
Politecnico di Torino

Master of Science in Mechatronics
Engineering

Master Degree Thesis

Decentralized control for multi-robot
systems with event-triggered

communications

Supervisor:
Prof. Alessandro Rizzo

Co-supervisors:
Prof. Fabrizio Caccavale
Prof. Francesco Pierri

Candidate:
Pierluigi Pugliese

Academic Year 2020/21
Torino

Acknowledgements

Throughout the writing of this thesis I have received all the support I needed to
finalize the work. I would first like to thank my co-supervisors Professor Fabrizio
Caccavale and Professor Francesco Pierri for giving me the chance to work in this
project and for having always helped me out in drafting my thesis. I would also
like to thank my supervisor Professor Alessandro Rizzo for showing interest in my
project and in its applications. A big thanks to my parents and my brother to be
always by my side and to give me always wise advice. You are always there for me.

In addition, I would like to thank my friends for providing stimulating discus-
sions as well as happy distractions to rest during spare time.

3

Abstract

Multi-robot systems (MRSs) have been widely studied due to their features as flexi-
bility and intrinsic resilience. Classical approaches to multi-robot control are based
on centralized architectures, which are very effective in terms of performance but
require a central unit and/or complete communication among all robots. This fea-
ture might be difficult to meet in practical scenarios or might be undesirable when
mobile robots are involved. Therefore, recent studies have been mainly focused
on decentralized or distributed systems, as they are better scalable and safer than
centralized ones. Decentralized algorithms applied to networked robots should find
out control and communication problems such as controlling the MRS centroid and
the formation.

This thesis deals with the simulation of a decentralized centroid and formation
control, based on a distributed controller-observer scheme for a team of mobile
agents (robots). In this context, each robot is characterized by a single-integrator
dynamics ẋ = u where x is the state and bfu is the input vector. A local observer
is used by each agent to estimate the collective state of the system, while the
distributed controller is in charge of desired centroid and formation tracking. This
design leads to relevant advantages with respect to other layouts:

• each agent evaluates the state of the whole system, which can be exploited to
achieve other goals (e.g., fault detection);

• estimation of the whole state results in a strong (i.e., exponential) convergence
of the estimation and tracking errors.

To reduce the exchange of information, each robot can communicate only with its
neighbours. In the thesis, a multi-robot system characterized by a fixed and strongly
connected directed communication graph is considered. Furthermore, in order to
decrease the exchange of information between the robotic agents, an event-triggered

4

control strategy is devised, where each agent communicates with its neighbours
only when a triggering condition on the estimation error is verified. Two different
triggering conditions are implemented: one based on a Lyapunov’s function for
the estimation error and the other based on the dynamics of the estimation error.
The triggering conditions are verified in simulation and their performances are
compared. Matlab and Simulink have been used to perform the simulations.

5

Contents

List of Figures 9

1 Introduction 12
1.1 Categories of mobile robots . 13
1.2 Multi-robot systems . 16
1.3 Motivations . 16

1.3.1 Decentralized control . 16
1.3.2 Controller-observer scheme 17
1.3.3 Event-triggered control . 18

1.4 Background . 19
1.5 Overview of the formation control and goals 19

2 Control scheme model 21
2.1 Preliminaries . 21

2.1.1 Graph theory . 21
2.1.2 Mathematical knowledge . 21
2.1.3 Consensus . 22
2.1.4 Hurwitz stability . 22
2.1.5 Lyapunov criterion for the analysis of stability 23
2.1.6 Zeno phenomenon . 24

2.2 System dynamics . 25
2.2.1 Graph Representations and Laplacian Matrix 25
2.2.2 Control objective . 26
2.2.3 Trajectory planning . 28
2.2.4 State observer design . 29
2.2.5 Control law . 31
2.2.6 Decentralized architecture 32

7

2.2.7 Dynamics of the estimation error 32
2.2.8 Event-triggered control based on the estimation error 34
2.2.9 Triggering condition based on the Lyapunov function 37

3 Simulations 41
3.0.1 Code . 42
3.0.2 Simulations without the triggering condition 46
3.0.3 Simulations with the triggering condition based on the esti-

mation error . 52
3.0.4 Simulations with the triggering condition based on the Lya-

punov function . 58
3.0.5 Real world applications . 65

4 Conclusion 67

5 Appendix 69
5.0.1 Mathematical expression of −K̃c and L̃c 69

6 References 73

8

List of Figures

1.1 Example of base-fixed robot . 13
1.2 Example of mobile robots . 13
1.3 Classes of robots . 14
1.4 Wheel configuration for mobile robots 15
1.5 Centralized structure vs decentralized 18
1.6 A Controller-Observer scheme . 18

2.1 The desired trajectory, the desired velocity and the acceleration . . 29

3.1 Controller and observer scheme running on each robot 45
3.2 The block responsible for updating the information exchanged among

the agents . 45
3.3 Estimation errors relative to the four robots without triggering con-

dition . 46
3.4 Centroid and formation tracking errors without triggering condition 47
3.5 Time update without triggering condition 47
3.6 Path travelled by the robots . 48
3.7 Estimation errors relative to the four robots without the triggering

condition with only σ1 active . 49
3.8 Tracking error on one task without the triggering condition with only

σ1 active . 49
3.9 Path travelled by the robots . 50
3.10 Estimation errors relative to the four robots without triggering con-

dition with only σ2 active . 51
3.11 Tracking error on one task without triggering condition with only σ2

active . 51
3.12 Path travelled by the robots . 52

9

3.13 Estimation errors relative to the four robots with triggering condition
based on the estimation error . 53

3.14 Tracking error of the two tasks with triggering condition 53
3.15 Detail of the time update . 54
3.16 Path travelled by the robots . 54
3.17 Estimation errors relative to the four robots with triggering condition

and only σ1 active . 55
3.18 Tracking error on the task with triggering condition and σ1 active . 55
3.19 Detail of the time update . 56
3.20 Estimation errors relative to the four robots with triggering condition

and only σ2 active . 57
3.21 Tacking error on the task with triggering condition and only σ2 active 57
3.22 Detail of the time update . 58
3.23 Estimation errors relative to the four robots with triggering condition

based on Lyapunov function . 59
3.24 Estimation errors on the two tasks with triggering condition based

on Lyapunov function . 59
3.25 Detail of the time update . 60
3.26 Path travelled by the robots . 60
3.27 Estimation errors relative to the four robots with triggering condition

based on Lyapunov function . 61
3.28 Estimation error on the task with triggering condition based on Lya-

punov function . 62
3.29 Detail of the time update . 62
3.30 Estimation errors relative to the four robots with triggering condition

based on Lyapunov function . 63
3.31 Estimation error on the task with triggering condition based on Lya-

punov function and only σ2 active 64
3.32 Detail of the time update . 64

10

Chapter 1

Introduction

Robots have been developed to help people in carrying out different activities, from
ordinary tasks to crucial industrial applications. Automation has reached a wide
diffusion in several industries as the robots are becoming faster, more effective and
more reliable than human beings. Robotics has been widely applied from logistic
and transportation sector, to factories and health-care. In these contexts, robots
have shown outstanding capabilities to interact between themselves by cooperating
in such a way that each of them is effectively able to complete its own task. Devel-
opment of completely autonomous robots has been widely studied. Autonomous
robots are the pinnacle of automation; they can receive commands to execute tasks
and perform them without the human interventions. Instructions given to agents
provide descriptions on what the robot is expected to do rather than indicate how
to do it. Automation has made giant strides. While before robotic research has
led to base-fixed robotic manipulator (Figure 1.1),lately another type of robots has
become widely used, namely robots with a mobile base (Figure 1.2). These robots
are able to navigate through manufacturing plants, in external environment or on
battlefields. Some of them perform tasks being remotely controlled by an operator;
however, most of these robots are not autonomous, using sensors to allow their
operator remote access to perilous, distant or inaccessible places. Some of them
can be semi-autonomous, performing sub-tasks automatically, (i.e. the autopilot
of a drone stabilizes the flight while the human chooses the flight track). Fully
autonomous mobile robots perform tasks on their own, such as transporting mate-
rial while navigating in different types of terrain (i.e. warehouses, buildings, rough
terrain) and in a dynamic environments (i.e. human-robot cohabitated spaces, cars

12

1.1 – Categories of mobile robots

on the streets).

