
POLITECNICO DI TORINO
Master of Science in Mechatronic Engineering

Master’s Degree Thesis

Design and Realization of an Open-Loop
Simulator for ICE Control Units

developing the Crankshaft and Camshaft
Sensors Simulation

Academic Supervisor:

Prof. Massimo VIOLANTE

Kineton srl Supervisor:

Ing. Giuseppe SELVA

Candidate:

Claudio GAGLIO

Academic Year 2020/2021

Abstract

Automotive industry focuses its efforts to increase human safety and to reduce
fuel consumption and pollutant emissions, in order to be in compliance with the
more and more stringent environmental requirements imposed by governments. A
large number of new electronic systems have been being developed over the years and
Electronic Control Units (ECUs) represent the brain of the vehicles. Also internal
combustion engine is mainly governed by embedded systems: the Engine Control
Module manages the powertrain system, by controlling air-fuel ratio, fuel injection
and ignition. The high complexity of the electronic architecture of a vehicle requires
a time consuming and costly phase of simulation for verification and validation of
the system. In this scenario, Hardware-in-the-Loop (HIL) simulation is performed
to validate the real-time software running in ECUs, but some automotive companies
do not need a whole HIL simulator to perform simple tests. Hence, an open loop
crankshaft and camshaft sensors simulator can be used in order to simulate the
four-stroke engine behaviour and the purpose of this master thesis is its design and
realization. Firstly, a review of the working principle of a diesel internal combustion
engine is presented. Furthermore, details about embedded systems, ISO-26262 and
its V-model for software development are given, in order to see how it is possible to
design and validate safety-related systems for automotive electrical systems. The
first part of this project deals with the study of the main characteristics of a HIL
simulator for powertrain, in order to understand how it generates the crankshaft
and camshaft signals useful for the ECM. Starting from this study, the design and
realization of the open-loop simulator is performed: the generated signals are digital,
since they represent the output of Hall-effect active sensors. The implemented
simulator is made up of some electronic devices: a high-performance microcontroller,
a rotary encoder for setting the desired engine speed value for the simulation and a
touch display used as graphical user interface. The application code is written in
C-language: it contains the look-up table describing the crankshaft and camshaft
pattern and all the I/O peripherals configurations (modules used to control the
quadrature encoder, real-time interrupt, serial communication protocol and general
input-output channels). As result, the digital signals are generated according to
the real-time user settings and they are verified using an oscilloscope.

ii

Acknowledgements

ACKNOWLEDGMENTS

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xii

1 Introduction 1
1.1 Diesel Internal Combustion Engine 2

1.1.1 Four Stroke Cycle Diesel Engine 2
1.1.2 Overview of the Engine Control Module 4

1.2 Embedded systems . 6
1.2.1 Hardware . 7
1.2.2 Basic Software . 8
1.2.3 Real-Time Embedded Systems 9

1.3 ISO-26262 and V-Shape Development Flow 10
1.3.1 Product Development: Software level 13

1.4 Validation of Embedded Control Algorithms 15
1.4.1 Model-in-the-Loop . 16
1.4.2 Software-in-the-Loop . 16
1.4.3 Processor-in-the-Loop . 16
1.4.4 Hardware-in-the-Loop . 17

2 dSpace SCALEXIO simulator 19
2.1 Overview of SCALEXIO Systems 19

2.1.1 Hardware . 20
2.1.2 Software Tools . 25
2.1.3 DS2680 I/O Unit . 26

3 Engine simulation 34
3.1 Crank and Cam . 35

v

3.1.1 Operation Principle of Crankshaft and Camshaft
Sensors . 35

3.1.2 Crank and Cam Wavetables 38
3.1.3 Function Block Configuration 38

4 Crank/Cam Simulator Hardware 40
4.1 Microcontroller overview . 41

4.1.1 Architecture . 42
4.1.2 Memory organization . 43
4.1.3 Peripheral overview . 44

4.2 Control and visualization interface 45
4.3 Rotary Encoder . 46
4.4 Wiring Harness . 48

5 Crank/Cam Simulator Software Development 50
5.1 Hardware Abstraction Layer . 50

5.1.1 Clock configuration . 52
5.1.2 SCI peripheral module . 52
5.1.3 Digital Signal I/O . 59
5.1.4 eQEP module . 60
5.1.5 Real-Time Interrupt Module 62

5.2 Details of the Application Code . 66

6 Results 76
6.1 Oscilloscope acquisitions . 77
6.2 Crank/Cam position sensors simulator connected to a real ECU . . 83

7 Conclusions 89
7.1 Future Works . 90

Bibliography 91

vi

List of Tables

4.1 Wiring Harness of the developed simulator 48

vii

List of Figures

1.1 Four stroke cycle diesel engine . 2
1.2 pV-diagram for Diesel Engine . 4
1.3 An ECM with and without cover 5
1.4 Microcontroller architecture . 7
1.5 System-on-Chip architecture . 8
1.6 Overview of the ISO-26262 series of standards 11
1.7 V-shape development flow . 12
1.8 V-model for Software development 14
1.9 Behavioural model of the software 15
1.10 HIL behavioural model . 17

2.1 SCALEXIO system with main connections 19
2.2 Front view of a SCALEXIO system 21
2.3 Rear view of a SCALEXIO system 22
2.4 A SCALEXIO Processing Unit . 23
2.5 DS2502 IOCNET Link Board overview 24
2.6 A battery simulation power supply unit of the GenesysTM 1500W

series . 24
2.7 Front overview of the DS2680 I/O Unit 26
2.8 DS2680-IL Board . 27
2.9 Circuit of one Power Switch 2 channel type 29
2.10 Circuit of one Analog In 1 channel type 30
2.11 Circuit of one Digital In 1 channel type 31
2.12 Circuit of one Flexible In 2 channel type 31
2.13 Circuit of one Analog Out 1 channel type 32
2.14 Circuit of one Digital Out 1 channel type 33
2.15 Circuit of one Resistance Out 1 channel type 33

3.1 A conceptual overview of an Engine simulation in SCALEXIO simulator 34
3.2 Crankshaft and Camshaft Coupling 35
3.3 Passive crankshaft signal . 36

viii

3.4 Active crankshaft signal . 37
3.5 Example of reverse crankshaft signal 37
3.6 Crank/Cam function blocks with their default settings 39

4.1 TMS570LC43x LaunchPad™ . 41
4.2 TMS570LC43x Architectural Block Diagram 42
4.3 TMS570LC43x Memory Map . 43
4.4 Nextion®touch display . 45
4.5 KY-040 Rotary Encoder . 46
4.6 Quadrature encoder signals . 47
4.7 Crank/cam sensors simulator hardware components connections . . 49
4.8 Crank/cam sensors simulator front view 49

5.1 General block diagram from HALCoGen 51
5.2 GCM clock driver . 52
5.3 Asynchronous timing while receiving a data frame 54
5.4 SCI Data format for Nextion display 54
5.5 Nextion Editor main page . 56
5.6 Dual-state button configuration in dashboard page 57
5.7 Nextion Editor debug . 58
5.8 GIO HALCoGen configuration . 60
5.9 Direction decoding logic in quadrature counting mode 61
5.10 EQEP module configuration . 62
5.11 RTI general block diagram . 63
5.12 RTI counter 0 block . 64
5.13 RTI compare block . 65
5.14 CCS edit perspective showing the header files included in the main file 67
5.15 Main file variables declaration . 68
5.16 String variable describing crankshaft and camshaft wheel pattern . 69
5.17 Variables declared into the main function 70
5.18 Part of GIO initialization function defined in HL_gio.c file 70
5.19 Functions called into main function in HL_main.c file 71
5.20 SciReceive function controlling Nextion display battery and key

dual-state buttons . 72
5.21 ISR inside while(1) function in HL_main.c file 73
5.22 rtiNotification function declaration in HL_main.c file 74

6.1 Crank/cam sensors simulator after startup 76
6.2 Crank/cam sensors simulator: dashboard page in starting conditions 77
6.3 Crank/cam sensors simulator set at 200 rpm: oscilloscope in cursor

mode . 78
6.4 Oscilloscope frequency measurement in cursor mode: 200 Hz 78

ix

6.5 Oscilloscope frequency measurement in cursor mode: 201 Hz 79
6.6 Oscilloscope frequency measurement in cursor mode: 202 Hz 79
6.7 Oscilloscope frequency measurement in cursor mode: 203 Hz 79
6.8 Model of "60-2" crankshaft wheel pattern and "6+1" camshaft wheel

pattern . 80
6.9 Oscilloscope acquisition of crank and cam signals at 200 rpm: 720°

crankshaft rotation is framed . 81
6.10 Crankshaft and Camshaft sensors simulator set at 1000 rpm: oscillo-

scope in measure mode . 81
6.11 Oscilloscope acquisition in cursor mode of crankshaft and camshaft

sensors signals generated by the simulator at 1000 rpm 82
6.12 Crankshaft and Camshaft sensors simulator set at 2500 rpm: oscillo-

scope in measure mode . 82
6.13 Oscilloscope acquisition in cursor mode of crankshaft and camshaft

sensors signals generated by the simulator at 2500 rpm 83
6.14 Model of "60-2" crankshaft wheel pattern and 3-teeth camshaft wheel

pattern . 84
6.15 Application code variable describing the new crankshaft and camshaft

wheel pattern . 84
6.16 Oscilloscope acquisition of crank and cam signals at 2000 rpm: 720°

crankshaft rotation is framed . 85
6.17 Breakout box connecting the real ECU with SCALEXIO simulator:

external connection with open-loop crank/cam simulator 86
6.18 A conceptual overview of the exchanging signals between ECU,

SCALEXIO simulator and crank/cam simulator 86
6.19 Open-loop crank/cam simulator connected to a real ECU: crankshaft

rotational speed is set at 1000 rpm and the value is correctly read
by the ECU, and is visualized via INCA software 87

6.20 Open-loop crank/cam simulator connected to a real ECU: crankshaft
rotational speed is set at 1800 rpm and the value is correctly read
by the ECU, and is visualized via INCA software 88

x

Acronyms

APU
Angular Processing Unit

ASIL
Automotive Safety Integrity Level

BDC
Bottom Dead Center

CAN
Controller Area Network

CCS
Code Composer Studio

CI
Compression Ignition

CPU
Central Processing Unit

CSV
Comma-Separated Values

E/E
Electronic and Electrical system

ECM
Engine Control Module

xii

ECU
Electronic Control Unit

EQEP
Enhanced Quadrature Encoder Pulse

GIO
General-purpose Input/Output

HIL
Hardware-in-the-Loop

HMI
Human-Machine Interface

I/O
Input and Output

ICE
Internal Combustion Engine

IDE
Integrated Development Environment

ISR
Interrupt Service Routine

MIL
Model-in-the-Loop

NRZ
Nonreturn to zero

OS
Operating System

PIL
Process-in-the-Loop

xiii

PIT
Periodic Interrupt Timer

PFM
Pulse-Frequency Modulated

PWM
Pulse-Width Modulated

QM
Quality Measure

RISC
Reduced Instruction Set Computer

RTI
Real Time Interrupt

SCI
Serial Communication Interface

SI
Spark Ignited

SIL
Software-in-the-Loop

TDC
Top Dead Center

UART
Universal Asynchronous Receiver Transmitter

xiv

Chapter 1

Introduction

Nowadays, we are likely to use products whose behaviour is managed by embedded
systems. Also, today’s cars are governed by several computers.
Over the last 15 years, the number of embedded systems in a vehicle is dramatically
increased, providing significant improvements in functionalities, performance, com-
fort, and safety. The sector of embedded electronics, and more precisely embedded
software, has been increasing at an annual rate of 10% [1].
A whole range of electronic functions, such as cruise control, traction control, and
stabilization control, are implemented in today’s vehicles. All these functions need
to exchange information with each other, sometimes with stringent time constraints:
today, more than 2500 signals are exchanged through up to 70 ECUs on different
types of networks.
The increasing complexity of electronic architectures embedded in a vehicle has led
the automotive industry to adopt a distributed approach for implementing the set
of functions and for communicating with a large number of sensors and actuators.
Networks and protocols are the solutions for integrating functions, reducing the
cost and complexity of wiring: CAN is at present the network that is the most
widely implemented in vehicles.
Furthermore, state regulations (such as controlling exhaust emissions or mandatory
active safety equipment) impose embedding complex control laws that can only be
achieved with computer-based systems.
Even though the automotive software complexity leads to fundamental functionali-
ties and system flexibility, it may introduce defects leading to system failures and
safety problems. Hence, to address hazards due to electronic and electrical systems
(E/E) malfunctions, an international standard has been defined: the ISO-26262.
It is applied to functional safety, whose purpose is to minimize the danger that a
possibly faulty system could cause. This standard provides requirements for the
whole life cycle of E/E systems, including both hardware and software.

This Master thesis was carried out in "Kineton srl" company in Turin, specialized

1

Introduction

in verification and validation of automotive power-train control systems. It is
highlighted how the crankshaft and camshaft signals coming from crank and cam
position sensors can be simulated. In order to understand the behavior of the
signals, a preliminary study of the internal combustion engine, particularly the
Diesel one type, is performed.

1.1 Diesel Internal Combustion Engine
1.1.1 Four Stroke Cycle Diesel Engine
The Diesel Engine carries out a full power cycle when a piston travels up and
down twice, by turning the crankshaft through 720 degrees. This is verified since
the crankshaft is connected to all the pistons by the connecting rods: in this way,
the piston’s reciprocating motion is converted into rotational movement of the
crankshaft.

Figure 1.1: Four stroke cycle diesel engine

Stroke is the up or down piston movement inside the cylinder. A four-stroke
Diesel cycle is composed of the sequence of the following types of strokes:

• Intake stroke. At the starting point, the piston is at the top dead center
(TDC), and the intake valve opens as the piston moves down. This movement
draws the air compressed by the turbocharger into the combustion chamber.
Intake stroke ends at the bottom dead center (BDC).

2

Introduction

• Compression stroke. The piston raises from the BDC while the intake and
exhaust valves are closed. The upward movement makes the piston compress
the in-cylinder charge, heating it up. Fuel is sprayed into the cylinder at the
end of the compression stroke. In Diesel engines, the quantity of fuel injected
determines the power and the torque provided to the crankshaft, but also the
pollutant emissions.

• Combustion stroke. Fuel self-inflames on contact with the hot in-cylinder
charge; indeed, diesel engines are also called Compression Ignition (CI) en-
gines. The resulting combustion increases the internal energy and creates an
expansion, which drives the piston down to the BDC thanks to the converted
kinetic energy.

• Exhaust stroke. It is the last stroke before the cycle begins again with
the intake stroke. With its upward movement and the contemporary open
condition of the outlet valve, the exhaust gases are pushed out from the
combustion chamber. The final position of the exhaust stroke is the TDC.

