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Abstract

The study of driving behaviour is an element of great interest for all those companies
that provide a fleet management service. Careful observations allow us to find
imperfections that, if corrected, entail a reduction of risks and an increase in profits.
In order to objectively evaluate this type of behaviour, there are countless indicators
to be taken into consideration. In this work, the most significant indicators among
those available are used to produce an evaluation of the driving behaviour through
a pipeline of operations related to the world of data science.

This thesis focuses on the last stage of the process. Machine learning techniques
are used to explore a cluster distribution resulting from previous stages. Then
that distribution is exploited to calculate a final Key Performance Indicator (KPI)
for each trip to be evaluated. This is not done through conventional techniques,
such as comparison with a reference approved by a domain expert, but through
the application of a Kernel Density Estimation (KDE) function that allows us to
produce an assessment based on proximity to the majority of similar behaviours.

The results of the experiments demonstrated the validity of the automatically
selected set to be considered as a reference, thus confirming the reliability of the
KPIs. Furthermore, the analyses on the various types of features have highlighted
which are the indicators that most influence the evaluation of driving behaviour.
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Chapter 1

Introduction

Logistics can be defined as the set of activities aimed at transporting products from
one place to another on schedule, efficiently and at the lowest possible cost [1]. It
is the cornerstone of the economy, from the supply chains of small companies to
national and international ones. It is also the meeting point between the world
of manufacturing and the final consumer. In particular, land logistics is the most
widely used transport system both in Italy and in Europe for various reasons,
including the type of territory, reliability, economic advantages, traceability and the
possibility of establishing door-to-door connections. Those who deal with logistics
and freight transport with professionalism are aware that one of the most important
aspects concerns the management of their company fleet.

Fleet management is a category of operations useful for coordinating and mon-
itoring a set of vehicles [2]. Many trucking companies use fleet management, for
example, to optimize their movements to save time and increase profits. Among the
various functions of fleet management, we find the evaluation of driving behaviour.
Nowadays, the interest in this operation is constantly increasing because by mon-
itoring their drivers, companies acquire knowledge that will allow them to reduce
the risks and to better safeguard the environment by suggesting a more ecological
driving style. This type of monitoring is based not only on information about the
actions of the driver himself but also on information relating to the state of the
vehicle and the environment in which the driving takes place. The evaluation of
driving behaviour is a service that is currently offered by hundreds of companies
and as many computer tools.

K-Master [3] is one of the many companies that deal with fleet management and
which among all interests also has that of studying driving behaviour and exploiting
the knowledge acquired to provide better services to its customers. This company
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Introduction

constantly collects data from the tens of thousands of vehicles monitored. Given the
large amount of data in this search field, many of the analysis tools make extensive
use of data mining techniques and artificial intelligence algorithms to achieve the
goal. To properly assess driving behaviour, it is also necessary to know what is right
and what is wrong to do while driving a vehicle in a certain environment. For this
reason, a classic approach to the problem is to use references provided by a domain
expert on which to base the entire assessment. K-Master is interested in exploring
alternative approaches, also to stand out from the competition. To respond to this
request, we have decided to use a machine learning-based approach. Furthermore,
we look for a data-driven approach that departs from the strategy mentioned above
and tries to supplant the involvement of the domain expert by basing the evaluation
on how and how many other drivers have previously behaved in a situation similar
to the one under analysis.

The result of this work is a framework that fully guides the analyses necessary for
the study of driving behaviour, starting from the raw data held by the company
up to the generation of an evaluation that can be easily understood and inter-
preted by any customers. During the process, the data is heavily pre-processed
through filterings, enrichments and aggregations phases. They are then divided
into subgroups on which to perform more specific analyses. Among these, we find
the use of unsupervised learning techniques and statistical functions that lead us
to obtain the desired evaluation. This thesis describes in detail the final part of
the framework, performing external studies to it to explore and discover the most
relevant characteristics related to the data that have completed the previous pre-
processing phases. Furthermore, the technique used to produce the final output is
also described, explaining the reasons and interpreting the results.

All this work leads to interesting discoveries regarding the study of driving be-
haviour. We defined a smart solution to identify which trips should be considered
as a reference for future evaluations. We have also demonstrated the effectiveness
of some classifiers in recognizing these types of trips by solving typical machine
learning problems, such as that of class unbalancing. By doing this we came into
contact with the huge amount of indicators that can describe driving behaviour
and we understood which of them are the most relevant. In particular, we made
a clear distinction between indicators relating to the vehicle and its driver and in-
dicators relating to the context in which the journey takes place, observing how
the results change as these descriptors change and discovering how the considered
indicators are related to each other. To provide an evaluation, a density estimation
function was used, capable of providing a simple numerical value that measures the
correctness of each trip, based on the previously selected reference set. The scores
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thus provided are easily justifiable, providing reasons based on the distance between
trips in the multidimensional space of their features. Eventually, observing the final
output results, it is possible to demonstrate the superior effectiveness of the highest
level services provided by the company, thus discovering further information useful
for commercial purposes.

This thesis consists of several chapters, the purpose of which is described below.
Chapter 2 provides an overview of the theoretical notions related to the world of
machine learning, data mining and statistics necessary to understand what follows.
Chapter 3 deepens our case study, taking up the concepts of fleet management
and driving behaviour until we get to talk about our specific situation, focusing
on the data available to us. Chapter 4 explores what is already present in the
literature, focusing on those concepts that inspired us and that helped guide the
development of the work. Chapter 5 briefly describes the framework created and
sets out the main reasons that justify the solution adopted for calculating the
final KPI. Chapter 6 summarizes the setup of the experiments, indicating all those
variables that have been adjusted and analyzed to launch the simulations. Chapter
7 reports the results obtained both from the analyses outside the framework and
from the assessments of driving behaviour, confirming the validity of the work
carried out. Chapter 8 highlights which were the most interesting discoveries both
from a scientific and commercial point of view and suggests possible developments
that could bring improvements to what has already been done.
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Chapter 2

Theoretical Premises

Fleet management is an activity that hundreds of companies around the world
deal with. Some of them manage tens of thousands of vehicles scattered over a vast
territory and receive millions of geolocated data transmissions every day. Wherever
there is a sufficient amount of information, and, in particular, where there is an
enormous quantity of it as in the environment just described, machine learning can
be exploited to bring benefits to those who request its use. Consequently, it is
reasonable to think that artificial intelligence can help in the resolution of most of
the fleet management operations and indeed various machine learning techniques
have been used in this work to try to reach the prefixed goal. This chapter aims
to describe the machine learning techniques and algorithms used to complete the
various steps necessary to achieve the final goal.

2.1 Data Mining e Machine Learning Techniques

Over the years, machine learning techniques have been tested from various points
of view and the research of where and how to best use them is continuing. This
growth is fueled by the constant increase in the production of data in every possible
context, thanks to technologies that have recently taken a turn, such as Internet of
Things (IoT) and smartphones. Machine learning can be defined as the automatic
acquisition of new knowledge through experience. Machine learning algorithms
exploit a set of initial data, called train dataset, for the training of models capable of
autonomously making predictions on new data based on what has been assimilated
during their construction. Data mining [4] exploits machine learning algorithms
to automatically extract information from large data sets whose acquisition would
be too complex or time-consuming if performed manually. The aim is to visualize
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some kind of pattern or correlation that would be difficult to discover without the
use of these techniques.

Machine learning techniques can be divided into two macro-categories: supervised
and unsupervised techniques. The former is trained using labeled samples and it
build models whose predictions are based on the input data-label correspondences.
The latter categorize unlabeled input data based on their common characteristics.

2.1.1 Classification

The most common supervised learning task is classification [5]. It consists of learn-
ing the structure of a data set which samples are already divided into groups called
classes. This is done through the training of a model that can then be used to
estimate the class of one or more previously unseen data examples with unknown
class labels. In the majority of cases, each class label has a precise meaning within
the context in which it is used but a classifier does not need to know it in order to
perform the classification task correctly. Classification is a supervised task because
a dataset of already labeled examples is used to learn the structure of groups and
it is this additional knowledge that makes this approach more powerful than an
unsupervised one, such as clustering. A classification algorithm consists mainly
of two phases: a training phase in which part of the available dataset is used for
the construction, or training, of the model and a test phase in which the model is
evaluated through the predictions that it makes on samples unseen before.

In the progress of our work, several supervised learning algorithms have been used
to perform classification and their description is provided below. The need to try
multiple classifiers arises from the fact that there is not one that is better than
the others in all situations: each has its advantages and disadvantages and it is
necessary to test them directly on the data to see which is better.

k-Nearest Neighbor. Neighbours-based classification [6] is a type of instance-
based learning or non-generalizing learning: it does not attempt to construct a
general internal model, but simply stores instances of the training data. When
new unlabeled data arrives, classification is done by a majority vote of its closest k
train elements, called nearest neighbours. The basic nearest neighbours classifica-
tion uses uniform weights but, under some circumstances, it is better to weight the
votes such that nearer neighbours contribute more to the final prediction. There
are two parameters that can be regulated: the number of neighbours to consider
(k) and the metric with which distance between points is computed. Both affect
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the performance of k-NN: the k value affects the shape of the boundaries and sen-
sitivity to outliers while the distance metric defines which samples are similar and
which not. The advantages of k-NN are:

• It does not need a lot of basic assumptions to be implemented, unlike other
classifiers.

• It is a non-parametric approach that does not train a model, so it can be
updated online just by adding a point to the train set.

• It guarantees a good generalization for a large number of samples.

The disadvantages of k-NN are:

• It is computationally expensive because it is necessary to store all training
samples and then compute the distance from all of them for every test point.
This problem can be solved applying some strategies to make this algorithm
scalable:

– We can simply limit the distance computation using only features that we
know are relevant, making the calculation lighter. This strategy requires a
previous knowledge on the utility of the features. If we do not have it, we
can apply a feature reduction technique to reduce the samples’ dimension.

– We can organize the data points in some structures and compare to the
sample to be classified only some elements of each class. It requires to
know how to organize the data.

• It suffers the Curse of Dimensionality because as the number of dimensions
increases, the distance between points increases too and therefore the K nearest
neighbors could be very far from the new sample they are evaluating.

• It’s not that easy to choose the number of nearest neighbours to consider for
the voting.

Support Vector Machine. Support Vector Machines (SVM) [7] constitute
a class of “learning machines” that originate from concepts relating to the statisti-
cal theory of learning. In classification problems, the basic idea of the SVM is to
identify a particular separation hyperplane (called optimal hyperplane) that max-
imizes the distance of the elements of the dataset from the hyperplane itself. In
general, we can say that the greater this distance, the smaller the error made by
the classifier. This error can also be null if the data are linearly separable. When
linear classification is not possible, SVMs are able to effectively perform non-linear

17



Theoretical Premises

classification using the kernel method, implicitly mapping the input data into a
higher-dimensional space. The advantages of SVM are:

• It is an effective algorithm in high dimensional spaces.

• It is an effective algorithm when the number of dimensions of the training
samples is greater than the number of samples themselves.