Figure 1.1. Example of base-fixed robot

Figure 1.2. Example of mobile robots

1.1 Categories of mobile robots

Motion is the main issue concerning mobile robots overall. Robots operate in
planned and controlled scenario, however robots are often used in adverse and ex-
treme environments. Mobile robots can also operate in disparate surroundings, not

13

Introduction

Figure 1.3. Classes of robots

only on the ground as underwater robots are particularly effective in ocean obser-
vation or flying drones being applied to patrol perimeters. Robots’ motion system
represents a crucial task in mobile robots’ design by affecting robots operations
as well as conditions such as, inter alia, maneuverability, controllability, terrain
conditions, stability, efficiency. Based on movement system, mobile robots can be
classified, as follows:

• Base-fixed (manipulators);

• Land-based:

– Wheeled mobile robot;

– Walking (legged) mobile robot;

– Tracked slip/skid movement;

– Hybrid;

• Air-based; and

• Water-based.

Wheeled mobile robots are commonly used in several applications such as trans-
portation of various materials inside a warehouse or in the exploration of unknown

14

1.1 – Categories of mobile robots

environments, being able to consume less energy and move faster compared to other
motion mechanisms (i.e. legged robots) explain their widespread application. From
a control standpoint, less effort is required, due to their simple mechanisms and re-
duced stability problems. Although one of the biggest disadvantages of the wheeled
robots is their struggle to overcome rough terrain or uneven ground, they are suit-
able for a wide class of tasks and several applications. Wheeled robots can have
disparate outlooks, depending on the number and the configuration of the wheels.
On a flat ground three wheels are enough for a robot to balance, more wheels can
be added, but more difficult operations must be applied to maintain all the wheels
on the ground if the surface is not flat. Based on the wheel’s setting, most common
wheeled robots can have two, three, four wheels and in some particularly cases even
more (Figure 1.4). A bicycle is an example of a two-wheeled mobile robot, another
type of a two-wheeled mobile robot is equipped with two independent driving mo-
tors, one for each wheel. Many of car-like robots can have dissimilar driving design,
like rear-wheel drive, front-wheel drive or four-wheel drive. Legs are another widely
used form of locomotion. They are usually more expensive than wheels, legs have
several advantages over wheels. The main advantage is their efficiency and the
possibility to move on soft and uneven terrain. Walking robot can easily coping
with obstacles or holes in the environment.

Figure 1.4. Wheel configuration for mobile robots

15

Introduction

1.2 Multi-robot systems

A Multi-Robot System (MRS) is a group of robots operating in the same environ-
ment and coordinated with each other to achieve some goals. The robots equipment
may be a simple sensor, acquiring and processing data. Nowadays MRS are com-
plex mobile platforms, equipped with sensors and actuators, able to execute various
tasks; MRS can improve the efficacy of a robotic system either in the performances,
or in the robustness of the system. Even when a single robot can achieve a given
task, a team of robots can improve the performance of the system. There are
two main approaches to multiple robot systems: collective swarm systems and
intentionally cooperative systems. Collective swarm systems are those
where the robots can execute the given tasks with minimal knowledge of the robots
in the team. In intentionally cooperative systems the robots are aware of
the presence of other robots and act together based on the information exchanged
among them. Multi-robot systems have some advantages over single-robot systems.
The reasons to prefer a multi-robot system are the following:

• the task is inherently distributed;

• multiple robots can solve problems faster, due to the parallelism;

• multiple robots increase robustness through redundancy; and

• a single robot could not complete some classes of tasks, due to their complex-
ity.

1.3 Motivations

1.3.1 Decentralized control

The control architecture for a Multi-robot system has a huge impact on the ro-
bustness and scalability of the system. A relevant difference between a single-robot
system and a multi-robot system is that a MRS must manage the internal actions
of the robots and coordinate the behavior of the group. There are several architec-
tures for MRS, but they can divided into two broad categories: centralized and
decentralized. A centralized architecture is characterized by the presence of a
central control unit, which can be either one of the robots or a central processing

16

1.3 – Motivations

device, that always communicate with all the robots and knows the state of all the
robots in the system. The central control unit is in charge of computing the path
of all the other agents using the received information. In a real world application, a
continuous communication between the agents and the central unit at a frequency
capable to guarantee an efficient real-time control, is difficult to achieve. Further-
more, the system is extremely vulnerable to failures of the central unit. This type
of architecture is very efficient for a small group of robots, but becomes very risky
with a large number of robots. In a Decentralized or distributed architectures
nowadays are the most widespread approaches for a MRS. In this type of archi-
tecture the agents aren’t coordinated by a central unit, but each is autonomous
on computing its control input. Typically in this type of architecture robots have
access only to local sensed information and limited inter-agents information. This
type of control architecture has numerous advantages:

• reliability: if one of the agents has a malfunction, the system adapts to the
situation and reorganizes the tasks based on the circumstances;

• scalability: this type of architecture can be easily implemented for a large
number of robots;

• efficiency: the same task can be accomplished in a faster way with more
robots;

• flexibility: there is no need of a single powerful hardware, but more robots
that have limited functions can be used.

The decentralized architecture also have some disadvantages, e.g. if the system
isn’t optimized, the performance can be lower than the centralized counterpart.

1.3.2 Controller-observer scheme

In a control system for many reasons, like robustness and reliability, it’s useful to
have a full state feedback. In real applications, it is often impossible to measure
all the states of a system. To overcome this problem, it’s possible to use observers,
which substitutes a sensor where the measurements cannot be taken physically. The
observer computes an estimate of the state of the system that can be used as state
feedback of the control system. Using an observer, each agent can build a reliable
image of the whole state of the team, thus a lot of function can be added to the

17

Introduction

Figure 1.5. Centralized structure vs decentralized

system (e.g. fault diagnosis). Furthermore, the estimation of the whole state allows
to obtain a strong convergence result, ensuring good robustness of the closed-loop
system.

Figure 1.6. A Controller-Observer scheme

1.3.3 Event-triggered control

The common approach of a control system for a MRS is based on a periodic ex-
change of information among the agents and on a periodic control. In a time-
triggered system, all communications and processing are initiated at a scheduled

18

1.4 – Background

points in time; the main advantage of this approach is the predictability. How-
ever, real systems often are not able to acquire the samples at an exact frequency.
Therefore, the use of aperiodic sampling has been subject to many researches in the
control community. In event-triggered control, the idea of a periodic sampling
is replaced by aperiodic one; as it is useless to monitor an already stable system’s
state, it would be better check the state rarely, to see if it behaves in the right way.
The goal of the research is to determine in a precise way when the control signals
need to be updated to improve the efficiency and, at the same time, to guarantee
control performance. The application of an event-triggered function allows to
lower extensively the quantity of information exchanged between the agents, facil-
itating the communication especially in some real scenarios, where the robots can
share only one wireless channel. This type of control, could have also some dis-
advantages, mostly linked to Zeno phenomenon (where a system makes an infinite
number of jumps in a finite amount of time), in the case the control is not suitably
designed.

1.4 Background

This thesis deals with the simulation of a centroid and formation control, based on
a distributed controller-observer scheme for a team of mobile robots. The control
scheme is inherited from a research paper [1] and is extended to the case of event-
triggered communication. The thesis analyzes a decentralized scheme, finalized to
the control of the formation of a Multi-robots (MRS), following the introduction of
two different event-triggered function, with the goal of decreasing the exchange of
information between the robots.

1.5 Overview of the formation control and goals

The considered control scheme is composed by an observer and a controller, for
each agent. The observer provides an estimate of the state of whole system using,
respectively, the information collected on its own and the one received from the
neighbors agents. The controller generates a control input trough its feedback
control law, which is used for steering the robot to comply with the desired task. In
light of that the robots are able to follow a desired path in a given formation. On the

19

Introduction

basis of this control scheme, two different triggering condition are implemented to
reduce the information exchange. One triggering condition is based on the dynamics
of the estimation error and the second one based on a Lyapunov function. The goals
of this thesis is to validate these triggering conditions in terms of convergence to
zero of the estimation error and of the errors related to the given task. The two
triggering conditions are compared. It further analyzes the behavior of the system
in the case of one task at a time is active.