Valves timing is controlled by the camshaft that is connected to the crankshaft
through a toothed belt. The camshaft consists of a cylindrical rod having a number
of cams along its length, one for each valve. A cam lobe forces a valve open by
pressing on the normally closed valve as it rotates: the valve returns to be closed
when cam lobe does not press it anymore. One complete four-stroke engine cycle
takes only one revolution of the camshaft, so its rotational velocity is half of the
crankshaft one. Hence, the camshaft position is fundamental to derive the current
engine stroke, and this is very important for the starting of a four-stroke engine.

Ideal Diesel Cycle

It is possible to make some considerations for the thermodynamic processes of an
ideal four-stroke diesel engine. The combustion is controlled by the injection of
fuel to maintain constant pressure; therefore, it takes place in an isobaric state
change during the downward movement of the piston. The injection ratio or load
is defined as the volume ratio between steps 2 and 3 in the pV diagram shown in
Figure 1.2: ρ = V3

V2

3

Introduction

Figure 1.2: pV-diagram for Diesel Engine

The more fuel is injected, the larger the injection ratio ρ and the longer the
distance between steps 2 and 3. The different steps of the cycle are the following:
1 −→ 2 : Isentropic compression
2 −→ 3 : Isobaric gain of thermal energy q2,3
3 −→ 4 : Isentropic expansion
4 −→ 1 : Isochoric heat loss (q4,1 is negative).
The thermodynamic efficiency of the ideal cycle can be calculated through some
transformations, and it depends on the injection ratio:

ηth = 1− 1
Ôκ−1

1
κ

ρκ − 1
ρ− 1 (1.1)

where κ = cp

cv
is the ratio of specific heats and Ô = V1

V2
is the compression ratio.

It can be noticed that the efficiency ηth decreases as the injection ratio ρ in-
creases. The Diesel compression ratio Ô is much higher than that of SI engines and
compensates for the lower efficiency due to the high injection ratio.

1.1.2 Overview of the Engine Control Module
In today’s engines, electronic control is fundamental to fulfill the more and more
stringent requirements about fuel consumption, pollutant emissions, and engine
efficiency improvement. Carmakers distinguish five domains for embedded elec-
tronics in a car (but sometimes the membership of only one domain for a given
compartment is not easy to justify):

4

Introduction

1. The power train domain that refers to the systems participating in the lon-
gitudinal propulsion of the vehicle, including engine, transmission, and all
subsidiary components;

2. The chassis domain, related to the relative position and movement of the
wheels (steering and braking);

3. The body domain that manages equipment for car’s user such as airbag, wiper,
lighting, air conditioning, window lifter, seat equipment;

4. The HMI domain that includes components allowing information exchange
between electronic systems and the driver;

5. The telematic domain that allows information exchange between the vehicle
and the outside world.

The Engine Control Module (ECM) is the embedded system that governs the
engine control system in the power train domain: it takes the input signals coming
from different sensors and computes the output values required by the actuators in
order to perform the desired behavior.

Figure 1.3: An ECM with and without cover

The ECM communicates with all the other ECUs of the vehicle through a
CAN/LIN network, which allows the control of basic engine operations and the
implementation of several vehicle functionalities that require the sharing action
among several vehicle subsystems (such as Stop&Start, Cruise Control, and speed
limiter).

5

Introduction

The ECM collects a wide range of signals from several sensors like crankshaft
rotational speed, fuel-rail pressure, intake-air temperature and mass, accelera-
tor pedal position. It then interprets the input data by comparing them with
the multidimensional performance maps and computes the output signals for the
actuators in order to perform the required actions. The ECM is also the ECU
responsible for serving some of the most important engine actions: it controls the
injection timing and the fuel quantity, which are fundamental to optimize engine
performance and reducing emissions. Indeed, the lambda sensor is used to detect
whether the combustion inside the cylinder has been done with a rich or a lean
mixture, described by the air-fuel ratio. If the provided mass air completely burns
all of the fuel, the ratio is known as the stoichiometric mixture. Ratios lower than
stoichiometric determine rich mixtures, which are less efficient but may produce
more power. Ratios higher than stoichiometric determine lean mixtures, which are
more efficient but may cause higher temperatures and lead to nitrogen oxides NOx.
Depending on some input variables, such as the engine temperature, the air-fuel
ratio, the mass of airflow and accelerator pedal position, the ECM can control the
amount of fuel to inject into the engine cylinders.
Furthermore, engine timing functions for fuel injection and valve timing are con-
trolled by the ECM thanks to the crankshaft and camshaft position sensors.
Another essential function performed by the ECM is the exhaust-gas control: a
combination of exhaust-gas systems are controlled in order to reduce NOx, CO,
HC and particulate emissions.
The ECM, as well as the other ECUs inside a vehicle, are developed following
the V-model described in the international standard ISO 26262. The design is an
iterative process linked with the validation and testing performed to catch failure
modes that can lead to unsafe conditions or uncomfortable drive experience.

1.2 Embedded systems
An embedded system can be defined as a microprocessor-based electronic system
designed to perform a specific function or a set of tasks. Its development is intended
for best meeting the well-known prior requirements. Therefore, it consists of a
customized hardware platform that is not re-programmable by the user. Indeed,
the structure of an embedded system is composed of two major, tightly coupled
sets of components:

• a set of hardware components that include a CPU, typically in the form
of a microcontroller;

• basic software and application, typically included as firmware, that gives
functionality to the hardware.

6

Introduction

As briefly explained before, typical inputs in an embedded system are process
variables and parameters that arrive via sensors and input/output (I/O) ports.
The outputs are processed information for the user or can be in the form of control
actions [2]. The exchange of input-output information can also occur with users
via buttons, sensors, LEDs, displays, and other types of devices.

1.2.1 Hardware
The basic components of an embedded system architecture are the following:

• RAM memory, volatile memory storing data and instructions to be executed
after power-up is completed;

• CPU, processor running software;

• I/O, peripherals to get inputs and to provide outputs;

• Flash, non-volatile memory for persistent storage.

The most used implementations of the reference hardware are:

• Microcontroller-based implementation, where most of the components
are connected in a single device.

Figure 1.4: Microcontroller architecture

The systems in this implementation consist of a single monolithic component
running at relatively low frequencies. This solution is cheap and occupies a
small space, therefore it is suitable for simple real-time applications.

7

Introduction

• System-on-Chip implementation, where the components are discrete, but
the CPU is integrating some of them.

Figure 1.5: System-on-Chip architecture

This implementation is more complex than the previous one, and it requires
additional networks and components for adding more functionality. The
main advantage is the ability to support higher frequency and complex user-
interfaces.

1.2.2 Basic Software
The structure of the basic software consists of two main layers: Operating System
and System-call interface.

Operating System is the software that implements services using hardware:
it is meant for abstracting hardware functionalities to simplify and optimize their
usage [3]. The possible services are:

• CPU manager, which implements algorithms for handling the access to CPU
resource and optimizing CPU time usage;

• Memory manager, which implements algorithms to satisfy the memory de-
mands of application;

• File manager, which provides access to the persistent storage;

• Device manager, which implements services routines for the I/O peripherals;

• Hardware-specific services, which implements CPU-specific operations.

System-call interface is the part of the Basic Software which interfaces with
the Application Software, giving an easy way to access the operating system services

8

Introduction

to the application programmer.
The most used operating system architectures are: Flat architecture, Layered
architecture based on monolithic kernel and Microkernel architecture.

Flat Architecture

There is not a strict separation between application and operating system. Therefore
the services of the operating system are essentially functions that any application
can invoke. It is intended to provide most of the functionalities in the least space,
but malfunctions can freely propagate, corrupting the operating system. Even
though it offers efficient communication, this architecture is not reliable.

Layered Architecture

This kind of architecture establishes the discrimination into layers of the different
components of the operating system. Each layer uses services and functions provided
by only lower layers, and it makes use of dedicated virtual address space. All the
services are provided by an executable called Monolithic Kernel: memory is
divided into user address space and Kernel address space.
Since there is a separation between application and basic software, any malfunction
in user address space cannot affect the Operating System. Conversely, malfunctions
in the OS components can corrupt the whole system; therefore, Layered architecture
offers a partial robustness.

Microkernel Architecture

With this architecture, each component operates in a dedicated virtual address
space. Microkernel is easier to extend, more reliable, and more secure. The
total separation among layers address spaces leads to an high robustness, since
malfunction in the user space cannot corrupt the whole system.

1.2.3 Real-Time Embedded Systems
The CPU scheduler is responsible for managing all the processes which the embedded
system has to fulfill. Therefore, it needs to implement the Scheduling Algorithms:
they are specific algorithms for identifying the proper criteria to pick up a process
among the ones in ready-status and make it running. It is possible to find two
kinds of systems, depending on which kind of Scheduling Algorithm the operating
system implements:

• Non real-time systems, where the system must respond correctly to an
external event whenever needed. The deadline for the process to be run is not
specified, and it could also be infinite.

9

Introduction

• Real-time systems, where the system must respond properly to an external
event within a certain deadline. A deterministic behavior must be guaranteed
in any possible operating condition. In automotive applications, all the
functional safety purposes systems are real-time.

Real-time systems are mainly divided into three types:

• Hard real-time. If the deadline is missed, it may cause catastrophic conse-
quences on the environment under control;

• Firm real-time. If the deadline is missed, no serious damages occur, but the
results are useless.

• Soft real-time. Missing the deadline does not affect the system behavior, but
it is desirable if it is met for computing purposes.

1.3 ISO-26262 and V-Shape Development Flow
With the trend of increasing technological complexity, more software contents and
mechatronic implementations, there are increasing risks from systematic failures,
hardware and/or software failures. ISO-26262 is a specific international standard
for the automotive industry. It provides methodologies useful for designing and
validating safety-related systems that include one or more electrical and/or elec-
tronic (E/E) systems installed in series production road vehicles.
This standard addresses hazards due to malfunctions, providing requirements for
the whole life cycle of these systems, depending on the risk for the customer.
ISO-26262 is focused on functional safety: it is the system safety that depends on
the system operating correctly in response to its inputs. It avoids human dam-
ages when operator errors, environmental changes, and hardware failures happen.
Functional safety is achieved when there is the absence of unreasonable risk due to
hazards caused by malfunctioning of E/E systems.
ASIL (Automotive Safety Integrity Level) is a methodology used to quantify how
a certain component is risky for the human user due to undesired effects. Hazard
analysis and risk assessment is performed at the beginning of the safety life cycle
and is classified according to a combination of three factors:

• Severity (S): it determines the extent of harm to one or more individuals
that can occur in a potentially hazardous event, from no injuries (S0) to
life-threatening/fatal injuries (S3);

• Exposure (E): it defines the probability of occurrence of the operational
conditions in which the injury can happen. It goes from incredibly unlikely
(E0) to high probability (E4);

10

Introduction

• Controllability (C): it defines the ability to avoid specified harm or damage
through the timely reactions of the persons involved, possibly with support
from external measures. It goes from controllable in general (C0) to difficult
to control or uncontrollable (C4).

The combination of these factors gives the ASIL of a system: ASIL A represents
the least stringent and D the most stringent level, which requires a significant effort
in the development and testing of the system in order to ensure safety. The level
QM indicates that no safety requirement is needed.

Figure 1.6: Overview of the ISO-26262 series of standards

The 2018 version of ISO 26262 consists of twelve parts, ten normative parts
(parts 1 to 9 and 12), and two guidelines (parts 10 and 11) [4]:

1. Vocabulary

2. Management of functional safety

11

Introduction

3. Concept phase

4. Product development at the system level

5. Product development at the hardware level

6. Product development at the software level

7. Production, operation, service and decommissioning

8. Supporting processes

9. Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analysis

10. Guidelines on ISO 26262

11. Guidelines on application of ISO 26262 to semiconductors

12. Adaptation of ISO 26262 for motorcycles

As shown in Figure 1.6, the ISO-26262 series of standards is based upon a V-model
as a reference process model for the different phases of product development. The
shaded “V”s represent the interconnection among ISO 26262-3, ISO 26262-4, ISO
26262-5, ISO 26262-6, and ISO 26262-7. It can be summarized in the V-shape
development flow shown in Figure 1.7, composed by a descending branch followed
by an ascending branch.

Figure 1.7: V-shape development flow

The different phases are the following:

• System Requirements: in this step, the item is defined and described with
its dependencies on and interaction with the environment and other items;

12

Introduction

• System Design: the item is designed with its functionalities, which are
divided into submodules;

• Software Design: development of the functions to be used for implementing
the subsystems functionalities;

• Coding: code is generated from the functions previously designed. Automatic
code generation is very efficient even if the code needs to be optimized and it
avoids unintended coding and requirements faults;

• Software Integration: the implemented software is merged;

• Hardware and Software Integration: the whole software is integrated
into the embedded hardware, and the behavior is tested;

• Vehicle Integration and Calibration: the item is tested into the vehicle,
and its functionalities are checked with the validation process.

All the phases are correlated with the opposite phases: whether an error occurs in
a step after the coding, it is required to go back to the corresponding phase of the
descending branch and modify it.
The standard establishes two implementation phases of the product development,
which are made in parallel: hardware level and software level. Specific prescrip-
tions are given about methods to be used and measures to be collected for each
implementation.

1.3.1 Product Development: Software level
Software development is described in part 6 of ISO-26262, and it represents one
of the most critical steps for the implementation of product development. It is
composed of the following phases[5]:

• Initiation: planning of the functional safety activities during sub-phases of
software development. In this phase, suitable methods, guidelines, and tools
are chosen, considering qualified software tools, design, and coding guidelines.

• Specification of software safety requirements: design and technical safety
concept must be consistent with the software safety requirements and the
Hardware-Software Interaction.

• Software unit design and implementation: design of the software units and
their verification through the generated source code and the object code.

• Software unit testing: the demonstration that the software units fulfill the
software unit design specifications and do not contain undesired functionality.
A test procedure is established and then performed.

13

Introduction

• Software integration and testing: the whole software elements are integrated
into the embedded software, that must realize the software architecture design.

• Verification of software safety requirements: it must demonstrate that the
embedded software satisfies its requirements in the target environment.

Software testing is the fundamental process that allows functional safety achievement
in order to avoid hazardous events. Hardware faults and software faults can occur,
but they must be fixed as soon as possible: the later the error is detected, the more
expensive the designing phase is.
Countermeasures against hardware faults are implemented in the item software;
countermeasures against software faults are realized on the development process,
but they are detected during software testing. In Figure 1.8 the typical V-model
for software development is represented.

Figure 1.8: V-model for Software development

The software development process is split into two main phases: verification and
validation, which are strictly interconnected. In the validation phase, it is possible
to perform three kinds of testing:

14

Introduction

• Unit testing: a test is applied to each module of the software as it is isolated
from the rest of the system in order to confirm the correct behavior.

• Integration testing: a test is applied to units combined together in such a
way to form a subsystem to test their interfaces. The aim is to confirm the
interoperability of the units of the application.

