

where:

∆x(T ) =
1

w2
[(v(t)w + awT )sin(θ(t) + wT ) + acos(θ(t) + wT )

−v(t)wsinθ(t)− acosθ(t)]
(2.18)

and

∆y(T ) =
1

w2
[(−v(t)w − awT )cos(θ(t) + wT ) + asin(θ(t) + wT )

+v(t)wcosθ(t)− asinθ(t)]
(2.19)

4) Finally, the CCA model is presented, which assume Constant Curvature and

Acceleration. Its state space is very similar to the one of the CTRA model:

~x(t) = (x y θ v a c)T (2.20)
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with the exception that the yaw rate w is substituted by the curvature c = R−1,

where R is the radius of the path that the vehicle is travelling.

Since the radius R is equal to:

R =
1

c
= − v(t)

w(t)
= const. (2.21)

and the speed v is given by:

v(t) = v(t0)− at (2.22)

the expression of the yaw rate w in this case becomes:

w(t) = (−v(t0)− at)c (2.23)

Knowing that the continuous system that characterizes this model is specified by:

~̇x =



v(t)cos(w(t)t+ θ(t0))

v(t)sin(w(t)t+ θ(t0))

w(t)t

a

0

0


(2.24)

and inserting the equations (2.22) and (2.23), it becomes:

~̇x =



(v0 + at)cos((−v0 − at)ct+ θ0)

(v0 + at)sin((−v0 − at)ct+ θ0)

(−v0 − at)c
a

0

0


(2.25)

In order to obtain the discrete state transition function as for the previous models,

the continuous expression must be integrated:

~x(t+ T ) =

∫ t+T

t

~̇x(t)dt+ ~x(t) (2.26)

Anyway, carry out this step lead to have a very complex state transition function,
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which, as will be said in the next section, is one of the reasons why the usage of the

CCA model is not recommended.

2.2.3 Choice of the motion model

In order to choose the most suitable model for the use case of this project, the

analysis and the considerations formulated in [23] and [24] are considered. These

surveys compare all the previous motion models in a trajectory tracking application,

conducted both in urban and in a highway scenario.

It is demonstrated that the most complex curvilinear models as CTRV and CTRA

perform better than the simple CV linear model in every case, since they produce

lower lateral and longitudinal errors with respect to the real trajectory of the vehicle.

Moreover, the introduction of the acceleration as state variable in the CTRA model

permits to obtain better results than the CTRV model, additionally enhancing the

overall tracking result. Especially in situations where the acceleration grows and

overcomes the limit of 0.5 m/s2, the CTRA model performs better than the CTRV,

which produces large position errors.

No particular difference can be found in the results proposed by the CTRA and the

CCA models. However, due to the very high calculation effort that characterizes

the second model, the usage of the CTRA model is recommended.

For this number of reasons, in this thesis project it has been chosen to study the

CTRA model, whose implementation in the simulation program is showed and ex-

plained in the following sections.
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2.3 Preparatory work on data

After finding that the CTRA model is the most suitable for this type of application,

the next phase consists in implementing it into the simulation program, which is

MATLAB. However, before this step, a preparatory work on the provided data

must be done, in order to obtain a set of values concordant both with the state

space of the model and the simulation program.

2.3.1 Selection of data concerning the use case

This thesis work is based on the set of data provided by LINKS Foundation, which

are the data available from the CAN bus communication system of the analysed

vehicle. These values represent and describe the evolution of the main variables

during the path followed by the vehicle, which is shown in Figure 2.4:

Figure 2.4: Path followed by the vehicle

In fact, from the CAN bus, it is possible to receive information about:

• Timestamp [ms]: indicates the instant when the values of the observed vari-

ables are measured. In this set the interval between one measure and the next

one is approximately 0.25 s.
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• Latitude [deg, °] and Longitude [deg, °]: are the geographical coordinates

that permit to univocally identify the position of the vehicle on the Earth’s

surface.

• Heading [deg, °]: represents the angle of orientation of the vehicle. It is

defined with origin to the true North and the rotation is positive if clockwise.

• Yaw Rate [deg/s, °/s]: it is defined as the angular velocity during a rotation,

or also as the rate of change of the heading angle.

• Speed [km/h]

• Steering angle [deg, °]: it is the angle between the front of the vehicle and

the steered wheel direction. The rotation to the right is defined positive.

As seen in Chapter 1.3, this project is built around the study of the path taken

by the vehicle in a road intersection. For this reason, from the overall data that

reproduce the trajectory showed in Figure 2.4, the subset highlighted in Figure 2.5

is selected:

Figure 2.5: Selected path

and the scenario represented in Figures 2.6 and 2.7 is analyzed:
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Figure 2.6: Road intersection Figure 2.7: Real scenario

where the vehicle runs the road intersection from the right to the left of the figures.

2.3.2 Transition to SI units

As written before, in order to have a set of variables concordant with the chosen

equations and with the simulation program, before moving on to the implementation

of the model, the first thing to do is to transform the selected data into SI units.

From the CAN bus of the analysed vehicle five of the six state space variables of

the CTRA model are available, and these are: longitudinal position, latitudinal

position, speed, heading and yaw rate.

The first change, however, is made on the timestamp data. The overall selected

data are transformed from ms to s, and then an offset equal to the first value of the

set is subtracted. In this way, a set of data that exactly starts from 0 s and ends at

22.615 s is obtained.

After that, in order to convert the measurement units of the longitudinal and lati-

tudinal positions from degrees to meters, from Figure 2.6 an origin point with coor-

dinates [7.6309°, 45.129°] is chosen, and for all the available data the distance from

this point can be calculated. After that, thanks to the deg2km MATLAB function

[12], all the computed distances are converted into km, and then in m, obtaining

the result showed in Figure 2.8:
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Figure 2.8: Trajectory - Transition to SI

Regarding the speed data of the road intersection, they are already provided into SI

units, so they are only transported into m/s, obtaining the set in Figure 2.9:

Figure 2.9: Speed data

For the heading data, in order to convert the measurement units from deg to rad,

the deg2rad MATLAB function [11] can be used. The result of this operation is
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showed in Figure 2.11, together with the original data set, inserted in Figure 2.10

to be aware of the path taken by the vehicle:

Figure 2.10: Heading data - Original set

Figure 2.11: Heading data - Transition to SI
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The same approach can be followed for the yaw rate data, which must be trans-

formed from deg/s to rad/s. This group of data set shows the behaviour in Figure

2.12 and Figure 2.13:

Figure 2.12: Yaw rate data - Original set

Figure 2.13: Yaw rate data - Transition to SI
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2.3.3 Moving average of the acceleration

In the state space of the CTRA model also the acceleration appears, which, however,

is not part of the data provided by the CAN bus of the vehicle. For this reason, a

data set for this state space variable must be calculated. To do this, two approaches

can be followed:

1. Speed derivative: the acceleration data set is provided by a cycle that com-

putes, for each iteration, the ratio between the speed variation and the time

interval between one measurement and the successive one.

