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Summary

In the last few years, the concept of micromobility has gained a lot of ground,
thanks to the introduction of new transportation modes, like e-scooters. These
new, lightweight, electric vehicles are cheap, easy and fun to ride, and they are
increasingly becoming a reasonable solution for first- and last-mile trips. New
companies started spreading e-scooters throughout different cities around the world,
with the aim of offering a new, dockless, e-scooter sharing service. These companies
are growing fast and they have already been able to attract several hundred million
dollars of investments.

E-scooters - and micromobility in general - have the capability to reduce pollution
and traffic congestion, but researchers are questioning if they are really positively
contributing to solve these issues. It seems that, moving e-scooters through the
city with other motorized vehicles for charging, deployment and relocation, is a
major component of their entire life-cycle emissions. Moreover, an even bigger
contribution to these emissions is given by manufacturing. Intensive use and
vandalism cause a shorter vehicle lifetime and, consequently, a higher e-scooter
production demand, thus increasing emissions associated with manufacturing. It
is therefore useful to keep the number of deployable e-scooters low, and to try to
maximize their utilization, repositioning them in a reasonable way, possibly also
reducing the total amount of transportation distance.

In this thesis, we analyze different relocation algorithms, in order to understand,
first of all, if it is useful and profitable to relocate. We show how different relocation
strategies affect the system, both in terms of performance and costs.

For this purpose, we adopt and extend an existing data-driven, discrete-event
simulator for Free-Floating Vehicle Sharing Systems (FFVSS). We introduce new
datasets of e-scooter trips, cleaning and preparing them to be utilized with the
simulator, and reaching a total amount of 7 North-American cities. We extract a
demand model from data and we use it as input for the simulator. We introduce new
reactive and proactive algorithms, with the aim of solving the relocation problem
with a greedy approach. We test each algorithm under different scenarios and we
make cost and revenues assumptions to study the profitability of the system.

Results show that, even with a greedy solution, it is possible to relocate in
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a useful way. In particular, we can maintain low or even reduce the number of
deployed e-scooter, thanks to proactive operations, that every hour assign to a
given number of workers a list of relocations to be done. Such strategies have
the capability of making the entire system more profitable and more sustainable,
reaching, in our best case, 20% increase in terms of satisfied demand and more than
500k$ of profit gain compared to the same simulated scenario without relocation.
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Chapter 1

Introduction

1.1 The rising of micromobility

In the past few years, the term micromobility became increasingly popular in the
field of transportation. It usually refers to the usage of lightweight single-person
vehicles for short trips [1].

This new way to travel has a great potential in terms of sustainability:

• it can reduce Green House Gases (GHG) emissions, by lowering the use of
private cars. In particular, micromobility aims to provide a valid alternative
for first-mile and last-mile trips and can also act as a complement to transit
[2].

• It can ensure a reliable and equitable service, using sustainable business models
and labor practices. It can also be a tool to provide equity through population,
adopting measures like low-income fare and focused vehicle deployment over
underserved geographical areas [3].

• It is able to enhance the human experience, being an enjoyable and fun way
to travel. So, it can influence transport habits, increasing even more the shift
from private car driving.

However, these potentials have not yet been fully expressed. New policies and
planning actions are needed to make micromobility truly successful and sustainable,
thus involving both private companies and regulators [2][4].

Bike and e-bikes were considered the micromobility mode par excellence, but,
recently, a new vehicle is invading city streets: the e-scooter.
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1.2 What is an e-scooter?
An electric kick scooter (e-scooter) is a stand-up scooter powered by a small electric
motor (Figure 1.1). An initial "kick" is required to enable the motor and than the
amount of power can be adjusted, typically with a small lever on the handlebar
(Figure 1.2).

First shared e-scooters were consumer-grade vehicles, that were not designed for
intensive use. For this reason, they used to have problems like insufficient range,
and, consequently, relevant charging needs and long out-of-service times. Also, they
suffered damage from being transported and left outdoors. In terms of life-cycle
GHG emissions, one of the highest impacts came from materials and manufacturing
[5], and an high demand of new e-scooter could have cast doubts on their effective
sustainability.

Fortunately, e-scooter sharing companies invested on custom vehicles designs
and now they are deploying more robust and durable e-scooters, with a grater
range and swappable batteries [4]. However, we can assume that materials and
manufacturing still represent a big contribution to total amount of emissions.

Figure 1.1: A Lime e-scooter [6].

Figure 1.2: E-scooter handlebar with
dashboard, QR code and power lever [7].
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1.3 E-scooter sharing companies
Recently, many companies are deploying e-scooters in cities throughout the world.
They are offering shared dockless e-scooters as a new mode of micromobility and
they are growing fast. In the last few years, e-scooter sharing operator giants, such
as Bird and Lime, were capable to attract more than $1 billion of investment alone
(Figure 1.3)[4].

Figure 1.3: Cumulative funding of shared mobility unicorns over time [4].

The huge growth of these companies may also be due to the ease of use of their
services. Renting a dockless shared e-scooter is as simple as a click on an app.
Users must download a specific app on their smartphone, register, and select a
payment method. In the main app view, a map shows where free e-scooters are
located (Figure 1.4). When a user approaches a vehicle, he can start a new rental
either directly from the app or scanning the QR code printed on the e-scooter,
which uniquely identifies the vehicle (Figure 1.2).

1.4 Side effects of e-scooter sharing boom
As mentioned before, micromobility has great potentials, but, if not properly
regulated, it can lead also to negative effects.

In the case of e-scooters, two big questions can be asked:

• Do e-scooters really reduce private motor vehicle use and traffic congestion?

3
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Figure 1.4: Example of e-scooter sharing app.

• Do they effectively contribute to GHG reduction?

We can say from surveys like [3] and other studies [2] that e-scooters are partially
replacing personal cars and other transportation modes which implies the use of
motorized vehicles (e.g., taxi, ride-haling). However, they require additional vehicles
for distribution and relocation throughout the city. Hence, reducing transportation
distance and using more efficient vehicles for this purpose, is mandatory to have a
net reduction of GHG emissions [5]. Moreover, optimizing relocations can increase
system utilization, thus reducing even more private motor vehicle use.

Considering congestion, if from one side we have less car traffic on streets, on
the other hand we have a new vehicle populating streets and, more importantly,
congesting also sidewalks. Pedestrian comfort and safety is reduced by e-scooter
riding and parking in the middle of sidewalks. Both [3] and an analysis on big
social data in [8] show that a big number of complaints is about vehicles being
improperly parked. So, reducing the number of e-scooters in the city, can mitigate
this issue. As a matter of fact, city regulators usually define a maximum number
of deployable vehicles. Hence, try to utilize less e-scooter and try to maximise the
utilization of each one of them, can be a reasonable goal for an e-scooter sharing
company.
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In addition, using less e-scooters can lead to a lower demand of new vehicles,
thus reducing the big environmental impact given by materials and manufacturing,
as mentioned in section 1.2.