• System testing: it exercises the functionality provided by the item in its
entirety, and it must demonstrate that the embedded software satisfies its
requirements in the target environment.

1.4 Validation of Embedded Control Algorithms
Hardware and Software faults avoidance, as previously seen, allows to reduce the
timing of software production, hence reduce the cost, and improve safety conditions.
The requirements can be met by performing some development check simulations.
The main simulation methodologies are:

• Model-in-the-Loop

• Software-in-the-Loop

• Processor-in-the-Loop

• Hardware-in-the-Loop

Automotive software is normally implementing a reactive system composed by a
controller, which will be running on the target system, and a plant, which will be
connected to the target system providing status and receiving commands.

Figure 1.9: Behavioural model of the software

15

Introduction

1.4.1 Model-in-the-Loop
Both the plant (systems to be modeled) and the controller (algorithm to control the
plant) are modeled by following the requirements. After modeling, the simulation
is essential since it helps in refining models and evaluates design alternatives. The
purpose of Model-in-the-Loop testing is to simulate the controller model along
with the plant model to validate the correct functionalities: both dynamical models
are executed into a native simulation environment (i.e., Simulink) and run on a
development host.
The simulation is purely functional since it neglects the time the controller will
take for running on embedded hardware.
A reference signal is given as input to the feedback chain, and the MIL simulation
verifies whether the output is compliant with the expected results. If the output is
different, then the controller must be changed through an iterative process.

1.4.2 Software-in-the-Loop
The software must be related to a specific hardware platform; hence it must be
adapted for that target through an optimization process: Software-in-the-Loop
simulation.
SIL is the process that allows validating whether the generated code is working as
it is expected with respect to its model. The implementation code is co-simulated
on a development host with the plant model to test its correctness. The details
added by the code generation tool must not affect the controller behavior, and the
optimized code must be compliant with the model behavior.

1.4.3 Processor-in-the-Loop
The main purpose of Processor-in-the-Loop is to validate the correct behavior of
the generated code once it is implemented into real embedded hardware (either
evaluation board or ECU). The generated code is executed by the target hardware,
while the plant model is executed on a development host.
Co-simulation is used to enable the connection of the controller software running
on the target hardware with the plant model. Since the plant is still running in
the native simulation tool of the development host (i.e., Simulink), the time spent
can be faster or slower than the actual system: the control system is not working
in real-time. Therefore, this simulation is very close to the real implementation,
but only the functional aspect is considered, while the timing aspect is neglected.
The design can only verify whether the platform-dependent code works properly in
compliance with hardware requirements.

16

Introduction

1.4.4 Hardware-in-the-Loop
Hardware-in-the-Loop’s purpose is to validate the functional and timing behavior
of real-time software. The controller software code, obtained through automatic
code generation starting from a model, is executed into a target hardware (ECU)
that communicates with dedicated hardware that emulates the real plant via a
suitable harness cabling (real-time simulator).

Figure 1.10: HIL behavioural model

The implementation code is co-simulated with the plant to test its correctness.
The code runs on the target hardware, while the plant on rapid prototyping
hardware. In this way, it is possible to test interactions with hardware and real-
time performance. HIL testing is heavily used in the automotive industry for a
complex real-time embedded control system, such as the ECM.
Even though in-vehicle tests are the most realistic scenarios, they have some
limitations:

• dangerous: the driver can be in danger due to a test fault;

• limited: real plant can limit the feasibility of test cases;

• not deterministic behavior: repetition of a maneuver cannot always be the
same;

• very expensive: a working prototype must be built.

These limitations are overcome by HIL, whose main advantages are:

• reduced risk associated with failure;

17

Introduction

• testing with several plant variations: HIL allows to model and simulates
different plants in a virtual environment in order to perform several tests with
different variations in few time;

• reduced time-to-market and costs: HIL is usually performed in parallel with the
plant development. This allows testing the controller before other components
of the control system are ready. As a result, the time spent and costs are
reduced;

• testing faults mode: faults can be introduced through software in safety
conditions in order to test the behavior of the embedded system in dangerous
situations. This testing mode is very difficult to perform in a real plant and
may harm the driver.

In a typical HIL simulator, suitable for ECM testing, a real-time processing
unit executes a mathematical model, which emulates the engine dynamics and
the behavior of virtual sensors and actuators. I/O units provide all the possible
channels needed to connect the ECM connectors correctly to the simulator. This
enables to measure ECM outputs signals, use them in the real-time application
computation, and to provide input signals to the control unit.
In addition, some vehicle sensors and actuators can be physically connected to
the simulator as external components: this is done in order to get a more realistic
behavior of components that are extremely non-linear and difficult to model
precisely.
Furthermore, the ECM is not isolated from the rest of the vehicle but communicates
with almost all the other vehicle ECUs through a CAN/LIN network; to simulate
this, virtual ECUs are implemented inside the system model in order to reproduce
the control logic behind their CAN messages read by the ECM.
At the end of the configuration, the ECM behaves like it is connected inside a
real vehicle, and the simulator provides the required signals to validate its control
application.

18

Chapter 2

dSpace SCALEXIO
simulator

A typical HIL simulator for automotive applications is the SCALEXIO, realized by
dSpace company.

2.1 Overview of SCALEXIO Systems
SCALEXIO systems are designed for testing ECUs in a Hardware-in-the-Loop
simulation. Figure 2.1 shows an example of a SCALEXIO system that is connected
to the ECU, external loads, a tester device, and the host PC [6]:

Figure 2.1: SCALEXIO system with main connections

19

dSpace SCALEXIO simulator

A SCALEXIO system simulates the ECU-controlled system in order to perform
tests. Considering the particular case of an ECM, the simulator behaves like a real
vehicle. Indeed, the SCALEXIO system can:

• provide the battery voltage to the ECM;

• generate the sensor signals which are required by the ECM;

• measure the signals which the ECM generates for actuator control;

• connect the output signals of the ECM to loads to simulate the actuators;

• receive bus signals which are sent by the ECM and send bus signals to the
ECM;

• simulate failures in the wiring of the ECM.

The behavior of the controlled system is specified by a real-time application that
runs on the SCALEXIO Processing Unit. The real-time application is implemented
on the host PC and downloaded to the SCALEXIO system via Ethernet.

2.1.1 Hardware
The real-time hardware of a SCALEXIO consists of several boards or unit types:

• SCALEXIO Processing Unit, which provides the calculation power to
calculate the real-time applications;

• IOCNET, which connects the real-time processor with more than 100 I/O
nodes to I/O units. it executes real-time performance plus time and angular
clocks;

• MultiCompact I/O units and boards, which provide a greater number
of I/O channels for specific applications. The channels have failure routing
units in order to perform failure simulations. MultiCompact I/O units provide
ECU/load connectors with fixed pinouts: the typical unit used isDS2680 I/O
Unit, which is very important in automotive simulation, and it is explained
in details later on. DS2690 is a digital I/O board providing 30 digital I/O
channels for signal measurement and signal generation;

• HighFlex I/O boards, which are used for different I/O functions since they
are versatile and finely scalable. The channels are selected and configured in
ConfigurationDesk. Typical boards are DS2601 for signal measurement, DS2621
for signal generation, DS2642 for the power switch and failure simulation,
DS2671 bus board;

20

dSpace SCALEXIO simulator

• SCALEXIO I/O boards, which provide a large number of I/O channels with
dedicated channel types and a focus on I/O functions without a current-related
functionality;

• Slot units, which are used to install SCALEXIO boards in a SCALEXIO
rack;

Hence, the SCALEXIO simulator can have several hardware configurations de-
pending on the units and boards installed. Figure 2.3 shows the front view of a
SCALEXIO system that includes a DS2703 6-Slot Unit and DS2680 I/O Unit,
connectors for connecting external devices to the simulator.

Figure 2.2: Front view of a SCALEXIO system

Two important units are present: SCALEXIO Processing Unit and Battery
simulation power supply unit. A typical simulator front can have the following
connectors:

• ECU connectors to connect the ECU to the simulator. The connectors contain
all input and output signals for the ECU (sensor signals, actuator signals, bus
signals, and power supply).

21

dSpace SCALEXIO simulator

• Load connector to connect external loads to the simulator. Indeed the actuators
or an equivalent external load must be connected to the ECU via the simulator,
which can measure the signals for actuators.

Other specific connectors are available in the DS2680 I/O unit.
At the rear are connectors for connecting the simulator to the Ethernet and

mains. A typical simulator rear can have the following connectors:

• Mains connectors to connect the simulator to the mains.

• Ethernet connector to communicate with the software tools running on the
host PC.

• Second Ethernet connector to establish an independent Ethernet connection
to a customer-specific device.

• IOCNET connector to connect the simulator to another simulator or I/O unit.

• 24V out connector to provide a voltage of 24V for an external device.

Figure 2.3: Rear view of a SCALEXIO system

SCALEXIO Processing Unit

The SCALEXIO Processing Unit provides the calculation power to calculate the
real-time application.

22

dSpace SCALEXIO simulator

Figure 2.4: A SCALEXIO Processing Unit

Its important components are:

• The SCALEXIO Real-Time PC consists of a high-standard industry ATX
motherboard and a multi-core main processor. It has three status LEDs which
are located on the simulator front: the PWR LED indicates whether the
power supply is available; the SYS LED indicates the states of the boot and
initialization process of the real-time PC; the APP LED indicates the states
of a simulation run.

• The DS2502 IOCNET Link Board which provides the interface to communi-
cate with SCALEXIO HighFlex boards and/or MultiCompact I/O units via
IOCNET. This Board provides the following features:

– IOCNET router with four or eight optical ports for IOCNET or Gigalink
connection.

– Master clock unit.

– Six APUs (Angular Processing Units), each with a resolution of
16 bit to simulate engine processing core functions. The supported ap-
plications are: injection/ignition capturing, crankshaft/camshaft signal
generation, knock signal generation, 24 angle-based memories.

– Support of up to eight CPU cores.

– Active cooling.

23

dSpace SCALEXIO simulator

Figure 2.5: DS2502 IOCNET Link Board overview

Battery simulation power supply unit

The battery simulation power supply unit is used to generate voltages and currents
used to simulate the vehicle battery. This unit is controlled via software by a
battery simulation controller. A power switch is implemented for switching the
outputs of the battery simulation power supply unit to pins on the simulator’s
front connectors or internal power supply rails.

Figure 2.6: A battery simulation power supply unit of the GenesysTM 1500W
series

The unit’s On/Off switch is used to switch the battery simulation power supply,
the internal power supply of the simulator, and the SCALEXIO Real-Time PC.
A voltage limit knob and a current limit knob allow adjusting settings via the
front panel. The actual values simulated are visualized in a voltage display and a
current display. Furthermore, some push buttons configure the battery simulation
power unit manually, then the status and function information can be visualized

24

dSpace SCALEXIO simulator

through LEDs. Hence, it is possible to specify an undervoltage limit or overvoltage
protection via the front panel: they cannot be adjusted via software.

2.1.2 Software Tools
In order to execute real-time simulations, the SCALEXIO system must be imple-
mented with a real-time application and must be controlled by a host PC. Software
tools running on a host PC are used to work with the SCALEXIO system via
Ethernet. The host PC not only creates the real-time application that models
the controlled system but also implements and manages the application on the
SCALEXIO simulator. Furthermore, the host PC can change parameter values
and measure variables of the real-time application.
Failures in the ECU wiring are simulated by the host PC by controlling the failure
simulation.
The software tools are grouped into three phases:

• Implementing: software tools and block sets for modelling and implementing
the real-time application:

– MATLAB/Simulink, which is used for modelling only the behaviour model
of the controlled system;

– ConfigurationDesk, which is used for implementing the I/O functionality
on the simulator. This tool can build a real-time application containing
the behaviour and I/O model;

– Model Port Blockset, which contains Simulink blocks used to read or write
signals of the I/O model;

– RTI CAN MultiMessage Blockset, which contains Simulink blocks for
implementing a CAN communication in the behaviour model;

– RTI LIN MultiMessage Blockset, which contains Simulink blocks for
implementing a LIN communication in the behaviour model;

– FlexRay Configuration Package that is used for implementing FlexRay
communication in the behaviour model;

– Automotive Simulation Models, which are block sets useful for modelling
the controlled system in Simulink;

– RTI FPGA Programming Blockset.

• Experimenting: software tools for handling and controlling the real-time
application and visualizing the simulation results:

– ControlDesk Next Generation, which can be used for downloading the
real-time application, calibrating parameters and measuring signals;

25

dSpace SCALEXIO simulator

– MotionDesk, which shows 3D animation during experimenting with a
SCALEXIO system

– ModelDesk used to change and download the parameters for Automotive
Simulation Models to the real-time application.

• Testing: software tools for ECU test automation:

– AutomationDesk, which can create and manage automation tasks;
– Real-Time Testing, which can execute tests synchronously with the model.

2.1.3 DS2680 I/O Unit
The DS2680 I/O Unit is a SCALEXIO MultiCompact unit conceived for powertrain
and vehicle dynamics projects, especially for HIL testing of ECUs. The unit is
mounted in the SCALEXIO rack, and it is released with an integrated load board
for internal loads and can be optionally equipped with a bus module.

Figure 2.7: Front overview of the DS2680 I/O Unit

The unit’s front has the following connectors and elements:

• Battery simulation connectors to connect devices to the simulated vehicle
battery.

26

dSpace SCALEXIO simulator

• CAN1 and CAN2 connectors to connect a device to a CAN bus if a DS2672
Bus Module is installed.

• LIN connector to connect a device to a LIN bus if a DS2672 Bus Module is
installed.

• CARB connector to connect a tester device to the simulator.

• ECU1, ECU2 and ECU3 connectors to connect the ECU to the simulator.
The connectors contain all input signals for the ECU (sensor signals, actuator
signals, bus signals and power supply).

• Load1 connector to connect external loads to the simulator.

• Status LED to indicate the state of the I/O unit.
The DS2680 provides a Failure Insertion Unit (FIU) consisting of a central FIU,
fail rails and failure routing units (FRUs): they can be used for failure simulation
with SCALEXIO HighFlex boards.
The DS2680-IL Load Board is a removable board of the SCALEXIO I/O Unit
that can carry internal loads for each signal measurement channel and the special
high-speed channels for lambda probes. It also provides some of the I/O unit’s
front connectors and elements.

Figure 2.8: DS2680-IL Board

The DS2680 is connected to the SCALEXIO Processing Unit through an Inter-
nal IOCNET router, which provides also other ports for connecting DS2680 to
external elements.
ConfigurationDesk is the software tool used to configure the different DS2680
I/O Unit’s channels, that are classified in several types depending on the task
performed:

27

dSpace SCALEXIO simulator

• Channels for battery simulation control and power switch:

– 1 Power Control 1 to control the simulator’s battery simulation power
supply unit;

– 6 Power Switch 2 to switch the battery simulation supply voltage to
connected external devices.