• The separation hyperplane is built based on a subset of training points called
support vectors, so this algorithm is memory efficient.

The disadvantages of SVM are:

• It does not perform well when the training dataset contains a large number of
samples because the required training time is higher.

• It does not perform very well when the noise level in the training dataset is
high.

• The choice of the kernel is not obvious and it turns out to be crucial for obtain-
ing good results. The most suitable kernel and the value of its hyperparameters
can be found during the model validation phase.

Decision Tree. A decision tree [8] is a classifier expressed as a recursive
partition of the input space. A decision tree consists of nodes connected by edges,
forming a tree-like structure. The nodes have exactly one incoming edge, except
for the first one, called root. If a node has outgoing edges, it is called an internal
or test node. All other terminal nodes are called leaves. In a decision tree, each
internal node tests one of the attributes of the incoming data and then divides
them according to their value for the selected attribute in order to obtain a node
whose incoming examples belong all or almost all to the same class. The final
prediction is given by the most present class in the leaf where the unlabeled sample
will arrive after being guided by the value of its attributes through a path that
starts from the root. There are several splitting criteria that can be used to choose
the best attribute to divide the samples. The number of created branches depends
on the type of the chosen attribute: we can create a branch for each value of a
categorical attribute or we can select a separation point within the scale of values
of a continuous attribute, thus originating only two branches. The separation of
the samples contained in a node continues until the remaining ones all belong to
the same class or until a stopping criterion is satisfied, based for example on the
depth of the tree or on the number of remaining samples. Decision tree advantages
are:
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• The algorithm is simple and it creates a model easy to understand and inter-
pret, perfect for visual representation.

• It is a very fast technique.

• The feature selection process happens automatically because the most relevant
ones are selected during the training thanks to splitting criteria.

Decision tree disadvantages are:

• It tends to overfit easily. The overfitting can be avoided choosing an effective
stopping criterion or by applying a ensemble method. This last strategy consist
in generating a group of base learners and combine them to achieve higher
accuracy on test set, through majority voting. This voting system can be also
weighted based on the accuracy achieved by each single base classifier.

• It is unstable, meaning a small change in the data can completely upset the
structure of the tree.

Random Forest. Random forest [9] is an ensemble method specifically de-
signed for decision tree classifiers. Random Forests grows many trees where each
base classifier classifies a different random vector of attributes from the original
training dataset. The final result on classifying a new instance is obtained by
voting over all the trees in the forest. This approach introduces two sources of ran-
domness: the former is that each base tree is grown using a subset of the original
training dataset, the latter is that at each node of a tree the best split is chosen
not from all the attributes, but from a random subset of them. Once the number
M of attributes to use for train each tree has been fixed, it is possible to proceed in
many ways at each node to add more randomness: we can select the M attributes
randomly and then choose the one with the higher score based on the splitting
criterion or alternatively we can compute the score for all attributes, select the top
M and then choose randomly one of them for the split. Random Forest algorithm
advantages are:

• It resolves some of decision tree problems. It is more robust to outliers and
the risk of overfitting is lower.

• It works well on large datasets and with non-linear data.

Random forest disadvantages are:

• The training time is higher than decision tree, because it has to train several
trees.
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• Random forests are found to be biased while dealing with categorical variables
because they will favor those with more values which can pose a prediction
risk.

2.1.2 Methods for Model Validation
Since there is no classification algorithm that best suits all possible situations, after
considering different classifiers or different version of the same classifier and after
applying their functioning to our data, we need a criterion that allows us to choose
the one that best suits the problem that we are trying to solve. There is a large
variety of indicators, but usually the most used are the prediction accuracy or the
prediction error. The prediction accuracy can be trivially defined as the ratio of
correctly classified examples over the total number of examples to be classified and
it is discussed in detail in the following section. The prediction error is its opposite,
so it is equivalent to the percentage of examples classified incorrectly. In most real
world cases these indicators are unknown because they cannot be calculated, so
they must be estimated in some way. For this reason we will talk about estimated
prediction accuracy/error and typically these indicator are computed dividing the
input dataset in train set and test set, then training the model exploiting only the
train set samples and eventually estimating its accuracy over the test set elements.
There are many other different strategy which help to estimate these indicators in
a more robust way than described above, especially in the presence of a limited
amount of data. Most common performance evaluation techniques, some of which
used in this work, are explained below.

Hold Out. It is the simplest method. It consists in dividing the available
dataset into two disjointed sub-sets, one called train set used to build the model
and one called test set used to evaluate the model. This division is fixed and the
elements of the test must never contribute to the construction of the model in order
to not alter the final evaluation. Usually the train set is composed of 70-80% of the
data while the test set by the remaining 20-30%.

K-fold Cross Validation. Using K-fold cross validation [10] the input
dataset is split in K parts of almost the same size, called folds. Then K − 1
parts are used as train set and the last one as test set to build and evaluate a
model. The process is repeated K times, every time leaving out of the training
a different fold, until all subsets were used as a test set. At the end the average
accuracy/error is computed considering all the results obtained during the K rep-
etitions. In this way, this technique allows to derive a more accurate estimate of
model prediction performance. A variant of this technique consists in dividing the
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input dataset into K folds while maintaining the same distribution of class labels in
each of them [11]. This operation is called stratification and allows to obtain more
balanced partitions from the point of view of the represented classes, in order to
obtain a more reliable error estimate.

Leave-One-Out Cross Validation. It is an extremization of K-fold cross
validation in which the cardinality of the input dataset is used as the fold number.
In this way all the partitions will contain exactly one input element. Leave-one-out
cross validation is particularly useful when the cardinality of the input dataset is
small. Unlike K-fold cross validation, this technique is also an unbiased estimator
of the generalization error, because the entire dataset and the training set used to
build the model differ only for one sample, so it is a really good way to understand
how will be our model in the future. The time required for the execution of this
technique is higher than those of the strategies seen so far because it has to train
as many models as there are elements in the input dataset.

Bagging. It is an ensemble strategy to perform model evaluation. We choose
a classification algorithm and we use only that one but with different training
sets. These training sets are created with bootstrap aggregation that is a technique
that perform repeatedly random re-sampling of the original training set (samples
are picked with the same probability even for more than one sub-train set). At
the end, we obtain the prediction value with the majority voting. This approach
decreases error, especially of unstable learners, such as decision trees because they
depend a lot on the training set and they can easily overfit.

Boosting. It is another ensemble technique. The idea is to build a strong
learner by combining several weak learners. This can be done in many ways but the
most popular one is called AdaBoost. In addition to re-sampling, we re-weigh the
examples: the sample probability of being picked depends on its weight. At each
iteration, a new weak learner is trained, and the training samples are re-weighted to
focus the system on the ones that the most recently learned classifier got wrong (i.e.
training samples that were misclassified are given a higher weight than the ones cor-
rectly classified). For each classifier is also computed its importance, proportional
to the accuracy achieved. The final classification is based on weighted voting of
weak classifiers (where the weights are the learner importance). When used with
decision tree algorithms as base learners, considerably decreases overfitting. On the
other hand, it is sensitive to noise and outliers.
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2.1.3 Metrics for Performance Evaluation
An evaluation metric can be described as the measurement tool that measures the
performance of classifier [12]. In most classifiers, the predicted output is in the
form of a label associated with the test instance. In such cases, the predicted class
of the test instance is compared with the ground-truth label to calculate a value
that indicates the overall classifier goodness. Different metrics evaluate different
characteristics of the classifier induced by the classification algorithm. An example
can be the use in the test phase to choose the best classifier or the best among
the models trained with the same classification algorithm, if we have more than
one in comparison. An example of use in the train phase could be for purposes
of optimization of the classification algorithm to make sure that the model that is
being trained is able to make better future predictions. Below there is a description
of the most commonly used metrics with an explanation of the situations to which
they are best suited.

Accuracy. Accuracy is the most widely-used metric for evaluating a model.
In general, it can be defined as the percentage of correctly classified examples out
of the total of examples to be classified.

Accuracy = # correctly classified objects
# classified objects (2.1)

However, accuracy is not always the best metric to use, especially when there is an
high level of data unbalancing. The basic problem is that when one of the classes is
dominant, it is possible to achieve high accuracy simply by predicting that class for
all or almost all the test samples. As a consequence, when the classifier makes the
prediction for an example of a minority class, even if it has a very high accuracy, it
is still likely that the predicted label will be the one of the majority class. Getting
such a prediction wrong can be very damaging in some contexts where the minority
class is the most important (some examples are described in the following section).
In conclusion, accuracy is a metric that analyzes the classifier globally but does not
allow to evaluate only the predictions relating to a single class.

Precision. Precision is a metric calculated in reference to a single class. It is
computed as the ratio of the number of true positives to the sum of true positives
and false positives. The true positives are the examples of the class under analysis
that have been correctly classified. False positives are all those examples belonging
to other classes but which have been classified with the label of the reference class.

Precision = # objects of class C correctly classified
# objects classified with the label of class C (2.2)
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Recall. Recall is also a metric calculated in reference to a single class. It is
computed as the ratio of the number of true positives to the sum of true positives
and false negatives. The true positives are the same as explained for precision.
False negatives are all those examples belonging to the class in analysis but which
have been classified with the label of another class.

Recall = # objects of class C correctly classified
# objects of class C (2.3)

To have an overall evaluation of the effectiveness of a model, it is better to examine
both precision and recall metrics for all the classes involved in the process. For this
reason is very common to see these two metrics computed together. Unfortunately,
precision and recall are often in opposition because whenever we try to improve
one of the two, the other is likely to get worse.

2.1.4 Resampling

One problem that plagues many datasets is that of unbalanced data [13] in which
more instances are belonging to some classes than others. Almost all classification
algorithms suffer from this problem. Unbalanced datasets usually causes biases in
classification and leads to poor generalization performance, due to the fact that
learning algorithms assume a balanced distribution of classes. This issue is of great
relevance and has been intensively explored because in many fields the minority
class is the most important one and it characterizes only an extremely low per-
centage of input samples. For example, if we consider the field of medical research
and in particular the study of rare pathology, there are very little data relating to
patients with these diseases compared to the totality of patients observed. In other
cases, it may be useful to search for a high detection rate of the minority class by
agreeing to allow a greater number of errors in the recognition of the most recurrent
class, because the incorrect classification of an example belonging to the majority
class has a relatively low cost.

One of the main researches on this topic is the implementation of solutions for
handling the imbalance, both at the algorithmic and data levels [14]. The former
designs a new classifier or improves the existing algorithms to increase the detec-
tion of minority class samples while the latter tries to flatten the dataset unbalance
through changes to the distribution of classes. At the algorithmic level, solutions
are based on adjusting the costs of the various classes to counter the class unbal-
ance, adjusting the decision threshold or switch to a recognition-based approach
from the classical discrimination-based one, that is learning from every single class
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instead of learning differences between classes. At the data level, methods for bal-
ancing the classes consist of re-sampling the original dataset. This can be done
either by over-sampling the minority class or by under-sampling the majority class
until the classes are approximately equally represented. Both strategies are per-
formed in the data preprocessing phase, so they can be applied to any machine
learning algorithm which will not be aware of the use of these techniques because
they are executed before the model training begins. Their usage completely solves
the problem of data unbalance, but introduces others, in addition to the need to
identify a good criterion with which to add or remove elements from the dataset.
The over-sampling generates new elements but the growth of the dataset implies
both greater computation times and greater use of resources. The under-sampling
could instead eliminate key elements of the majority class, thereby hindering sub-
sequent analyzes. The use of over-sampling is preferred to under-sampling, which
is now mainly used where resources are the critical aspect. Sometimes the simul-
taneous use of these techniques can lead to better results than those obtainable
by applying one of the two in isolation. In this work, the oversampling strategy
described below was adopted.