2. Moving average: for this approach the polyfit MATLAB function is used,

which, as explained in the MathWorks documentation [16], permits to find the

coefficients of a polynomial of degree N that fits in the best way the provided

data. Here, providing the speed and the timestamp data, and building a

polynomial of degree N = 1, it is possible to find the value of the acceleration

imposing it equal to the angular coefficient of the straight line. In order to

obtain the trend that better approximate the real acceleration, this approach

is followed using a buffer of five and ten values of speed and timestamp data.

The results provided by these two approaches show the behaviour of Figure 2.14:

Figure 2.14: Acceleration

Since the behaviour proposed by the speed derivative is characterized by high dis-

continuities, the moving average method is chosen. Even if this approach shows a
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sort of delay with respect to the speed derivative method, it presents a smoother

behaviour, which is easier to replicate in a real - time scenario. Between the moving

average obtained with a buffer of five and ten measurements, the first one is adopted

in the used data, since it shows only a short delay and its trend is almost equal to

the speed derivative one.

2.3.4 Interpolation of position and heading data

Before moving on to the simulation of the CTRA model, another adjustment on the

provided data must be done. In fact, during the use of the longitudinal position,

latitudinal position and heading data, it was found that these data sets are measured

by sensors characterized by a lower sampling frequency with respect to the one of

the speed and yaw rate data. To be precise, the highlighted sets are saved with a

frequency four times lower than the others, which leads to have blocks of four equal

measurements of position and heading, as shown in Figure 2.15, while the values for

the speed and yaw rate data change at every measurement.

Figure 2.15: Equal measurements blocks

In order to solve this problem and obtain a group of data with the same sampling

frequency, a linear interpolation between the extreme values of each block of the

considered sets must be done. To do this, the equation (2.27) is applied to the three

sets of data indicated before:

y = y1 +
x− x1
x2 − x1

(y2 − y1) (2.27)
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where y represents the wanted data (longitudinal position, latitudinal position or

heading) and x stands for the utilized timestamp data.

After this procedure, the positions and heading data sets show the behaviours in

Figures 2.16 and 2.17:

Figure 2.16: Longitudinal and latitudinal positions data interpolation

Figure 2.17: Heading data interpolation
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2.4 Implementation of the CTRA model

Now that all the data result concordant both with the model and the simulation

program, the implementation of the CTRA model can begin.

As explained in Section 2.2.2, the chosen model is characterized by a six - variables

state space:

~x(t) = (x y v θ w a)T (2.28)

where the presented state space variables stand for the longitudinal and latitudinal

positions, speed, heading angle, yaw rate and acceleration, in this order.

Moreover, the evolution of all the state space variables from the instant k to the

instant k + 1 is guided by some transition equations. Regarding the evolution of

longitudinal and latitudinal positions, these have already been explained in equations

(2.18) and (2.19), and are here reported for simplicity:

xk+1 = xk + ∆x = xk +
1

w2
k

[(vkwk + akwkT )sin(θk + wkT ) + akcos(θk + wkT )

− vkwksinθk − akcosθk]

(2.29)

yk+1 = yk + ∆y = yk +
1

w2
k

[(−vkwk − akwkT )cos(θk + wkT ) + aksin(θk + wkT )

+ vkwkcosθk − aksinθk]

(2.30)

The evolution of speed and heading, instead, is dependant on the acceleration and

yaw rate behaviour, respectively:

vk+1 = vk + akT (2.31)

θk+1 = θk + wkT (2.32)

The assumption made by the CTRA model regards essentially the yaw rate and the

acceleration, which are considered constant. For this reason, their values remain

always the same:

wk+1 = wk (2.33)

ak+1 = ak (2.34)
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Obviously, as it possible to see in Figure 2.13 and Figure 2.14, the behaviour of the

acceleration and yaw rate data sets is not constant in the analysed scenario. This

means that, even if the choice of the CTRA model is the most recommended, as

reported in Section 2.2.3, already at this stage of the work it is possible to understand

that the equations (2.33) and (2.34) introduce some assumptions that will lead to

have a simulated trajectory not perfectly consistent with the authentic one.

2.4.1 Coherence between yaw rate data and transition equa-

tion

As seen in equation (2.32), the evolution of the heading and yaw rate data must

be concordant. This means that, since the yaw rate represents the derivative of the

heading, an upward increase of the heading values must coincide with a positive

development of the yaw rate.

Therefore, a further modification on the data provided by the CAN bus of the vehicle

must be executed. In particular, the most effective way to respect the relation

(2.32) consists in changing the sign of the overall yaw rate data, in order to obtain

a concordant development of the two state space variables, as shown in Figures 2.18

and 2.19:

Figure 2.18: Heading behaviour Figure 2.19: Yaw rate behaviour

2.4.2 Introduction of the straight motion equations

The CTRA model belongs to the class of the curvilinear models, which introduce

also the rotation around the z - axis in the description of the vehicle motion. The

chosen model, therefore, better describe situations where the yaw rate values are
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different from zero, which means that the vehicle is not following exactly a straight

line. This is demonstrated by the fact that, in the computation of the vehicle change

in position, as showed in equations (2.29) and (2.30), a factor 1
w2 is present. If the

yaw rate w is equal to zero, in fact, the equations assume an indeterminate form,

and do not permit to obtain the variations in longitudinal and latitudinal positions.

For this reason, it is necessary to complete the CTRA model description of the

system by introducing the straight motion equations:

xk+1 = xk + vx,k∆t+
1

2
ax,k∆t2 (2.35)

yk+1 = yk + vy,k∆t+
1

2
ay,k∆t2 (2.36)

However, this couple of equations is applied only when the values of the yaw rate

are very close to zero. Hence, the equations (2.35) and (2.36) are invoked only when

the following condition is verified:

− 0.025 < w < 0.025

which is the optimal condition that permits to neglect the small yaw rate oscillations

near the zero, as shown by the rectangular box in Figure 2.20. Below these values,

the equations (2.29) and (2.30) of the CTRA model are not anymore capable to

provide useful values, since they return the indeterminate form mentioned before.

Figure 2.20: Condition on the yaw rate
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Moreover, the CAN bus of the vehicle provides the data relating to the resulting

speed in the direction of motion, while, for the calculation of the longitudinal and

latitudinal positions with the straight motion equations, it is necessary to have the

speed and acceleration components projected on the two axes. Consequently, every

time the equations (2.35) and (2.36) are invoked, a decomposition of the provided

speed data must be actuated.

In order to perform the speed decomposition, it is necessary to focus on how the

heading angle is defined, i.e. where its origin is located and what values the angle

assumes during the data acquisition.