1.5 In this thesis
In this work, we are going to analyze different relocation strategies, with the aim
of understanding:

• if it is useful and profitable to relocate, and in which measure;

• how different relocation strategies affect an e-scooter sharing system.

For this purpose, we extended the software implemented in [9] - a data-driven,
discrete-event simulator for Free-Floating Vehicle Sharing Systems (FFVSS) - to
support relocation algorithms.

When possible, we updated the datasets that were already present in [9], and
we introduced new public datasets, that were freely available online, reaching a
total amount of 7 North-American cities.

From these datasets, we extract a demand model, that we can use as input
for the simulator. Then, we generate a supply model, which defines the scenario
in which the system will operate. This allows us to test the system in different
conditions and to define parameters that give us the possibility to choose between
different relocation strategies.

We collect a wide range of statistics from each simulation campaign, and we
post-process them to compare different scenarios and to be able to analyze also
costs and revenues of the system.

The thesis is organized as follows. In Chapter 2 we will discuss existing works
on vehicle relocation techniques. In Chapter 3 we will do a brief EDA on newly
integrated data and we will introduce the demand model, the simulator and the
actual relocation strategies. In Chapter 4 we will deep dive into results obtained
by simulations. Finally, in Chapter 5 we will sum up most relevant considerations
emerging from results and we will introduce possible future work.
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Chapter 2

Background

E-scooter sharing recently emerged as a new trending topic inside transportation
research field. First findings and first collected data emerged from city pilots like
[3] and from surveys like [10]. The first presents an analysis on data submitted by
scooter companies through APIs, data collected by a customers survey, staff reports
and customers focus groups observations. The latter is a survey on e-bike and e-
scooter sharing, completed by Canadian stakeholders and municipal representatives,
with the aim of analysing key perspectives for integrating micromobility within the
existing transportation network. More recently [8] expanded the concept of surveys,
by performing a big analysis on Twitter crawled data, and reported interesting
indices, like trending topics, positive and negative feelings about e-scooter sharing
systems, stakeholders characterization and system operations feedbacks.

Given the growth of such a new transportation mode, researchers tried to
forecast e-scooter competition with other transport modes [11], and estimated that
e-scooters would replace at most 32% of carpool, 13% of bike, and 7.2% of taxi
trips.

Researchers also compared scooter-sharing with bike-sharing systems. In [12][4]
and also in our previous work [9], it is possible to see that e-scooter usage temporal
pattern is quite different to bike-sharing. Bike usage exhibits two distinct morning
and evening peaks, suggesting primarily commuting usage. E-scooter riders, instead,
are more likely to ride in the middle of the day and on weekends, suggesting social,
shopping, and other recreational use.

Moreover, researchers questioned about actual sustainability and economic
implications of current scooter-sharing systems and micromobility in general [4][13],
also conducting a full LCA to address actual e-scooter environmental impact [5],
and found that e-scooter manufacturing and deployment are the most contributing
voices to GHG emissions.

Talking about vehicle deployment, relocation is a widely covered topic in the
mobility research field. Although e-scooter is a relatively recent transport mode,
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we can find a lot of literature on relocation for car-sharing and also for bike-sharing,
which is the most similar transport mode to e-scooters.

The first kind of approach is to schedule relocations at fixed times (e.g., at
night), to rebalance the system [14]. Another possibility is to use time-independent
decision rules that are only a function of the current system state [15].

Then, we can take in consideration the dinamicity of the system, introducing
time dependency. This led to the use of online optimization approaches, to solve a
newly defined problem called Dynamic Repositioning and Routing Problem (DRRP)
[16]. There is a lot of existing work on this topic, and different formulations are
proposed. However, these approaches, even the best performing ones, have a
computation time in the order of minutes [17], and cannot be used in our scenario,
in which we want to simulate potentially more than one month of system operations
in a reasonable time.

Recently, an emerging topic in bike-sharing system optimization of bike relocation
strategies, is the use of graph mining and deep learning. For example [18] uses a
Convolutional Neural Network (CNN) to identify mobility patterns from unbalanced
pair of stations - taking adjacency matrix snapshots of unbalanced sub-graphs -,
and tries to predict future patterns through a Long Short-Term Memory Recurrent
Neural Network (LSTM RNN).

In this thesis, we will approach to the DRRP without considering the relocation
routing optimization part, and we will introduce greedy algorithms to be able to
give a sub-optimal solution to the rebalancing problem in a reasonable computation
time.

In our previous work [9], we proposed the methodology used in this thesis (Section
3.2) to translate open data describing e-scooter sharing trips into a demand model
able to generalize their usage. Moreover, we found that, in order to satisfy the
demand, we need a large number of e-scooters, and, in this thesis, we will introduce
relocation operations to find out if it is possible to increase satisfied demand, or,
possibly, to maintain the same amount of satisfied demand with a lower number of
vehicles.
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Chapter 3

Methodologies and Tools

In this chapter we will introduce the tools that we used and the strategy that
we adopted. However, the most important tool was the coding language itself,
and everything was implemented using Python [19], and libraries like SimPy [20],
Pandas [21], GeoPandas [22] and scikit-learn [23].

3.1 Datasets
In this section, we are going to introduce a brief Exploratory Data Analysis (EDA)
on the datasets that are now available and ready to be used with the simulator
(see Table 3.1 for complete details of used datasets).

In [9] only data from the city of Minneapolis, MN and from the city of Louisville,
KY where available. Now, we have more months for Louisville and we introduced 5
brand new cities: Austin, Norfolk, Kansas City and Chicago from USA and Calgary
from Canada.

These municipalities make their data freely available online, using a standard
API format called Mobility Data Specification (MDS), defined by the Open Mobility
Foundation (OMF)[38]. In Ref. column of Table 3.1, a reference to the web page
of each dataset is reported.

To avoid privacy issues and to not expose company practices, these datasets are
anonymized and original raw data has been discretized both in terms of time and
space. As we will see in Section 3.2, we need a continuous-time trace of events and
coordinates, to be able to generate our demand model. So we disaggregated raw
data as follows.