Synthetic Minority Over-sampling Technique (SMOTE). SMOTE [15]
is an over-sampling technique that generates synthetic training elements belonging
to the minority class. The creation of new data starts by selecting one element that
belongs to the least popular class, then a new data point is generated somewhere
between the selected sample and each of its K nearest neighbor. This process is
then repeated for each sample of the minority class. From the geometric point of
view, the vector that goes from the element initially chosen to one of the K nearest
neighbors is multiplied by a number between 0 and 1 and the result indicates an
intermediate point between the two in which the new data point is generated. The
feature values of the synthetic examples have an intermediate value between those
of the original examples used for their creation. Although this solves the overfit-
ting problem arising from other oversampling techniques in which the elements of
the minority class are simply replicated as they are, it could, in some contexts,
introduce the problem of the generation of elements whose features have values
that are not admissible in real cases. The results show that the SMOTE approach
can improve the accuracy of classifiers for a minority class. SMOTE provides a
new approach to over-sampling. The combination of SMOTE and under-sampling
performs better than plain under-sampling. The experiments conducted on this
approach have shown that SMOTE can improve the accuracy of classifiers in all
those cases where there is a minority class. Furthermore, it was found that the
combination of SMOTE and under-sampling allows obtaining better results than
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using only simple under-sampling.

2.2 Kernel Density Estimation (KDE)
The probability density function is a key element of statistical analysis. When
there is a dataset whose probability density function is not known it is necessary
to adopt techniques to be able to estimate it. The density estimation [16] is the
construction of the estimate of the probability density function. This is done by
directly exploiting the data itself. This operation is useful and can be applied in
various fields. For example, we may want to predict when a natural disaster, such
as an earthquake, might occur based on past events. Or we might be interested
in finding out the likelihood of a certain disease occurring in a certain category
of people given a large amount of subjects’ medical records. The techniques of
density estimation are close to those of unsupervised learning, feature engineer-
ing, and data modeling. Density estimation techniques can be classified in various
ways. A possible subdivision is between parametric techniques and non-parametric
techniques. The former assumes that sample data comes from a population that
can be modeled by a probability distribution, in which parameters are fixed. On
the other hand, the latter makes no assumptions about a parametric distribution
when modeling the data. One of the most popular and useful is the Kernel Density
Estimation (KDE) [17], a non-parametric technique that belongs to the family of
the neighbor-based approaches.

KDE is used for pattern recognition and classification by estimating density in met-
ric or feature spaces. For each element X within the feature space, the algorithm
allows to calculate the probability of belonging to a class C, considering the density
of C in a neighborhood of amplitude K of the point X. The use of KDE is similar to
that of histograms but being able to choose the kernel that best suits the situation,
the results are smoother and more continuous. The process to construct the esti-
mate of the density function using KDE consists in placing a kernel over each data
point and then sum all the kernel together in order to obtain the curve of density
estimate. A comparison between histogram and KDE strategies is represented in
figure 2.1, in which the red dotted lines represent the single kernels related to each
element of the dataset, while the kernel density estimate is shown in blue.

One of the main problems with using KDE is the choice of the bandwidth [18],
which is a smoothing parameter of the kernel that can not be predicted precisely.
The choice of this parameter strongly influences the result of the estimate, as we
can notice observing figure 2.2. The grey curve represents the true density which
must be estimated. If a too small bandwidth value is selected, the individual kernels
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Figure 2.1: Comparison between a histogram (left) and kernel density
estimation (right) constructed using the same data.

associated with each point of the dataset will be characterized by a steeper curve
and will affect a more restricted area, consequently, the final result of the estimate
will be undersmoothed, as can see looking at the red curve in the image. Conversely,
if a too high bandwidth value is used the individual kernels will flatten out affecting
a larger area and the resulting estimate will be oversmoothed, as shown by the green
curve in the figure. The black curve is instead obtained using a correct value of
bandwidth: it has the right level of smoothness and manages to get very close to
the true density.

Figure 2.2: Different bandwidth comparison.
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Chapter 3

Case Study

This thesis work was developed in collaboration with K-Master Srl, a company
subject to coordination and control of Telepass SpA that offers advanced fleet man-
agement services dedicated to road haulage companies. K-Master has provided us
with their data and guidelines on its semantics. This chapter begins by giving an
overview of what fleet management is, focusing on the specific task that interests
us most, namely the evaluation of driving behaviour. Next, it analyzes our specific
case study describing in detail the data, both those provided by the company and
those recovered in other ways.

3.1 Fleet Management

Fleet management is the set of management functions related to a set of vehicles
that allows a company to improve efficiency and productivity and to reduce costs
and risks. Any operation involving multiple vehicles and which must in some way
coordinate or monitor them can be considered a fleet management operation. The
concept can be extended to any type of vehicle, including air and naval ones, but
K-Master mainly deals with land vehicles, in particular heavy transport vehicles.
This area should not be underestimated: for example, in Europe, the exchange of
goods between different states takes place 75% by land [19]. A concrete example of
fleet management operation can be the management of customer delivery requests
arriving randomly over time: since the delivery of the goods can take days or weeks
in some cases, it is necessary to ship the equipment that meets the requests even
before knowing them in order to be able to satisfy the customer.
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3.1.1 Driving Behaviour
K-Master is interested in a particular aspect of fleet management: driving be-
haviour. It is interesting to analyze driving behaviour because some studies have
shown how this can be modified, and therefore improved, if the driver receives the
right feedback about his driving performance [20] [21]. The meaning of driving
behaviour can be interpreted in several ways. A common definition describes the
driving behaviour as the set of actions the driver performs to ensure both the safety
of people and compliance to the driving regulations. Many studies conducted clas-
sify the driving style trying to trace the actions carried out by the driver to his
personality or state of mind, as happens in [22]. Such an assessment requires moni-
toring not only the driving style but also other factors, such as the level of attention
of the driver and the precautions to be taken before, during and after the journey,
all in relation to the surrounding environment. Other works [23] take into account
other factors and divide them in two categories:

• continuous behaviours, which remain stable for a medium or long period, such
as over-speeding or under-speeding.

• abrupt behaviours, whose occurrences are sudden and characterize certain mo-
ments, such as a sudden change of lane or an unexpected acceleration. These
behaviours are more easily detectable at the data level.

However, the company is more interested in a type of driver behaviour whose anal-
ysis could provide its customers with some kind of gain or savings, so we can
alternatively define the driver behaviour as the set of actions that the driver per-
forms in order to minimize travel times and costs. Several studies have shown that
only by positively influencing the driving style is it possible to reduce fuel con-
sumption, in some cases even more than 10% [21]. Moreover, a company may be
interested in reducing CO2 emissions, both to safeguard the environment and to
comply with any legislative constraints. This aspect can also be influenced by the
driving behaviour [24]. The evaluation of what has just been described requires
focusing on other key indicators than those mentioned previously, such as travel
times, fuel consumption or the choice of the route by the driver.

The quality of the driving behaviour can be calculated as a Key Performance
Indicator (KPI), an indicator that evaluates the correctness of a certain action
or function. K-Master already provides its customers with a score related to each
monitored trip. Our goal is to modernize the strategy by which this value is com-
puted. In particular, it has some disadvantages that need to be contained and
we intend to do this by introducing machine learning techniques, which have not
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been exploited by the company so far. A common technique used in the fleet man-
agement for the calculation of KPIs related to the driving behaviour involves the
use of a “golden example” to which all the elements in analysis refer. This golden
example represents the KPI with the maximum success rate, that is the one with
the highest value, and all the other KPIs are calculated based on a comparison
with the latter: the greater the differences with the golden example, the smaller
it will be the value of the KPI. Conceptually, the idea is very simple and must be
enriched by specifying both which factors will be considered during the comparison
and the relevance that will be assigned to each of them, but in any case it is subject
to a specific disadvantage: it requires human intervention for the definition of the
golden example. This is a disadvantage for two important reasons:

• the characteristics of a golden example are not known a priori and should be
defined by a domain expert after careful analysis.

• given the amount of vehicles managed by K-Master, a single golden example
is not enough to satisfy all the cases in which we may find ourselves having
to calculate a KPI. This fact introduces a trade off between the amount of
reference examples provided and the adequacy of the comparison for the cor-
rect evaluation of a KPI. Furthermore, the quantity of monitored vehicles is
constantly growing and the use that the customer makes of them is constantly
changing, therefore periodic human intervention would be required to add the
golden examples necessary to satisfy the new cases.

For these reasons it was decided to use an alternative approach that does not require
human intervention for the validation of driving behaviour. The strategy used is
based on the analysis of the similarities between trips made in order to identify
anomalies that can be traced back to incorrect or non-optimal driving behaviour.
The purpose of this work is to create a framework that, starting from the raw data
collected by the devices installed on the vehicles, is able to autonomously assess,
with a KPI, the quality rate of the driving style adopted in each trip. In particular,
the KPI we intend to calculate must not be based on a golden reference or on any
other type of validation supervised by an operator, but must be relative to the
rest of the data available. Furthermore, the system will also be able to provide
explanations on why a trip is not close to the identified standard.

3.2 Data Description
There is a lot of information that can be involved in the fleet management process.
One of the most important is the vehicle tracking that in its simplest form it is
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composed by the GPS coordinates of the vehicle, recorded constantly or periodically
during its movements. These coordinates can be registered with GPS devices that
the vehicle is equipped with or whit more complex satellite devices that can provide
also direction and speed information. Other important information that can affect
fleet management are fuel consumption data, load specifications and registry of the
vehicle, repair and maintenance data and more. Obviously, the more information
you need, the more sensors and devices the vehicle must be equipped with to be
able to record it.

3.2.1 Data Provided
The analyses focuses on all the data collected in June 2020, which constitute a con-
siderable amount of information that occupies over 70 GB. The vehicles monitored
in that time frame are 30553 and the messages transmitted are hundreds of mil-
lions, but not all vehicles transmit the same amount of information. This happens
because the company provides its customers with two possible levels of service:

• Business service, the vehicles are equipped with a GPS detector that trans-
mits at a rate of approximately one message per minute. The information
transmitted are the GPS coordinates, the timestamp and the identifiers of
both the vehicle and the message itself. This is the basic service and is in-
stalled on all monitored vehicles.