Looking at the situation showed in Figure 2.21, it is clear that, since the origin of

the heading angle is located in the vertical axis, the speed decomposition at each

iteration of the cycle can be done in the following way:

vx,k = vksin(θk) (2.37)

vy,k = vkcos(θk) (2.38)

Figure 2.21: Speed decomposition

Consequently, the components of the acceleration that are needed in the equations

(2.35) and (2.36) can be obtained by deriving the variations of the speed components,
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between one measure and the previous one, in the corresponding time interval:

ax,k =
vx,k+1 − vx,k
tk+1 − tk

=
∆vx
∆t

(2.39)

ay,k =
vy,k+1 − vy,k
tk+1 − tk

=
∆vy
∆t

(2.40)

2.4.3 Consistency check between model equations and data

flow

Before moving on to the simulation of the CTRA model completed with the straight

motion equations, a last check on the equations (2.31) and (2.32) is necessary. These

relations, which describe the speed and heading evolution, must be compared with

the behaviour showed by the CAN bus for the same state space variables, in order to

ensure that, when the implemented model is simulated in an open - chain situation,

it is able to replicate the same performances.

The scenario showed in Figure 2.22 is obtained by comparing the speed data with

the behaviour of equation (2.31), in which the values of the moving average of

the acceleration obtained with a buffer of five measurements are supplied at each

iteration of the cycle.

Figure 2.22: Check on speed
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The evolution of the speed, calculated with the CTRA model equation, is the same

of the one proposed by the real data. The only difference, which has already been

taken into account in Section 2.3.3 (Moving average of the acceleration), consists in

the usage of the moving average of the acceleration for the computation of the speed

variation. In fact, as written before, the proposed approach for the calculation of

the acceleration is free from discontinuities, but is characterized by a slight delay

with respect to the time derivative approach. This fact explains why, in Figure 2.22,

the simulation performance is lightly shifted with respect to the the sensor data.

Regarding the behaviour obtained with the usage of the heading equation (2.32),

this is roughly equal to the one described by the sensor data, with a slight difference

in the intermediate and final phase. The comparison between the results provided

by the equation, in which the real yaw rate data are supplied at each iteration, and

the information of the sensor data is indicated in Figure 2.23:

Figure 2.23: Check on heading

It can therefore be concluded that both the checks results passed and the model

succeeds in replicating adequately the behaviour of these two state space variables.

However, it is necessary to specify that, in this implementation phase of the model,

there are some factors that permit to facilitate the simulation. At this stage of

determination of the capabilities of the model, when the overall cycle is simulated

and iterated, the values that are used within the equations previously explained are
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directly taken from the information coming from the real vehicle. This means that,

for each iteration of the cycle, it is allowed to calculate the actual ∆t between one

measure and the previous one, as well it is possible to make use of the real values

for the speed, heading and yaw rate state space variables.

These simplifications, instead, will not be able to be used in the real - time applica-

tion implemented in the next chapter, where the assumptions made by the CTRA

model assume a fundamental role.

2.4.4 Simulations of the total model

After carrying out the preliminary work on the provided data and having imple-

mented the overall model in the simulation program, it is now possible to conduct

some simulations concerning the trajectory of the vehicle in the studied case of ap-

plication, with the aim of understanding if the examined model is able to replicate

the same trajectory shape of the one described by the CAN bus data.

Two simulations of the overall model are performed:

1. Separate simulation of the straight and curve sections: in this test the

total route is divided into three sections. The model has to simulate this three

areas starting from the initial position of each one of them.

2. Simulation of the total path: in the second test, instead, the model starts

the simulation with the initial position provided by the data, but then it has

to simulate the overall path followed by the vehicle.
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2.5 Results

The results performed by the separate simulation of the straight segments are showed

in Figure 2.24:

Figure 2.24: Simulation of the straight paths

Therefore, the model is able to replicate the rectilinear shape of these segments,

with a small difference in the orientation. This is attributable to the assumptions

introduced by the speed decomposition described in Figure 2.21, and by the fact

that, in the straight motion equations (2.35) and (2.36), there is no term which

takes into account the values of the the yaw rate.

Then, the simulation of the curve is conducted, and the results are highlighted in

Figure 2.25:
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Figure 2.25: Simulation of the curve section

The obtained behaviour shows the capability of the CTRA model to adequately

reproduce a curve section, obtaining also a reproduction of the trajectory that is

smoother with respect to the one derived by the data. However, already at this

stage the assumptions regarding the acceleration and the yaw rate have an effect

on the results. In fact, by considering them constant between one iteration of the

cycle and the next one, the model obtains a series of simulated curve sections which

are slightly shorter than the authentic ones. This will be one of the aspect that the

path prediction technique used in the following chapter will seek to improve.

The second test, instead, is performed on the overall trajectory followed by the ve-

hicle. The result, showed in Figure 2.26, brings together all the aspects obtained in

the previous tests and demonstrates the ability of the chosen model to follow the

rectilinear paths and, when required, change its orientation to perform a curve in

the better way.

Obviously, in the simulation of the overall trajectory, all the inaccuracies of the

first tests are summed up, obtaining then a resultant path slightly different from

the authentic one. However, in this phase, the result is satisfactory, since the aim

was to study and implement a model able to perform in an adequate way in most

situations, and here, thanks to the condition imposed to the yaw rate, the model

shows its ability to correctly switch from the straight motion equations to the CTRA
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model relations, which permit to have a proper response both in a rectilinear than

in a curve situation.

Figure 2.26: Simulation of the overall trajectory

In the next chapter, the study conducted on the overall model results fundamental to

calculate the positions and the trajectory followed by the vehicle. The implemented

model will be then used in conjunction with a particular path prediction technique,

which, between its different tasks, will be responsible for resolving and correcting

the position inaccuracies coming from the open chain simulation of the model.
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Vehicle path prediction

The third chapter of this thesis project is developed following a structure similar to

that of the previous part. First of all, a state of the art concerning the technique

used for path prediction is presented. Here, the well - known Kalman filter algo-

rithm is initially treated, and then its main drawback is presented. After that, the

adopted procedure, which is the unscented transform, is introduced and the chosen

Unscented Kalman Filter algorithm is described. Thereafter, the phases of imple-

mentation of the filter are explained, which include the plant modeling, the sensor

modeling, the filter construction and the prediction and correction phases. Finally,

the analysed simulations are introduced, followed by the final results obtained with

the combination of the CTRA model and the Unscented Kalman Filter.
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3.1 Unscented Kalman Filter: State of the Art

After having ensured the suitability of the implemented model, the description of the

employed path prediction technique must be presented. For this phase, a particular

declination of the KF (Kalman Filter) has been chosen.