20

Chapter 2

Control scheme model

2.1 Preliminaries

2.1.1 Graph theory

Denoted by E the set of the edges of a graph and V the set of the nodes of a
graph; a graph is named undirected if (i, j) ∈ E implies (i, j) ∈ E for any i, j ∈ V .
An undirected graph is called connected, if there exists a path between each pair
of distinct nodes. A directed graph is called strongly connected, if there is a
directed path from each node to each other node. A node of a directed graph is
called balanced if its in-degree (i.e. number of incoming edges) and its out-degree
(i.e. the number of outgoing edges) are equal. A graph is called balanced if each
node of the graph is balanced.

2.1.2 Mathematical knowledge

If A is an m×n matrix and B is a p× q matrix, then the Kronecker product A⊗B
is the mp× nq block matrix:

A⊗B =

a11B · · · a1nB
...

am1B · · · amnB

 (2.1)

The main proprieties of Kronecker products are:

• (A⊗B)(C ⊗D) = (AC)⊗ (BD).

21

Control scheme model

• (A⊗B)T = AT ⊗BT .

• rank(A⊗B) = rank(A)rank(B).

• rank(A+B) = rank(A) + rank(B) if BTA = 0

2.1.3 Consensus

The consensus is a fundamental notion of this control scheme. When, in multiple
vehicles accord on a variable of interest, they have reached consensus. The consen-
sus gives, to the vehicles belonging to the same network, well matched information
about some crucial parameters for the coordination task. Usually to achieve con-
sensus, the agents have to share a variable of interest, called information state,
as well as a proper algorithmic methods for settling to reach consensus on the value
of that variable, called the consensus algorithm. The idea at the basis of a con-
sensus algorithm is to design each vehicle with similar dynamics on the information
states. If the communication among vehicles is continuous, the information state
update of each vehicle is modeled using a differential equation.On the other hand,
if the communication is discrete, the information about the consensus is modeled
using a difference equation.

2.1.4 Hurwitz stability

The Routh-Hurwitz stability criterion gives an algorithm to decide whether or not
the zeros of a polynomial are all in the left half of the complex plane (such a
polynomial is called at times "Hurwitz"). A Hurwitz polynomial is a fundamental
requirement for a linear continuous-time invariant system to be stable (all bounded
inputs produce bounded outputs). Given a real polynomial

p(z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an (2.2)

the n× n matrix of the coefficients is

A =


a1 1 0 0 0 0 0 0 · · · 0

a3 a2 a1 1 0 0 0 0 · · · 0

a5 a4 a3 a2 a1 1 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 · · · an

 (2.3)

22

2.1 – Preliminaries

A square matrix A is called a Hurwitz (stable) matrix if each of its eigenvalue
of A has a stricly negative real part, as

Re[λi] < 0 (2.4)

for each eigenvalue λi. A is called a stability matrix, because the differential
equation

ẋ = Ax (2.5)

is asymptotically stable, x(t) −→ 0 as t −→∞.

2.1.5 Lyapunov criterion for the analysis of stability

Given a non-linear system
ẋ = f(x) (2.6)

having x ∈ Rn as state vector and x̄ as an equilibrium point . Let V (x) be a scalar
function of the state vector, continuous together with its derivative V̇ (x, ẋ). V (x)

is a Lyapunov function if

• Is positive definite in x̄ (=⇒ V (x) > 0,∀x /= x̄ and V (x) = 0,x = x̄)

• Its derivative V̇ (x, ẋ) is negative definite in x̄

If the Lyapunov function satisfies these conditions, then the equilibrium point x̄ is
asymptotically stable. If V (x) in addition to being a Lyapunov function, is also
radially unbounded (=⇒ V (x) −→ ∞, ‖x‖ −→ ∞), then the equilibrium point
(x̄) (that is unique in this case) is globally asymptotically stable. The existence
of a Lyapunov function is a sufficient condition for the asymptotic stability of the
equilibrium. If the derivative of a definite positive function V (x) is a not nega-
tive definite, it is not possible to to draw any conclusion on the stability of the
equilibrium , but it is necessary to seek for another function V (x). The Lyapunov
method can be interpreted as a description of an autonomous dynamical systems
based on a suitable energy definition (positive, by definition). If the derivative
of such a function is negative for any value of the state variables, except for the
equilibrium point, then the energy decreases along any trajectory of the system,
until it attains the minimum, corresponding to the equilibrium point, which results
in this way asymptotically stable. If V (x) is positive definite, but its derivative

23

Control scheme model

is only negative semi-definite(=⇒ V̇ (x, ẋ) ≤ 0), the global asymptotical stabil-
ity of the equilibrium is guaranteed if V̇ (x, ẋ) = 0 only in the equilibrium point
(LaSalle−Krasowski theorem). In the case of linear, time invariant system

ẋ = f(x) = Ax (2.7)

necessary and sufficient condition for the asymptotic stability of the system (not
only of a single equilibrium) is that for each matrix Q with dimensions n × n,
symmetric and positive definite, there exists a matrix P with dimension n × n,
symmetric and positive definite, solution to the Lyapunov equation

ATP + PA = −Q (2.8)

If P exists, the function V (x) = xTPx is a Lyapunov function and its derivative is
V̇ (x) = −xTQx

2.1.6 Zeno phenomenon

A Zeno phenomenon is a very important aspect to consider in the design of a
multi-robot control system. The Zeno phenomenon happens when a system makes
an infinite number of transitions in a finite amount of time. This phenomenon can
be defined as an hybrid phenomenon because it requires interchange of continuous
dynamics (the flow of time) and discrete dynamics (the discrete transitions of a
system). The Zeno phenomenon is an important factor when modeling, analyzing,
controlling, and simulating hybrid systems. Typically it arises due to model simpli-
fication by the designer of a control system. The presence of Zeno execution may
compromise the validity of a lot of techniques used for the analysis of a control
system. These techniques (as Lyapunov, model checking and deductive methods)
are based on the analysis of the system’s behavior along the execution. Despite the
mathematical correctness of these techniques, they don’t guarantee about the evo-
lution of the system beyond the limit of the transition times. If the limit is finite the
evolution of the system is an important part of the process being modeled. Some
theoretical methods exist for detecting and eliminating the Zeno phenomenon. For
the simulations it’s possible to detect Zeno phenomenon instantly, and avoid it by
defining the behavior of the system beyond the limit time of the discrete transitions.

24

2.2 – System dynamics

2.2 System dynamics

Consider a group of N mobile agents, where all the agents are modeled with a single
integrator dynamics. The motion of the group is assumed in two dimensions, so n

is equal to two. For agent i(i = 1...N), state and control vectors are xi = [xi1, xi2]
T

and ui = [ui1, ui2]
T . Single integrator or first order dynamics for agent i

ẋi = ui , i = 1, . . . , N . (2.9)

The collective state and control vectors can be represented as x = [xT1 , ...,x
T
N]T

and u = [uT1 , ...,u
T
N]T , with x,u ∈ RnN . The collective dynamics of the group is

ẋ = u . (2.10)

2.2.1 Graph Representations and Laplacian Matrix

The communication between the N agents can be represented by a fixed graph
G(E ,V). V is the set of indexes labeling the N vertices (nodes) and E = V × V
is the set of arcs connecting the nodes. Defined the communication graph, an
adjacency matrix (A = N ×N) is obtained

A = aij : aii = 0, aij =

 1 if (j, i) ∈ E

0 otherwise
(2.11)

In this matrix the element aij is equal to 1 if the node j can send information to the
node i but not necessarily conversely, otherwise aij is equal to 0. The element aii
is always equal to 0. From the adjacency matrix the Laplacian matrix is derived.
Denoted by L: a real symmetric N x N matrix, that may also be considered as a
kind of augmented vertex-adjacency matrix. It is defined as the following difference:

L = D−A (2.12)

Where D is the degree matrix and A is the adjacency matrix of the system. The
elements of L are given by

L = lij : lii =
N∑

j=1,j /=i

aij, lij = −aij, i /= j (2.13)

25

Control scheme model

Moreover, it is assumed that the ith robot receives information only from a reduced
set of nodes (called its neighbors) Ni = j ∈ V : (j, i) ∈ E, and it does not know the
overall communication graph.