• Connected service, the vehicle is equipped with both the same GPS detector
provided in the business service and a Controller Area Network (CAN) bus [25].
The CAN device monitors many vehicle components and periodically transmits
measurements. The transmission frequency is lower than the one of GPS data
and it varies according to which component we are interested in observing.
The information transmitted by this device concerns speed, fuel consumption,
engine revolutions, engine temperature, brake pressure and many others. This
is the advanced service and the vehicles fitted with this device at the time
were under 14% (4230 of the total).

K-Master data is stored into MYSQL server database, organized in three main
tables:

• table satmsgPos. This table stores GPS messages. Each record contains several
information collected at the sampling time, such as the current speed, latitude,
longitude and others. The idMsgVpr attribute is a foreign key for the CAN
header table.
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• table satvpr. The CAN header table. Apart from timestamp attributes, this
table is used as bridge table between the GPS messages and the CAN bus
messages. The idMsg attribute is a foreign key for the CAN bus message
table.

• table satvprItem. The CAN message table. Each record is associated with a
CAN header (from table satvpr), and contains the information of a specific
CAN message. In this table each record contains a single CAN indicator,
therefore different records can correspond to the same transmission and con-
sequently can be associated with a single element of the first table containing
the GPS coordinates.

3.2.2 Data Enrichment
The actions that the driver performs while driving and the state of the vehicle
itself must be evaluated in relation to the surrounding environment, in order to
correctly assess driving behaviours. For this reason, it was decided to associate
additional information relating to the location and time in which the measurements
are taking place to the data provided by K-Master, which are obtained from sensors
that monitor only the vehicle. This should allow us to place the driving actions
carried out in a context that can motivate their choice. In order to be taken into
consideration, this new information must refer: to a precise geographical position,
therefore to a pair of GPS coordinates, and to a precise instant of time, therefore
to a timestamp. Another important aspect to consider is that the information we
intend to add is specific enough to satisfy the frequency of data transmission from
the vehicles. The information of this type, for that it is possible to find a free data
history on the web, is not much. The ones we have identified and used in this work
are described below.

Weather. Thanks to the API called DarkSky, it was possible to find the
weather forecast of a certain position at a certain instant of time in the past. This
API provides a large amount of indicators but only 10 of them have been selected
in those related to the evaluation of driving behaviour and added to the data
already provided by K-Master. These include the percentage of sky coverage, the
probability, the intensity and type of precipitation, the temperature, the visibility
and the times of sunrise and sunset.

Altitude. Using the API called Jawg it was possible to find the altitude
relative to a certain position, indicated by a pair of GPS coordinates. The altitude
is expressed in meters above sea level. The value is not added to the various records
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as it is reported but we use the variation with respect to the previous record. In
the case that the record is the first of a trip, the altitude is set to 0. The calculation
of the altitude deltas is relative to the order of the records, so it will be positive in
case of uphill and negative in case of downhill.
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Chapter 4

Related Works

The business vehicle industry has been changing rapidly in recent years. If until
a few years ago this aspect was decidedly marginal, today it is no longer the case.
Although the COVID-19 emergency has slowed down the growth of the logistics
sector, the study of innovative forms of fleet management has never stopped. The
same is true for fleet management software development which is constantly in-
creasing even though there is already a wide range of tools capable of satisfying
most needs. What matters most are the costs and the environmental impact of
corporate and private vehicles, factors that will be predominant for the work of the
fleet managers of tomorrow. Among all the functions that the fleet management
deals with, the driver behaviour analysis is one of those in which research is most
active, thanks also to the continuous improvement of technologies that allow moni-
toring vehicles and drivers. Understanding the correct driving style is of particular
interest for several reasons, for example for the contributions it makes to environ-
mental protection or to the design of autonomous vehicles.

The usable factors on which to base the estimate of the driving behaviour are
many and have been studied both individually and in combination with each other.
Among the most common are speed and fuel consumption.
Eboli, Guido, Mazzulla, et al. [26] define the driving behaviour of car drivers based
on speed values recorded by real-time vehicle tracking. They find out how the speed
is related to the characteristics of the driver, such as age and driving experience.
Also, GPS data has been exploited by Guo, Liu, Zhangin, et al. [27] in order to
develop a hybrid unsupervised deep learning model to study driving behaviour. In
this paper, GPS data is seen as time-series and is used in combination with speed
changing.
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Carpatorea, Nowaczyk, Rögnvaldsson, et al. [28] propose a machine learning method-
ology for quantifying and qualifying driver performance, with respect to a value
derived from fuel consumption, called Fuel under Predefined Conditions (FPC).
FPC has the purpose to provide a comparison term that captures some of the un-
measured factors and it is more accurate than the fuel consumption raw values.
Another interesting approach is based on Accelerator Pedal Position and Engine
Speed (APPES) [29] [30]. It has the intent to qualify driver performance irrespec-
tive of the external factors by analyzing driver intention.
The works mentioned above are just some of the possible approaches. Even con-
sidering only the information provided by the vehicles of the K-Master business
service, it is possible to find a large number of similar studies that try to describe
the driving behaviour starting only from the GPS coordinates [31] [32] [33].

Given the presence of a CAN bus device on part of the vehicles monitored by K-
Master, it is interesting to observe how these data are exploited and combined with
other information in order to evaluate the driving behaviour. It is important to
note that the data available regarding multiple vehicles equipped with CAN bus are
not necessarily the same, as the CAN bus represents the message based protocol
with which measurements are recorded and transmitted, while the content of the
transmission depends exclusively on the sensors installed on board in each vehicle.
Choi, Kim, Kwak, et al. [34] propose the usage of Hidden Markov Models (HMMs)
to capture the sequence of driving characteristics acquired from the vehicle’s CAN
bus information. In this article, the analyzes are also conducted considering the
actions that the driver takes inside the vehicle compartment but which do not di-
rectly affect the driving activity, such as the interaction with the radio or with the
windows. This choice certainly makes sense but unfortunately, this information is
not present in our dataset.
Fugiglando, Santi, Milardo, et al. [35] work in a different context, describing the
complexity of the driving behaviour through the concept of “Driving DNA”. Their
study focuses on the use of some specific information, coming from both the CAN
bus and not. These include speed, rain and fuel consumption, which we also have
in our dataset.
Another example is Ferreira, de Almeida and da Silva [36] where there is a pre-
processing step that merges data from the CAN events’ dataset with GPS coordi-
nates, weather conditions and altitude. During our work we had to face this step
with the same data, paying particular attention to the selection of the most suitable
CAN indicators.
The CAN bus is a very popular technology and it is easy to find many other studies
that try to combine the transmitted data with information from other sources, such
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as GPS, smartphones and other sensors [37] [38] [39].

Since we do not have any type of label that indicates which driving behaviours
among those present in our dataset are the correct ones, the approach we are going
to apply to the data will be unsupervised.
An example of an unsupervised study is [40] in which clustering techniques, such
as Ensemble Clustering Method (ECM) and modified Latent Dirichlet Allocation
(LDA), are used to understand different driving styles. It finds out that the differ-
ent behaviours can be grouped into three main clusters: aggressive, cautious and
moderate.
Chen and Chen [41] explore the possibility of identifying driving styles directly from
driving parameters through Partitioning Around Medoids clustering method, again
identifying three main clusters. Moreover, they do a pre-processing step in which
speed data is aggregated in order to produce mean, standard deviation, maximum
and minimum values and this idea has also been adopted by us for most of our
features.
Marks, Jahangiri and Machiani [42] introduce and define Iterative DBSCAN (I-
DBSCAN) as one tool that can be utilized for identifying aggressive driving be-
haviours within large, unlabeled datasets. Their goal is to retrieve a small subset
of outlying driving observations that can be considered as “abnormal” behaviours.
We are also interested in identifying these anomalous values in such a way that
we can exclude them from those that will define the standard of good driving be-
haviour, so we perform a clustering phase with the same goal.
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Work GPS CAN
Bus

Contextual
Features Approach

Eboli, et al. [26] No No No Statistical

Guo, et al. [27] Yes No No Unsupervised
Deep Learning

Carpatorea, et al. [28] Yes Yes No Statistical
Carpatorea, et al. [29] No Yes No Statistical

Carpatorea, et al. [30] No Yes No Supervised
Shallow Learning

Grengs, et al. [31] Yes No No Statistical
Sun, et al. [32] Yes No No Statistical

Brambilla, et al. [33] Yes No No Unsupervised
Shallow Learning

Choi, et al. [34] Yes Yes No Supervised
Deep Learning

Fugiglando, et al. [35] Yes Yes Yes Graphical
Ferreira, et al. [36] Yes Yes Yes Data Mining
Jackobsen, et al. [37] Yes Yes No Statistical

Fugiglando, et al. [38] No Yes No Unsupervised
Shallow Learning

Taha, et al. [39] No Yes No Supervised
Shallow Learning

Wu, et al. [40] No Yes No Unsupervised
Shallow Learning

Chen, et al. [41] No Yes No Unsupervised
Shallow Learning

Marks, et al. [42] Yes No No Unsupervised
Shallow Learning

Table 4.1: Related works overview, indicating for each the presence
of GPS features, CAN features and context features and the type of
approach with which the data were analyzed.
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Chapter 5

Framework Description

This thesis work focuses on the final part of the implemented framework. This
chapter, after an introduction on the terminology used, briefly describes the entire
structure of the pipeline, listing some characteristics of each step, and deepens the
explanation on the final part explaining the insights that guided the realization,
starting from the exploration of the clustering results obtained in the last step up
to get to the calculation of the KPI.

5.1 Terminology
Listed below are some terms with their explanations that are either not specific
to the world of transport or that will be used with a specific meaning that must
not be misunderstood. The choice of these terms and their meanings were made in
agreement with K-Master domain experts in such a way as to reflect the terminology
used in their operational field.

Cell. Imagine dividing the world map with a square grid. By cell we mean
the portion of the territory identified by one of the cells of this grid. Each cell has
its unique identifier and a pair of indexes that locate it within the grid. The cells of
a grid are all the same big, but the size is a configurable parameter, so it is possible
to apply grids with different cell sizes.

Route. It identifies a possible journey that can be traveled both multiple
times and by multiple vehicles. The route is defined by a pair of cells, those of
departure and arrival. It does not take into account the path taken to reach the
destination: two trips from point A to point B involving different roads still belong
to the same route. Moreover, the route is not bi-directional: a trip from cell A to
cell B does not belong to the same route as a trip from cell B to cell A.
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Trip. It corresponds to an execution made by a vehicle of the path indicated
by a route. To distinguish the various journeys made by the same vehicle, we rely on
the timestamps of the GPS information transmitted: if two consecutive messages
have a temporal distance above a certain threshold, called Time Delimiter (TD),
then there is a change of trip and therefore the first message corresponds to the
termination of the trip in progress while the second corresponds to the start of the
new trip.

5.2 Pipeline Structure
The code has been structured as a pipeline of scripts that must be executed sequen-
tially in order to pass from the raw data contained in the input database to the
evaluation of the driving behaviour with the use of KPIs. The execution of some
scripts is mandatory for the achievement of the final evaluation, while it is optional
for others as they provide additional information but not necessary for the final
calculation. The pipeline consists of 7 fundamental steps which are: extraction,
filtering, type assignment, enrichment, aggregation, route identification and KPI
computation.