Starting and ending times of raw trips are quantized using different resolutions
(see column Time Res. of Table 3.1). To provide an exact starting time estimation,
to be used during the demand model estimation, we assume a local stationary
process and we extract a timestamp from a uniform distribution. Given a Dataset
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City Months N.Trips Size (MB) OD Type Time Res. Ref.from to
Louisville, KY 2018-08 2020-01 300 550 60.36 Rounded Coordinates 15 min [24]
Louisville, KY 2020-02 2020-07 32 962 3.53 Rounded Coordinates 15 min [25]

Minneapolis, MN 2019-05 2019-05 39 757 3.00 Centerline ID 30 min [26]
Minneapolis, MN 2019-06 2019-06 123 696 11.65 Centerline ID 30 min [27]
Minneapolis, MN 2019-07 2019-07 176 276 16.96 Centerline ID 30 min [28]
Minneapolis, MN 2019-08 2019-08 223 729 21.55 Centerline ID 30 min [29]
Minneapolis, MN 2019-09 2019-09 249 773 24.13 Centerline ID 30 min [30]
Minneapolis, MN 2019-10 2019-10 177 853 17.13 Centerline ID 30 min [31]
Minneapolis, MN 2019-11 2019-11 49 467 4.76 Centerline ID 30 min [32]

Austin, TX 2018-04 2020-11 9 997 823 1894.19 Census Tract GEOID 15 min [33]
Norfolk, VA 2019-07 2020-10 651 703 35.79 Census Tract GEOID 1 hour [34]

Kansas City, MO 2019-06 2020-04 371 089 66.63 Rounded coordinates 15 min [35]

Chicago, IL 2019-06 2019-10 710 839 183.25 Census Tract GEOID or
Community Area Number 1 hour [36]

Calgary, AB 2019-07 2019-09 482 021 106.53 Hexagonal grid 1 hour [37]

Table 3.1: E-scooter Trips Data Sources - Datasets and fleets specifications.

D with a time granularity ∆T , and a discrete start time as(i), the distribution will
be like:

U

C
as(i)−

∆T

2 , as(i) + ∆T

2

D
(3.1)

For georeferencing, instead, we can see from column OD Type in Table 3.1, that
different datasets use different methods to aggregate starting and ending locations
of trips. Sometimes coordinates are simply rounded. For example, in the case of
Louisville, they are rounded at 3 decimals - which corresponds to a resolution of
80m - and they can be used as they are provided, because the resolution is still
lower than the space granularity used for simulations (as we will see, our space
bin will be 200m wide). Sometimes, instead, we have a reference to a street or a
big three-dimensional shape, which can be a simple geometrical shape - like an
hexagon for Calgary - or a more complex figure - like Community Areas or Census
Tracts. In all these other cases, we need to disaggregate the data, assuming a
uniform distribution over the shape and extracting a point every time we need to
define a starting or ending point of a trip.

Once normalized, cleaned from missing elements, and disaggregated, the data
was organized by month, giving us the possibility to get a broad picture of how
collected trips are distributed in time, both in terms of number of trips (Figure
3.1) and size (Figure 3.2).

We can clearly see how much Austin overcomes other cities, with a peek number
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Figure 3.1: Number of collected trips per month for each city.
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Figure 3.2: Size of collected trips per month for each city.

of trips per month of over 15 millions, proving to be the city with the highest
demand between those selected. Louisville, instead, is at the opposite, also because
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is a smaller city. An interesting observation that we can made is that, regardless of
the city, we have a massive drop of demand, starting during last months of 2019,
and more or less prosecuting for all following months. This is obviously related
to COVID-19 pandemic and restriction measures, that inevitably precluded the
access to and reduced the demand of services like shared e-scooters.

In Figure 3.3 and 3.4, we plotted the same data in a different way. Using a
logarithmic scale to color each month depending on the amount of present trips, we
can clearly understand in which period of time collected data is placed, and how
trips are distributed along these periods. We have to specify that March and April
2020, of Kansas City and Norfolk respectively, are not missing months, but they
are available months with no registered trips. This shows even better how difficult
the situation was for such companies and for the economy in general, during those
months.
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Figure 3.3: Number of collected trips per month for each city in logarithmic scale.

For the remaining part of the thesis, we will only focus on three cities. We chose
Louisville and Minneapolis, to continue with the analysis started in [9], and we
included also Kansas City, because of its similarity to Louisville, both in terms of
demand and raw data granularity.

3.2 Demand model
Given pre-processed data as a trace, we extract a demand model, which then will
be given as input to the simulator. The goal of the model is to generalize input
data, giving us the possibility to generate new synthetic trips.

For this purpose, we extract a model based on two components: we use Poisson
processes for time modeling and Kernel Density Estimation (KDE) for spatial
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Figure 3.4: Size of collected trips per month for each city in logarithmic scale.

generalization, as in [9].

• Time model: Our time model is represented by hourly arrival rates. Given that
e-scooter temporal pattern is a lot different between weekend and weekdays -
as mentioned in Chapter 2 -, we define a total amount of 48 rates - 24 hours
for both weekdays and weekends. We assume that the time between arrivals
can be expressed by an exponential random variable. So, we fit the Poisson
rate of each time slot to the average number of bookings occurring in the
trace during the same period of time. The result is an inhomogeneous Poisson
process, which is a commonly accepted model for independent service requests
of a very large population [39].

• Spatial model: We generalize over space using KDE. For this purpose, we
leverage Kernel Density estimator from scikit-learn[23], with a Gaussian kernel
and a 2 x 2 identity matrix as bandwidth. First, we divide the city into
200m x 200m squares, generating a matrix of city zones. Then, we fit a
four-dimensional KDE on origin-destination zone couples, where each zone is
represented by its two indexes inside the matrix. We do this fitting 48 times,
one for each time slot for weekdays and for weekends. Thus, we have a spatial
representation of mobilty patterns between different zones during each hour
of the day, for weekdays and for weekends.

For the purpose of this thesis, we will extract a demand model based on months
from July to September 2019, because they are the only three months that are
present for all cities (as can be seen from Figure 3.3).
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3.3 Simulator and assumptions
We run our experiments with a discrete-event simulator, based on SimPy [20]. It
receives two inputs:

• a configuration, or a set of configurations. It defines both general and running
parameters. General parameters include the simulated city, simulated months,
and the side length of zones (i.e., 200m, in our case, as specified before).
Running parameters, instead, define the scenario and the details about the
vehicle sharing system, hence the supply model. They also specify relocation
strategies and parameters.

• A demand model, as described in section 3.2.

Once the city is initialized, we have a fleet F of vehicles randomly distributed
throughout the city, and the simulator starts generating new booking requests
thanks to the demand model. Each new booking request is marked as satisfied
if the user can find a vehicle in the request zone or in one of neighboring zones.
The vehicle must have enough charge to support the entire trip. If the request is
satisfied, the vehicle is considered unavailable for the entire simulated duration of
the trip. Once the trip has finished and before the vehicle becomes available again,
we check if recharging is needed.

For the purpose of this thesis, we assume that our e-scooter sharing system
adopts custom made vehicles, as mentioned in section 1.2. So, even if our software
gives us the possibility to simulate different charging strategies, we assume that:

• our only charging strategy is battery swapping;

• our e-scooters have a capacity C = 425 W h and an energy efficiency of
k = 11W h km−1;

• our system has an unlimited number of charging workers;

• each worker takes an average time of 30 minutes to reach an e-scooter and
an average time of 5 minutes to swap the battery (this timings derive from
previous simulations, presented in [9]).