2.2.2 Control objective

The objective of the control is to make the centroid of the agents’ team follow a
desired trajectory and the relative formation follows the desired reference. To this
aim, two tasks need to be defined:

• The centroid (barycenter) of the system: The easiest way to implement this
type of task is to obtain the mean position of the group of robots:

σ1(x) =
1

N

N∑
i=1

xi = J1x, (2.14)

where J1 ∈ Rn×Nn is the Jacobian of the task, such that σ̇1 = J1ẋ. J1 is
obtained as

J1 =
1

N

(
1TN ⊗ In

)
, (2.15)

where In is the (n× n) identity matrix and 1N is (N × 1) vector of ones.

• The formation of the system, can be defined as a given series of relative
displacement between the agents:

σ2(x)=
[
(x2−x1)

T (x3−x2)
T. . . (xN−xN−1)T

]T
= J2x, (2.16)

where J2 ∈ IR(N−1)n×Nn is the Jacobian of the task, and σ̇2 = J2ẋ. J2 is
defined as:

J2 =


−In In On · · · On On

On −In In · · · On On

...
...

...
...

...
...

On On On · · · −In In

 . (2.17)

where In is an identity matrix of size (n × n), while On is a square matrix
in which all of the entries are 0 and of size (n× n). The pseudoinverse of the

26

2.2 – System dynamics

Jacobian of the first task can be easy obtained

J †1 = 1N ⊗ In (2.18)

while the pseduoinverse of the Jacobian J2 requires deeper examination

J †2 =



J †2,1
...
J †2,i
...

J †2,N


, (2.19)

where
J †2,1 =

[
−(N − 1)

N
In −

(N − 2)

N
In . . . − 1

N
In

]
, (2.20)

J †2,N =

[
1

N
In

2

N
In . . .

(N − 1)

N
In

]
, (2.21)

for i = 2, . . . , N − 1

J †2,i=

[
1

N
In . . .

i− 1

N
In −

N − i
N

In . . .−
1

N
In

]
. (2.22)

The following properties hold:

N∑
i=1

J †i = On×(N−1)n, (2.23)

J2

N∑
i=1

ΓT
i = O(N−1)n×n, (2.24)

where ΓT
i =

[
On · · · In · · · On

]
is a (n × Nn) matrix, where In is placed

at the location of the ith node. On the basis of the proprieties listed above,
it’s possible to verify that the two tasks satisfy the following orthogonality
conditions:

J1J
T
2 = On×(N−1)n, J1J

T
2 = O(N−1)n×n , (2.25)

27

Control scheme model

J1J
†
2 = On×(N−1)n, J2J

†
1 = O(N−1)n×n . (2.26)

2.2.3 Trajectory planning

After the definition of the two tasks, the next step is to plan the trajectory that
the multi-robot system has to follow during the execution of the algorithm. The
objective of the trajectory planning is to create the reference input to the motion
system of the robots. The user describes the desired trajectory through a number of
parameters. Planning consists of generating a temporal sequence of values assumed
by a given function, usually polynomial, chosen as a primitive to interpolate the
desired trajectory. In the point-to-point motion, the agents should move from an
initial to a final position, in an assigned time tf . The algorithm has to generate a
trajectory and, given some general characteristics, should optimize the displacement
between two positions. To define the path, a polynomial function of third degree
can be used:

• the position is obtained as p(t) = a3t
3 + a2t

2 + a1t+ a0

• the velocity is obtained from the position as ṗ(t) = 3a3t
2 + 2a2t+ a1

• finally the acceleration is the derivative of the velocity p̈(t) = 6a3t+ 2a2



p(ti) = a3t
3
i + a2t

2
i + a1ti + a0

p(tf) = a3t
3
f + a2t

2
f + a1tf + a0

ṗ(ti) = 3a3t
2
i + 2a2ti + a1

ṗ(tf) = 3a3t
2
f + 2a2tf + a1

ti = 0,

p(ti) = pi,

p(tf) = pf ,

ṗ(ti) = ṗi,

ṗ(tf) = ṗf

−→


pi = a0

pf = a3t
3
f + a2t

2
f + a1tf + a0

ṗi = a1

ṗf = 3a3t
2
f + 2a2tf + a1

(2.27)

Solving this system is possible to obtain the coefficients of the polynomial function
and its derivative, which give the input value for the robots.

28

2.2 – System dynamics

The observer and the controller can use only local information, its own state and
input,and information received from its neighboring robots, Ni. Furthermore each
robot knows the desired value of the tasks function and their first time derivative.

Figure 2.1. The desired trajectory, the desired velocity and the acceleration

2.2.4 State observer design

One of the key concept of the considered control scheme is the design, for each
robot, of a state observer providing an estimate of the whole state of the system ix̂

(i.e. the position of each robot), asymptotically convergent to the collective state
x, as t −→∞.

Let Πi be the matrix (Nn × Nn) Πi = ΓiΓ
T
i . The following equality holds:∑N

i=1 Πi = INn. The estimate of the collective state is computed by the ith robot

29

Control scheme model

(i = 1, ..., N) by the observer

i ˙̂x(t) = ko
(
ci(t) + Πi

ix̃(t)
)

+ iû(t, ix̂), (2.28)

where ko > 0 is the gain of the observer, to be properly selected. The estimation er-
ror is given by the difference between the real state of the system and its estimation
made by the ith agent,

ix̃(t) = x(t)− ix̂(t) , (2.29)

and the consensus term is computed as the sum of the differences of the estimate
of the state computed by the neighbours of the ith robot and the estimate of the
state made by itself

ci(t) =
∑
j∈Ni

jx̂(t)− ix̂(t) . (2.30)

The estimation of the collective control input available to the ith robot is given by

iû(t, ix̂) =


u1(t,

ix̂)

u2(t,
ix̂)

...
uN(t, ix̂)

 ∈ IRNn . (2.31)

The exact expression of u1(t,
ix̂) will be detailed later, since it depends on the con-

trol law. To implement this type of observer, the robot uses only local information,
since Πi select only the ith component of the collective state x, i.e. robot’s own
state. The state estimates can be stacked into the vector x̂∗ = [1x̂T , ...,N x̂T]T ∈
IRN2n. A stacked vector of the estimation error can be defined as follow:

x̃? =


1x̃
2x̃
...

N x̃

 =


x− 1x̂

x− 2x̂
...

x− N x̂

 = 1N ⊗ x− x̂?, (2.32)

The collective estimation of the state is given by

˙̂x? = −koL?x̂? + koΠ
?Tx̃? + û?, (2.33)

30

2.2 – System dynamics

where
L? = L⊗ INn, Π? = diag {Π1, . . . ,ΠN} (2.34)

and

û?(t, x̂?) =


1û(t, 1x̂)
2û(t, 2x̂)

...
N û(t,N x̂)

 ∈ IRN2n. (2.35)

2.2.5 Control law

Centralized architecture

In the case of a centralized architecture, a suitable solution for the system could be
found via the control law

ucent(t,x) = s1u1,cent(t,x) + s2u2,cent(t,x), (2.36)

In this thesis is considered the case when only one of the two tasks is active, this
is possible thanks to two binary variables s1 and s2. Each of the two variables is
equal to 1 if the corresponding task is active, otherwise is equal to 0. The control
law for each task is

ul,cent(t,x) = J†l (σ̇l,d(t) + kl,c (σl,d(t)− σl(x)) , (2.37)

where l = 1,2 and kl,c > 0 are scalar gains. Thanks to the orthogonality of the two
tasks, the tracking error dynamics for both the tasks is given by (l = 1,2)

σ̃l = −kl,cσ̃l (2.38)

which ensure exponential convergence to zero of the tracking errors

σ̃l = σl,d − σl (2.39)

In this case all the robots communicate with the central unit, so the control law is
computed by measuring the state of an agent.