3.1.1 Kalman Filter algorithm

In order to achieve path prediction goals, the model described in the previous chap-

ter must be simulated in the state prediction step of the filter. In fact, as is well

known, the KF is mainly developed around two steps, which are the state predic-

tion and the state update. The state prediction step is based on the actual state

of the dynamic system, characterized by a random Gaussian noise, and the model

permits to obtain the predicted state. The state update step, instead, relies on the

information present in the noisy measurements and in the predicted state, with the

aim of updating the system state.

Summing up, as described in [28] and [19], the ordinary KF algorithm consists of

the following elements:

a) State transition equation:

xk+1 = Fk+1,kxk + vk (3.1)

where Fk+1,k is the transition matrix that takes the state xk from the instant k to

k + 1, while vk stands for the additive process noise characterized by a Gaussian

distribution with zero mean and covariance identified by:

E[vnvk
T ] =

Qk for n = k

0 for n 6= k
(3.2)

b) Measurement equation:

yk = Hkxk + wk (3.3)

where yk is the available measurement at time instant k, and Hk represents the mea-

surement matrix. The measurement noise wk, as before, is assumed to be additive

and it is characterized by a Gaussian distribution with zero mean and covariance
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given by:

E[wnwk
T ] =

Rk for n = k

0 for n 6= k
(3.4)

c) State estimate propagation: firstly, a priori estimate of the state distribution

is identified in terms of the previous a posteriori estimate with the equation (3.5):

x̂−k = Fk,k−1x̂k−1 (3.5)

d) Covariance matrix propagation:

Pk
− = Fk,k−1Pk−1Fk,k−1

T +Qk−1 (3.6)

where this relation expresses the dependence of the a priori covariance matrix Pk
−

on the previous a posteriori covariance matrix Pk−1.

e) Kalman gain computation:

Gk = Pk
−Hk

T (HkPk
−Hk

T +Rk)−1 (3.7)

where the Kalman gain is defined with respect to the a priori covariance matrix Pk
−.

f) State estimate update:

x̂k = x̂−k +Gk(yk −Hkx̂
−
k ) (3.8)

g) Covariance matrix update:

Pk = (I −GkHk)Pk
− (3.9)

3.1.2 Drawback of the Kalman Filter algorithm

The algorithm and the equations presented are involved in the study of linear sys-

tems, and this basic situation is represented in Figure 3.1. Assuming that the state

transition function is linear, then, after undergoing the linear transformation, the

initial Gaussian distribution maintains its properties. Even if it is not shown in

Figure 3.1, the same concept is valid for the measurement function.
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Figure 3.1: Linear transformation [18]

However, if the state transition function is nonlinear, then the resulting state distri-

bution may not be Gaussian, as represented in Figure 3.2. If this happens, the KF

algorithm may not converge, as instead happens for a linear case.

Figure 3.2: Nonlinear transformation [18]

In fact, one of the main drawbacks of the KF algorithm consists in the consideration

that both the state prediction equation (3.1) and the measurement equation (3.3)

are linear. If this condition is not anymore verified, the analysis conducted by the

filter can no longer be considered adequate, as reported in [18].

Considering the state transition function of the CTRA model, and in particular

the equations (2.29) and (2.30) for the variations of longitudinal and latitudinal

positions, it is clear that this project has to deal with a strongly nonlinear system.

When this type of systems is analysed, instead of an ordinary KF, nonlinear filtering

techniques such as the EKF (Extended Kalman Filter) and the UKF (Unscented

Kalman Filter) must be taken into account. However, in this thesis project, the

UKF is used, since, as written in [4] and in [30], its performances are superior over

the EKF as regards the filter convergence, position accuracy and velocity accuracy.
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3.1.3 Unscented transform

The UKF approaches the problem of propagating Gaussian random variables through

nonlinear systems by applying a deterministic sampling procedure, showed in Figure

3.3.

As explained in [5] and [25], the state distribution is again represented by a Gaussian

random variable, but now the filter allows to approximate it through the usage of

carefully chosen sample points. These points, called sigma points, are selected by

the filter such that their mean and covariance is the same as the state distribution,

leading to have a set of sigma points symmetrically distributed around the mean.

Each one of these is then propagated through the nonlinear system model, as a re-

sult of the passage through the nonlinear state transition function mentioned before.

After this operation, the mean and covariance of the nonlinearly transformed points

are calculated, and an empirical Gaussian distribution is computed, which is then

used to calculate the new state estimate.

Figure 3.3: UKF procedure [18]

The procedure just described is based on the unscented transform, which is a method

that permits to calculate the statistics of a distribution that encounters a nonlinear

alteration.

Assume that a random variable x, which is characterized by dimension L, mean x

and covariance Px, must be propagated through a nonlinear function y = f(x). In

order to obtain the statistics of y, the unscented transform permits to build a matrix

X of 2L+ 1 sigma vectors Xi:

X0 = x

Xi = x+ (
√

(L+ λ)Px)i i = 1, ..., L (3.10)

Xi = x− (
√

(L+ λ)Px)i−L i = L+ 1, ..., 2L

where λ = α2(L+κ)−L represents a scaling parameter, with α that helps to deter-

mine the spread of the chosen sigma points around the mean of the state distribution
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(usually 1 ≤ α ≤ 10−4), and κ denotes another scaling parameter, which is usually

equal to 3− L.

The sigma vectors Xi are propagated by means of the nonlinear state transition

function:

Yi = f(Xi) i = 0, ..., 2L (3.11)

and the calculation of the mean and covariance of the posterior sigma points is

computed:

ȳ ≈
2L∑
i=0

Wi
(m)Yi (3.12)

Py ≈
2L∑
i=0

Wi
(c)(Yi − ȳ)(Yi − ȳ)T (3.13)

where the weights Wi are provided by:

W0(m) =
λ

L+ λ

W0(c) =
λ

L+ λ
+ 1− α2 + β (3.14)

Wi(m) = Wi(c) =
1

2(L+ λ)
i = 1, ..., 2L

with the parameter β that permits to include prior knowledge of the distribution of x.

The overall process performed by the unscented transform and its main passages

are shown in Figure 3.4, which sums up all the aspects just described.

Figure 3.4: Main passages of the unscented transform [5]
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3.1.4 UKF algorithm

The UKF represents a direct application of the unscented transform to the recursive

algorithm estimation (3.15):

x̂k = (prediction of xk) +Gk[yk − (prediction of yk)] (3.15)

In this thesis project the case where the characteristic process and the measurement

noises are purely additive is analyzed. This special case, but very often met, permits

to lower the complexity of the UKF, reducing the number and dimensions of the

needed sigma points.