Figure 5.1: Pipeline structure.

Extraction. The raw data is extracted from database. Its tables are joined
together and a single file CSV is created for each vehicle. During the process all
the columns not useful in the following phases are removed in order to reduce the
size of the output files as much as possible.

Filtering. The records in each vehicle file are aggregated in messages, then
the messages are grouped in trip and enriched with other information retrieved
knowing the position and the timestamp. During the process only the CAN indi-
cators of interest are kept. Then, each GPS position is associated with one cell,
applying the grid model. Next, both single record and entire trips are filtered, if
the user has specifically indicated it. The filters applied verify that the information
for a certain trip is both truthful and quantitatively sufficient to be able to carry
out subsequent analyzes. These controls concern the values of the coordinates, the
speed limits, the thresholds of road traveled and time elapsed and the quantity of
messages describing a journey. The output is still a file for each vehicle.
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Type Assignment. This is an optional script that can be executed on the
output files of the previous one. A type between heavy and light is assigned to
the vehicles, based on the registry information, if present. If it is not possible,
a machine learning classifier trained on the available registry is used to infer the
type. The output is still a file for each vehicle. If this step is performed, in the
next phases the analysis can be limited to only one of the two types.

Enrichment. This is an optional script that can be executed on the output
files of the previous one. The GPS coordinates and the associated time related to
each message are used to enrich the data, adding information from external sources,
such as weather conditions and altitude. The output is still a file for each vehicle.
Subsequent scripts can be run either the context features are present or not.

Aggregation. The messages in each vehicle file belonging to the same trip
are collapsed into a single data point that represents the trip itself. The features
that characterize each record are processed to originate new ones relating to the
entire journey. In this processing phase some meta information about the trip are
computed, such as identifiers, vehicle details and starting and ending coordinates/-
timestamps, while the others indicators are treated as in [40], computing mean,
standard deviation, maximum and minimum for each of them. The output is a
single file containing trips information, one trip per line.

Route Identification. The trips are reunited in groups, one for each route,
based on the departure and arrival cell. The data concerning the most populous
routes are extracted in order to facilitate the following analysis.

KPI Computation. The trips of a single route are divided into train and
test set. Train trips are grouped together using an unsupervised clustering method
(DBSCAN). The outliers are removed from the train set and the remaining trips
are exploited to train a model that is used to assign the KPI to the test trips.
Eventually, a penalty score is assigned at each feature of each test trip that did not
reach the maximum KPI, in order to make understandable why.

5.3 Key Ideas and Methods

This section describes and motivates the methodology used to achieve the goal, in
particular, describing all the choices made to be able to calculate a KPI satisfying
the requirements imposed by K-Master.
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5.3.1 Data Distribution Analysis
The company would like that, where possible, the trips taken into consideration as
an example of good driving behaviour are only those of vehicles equipped with a
CAN device. However, the vehicles of the connected service do not always trans-
mit messages containing CAN indicators. It can happen that sometimes they only
transmit their GPS position as if they were vehicles of the business service. Con-
sidering only vehicles equipped with a CAN device, transmissions that incorporate
at least one CAN indicator are 33.28% of the total (about 24 million out of 72
million). Not all the vehicle are able to monitor and transmit all the CAN features
and furthermore the transmission frequency of each CAN descriptor is different
both between different vehicles and between different indicators.

There are more than 100 different CAN descriptors present in the database but
not all of them have been considered useful for the evaluation of driving behaviour.
An analysis relating to the most pertinent (about 20 descriptors chosen in agree-
ment with the K-Master domain experts) was conducted to study their distribution
within the data. Table 5.1 shows some of the results obtained: for each reported
CAN descriptor (first column) we find alongside the percentage of presence con-
sidering all messages (second column), the percentage of presence considering only
CAN messages (third column) and the average percentage of presence per vehicle
considering only CAN messages (fourth column).

Statistics about CAN bus messages
CAN descriptor Total mes. Total CAN mes. Vehicle CAN mes.
TimeEngineLife 13.38% 40.19% 41.05 ± 44.14%

TotalFuel 13.34% 40.09% 43.78 ± 44.75%
TotalVehicleDistance 13.33% 40.07% 54.57 ± 36.05%
EngineTemperature 8.54% 25.67% 36.88 ± 34.27%

EngineRpm 4.67% 14.03% 8.72 ± 27.82%
BrakeStatus 4.67% 14.02% 12.99 ± 29.63%

CruiseControlStatus 4.63% 13.90% 12.00 ± 29.63%

Table 5.1: Statistics about CAN bus messages, in details we have
attendance % in all messages, attendance % in CAN messages and
average attendance % inside a vehicle with CAN messages.

The values shown in the table demonstrate how CAN message types are different
from each other. They often contain different descriptors and no CAN indicator
appears in at least half of the total messages. Furthermore, the high variance values
relative to the averages on connected vehicles indicate that the CAN descriptors are
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commonly present in either all the CAN messages of the vehicle or none of them.
This statistics lead us to two important conclusions. The first one is that there are
very few CAN indicators present within the messages to be able to carry out an
accurate analysis. We have in fact decided to consider only those descriptors that
appear in at least 40% of CAN messages (see third column of table 5.1), which
are TotalVehicleDistance, TimeEngineLife and TotalFuel. The second one is that
journeys must not only be made by vehicles equipped with a CAN device but must
have actually transmitted a sufficient quantity of CAN descriptors to be able to
meet the company’s requirement. For this reason, the trips have been divided into
two macro-categories using the same nomenclature that the company adopts for
their services but with a slightly different meaning:

• Business trips, they are all those trips made either by a vehicle associated
with the business service or by a vehicle associated with the connected service
but with a quantity of messages containing CAN information related to the
three selected descriptors below a certain threshold.

• Connected trips, they are all those journeys performed by vehicles of the
connected service in which the three selected CAN descriptors appear in a
quantity of messages higher than a certain threshold.

By quantity of messages we refer to the total of messages transmitted and not only
to those containing at least one CAN descriptor. Consequently, a threshold value
equal to 10% of the total was chosen, slightly lower than the percentage of presence
of the selected descriptors considering all messages (second column of the table).

5.3.2 Exploration of Clustering Outcomes

The clustering step in the last stage of the pipeline assign to each trip a label that
allows to distinguish the element of cluster and the outliers. Before proceeding
with the KPI calculation, these trips with their new labels are analyzed with a
supervised approach to try to validate the clustering results. This analysis involved
the use of several different classifiers and several performance evaluation techniques.
It also has made possible to understand which are the characteristics of the trips
that most guided the division into clusters. This is done in several ways such as
through the interpretation of trained models. The analysis helped to understand
whether the transition to a fully supervised approach is possible in the future, after
a possible validation of the clustering results, and if so which classifier would be
better to adopt.
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5.3.3 KPI Computation
Given the trips that have passed the clustering phase, and therefore are supposed
to be related to correct driving behaviour, it is necessary to find a strategy that
uses them to evaluate new trips related to the same route computing a KPI. The
basic idea is to allow each element belonging to one of the clusters to provide a
contribution for the evaluation of a new example, proportional to the similarity
between them. This insight perfectly reflects the mechanism that Kernel Density
Estimation uses to estimate the probability density function. Let’s consider the
case where all the remaining trips belong to a single cluster. We apply to these
elements the Kernel Density Estimation function which uses a Gaussian kernel.
The result will be a function that maps each point in space with a numerical value
proportional to the proximity between that point and the input elements. Figure
5.2 shows a 2D example of applying KDE to a set of 50 elements. The darker the
color of the space region, the higher the KDE value at that point.

Figure 5.2: 2D example of KDE applied on data points.

Once estimated, the probability density function can be evaluated on new unseen
input data points to assign them a numerical value. Figure 5.3 adds to the previous
example new points, highlighted in yellow, which receive the value corresponding
to their position. As you can see from the image, these additional examples do not
contribute to the calculation of the KDE which therefore remains unchanged.

In the current situation, each new trip is assigned to a value which, however, cannot
yet be considered the value of the KPI. Although these values are based on prox-
imity to train trips and therefore directly proportional to how good the driving
behaviour is, they still do not allow us to understand the distance from what could
be defined as perfect driving behaviour. To have a reference point to use as the
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Figure 5.3: New data points to be evaluate are added.

best driving behaviour, we select the cluster medoid and consider its KDE value
as the maximum possible score. Figure 5.4 shows which of the initial points is the
medoid of the cluster and which is its score. In addition, as imaginable, it is noted
that the medoid is located in the region of space with highest values of KDE.

Figure 5.4: Focus on the cluster medoid. Its position and score are
highlighted.

Now we can calculate the final KPI value by normalizing all the travel scores be-
tween 0 and 1, where 1 corresponds to a score equivalent to that of the medoid
found in the previous step. Figure 5.5 shows both the medoid and the trips to be
evaluated with relative KPIs, obtained by normalizing the previous scores.

In the event that during the clustering phase the trips were grouped into several
clusters, the choice of the medoid to use as a reference must be managed. One
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Figure 5.5: Comparison between medoid and trip to be evaluated
and their scores after the normalization step.

idea would be to choose the medoid which corresponds to a higher KDE value.
This is equivalent to considering the cluster to which that medoid belongs as the
only representative of good driving behaviour. Given that the algorithm used for
clustering (DBSCAN) originates clusters of different size and density, the medoids
of the other clusters could have significantly lower KDE values, thus leading to a
lowering of the KPI of all those new trips placed within their clusters. However,
we hypothesized that each cluster corresponds to a different good behaviour, each
to be adopted in different conditions from those of the other clusters, and that bad
behaviours have already been excluded as outliers in the clustering phase. The
strategy used is therefore based on choosing as the reference medoid the one closest
to the example to be evaluated. In this way, we imagine obtaining a more truthful
value of the KPI since it is as if we are taking into account in the evaluation of the
conditions in which the guide took place.

Sometimes it can happen that the KDE value of the medoid does not correspond
to the maximum value found in the surrounding area. Consequently, it could hap-
pen to have to evaluate a new trip that corresponds to a KDE value higher than
the reference one. This is not a problem as KDE values greater than that of the
reference medoid and also close to that medoid are relatively few. Trips in this
situation are assigned the maximum KPI, instead of a value above 1, as they really
would get.

In conclusion, calculated in this way, the KPI represents the quality of driving be-
haviour as a percentage. A KPI of 0 indicates that the trip we are evaluating is
outside the range of influence of all the input examples and therefore the driving

44



5.3 – Key Ideas and Methods

behaviour is bad or abnormal. A KPI of 1 is assigned only to journeys with charac-
teristics very similar to those of most of the input ones and indicates an excellent
driving behaviour comparable to that of the cluster’s medoid journey.

