
POLITECNICO DI TORINO

Dipartimento di Automatica e Informatica
Master Degree in Computer Engineering

Master Thesis

Data Quality for streaming
applications

Advisor
prof. Paolo Garza

Candidate:
Andrei Robert Zannelli

Company tutors
AGILE LAB S.R.L
Ing. Paolo Platter

April 2021

Acknowledgements

Thanks to my family for having allowed this goal through their support, to An-
tonella for having always believed in me and to my friends and companions in this
adventure. I would like to thank Roberto Coluccio, for the teachings (not only aca-
demic) given to me during the first phase of the thesis. Last but not least, to me
for never giving up.

ii

Abstract

The topic of big data has become highly sought after in recent years and with it all
the problems that they entail. The ability to analyze large amounts of data in an
innovative way has made it possible to facilitate the development and the enormous
production of data from countless sources such as social media, sensors, industrial
machines or simply server logs has certainly encouraged the development of the big
data field. With the increase in the production speed of all these types of data,
we have begun to speak of streaming data, to indicate the production of data in
near real time. Of course, with the acceleration of production, the need to hasten
their analysis rose too and there were many answers proposed by the top players in
the sector, such as Apache Spark and its two components dedicated to streaming,
DStreams and Structured Streaming. One of the fundamental problems of all this
data is its quality, as it is often used by large companies to decide the best business
choices to implement in response to the data in their possession. The latter two
themes are the protagonists of this thesis, namely data quality in streaming envi-
ronments. This thesis rests its foundations on the Data Quality framework, an open
source software produced by AgileLab s.r.l., which aims to transport the academic
concepts of data quality into a practical and everyday reality. The objective set
by this thesis was to integrate the aforementioned framework with the possibility
of managing the analysis of streaming sources, without having to change the very
nature of the project and solving all the problems that streaming carries with it.
The analysis and design of the solution started from highlighting the main prob-
lems, the necessary abstractions and the work carried out in academic fields by the
community of researchers and developers to enter the world of streaming data, pass-
ing through the technologies and methods used by this research. Subsequently, the
current structure of the aforementioned framework is passed under the microscope,
analyzing the various modules and entities, to highlight its functioning and capabil-
ities. The changes made to allow integration with the most commonly used formats
and file types within the streaming data circle are reported immediately after, also
highlighting both the conceptual and implementation problems. The research ends
with the analysis and comparison of the standard model and the one created in this
thesis, using a common database for both as benchmark and highlighting how the
various components work together to obtain the same result in both cases. Finally
it is exposed what can be implemented to continue the optimization of the project
and preparing the most interesting improvements.

Contents

List of Figures iii

Listings iv

1 Introduction 1
1.1 Big Data . 1
1.2 Data Quality . 2

2 Related Works 4
2.1 Academic papers . 4

2.1.1 AIMQ: a methodology for information quality assessment . . 4
2.1.2 Data Quality Assessment . 8
2.1.3 Heterogenous Data Quality Methodology for Data Quality . 11
2.1.4 Task Based Data Quality . 12

2.2 Technologies . 13
2.2.1 Scala . 13
2.2.2 Apache Hadoop . 14
2.2.3 Apache Kafka® . 15
2.2.4 Apache Spark . 17
2.2.5 Apache Hive . 27
2.2.6 Apache HBase . 28
2.2.7 PostgreSQL . 29

3 Main core 30
3.1 Data-Quality Framework . 30

3.1.1 Source . 32
3.1.2 Metric . 35
3.1.3 Check . 38
3.1.4 Target . 41
3.1.5 Postprocess . 42

3.2 Evolving the framework to a new Scenario 43
3.3 Methodology . 45

i

3.3.1 Streaming container . 45
3.3.2 Source . 46
3.3.3 Metric . 49
3.3.4 Check . 53
3.3.5 Target and Postprocess . 54

4 Evaluation 55
4.1 The analysis . 55
4.2 The dataset . 55
4.3 Results . 57

5 Conclusions 65

References 66

ii

List of Figures

1.1 The data quality dimensions[5] . 2

2.1 Three simple graphs . 6
2.2 The architecture of Apache Kafka® 16
2.3 The full Apache SparkTM stack. 18
2.4 architecture overview of a spark cluster launched in cluster mode. . 19
2.5 The Catalyst query optimizer pipeline. 22
2.6 High-level architecture of how Apache Streaming works 23
2.7 Visual representation of how the result of a query in Structured

Streaming looks like [19]. 24
2.8 Visual representation of how window aggregations work in Spark

Structured Streaming [20]. 26
2.9 Hive System Architecture . 28

3.1 The architecture of the Data Quality framework proposed by Agilelab 31
3.2 A report of the columnar metric results 44
3.3 A report of the file metric results 44
3.4 A report of the composed metric results 45
3.5 A report of the load check results 45
3.6 A report of the check results . 46
3.7 A visual representation on how treeAggregate works [30]. 50