Moreover, for all simulations that we did, we set 1 million requests per month
as target. Given the average rate of booking requests extracted from the trace, the
simulator computes a multiplicative factor before each simulation. It then multiplies
the average rate at which simulated trips are yielded, by such multiplicative factor,
with the aim of generating a total number of requests as near as possible to the
selected target.
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3.4 Relocation algorithms
In this section we will introduce the different algorithms that we implemented to
manage e-scooter relocation.

They are divided in two categories: reactive and proactive approaches. With
reactive strategies we decide if and how to relocate only when a certain condition
is triggered during the simulation. With proactive strategies we decide how and
when to relocate with a schedule.

3.4.1 Terminology

Before we describe the algorithms, we introduce some terminology:

• Relocation strategy: it defines the main structure of a relocation algorithm.

• Zone selection technique: it better characterises a relocation algorithm,
defining which method is used for selecting starting and/or ending zone of a
relocation. Sometimes, it is associated with parameters.

• Relocation scheduling: it is a recurrent procedure that every simulated
hour generates a relocation schedule.

• Relocation schedule: it is a list of e-scooter relocations. Each item of this
list includes both pick up and drop off zones and a proposed number of vehicles
to be relocated. The maximum length of the list varies between different
strategies. Its final length can be lower, because the zone selection technique
can decide that a relocation between two zones should relocate zero vehicles,
and, in that case, the relocation is not added to the list.

• Relocation triggers: they are points in the code where we decide if we have
to start a relocation process or not. The decision is made by checking if current
zone (i.e., the one in which the vehicle that triggered the check is currently
located) is present inside the relocation schedule as a pick up zone. We have
two relocation triggers inside the simulator: one is positioned right after the
charging process finishes (Post charge) and one after a trip is completed,
immediately before the vehicle is made available again (Post trip). This
triggers are per-vehicle: the vehicle that triggered the relocation process is
the first one that is relocated. If the relocation strategy allows more then one
vehicles to be relocated at the same time, other random vehicles are picked
up from the zone where the first vehicle triggered the process.
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3.4.2 Strategies
Now, we can proceed with the description of actual algorithms. As reactive
approaches we have:

• Magic relocation: we use it as an upper bound strategy, because theoretically
is not possible to outperform it. So, it can be used as a measure of how large is
the room for improvement and how well other strategies perform with respect
to this margin. It works like that: for each booking request, if no e-scooters
are available inside requesting zone and neighboring zones, a magic relocation
is triggered. This means that surrounding zones are scanned, proceeding by
concentric squares, and the e-scooter with the highest sufficient state of charge
to satisfy the trip, in the innermost square, is instantly moved to the requested
zone, without simulating the actual relocation trip.

• Reactive relocation: we use relocation triggers as reaction points, in which
we check relocation needs. Hence, the decision criteria is the relocation
schedule, that, in this case, we use as a list of reasonable relocation that can
be done. Its maximum length, with this algorithm, is set to an upper bound
represented by half the number of the total available zones in which the city
is divided.

As the only proactive approach, we have:

• Proactive relocation, which simply every hour, performs all relocations
given by the relocation scheduling, which, this time, acts as a list of reloca-
tions to be done. With this algorithm, the maximum length of such list is
dynamically derived by the number of simulated workers that are free at the
moment of list computation.

3.4.3 Zone selection techniques
It is possible to see that, for all the strategies (with the obvious exception of magic
relocation) relocation scheduling is the only means by which we make our decision.
In particular, the zone selection technique that we use to generate the schedule,
plays a key role in the performance. So, here are the different techniques that we
propose and compare:

• Aggregation: it selects as pick up (drop off) zone the one with maximum
(minimum) number of vehicles.

• KDE sampling: it is used only to select drop off zones. It samples a new trip
origin-destination couple from the scikit-learn [23] Kernel Density estimator
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mentioned in Section 3.2. More precisely, it uses the estimator of the next
hour as a prediction model, and it selects as drop off zone the origin zone
sampled from the estimator. This technique is very simple and effective, but,
even if it is still stochastic, it uses as prediction model, the same model that
we use to generate new trips.

• Delta: it is the most complex technique that we propose. It uses the number
of current available vehicles in each zone, as a proxy for current state S. It
uses average origin counts (O) and average destination counts (D), to calculate
a prediction of the total outcoming or incoming flow of vehicles in a zone at a
given hour of a given type of day (i.e., weekday or weekend). O and D are
derived directly from the trace, computing the average out-flow and in-flow of
vehicles from a zone at a given hour of a given day type, and they are used as
a prediction model. The predicted flow at hour i of day of type d for zone z is
then computed as the difference between O(d, i; z) and D(d, i; z). A positive
flow means that the predicted number of vehicles that will depart from a zone
at a given hour, will be higher than the predicted number of vehicles that
will arrive. The strategy selects as pick up (drop off) zone the one with the
lowest negative (highest positive) delta (∆), which is the difference between
predicted flow for next hour(s) and current state, for a given time t (in hours)
and a given zone z, as can be seen in (3.2). Thus, an higher delta means that
a shortage of e-scooters is more probable. For example, it can mean that we
predict an high positive out-coming flow from a zone, and we know from S
that there are not enough e-scooters.

∆(d, t; z) =

t+WØ
i=t+1

O(d, i; z)−D(d, i; z)

W
− S(d, t; z) (3.2)

This is the only strategy for which we can specify a window width W , to be
able to take into consideration more then just one hour in the next future.
This is also the only strategy that allows us to relocate more than one e-scooter
at a time, with a suggested number of relocated vehicles that is given by ∆
itself.

3.4.4 Performance metrics and cost assumptions
To evaluate our algorithms, we will consider two performance metrics:

• Satisfied Demand Difference: it is the difference in terms of satisfied
demand between a system operating with given algorithm and the same
system with no active relocation operations.
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• Profit Difference: similarly to the previous one, it is the difference in
terms of profit between a simulated scenario with a relocation algorithm
and the same scenario without relocation. However, we are not considering
the actual profit of an e-scooter sharing operator, because in that case we
should consider also costs that are idependent from relocation. We consider
as profit the difference between total revenues and relocation costs, and than
we compute the difference between the profit of the strategy and the profit
without relocation. Such operation allows us to take in consideration both
performance benefits and side effects in terms of costs of doing relocation.