5.3.4 Penalty Score
The final KPI increases as the distance from a reference medoid decreases. Every
trip feature contributes to the distance, which results in the sum of all of them.
Each feature contribution is hence responsible for a decrease of the KPI, since it
effectively separates the testing point from the reference. As such, we called this
value penalty score. While producing the KPI values, we also keep track of the
penalty score given by each feature, for each testing trip. These values provide a
basic explanation of a KPI that is not optimal (i.e. equal to the reference driving
behaviour). By inspecting them, it is possible either to have a first look to features
that contributed to the KPI evaluation the most, possibly understanding why a
trip obtained a low/high KPI, and to select trips that need to be checked first. The
module computes the penalty score for each feature as a percentage contribution to
the whole distance from the reference. By doing so, we assume that all the features
have the same weight and produce the penalty scores accordingly. However, there
is the possibility to provide a list of weights if a non-uniform contribution should
be discounted.
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Chapter 6

Experiments

This chapter describes the subset of data considered in the analysis and the exper-
iments conducted on it. As already explained, the final goal is to find a valid and
innovative strategy for calculating the KPI, but these experiments also have other
purposes. First of all, we want to validate the outcome produced by the clustering
phase to understand if it can be used as a reference on which to base the computa-
tion of the KPI. In particular, we are interested in discovering the reasons that led
outliers to be excluded and which features contributed most to this decision. This
is done by applying different classification algorithms for the prediction of the class
labels assigned by clustering and subsequently analyzing the results obtained and
interpreting the trained models. Finally, we test the computation of the KPI with
the solution proposed in the previous section, paying attention to simplify the in-
terpretation, so that the results are observable even by non-machine learning users,
and analyzing once again the relevance that each feature has in the calculation of
the obtained values.

The data used went through a heavy preprocessing phase while running all the
pipeline scripts. These steps can be regulated by various parameters whose mod-
ification involves obtaining a different output. The experiments were repeated on
data coming from different pipeline runs, each with a different parameter configu-
ration, to understand the differences that these parameters provide in the data and
if and how they affect the calculation of the KPI. In detail, the parameters that
have been modified to produce the various versions of the data used are:

• Time Delimiter (TD). The value of this parameter influences the trip defi-
nition. GPS messages are processed sequentially and their time stamp is used
to group them in separate trips. If the elapsed time between two consecutive
messages is greater that TD, then the current trip is labeled as “concluded”
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and a new one is started. The higher the value, the more the waiting time
necessary to consider a journey as completed will increase and therefore the
fewer the trips in which the total distance covered by a single vehicle will be
broken up. The versions of data used in the experiments were obtained with
a value for this parameter equal to 20 or 40 minutes.

• Cell neighborhood size (NS). This parameter indicates the size of the
neighborhood of cells that are considered as one to establish the starting or
ending point of a route. The higher the value, the wider the area considered
and therefore the greater the number of trips that could be included in the
route. A value equal to 0 corresponds to a single cell. Each additional neigh-
borhood level surrounds each free side of the cells of the previous level with
other cells of the same size. The versions of data used in the experiments were
obtained with an integer value between 0 and 2 for this parameter.

• Contextual Features (CF). The availability of contextual features (e.g.,
altitude and meteorological conditions) is indicated by this boolean parameter.
By adjusting its value it is possible to choose whether to use data external to
the original database or not. The versions of data used in the experiments
were obtained both with this feature activated and not.

All tests were done considering each time only trips belonging to the same route.
The characteristics that describe a trip are strongly linked to the type of route
traveled and therefore, given that the calculation of the KPI is completely based on
the similarity between different trips, it was considered sensible to operate at the
route level without involving in the same experiment trips belonging to different
routes. Furthermore, we remind that the company is interested in evaluating driv-
ing behaviour considering only vehicles with an active CAN device as a reference,
therefore both our supervised analysis and the clustering results on which it is based
take into consideration only connected trips. The experiments conducted belongs
to two different types: supervised analyzes and the evaluation of driving behaviour.
Although these two categories of expressions operate from the same input data -
i.e. the results of clustering - their purpose is quite different. As described in the
previous chapter, supervised analysis explores the results obtained from cluster-
ing by attempting to interpret the logic behind the subdivisions carried out and
to provide any explanations for subsequent experiments. On the other hand, the
behaviour assessment aims to calculate a KPIs that can describe the correctness
of each trip. Therefore, even if the first part of the experiments does not directly
influence the second, it is still useful as a tool for validating and interpreting the
results.
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6.1 Route Identification
The routes analyzed were selected on the basis of the combination of parameters
used during the execution of the pipeline and the quantity of associated trip con-
nections. Of the three parameters listed above, the value of two of them (TD and
NS) directly affects which and how many trips and routes are created. All possible
combinations of the mentioned values have been tested and for each of them the
route with the highest number of trip connected have been selected to perform the
analyzes. This leads us to 6 different situations, some very similar to each other
but never identical (e.g. same route but different amount of trips and consequently
different labels assigned by clustering). Moreover, all these routes have been tested
both considering and not considering the context features, so we have two possible
clustering results for each of them. Eventually, since the trips of the last week of
the month have been used as test set on which to evaluate the calculation of the
KPI, all the clustering results at the base of the subsequent analyzes are related to
trips made in the first three weeks of month.

R1: TD = 20 & NS = 0 This
route has been traveled 65 times by 7
different vehicles. All the 65 trips be-
longing to the route are Connected.
The path of the 46 connected trip
used as train set is shown in the adja-
cent figure. The clustering performed
without context features discovered
one cluster and one outlier, while the
clustering with context features dis-
covered one cluster and two outliers.

R2: TD = 20 & NS = 1 This
route has been traveled 106 times by
28 different vehicles. Connected trips
are 57 while Business ones are 49.
The path of the 41 connected trip
used as train set is shown in the adja-
cent figure. The clustering performed
without context features discovered
one cluster and 8 outliers, while the
clustering with context features dis-
covered one cluster and 11 outliers.
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R3: TD = 20 & NS = 2 This
route has been traveled 257 times
by 121 different vehicles. Connected
trips are 113 while Business ones are
144. The path of the 70 connected
trip used as train set is shown in the
adjacent figure. The clustering per-
formed without context features dis-
covered one cluster and 15 outliers,
while the clustering with context fea-
tures discovered one cluster and 4
outliers.

R4: TD = 40 & NS = 0 This
route has been traveled 62 times by 7
different vehicles. All the 62 trips be-
longing to the route are Connected.
The path of the 43 connected trip
used as train set is shown in the adja-
cent figure. The clustering discovered
one cluster and two outliers both in-
cluding and not including context fea-
tures.

R5: TD = 40 & NS = 1 This
route has been traveled 98 times by
25 different vehicles. Connected trips
are 50 while Business ones are 48.
The path of the 37 connected trip
used as train set is shown in the adja-
cent figure. The clustering performed
without context features discovered
one cluster and 8 outliers, while the
clustering with context features dis-
covered one cluster and 10 outliers.
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R6: TD = 40 & NS = 2 This
route has been traveled 106 times by
27 different vehicles. Connected trips
are 51 while Business ones are 55.
The path of the 38 connected trip
used as train set is shown in the adja-
cent figure. The clustering performed
without context features discovered
one cluster and no outliers, while the
clustering with context features dis-
covered one cluster and 10 outliers.

6.2 Supervised Analysis

Clustering assigns a class label to each trip. This label is also used to identify
outliers, i.e. those journeys that do not belong to any cluster and therefore are
characterized by anomalous driving behavior. Before proceeding with the KPI
calculation, we explored the clustering outcome to verify the reasons that led to
the exclusion of the outliers. To do this, we applied various supervised learning
techniques, observing how different models behave on the labeled data and, when
possible, also observing the structure of the trained model itself to interpret and
understand which characteristics in data most influence the predictions. Further-
more, statistical techniques were also used to study the correlation between features
and between features and labels. Eventually, this type of analysis allowed us to un-
derstand if and how a possible supervised solution to our problem could work,
highlighting what problems could arise in carrying out a classification on these
types of data.

We start the analyses applying four different classifiers: k-Nearest Neighbor
(KNN), Support Vector Machine (SVM), Decision Tree (DT) and Ran-
dom Forest (RF). These classifiers were used with the default values for their
hyperparameters as provided by the scikit-learn library [43], with some exceptions.
K-Nearest Neighbor classifier is executed with a K value equal to 10 or to the num-
ber of members of the minority class if this is less than 10. The distance used is
the Euclidean one and the weights for all the K neighbours are uniform. Support
Vector Machine algorithm is used with a radial basis function kernel, a C parameter
equal to 1 and a γ parameter equal to 1/#features. Decision Tree algorithm splits
the elements of its intermediate nodes based on the Gini Index and it proceeds the
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construction of the tree without using any stopping criteria. Lastly, Random Forest
uses 10 different trees as the one created by Decision Tree algorithm to predict the
final label.

Two different evaluation methods are used to estimate how good each classifier is.
The first one is aK-Fold Cross Validation (KFCV) with a value of K equal to 5.
This technique is performed with a stratification approach in such a way to create
folders with a constant ratio between elements of different classes. However, it may
happen that the minority class, which often turns out to be that of the outliers,
does not have a sufficient number of elements for there to be at least one in each
folder. In these cases the number of folders is reduced to the number of elements of
the minority class (less than 5). The second technique used is the Leave-One-Out
(LOO). This one does not require corrections to solve the problem encountered in
the previous technique, indeed it is perfect for those cases in which there is a high
level of data unbalance. Obviously these techniques are not applicable in those
cases where the minority class contains only one element, as this cannot belong to
both the train and test data, and consequently even all the rest of the supervised
analyzes are not feasible.

An alternative solution to the class imbalance problem is to use a resampling tech-
nique that modifies the content of the dataset to have a similar amount of examples
for each class. We have used an oversampling technique, called SMOTE, in order
to increase the number of examples of the minority class by generating new syn-
thetic data consistent with those already present.

To deepen the study of the outliers we tried to compare them with all the other
elements belonging to a cluster. In other words, all the elements belonging to a
cluster are brought together under a single label so that the only possible distinction
is between outliers and non-outliers and consequently the supervised analysis will
correspond to a binary classification. This approach is obviously not necessary
in all those cases where the clustering phase groups all the elements into a single
cluster, as there are no different labels to unify and the classification is already
binary.

Once the experiments were defined and performed, the classification results were
explored. To do this, three different indicators have been calculated: Accuracy,
Precision and Recall. Then, the decision trees created are observed in order to
understand which features are selected first to perform the split and which are there-
fore most relevant to discriminate examples belonging to different classes. Next,
the importance of features is also analyzed through the permutation importance
values obtained from the Random Forest classifier. In the event that the results
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in analysis are obtained without the use of context features, these are exploited
to display their distribution associated with the trips, separately for each cluster,
through the use of violin graphs. Eventually, these distributions are compared to
see how weather features could motivate separation when they do not contribute
to it. Lastly, even the Pearson Correlation between common features and context
features is observed through the use of heatmaps.

6.3 Driving Behaviour Evaluation

Once the data coming from clustering has been thoroughly explored, it is necessary
to proceed with the construction of a model that allows to assign a KPI value
to new trips. The elements considered as a reference for the evaluations are, as
previously mentioned, all Connected trips carried out during the first three weeks
of the month (from 01-06-2020 to 22-06-2020). All Business trips present in this
period of time are not necessary, therefore they are excluded from the analyzes.
The examples on which the evaluation is carried out are all the trips carried out
in the last week of the month (from 23-06-2020 to 30-06-2020). In this case, both
Connected trips and Business trips are used in the evaluations, none excluded.