• Channels for signal measurement:

– 20 Analog In 1 for analog voltage measurement;
– 30 Digital In 1 for digital voltage measurement;
– 18 Flexible In 2 for digital voltage/current measurement and analog
current measurement.

• Channels for signal generation:

– 15 Analog Out 1 for analog voltage generation;
– 7 Analog Out 3 for transformer-coupled voltage output;
– 8 Analog Out 4 for voltage or current generation, configurable as a current
sink;

– 28 Digital Out 1 for digital voltage generation, configurable as a low-side
or high-side switch, or for push/pull mode;

– 12 Resistance Out 1 for resistance simulation.

• Specific channels for simulating lambda probes:

– 2 Analog In 2, high-speed ADC channels;
– 2 Analog Out 2, high speed DAC channels;
– 2 Load 1, component channel. Each high-speed channel can be combined
with a Resistance Out 1 for resistance simulation.

The connection between the DS2680 I/O Board of the SCALEXIO simulator
and the ECM is performed by analyzing the electrical scheme of the engine control
system provided by the carmaker. This study leads to understanding what type of
connection every actuator or sensor needs, hence in which channel of the simulator
the ECM pin must be connected.
As previously mentioned, some complex actuators with strong non-linear behaviour
are not simulated by the simulator, but external physical components are connected
to the SCALEXIO system, which behaves as an interface for the ECU connection.
The list of all the connections between ECM and simulator is calledwiring harness.
It is created to use in the most appropriate configuration all the available channels

28

dSpace SCALEXIO simulator

of the SCALEXIO system.
The purpose of the simulation is to recreate the same environment of the real
engine control system that will be connected to the tested ECM.
In the following paragraphs, the most used channels for ECM connection and useful
for the purposes of this thesis are explained with circuit diagrams.

Power switches

The DS2680 I/O Unit provides six Power Switch 2 channel type to switch the
battery simulation supply voltage to the ECM or other connected external devices.
The power switch channels can be switched on or off via software, and they can also
be used by the central FIU to simulate short-circuits to ECU ground or battery
voltage.
Each channel has four VBAT pins. Each VBAT pin can be used in the range 0 to
+60 V and 0 to +6 ARMS

Figure 2.9: Circuit of one Power Switch 2 channel type

Signal measurement channels

The DS2680 provides different signal measurement channels to measure the analog
and digital output signals of an ECU. Channel multiplication is allowed for these

29

dSpace SCALEXIO simulator

type of channels: it is possible to connect them in parallel for current enhancement
till a maximum overall current of 50 ARMS.
It is possible to connect internal and/or external loads to each signal measurement
channel in order to provide the electrical characteristic of an actuator to the ECM.
Each channel provides a failure routing unit (FRU) to simulate electrical failures
for the measured signals.

• Analog In 1 channel type is used to measure an analog voltage signal in the
range 0 V to +60V. Each channel provides 3 pins: one for signal measurement,
one to provide signal reference and one to switch the analog voltage on the
load board.

Figure 2.10: Circuit of one Analog In 1 channel type

• Digital In 1 channel type is used to measure a digital voltage signal in the
range 0 to +60 V with a threshold voltage from 0 to +23.8 V. Each channel
provides three pins: 1 for signal measurement, one to provide signal reference
and one to switch the analog voltage on the load board.

30

dSpace SCALEXIO simulator

Figure 2.11: Circuit of one Digital In 1 channel type

• Flexible In 2 channel type is used to measure digital voltage, digital current
or analog current signal. Each channel provides three pins: one for signal
measurement, one to provide signal reference and one to switch the analog
voltage on the load board.

Figure 2.12: Circuit of one Flexible In 2 channel type

31

dSpace SCALEXIO simulator

Channels for signal generation

The DS2680 I/O Unit can generate signals to simulate not only digital ECU
input signals but also digital and analog sensors, resistors and potentiometers.
This type of channel can also generate pulse-width modulated (PWM) and pulse-
frequency modulated (PFM) signals. Current and/or voltage enhancement is
allowed connecting the channels in parallel and/or series: the maximum voltage
must not exceed 60 V, and the maximum current must not exceed 50 ARMS.

• Analog Out 1 channel type is used to output voltages for sensor simulation.
It has two pins: one to provide the voltage signal and one for the signal
reference.

Figure 2.13: Circuit of one Analog Out 1 channel type

• Digital Out 1 channel type is used to simulate a digital output stage of
0V or in the range between +5 V and +60 V. The channel is configurable
as a low-side or high-side switch or for push/pull mode. Each channel has
a common pin for connecting the external reference voltage. The low-side
switch can only switch to GND. The high-side switch can be set to an internal
reference voltage (indicated as VBAT) or an external reference voltage greater
than +5V.

32

dSpace SCALEXIO simulator

Figure 2.14: Circuit of one Digital Out 1 channel type

• Resistance Out 1 channel type is used for resistance simulation. Each
channel has two pins: one for the output signal and one for the reference
signal.

Figure 2.15: Circuit of one Resistance Out 1 channel type

33

Chapter 3

Engine simulation

One of the most important simulation that a SCALEXIO simulator can perform is
the four-stroke piston engine’s behaviour. The virtual engine sends realistic sensor
signals to and receives realistic actuator signals from a real ECM. Some engine
components can be real and are part of the SCALEXIO simulator.

Figure 3.1: A conceptual overview of an Engine simulation in SCALEXIO
simulator

In ConfigurationDesk, a real-time application of the virtual engine is built. It
consists of two models:

• I/O model: it is built in ConfigurationDesk and can contain the following
engine I/O functionality: crankshaft and camshaft signal generation; injection
and ignition pulse measurement; lambda signal generation; knock signal
generation.

• Behavior model: it is built in MATLAB/Simulink and mimics the engine’s
behaviour.

The Engine Simulation Setup function block is crucial for the configuration
of virtual piston engines as it defines piston-specific characteristics. It provides the
Piston Position function port, which outputs the current angle positions [°] of the

34

Engine simulation

virtual cylinders to the behaviour model.
An Angular Clock Setup function block must be assigned: it provides a con-
nection to the APU and the basic configuration data of the virtual engine. The
APU computes the virtual engine’s current angular position as a function of the
rotation speed of the virtual crankshaft provided by the behavioural model. The
Angular Processing Unit is implemented as a 16-bit angle counter. The step size
of the angle counter is 0.011°. Its exact range is from 0° to 719.989°, and if the
upper limit is overtaken, the counter is reset to 0°. The APU can count forward
or backwards depending on the signal’s sign at the Velocity function port of the
Angular Clock Setup function block.
The DS2680 I/O board of the SCALEXIO system can be connected with six usable
angle units of the SCALEXIO Processing Unit.

3.1 Crank and Cam
The main objective of this master thesis is to generate a crank signal and a cam
signal through a simulator implemented with a microcontroller evaluation board.
For this reason, a description of the characteristic of Crankshaft and Camshaft
Sensors is fundamental.

3.1.1 Operation Principle of Crankshaft and Camshaft
Sensors

The reciprocating linear piston motion of four-stroke piston engines is translated
into crankshaft rotation. The crankshaft then transmits the torque to the wheels
via the gearbox. One or even multiple camshafts are mechanically coupled to
the crankshaft and control the intake and exhaust valves. One engine cycle of
a four-stroke piston engine corresponds to two crankshaft revolutions and one
camshaft revolution.

Figure 3.2: Crankshaft and Camshaft Coupling

35

Engine simulation

The angular position of the crankshaft is linked with the position of the piston.
However, to identify the exact stroke, the camshaft’s angular position must also be
known. The crankshaft sensor is used to measure the angular position and the
rotational speed of the crankshaft, which the ECM uses to control the fuel injection
and other diesel engine parameters. It is an optical, or inductive, or magnetic
sensor that scans the radial surface of the rotating crankshaft wheel and detects
teeth’ presence. Indeed, an even-toothed wheel is flanged to the crankshaft and
is typically composed of "60 - 2" teeth (there are 60 teeth, but two of them are
missing to indicate a defined position).
The camshaft sensor is an optical, or inductive, or magnetic sensor that scans
the radial surface of the rotating camshaft wheel and detects the presence of
teeth. This wheel is flanged to the camshaft and has a particular sequence of teeth
depending on the carmaker choice. The combination of a crankshaft position sensor
and a camshaft position sensor is used by the ECM to monitor the relationship
between the pistons and valves in the internal combustion engine. Therefore, the
synchronization of the four-stroke engine depends on these two sensors, which allow
the ECM to know when to inject the fuel.

It is possible to find two types of crankshaft and camshaft sensors:

• Passive sensors (inductive sensors) which generate an analog signal. A rising
tooth edge on the wheel corresponds to the signal crossing zero from positive
to negative signal level.

Figure 3.3: Passive crankshaft signal

• Active sensors, typically the Hall-effect sensors, generate a digital signal. A
rising tooth edge on the wheel corresponds to a falling signal edge.

36

Engine simulation

Figure 3.4: Active crankshaft signal

Reverse crankshaft sensors

In some cases, for example, in modern Stop&Start automotive technology, it is
required that the crankshaft performs a reverse rotation. Standard crankshaft
sensors can not detect this condition, but reverse crankshaft sensors are needed.
These sensors generate pulse signals, whose temporal pulse length depends on the
current rotation direction (forward: tf=45 µs, reverse: tr=90µs).

Figure 3.5: Example of reverse crankshaft signal

The trigger point is usually the centre of the tooth. Td is a time delay that
represents the sensor’s reaction time between trigger and pulse.

37

Engine simulation

3.1.2 Crank and Cam Wavetables
The SCALEXIO system generates crankshaft and camshaft signals useful for the
ECM starting from a numeric list called wavetable. Crankshaft wavetables are
1-dimensional arrays of float type values in the range between -1.0 and +1.0, stored
in CSV files (CSV files are ASCII files containing entries separated by a comma,
where no additional data or text is included). The array comprises 216 = 65536
values: this number is given by the step size of the angle counter, which in this
case, it is equal to 0.011°.
The active wavetable is accessed like a look-up table during an engine simulation.
The current value of the angle counter acts as the index: as the angle counter
continuously increments during engine simulation, the wavetables values are read
out consecutively. In the reverse crankshaft and camshaft rotation simulation, the
wavetables values are read out backwards.
The output signal value depends on the simulated sensor type:

• in passive crankshaft sensor simulation, the wavetable values are multiplied by
the Amplitude function port, set before in ConfigurationDesk, giving several
output signal values;

• in active crankshaft sensor simulation, the wavetable values are interpreted as
0 if they are less or equal to 0.0, else are 1.

Wavetables are stored in the wavetable memory of the used I/O board when the
real-time application is downloaded to the target hardware. The DS2680 I/O board
can contain up to 24 wavetables.

3.1.3 Function Block Configuration
The function blocks are elements of the dSpace function library and implement
the I/O functionalities. Each block type has unique features and must match
the electrical characteristic of its related signal to realize the interface between
simulator and model. Hence, in ConfigurationDesk, after the definition of Engine
Simulation Setup block and of Angular Clock Setup block, it is possible to simulate
crankshaft and camshaft sensor signals using different Crank/Cam Out function
block types:

• Crank/Cam Voltage Out function block type simulates passive sensors and
supports Analog Out 1, Analog Out 3 and Analog Out 4 channel types available
on DS2680;

• Crank/Cam Digital Out and Crank/Cam Current Sink function block types
simulate active sensors and reverse crankshaft sensors. Crank/Cam Digital
Out supports Digital Out 1 channel type, and Crank/Cam Current Sink

38

Engine simulation

supports Analog Out 4 channel type: both channel types are the ones available
on DS2680.

Other channel types are supported by these function blocks but are available in
the I/O board different from DS2680. The function blocks provide signal ports and
function ports depending on the specified settings.

Figure 3.6: Crank/Cam function blocks with their default settings

Additionally, they can provide particular configuration features which influence
the behaviour of the basic functionality: for example, referencing of the virtual
piston engine and the wavetables, setting a phase shift for the camshaft, specifying
generation of reverse crankshaft signals.

39

Chapter 4

Crank/Cam Simulator
Hardware

As previously mentioned, the automotive electronic control systems (particularly
the ECM) are increasing their complexity to meet more and more stringent require-
ments: reducing pollutant emissions and fuel consumption and making the system
functional safe. Therefore, the development and testing of embedded software need
a strong effort in terms of time and, consequently, costs.
Automotive industries are continuously searching for new methods for testing ECU
in a faster way, keeping the same security standard. In this context, the work of this
master thesis is created for companies that make some specific ECU tests without
the need to buy an expensive and complex simulator, as the whole SCALEXIO
system. In particular, the core of this thesis is the design and realization of an
open-loop simulator generating crankshaft and camshaft sensors signals. These sig-
nals are taken as references for simulating the four-stroke piston engine’s behaviour
and for synchronizing the injection or ignition engine phase.
An open-loop simulator is created since the user sets the desired engine speed
as an input, and the corresponding output signal is generated independently from
the controller action on the output itself.
The main hardware components of the developed simulator are the following:

• A microcontroller evaluation platform, used to develop the application
and generates the signals;

• A memory touch display, used to implement the HMI and to control the
microcontroller;

• A rotary encoder, used as an input device to regulate the engine rotational
speed value.

40

Crank/Cam Simulator Hardware

4.1 Microcontroller overview

In order to generate a fast response for generating crankshaft and camshaft signals
at high engine speed, a high-performance automotive-grade microcontroller is
needed. For this reason, it is chosen a highly integrated microcontroller: the
Hercules™TMS570LC43x LaunchPad™ developed by Texas Instruments
Corporation.
This microcontroller is a cache-based evaluation platform implementing two ARM
Cortex-R5F Floating-Point CPUs, and it is designed to aid in the development of
ISO 26262 and IEC 61508 functional safety applications. The ARM architecture
is based on a 32-bit reduced instruction set computer (RISC) developed by ARM
Holdings. The load or store instructions used by RISC processors are small and
highly-optimized thanks to the aligned memory access. In particular, the ARM
Cortex-R5F processor is chosen since it targets real-time solutions and can fulfil
more scalable tasks: it offers an efficient 1.66 DMIPS/MHz and can run up to 300
MHz providing up to 498 DMIPS [7]. The device supports the big-endian [BE32]
format.

Figure 4.1: TMS570LC43x LaunchPad™

A USB micro cable provides the power to the microcontroller, and it is also the
connection to a laptop for USB debugging of the program.
Good knowledge of the microcontroller architecture and memory usage is required
to choose the correct strategy and use the needed microcontroller peripherals to
develop the simulator.

41

Crank/Cam Simulator Hardware

4.1.1 Architecture
The microcontroller is based on the TMS570 Platform architecture consisting of
two main subsystems, which behave as safe islands since they are separated: the
CPU Interconnect Subsystem and the Peripheral Interconnect Subsystem.