The algorithm proposed by the UKF for this type of problem, as explained in [5]

and [14], begins with the initialization of the state estimate and covariance matrix:

x̂0 = E[x0] (3.16)

P0 = E[(x0 − x̂0)(x0 − x̂0)]T (3.17)

Then, the sigma points are calculated:

Xk−1 = [x̂k−1 x̂k−1 + γ
√
Pk−1 x̂k−1 − γ

√
Pk−1] (3.18)

The time update of the sigma points is obtained by passing them to the nonlinear

state transition function F :

X∗k|k−1 = F (Xk−1) (3.19)

while the time update for the a priori state estimate and the covariance matrix is

given by:

x̂−k =
2L∑
i=0

Wi
(m)X∗i,k|k−1 (3.20)

Pk
− =

2L∑
i=0

Wi
(c)(X∗i,k|k−1 − x̂−k )(X∗i,k|k−1 − x̂−k )T +Q (3.21)

where Q represents the process noise covariance.

Now, as done in equation (3.10), it is necessary to increase the number of the sigma

points by augmenting the parameter L to 2L, and calculating again the different

weight Wi, as reported in equation (3.14).
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After having performed this phase, the new set of sigma points (3.22) permits to

obtain the following steps (3.23) and (3.24):

Xk|k−1 = [X∗k|k−1 X∗0,k|k−1 + γ
√
Q X∗0,k|k−1 − γ

√
Q] (3.22)

Yk|k−1 = H(Xk|k−1) (3.23)

ŷk
− =

2L∑
i=0

Wi
(m)Yi,k|k−1 (3.24)

Finally, the UKF performs the measurement update, described by:

Pỹkỹk =
2L∑
i=0

Wi
(c)(Yi,k|k−1 − ŷ−k )(Yi,k|k−1 − ŷ−k )T +R (3.25)

Pxkyk =
2L∑
i=0

Wi
(c)(Xi,k|k−1 − x̂−k )(Yi,k|k−1 − ŷ−k )T (3.26)

where R represents the measurement noise.

Thanks to the results provided by (3.25) and (3.26), the Kalman gain can be com-

puted:

Gk = PxkykP
−1
ỹkỹk

(3.27)

The value of the Kalman gain permits to obtain the final results, which are the

update of the state estimate and covariance matrix:

x̂k = x̂−k +Gk(yk − ŷk−) (3.28)

Pk = P−k −GkPỹkỹkG
T
k (3.29)

47



Chapter 3 - Vehicle path prediction

3.2 Implementation of the UKF

Now that the characteristic process of the UKF has been presented, it is necessary

to proceed with its implementation within the simulation program. In order to do

this, the approach explained in [15] is followed.

3.2.1 Plant modeling

As described in Chapter 2.2.2, the chosen CTRA model state space is based on six

variables:

x = (x y v θ w a)T (3.30)

which are the longitudinal and latitudinal positions x and y, speed v, heading angle

θ, yaw rate w and acceleration a.

First of all, the implementation of the UKF needs the definition of the state tran-

sition function, which is the function that describes accurately the transition of the

state space variables from the time instant k to k + 1.

Since in this project the presence of additive process noise is considered, which means

that the state and process noise are related linearly, the expression that describes

the evolution of the state x is the equation (3.1), here reported for simplicity:

xk+1 = F (xk) + vk (3.31)

where F represents the nonlinear state transition function and v is the additive pro-

cess noise.

In the implementation phase of Chapter 2.4.2, the characteristic equations of the

CTRA model are completed with the straight motion relations in order to better

represent the trajectory of the vehicle. Now, the state transition function has to

consider this modification, and both the groups of equations must be included.

An additional difficulty in the implementation of the filter and in the analysis of a

real - time application is constituted by the fact that, during the usage of the state

transition function, the filter works only with the variables supplied as inputs of the

function. This makes it necessary to consider a series of aspects in the definition of

the cycle:

• the time interval between the iterations of the cycle can no longer be calculated

every time, and so it can not be considered variable anymore. From now on,
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it is considered constant and equal to the inverse of the sampling frequency of

the messages sent by the CAN bus, which is equal to 4 Hz. This means that

the adopted dt is now equivalent to 0.25 s.

• the evolution of the speed and heading variables is managed by the equations

introduced in Chapter 2.2.2:

vk+1 = vk + akdt (3.32)

θk+1 = θk + wkdt (3.33)

which permit to utilize only the values introduced in the function at time k.

• during the time in which the implemented model is simulated, the values of

the acceleration and yaw rate do not change, due to the assumptions of the

CTRA model, which consider them constant:

wk+1 = wk (3.34)

ak+1 = ak (3.35)

Considering all the aspects just described, the nonlinear state transition function is

implemented as shown in Figure 3.5 and as described below.

At every iteration of the cycle, when the intervention of the UKF is invoked, the

state transition function decides which equations to use on the basis of the condition

concerning the yaw rate. If, at instant k, the condition −0.025 < wk < 0.025 results

verified, the calculation are then managed by the straight motion equations. In this

case, the speed decomposition on the two axes is carried out first, as showed by the

equations from (3.36) to (3.39):

vx,k+1 = (vk + akdt)sin(θk + wkdt) (3.36)

vy,k+1 = (vk + akdt)cos(θk + wkdt) (3.37)

vx,k = vksinθk (3.38)

vy,k = vkcosθk (3.39)
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Thanks to these values, the acceleration from instant k to k + 1 can be obtained:

ax,k =
vx,k+1 − vx,k

dt
(3.40)

ay,k =
vy,k+1 − vy,k

dt
(3.41)

Now that all the terms that appear in the straight motion equations are available,

the calculation concerning the longitudinal and latitudinal positions of the vehicle

can be conducted:

xk+1 = xk + vx,kdt+
1

2
ax,kdt

2 (3.42)

yk+1 = yk + vy,kdt+
1

2
ay,kdt

2 (3.43)

On the contrary, if the initial condition −0.025 < wk < 0.025 is not verified, this

means that the vehicle is following a curvilinear path, and the CTRA equations

must be taken into account for the determination of the position:

xk+1 = xk + ∆x = xk +
1

w2
k

[(vkwk + akwkdt)sin(θk + wkdt) + akcos(θk + wkdt)

− vkwksinθk − akcosθk]

(3.44)

yk+1 = yk + ∆y = yk +
1

w2
k

[(−vkwk − akwkdt)cos(θk + wkdt) + aksin(θk + wkdt)

+ vkwkcosθk − aksinθk]

(3.45)

Now that the position of the vehicle for the successive time instant k + 1 has been

derived, the update of the other state space variables must be conducted. As said

before, the speed and heading update is computed thanks to the equations (3.32) and

(3.33), while, when the model is simulated in an open chain mode, the acceleration

and yaw rate are considered constant, as written in equations (3.34) and (3.35).
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Figure 3.5: State transition function

3.2.2 Sensor modeling

The UKF needs also the so - called measurement function, which describes how the

state space variables of the model are related to sensors measurement.

Due to the presence of additive measurement noise, the form of the measurement
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function is the one proposed in equation (3.46):

yk = H(xk) + wk (3.46)

where yk represents the considered measurements, H is the measurement function

and w denotes the additive measurement noise.