To be able to define system costs and revenues, we made these assumption:

• a relocation worker cost of 18 $ per hour,

• a relocation van with a leasing cost of 400 $ per month and a consumption of
7 l/100km,

• a diesel price in USA of 0.65 $/l,

• a fixed e-scooter unlock fee of 1 $,

• and an e-scooter rent fee of 0.30 $/min.
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Chapter 4

Results

In this Chapter, we will discuss about obtained results for three different cities:
Louisville, Minneapolis and Kansas City. At first, we will discuss about how
different algorithms performed in the case of Louisville, and then we will see how
the best performing ones behave with the other cities.

As mentioned in Chapter 3 we will use months from July to September 2019
to generate our model. Then we simulate one month of operations and analyze
results.

4.1 Magic relocation - Louisville
At first, we present results obtained by magic relocation strategy (Figures 4.1-4.2).

In Figure 4.1, we plotted both percentage patterns of satisfied demand with
magic relocation and with no relocation at all. On the X axis we have the fleet
size, which corresponds to the cardinality of the F set (i.e., |F |), which is the set
of simulated vehicles. We can see from the graph that, with no relocation, even
with an high number of deployed vehicles (i.e., 2000) we can reach at most 70%
of satisfied demand. Hence, there is a big margin for improvement. On the other
hand, as expected, magic relocation is always capable to satisfy a big portion of the
demand, except for an initial transient in which the number of deployed vehicles is
too low. This is because a minimum number of deployed e-scooters is needed to
satisfy all booking requests, although we are magically putting the vehicle in front
of the user every time it is needed.

In next figures, when we will plot satisfied demand for other relocation algorithms,
we will always use these two lines as a reference, to understand how much the
considered algorithm is performing well, with respect to not having relocation, and
with respect to the upper bound represented by magic relocation.

In Figure 4.2, we plotted the total number of relocation operations performed,
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Figure 4.1: Satisfied Demand in Louisville with magic relocation.
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Figure 4.2: Total number of relocations in Louisville with magic relocation.

depending on the total number of vehicles deployed. Each operation produces a
tuple with relocation details, that includes: relocation date, start time and end
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time, number of vehicles moved, pick up and drop off zone ids, traveled distance
and process duration. We call R the set containing all relocation tuples. So, the
cardinality of R represents the total number of relocation operations.

With magic relocation, this number is not so relevant per se, but it can be used
to have an idea of the order of magnitude of the number of relocations that is
needed to satisfy the entire demand with such a strategy.

As expected, the number of relocations is higher with less vehicles, because more
relocations are needed to satisfy the demand, which is spreaded throughout the
city. The initial steep ascending part of the graph, is due to the fact that here we
are not satisfying the entire demand, so, most of the times in which the system
receives a booking request, a magic relocation is needed, but the final number of
relocations still depends on the number of available vehicles. In other words, in
this section, with more vehicles we do more relocations to satisfy the same demand,
which is not yet fully satisfied.

4.2 Reactive relocation - Post charge - Louisville
In this section, we present results obtained from a first version of the reactive
relocation, with post charge as the only one enabled trigger. This means that, after
each charge, we check the relocation schedule: if there is a proposed relocation in
the relocation schedule that has as pick up zone the same zone where the vehicle
has just finished charging, we perform such relocation. If we planned to relocate
more than one e-scooter, we relocate the one that triggered the action and we
randomly pick up the remaining number of e-scooters from the set of vehicles that
are currently available in that zone.

4.2.1 With Aggregation and KDE sampling techniques
At first, we analyze how the reactive relocation algorithm performs with aggregation
as pick up zone selection technique and KDE sampling as drop off zone selection
technique (Figures 4.3-4.5).

We can see from Figure 4.3 that this version of the algorithm is not performing
so well, and, most importantly, it only outperforms the scenario with no relocation
when we set the number of workers to 10, which is the maximum value that we
considered. Its performance is almost proportional to the number of relocation
workers and slightly dependent on the number of deployed vehicles.

As we can see from Figure 4.4, the number of performed relocations has a pretty
similar behaviour. Hence, we can say that: there is a limit to the number of
relocation that can be performed in a month by a certain number of workers; the
performance of the system is strictly related to the number of relocation that we
perform; given that with these zone selection techniques we are always moving
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Figure 4.3: Satisfied Demand in Louisville with reactive relocation, post charge
enabled trigger and KDE sampling as ending zone selection technique.
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Figure 4.4: Total number of relocations in Louisville with reactive relocation, post
charge enabled trigger and KDE sampling as ending zone selection technique.
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only one vehicle for each relocation, there is a minimum number of relocations
required to obtain a better performance than without relocation, and such number
of reloactions can be reached only with a high number of workers.

In Figure 4.5, we present a contour plot of our first performance metric applied
to this algorithm. We show how the metric is affected by different fleet sizes and
different numbers of relocation workers at the same time. We will always use the
same colour scale for plots of this kind through the entire Chapter, in order to
easily do comparisons between different algorithms.
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Figure 4.5: Satisfied Demand Difference in Louisville with reactive relocation,
post charge enabled trigger and KDE sampling as ending zone selection technique.

We can see that, accordingly to the previous plots, the percentage difference with
respect to not having relocation, is positive only with a high number of workers,
with an interesting improvement when having less than 10 workers, but very few
vehicles. Although this kind of behaviour with a very small fleet can be promising,
looking again at Figure 4.3, we can see that, even if we are improving satisfied
demand, we are in a range in which even magic relocation cannot do better than
19%. Moreover, when we consider costs and revenues, with the help of our profit
difference metric, we found that we were always making a lower profit than without
relocation.

Finally, we can conclude that this algorithm is not improving vehicle utilization
and it is also not profitable for the e-scooter sharing company. Moreover, using
KDE sampling technique, we are always moving only one vehicle per relocation,
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and this can be not the best possible solution.

4.2.2 With Delta technique
We can move now to the analysis of the same algorithm, with a different pick up
and drop off zone selection technique, which is Delta technique (Figures 4.6-4.10).
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Figure 4.6: Satisfied Demand in Louisville with reactive relocation, post charge
enabled trigger and Delta as zone selection technique.

As we can see in Figure 4.6, this version of the algorithm is performing well
only with certain conditions. In particular, we can observe that the behaviour
in terms of satisfied demand is pretty similar when considering any number of
workers grater than or equal to 4. This is due to the fact that Delta technique
proposes a limited number of relocations, which depends on the number of possible
combinations between zones with positive Delta (i.e., more scooters than needed,
see Section 3.4.3) and zones with negative Delta. Hence, we can say that 4 is the
minimum number of workers needed to perform all relocations suggested by Delta
technique, and we can also say that an higher number of workers is not needed and
does not imply any changes in system performance.