After preparing all the data groups mentioned above, a KDE function is applied to
the training set twice in order to associate a numeric value to each point of the space.
The first time is applied to the multidimensional space which also includes all the
selected features originating from the CAN device. The result of this application
will then be used to evaluate the Connected trips belonging to the test set. The
second KDE function is instead calculated by excluding the CAN features to make
sure that the mapped space is equivalent to the Business trips one and consequently
the result will be used to evaluate that type of trips. Furthermore, the result of this
second KDE execution was used to evaluate Connected trips as well, thus neglecting
the CAN features. This allowed us to compare both KPIs obtained for this type of
trip and observe how and how much the CAN features influence the evaluation.

During each single evaluation, as described in the previous chapter, it is necessary to
identify the medoid closest to the element under analysis. This medoid, in addition
to providing the reference score necessary to obtain the KPI value, is also used
for the calculation of the penalty scores relating to each individual feature. The
mechanism by which this calculation is done is as follows. The distances between
the two elements considering each axis individually are measured and summed.
This is equivalent to adding the differences in the values of the same feature, for
each feature. Then, each single distance that contributed to the total is divided by
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the total. The result obtained corresponds to the contribution in percentage form
that each feature has provided to ensure that the calculated KPI deviates from the
optimal value (i.e. equal to 1). The penalty score values of each feature for each
example of the test set are then depicted through a heatmap.
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Chapter 7

Results

This chapter shows the results in the form of images and tables. The experiments
were made for all the sections described in the previous chapter. Considering the
huge amount of simulations carried out, the complete analysis of a single reference
route, i.e. route R3, will be reported below, while for the other routes only the
most significant results will be discussed.

7.1 Classification Results
In the first place, all available data, both those of the vehicle and those of context,
were used to train the various classifiers mentioned by exploiting the two cited
validation techniques and by calculating the previously described metrics each time.
Remind that in this case the outliers are just under 6% of the total elements (4 out
of 70), therefore the dataset is very unbalanced. The results obtained are shown in
the table 7.1. The terms "Class 0" and "Class -1" refer respectively to the elements
belonging to the cluster and to the outliers.

Looking at the reported values in detail, we immediately notice that accuracy al-
ways achieves excellent results regardless of the classification algorithm and valida-
tion technique used, but this is not relevant information given the class unbalance
in the dataset. Precision and Recall for cluster elements class are excellent as imag-
inable. On the other hand, Precision and Recall related to the outlier class are very
bad and never exceed 50.00%: this means that at most two outliers out of four are
correctly classified. The worst case is that represented by the KNN and SVM algo-
rithms in which a Precision of 100.00% and a Recall equal to 0.00% for outlier class
indicate that the classifier labels all the examples as belonging to cluster elements
class.
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Classifier Accuracy Precision
Class 0

Recall
Class 0

Precision
Class -1

Recall
Class -1

KFCV

KNN 94.28% 94.28% 100.00% 0.00% 0.00%
SVM 94.28% 94.28% 100.00% 0.00% 0.00%
DT 92.89% 96.92% 95.45% 40.00% 25.00%
RF 94.19% 95.59% 98.48% 50.00% 50.00%

LOO

KNN 94.28% 94.28% 100.00% 0.00% 0.00%
SVM 94.28% 94.28% 100.00% 0.00% 0.00%
DT 91.42% 95.45% 95.45% 25.00% 25.00%
RF 92.85% 95.52% 96.97% 33.33% 25.00%

Table 7.1: Results obtained for route R3 considering the context
features and not rebalancing the data.

This route is one of the most unbalanced in terms of classes, but also in the other
routes with a higher number of outliers, about 10, we can observe the presence of the
problem. The metrics for the majority class are always excellent, thus confirming
good accuracy, while those for the minority class commonly obtain results between
60% and 80% and rarely around 90%. The more outliers are there, and therefore
the dataset is balanced, the more the behaviour just described gets thinner.

Trying to solve the problem of class imbalance, using the oversampling technique
mentioned in the previous chapters, we obtain the results shown in the table 7.2.

Classifier Accuracy Precision
Class 0

Recall
Class 0

Precision
Class -1

Recall
Class -1

KFCV

KNN 96.98% 100.00% 93.93% 94.28% 100.00%
SVM 100.00% 100.00% 100.00% 100.00% 100.00%
DT 94.73% 96.82% 92.42% 92.75% 96.96%
RF 97.72% 100.00% 95.45% 95.65% 100.00%

LOO

KNN 97.72% 100.00% 95.45% 95.65% 100.00%
SVM 100.00% 100.00% 100.00% 100.00% 100.00%
DT 93.93% 95.31% 92.42% 92.65% 95.45%
RF 96.96% 98.43% 95.45% 95.58% 98.48%

Table 7.2: Results obtained for route R3 considering the context
features and rebalancing the data.

This strategy completely solves the problem, as in each simulation we obtain excel-
lent Precision and Recall values for outlier class, all above 92.00%, without wors-
ening those for cluster elements class. This also leads to a slight improvement in
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Accuracy values which were already very good. Worthy of note is the SVM clas-
sifier that succeeds in perfectly classify all the samples in the dataset regardless
of the validation technique used. Also in all the other sections, there is a visible
performance improvement, especially for the metrics relating to the class of outliers
which obtain a score never below 90%.

Returning to the original dataset, therefore without having performed an oversam-
pling technique, we analyze the features that have contributed most to correctly
classify the elements. Remembering that there are few outliers, it is reasonable to
think that the features needed to separate elements based on their label are also few.
In figure 7.1 we can observe the Permutation Importance of the 10 most relevant
features of the Random Forest classifier. The plot represents for each feature the
importance values obtained by repeating the permutations of the values 15 times.
The white block runs from the lower quartile to the upper quartile. The yellow bar
indicates the median. The whiskers extend to cover all the values obtained.

Figure 7.1: Permutation importance of the Random Forest classifier
for the route R3 considering the context features.

We note that there are only 5 features whose permutation of values has led to
changes to the classification, one of which is only in part of the permutations.
More interesting is the fact that the most relevant features are all contextual, such
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as the probability and intensity of precipitation.

Observing also the structure of the constructed DT, represented in figure 7.2, it is
possible to notice that the features used to correctly classify all the examples are
again few, only 2, and contextual. Furthermore, they are two of the most relevant
features of the permutation importance calculated earlier.

Figure 7.2: Decision Tree graphical representation built based on
data of the route R3 and considering the context features.

Also in the other routes, the context features are particularly highlighted. In routes
R1 and R4, whose trips connect the same two cells, the features identified as signif-
icant are exclusively contextual ones and they are also equal between permutation
importance and decision tree. In the R2, R5 and R6 routes, which also share the
departure and arrival cells, the features considered relevant are both contextual or
coming from the CAN bus and about half of them appear in both permutation
importance and decision tree. It was this result that led us to remove the context
features from the analyzes to use them later to describe and motivate the clusters
obtained using only the features coming from the vehicles.

The results obtained without using the context features are shown in the table 7.3.
Remind that in this case the outliers are about 21% of the total elements (15 out
of 70), therefore the dataset is still unbalanced but less than in the previous case.
Also in this case excellent accuracy is obtained and the SVM classifier seems to be
slightly better than the others. The metrics related to the single class are good
except for the Recall for the minority class: this can be interpreted as saying that
all the examples of the majority class are correctly classified (Recall for cluster
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Classifier Accuracy Precision
Class 0

Recall
Class 0

Precision
Class -1

Recall
Class -1

KFCV

KNN 91.42% 90.16% 100.00% 100.00% 60.00%
SVM 98.57% 98.21% 100.00% 100.00% 93.33%
DT 97.14% 96.49% 100.00% 100.00% 86.66%
RF 95.71% 94.82% 100.00% 100.00% 80.00%

LOO

KNN 91.42% 90.16% 100.00% 100.00% 60.00%
SVM 98.57% 98.21% 100.00% 100.00% 93.33%
DT 97.14% 96.49% 100.00% 100.00% 86.66%
RF 94.28% 93.22% 100.00% 100.00% 73.33%

Table 7.3: Results obtained for route R3 not considering the context
features and not rebalancing the data.

elements class and Precision for outlier class both 100%) while those of the class
minority are not (low Recall for outlier class). All this is presumably due to the
amount of outlier slightly higher than the previous case and not to the change in
the features used. Once again we apply the SMOTE oversampling technique to try
to improve the situation. The results thus obtained are displayed in the table 7.4.

Classifier Accuracy Precision
Class 0

Recall
Class 0

Precision
Class -1

Recall
Class -1

KFCV

KNN 95.45% 91.66% 100.00% 100.00% 90.91%
SVM 100.00% 100.00% 100.00% 100.00% 100.00%
DT 98.18% 100.00% 96.36% 96.49% 100.00%
RF 96.36% 94.73% 98.18% 98.11% 94.54%

LOO

KNN 96.36% 93.22% 100.00% 100.00% 92.72%
SVM 100.00% 100.00% 100.00% 100.00% 100.00%
DT 100.00% 100.00% 100.00% 100.00% 100.00%
RF 97.27% 94.82% 100.00% 100.00% 94.54%

Table 7.4: Results obtained for route R3 not considering the context
features and rebalancing the data.

The performance increment occurs again for all calculated metrics. SVM and DT
obtain excellent results succeeding in perfectly classify all test examples. In partic-
ular, in the case of balanced classes, SVM confirms itself as the best classifier on
all the sections analyzed, almost always managing to obtain 100% accuracy.

Returning to the original dataset, therefore without the application of oversampling,
let’s analyze once again the permutation importance relating to the RF classifier.
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The result are shown in figure 7.3.

Figure 7.3: Permutation importance of the Random Forest classifier
for the route R3 not considering the context features.

This time we can notice that the amount of features that appear to be relevant
following the permutations are greater than in the previous case. These include
both features coming from the CAN device and features included in the Business
service, without a clear predominance of one of the two categories. In particular,
fuel consumption indicators often appear in 3 of the top 10 positions in terms of
importance.

Observing again the structure of the constructed DT, represented in figure 7.4, we
see that it has a greater number of intermediate nodes concerning the previous case.
The cause of this increase in the number of splits performed does not depend on the
lack of context features but probably due to the peculiarity of some of the outliers
to be isolated. The first split, the one at the root, manages to correctly separate
most of the outliers while the two subsequent splits extract from the group only
one outlier each, presumably different from those isolated previously. The features
used all appear in the top 10 highlighted by the permutation importance in the
previous figure and one of this is again related to fuel consumption.
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Figure 7.4: Decision Tree graphical representation built based on
data of the route R3 and not considering the context features.

As for the other sections, the classification is not possible in R1 because it has
only one outlier. In R2, both permutation importance and decision tree indicate
distance traveled as the main feature. In R4 the fuel consumption coupled with the
elapsed time is highlighted again. The R5 and R6 routes share the same decision
tree that mainly makes use of the distance traveled, as happens for the R2 route
similar to them, while the permutation importance highlights in addition to the
distance also the 5-minute breaks for both routes and the fuel consumption only
for R5.