As explained in Chapter 1.2 during the description of the context and scenario anal-

ysed in this thesis project, two different points of view are considered:

1) Vehicle: from the CAN bus it is possible to obtain information about five of the

six state space variables. The only values that are not provided by the communi-

cation system are those of the acceleration, which instead have been obtained with

the moving average method. For these reasons, the measurement function for this

first case assumes the form shown in Figure 3.6.

Figure 3.6: Measurement function - Vehicle

2) Camera: the infrastructure placed at the road intersection is able to observe the

movements of all the vehicles, and it is particularly important for the study of the

non - connected ones. Since it works by exploiting the captured images, the only

measured variables are represented by the longitudinal and latitudinal positions.

This means that, in this second case, only the first two state space variables are

considered by the measurement function, which has the form shown in Figure 3.7.

Figure 3.7: Measurement function - Camera

3.2.3 UKF construction

The state transition and measurement functions just described must be provided in

the UKF construction phase. These information are then completed with the initial
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state space of the model, which assumes the initial values of the six state space

variables:

x0 = (x0 y0 v0 θ0 w0 a0)
T (3.47)

In this construction phase of the filter, also the knowledge of the measurement noise

covariance R must be provided. The best results in terms of filter correction, which

is based on sensor measurements, and errors between the predicted trajectory and

the authentic one, have been found with the value:

R = 0.1 (3.48)

The same is done for the process noise covariance Q, which is set in order to take into

account model inaccuracies and the effect of unknown disturbances on the plant. As

before, the best results in terms of errors between the predicted trajectory and the

real data have been provided by the diagonal matrix:

Q = diag(0.01 0.01 0.01 0.01 0.025 0.05) (3.49)

which is characterized by higher values for the last two variables in order to reflect

that the yaw rate and acceleration states are more impacted by modeling errors due

to the assumptions of the CTRA model.

3.2.4 Prediction and correction phases

The prediction and correction phases represent the heart of the UKF implementa-

tion, and these are defined within a cycle that consider all the available measure-

ments.

During the prediction phase, the UKF performs the passages shown in the equations

from (3.18) to (3.21) thanks to the predict MATLAB command [17]. In particular,

the filter carries on the choice of the sigma points and their propagation through

the nonlinear function, which is represented by the state transition function defined

in Section 3.2.1. Thanks to these passages, then it can proceed with the calculation

of the state prediction and its covariance matrix.

The second intervention of the UKF is characterized by the correction phase. When

the correct MATLAB command [13] is invoked, the measurement data arriving

from the CAN bus of the vehicle or from the images captured by the camera are

provided to the filter in order to correct the six state space variables memorized in
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the UKF state at that moment. Therefore, during this phase, the filter performs the

passages shown in the equations from (3.22) to (3.29), which permit to correct the

a - priori state estimate and the covariance matrix on the basis of the real observed

measurements coming from the sensors and specified by the measurement function.

3.2.5 Simulations performed with the UKF

In order to test the capabilities of the UKF in different situations, several tests are

carried out. In particular, the first two tests are performed studying both the vehicle

and the camera points of view, in order to understand the differencies between them:

1. The first simulation is conducted by predicting the vehicle trajectory in the

following 2.5 s and, after this amount of time, the UKF intervenes to correct

the estimation of the state. This means that the model is free to simulate its

future state space variables for ten successive iterations of the cycle thanks to

the state transition function, and then the real data of the observed variables,

highlighted by the measurement function, are considered in order to correct

the estimation done in the previous iterations.

2. The structure of the second test is equal to that of the first one, with the

only exception that the model predicts the vehicle trajectory for 1.25 s, which

represent five successive iterations of the implemented cycle. After this amount

of time, the filter intervenes to correct the state.

During the tests 1 and 2 the prediction of all the six state variables, and their succes-

sive correction, are compared between the vehicle and the camera cases. These tests,

in fact, are really useful in order to study and understand the different performances

offered by the UKF correction when the number of the available and measured state

space variables changes.

The tests 3 and 4, instead, focus the attention on the implemented model and state

transition function, in order to better comprehend what are their advantages and

defects and, by consequence, their trajectory prediction capabilities:

3. In the third test the model again predicts its future states in the successive

time instants, but this time the correction provided by the UKF is performed

at every iteration of the cycle, and so every 0.25 s. This means that now, for

every new position, the implemented model has the possibility to predict its

future path on the basis of already corrected values.
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4. The last simulation extends the analysis previously done to all the available

data that describe the overall path shown in Figure 2.4. Here, new sections

are illustrated and analysed in order to observe how the UKF behaves in a

scenario not anymore limited only to the road intersection studied up to this

point.
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3.3 Results

For the first and second tests the vehicle and camera cases are conducted in parallel,

since these simulations help to better understand and compare all the different state

space variables and their behaviour, and so permit to see the various differences

between the actions performed by the UKF in the two different scenarios. During

these two tests, the implemented model is simulated in an open chain mode for a

predefined prediction horizon, indicated with ph, and then the filter performs the

correction on the state space of the model.

3.3.1 Tests 1 and 2: vehicle and camera points of view

The first test performed with the presence of the UKF is conducted by simulating

the overall model in an open chain mode for a prediction horizon of ten successive

iterations of the cycle, which are almost 2.5 s. Therefore, the model performs the

prediction of what will be its future trajectory and, after that, the filter intervenes

in order to correct the state space parameters on the basis of the measured variables.

The results and the comparison between the trajectory obtained in the vehicle and

camera cases are shown in Figure 3.8:

Figure 3.8: Trajectory comparison (ph = 10)

while the behaviour of all the six state space variables for this first test is illustrated

in the Figures from 3.9 to 3.14, where the original data are represented by a blue

line, the predictions performed by the model with an orange one, and the instants

when the filter intervenes to correct the state space variables are indicated with
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green circles.

The Figures 3.9 and 3.10 represent the longitudinal and latitudinal positions calcu-

lated by the implemented model, and these are corrected every 2.5 s by the UKF.

These plots confirm the difference between the predictions performed by the two

different points of view: in fact, it is easy to notice how the behaviour of the camera

case further deviates from the original track.

Figure 3.9: Longitudinal position comparison (ph = 10)

Figure 3.10: Latitudinal position comparison (ph = 10)

In Figure 3.11 the the model predictions regarding the speed variable are showed.

Here it is possible to see how this state space variable is characterized by a constant

variation, due to the CTRA model assumption on the acceleration.
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Figure 3.11: Speed comparison (ph = 10)

The effects of the aforementioned assumption on the acceleration are showed in

Figure 3.12. Here it is possible to see that this state space variable can only assume

constant values, which change after every correction performed by the UKF.

Figure 3.12: Acceleration comparison (ph = 10)

The heading behaviour is represented in Figure 3.13 and, as for the speed simulations

of Figure 3.11, it is clear how also this variable is affected by a constant variation.