• The CPU Interconnect Subsystem, which connects bus masters and bus slaves
directly related to the CPU. It contains a high degree of safety diagnostics
on the bus system and the memories, thanks to the Error Correction Code
(ECC) used inside the CPU or parity detection. During application run-time,
data going in and out are checked against their expected behaviours in the
Safety diagnostic logic, which is built into the CPU Interconnect Subsystem.
In addition, self-test logic is built in order to diagnose possible faults.

• The Peripheral Interconnect Subsystem, which connects the rest of the masters
and slaves in the device. Also, in this safety island, ECC or parity protection
ensure safety diagnostic on the peripheral memories.

Figure 4.2: TMS570LC43x Architectural Block Diagram

42

Crank/Cam Simulator Hardware

4.1.2 Memory organization
The whole memory space available in the TMS570LC43x launchpad is equal to
4GB. This space is divided into several regions, each addressed by different memory
selects. The ARM Cortex-R5F processor core starts execution from the reset
vector address of 0x00000000 whenever the core gets reset: this address is also the
starting address of the Flash Memory, a nonvolatile, electrically erasable and
programmable memory implemented with a 64-bit-wide data bus interface. In the
microcontroller, 4 MB of Flash memory is implemented and operates on a 3.3V
supply unit for all read, program and erase operations. SRAM memory is used as
program memory, so it hosts the application code.

Figure 4.3: TMS570LC43x Memory Map

Up to 512KB CPU data RAM is implemented with single-bit error correction
and double-bit error detection. The SRAM operates with a system clock frequency
of up to 150 MHz, and its starting address is at 0x08000000 by default. Several
SRAM modules are implemented on the device to support the functionality of the
modules included.
The remaining memory space is reserved or occupied by the control or status
registers as indicated in the memory-map table.

43

Crank/Cam Simulator Hardware

4.1.3 Peripheral overview
Hercules microcontrollers can implement several functions targeted towards varied
applications. Several domains can be turned on or off by toggling their clocks
in order to accomplish the application’s requirements. Dynamic current inside
the switched off module is virtually reduced to zero, but leakage will remain the
same since in this device physical power switches are not implemented to isolate a
domain from its core supply. Almost all I/O pins have either pullup or pulldown
internal resistors, so the unused I/O pins can be configured as outputs and left
unconnected or configured as input with enabled internal pull.
The microcontroller is particularly suitable for automotive tasks since it features a
large number of peripherals for real-time control-based applications:

• two Next Generation High-End Timer N2HET module with up to 64 total
I/O terminals, which provide sophisticated timing functions for real-time
applications.

• the Real-Time Interrupt RTI which provides timer functionality for operating
systems.

• the Enhanced Pulse Width Modulator ePWM module can generate complex
PWM signals with minimal CPU overhead or intervention. It is ideal for
digital motor control applications.

• the enhanced capture eCAP module, which accurately measures external
signals.

• the enhanced Quadrature Encoder Pulse eQEP module directly interfaces
with a linear or rotary incremental encoder to get the position, direction,
and speed information from a rotating machine as used in high-performance
motion and position-control systems.

• two 12-bit-resolution MibADCs analog to digital converters.

The device has multiple communication interfaces:

• five MibSPIs, which provides an efficient serial interaction for high-speed
communications between similar shift-register type devices.

• four UART (SCI) interfaces, two with LIN support.

• four CANs, which support the CAN 2.0B protocol standard. They use a serial,
multi-master communication protocol that efficiently supports distributed real-
time control with robust communication rates of up to 1 Mbps. It is ideal for
automotive applications since it can operate in noisy and harsh environments
that require reliable serial communication or multiplexed wiring.

44

Crank/Cam Simulator Hardware

• two I2C modules provide an interface between the microcontroller and an
I2C-compatible device through the I2C serial bus. The I2C module supports
speeds of 100 and 400 kbps.

• one Ethernet controller.

• one FlexRay controller, which uses a dual-channel serial, fixed time base
multimaster communication protocol with communication rates of 10 Mbps
per channel. A FlexRay Transfer Unit (FTU) enables autonomous transfers
of FlexRay data to and from main CPU memory.

4.2 Control and visualization interface
The crankshaft and camshaft signals simulator requires an interface to visualize
the rotational speed set and change some settings. A simple solution to accomplish
this feature is to connect a programmable touch display to the system. The device
used is the Nextion®display NX4827T043_011, a Human Machine Interface (HMI)
solution providing a 4.3" touch display combined with an on-board processor, 16
Mb of Flash memory, 3.5 KByte of RAM. Nextion display communicates via a TTL
Serial port (5V, TX, RX, GND) with the microcontroller SCI peripheral module,
and its connection is explained in Table 4.1 at the end of this chapter.

Figure 4.4: Nextion®touch display

45

Crank/Cam Simulator Hardware

It is possible to develop the Graphical User Interface with Nextion Editor software
quickly: function components are added by drag-and-drop, and the interaction at
the display side with the user is regulated by coding ASCII text-based instructions.
A micro SD card is needed in order to upload the GUI developed via Nextion
Editor. The output file must be copied to the previously FAT32 formatted SD
card, and it must be the only file present on the card. Then, the micro SD card is
inserted into the SD card slot on the rear side of the display: by connecting the
display only with power, the file will be uploaded in about 5 seconds, and progress
will be shown on display. At the end of the uploading process, the power can be
disconnected, and the card is taken out. From this moment, the Nextion display
can be connected to the microcontroller, and it will be able to communicate via
SCI protocol communication.

4.3 Rotary Encoder
The simulator user can regulate a rotary encoder to increase or decrease the
simulated engine’s rotational speed.
Rotary encoders are divided into two main types: absolute encoders and incremental
encoders. The first ones are devices that determine the absolute current shaft
position without continually keeping track of its movement. The second ones
provide real-time position changes, detecting also the direction of movement. For
these essential features, incremental encoders are commonly used in applications
that require precise measurement of position and velocity. Also, to regulate the
value of the crankshaft rotational speed, an incremental encoder is chosen.
The incremental encoder used is a rotary input device composed of a knob that
you can turn clockwise or counterclockwise without ever getting to a blocking limit.
While the knob is turning, the user can feel that the angular position is changed
thanks to a click per step. This rotary encoder also has a push button that can be
toggled when pressing the knob in the rotation axis direction. The model of the
used rotary encoder is shown in the following figure.

Figure 4.5: KY-040 Rotary Encoder

46

Crank/Cam Simulator Hardware

The incremental encoder produces two square-wave signals in quadrature (one 90°
phase-shifted with respect to the other); for this reason, it is also called quadrature
encoder. The phase difference between the two signals will be +90° for clockwise
rotation and -90° for counter-clockwise rotation, or vice versa, depending on the
device design. The signals are generated by two mechanical switches, either opened
or closed, regulating the connection between the two pins and the ground. The
available pins of the device are five:

• CLK: the pin that outputs the first square-wave;

• DT: the pin that outputs the second square-wave, shifted of 90° from CLK;

• SW: the pin that manages the push switch;

• +: the pin connected to the +5V voltage supply;

• GND: the pin connected to the ground reference.

When turning the knob clockwise, the signal on line CLK will first have a rising
edge before line DT also goes up, followed by a falling edge on signal CLK and
later by a falling edge on line DT. Considering 0 as the low level of the signal and 1
as the high level, a sequence from one-click position to the next can be determined
for both CLK and DT signals. The sequence for a clockwise movement is then
00, 10, 11, 01, 00, while for a counter-clockwise movement the order is 00, 01, 11,
10, 00. Hence, the direction of the rotation can be determined by tracking these
sequences of signals.

Figure 4.6: Quadrature encoder signals

47

Crank/Cam Simulator Hardware

4.4 Wiring Harness

The different components of the crankshaft and camshaft simulator must be appro-
priately connected in order to run the application governing the I/O peripherals.
The simulator core is the evaluation board, and all the peripherals are connected to
it, according to the pin configuration given by the manufacturer in the launchpad
schematic.

CONNECTED PERIPHERAL TMS570LC43x MICROCONTROLLER
PIN PIN TYPE FUNCTION

KY-040
Quadrature
Encoder

CLK J1-7 EQEP1A Encoder position
DT J5-8 EQEP1B Encoder position
SW / / /
+ J10-1 +5V Power

GND J10-2 GND Ground

NX4827T043_011
Nextion
Touch
Display

5V J9-1 +5V Power
TX J5-3 SCI1RX Input data receiving from display
RX J5-4 SCI1TX Output data transmission to display
GND J9-2 GND Ground

Oscilloscope

CH1+ J10-36 GIOA-2 Digital Crank Signal
CH1- J10-32 GND Ground
CH2+ J10-7 GIOA-0 Digital Cam Signal
CH2- J10-4 GND Ground

Table 4.1: Wiring Harness of the developed simulator

The table also shows the microcontroller pins that are chosen to generate the
digital output signals of the crankshaft and camshaft sensors. These pins are part
of the general input-output module GIO in port A. They can be connected to the
channels of an oscilloscope in order to plot the two different signals. In the final
configuration used for executing ECM tests, these pins generating the crankshaft
and camshaft signals will be connected to the ECM employing a proper connection
that will be explained in the last chapter of this thesis.

Figure 4.7 shows how the evaluation board is connected with touch display and
quadrature encoder.

48

Crank/Cam Simulator Hardware

Figure 4.7: Crank/cam sensors simulator hardware components connections

Figure 4.8 shows the front view of the realized simulator. Nextion touch display
is placed in the centre and quadrature encoder (controller) on the right side.

Figure 4.8: Crank/cam sensors simulator front view

49

Chapter 5

Crank/Cam Simulator
Software Development

The implemented hardware of the open-loop simulator requires an application code
in order to perform the task. The user application is developed on top of the basic
software, which contains all the services useful to manage microcontroller memory,
CPU, Files, and peripherals. Therefore, between the device and the application
software, it is needed a class of software that provides a programming platform for
low-level control of the hardware. Texas Instruments gives a tool for the software
stack of its microcontrollers through HALCoGen.

5.1 Hardware Abstraction Layer
HALCoGen™ (Hardware Abstraction Layer Code Generator) is a software tool
that provides a graphical user interface to easily generate the low-level drivers for
component modules on Hercules microcontrollers. The peripheral configuration is
simplified since the user needs to have only a high abstraction level of the system
modules and peripheral modules: the tool provides drivers that are optimized for
both performance and flash impact.
HALCoGen automatically generates error-free C source code of the basic software.
This feature makes more efficient the configuration and initialization of the system,
control and peripherals modules: software developers do not need to go into detail
about the register levels and can mainly focus on application development. Further-
more, the generated source code is clear and structured, and can be customized by
the user at a later time. Once the TMS570LC43x is configured using HALCoGen,
the generated code can be imported into Code Composer Studio (CCS) to develop
the application.
Therefore, a new project must be created through HALCoGen software tool and

50

Crank/Cam Simulator Software Development

it must be tailored with the used microcontroller evaluation platform: from the
home page it is possible to create the new project, select the TMS570LC43x device
among all the available Hercules devices in the list. Once chosen the project name
and selected the Texas Instrument tool, the hardware block diagram of the device
will be available.

Figure 5.1: General block diagram from HALCoGen

Starting from this main page, the programmer can select the supported drivers
to configure the device and check how the silicon vendor configured it by default.
For this thesis’s purposes, some drivers are used, and they are enabled in the
section Driver Enable: RTI driver, GIO driver, SCI1 driver, EQEP1 driver. Some
TMS570LC43x modules use the same communicating path; therefore, conflicts
are possible in case of simultaneous usage: in order to avoid this problem, the
HALCoGen Pin Muxing page allows to select all the modules and check if conflicts
are listed. Whether a conflict is present, one of the chosen modules must be changed
with another of the same type using another connection path.
The enabled drivers are explained in the following paragraphs of this thesis.

51

Crank/Cam Simulator Software Development

5.1.1 Clock configuration
The clock sources govern almost the totality of the drivers. TMS570LC43x devices
support up to seven clock sources that can be independently enabled or disabled:
oscillator, PLL1, External 1, LPO Low, LPO High, PLL2, External 2. The clocking
is divided into multiple clock domains for flexibility in control and clock source
selection. There are ten clock domains on this device: they are obtained by
combining some dividers to different clock sources in GCM block. Details of the
clock configuration and their frequency limits are shown in Figure 5.2.

Figure 5.2: GCM clock driver

Particularly worthy of note domains are the CPU clock (GCLK), the system
clock (HCLK) and the peripheral clocks (VCLKx).
In this project, all the clock configurations have the default value.

5.1.2 SCI peripheral module
One of the most important peripherals connected to the microcontroller is the
Nextion touch display. It is a device communicating with a UART (Universal
Asynchronous Receiver Transmitter) protocol, so one particular microcontroller
type of module must be used: the SCI module. TMS570LC43x provides four
SCI modules, each consisting of two external pins (SCIRX and SCITX), and the

52

Crank/Cam Simulator Software Development

module used for this project is SCI1.
Configuration of this module via HALCoGen can be done correctly only if its
architecture and working principle are clear to the user. SCI module is composed
of three main blocks:

• Transmitter (TX), which performs double buffering with two main registers.
CPU loads data to the transmitter data buffer register (SCITD), which
transfers them to the transmitter shift register (SCITXSHF). Then data are
shifted from SCITXSHF onto the SCITX pin, one bit at a time.

• Baud Clock Generator, which produces a baudrate scaled from VCLK periph-
eral clock through a 24-bit baud select register.

• Receiver (RX) performing double buffering with two main registers in the
opposite direction of the transmission. Data entering one bit at a time from
the SCIRX pin are shifted in the receiver shift register (SCIRXSHF), which
then transfers completed data into the receiver data buffer register (SCIRD).

The SCI receiver and transmitter can be enabled from the user as well as their
interrupts, and they can operate independently or simultaneously in full-duplex
mode.
The SCI uses a frame format that can be programmable through the bits in the
SCIGCR1 register. Both receive and transmit data lines are at logic high since they
are in nonreturn to zero (NRZ) format. All frames begin with a start bit at a logic
low; then, data are sent and received from the least significant bit till the most
significant bit, with one to eight data bits length. An address bit and/or a parity bit
can be present or not, depending on the address-bit mode and PARITY ENA bit
configured by the user. In order to ensure synchronization between communicating
devices, the end of the frame is indicated by one or two stop bits, which are always
high level.
The TIMING MODE bit in the SCIGCR1 register can set the SCI module either
in asynchronous or isosynchronous timing mode. Since the Nextion display uses
the standard UART protocol, asynchronous timing mode is set: each bit in a
frame has a duration of 16 SCI baud clocks periods. The SCI receiver detects a
valid start bit only if the four samples after a falling edge on the SCIRX pin are
of logic level 0 in order to prevent interpreting noise as a start bit. When a valid
start bit is detected, the SCI determines the value of each bit by sampling in the
middle of the bit and taking the majority vote of the seventh, eighth, and ninth
samples. Thanks to this strategy, the determined value stored in the SCI receiver
shift register is far from errors caused by possible propagation delays and data line
noises.