4.1 The results of the columnar metrics of the static case. 58
4.2 The results of the composed metrics of the static case. 58
4.3 The results of the file metrics of the static case. 59
4.4 The results of the file metrics of the static case. 59
4.5 The results of the columnar metrics of the streaming case 61
4.6 The results of the composed metrics of the streaming case 63
4.7 The results of the checks of the streaming case 64

iii

Listings

3.1 Example of a Typesafe configuration for an HDFS-compliant file
source. 33

3.2 Example of a Typesafe configuration for creating virtual sources. . . 33
3.3 Example of a Typesafe configuration for a file metric and a column

metric. 35
3.4 Example of a Typesafe configuration for a composed metric. 38
3.5 Example of a Typesafe configuration for a load check. 39
3.6 Example of a Typesafe configuration for a snapshot check. 40
3.7 Example of a Typesafe configuration for a trend check. 41
3.8 Example of a Typesafe configuration for a target. 42
3.9 Example of a Typesafe configuration for a postprocess. 43
3.10 Schema of a DataFrame created from a Kafka Sink without further

transformations . 49

iv

Chapter 1

Introduction

1.1 Big Data
Nowadays, the amount of data generated has grown exponentially, mainly because
the manufacturers of these data have grown rapidly in numbers since data is now
collected by the most disparate variety of devices such as mobile devices, cheap and
numerous information-sensing Internet of things devices, aerial (remote sensing),
software logs, cameras, microphones, radio-frequency identification (RFID) readers
and wireless sensor networks.

Clearly, size is the first characteristic that comes to mind considering the ques-
tion “what is big data?” However, other characteristics of big data have emerged
recently. For instance, Laney et al. (2001)[1] suggested that Volume, Variety, and
Velocity (or the Three V’s) are the three dimensions of challenges in data manage-
ment. The Three V’s have emerged as a common method to describe big data[2].
To these three V’s, we can also add Veracity and Value:

• Volume: scale of the data. In this context, we are talking of ZettaBytes (10247

Bytes). Is estimated that from 2009 to 2020, we had an increase factor of 44
in the amount of data produced.

• Variety: different forms of data as for formats, types and structure (numerical,
video, text, etc.)[3] that is being produced.

• Velocity: analysis of streaming data. A fast generation rate leads to having the
right tools to perform a quick analysis, in order to keep up with the amount
of data produced.

• Veracity: uncertainty of the data and its quality.

• Value: exploit information provided by data that translates into business ad-
vantage.

1

1 – Introduction

The last V is the one of interest for this thesis, that is the quality of the data we
are working on. Therefore, having a good quality in the data automatically leads to
a greater value of information that we can extract, consequently the need emerges
to have the right tools to assess the quality of the analyzed data.

1.2 Data Quality
The literature comprises various techniques for defining, assessing, and improving
data quality. However, requirements for data and their quality vary between orga-
nizations. Due to this variety, choosing suitable methods that are advantageous for
the data quality of an organization or in a particular context can be challenging[4].
The idea has been addressed mainly in the scope of the use case that was being an-
alyzed, so there are many standards for what data quality should be. From biology
to telecommunications, from scientific data to medicine, is clear that we are still
away from a specific standardization of how should be defined and what should re-
spect data quality standards. Naturally, an attempt was made to create a common
basis for most of the fields of interest which surrounds the big data landscape and
the main dimensions have been defined as follows:

Figure 1.1: The data quality dimensions[5]

• Completeness: existence of values in a specific data attribute.

2

1 – Introduction

• Timeliness: degree to which data is representative of current business condi-
tions.

• Conformity: data are valid if it conforms to the syntax of its definition.

• Uniqueness: existence of unique values for a specific data attribute within a
table.

• Consistency: logical coherence within data of a system that free them from
contradictions.

• Integrity: existence of data values in reference table(s) from different system(s).

When we talk about big data analysis, we can identify two distinct phases: the
first consists in verifying and validating the quality of the data being analyzed and
the second consists in the actual analysis. Being the first step into the analysis of
big data, the quality of the former should be one of the most important pillar in
any pipeline which aims to deal with this technology. The main methods that we
are going to expose in chapter 2 present subjective validation tools: this choice is
dictated by the fact that the quality of the data must first of all be an attribute
directly perceived by all those people and entities that interface with the data,
both to make business choices (such as stakeholders), both to take advantage of the
information they bring within themselves. Knowing that you have data of dubious
quality or unsuitable for the task can lead to incorrect choices and actions, which
involve various repercussions for the company itself. For this reason, and due to
the exponential increase in data production in recent decades, efforts towards this
sector have enhanced considerably, heightening awareness of the sensitivity of the
data quality area.

The study of this thesis will start from the work done from the academic point of
view by other researchers in the field of data quality, reporting what they have tried
to standardize as components and dimensions of the quality problem. Subsequently
the major technological tools used in this sector will be reported, also explaining
their correlation with the development of this thesis. Subsequently, the framework
from which the analysis of the problem started, provided by Agile Lab S.r.l, will be
presented and the changes made to achieve the objective set by the research will
be shown.

3

Chapter 2

Related Works

This chapter will begin with a report on what was accomplished by others, both
from a theoretical and a practical point of view, who have tried to structure and
resolve similar problems to the one addressed by this thesis. Then, focus will shift
on the tools, frameworks and notions that have been used in order to accomplish
the task. Background and basic notions will be provided to the reader in order to
help through the reading of this thesis.