This is due to the second assumption of the CTRA model that regards the yaw rate

variable, which it is supposed to assume only constant values during the simulation.
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Figure 3.13: Heading comparison (ph = 10)

The yaw rate behaviour during the prediction simulations is showed in Figure 3.14.

As for the acceleration, due to the assumptions of the CTRA model, this state space

variable can assume only constant values during the predictions, which are imposed

by the correction done by the filter.

Figure 3.14: Yaw rate comparison (ph = 10)

Already from this first test, characterized by a prediction horizon of ten iterations

of the cycle, it is possible to see how the performance of the vehicle case appear

to be better than the ones of the camera case. In particular, it is clear that the

UKF correction, represented by the green points in the figures, results to be more

successful in the vehicle case, obtaining a shape of the state space variables closer

to the authentic one with respect to the camera case.
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The behaviour of the illustrated variables is improved if the prediction horizon is

reduced, which means that the UKF correction becomes more frequent. In the

second test, in fact, the overall model simulates its future states for five successive

iterations of the cycle (ph = 5), which correspond to 1.25 s, and then the filter

intervenes.

The results of this test and, as for the previous one, the comparison between the

state space variables of the two cases are shown in Figures from 3.15 to 3.21:

Figure 3.15: Trajectory comparison (ph = 5)

The results for the longitudinal and latitudinal positions are showed in Figures 3.16

and 3.17. It is clear how the simulation results for both the vehicle and camera cases

result to be improved in this second test, leading to have an overall performance

closer to the real positions.

Figure 3.16: Longitudinal position comparison (ph = 5)
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Figure 3.17: Latitudinal position comparison (ph = 5)

The speed behaviour for this second test is represented in Figure 3.18. In addition

to the previously described aspects regarding the speed behaviour, which explain

the constant variation for this state space variable, it is possible to see also how the

performance for the camera case reveals to be improved with respect to the first

test, even if it still remains lower in relation to the simulations performed studying

the vehicle point of view.

Figure 3.18: Speed comparison (ph = 5)

The values assumed by the acceleration are illustrated in Figure 3.19, where results

clear how the corrections performed by the UKF in both the tests appear to be

improved with respect to the previous test, obtaining a trend for the analysed vari-

able which is closer to the authentic data. However, the performance offered by the

vehicle case remains superior.
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Figure 3.19: Acceleration comparison (ph = 5)

Also the behaviour of the heading variable, illustrated in Figure 3.20, is improved

in this second test with ph = 5.

Figure 3.20: Heading comparison (ph = 5)

The shape assumed by the heading predictions is strictly related to the one of

the yaw rate, showed in Figure 3.21. In this second test, for both the scenarios

analysed, the increase of the number of UKF interventions leads to have a shape of

the variable which is able to better replicate also the intermediate peak, while this

was not possible in the previous test due to the greater range between every UKF

correction.
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Figure 3.21: Yaw rate comparison (ph = 5)

The first two tests just shown result fundamental to understand two main concepts.

The first aspect that appears evident from Figures 3.8 and 3.15 is the superiority

of the path prediction done in the vehicle case with respect to the camera one. In

fact, both with a prediction horizon of ten and five iterations of the cycle, the tra-

jectory prediction obtained in the vehicle case is closer to the authentic path, and

this consideration is strictly related to the behaviour of the six state space variables

shown in Figures from 3.9 to 3.14 and from 3.16 to 3.21.

Looking at the comparison between the mentioned state variables of the two cases, it

is possible to note how the behaviours obtained in the vehicle case are able to better

replicate the shape of the real information transmitted by the CAN bus. Thinking

about the difference between the two cases explained in Section 3.2.2, this charac-

teristic is attributable to the different definition of their measurement function. A

prediction done from the vehicle point of view can rely on information about five

of the six state space variables, and so the UKF can base the procedure explained

in Sections 3.1.3 and 3.1.4 on five different variables distributions. The camera,

instead, can rely only on the captured images of the vehicles, which provide infor-

mation about longitudinal and latitudinal positions, and so the UKF, for this case,

can work only on two different state distributions.

These aspects help to better understand the entity of the correction done by the

UKF. In the vehicle case, in fact, when the UKF intervenes, the correction phase

manages to bring back the simulated values close to the ones described by the sen-

sor data, since it receives information about their distribution. In the camera case,

instead, the correction is more effective for the first two state space variables, which

information are provided by the captured images, while, especially for a large pre-
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diction horizon, the filter is not able to appropriately correct the other state space

variables, of which it does not receive information.

The second fundamental aspect that is possible to understand from the first two

tests is related to the length of the prediction horizon. In the transition between

the first and the second test, the overall performance for both vehicle and camera

cases is improved. It is easier to note that the path prediction and the behaviour of

the state space variables is more accurate if the model simulation is more helped by

the UKF correction. This happens if the prediction horizon is reduced: the Figures

from 3.15 to 3.21, which illustrate the scenario characterized by ph = 5, show that

the path prediction done by the overall model results to be nearer to the authentic

trajectory if the UKF has the possibility to intervene more frequently, and so to

operate more corrections on the state. In this case, the model has the possibility to

begin its simulation on the base of already corrected values, and so it succeeds in

obtaining a more accurate trajectory.

If the prediction horizon is then increased, in the extra iterations of the cycle the

model fatigue to obtain an adequate prediction, and this is attributable to the

assumptions that characterize the chosen model. However, this aspect results clearer

from the following tests.

3.3.2 Test 3: prediction and correction in parallel

In the third test there are two processes that go forward in parallel: for each iteration

of the cycle, the UKF corrects the simulated state and, at the same time, the model

tries to predict the future trajectory for the decided prediction horizon. In order

to reason about the aspects concerning the assumptions of the CTRA model, the

vehicle case response, with a prediction horizon of ph = 10, is analysed in Figure

3.22:
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Figure 3.22: Correction and prediction in parallel

and the curve, which is the most critical point, is better visible in Figure 3.23:

Figure 3.23: Correction and prediction in parallel, curve section

Observing this section, it is possible to understand another interesting aspect of the

implemented model. As said several times, the chosen CTRA model is character-

ized by two assumptions, which are constant yaw rate and acceleration. If these two

65



Chapter 3 - Vehicle path prediction

variables are constant, it means that the speed and heading state space variables

are characterized by a constant variation. This aspect characterizes the simulation

done by the model for the overall prediction horizon and, if in the real situation the

acceleration and yaw rate are not constant, it causes a prediction result that gets

further away from the authentic trajectory.