53

Crank/Cam Simulator Software Development

Figure 5.3: Asynchronous timing while receiving a data frame

Also in the transmission of data frames, each bit has a duration of 16 SCI baud
clocks periods: the value in the first clock period is shifted by the transmitter on
the SCITX pin and then hold for 16 SCI baud clock periods.
The baudrate of the SCI module in asynchronous timing mode is generated internally
and determined by the peripheral VCLK and the prescaler BAUD value in the
BRS register:

baudrate = V CLK

16 ∗ (BAUD + 1)
The specifications given by the datasheet of the touch display used in this project

indicate that the device interfaces correctly with a baudrate range of 9600 bps [8].
Therefore, via Halcogen, the SCI1 module is set in asynchronous mode, with an
internal clock (VCLK), and the baudrate value is 9606 thanks to a prescaler value
of 487 applied to the clock. The bit frame length is 8, stop bits are two, and no
parity is needed. The direction of the SCITX transmission pin must be enabled as
output by checking the box TX direction.

Figure 5.4: SCI Data format for Nextion display

54

Crank/Cam Simulator Software Development

With these register configurations set via HALCoGen, the microcontroller and
the touch display are ready to interface, but the data to transmit and receive are
strictly related to the display user’s commands. Indeed, the Nextion display must
be programmed so that the user can easily interface with the microcontroller and
control the system.

Touch Display Programming

The Nextion touch display is the HMI used in this project to allow the user to
interact with the simulator. The main objective for this project is to have a menu
where the user can choose some options by touching the display:

• a dashboard page, where a digital signal can be controlled via two dual-state
buttons used to either turn on or off the battery supply and key signal of the
simulated vehicle. Furthermore, it is possible to visualize the engine speed
value displayed in a display box and a tachometer.

• a temperature page, where can be checked the temperature sensors;

• a pressure page, where can be checked the pressure sensors;

• a switches page, where can be set the switches controlling the connection
between ECU and sensors;

• an actuators page, where can be set the actuators connected to the ECU;

• a settings page, where the user can choose the type of crankshaft and camshaft
sensors used and the signals’ pattern depending on the engine selected.

Since this project deals with the generation of active crankshaft and camshaft
sensors signals, the user needs only the dashboard and settings pages; the other
pages are implemented for future works.
The realization of the display interface needs a programming part realized via
Nextion Editor software tool: it must be installed on a laptop, and a new project
can be created in a .hmi file according to the display model and orientation selected.
Therefore, it is chosen NX4827T043_011 basic device with a display direction of 0°
horizontal. Nextion Editor main page is composed of several panes located around
the display of the page to be modified:

• toolbox pane on the left of the window has a list of functional components to
add to the page by drag-and-drop;

• page pane on the right side is the place where all the needed pages are listed;

55

Crank/Cam Simulator Software Development

• attribute pane contains the component drop-down, where all the components
included within the current design page are listed. Selecting a component will
display the component’s available attributes (component name, identifying
value, value) that can be very useful to control its function;

• event pane, which can contain instructions related to the page components.
Simple ASCII text-based instructions can be written in this pane and can
control a possible event of the component or page, i.e., when it is pressed or
released.

In Figure 5.5 is shown the Nextion Editor main page with the pages and components
of this project, and the red boxes highlight the most used panes. The visualized
page in the center of the page is the menu page, which will be uploaded into the
touch display and then will be available for the user after the loading of the splash
page.

Figure 5.5: Nextion Editor main page

The pictures used in this project are realized previously through a raster graphics
editor, and their resolution is equal to the display resolution (480x272 pixels) if
they are full-screen. Then, they are uploaded in the picture pan and added to the
corresponding page through the picture tool.

ASCII text-based instructions for coding how components interact on the display
side are listed in the Nextion instruction set web page [9]. From the toolbox pane,
two button components are added to the menu page: b0 covering the dashboard
symbol, which will send the user to the dashboard page if pressed, thanks to the
command page 2 written in the touch press event pane; b1 covering the settings

56

Crank/Cam Simulator Software Development

symbol, which will send the user to the settings page if pressed, thanks to the
command page 3 written in touch press event pane. The changing page will be
performed since an ID value is added to all the pages (2 is dashboard ID, 3 is
settings ID).
Dashboard page is full of components:

• one dual-state button bt0 over battery switch image, which will turn on or off
a digital signal. Every time a release event happens, it will send a particular
raw formatted data over serial to microcontroller thanks to print and prints
commands set in the event pane;

• one dual-state button bt1 over key switch image, which will turn on or off
another digital signal. As bt0, print and prints commands will generate a
particular raw formatted data that will be sent over serial to microcontroller
at each release event;

• one text t0, which will show the crankshaft rotational speed value in rpm, by
changing its text according to the value set by the user via rotary encoder;

• one gauge z0, which will move a needle according to the crankshaft rpm value;

• one button b0, which will allow the user to come back to the menu page. A
page command is used in the touch press event.

Figure 5.6 shows dashboard components configuration and details of print
commands used for bt0 in the event pane.

Figure 5.6: Dual-state button configuration in dashboard page

57

Crank/Cam Simulator Software Development

Nextion display also provides a compile tool, which checks for errors in the
currently loaded project and shows it in the output pane. After verified that
compiling is correct, it is possible to simulate if the project works as expected with
the tool debug. An essential feature of debugging is that it is possible to see how
a component either sends or receives ASCII code when used: in this way, it is
possible to control its behavior in the final application code. Indeed, debug is used
in this project in order to see how the button and dual state buttons react when
pressed and what serial code they send every time they are pressed, as shown in
the red box of Figure 5.7.

Figure 5.7: Nextion Editor debug

Once finished to program the Nextion project, it must be uploaded via microSD
card into the display. By using the function TFT file output, a .tft file is generated
and saved in a laptop folder, and then it must be copied into a microSD card. It
is needed that the microSD card is less than 32GB in size, it must be Windows
formatted as FAT32, and the .tft file must be the only file in the root folder. The
power to Nextion device must be off when inserting and removing the microSD
card but must be on when firmware updates are required.
Now, the Nextion project is saved into the touch display device: it runs when the
power is on, and it is ready to interface with the user when it is connected to the
SCI module of the microcontroller and the application code is created entirely.

58

Crank/Cam Simulator Software Development

5.1.3 Digital Signal I/O

TMS570LC43x evaluation platform provides several I/O bidirectional and bit-
programmable pins for digital signals: they are grouped in GIO general-purpose
input/output module. This module can be used as a digital output channel to
generate the crankshaft sensor signal and camshaft sensor signal, as well as digital
output to control the battery voltage supply switch and key-on signal switch.
The GIO module in this microcontroller consists of 64 terminals that can be
independently configured as input or output and configured as required by the
application. This module can generate interrupts whenever a rising or falling edge
or any toggle is detected on up to 32 GIO pins in input mode. Multiple registers
control the various aspects of the input and output functions, and they can be
easily configured via HALCoGen software tool. In the thesis’ project, the GIO port
A is used:

• Bit 0 is chosen as generator of camshaft signal. Therefore, the data direction
must be set as an output by checking the bit 0 DIR box in HALCoGen (this
selection will change the GIODIRA register bit value accordingly). Also PSL
box must be checked (GIOPSLA register bit 0 will be 1) since a pull-up resistor
inside the microcontroller must be enabled: pull-up resistor guarantees that
the pin is driven to a logic high when enabled, and the logic is low when the
pin is not enabled. PDR box is not checked since open drain functionality is
not required (the pin is not needed at a high impedance state). DOUT value
is 0 since the initial output value of port A bit 0 must be null at the start
condition.

• Bit 2 is chosen as the generator of crankshaft signal. The boxes checked via
HALCoGen are the same as those in bit 0 since the functionality is like the
camshaft. The registers will be configured considering bit 2 at value 1 in case
of a checked box.

• Bit 6 is chosen as a digital channel to drive the battery voltage supply switch:
when the logic is high, the battery +12V will be available to supply the ECU,
otherwise it will be disconnected. Also in this case, since it is a digital output
channel, the checked boxes are DIR and PSL.

• Bit 7 is used to simulate the digital key signal useful for the ECU. Bit 7 in
GIODIRA and GIOPSLA are set to 1.

Figure 5.8 shows HALCoGen configuration for GIO port A bit 0.

59

Crank/Cam Simulator Software Development

Figure 5.8: GIO HALCoGen configuration

It is also important to check if there are conflicts between GIOA and other
microcontroller modules, so in the HALCoGen PINMUX section, the GIOA box is
checked.

5.1.4 eQEP module
The rotary encoder is connected to the EQEP1 module of the TMS570LCx micro-
controller. This is one of the two available EQEP (enhanced quadrature encoder
pulse) modules used to get the position, direction, and speed information of a linear
or rotary incremental encoder.
In Table 4.1 all the connections between rotary encoder and microcontroller are
listed, and it is possible to notice that the EQEP input pins used are only two:
QEPA and QEPB. These are the pins providing two square wave signals 90 electrical
degrees out of phase used to determine the direction of rotation and the position
information. EQEP module also provides other two pins (Index and Strobe), but
they are not used since the model of the rotary encoder is very simple, and it needs
only QEPA and QEPB.
The general configuration of the module is based on the position counter mode,
which is the quadrature-count mode since it is used as a quadrature encoder.
Therefore, in the HALCoGen project must be configured the EQEP1 section
by selecting QUADRATURE_COUNT in position counter mode drop-down list:
QDECCTL register will be configured by setting [QSRC] bits to 0. The most
important step for controlling the rotation of the quadrature encoder is the choice

60

Crank/Cam Simulator Software Development

of direction decoding logic. The binary sequences generated by QEPA and QEPB
determine if an increment or a decrement is counted by QPOSCNT register value
due to a clockwise or counter-clockwise rotation of the encoder knob. The direc-
tion decoding logic updates the direction information in QEPSTS[QDF] bit (0
if counter-clockwise rotation, 1 if clockwise rotation) according to the detected
leading sequence.
EQEP external clock rate is imposed with RESOLUTION_2X in HALCoGen
configuration (QDECCTL[XCR] bit is set to 0) since it must be a quadrature clock
(QCLK) counting both the rising and falling edge. Indeed, the frequency of the
generated clock must be four times that of each complete input sequence in order to
detect every binary change. Quadrature direction is imposed at a high level when
the direction is clockwise, so the QDIR parameter in HALCoGen is CLOCKWISE.

Figure 5.9: Direction decoding logic in quadrature counting mode

The other check-boxes in EQEP1 general configuration are not used, as well
as all the compare output configurations since the project does not need those
functionalities.
The EQEP module includes a position counter, which provides position infor-
mation of the quadrature encoder with respect to an imposed reference. It can
be configured to be reset in four modes: reset on Index event; reset on maximum
position; reset on the first Index event; reset on Unit Time Out Event. Since the
Index pin is not present in the used quadrature encoder and reset on unit time out
event is not suitable to keep the value for a long time, reset on maximum position
is chosen. The position counter value is intended to be the rpm value to control
via quadrature encoder, therefore 0 is selected as initialize position count value.
Instead, the hexadecimal value of 0x1F40 (which is equivalent to 8000 in integer)
is set as the maximum position count (QPOSMAX register) since it can be the
maximum rotational speed of a supercar crankshaft. Position counter is reset to
QPOSMAX register value when position counter counts down after 0 (underflow),

61

Crank/Cam Simulator Software Development

and it is reset to 0 when the position counter counts up after QPOSMAX (overflow).
Each underflow or overflow event is indicated in the interrupt flag register (QFLG)
bit 5 and 6, respectively.
In the EQEP module, an interrupt mechanism can generate up to eleven interrupt
events. Among the several interrupts, in the project of this thesis is used only
the unit time out interrupt: it allows to call periodically an interrupt service
routine, and this characteristic is used to check the position counter value and to
detect a new value eventually. Unit period register (QUPRD) value selected via
HALCoGen is 0xFFF: the interrupt will be set in flag bit QFLG[UTO] when the
32-bit unit timer QUTMR (which is clocked by VCLK3) matches this QUPRD
value. Hence, since VCLK3 is 75 MHz, the interrupt period will be 54µs, a shorter
period than that of the RTI at maximum frequency: this will ensure a fast update
of crankshaft and camshaft frequency when the user will change the position of the
rotary encoder.

Figure 5.10: EQEP module configuration

5.1.5 Real-Time Interrupt Module
In this thesis, the crankshaft sensor model considered is a Hall-effect sensor scanning
the radial surface of a "60 - 2" even-toothed wheel. A Periodic Interrupt Timer
(PIT) is used to simulate a call function every time the crankshaft sensor detects
the rising or falling edge of a tooth. PIT occurs with a period inversely proportional
to engine rpm:

P = 60
2 ∗ n ∗ rpm

(5.1)

62

Crank/Cam Simulator Software Development

Where n indicates the number of teeth (by taking into account also the missing
teeth) and rpm is engine speed. Multiplier 2 represents the ratio between PIT
period and tooth period: indeed, tooth angular displacement is 3°, and the angular
displacement between two teeth is 6°. Therefore, in the particular case of 60 - 2
wheel:

P = 1
2 ∗ rpm

(5.2)

This relationship shows how important it is to generate a periodic interrupt that can
change its period value correctly when the crankshaft’s rotational speed increases
or decreases. In order to accomplish this critical feature, a microcontroller module
able to generate periodic interrupts must be used: RTI module.
The real-time interrupt (RTI) module is a TMS570LCx module incorporating
two independent 64-bit counters that define timebases needed for scheduling in
the operating system and for performing periodic tasks. A compare unit compares
either counter block 0 or counter block 1 with programmable values and can
generate up to four independent interrupt requests on compare matches. Figure
5.11 shows the RTI high-level block diagram configured in this project through
HALCoGen.

Figure 5.11: RTI general block diagram

63

Crank/Cam Simulator Software Development

Since the generation of one periodic interrupt is required, only RTI Counter 0
block is used. It consists of one prescale counter (RTIUC0) and one free-running
counter (RTIFRC0). A clock of 75 MHz given by the RTICLK drives the RTIUC0,
which counts up until the compare up value in the compare up counter register
(RTICPUC0) is reached. This counting operation defines the frequency of the
free-running counter RTIFRC0 since it is incremented every time the compare
matches and then RTIUC0 is reset to 0:

fRTIFRC0 = fRTICLK
RTICPUC0 + 1 (5.3)

In this project, the free-running counter frequency is equal to 9.375 MHz since
the RTICPUC0 value is 7. If RTIFRC0 overflows, an interrupt is generated to the
vectored interrupt manager (VIM), which is the microcontroller module controlling
all the interrupt resources present. The overflow interrupt is intended only to
reset the free-running counter and not to generate the time base for the crankshaft
signal.