In Figure 4.7, we have another confirmation of our deductions. With 1 or 2
workers, the number of performed relocations is limited by the capabilities of each
worker, as it was for the previous algorithm (Figure 4.4). With an higher number
of workers, the number of operations is limited by the algorithm itself: it increases
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Figure 4.7: Total number of relocations in Louisville with reactive relocation, post
charge enabled trigger and Delta as zone selection technique.

when the fleet is small, because there are increasingly more vehicles that need
relocation, and it decreases when the number of simulated vehicles is high, because
there are more and more vehicles that already satisfy the demand, without requiring
relocation. This generates a concave trend in which the maximum is around 1100
vehicles, and, interestingly, corresponds to the point at which the algorithm starts
working better than without relocation.

As expected, the satisfied demand difference (Figure 4.8) is in line with previous
observations, and shows an important improvement area with a fleet size bigger
than about 1100 vehicles and with more than 4 workers.

Also, when considering costs and revenues (Figure 4.9), we can see that there is
a similar area of gain with respect to no relocation, but the tipping line is slightly
shifted to the right, at about 1400 vehicles. This means that, for a fleet size between
1100 and 1400, with our cost assumptions, even if we are improving performance,
we are profiting less than without relocation. In a real case scenario, it would be
up to the e-scooter sharing company to evaluate if such a negative difference could
be compensated by induced demand given by a better performing system. Even if
further discussion can be made on this topic, it is out of the scope of this thesis.

With algorithms that use Delta as zone selection technique, we can analyze
another important measure, that is the number of vehicles moved for each relocation
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Figure 4.8: Satisfied Demand Difference in Louisville with reactive relocation,
post charge enabled trigger and Delta as zone selection technique.
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Figure 4.9: Profit Difference in Louisville with reactive relocation, post charge
enabled trigger and Delta as zone selection technique.
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Figure 4.10: Average number of vehicles moved per relocation in Louisville with
reactive relocation, post charge enabled trigger and Delta as zone selection technique.

(Figure 4.10). This measure is peculiar to small, light-weight vehicles such as e-
scooters, and gives us the possibility to understand how much we are exploiting
the capability to relocate more then one vehicle at a time. For example, with this
algorithm, we can see that we always relocate about one vehicle on average per
relocation. This means that probably we are not yet completely leveraging an usual
van loading capability. However, we can use this information only in a qualitative
way, because we are neither simulating nor optimizing relocation routing, and we
do not have a real measure of how much we are loading a truck per relocation trip.
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4.3 Reactive relocation - Post trip - Louisville
In this section, we present results obtained from a second version of the reactive
relocation, with, this time, post trip as the only one enabled trigger. The purpose
of this version is to understand how the algorithm behaves when a more frequent
event, such as the end of a trip, is used to trigger relocation check.

4.3.1 With Aggregation and KDE sampling techniques
Also this time, we will try different zone selection techniques.

In this section, we start with aggregation as pick up zone and KDE sampling as
drop off zone selection techniques (Figures 4.11-4.12).
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Figure 4.11: Satisfied Demand in Louisville with reactive relocation, post trip
enabled trigger and KDE sampling as ending zone selection technique.

As we can see from Figure 4.11, this algorithm is not performing well at all, thus
meaning that, probably, a too much frequent relocation check is counterproductive.
Indeed, it is possible that we are moving e-scooter too much, randomly spreading
them throughout the city, instead of relocating them in a reasonable way. We can
see from Figure 4.12 that we are always saturating the capability of workers of
doing relocations in parallel. So, the problem is not simply related to the number
of relocation performed, but it is also related to the fact that we check relocation
needs too many times, each time doing a relocation to a drop off zone that was
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previously computed by the KDE. This means that we are not sure that we are
always doing only best (i.e., most needed) relocations. As a reminder, any time a
relocation check is triggered, we start the relocation process, only if current position
of the e-scooter that enabled the trigger, is present as a pick up zone for some
relocation. So, it is possible that doing relocations depending on where each trip
ends, is not the best way to decide which relocations should be performed.
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Figure 4.12: Total number of relocations in Louisville with reactive relocation,
post trip enabled trigger and KDE sampling as ending zone selection technique.

4.3.2 With Delta technique
We now consider delta as zone selection technique (Figures 4.13-4.15), but also in
this version, our reactive relocation does not have success with the post trip trigger.

As we can see from Figure 4.13, we are never outperforming simulations without
relocation. However, with respect to previous version, we obtained an improvement,
especially when we added more workers. This means that in general we obtain
a better performance with delta technique, even when the strategy itself is not
working so well.

Regarding the total number of relocations (Figure 4.14), when we simulated 1
or 2 workers, we always saturated their capabilities, but from 3 to 10, we obtained
a slightly different behaviour, in which at first the number of operations grows with
the number of vehicles, and then it saturates either to worker capability or to the
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Figure 4.13: Satisfied Demand in Louisville with reactive relocation, post trip
enabled trigger and Delta as zone selection technique.
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Figure 4.14: Total number of relocations in Louisville with reactive relocation,
post trip enabled trigger and Delta as zone selection technique.
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total number of relocations, as they are proposed by delta. The best performance
is obtained when most of proposed relocations are performed, with nw = 10. This
means that, as mentioned before, given our implementation of reactive strategy, it
is counterproductive to use a too frequently triggered check to perform relocation.
It can be more useful, instead, to get the top n needed relocations from delta and
perform them in a proactive way, as we will see in next Sections.

In Figure 4.15, we reported the average number of vehicles moved for each
relocation. We can see that, as it was with post charge trigger, we are not yet
completely leveraging the van loading capability, with an average number of vehicles
that is always about one.
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Figure 4.15: Average number of vehicles moved per relocation in Louisville with
reactive relocation, post trip enabled trigger and Delta as zone selection technique.
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4.4 Proactive relocation - Louisville
In this section, we are going to analyze how proactive relocation strategy performs.

4.4.1 With Aggregation and KDE sampling techniques
As for previous algorithms, we analyze at first how the strategy performs with
aggregation and KDE sampling as pick up and drop off zone selection techniques
respectively (Figures 4.16-4.19).
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Figure 4.16: Satisfied Demand in Louisville with proactive relocation and KDE
sampling as ending zone selection technique.

We can see from Figure 4.16 that this strategy is performing quite well, with a
best improvement of about 15% on satisfied demand when considering the highest
amount of workers that we tested, and of about 5% when considering the smallest.

As a proactive approach, we run a fixed number of relocations for each hour,
resulting in a constant total amount of relocations that only depends on the number
of workers, that can relocate vehicles in parallel (Figure 4.17).

As we can see from Figure 4.18, the satisfied demand difference with respect to
not having relocation is already quite impressive. It increases with the number of
workers and the fleet size. It is always positive, meaning that, at worst, the algorithm
has the same performance than without relocation. The maximum achieved satisfied
demand difference is about 16%. However, from our perspective, the most important
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Figure 4.17: Total number of relocations in Louisville with proactive relocation
and KDE sampling as ending zone selection technique.
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Figure 4.18: Satisfied Demand Difference in Louisville with proactive relocation
and KDE sampling as ending zone selection technique.
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achievement is that this algorithm can improve system performance even with
an amount of vehicles that is less or equal than the number of vehicles actually
deployed in the city (i.e., 850). This means that we can satisfy the same demand
with less vehicles, thus reducing vehicles production and deployment.
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Figure 4.19: Profit Difference in Louisville with proactive relocation and KDE
sampling as ending zone selection technique.