31

Control scheme model

2.2.6 Decentralized architecture

In the case of decentralized architecture, the agents doesn’t know each other state,
but the control input of the ith robot can be computed using the estimate of the
system state according to the following law:

ui(t,
ix̂) = s1ui,1(t,

ix̂) + s2ui,2(t,
ix̂), (2.40)

with
ui,1(t,

ix̂) = σ̇1,d(t) + k1,c
(
σ1,d(t)− σ1(

ix̂)
)
, (2.41)

and
ui,2(t,

ix̂)=J †2,i
(
σ̇2,d(t)+ k2,c

(
σ2,d(t)−σ2(

ix̂)
))
, (2.42)

The input estimate in equation (2.31), used by the observer (2.28), becomes (j =

1, ..., N)

uj(t,
ix̂)= σ̇1,d(t) + k1,c

(
σ1,d(t)− σ1(

ix̂)
)

+ J †2,j
(
σ̇2,d(t)+ k2,c

(
σ2,d(t)−σ2(

ix̂)
))
,

(2.43)
where J †2,j comes from a block partition of J †2

J †2 =



J †2,1
...
J †2,i
...

J †2,N


, (2.44)

2.2.7 Dynamics of the estimation error

The collective estimation of the state is given by (2.33), the resulting dynamics of
the estimation error is:

ui(t,
ix̂) = s1ui,1(t,

ix̂) + s2ui,2(t,
ix̂), (2.45)

˙̃x? = koL̃x̃
? + 1N ⊗ u− û? , (2.46)

32

2.2 – System dynamics

with L̃ = − (L? + Π?). The i-th block of 1N ⊗ u− û? is

u− iû(t, ix̂) =


u1(t,

1x̂)− û1(t,
ix̂)

u2(t,
2x̂)− û2(t,

ix̂)
...

uN(t,N x̂)− ûN(t, ix̂)

 , (2.47)

which in turn is composed by N blocks, composed by the difference between the
control input of the j-th robot and the estimated control input of the j-th robot
based on the estimation of the system made by the i-th robot, having the following
expression (j = 1, . . . , N)

uj(t,
jx̂)− ûj(t, ix̂) =

(
s1k1,cJ1 + s2k2,cJ

†
2,jJ2

) (
ix̂− jx̂

)
= KT

c,j

(
ix̂− jx̂

)
= −KT

c,j

(
ix̃− jx̃

)
= −KT

c,j

(
ΓT
i − ΓT

j

)
⊗ IN x̃? . (2.48)

where the control input is expressed as a function of the difference between the
estimate of the state computed by the i-th agent and the one computed by the
j-th agent. The term (s1k1,cJ1 + s2k2,cJ

†
2,jJ2) can be grouped in the the term

Kc,j. Therefore, the collective difference between the control input u and the one
estimated by the i-th robot can be defined as

u− iû(t, ix̂) = −


KT

c,1 (Γi − Γ1)
T ⊗ IN

KT
c,2 (Γi − Γ2)

T ⊗ IN
...

KT
c,N (Γi − ΓN)T ⊗ IN

 x̃? = −K?T

c,i x̃
? , (2.49)

and

1N ⊗ u− û? = −


K?T

c,1

K?T

c,2
...

K?T

c,N

 x̃? = −K?
c x̃

? . (2.50)

Established

33

Control scheme model

L̃c = − (koL
? + koΠ

? +K?
c)

= −
(
koL̃+K?

c

)
= −

(
koL

? + K̃c

)
, (2.51)

with K̃c = (koΠ
? +K?

c) the dynamics of the estimation error (2.46) becomes

˙̃x? = L̃cx̃
? , (2.52)

More details about the matrices −K̃c and L̃c are reported in the appendix. If
s1 = s2 = 1, the matrix −K∗c admits:

• Nn eigenvalues in 0

• (N − 1)n eigenvalues in −k1,c

• (N − 2)Nn+ n = (N − 1)2n eigenvalues in −k2,c

Therefore the matrix is Hurwitz. The eigenvalues of the matrix −K∗c show that, if
both tasks are active, the estimation error is globally and exponentially convergent
to zero, even in case of lack of the consensus term (L∗ = 0N 2n). However, if one
of the two tasks is not active (s1 = 0 or s2 = 0), because the matrix −K∗c admits
eigenvalues equal to zero, the estimation error converges only in presence of the
consensus term (L∗ /= 0N 2n). This phenomenon will be shown in the simulation
results. The matrix L̃c can be shown to be Hurwitz as well.

2.2.8 Event-triggered control based on the estimation error

The i-th agent sends its state to the neighbours at discrete time instants

t ∈
{
it0,

it1, . . .
itk, . . .

}
, (2.53)

similarly it receives the estimation of the state of the system from the j-th (j ∈ Ni)
at discrete instants

t ∈
{
jt0,

jt1, . . .
jtk, . . .

}
(2.54)

34

2.2 – System dynamics

With this notation, the consensus term becomes:

c̄i(t) =
∑
j∈Ni

jx̂(jtk)− ix̂(t) = ci(t) +
∑
j∈Ni

jx̂(jtk)− jx̂(t) . (2.55)

In this case, to the consensus explained previously, is added the sum of the difference
between the estimate computed by the j-th agent at the time jtk and the estimate
computed at the present time t. Computed:

δi(t) =
∑
j∈Ni

jx̂(jtk)− jx̂(t) =
∑
j∈Ni

jδ(t) , (2.56)

The estimation dynamics made by the i-th robot becomes

i ˙̂x(t) = ko
(
ci(t) + Πi

ix̃(t) + δi(t)
)

+ iû(t, ix̂) . (2.57)

Given this definition, the collective estimation dynamics is rearranged as follow:

˙̂x? = −koL?x̂? + koΠ
?x̃? + koδ

? + û? , (2.58)

With

δ? =


δ1

δ2
...
δN

 . (2.59)

With this formulation the dynamics of the estimation error can be written as

˙̃x? = L̃cx̃
? − koδ? , (2.60)

Consider the transition matrix corresponding to L̃c

Φ(t) = eL̃ct (2.61)

Given a real number ε > 0, there exists a constant kM(ε) such that

‖Φ(t)‖ ≤ kM(ε) e(λM+ε)t , ∀t ≥ 0 , (2.62)

where λM = maxi=1,N2n

{
Re
[
λi(L̃c)

]}
and λi(L̃c) is the i-th eigenvalue of L̃c.

35

Control scheme model

Since L̃c is a Hurwitz matrix, it is λM < 0; thus, it is always possible to choose ε
small enough to satisfy λM + ε < 0. The time evolution of the estimation error is
given by:

x̃?(t) = Φ(t)x̃?(0)− ko
∫ t

0

Φ(t, s)δ?(s)ds (2.63)

The first term is the zero-input response and represents how the system’s state
would evolve in the absence of any input. The second term is the zero-state
response and defines the contribution of the input on the system’s state evolution.
From equation (2.63) follows:

‖x̃?(t)‖ ≤ kM e(λM+ε)t ‖x̃?(0)‖+ kokM e(λM+ε)t

∫ t

0

e−(λM+ε)s ‖δ?(s)‖ ds . (2.64)

If it is verified the inequality

‖δ?(t)‖ ≤ σδ̄ e(λM+ε)t , ∀t ≥ 0 , (2.65)

with δ̄ > 0 and 0 < σ < 1, the collective dynamics of the estimation error
becomes

‖x̃?(t)‖ ≤ kM e(λM+ε)t
(
‖x̃?(t0)‖+ koδ̄ t

)
, (2.66)

which ensures ‖x̃?(t)‖ → 0 asymptotically. The norm of δ? can be written as

‖δ?‖ ≤
N∑
i=1

‖δi‖ ≤
N∑
i=1

∑
j∈Ni

∥∥jδ∥∥ ≤ N∑
i=1

N∑
j=1

∥∥jδ∥∥ , (2.67)

Thus, condition (2.65) is implied by

∥∥iδ(t)
∥∥ ≤ σ

δ̄

N2
e(λM+ε)t , ∀t ≥ t0 , (2.68)

which can be easily verified by the i-th agent because it does not need information
from its neighbours. δ̄ > 0 is a very important term because it modulates the
contribution of t in the (2.65): lowering it , the triggering condition becomes more
restrictive. The triggering condition for the i-th agent is

itk+1 = inf
{
t > itk :

∥∥iδ(t)
∥∥ = σ

δ̄

N2
e(λM+ε)t

}
. (2.69)

36

2.2 – System dynamics

This condition can’t be affected by the Zeno phenomenon.