Figure 5.12: RTI counter 0 block

The interrupt request to the VIM needed for periodic interrupt function is
generated by one of the four RTI compare registers: RTICOMP0. It is configured
to be compared to RTIFRC0, and when the counter value matches the compare
value, an interrupt is generated. Via HALCoGen must be enabled VIM channel 2
of the VIM module to IRQ (interrupt request), otherwise RTI compare 0 will not
generate interrupts.
Furthermore, in the update compare register (RTIUDCP0) is stored a value that
can be added to the compare value in RTICOMP0 after a compare is matched in
order to allow periodic interrupts. The period of the generated interrupt request

64

Crank/Cam Simulator Software Development

can be calculated as follows:
tCOMP0 = tRTICLK ∗ (RTICPUC0 + 1) ∗RTIUDCP0 (5.4)

Considering an RTIUDCP0 value of 46875, the RTI compare 0 period will be
5ms, which is useful to generate a periodic interrupt for a crankshaft rotating at
100 rpm. In the application code, RTIUDCP0 and RTICOMP0 values will be
changed according to the engine speed set by the user.

Figure 5.13: RTI compare block

At this point, the basic software configuration, considering peripheral and system
modules, has been completed. Source files derived from the configuration of the
module are automatically generated thanks to the HALCoGen option Generate
Code. This function will create all the header .h files and source .c files needed for
the programmer to create the application code and also an empty main file called
‘sys_main.c’. Possible configuration changes can also be performed later, when
programming the application may lead to settings edits in order to improve the
functionality of the system: source code can be generated again, and application
code will remain unchanged.

65

Crank/Cam Simulator Software Development

5.2 Details of the Application Code

The application code, describing the task that must be performed for the generation
of crankshaft and camshaft sensors signals, is created by editing the automatically
generated code given by the HALCoGen software tool. Indeed, the project fold-
ers containing the generated source files can be shared with Code Composer
Studio™ integrated development environment (IDE) for Texas Instruments’ mi-
crocontrollers. Thanks to this software, it is possible to edit, build and debug the
application and then run it into the TMS570LCx development board connected
via a USB debug probe.
A new CCS project has been created with the same name of the HALCoGen project
previously described, and the TMS570LCx device is selected with the connection
XDS110 USB debug probe: the empty project is chosen since all the source files
will be imported later. The project is stored in a workspace, which is the main
working folder for Code Composer Studio and HALCoGen. Once the project is
created, CCS edit perspective will be available: it includes an optimizing C/C++
compiler, Project Explorer, Editor, and Problems view and many other features.
In Project Explorer view, it is possible to see all the projects into the workspace,
therefore also the project created for this thesis. The project contains the source
codes build via HALCoGen since they are automatically added to it, but the gener-
ated Include folder is not present, so it must be added manually: by right-clicking
the project folder in Project Explorer and selecting properties, the HALCoGen
generated Include folder can be added to the #include search path under the
compiler Include Options. Now the HALCoGen project is completely coupled with
the CCS project.
The main file where the application is developed is called HL_sys_main.c: at the
beginning, it was empty, and it has been coded with the application code. Since
many functions from different source codes are used, all the declarations are added
in the main file thanks to the including of all the header files needed. Figure 5.14
shows the part of HL_sys_main.c in which header files are included in the Code
Composer Studio compiler.

66

Crank/Cam Simulator Software Development

Figure 5.14: CCS edit perspective showing the header files included in the main
file

It is possible to notice both system and peripheral microcontroller modules
header files.
Then, all the variables are declared: command and gauge are two strings that will
be used to store respectively the value in ASCII of the engine rpm set through
the rotary encoder and the same value but reduced for the used gauge function
in Nextion touch display. Indeed, as previously mentioned, exchanging serial data
between microcontroller and display must be in lowercase ASCII code, following the
Instruction Set rules given by the display vendor. Furthermore, every instruction
over serial must be terminated with three bytes of 0xFF 0xFF 0xFF hexadecimal
variable in order to establish the communication end. Therefore, an 8-bit unsigned
hexadecimal array called Cmd_End is added.
More variables are declared and also initialized to 0: speed is an integer variable
indicating the crankshaft rotational speed coming from rotary encoder regulation;
gauge_val is the integer variable that stores a reduced speed value useful for the
regulation of the Nextion display’s tachometer needle; comp is the integer value to
store in RTIUDCP0 and RTICOMP0 registers in order to set the compare value
needed for frequency regulation of the generated crank and cam signals; i is an
integer value used as an index in order to read out the look-up table describing the
crankshaft and camshaft wheel pattern.

67

Crank/Cam Simulator Software Development

Figure 5.15: Main file variables declaration

The next variable is a string made up of 240 characters which describes a "60-2"
rotating crankshaft wheel pattern and a "6+1" camshaft wheel pattern used in
a Cursor 9 engine. This string defines the sequence of teeth and gaps that a
crankshaft and a camshaft sensor can detect during four strokes of a diesel engine,
so over a crankshaft rotation of 720° and a camshaft rotation of 360°.
Sixty teeth divide camshaft wheel into 6° pitches. Therefore 60 teeth and 60 gaps
with an angular displacement of 3° are present, but the last two teeth are missing,
so actually there are 58 teeth and 62 gaps (the last four are connected by making
up one single big gap).
Six teeth equally divide 360º into 60º pitches. The first tooth after the additional
+1 tooth in the camshaft wheel defines where zero cam angle starts and where the
engine intake stroke begins.
The possible ASCII characters composing the string are the following:

• 0, representing the presence of a gap in both crankshaft and camshaft wheels;

• 1, which indicates the presence of a tooth in the crankshaft wheel and a gap
in the camshaft wheel;

• 2, which indicates the presence of a gap in the crankshaft wheel and a tooth
in the camshaft wheel;

• 3, representing the presence of a tooth in both crankshaft and camshaft wheel.

68

Crank/Cam Simulator Software Development

Figure 5.16: String variable describing crankshaft and camshaft wheel pattern

ASCII characters are used rather than integer value since each of them occupy
only one byte of memory and also in order to manage a look-up table similar to
the wavetable stored in CSV files accessed by APU in dSpace SCALEXIO DS2680
for crank and cam simulation.

Then, the main function is coded. Firstly some local variables are added:

• buf and buf_g are two string variables used as a buffer to store the ASCII
commands for serial communication with the touch display. They will be sent
in order to show the engine rpm value via the display dashboard respectively
as an integer value and as tachometer needle position.

• len and len_g are two integer variables storing the number of characters stored
in the buffers previously described.

• Rx_Data is an array of unsigned integer values which contain five hexadecimal
values describing the condition of the battery and key signal dual-state buttons
in Nextion display each time they are pressed.

69

Crank/Cam Simulator Software Development

Figure 5.17: Variables declared into the main function

Next step is represented by peripheral initialization: gioInit(), rtiInit(),
sciInit(), QEPInit() are functions defined in the respective source .c file that now
are called into the main in order to configure all the microcontroller settings made
via HALCoGen. As an example, Figure 5.18 shows a part of gioInit function defined
in HL_gio.c, in which peripheral registers are initialized according to the GIO
module configuration decided via HALCoGen tool.

Figure 5.18: Part of GIO initialization function defined in HL_gio.c file

Other functions are called into main function:

• eqepEnableCounter(eqepREG1), which enables EQEP1 position counter by
setting QEPCTL register bit 3 to 1. It is declared in HL_eqep.c file;

• eqepEnableUnitTimer(eqepREG1), which enables EQEP1 unit timer by writing
1 to QEPCTL register bit 1. It is declared in HL_eqep.c file;

70

Crank/Cam Simulator Software Development

• eqepEnableCapture(eqepREG1), enabling EQEP1 capture unit by setting
QCAPCTL register bit 15 to 1. It is declared in HL_eqep.c file;

• _enable_IRQ_interrupt_(), which enables IRQ interrupt mode in CPSR
register. It is declared in HL_sys_core.h file;

• rtiEnableNotification(rtiREG1,rtiNOTIFICATION_COMPARE0), which en-
ables interrupts in RTI module and activates a notification when an interrupt
due to a Compare 0 match is pending. This function calls another function
(rtiNotification) at every compare 0 match.

• rtiStartCounter(rtiREG1,rtiCOUNTER_BLOCK0), which starts RTI counter
block 0 (RTIUC0 and RTIFRC0), by writing 1 to RTIGCTRL register bit 0.

Before enabling IRQ interrupt mode, RTICOMP0 and RTIUDCP0 registers are
initialized with the variable comp equal to 0 since the starting condition of the
simulator will be at a null rpm value. However, then it will be updated according
to the rotary encoder regulation.

Figure 5.19: Functions called into main function in HL_main.c file

Inside the main function, an endless loop function is added in order to perform
the program task continuously, and it is called while(1).
Firstly, a function SciReceive is used to allow the SCI1 module of the microcontroller
to receive information about battery and key signal condition imposed by the user

71

Crank/Cam Simulator Software Development

via Nextion touch display.
Battery dual-state button used in dashboard page has been programmed to send a
sequence of five hexadecimal values. The third element (Rx_Data[2]) is equal to
0x05, and Rx_Data[3] changes according to the button state: when the button
is off Rx_Data[3] value is 0, so GIOA bit 6 is set to 0; when the button is on
Rx_Data[3] value is 1, so GIOA bit 6 is set to 1.
Key signal dual state button holds the same conditions of the battery dual state,
but Rx_Data[2]) is equal to 0x06, and Rx_Data[3] sets GIOA bit 7.

Figure 5.20: SciReceive function controlling Nextion display battery and key
dual-state buttons

Then an interrupt service routine ISR is called into while(1) function, and it is
invoked when EQEP1 unit position event flag is activated (when QEPSTS register
changes its bit 7 from 0 to 1). Therefore, this interrupt is invoked periodically
following the unit time out interrupt described in paragraph 5.1.4. The position-
counter value obtained from the rotation of the quadrature encoder knob is latched
into the QPOSLAT register on unit time out event, so it is passed in the integer
variable speed. The PIT was configured with a value of 5ms (it gives 100 rpm), and
RTICOMP0 and RTIUDCP0 value is 46875: this means that 1 rpm value requires
a comp value of 4687500. Therefore the following equation gives the comp value
depending on the current speed:

comp = 4687500
speed

(5.5)

comp represents the value that must be stored in RTICOMP0 and RTIUDCP0.
Since the tachometer visualized in the Nextion display dashboard has its maximum
position with an angle of 151° over 360° and the maximum rpm can be 8000 rpm,

72

Crank/Cam Simulator Software Development

1° will correspond to about 53 rpm. Therefore the following equation will be
considered:

gauge_val = speed/53 (5.6)

RTI registers must be updated according to the new crankshaft rotational speed,
so comp value is passed to RTICOMP0 and RTIUDCP0 registers, and it will change
the period of PIT. Free running counter RTIFRC is set to the maximum value
since, in this way, it will be ready to restart and count for compare matches.
Speed value is sent to Nextion touch display, and it is shown in a text box of
the dashboard: it must be converted from integer variable into ASCII characters
through ltoa function and then added inbuf buffer after the instruction "t0.txt=",
by following the Nextion Instruction Set rules. Then, the hexadecimal value of all
instruction characters is sent over SCI1 module thanks to sciSend function and
they are terminated with another sciSend containing Cmd_End array.
Almost the same happens for the instruction moving the tachometer needle vi-
sualized in touch display. Indeed gauge_val is added in another buffer (buf_g)
after the ASCII command "z0.val=", which will change needle position. Then, the
hexadecimal value of all instruction characters is sent over the SCI1 module again
thanks to the sciSend function, and they are terminated with another sciSend
containing Cmd_End array.
At this point, the ISR is complete, and the unit position event flag in the QEPSTS
register is cleared in order to be ready to detect the next interrupt. The endless
loop function and the main function are complete too.

Figure 5.21: ISR inside while(1) function in HL_main.c file

73

Crank/Cam Simulator Software Development

The last part of the HL_main.c code is the declaration of rtiNotification function,
which will be called every time the interrupt request due to RTI compare match
is pending. It is able to read each character stored in the string describing the
crankshaft and camshaft wheel pattern and set the corresponding GIOA bits:

• in case of char 0 detections, both GIOA bit 2 (crankshaft digital signal) and
bit 0 (camshaft digital signal) will be at logic low;

• in case of char 1, GIOA bit 2 (crankshaft digital signal) will be at logic high
and bit 0 (camshaft digital signal) will be at logic low;

• in case of char 2, GIOA bit 2 (crankshaft digital signal) will be at logic low
and bit 0 (camshaft digital signal) will be at logic high;

• in case of char 3, both GIOA bit 2 (crankshaft digital signal) and bit 0
(camshaft digital signal) will be at logic high;

Digital logic state imposed by gioSetBit function will be held over the whole PIT
period. Then, index i is increased at every match by guaranteeing that a new
character of the look-up table will be analyzed next time rtiNotification is invoked.
Furthermore, index i will be reset to zero when it reaches the last character in
order to read out the look-up table in endless-loop.

Figure 5.22: rtiNotification function declaration in HL_main.c file

74

Crank/Cam Simulator Software Development

The application code is composed of several source files that must be linked
together into one executable file. For this reason, the build action must be
performed in Code Composer Studio: compiler accepts C/C++ source files and
produces assembly language source files, which are translated into machine language
relocatable object files by the assembler. Then, a linker combines object files into
a single executable object file. If any coding error is present, Problem view will
provide a summary of errors and warnings encountered during project build.
If no error is found in the building phase, the next step is debug process: the
application can be loaded to the targeted microcontroller evaluation board connected
via USB, and its behaviour can be evaluated. This process allows to detect errors
or modify behaviours of the application. When a debug session is started, Code
Composer Studio will automatically switch to the CCS Debug perspective, which
by default contains views associated with debugging. Once the launch process
is finished, the interaction with the crankshaft and camshaft simulator hardware
can be done by issuing commands such as resume button (it runs the program),
suspend button (it halts the program), terminate button (it ends the debug session
and return to the edit perspective), and buttons for stepping. Breakpoints can be
added to inspect variables, expressions, registers at a precise running point.

75

Chapter 6

Results

It must be verified that the open-loop crankshaft and camshaft simulator works as
expected, and this is done with a debug session that confirms the correct behaviour
of the system. When the program runs, the touch display is turned on and, after
the splash page, it shows the home page, which the user can interact with.

Figure 6.1: Crank/cam sensors simulator after startup

It is possible to navigate through the menu by selecting the desired option:
the most important page is the dashboard, where the battery and key signal can
be switched on or off, and it is also possible to read the rpm value. In order
to check that crankshaft and camshaft digital signals are generated correctly, an
oscilloscope is needed. Channel 1 is connected via oscilloscope probe with the GIO
pin generating crankshaft signal and GND, instead channel 2 is connected with the
GIO pin generating camshaft signal and GND thanks to another probe (connection
details are given in Table 4.1).