In Figure 4.19, we can see that, also in terms of profit difference, this version of
the proactive relocation is already performing well, reaching a total difference in
profit of about 400k$ more than without relocation.

Differently from satisfied demand difference, here we have both zones with
positive and negative differences, with a well defined boundary at about 600
vehicles. This means that a trade-off should be made between satisfied demand
gain, profit difference and number of deployed vehicles, also keeping in consideration
ecological aspects and limits imposed by regulators. In any case, from our point
of view, it is interesting to see that, given our 1 million simulated requests target,
also with a fleet size equal or slightly lower than the real world fleet, it is possible
to make a slightly higher profit than without relocation.

However, we are still moving one vehicle per relocation. This is not optimal,
and can be solved applying delta technique to this algorithm, as it is shown in next
section.
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4.4.2 With Delta technique
We can finally present our best performing algorithm, which is proactive relocation
with delta as both zone selection techniques (Figures 4.20-4.24).
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Figure 4.20: Satisfied Demand in Louisville with proactive relocation and Delta
as zone selection technique.

As we can see from Figure 4.20, this algorithm, at its best, is capable of raising
the satisfied demand from about 70%, without relocation, to about 85%. Similarly
to the previous one, it works increasingly better with a bigger fleet and an higher
number of workers (Figure 4.22). However, we can clearly see from Figure 4.20 that
with a constant step increase in the number of workers, the satisfied demand does
not increase constantly as well, meaning that there is limited room for improvement.
Moreover, the biggest difference here, is that, even with only one worker we have
a leap of improvement of about 8%. In other words, there is already a big gap
between performing relocation with a single worker and not doing relocation at all.

We can see from Figure 4.21 that, similarly to the version with KDE sampling,
we have a constant total number of relocations which depends only on the number
of workers, as expected.

Given our costs and revenues assumptions, we can see from Figure 4.23 that
the behavior of this version of the algorithm is very similar to the previous one.
However, here we can reach an even higher profit difference of about 500k$ more.
We also have a similar boundary between positive and negative profit difference.

Also here, the most important takeaway, is that we can obtain an important
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Figure 4.21: Total number of relocations in Louisville with proactive relocation
and Delta as zone selection technique.
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Figure 4.22: Satisfied Demand Difference in Louisville with proactive relocation
and Delta as zone selection technique.
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Figure 4.23: Profit Difference in Louisville with proactive relocation and Delta as
zone selection technique.

improvement in performance and profit even with a fleet that is equal or slightly
lower than the real world one (i.e., 850). The main difference with respect to the
previous version, is that here we can obtain high profit gains also with few workers,
because of the leap mentioned before, which can be explained with the number of
vehicles relocated.

In Figure 4.24, indeed, we can see that we are finally better exploiting the
capability of relocating more than one e-scooter at the same time, even if the
average number of vehicles moved at each relocation is still quite low. We can see
from the plot that it has an initial transient, where it depends on the fleet size.
Then, once it reaches its maximum, it starts slowly decreasing with the increase of
the number of deployed vehicles, reflecting the lowering need of relocation. But,
the most important thing to notice is that the average depends a lot on the number
of workers. Indeed, with one worker we obtain the highest average, and this is the
reason why, even with one worker, the system already performs a lot better.

Now that we know that the best performing algorithms between the ones that
we proposed, are the algorithms that use a proactive strategy, in the next Sections
we are going to analyze how such strategy performs with other cities.
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Figure 4.24: Average number of vehicles moved per relocation in Louisville with
proactive relocation and Delta as zone selection technique.
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4.5 Proactive relocation - Minneapolis
In this Section we will present how proactive relocation performed with data from
the city of Minneapolis. As mentioned before, we generated our demand model
starting from the same months as for Louisville (i.e., from July to September 2019),
and we simulated one month of operations.

4.5.1 With Aggregation and KDE sampling techniques
As for Louisville, firstly, we analyze how the strategy performs with aggregation
and KDE sampling as pick up and drop off zone selection techniques respectively
(Figures 4.25-4.27).
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Figure 4.25: Satisfied Demand in Minneapolis with proactive relocation and KDE
sampling as ending zone selection technique.

First of all, we can clearly see from Figure 4.25 that also here there is a big
potential margin of improvement, considering that with 2000 vehicles, without
relocation, only about 50% of the demand is satisfied. However, our algorithm
struggles to improve system performance.

Indeed, we can see also from Figure 4.26 that performance improvement with
respect to no relocation is constantly below 5%. And, obviously, this behaviour
also translates in a poor gain in terms of profit, only with a limited number of
parameter combinations (e.g., around 1000 vehicles, with 2 to 4 workers)(Figure
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Figure 4.26: Satisfied Demand Difference in Minneapolis with proactive relocation
and KDE sampling as ending zone selection technique.

4.27).
As a matter of fact, also with magic relocation we satisfy a larger number of

requests only with bigger fleets. This can be due to the fact that Minneapolis has
a larger operating area than Louisville and could require an higher fleet size range,
to obtain a similar behaviour to the one obtained with Louisville.

However, we think that another explanation to the poor performance relies on
data. Datasets provided by the city of Minneapolis are spatially aggregated by
street ids (i.e., Centerline IDs, see Table 3.1), while data from Louisville has rounded
coordinates. Moreover, for Minneapolis we have a time resolution of 30 minutes,
while data from Louisville has a 15 minutes time bin. It is possible that, with such
a level of aggregation, it is not so straight forward to disaggregate the data, as we
did with a random uniform probability. Further study is required to understand
how different types of aggregation affect our simulator and datasets in general, and
this is, for sure, an important aspect to consider for future improvements.

4.5.2 With Delta technique
Like previous analysis, we now consider delta as zone selection technique (Figures
4.28-4.31).

As expected, it generally performs slightly better than the version with KDE
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Figure 4.27: Profit Difference in Minneapolis with proactive relocation and KDE
sampling as ending zone selection technique.
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Figure 4.28: Satisfied Demand in Minneapolis with proactive relocation and Delta
as zone selection technique.
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sampling, but also here, the algorithm has some difficulty improving performance
(Figures 4.28 and 4.29).
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Figure 4.29: Satisfied Demand Difference in Minneapolis with proactive relocation
and Delta as zone selection technique.