2.2.9 Triggering condition based on the Lyapunov function

Another triggering condition is introduced, based on a Lyapunov function for the
estimation error dynamics. It is possible to redefine L̃c as follows

L̃c = −(L? + Π? +
1

ko
K?

c) (2.70)

Considering the Lyapunov function

Vc = x̃?TP cx̃
? (2.71)

with P c a positive-definite symmetric matrix, the derivative of Vc becomes

V̇c = −kox̃?TQcx̃
? − 2kox̃

?TP cδ
? , (2.72)

where Qc is a symmetric positive-definite matrix and P c is the positive definite
solution of the Lyapunov equation

L̃
T

c P c + P cL̃c = −Qc. (2.73)

It is possible to find an upper bound of the derivative of Vc as

V̇c ≤ −koλQm ‖x̃?‖
2 + 2koλPM

‖x̃?‖ ‖δ?‖ , (2.74)

where λQm is the minimum eigenvalue of Qc while λPM
is the largest eigenvalue of

P c.

Since
‖x̃?‖ ‖δ?‖ ≤ d

2
‖x̃?‖2 +

1

2d
‖δ?‖2 (2.75)

inequality (2.74) becomes

V̇c ≤ −ko (λQm − λPM
d) ‖x̃?‖2 +

koλPM

d
‖δ?‖2 . (2.76)

37

Control scheme model

The pararmeter d is chosen so that the following condition is met

d <
λQm

λPM

, (2.77)

Assume that
‖δ?(t)‖2 ≤ σ

(λQm − λPM
d)

λPM
/d

‖x̃?(t)‖2 ,∀t. (2.78)

If inequalities (2.77) and (2.78) are satisfied, with 0 < σ < 1, the estimation error
converges asymptotically to zero, since V̇c < 0, ∀t. Condition (2.78) can be checked
in a centralized architecture, but not in a decentralized architecture. A condition,
exploitable in a decentralized architecture is

∥∥iδ∥∥2 ≤ σ

N2

(λQm − λPM
d)

λPM
/d

∥∥ix̃i∥∥2 , ∀i ∈ {1, . . . , N} , (2.79)

which can be easily verified by the i-th agent because it does not need information
from its neighbours. Being

‖δ?‖ ≤
N∑
i=1

‖δi‖ ≤
N∑
i=1

∑
j∈Ni

∥∥jδ∥∥ ≤ N∑
i=1

N∑
j=1

∥∥jδ∥∥ , (2.80)

If (2.79) is satisfied

‖δ?‖ ≤

√
σ

N2

(λQm − λPM
d)

λPM
/d

N∑
i=1

N∑
j=1

∥∥jx̃j∥∥ . (2.81)

by exploiting the inequality

N∑
i=1

N∑
j=1

∥∥jx̃j∥∥ = N

N∑
j=1

∥∥jx̃j∥∥ ≤ N ‖x̃?‖ , (2.82)

(2.81) leads to

‖δ?‖ ≤

√
σ

(λQm − λPM
d)

λPM
/d

‖x̃?‖ , (2.83)

which implies (2.78). Thus, (2.79) implies (2.78). Based on (2.79) the triggering

38

2.2 – System dynamics

condition for the i-th agent can be written as

itk+1 = inf
{
t > itk :

∥∥iδ(t)
∥∥2 = µ

∥∥ix̃i(t)∥∥2} , (2.84)

with
µ =

σ

N2

(λQm − λPM
d)

λPM
/d

. (2.85)

To avoid the Zeno phenomenon, it is necessary to add a constraint

itk+1 = inf
{
t > itk :

∥∥iδ(t)
∥∥2 = max

{
µ
∥∥ix̃i(t)∥∥2 , ωi(t)}} , (2.86)

where ωi(t) is the solution of the differential problem

ω̇i(t) = −λωi(t) , ωi(t0) > 0 , λ > 0 , (2.87)

which ensures ωi(t) > 0, ∀t and ωi(t)→ 0.

39

40

Chapter 3

Simulations

A set of simulations have been carried out in the Matlab/Simulink environment
concerning the proposed control scheme. The goal of simulating the presented
control scheme is to verify its performance in different conditions and compare the
triggering conditions. After simulating the system with both tasks active, only one
task a time is activated to analyze the difference in the results.

All the simulations are carried out adopting a fixed step of 1 ms. The number
of robots for each simulation is set equal to four. The desired trajectory of the
centroid is a straight line, starting from the point [0;0]m to the point [10;8]m. The
inital states of the robots are:

• Robot No. 1: [0;0]

• Robot No. 2: [0.5;1.2]

• Robot No. 3: [1;0.5]

• Robot No. 4: [0.6;0.7]

The simulations have a length of 12 seconds. The robots, during the trajectory,
must maintain a square formation where each robot is a vertex of the square. Each
of the vertexes is 1.5m away from the two on its side and 2.1 m away from the one
diagonally opposite. The observer gain is set equal to 3 while the controller gains
are set equal to 1.

41

Simulations

3.0.1 Code

The Figure 3.1 shows the controller and the observer scheme running on each robot.
The controller receives as inputs the desired trajectory, the relative formation and
their derivative, while it gives as output the estimate control input of the i-th robot.
The observer takes as inputs the state of the system, the estimate control input of
the i-th robot, the estimate of the state of the system computed by the i-th robot
and the estimate of the state made by the j-th robot. The observer gives as output
the dynamics of the estimate state. The last block is an integrator which models
the agent’s dynamics. The Figure 3.2 shows the block responsible for updating the
information exchanged among the agents. If the triggering condition is satisfied,
the information exchanged is the one at the present instant, otherwise information
of the previous instant is sent.

1 function [u3,y] = fcn(dsigma_1_d ,sigma_1_d ,dsigma_2_d ,sigma_2_d ,
x_hat ,J1, J2 ,k1 , k2,s1, s2)

2

3 u3 = zeros (2,1);
4

5 sigma_1 = J1*x_hat; %definition of the first task
6 sigma_2 = J2*x_hat; %definition of the second task
7

8 y = s1*(pinv(J1)*(dsigma_1_d+k1*(sigma_1_d -sigma_1)))+ s2*(pinv(J2)
(dsigma_2_d+k2(sigma_2_d -sigma_2))); %definition of the
decentralized control law

9 u3 = y(5:6); %each agent has access only to the corresponding
information

10

11 end

Listing 3.1. Code for the controller

1 function dxhat = fcn(uhat ,x,xhat ,A, ko,x_nei)
2

3 xh1 = x_nei (1:8 ,1);
4 xh2 = x_nei (9:16 ,1);
5 xh3 = x_nei (17:24 ,1);
6 xh4 = x_nei (25:end ,1);
7

8 consensus = A(3,1)*(xh1 -xhat)+A(3,2)*(xh2 -xhat)+A(3,3)*(xh3 -xhat)+A
(3,4)*(xh4 -xhat); %definition of the consensus

9

42

Simulations

10 Gam = [zeros (2) zeros (2) eye(2) zeros (2)];
11

12 Sel = Gam ’*Gam;
13

14 dxhat = ko*consensus+ko*Sel*(x-xhat)+uhat; %estimation of the
whole ssytem made by the i-th agent

15 end

Listing 3.2. Code for the observer

1 function [xn1 ,xn2 ,xn3 ,xn4 ,t,delta] = fcn(xhat ,x_r ,A,time ,delta_sign
, max_lambda_L_tilde_c , epsilon , N, sigma , mu)

2

3 persistent xnei tempo %definition of the variables where to
save the update estimations and the time of the simulation

4

5 if isempty(xnei)
6 xnei = zeros (32 ,4);
7 tempo = 0;
8 end
9

10 xn = zeros (32,4);
11 delta = zeros (8,4);
12 xtilde = zeros (8,4);
13

14 for i=1:4
15 delta(:,i) = xnei (8*(i-1) +1:8*i,i)-xhat (8*(i-1) +1:8*i,1); %the

difference between the estimation made at the current instant
and the one made in the previous instant