Since the results from clustering were obtained without using context features,
we conducted an in-depth analysis to find out if and how a particular weather
or altitude feature describes one of the two clusters and differentiates it from the
other. To do this, violin graphs were used to represent the distribution of a single
feature separately for each cluster. The meteorological features involved in this
exploration are only the averages of each indicator, therefore maximums, minimums
and standard deviations have been excluded. The obtained results for the 4 features
which distribution differs most between clusters are shown in figure 7.5.
It is clearly seen that distributions of the outlier class contain values far outside
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Figure 7.5: Violin charts showing how the values of the context fea-
tures are distributed within each cluster.

those of the cluster elements. In fact, some of the trips considered outliers are char-
acterized by the presence of rainfall and poor visibility, factors that could justify
the anomalies found in the other vehicular features and which led to their classifica-
tion as outliers. As regards different ascent and descent values, these indicate that
an alternative route has been traveled and obviously all the measurements made
by the vehicle have been influenced by it. Different distributions between clusters
characterize most of the features in all the analyzed sections, in particular, we often
see the visibility and intensity of rainfall.

If we intend to observe instead how the individual context features are linked to
some of the features coming from the vehicle, such as times, speeds, distances and
CAN features, the heatmap in the figure 7.6 shows the Pearson correlation that
links the pairs of features. This allows us to find out if and how much the value of
a context feature affects that of a base feature.
As anticipated, we note a strong correlation between the difference in altitude
that characterized the route and distance, speed and travel time features from
the vehicle. This is because some trips have chosen an alternative route with a
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Figure 7.6: Heatmap showing Pearson’s correlation between context
and vehicle features.

completely different conformation. Observing better we note that there is a slight
correlation also between altitude and pauses carried out and the speed. In the case
of totDownHill the correlation is negative because this feature only has negative
values. This behaviour is present in all the other sections analyzed, even if in some
cases the correlation is inverted, as in R2, R5 and R6.

Another important fact to note is the slight negative correlation between speed and
weather features. This means, as imaginable, that the worse the weather, the lower
the speed of a trip, to the point of being able to exclude it from the cluster. This
happens for each route analyzed and sometimes the speed features are not the only
ones affected by the weather.

Furthermore, there also seems to be a slight correlation between the temperature
and some of the vehicular features. This type of correlation is not reflected in the
other sections and is probably coincidental, especially considering that the data
analyzed relates to June and the temperature should not be a critical indicator.
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7.2 KPI Computation Results
Once the clustering results have been analyzed, it is time to exploit them to cal-
culate a KPI, or a numerical score, which indicates the correctness level of a new
journey outside the cluster. After removing the outliers and calculating the KDE
function for each point in space we can proceed with the evaluation of all trips in
the test set - i.e. those made in the last week of the month. Among these, we have
43 Connected trips and 43 Business trips. Then, also the penalty score for each
feature of each trip is calculated. All the penalty scores have been represented as
a heatmap that shows the percentage of negative contribute associated with each
feature and each row is flanked by a label that indicates the associated trip infor-
mation and KPI value. The result can be seen in figure 7.7 for Connected trips and
in figure 7.8 for Business trips.

Observing the KPIs we notice a wide range of values, with trips that are close
to perfection (around 95% correctness) and others that turn out to be bad (with
ratings of less than 20%). Most of the trips are in any case above 80% therefore
the proportion between good trips and possible outliers is consistent with the one
identified by clustering. If we look at the heatmaps we can identify several par-
ticular and well-defined situations. The best Connected trip tests fail to obtain
the maximum KPI mainly due to the features relating to the sky coverage and the
climatic trend of the day. These features affect a large part of trips. If we look
instead at the group of the worst Connected trips, we see that the cause of the low
score obtained are the features relating to elapsed time, space traveled and height
difference crossed. This is a clear sign that these trips have taken an alternative
route to the reference ones and obviously have been evaluated as very incorrect.
Moving on to Business trips, the best ones do not reach perfection due to the speed
features that differ from the values of the cluster medoid, while for trips with low
ratings the situation is similar to Connected trips. Eventually, we can notice some
cases in which there is a single feature that stands out among those that differ from
the medoid ones. However, looking at the scale it can be seen that there is no case
in which a single feature contribute more than 25% to the total penalty score.

In addition to the KPIs shown in the heatmaps, a second KPI has been calcu-
lated for Connected trips that do not consider CAN features. This is equivalent
to simulating an evaluation for a Business type trip. The resulting KPI is called
Truncated KPI. These values are then compared with the original KPIs to eval-
uate how much the CAN features actually impact the final score. This comparison
is shown in the table 7.5. Having excluded the CAN features does not involve
significant changes to the KPI values. The small differences that are created can
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correspond to both improvements and worsening of the score and even in the most
extreme cases these do not exceed 15-16%. This fact was conceivable if we consider
the analyzes carried out previously which affirm the great importance of context
features in determining the difference between similar trips.

Based on this, the KPI computation it repeated even without taking into account
the context features and the results obtained are shown in the figure 7.9 and 7.10.

Again the majority of the trips achieve a correctness indicator above the 80% and
this time we also have two trips who have been able to obtain a perfect evaluation
(i.e. maximum quality regarding the driving behaviour), in fact for them no penalty
score values are indicated. We have a 0 value KPI, which means that a trip is located
outside the range of influence of the computed KDE. Moreover, as it happens with
context features, most of the trip, both Connected and Business, with a relative
low KPI has been influenced by an alternative path, as the penalty scores for space
and time traveled suggest. Regarding the best trips that slightly differ from the
perfect KPI, the features that have had the greatest impact are those relating to
the time slot, for both Connected and Business, and to speed, the maximum one
for Connected and the standard deviation for Business. We can note once again
the presence of some isolated cases where the penalty score of a single feature far
exceeds that of all the others, but this time the scale is wider compared to the case
that includes the context feature and these features contribute up to 40% of the
overall decrease in the KPI. This fact is justified by the lack of a large number of
features, those of context, which previously took on part of the blame.

Eventually, the comparison between the two KPI computed for the Connected trips
is repeated. The removal of CAN features does not cause significant changes in
trips with a high KPI value, while for those at the bottom of the ranking they
are strongly influenced. In particular, the removal of the CAN features causes
marked improvements in the value of the KPIs. This happens because you lose
track of all those incorrect behaviours that are recorded by the sensors of the CAN
device, thus causing the wrong attribution of a good evaluation to some trips. This
demonstrates the relevance of CAN indicators, the correct use of them in this kind
of analysis and the advantage that customers obtain by taking advantage of the
Connected service.
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Figure 7.7: Heatmap that represents KPI values for each Connected
trip and the penalty score of each feature, obtained considering context
features.
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Figure 7.8: Heatmap that represents KPI values for each Business
trip and the penalty score of each feature, obtained considering context
features.
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Figure 7.9: Heatmap that represents KPI values for each Connected
trip and the penalty score of each feature, obtained without considering
context features.
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Figure 7.10: Heatmap that represents KPI values for each Business
trip and the penalty score of each feature, obtained without considering
context features.
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KPI Comparison

KPI Truncated
KPI KPI Truncated

KPI
0.94 0.94 ...
0.93 0.94 0.79 0.79
0.92 0.93 0.79 0.80
0.91 0.94 0.78 0.78
0.91 0.91 0.72 0.85
0.91 0.90 0.70 0.86
0.90 0.93 0.67 0.66
0.90 0.92 0.52 0.52
0.90 0.91 0.37 0.37
0.89 0.89 0.36 0.37
... 0.22 0.24

Table 7.5: Comparison between the KPIs of Connected trips that
include and not include the CAN features, always considering context
feature.

KPI Comparison

KPI Truncated
KPI KPI Truncated

KPI
1.00 1.00 ...
1.00 1.00 0.77 0.80
0.99 0.99 0.76 0.78
0.99 0.99 0.73 0.74
0.98 0.99 0.59 0.57
0.98 0.98 0.54 0.96
0.96 0.95 0.50 0.88
0.96 0.97 0.19 0.20
0.96 0.96 0.15 0.17
0.95 0.97 0.13 0.13
... 0.05 0.07

Table 7.6: Comparison between the KPIs of Connected trips that in-
clude and not include the CAN features, always not considering context
feature.
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Chapter 8

Conclusions and Future
Works

The work described is part of a framework for the evaluation of the driving be-
haviour of vehicles belonging to a fleet. This framework exploits an innovative
approach based on the behaviuor adopted by most pilots and on the similarity be-
tween trips, instead of a more classic solution based on the direct involvement of
a domain expert in charge of validation. The main objective of this thesis was the
analysis of the data coming out of the preprocessing phase and the search for the
final strategy to be used to calculate the required KPIs.

The reported results demonstrate how multiple classifiers can easily predict whether
a trip is worthy of being used as a reference for evaluating other trips, despite any
class unbalancing problems, basing their training on the labels assigned during a
preliminary clustering phase. This can be useful if we are interested in increasing
the number of examples in the reference set used for the evaluation, using a model
trained by a supervised algorithm instead of rerunning the unsupervised learning
phase. However, the clustering phase is still useful as it is the only way we have to
identify new clusters, different from those already known. Given the small number
of similar trips - i.e. belonging to the same route - currently available, this could
easily happen in the future. For example, more than one group, each related to
different behaviours, could be formed, as documented in the literature, or a group
related to the best driving behaviour could be formed for each weather situation.
The latter hypothesis could happen regardless of whether or not the context features
are used. In-depth analyzes have confirmed that these features have a strong impact
on the results when used. When not considered during training they can still
be used to justify the results obtained, because the correlation with some of the
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vehicular features has been demonstrated.

Regarding the computation of the final KPIs, this work is an example of the usage
of a density estimation function applied to tabular data to assign an evaluation to
new unseen samples based on similarities with input ones. Starting from a situation
in which the data is not labeled and there is no validation provided by a domain
expert, this allows reducing the complex phases that constitute the framework to a
simple numerical value. Although not directly validated, these KPIs benefit from
a sufficient degree of reliability based on the hypothesis that the trips analyzed are
performed by expert pilots of several transport companies who know-how and must
behave well. Moreover, in some cases, the vehicles of the Connected service can
detect anomalies that vehicles not equipped with a CAN device could not identify.
This is potentially actionable for marketing purposes.

This study could be further investigated, especially about the data analyzed. The
number of trips that belong to the same route is very limited. A larger amount
would allow for more robust results. This problem will be solved over time thanks
to the constant and continuous collection of data and the spread of monitoring
devices on board vehicles. Alternatively, aggregating trips of similar routes might
be an acceptable solution. Another problem is the absence or scarcity of some
information known to be related to driving behaviuor. For example, the CAN bus
is capable of monitoring engine revolutions but transmits this information only
once a minute, a much lower frequency than that with which the monitored value
varies. There are many other useful indicators whose presence in the database is
not sufficient. The introduction of this information would certainly bring added
value to the analyzes, because this data could make the results more accurate.
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