Only when we consider costs and revenues (Figure 4.30), we have a more similar
behaviour to the expected one, with a clearer range of parameters with which the
system has an higher profitability than without relocation. This means that the
algorithm is not performing so well in general, but, at least, delta technique is
working as expected, doing better relocations, moving more than one vehicle at a
time (Figure 4.31).

As an explanation of why, even with delta technique, we have only a small
improvement in terms of system performance, we can apply here the same con-
siderations about dataset aggregation that we made for the previous version with
KDE sampling.
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Figure 4.30: Profit Difference in Minneapolis with proactive relocation and Delta
as zone selection technique.
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Figure 4.31: Average number of vehicles moved per relocation in Minneapolis
with proactive relocation and Delta as zone selection technique.
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4.6 Proactive relocation - Kansas City
The third and last city that we present is Kansas City, and also here we did
simulations with both versions of proactive relocation, using the same time period
for demand model generation and the same simulation duration. However, an
important thing to notice is that data from Kansas City has the same spatial and
time aggregation used by Louisville, so it should not present the same problems
encountered with Minneapolis.

4.6.1 With Aggregation and KDE sampling techniques
As always, we start with aggregation and KDE sampling as zone selction techniques
(Figures 4.32-4.34).
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Figure 4.32: Satisfied Demand in Kansas City with proactive relocation and KDE
sampling as ending zone selection technique.

We can see from Figure 4.35 that Kansas City, without relocation, has a lower
satisfied demand than Louisville, so there is an even larger margin of improvement.

As expected, this time we have a very similar behaviour to the one that we had
with Louisville, with even a higher maximum improvement in terms of satisfied
demand (i.e., about 17%) (Figures 4.32 and 4.33).

The most important difference, here, is that a single worker has more difficulty
doing all the work alone. It seems that at least 2 workers are needed to obtain a
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Figure 4.33: Satisfied Demand Difference in Kansas City with proactive relocation
and KDE sampling as ending zone selection technique.

significant improvement in performance, and, definitely, it is partially due to the
fact that here we are moving only one scooter per relocation, not leveraging the
full worker potential.

Considering costs and revenues (Figure 4.34), we can see that, in terms of
maximum gain, we are pretty close to Louisville, but, the most important difference,
here, is that we have a positive difference even with very few vehicles, meaning
that the algorithm is consistently improving performance, even in worst conditions.

As for Louisville, from our perspective, the most important takeaway here is
that we can have the same system performance as without relocation, with fewer
deployed vehicles, thus positively contributing to sustainability.

4.6.2 With Delta technique
Finally, we do our last comparison between cities, simulating proactive strategy
with delta as pick up and drop off zone selection technique, in Kansas City (Figures
4.35-4.38).

As we can see from Figure 4.35, also here we have a very similar behaviour to the
one obtained with Louisville. There is also the same gap between no relocation and
relocation with one worker. However, as for the previous version of the algorithm,
here we have a higher maximum improvement of about 20% with 10 workers.
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Figure 4.34: Profit Difference in Kansas City with proactive relocation and KDE
sampling as ending zone selection technique.
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Figure 4.35: Satisfied Demand in Kansas City with proactive relocation and Delta
as zone selection technique.
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Figure 4.36: Satisfied Demand Difference in Kansas City with proactive relocation
and Delta as zone selection technique.

In Figure 4.36, we can see that satisfied demand difference increases with more
vehicles and more workers, as expected, and that there are no simulations in which
we obtained a negative difference.

Profit difference reflects what we have seen in last plots (Figure 4.37), with a
profit gain even with few vehicles and an higher maximum profit gain of more than
500k$.

Finally, we can observe from Figure 4.38 that we are moving a slightly higher
average number of vehicles for each relocation, with respect to Louisville. This
means that Kansas City presents more unbalancing issues than Louisville, that
delta technique tries to solve, giving as output an higher suggested number of
vehicles to be moved for a single relocation, on average.
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Figure 4.37: Profit Difference in Kansas City with proactive relocation and Delta
as zone selection technique.
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Figure 4.38: Average number of vehicles moved per relocation in Kansas City
with proactive relocation and Delta as zone selection technique.
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Chapter 5

Conclusions

In this thesis, we extended an existing data-driven, discrete-event simulator for
FFVSS, in order to manage vehicle relocation. In particular, we focused on light-
weight electric vehicles, and, for our purposes, we chose e-scooters.

They represent an increasingly popular mode of transportation, and an emerging
topic in transportation research field. They have the potential to reduce private
car usage, but their effective impact on the environment is still not so clear. The
manufacturing phase is one of the most polluting voices in their life-cycle assessment
list of contributes. Hence, we studied different relocation algorithms, to see if there
is the possibility to better utilize each vehicle, reducing the deployed fleet size.

We proposed two main approaches: reactive and proactive. In Figures 5.1 and
5.2, we summarized algorithms performances in terms of satisfied demand in the
case of Louisville, grouping them by the number of hired workers (i.e., nw = 1 and
nw = 10 respectively).

Reactive relocation proved to be effective only when the action that triggers the
check for relocation needs, is not too much frequent. Indeed, the trigger positioned
at the end of charging procedure (post charge) outperformed the one placed at the
end of each trip (post trip). Moreover, reactive relocation with post charge trigger,
outperformed simulations without relocation only with a high number of workers
and vehicles.

Proactive relocation was the best strategy overall, with a maximum improvement
of about 15% of satisfied demand in Louisville and 20% in Kansas City, and it was
the only one strategy to be able to outperform no relocation even with only one
worker, with a maximum improvement in that case of about 8%.

We then made a comparison between different cities, analyzing the performance
of proactive relocation. We found that dataset aggregation has a huge impact on
the simulations: cities with minimal-invasive types of aggregation present coherent
results, while cities with stronger aggregation techniques can present result that
are difficult to be interpreted.
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Figure 5.1: Satisfied Demand in Louisville with different relocation algorithms
and nw = 1.
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Figure 5.2: Satisfied Demand in Louisville with different relocation algorithms
and nw = 10.

In the future, there are different improvements that can be done and different
research paths that can be taken. The first immediate path could be to further
study data integration, trying to better understand how different aggregation
techniques affect data usability.
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Another focusing point could be the delta technique itself, because we did
not touched the time window, but a dedicated study can be done to tune such
parameter and validate the algorithm performance, also introducing other more
complex methods of computing flow prediction.

Moreover, we are not simulating relocation routing. Such improvement could
lead us to a more complex algorithm, a better performance analysis and a more
precise cost estimation.

Finally, we can say that the most important takeaway of this work is that
reducing or keeping low the number of deployed e-scooter is possible, thanks to
proactive operations. Such strategies have the capability of making the entire
system more profitable and more sustainable. They can be guided by a greedy
solution that tries to solve the dynamic relocation part of the DRRP problem, in a
very short time, thus giving us the possibility to simulate months of operations in
a matter of hours.
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