16 xtilde(:,i) = (x_r - xhat (8*(i-1) +1:8*i)); %estimation error
17 end
18

19 for i=1:4
20 if norm(delta(:,i)) >=((sigma/N^2)*(delta_sign)*(exp((

max_lambda_L_tilde_c +epsilon)*time))) %if the triggering
condition is met ,the estimation is update , otherwise the

previous vale is assigned
21 xn(:,i) = xhat; % update of the estimation to send to

the i-th robot
22 xnei(:,i) = xhat; % keep the estimation in the variable

xnei
23 t = time; % update of the time variable with the

current time

43

Simulations

24 tempo = time; % update of the persistent variable
tempo

25 else
26 xn(:,i) = xnei(:,i); % the robot i-th receive the previous

estimation
27 t = tempo; % set the time as the previous value
28 end
29 end

Listing 3.3. Code for triggering condition based on the estimation error

1

2 for i=1:4
3 if norm(delta(:,i))^2>=mu*norm(xtilde(:,i))^2 %if the

triggering condition is met ,the estimation is update , otherwise
the previous value is assigned

4 xn(:,i) = xhat; % update of the estimation to send to
the i-th robot

5 xnei(:,i) = xhat; % keep the estimation in the variable
xnei

6 t = time; % update of the time variable with the
current time

7 tempo = time; % update of the persistent variable
tempo

8 else
9 xn(:,i) = xnei(:,i); % the robot i-th receive the previous

estimation
10 t = tempo; % set the time as the previous value
11 end
12 end

Listing 3.4. Code for triggering condition based on the Lyapunov function

44

Simulations

Figure 3.1. Controller and observer scheme running on each robot

Figure 3.2. The block responsible for updating the information ex-
changed among the agents

45

Simulations

3.0.2 Simulations without the triggering condition

The simulation about the basic control scheme (without the triggering conditions),
shows exponential convergence to zero of both the estimation errors and the tracking
error relative to the two tasks. Without triggering condition, the agents update the
information to exchange with each other every instant. The Figure 3.5 shows in
detail the update of the information each step of the simulation, on the abscissa
there is the time of the simulation, while on the ordinate there is the information’s
time (the instant in which the information exchanged is taken). This chart is very
important because it shows when the information is updated, if the same ordinate
lasts for more than one simulation step (1 ms), it means that the triggering condition
is not satisfied and the agent sends the information taken in the previous instant
to its neighbors. In the Figure 3.6 can be seen the path travelled by the robots, the
agents have a transient behavior at the start, due to difference between the path
they must follow and their initial position.

Figure 3.3. Estimation errors relative to the four robots without triggering condition

46

Simulations

Figure 3.4. Centroid and formation tracking errors without triggering condition

Figure 3.5. Time update without triggering condition

47

Simulations

Figure 3.6. Path travelled by the robots

Simulations without the triggering condition with only σ1 active

In this case only one task is active: the centroid of the system. Without triggering
condition, despite the lack of one task, the estimation error converge exponentially
and globally to zero Figure 3.7 since the communication is always active, and the
estimation exchanged among the robots is updated every instant. The centroid
tracking error converge as well Figure 3.8.

48

Simulations

Figure 3.7. Estimation errors relative to the four robots without the triggering
condition with only σ1 active

Figure 3.8. Tracking error on one task without the triggering condition
with only σ1 active

49

Simulations

Figure 3.9. Path travelled by the robots

Simulations without the triggering condition with only σ2 active

The estimation error converges to zero Figure 3.10, and the observer is able to
estimate the state of the whole system, since the communication is not interrupted
and the information are updated every instant. As shown in the Figure 3.11 the
formation tracking error converges to zero.

50

Simulations

Figure 3.10. Estimation errors relative to the four robots without triggering
condition with only σ2 active

Figure 3.11. Tracking error on one task without triggering condition
with only σ2 active

51

Simulations

Figure 3.12. Path travelled by the robots

3.0.3 Simulations with the triggering condition based on the
estimation error

With the introduction of the triggering condition based on the estimation error
(2.69), the behavior of the system highlights some noticeable changes. As can be
seen in the Figure 3.15, the exchange of information is not updated every time
instant, but only when condition (2.69) is met. This triggering condition is a
good compromise between the need of reducing the information exchanged and
the performance. Indeed, Figure 3.13 shows that the estimation error, despite
an initial transient, converges. As can be seen in Figure 3.16, the robots follow
the desired centroid path and the given formation. The condition based on the
transition matrix depends on the value of λM which changes when L̃c changes. To
have comparable simulations between the case with both the task active and the
one with only one task active, a constant very little value of ε is chosen with the
changed λM .

52

Simulations

Figure 3.13. Estimation errors relative to the four robots with triggering condition
based on the estimation error

Figure 3.14. Tracking error of the two tasks with triggering condition

53

Simulations

Figure 3.15. Detail of the time update

Figure 3.16. Path travelled by the robots

Simulations with the triggering condition and only σ1 active

In this case, the exchange of information is drastically reduced Figure 3.19, but for
this reason, the estimation error struggles to converge. The convergence to zero

54

Simulations

occurs, but with some delay compared to the results obtained with both the tasks
active.

Figure 3.17. Estimation errors relative to the four robots with triggering
condition and only σ1 active

Figure 3.18. Tracking error on the task with triggering condition and σ1 active

55

Simulations

Figure 3.19. Detail of the time update

Simulations with the triggering condition with only σ2 active

Simulations with the triggering condition and only σ2 active have shown interesting
results. The estimation errors are large during the transient Figure 3.20. The
convergence is extremely slow because the information is updated at a slower rate
compared to the previous cases. Figure 3.22 shows that with this configuration the
robots spend more than five simulation steps without update the estimation of the
system received from the neighbors.

56

Simulations

Figure 3.20. Estimation errors relative to the four robots with triggering
condition and only σ2 active

Figure 3.21. Tacking error on the task with triggering condition and only σ2 active

57

Simulations

Figure 3.22. Detail of the time update

3.0.4 Simulations with the triggering condition based on the
Lyapunov function

Using the triggering condition computed in (2.84), the communication is always
triggered, since the threshold is too small. To obtain a suitable threshold is nec-
essary a manual tuning, to have savings in the exchanged information. With the
introduction of the triggering condition based on the Lyapunov function (2.84), the
differences between the case in which both the tasks are active and the one with
only one task active, are more noticeable with respect to the case with the trigger-
ing condition based on the estimation error. In fact, as shown in the Figures 3.25

and 3.23, the estimation error converges very quickly despite the lack of updated
information available to the robots. As shown in Figure 3.26 the robots follow the
desired behavior.

58

Simulations

Figure 3.23. Estimation errors relative to the four robots with triggering condition
based on Lyapunov function

Figure 3.24. Estimation errors on the two tasks with triggering condition
based on Lyapunov function

59

Simulations

Figure 3.25. Detail of the time update

Figure 3.26. Path travelled by the robots

60

Simulations

Simulations with the triggering condition based on the Lyapunov func-
tion with only σ1 active

The biggest difference between the triggering condition based on the estimation
error and the one based on the Lyapunov function, can be seen when only one task
is active. With the Lyapunov function, the estimation error (Figure 3.27) is large
at the start of the simulation, then it tends to decrease, but it does not converge at
the time of the simulation. Figure 3.29 shows how the communication is restricted:
the estimations are exchanged every several steps of the simulation.

Figure 3.27. Estimation errors relative to the four robots with triggering condition
based on Lyapunov function

61

Simulations

Figure 3.28. Estimation error on the task with triggering condition based
on Lyapunov function

Figure 3.29. Detail of the time update

62

Simulations

Simulations with the triggering condition based on the Lyapunov func-
tion with only σ2 active

As can be seen in Figure 3.32, this configuration is the one where the estimated
state is updated more rarely, in some intervals of the simulation the exchanged
information is not updated for nearly 10 simulation stepsm, indeed. This lack of
updates leads to an estimation error unable to converge in the time of the simulation
as can be seen in the Figure 3.30.