Looking at Figure 3.23, where a prediction horizon of ten iterations is assumed, it

is possible to note that, during the end of the curve, the prediction done by the

model in a particular instant does not succeed in reaching the overall ten green

points away from the starting one, where the green points represent the instants

when the UKF intervenes and another iteration of the cycle begins. This happens

because the model considers only the acceleration and yaw rate values that they

have at the beginning of the simulation, and then it keep them constant, but in

reality they are changing rapidly. Therefore, in situations like a real curve section

where acceleration and yaw rate are characterized by a high rate of change, the as-

sumptions of the CTRA model fatigue to remain valid for a large prediction horizon.

The aspects just described are confirmed in Figure 3.24, where, for each path pre-

diction performed in this scenario with ph = 10, the mean of the errors between the

predicted positions and the real ones is evaluated:

Figure 3.24: Mean errors of the path predictions (ph = 10)

Here two of the aspects previously defined are even clearer. The first one concerns

the behaviour of the model when the curvilinear path has to be analysed: in fact,
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as it is possible to see from Figure 3.24, there is a slight increase of the prediction

errors during the curve, and this is strictly related to the behaviour of the vari-

ables that are considered constant by the implemented model. During the curve we

have the strong combined variation of both the acceleration and yaw rate, but, in

the course of the trajectory prediction simulations, these are considered constant.

For this reason, this third test provides the confirm that the assumptions proposed

by the CTRA model are no longer sustainable when large prediction horizons, as

ph = 10, are considered for the trajectory predictions.

Another confirm of the greater reliability of the model for short prediction horizons

can be obtained comparing the scenario in Figure 3.24 with the one in Figure 3.25,

where the prediction horizon is halved, and ph = 5 is considered.

Figure 3.25: Mean errors of the path predictions (ph = 5)

Obviously, also in this case the curve sections is the one responsible of the larger

errors, but comparing this situation with the previous one, it is clear how the re-

duction of the prediction horizon, and so the higher number of UKF corrections,

slightly improves the path predictions in terms of errors with respect to the previ-

ous scenario.
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3.3.3 Test 4: extension of the analysis to the overall data

In the fourth and last test, the explained combination of the overall model and

the UKF is extended to all the available data provided by LINKS Foundation. In

particular, the same vehicle case with ph = 10 of the previous test is applied to

the particular and interesting sections highlighted in Figure 3.26, which are a long

rectilinear path and an area characterized by two successive right and left curves:

Figure 3.26: Highlighted sections of the overall path

A fraction of the rectilinear path highlighted in Figure 3.26 is shown in Figure 3.27:
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Figure 3.27: Rectilinear curve section

while the results for the double curve section are illustrated in Figure 3.28:

Figure 3.28: Double curve section

From this last test it is possible to confirm how the created model is actually able

to describe both a rectilinear and a curve section, properly calculating its future

trajectory switching between the straight motion equations and the characteristic

relations of the CTRA model, following the condition imposed on the yaw rate.
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However, this last attempt also confirms the aspects found in the third test. In fact,

here a prediction horizon of ten iterations of the cycle is considered, and this large

anticipation has an effect on the accuracy of the prediction due to the assumptions

of the CTRA model. Looking for example at the curve sections, as for the previous

test, it is clear how the consideration of constant acceleration and yaw rate becomes

an obstacle for longer predictions horizons, leading to have a prediction that in the

last simulated time instants moves away from the authentic trajectory.

Therefore, summing up the aspects determined in the last two tests, it is possible to

understand and conclude that the implemented CTRA model is more suitable for

short - term trajectory prediction scenarios, since, especially for situations where

the acceleration and the yaw rate are characterized by high rates of change, its

characteristic assumptions begin to be a weight for long - term trajectory prediction

purposes.
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Conclusions

The fourth and last chapter of this thesis project is composed by an overview of all

the results obtained during the development of the model and the analysis of the

different tests performed studying its combination with the UKF. All the strengths

and weaknesses of the proposed implementation are reported, followed by a final

reasoning about possible future works that could improve the results obtained in

this thesis work.
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4.1 Conclusions and future works

This thesis project is born as a response to the will of studying the cooperation

between an autonomous and connected vehicle and an infrastructure, which has the

capability to observe the movements of both connected and non - connected vehicles.

The information coming from the infrastructure permit to compare the predicted

trajectory of the connected vehicle with the movements of the non - connected ones.

In this way, if the system detects possible collisions, it is possible to intervene in

time to avoid them and continue the path safely.

After a preparatory work on the provided data, which has allowed to obtain a set of

variables concordant both with the model and the simulation program, the perfor-

mances of the CTRA model have been studied in a scenario representing a real road

intersection. The tests performed in this section have established that, thanks to

the combination of the straight motion equations and the CTRA relations, which is

guided by the condition imposed on the yaw rate variable, the implemented model

is able to replicate the shape of the trajectory of the examined vehicle both in rec-

tilinear and curve sections.

Then, the implemented model has been combined with the UKF in order to per-

form several tests regarding the prediction of the vehicle trajectory, and three main

conclusions have been drawn.

In the first two tests, where both the vehicle and camera points of view have been

analysed, the trajectory prediction performed by the connected vehicle turns out to

be more accurate than the camera one, and this is strictly related to the number

of different variables that it can monitor during its path. The UKF correction and,

consequently, the following prediction phase emerged to be more precise if based on

a higher number of state space variables, and so on an higher number of data sets

that can be studied in order to perform a better correction of the simulated state.

The second fundamental result regards the prediction horizon, that is the number

of cycle iterations or time instants for which the model is simulated in an open

chain situation. In both the studied cases, the accuracy of the calculated trajectory

prediction results to be directly proportional to the length of the prediction horizon

and, in particular, it offers much better results if the UKF has the possibility to

intervene and correct the simulated state more frequently. This means that, if the

prediction horizon is reduced, the corrections performed by the UKF are closer to

each other, and the overall performance of the model benefits of this situation.

The third and last conclusion of this thesis work is stricty related to the assumptions
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of the CTRA model. In fact, its main relations consider both the acceleration and

the yaw rate as constants, and these assumptions are directly linked to the speed

and heading behaviour, which are then characterized by a constant variation. In

situations where the acceleration and the yaw rate are characterized by a high rate

of change, the assumptions proposed by the CTRA model fatigue to remain valid,

especially for long prediction horizons. This last conclusion reveals that the usage

of this type of model is more recommended for short - term prediction scenarios.

The obtained results can be a good base for further improvements regarding trajec-

tory prediction scenarios like the one analysed in this work.

In particular, since the performed simulations have shown a decrease in accuracy

in the camera case with respect to the vehicle one, a possible future work could

treat an improvement of the infrastructure capabilities by introducing sensors able

to obtain additional data other than the position ones.

Another possible implementation could be directed towards improving the main

drawback of the CTRA model, which regards its assumptions on acceleration and

yaw rate. In particular, the implemented model could be enhanced by considering

this time variable acceleration and yaw rate, while their derivatives are maintained

constant. In this way, an overall model with more degrees of freedom than the one

implemented in this project could be obtained.
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