76

Results

6.1 Oscilloscope acquisitions
Dashboard in starting conditions shows a value of 0 rpm, battery and key signal
are turned off. The oscilloscope reads two digital signals always in low logic as
expected.

Figure 6.2: Crank/cam sensors simulator: dashboard page in starting conditions

At this point, the user can turn clockwise the controller knob in order to raise
the simulated crankshaft rotational speed: the simulator can increase correctly
the rpm value, which is displayed in the dedicated frame, and to generate also
the crankshaft and camshaft position sensors signals. By rotating the controller
counter-clockwise, the rpm value and also signals frequency decreases. Both digital
signals are generated continuously since the look-up table is read out again from
the top when the index variable oversteps the last value.
It is fundamental to verify empirically that the visualized engine rotational speed
generates the digital signals with the correct frequency. As discussed in chapter
5.1.5, a periodic interrupt timer is used to manage the digital signal state to impose
at each rising or falling edge of the crankshaft wheel tooth. Since in the "60-2"
crankshaft wheel both teeth and gaps have an angular displacement of 3°, the
period given by the detection of a new tooth is equal to twice the PIT period.
Hence, the relationship between "60-2" crankshaft tooth period and rpm value is
the following:

Ptooth = 2 ∗ PPIT = 2 ∗ 1
2 ∗ rpm

= 1
rpm

(6.1)

The tooth frequency will be:

ftooth = 1
Ptooth

= rpm (6.2)

77

Results

Therefore, the crankshaft and camshaft sensors simulator is set at a certain
engine speed value. For example, it is taken an rpm value of 200rpm and with a
cursor measurement in the time domain, two consecutive crankshaft signal rising
edge are chosen. As shown in Figure 6.3 and 6.4, the signal is generated with a
frequency equal to 200 Hz, corresponding to a crankshaft rotating at 200 rpm (the
yellow signal is the crankshaft and the blue one is the camshaft).

Figure 6.3: Crank/cam sensors simulator set at 200 rpm: oscilloscope in cursor
mode

Figure 6.4: Oscilloscope frequency measurement in cursor mode: 200 Hz

In order to better visualize the two signals, the camshaft sensor signal has been

78

Results

shifted down by using oscilloscope vertical position regulation, but it has the same
voltage dimension as the crankshaft signals.
It is possible to notice that the tachometer needle is moved from the rest position
according to the rpm value set by the user.

The same verification procedure is performed to check the correctness of the
crankshaft wheel teeth period at different rpm value: it has been verified empirically
that tooth frequency is correct with all the possible engine speed value. Therefore,
the rotary encoder can act on the update frequency of the crank and cams signals
in real-time. The following oscilloscope acquisitions show that the simulator works
as expected with also some precise rpm values.

Figure 6.5: Oscilloscope frequency measurement in cursor mode: 201 Hz

Figure 6.6: Oscilloscope frequency measurement in cursor mode: 202 Hz

Figure 6.7: Oscilloscope frequency measurement in cursor mode: 203 Hz

79

Results

After this analysis, another verification is required. As mentioned in chapter
5.2, the look-up table has been realized from a "60-2" rotating crankshaft wheel
pattern and a "6+1" camshaft wheel pattern used in a Cursor 9 engine. In this
case, cam teeth have an angular displacement of 3° such as those in the crankshaft
wheel: they are in correspondence of 12th, 32th, 37th, 52nd crankshaft teeth in
the first crankshaft revolution and 12th, 32th and 52nd crankshaft teeth in second
crankshaft revolution. To be clear, a model of the patterns has been plotted through
MATLAB, and it is shown in Figure 6.8, where blue signal represents crank, and
red signal represents cam over a whole engine cycle of 720°.

Figure 6.8: Model of "60-2" crankshaft wheel pattern and "6+1" camshaft wheel
pattern

These patterns have been reproduced correctly by the simulator. As an example,
in Figure 6.9 is shown an oscilloscope acquisition of the signals generated with
200rpm: digital cam signal goes in the high state exactly as it does in Cursor 9
model.

80

Results

Figure 6.9: Oscilloscope acquisition of crank and cam signals at 200 rpm: 720°
crankshaft rotation is framed

Moreover, for the sake of completeness, the simulator has been tested by increas-
ing and decreasing in real-time the rpm value and verifying that output signals
were generated with the corresponding tooth frequency. The following figures show
the crankshaft and camshaft sensors simulator working as expected at 1000 rpm
and 2500 rpm. The tachometer needle also moves correctly.

Figure 6.10: Crankshaft and Camshaft sensors simulator set at 1000 rpm: oscil-
loscope in measure mode

81

Results

Figure 6.11: Oscilloscope acquisition in cursor mode of crankshaft and camshaft
sensors signals generated by the simulator at 1000 rpm

Figure 6.12: Crankshaft and Camshaft sensors simulator set at 2500 rpm: oscil-
loscope in measure mode

82

Results

Figure 6.13: Oscilloscope acquisition in cursor mode of crankshaft and camshaft
sensors signals generated by the simulator at 2500 rpm

The realized open-loop simulator now can be used to perform ECU tests. The
application is stored in SRAM, and it runs every time the simulator is supplied
with a voltage of 5V via its USB connector.

6.2 Crank/Cam position sensors simulator con-
nected to a real ECU

As a sketch of the proof, the open-loop simulator is connected to a real ECU: Bosch
EDC17C69 running software for Diesel 1.6cc E6D engine.
Firstly, the crankshaft and camshaft wheel patterns related to this simulated engine
have been studied. Carmaker provides a model with a "60-2" crankshaft wheel and
a 3-teeth camshaft wheel. The first cam tooth spans from an angle of 0° to 123°,
the second tooth 180°-357° and third tooth 489°-537°. A MATLAB script file has
been created in order to plot the crank and cam patterns.

83

Results

Figure 6.14: Model of "60-2" crankshaft wheel pattern and 3-teeth camshaft
wheel pattern

Therefore, the variable describing the look-up table in the application code
written in Code Composer Studio has been edited accordingly, as shown in Figure
6.15.

Figure 6.15: Application code variable describing the new crankshaft and camshaft
wheel pattern

84

Results

The updated code has been debugged, and the application has been loaded to
the evaluation board governing the simulator. Once again, the oscilloscope has
been connected to the output simulator pins, and it has been checked that the
simulator works as expected. It has been verified that the generated cam pattern
corresponds to model one, as shown in Figure 6.16.

Figure 6.16: Oscilloscope acquisition of crank and cam signals at 2000 rpm: 720°
crankshaft rotation is framed

The simulator generates the two digital signals varying in real-time the crank
tooth frequency according to the rpm set by the user.
Then, the digital pins outputting the crankshaft sensor and the camshaft sensor
signals can be connected to a real ECU. A HIL SCALEXIO simulator configured
for automotive engine verification and validation is connected to the ECU, and a
Breakout Box is inserted between them in order to connect or disconnect ECU
pins or SCALEXIO channels for testing purposes.
From the engine control system electrical scheme provided by the carmaker it has
been derived how ECU interfaces with the SCALEXIO simulator: the crankshaft
position sensor signal is taken as input by the ECU with pin A20 (GND with pin
A21), and camshaft position sensor with pin A51 (GND with pin A52). Therefore,
breakout box connections related to these pins have been disconnected since it is
not needed the connection with SCALEXIO anymore, but now with the open-loop
crank/cam simulator: jumper wires to banana plugs are used to connect the open-
loop simulator’s crank and cam digital output pins to the Break-Out Box entries
connected to the related ECU pins. Figure 6.17 shows wiring connection between
breakout box and simulator: blue plug provides crankshaft signal to A20 entry;

85

Results

red plug provides GND to A21 entry; yellow plug provides camshaft signal to A51
entry; green plug provides GND to A52 entry.

Figure 6.17: Breakout box connecting the real ECU with SCALEXIO simulator:
external connection with open-loop crank/cam simulator

The other ECU pins remain connected with the dSpace SCALEXIO simulator,
which can simulate the other signals of the engine sensors and receive actuator
signals. Figure 6.18 shows a conceptual overview of the system configured.

Figure 6.18: A conceptual overview of the exchanging signals between ECU,
SCALEXIO simulator and crank/cam simulator

86

Results

The used ECU has also been connected to an ETAS ES592: it is a hardware
interface module used for ECU calibration, diagnostics, flash programming, and bus
monitoring. It is connected to a host PC via ethernet, where the INCA software
tool can be used for the calibration, diagnostics and validation of automotive
electronic systems.
At this point, the test is performed: the real ECU is supplied by the SCALEXIO
simulator and receives crankshaft and camshaft signals from the realized simulator.
Several rpm values have been imposed as input by the user, and ECU has understood
the incoming crankshaft and camshaft signals. Indeed, through INCA, ECU
software variables can be monitored, and engine rotational speed corresponds to
the value set from the simulator.

Figure 6.19: Open-loop crank/cam simulator connected to a real ECU: crankshaft
rotational speed is set at 1000 rpm and the value is correctly read by the ECU,
and is visualized via INCA software

87

Results

Figure 6.20: Open-loop crank/cam simulator connected to a real ECU: crankshaft
rotational speed is set at 1800 rpm and the value is correctly read by the ECU,
and is visualized via INCA software

Therefore, the open-loop crankshaft and camshaft position sensor simulator can
be used to perform some ECU validation and verification tests.

88

Chapter 7

Conclusions

Electronic systems in the automotive field are continuously increasing their com-
plexity, and they lead companies to study new strategies in order to improve vehicle
performance. ECUs are the main embedded systems that control the electrical
systems and subsystems in a vehicle, and ECM is the fundamental one since it
controls all the actuators on an internal combustion engine. Developing and testing
ECUs may require a big effort in terms of time and consequently of costs; therefore,
the automotive industry is interested in reducing workloads, bearing in mind that
the safety and validity of the testing process must be guaranteed. In this sense,
the proposed open-loop crankshaft and camshaft simulator is developed: ECM
software developers and testers can use it to perform a fast simulation of the speed
of an internal combustion engine, also providing the ignition timing. Indeed, the
crankshaft position sensor detects the relative engine speed, and the camshaft
position sensor is used to determine which cylinder is firing to synchronize the fuel
injector and coil firing sequence.
The master thesis work has been focused on the realization of an open-loop simulator
generating crankshaft and camshaft position sensors digital signals: a customized
embedded system has been configured in order to perform the task as desired by
the user. The simulator core is the microcontroller evaluation platform (Texas
Instruments’ Hercules TMS570LC43x board); therefore, the whole logic has been
implemented on it. Hardware characteristics and peripheral functionalities have
been studied in order to build the most suitable configuration of the system. The
most important task is the generation of the digital signals with a period that is
determined by the rpm value set by the user. Therefore, a human-machine inter-
face has been implemented by connecting two I/O peripherals to the evaluation
board: a memory touch display and a quadrature encoder. The first one has been
programmed with a menu to allows the engine speed visualization but also the
controlling of some settings; the second one can correctly increase or decrease
the speed. Simulator basic software and application code have been programmed

89

Conclusions

through software tools provided by Texas Instruments. The final executable file is
loaded into the evaluation board after a debugging session. The program is stored
in microcontroller SRAM memory, and it is launched every time the simulator is
powered.
Crankshaft and camshaft wheel patterns are stored in the program as a look-up
table which is read out thanks to a periodic interrupt controlled by the user: this
leads to the generation of the crankshaft and camshaft digital sensor signals with
the correct frequency. Hence, the obtained signals can be used as an actual reference
for testing and validating internal combustion engine ECMs, and the simulator can
be provided to automotive companies.

7.1 Future Works
The implemented simulator works as expected, but some improvements are foreseen.
Firstly, another I/O peripheral (i.e. a USB host shield) can be added to the
evaluation board in order to read out directly a look-up table very similar to
SCALEXIO wavetables stored in CSV files. User in this way will be able to change
crankshaft and camshaft wheel patterns fastly, loading a CSV file from a USB
flash drive. Furthermore, the application can be enhanced in order to simulate also
analog and reverse crankshaft and camshaft sensors signals by selecting the type
from the settings page already developed into the touch display.

90

Bibliography

[1] N. Navet and F. Simonot-Lion. «Automotive Embedded System Handbook».
In: Boca Raton, FL: CRC Press, 2009. Chap. 1 (cit. on p. 1).

[2] R. Palomera M. Jiménez and I. Couvertier. «Introduction to Embedded Sys-
tems». In: New York, NY: Springer, 2014. Chap. 1 (cit. on p. 7).

[3] M. Violante. «Operating System Structure». In: Torino: Politecnico di Torino,
2019 (cit. on p. 8).

[4] ISO 26262-1:2018(en) Road vehicles – Functional safety. International Stan-
dard. 2018 (cit. on p. 11).

[5] M. Violante. «Introduction to ISO-26262». In: Torino: Politecnico di Torino,
2019 (cit. on p. 13).

[6] dSPACE GmbH. SCALEXIO System Overview. Paderborn, Germany: dSPACE
GmbH, 2015 (cit. on p. 19).

[7] SPNU563A datasheet. Dallas, Texas: Texas Instruments (cit. on p. 41).
[8] Nextion Distribution. NX4827T043_011 datasheet. 2018. url: https : / /

nextion.ca/datasheets/nx4827t043_011/ (cit. on p. 54).
[9] ITEAD STUDIO. The Nextion Instruction Set. 2011-2020. url: https://

nextion.tech/instruction-set/ (cit. on p. 56).

91

https://nextion.ca/datasheets/nx4827t043_011/
https://nextion.ca/datasheets/nx4827t043_011/
https://nextion.tech/instruction-set/
https://nextion.tech/instruction-set/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Diesel Internal Combustion Engine
	Four Stroke Cycle Diesel Engine
	Overview of the Engine Control Module

	Embedded systems
	Hardware
	Basic Software
	Real-Time Embedded Systems

	ISO-26262 and V-Shape Development Flow
	Product Development: Software level

	Validation of Embedded Control Algorithms
	Model-in-the-Loop
	Software-in-the-Loop
	Processor-in-the-Loop
	Hardware-in-the-Loop

	dSpace SCALEXIO simulator
	Overview of SCALEXIO Systems
	Hardware
	Software Tools
	DS2680 I/O Unit

	Engine simulation
	Crank and Cam
	Operation Principle of Crankshaft and Camshaft Sensors
	Crank and Cam Wavetables
	Function Block Configuration

	Crank/Cam Simulator Hardware
	Microcontroller overview
	Architecture
	Memory organization
	Peripheral overview

	Control and visualization interface
	Rotary Encoder
	Wiring Harness

	Crank/Cam Simulator Software Development
	Hardware Abstraction Layer
	Clock configuration
	SCI peripheral module
	Digital Signal I/O
	eQEP module
	Real-Time Interrupt Module

	Details of the Application Code

	Results
	Oscilloscope acquisitions
	Crank/Cam position sensors simulator connected to a real ECU

	Conclusions
	Future Works

	Bibliography