Figure 3.30. Estimation errors relative to the four robots with triggering condition
based on Lyapunov function

63

Simulations

Figure 3.31. Estimation error on the task with triggering condition based on
Lyapunov function and only σ2 active

Figure 3.32. Detail of the time update

64

Simulations

3.0.5 Real world applications

Robot motion planning and control plays a key role in designing autonomous sys-
tems capable to execute different tasks for navigating and manipulating objects
in harsh environments. Designing reliable control of a robot consists of numerous
tasks: theoretical development of the model, its solution, simulations and imple-
mentation of the control algorithm through a suitable hardware. The theoretical
development of the model and its simulation represent a crucial step, as trough a
strong algorithm and some useful simulations it is possible to predict the behavior
of the system when it will be implemented on the hardware. This thesis focuses
on this two steps of the development of a control algorithm. Indeed the valida-
tion of the presented control scheme permits its future implementation on a real
system. The adopted decentralized control scheme, as illustrated before, has some
advantages with respect to a classical centralized approach. In a real world appli-
cation, it is very useful to have less powerful hardware on board because of its cost
and its ease to be replaced in case of a malfunction. In a centralized architecture,
if a malfunction is found, the whole system ceases to work and the replacement
of the central control unit could require a large efforts and maintenance time. A
centralized architecture requires large bandwidth available to the central unit, as
it has to manage all the information received by robots’ team, while a decentral-
ized architecture can be implemented with a smaller bandwidth due to its smaller
amount of data exchanged between the agents. In a harsh environment is difficult
to obtain a complete communication due to the weather, the vastness of the area to
be covered or the ground morphology, while, with a decentralized architecture each
robot can be set to exchange information only with the nearest one. The control
scheme presented on this thesis could be implemented on various types like drones,
wheeled robots or underwater robots; and, with the appropriate sensors, different
tasks can be implemented, e.g. visual exploration, transportation of materials and
air or ground patrol.

65

66

Chapter 4

Conclusion

During the past few decades, substantial progresses have been made into multi-
robot localization, formation control, cooperative object transportation and en-
vironmental exploring. Several important challenges still remain ahead, as several
control strategies are inefficient or reliable only in some particular cases. This thesis
has mainly focused on the following two points:

• simulation of a controller-observer scheme for tracking control of the centroid
and the relative formation of a multi-robot system. Each robot of the team is
equipped with an observer to estimate the whole system’s state and a motion
control strategy for tracking of the desired centroid and formation.

• introduction, in the control system previously described, of two different trig-
gering conditions, one based on the estimation error and one based on the Lya-
punov function, with the aim of reducing the exchanged information among
the agents. The main goal of the simulations is to validate these two triggering
conditions and verify when they are suitable and when they are not.

The basic control scheme, as already established in the paper [1], is a very robust
control scheme. It presents exponential convergence to zero of both the estimation
error of the system state and the tracking error relative to the tasks. In the case
only one task is active, the control scheme is so robust to make the estimation error
converge also if the control law does not concern one task. This happens due to
the continue exchange of information (the estimated state of the system) among
neighboring robots. After the introduction of the triggering conditions, the results
are slightly different. The triggering condition based on the estimation error shows

67

Conclusion

very good results when both the tasks are active, both the estimation error and
tracking error converge to zero. When only one task is active, the convergence to
zero of the errors starts to be delayed, due to the presence of eigenvalue equal to
zero in the matrix −L̃c. The second triggering condition, based on the Lyapunov
function, shows similar results in the case both the tasks are active. In this re-
spect, the estimation error and the task error present a strong convergence to zero.
When only one task is active the control scheme starts to have worse results: the
estimation error cannot converge in the time of the simulation. The two triggering
condition show similar results in the case of both the tasks are active, but in the
case of only one task active the one based on the Lyapunov function is less reliable
than the one based on the estimation error. A very important step in the design and
the simulation of the triggering conditions is the tuning of the parameters decided
by the user (δ̄, σ, ε) since they need to vary in order to guarantee the convergence
of the errors. Tuning of these parameters is crucial to obtain a compromise be-
tween the reduction of the exchanged information among the robots and tracking
performance.

68

Chapter 5

Appendix

5.0.1 Mathematical expression of −K̃c and L̃c

Given the equations (2.48)–(2.50), the matrix −K̃c is composed by

−K̃c = −



K̃11 K̃2 . . . K̃i . . . K̃N

K̃1 K̃22 . . . K̃i . . . K̃N

...
... . . .

... . . .
...

K̃1 K̃2 . . . K̃ii . . . K̃N

...
... . . .

... . . .
...

K̃1 K̃2 . . . K̃i . . . K̃NN


, (5.1)

with (i = 1, . . . , N), each vector of −K̃c is defined as

K̃ii =



KT
c,1

KT
c,2

...

koΓ
T
i

...

KT
c,N


, K̃i =



On×Nn

On×Nn
...

−KT
c,i

...

On×Nn


, (5.2)

and knowing that Kc,i is obtained as

KT
c,i =

(
sBkcBJB + sFkcFJ

†
F,iJF

)
. (5.3)

69

Appendix

Breaking down the expressions of JB and J †F , is possible to obtain Kc,i as a
function of δ

KT
c,i = δkc(1N ⊗ In) + kcFΓT

i

=
[
δkcIn δkcIn . . . (δkc + kcF)In . . . δkcIn

]
, (5.4)

with δkc = (kcB − kcF)/N .
Thanks to the definition of L? as L? = L⊗ INn, it is possible to obtain

L̃c=−



kol11INn+K̃11 kol12INn+K̃2 . . . kol1iINn+K̃i . . .

kol21INn+K̃1 kol22INn+K̃22 . . . kol2iINn+K̃i . . .
...

... . . .
... . . .

koli1INn+K̃1 koli2INn+K̃2 . . . koliiINn+K̃ii . . .
...

... . . .
... . . .

kolN1INn+K̃1 kolN2INn+K̃2 . . . kolNiINn+K̃i . . .

(5.5)

where the Laplacian L is defined as

L = {lij} : lii =
N∑

j=1,j /=i

aij, lij = −aij, i /= j , (5.6)

and aij = 1 if the agent j th can send its estimation of the state of the system
to the i th agent, otherwise aij = 0 (aii = 0).

70

Appendix

71

72

Chapter 6

References

[1] Antonelli G, Arrichiello F,Caccavale F, Marino A (2014) Decentralized time-
varying formation control for multi-robot systems. The International Journal of
Robotics Research, 33(7), 1029-1043. doi:10.1177/0278364913519149

• Parker L. (2008) Multiple mobile robot systems. In: Siciliano B and Khatib
O (eds). Springer Handbook of Robotics. Heidelberg, Germany: Springer-
Verlag, pp. 921-941.

• Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics: Modelling,
Planning and Control. Springer. ISBN 978-1-84628-641-4

• Mordechai B, Mondada F (2018) Elements of Robotics. Springer. ISBN
978-3-319-62532-4

• Bemporad A and Rocchi C (2011) Decentralized linear time-varying model
predictive control of a formation of unmanned aerial vehicles. In: 50th IEEE
conference on decision and control and European control conference (CDC-
ECC), Orlando, FL, 12-15 December 2011, pp. 7488-7493

• Ren W and Beard R (2008) Distributed Consensus in Multi-vehicle Cooper-
ative Control (Communications and Control Engineering). Berlin: Springer

• Godsil C and Royle G (2001) Algebraic Graph Theory (Graduate Texts in
Mathematics). New York: Springer

73

References

• Kågström, “Bounds and perturbation bounds for the matrix exponential,”BIT
Numerical Mathematics, vol. 17, no. 1, pp. 39—57,1977. [Online]. Available:
https://doi.org/10.1007/BF01932398

• C. V. Loan, “The sensitivity of the matrix exponential,”SIAM Journalon Nu-
merical Analysis, vol. 14, no. 6, pp. 971–981, 1977. [Online].Available:
http://www.jstor.org/stable/215667

74

	List of Figures
	Introduction
	Categories of mobile robots
	Multi-robot systems
	Motivations
	Decentralized control
	Controller-observer scheme
	Event-triggered control

	Background
	Overview of the formation control and goals

	Control scheme model
	Preliminaries
	Graph theory
	Mathematical knowledge
	Consensus
	Hurwitz stability
	Lyapunov criterion for the analysis of stability
	Zeno phenomenon

	System dynamics
	Graph Representations and Laplacian Matrix
	Control objective
	Trajectory planning
	State observer design
	Control law
	Decentralized architecture
	Dynamics of the estimation error
	Event-triggered control based on the estimation error
	Triggering condition based on the Lyapunov function

	Simulations
	Code
	Simulations without the triggering condition
	Simulations with the triggering condition based on the estimation error
	Simulations with the triggering condition based on the Lyapunov function
	Real world applications

	Conclusion
	Appendix
	Mathematical expression of -c and c

	References