2.1 Academic papers
In this first section we will present a series of Data Quality frameworks and method-
ologies, to highlight what we have focused on so far and how the parameters in the
field of data quality have been defined. Some of the methods are presented and eval-
uated by[6]. Due to the very nature of the problem, it is easy to find methodologies
proposed in academic environments but very difficult to find open source imple-
mentations, since most of the companies that engage in this problem tend to offer
ad-hoc solutions for their customers and with proprietary software solutions. All
the DQ dimensions reported in each methodology are defined by how the authors
of the methodology itself intended them.

2.1.1 AIMQ: a methodology for information quality assess-
ment

AIMQ[7] it is a methodology that seeks to report how an IQ assessment is made
and provide the basis for testing its effective quality. Its main components are: a
Data Quality categorization model, an information quality assessment instrument,
a bench-marking gap analysis and a role gap analysis. The measurement techniques
used in this method could be applied to both structured and unstructured data.
The DQ dimensions used are:

4

2 – Related Works

• Accessibility: how accessible a given information is, also in terms of speed when
we need it.

• Appropriate amount: this information is of sufficient volume for our needs.

• Believability: how credible the information is.

• Completeness: the information contains all the values we need.

• Consistent representation: the representation of this information is compact
and concise.

• Ease of operation: the simplicity in manipulating information so that we can
achieve our goal.

• Free-of-error: this information is correct, accurate and reliable.

• Interpret-ability: it is easy to interpret what this information means.

• Objectivity: this information was objectively collected and presents an impar-
tial view.

• Relevancy: this information is useful to our work.

• Reputation: this information comes from good sources.

• Security: access to information is only possible for those who hold the right.

• Timeliness: this information is sufficiently up-to-date for our work.

• Understand-ability: the meaning of this information is easy to understand.

These dimensions are grouped by the authors into four main categories, intrinsic
IQ, accessibility IQ, representational IQ, and contextual IQ.

By intrinsic IQ the authors mean that the data have an inherent quality of
information, that is, that the information itself already carries a sort of quality.
With contextual IQ, the focus is on the need to consider the IQ within the context
in which the current task is performed: this translates into requiring that the IQ is
complete, relevant, timely and exhaustive from the point of view of quantity. The
last two categories, that is representation and accessibility, highlight the weight that
the computer system carries, which has the purpose of storing and providing access
to the information itself. In other words, this translates into a system that allows
information to be presented in an interpretable, easy to understand and concise
way. Of course, it is also intended that the aforementioned system is accessible, but
only by those who have the necessary authorization to do so, therefore there is a
secure system.

5

2 – Related Works

(a) The 2x2 model from [7].

(b) An example of the benchmark
gap analysis from [7].

(c) An example of the role gap anal-
ysis from [7].

Figure 2.1: Three simple graphs

The Data Quality categorization model is represented as a rectangle divided
into four main parts, and is intended to show what IQ means both from the point
of view of the consumers of this information, and from the point of view of the
managers. Within the model, the information is inserted in a certain quadrant and
the positioning depends on how it is considered: product or service. The other two
quadrants take into account the improvements applicable to quality: the evaluation

6

2 – Related Works

can take place against a formal specification or from the point of view of customer
expectations.

The information quality assessment instrument consists of a simple question-
naire, which has the task of measuring the quality over the dimensions of IQ that
are considered important by both consumers and information managers. Most of
these dimensions are used to measure quality for each quadrant of the aforemen-
tioned rectangular model. This tool can be used to validate the quality of infor-
mation within organizations, having it filled in by subjects who, more than others,
interface with the data.

The last two components of the model, benchmarking gap analysis and the role
gap analysis, consist of analysis techniques with the task of interpreting the findings
obtained from the questionnaire.

The first analysis compares the result obtained by the organization that is per-
forming it with an organization in the same sector, which is considered to be one
of the best in the IQ.

The second, on the other hand, measures the distance between the assessments
made by different stakeholders of an information system. This distance is plotted
on a graph, as shown in Figure 2.1c. The AIMQ is a framework that relies on
subjective measurements only, thru the use of the IQA instrument, a questionnaire
including several items that help with measuring data quality. Overall, the AIMQ
focuses on prioritizing areas for data quality improvement.

The model reported in figure 2.1a represents an example that extrapolated from
the research document. The four quadrants indicate the fundamental aspects of IQ
on which to make improvement decisions.

In figure 2.1b we can observe an example of IQ evaluation. the ordinate axis
represents the level of quality, which can vary between zero and ten. The abscissa
axis represents the percentage of those who answered the questionnaire. The graph
shows the results of five companies, where the number one indicates the company
considered the best in the IQ. As we can see, there is a substantial gap between
the best and the other four companies considered by the authors’ example. The
elements to be considered during this phase are the position of the gap and their
size.

Figure 2.1c is an example of the Role Gap analysis. on the abscissa axis we find
the five organizations mentioned previously and, on the ordinate axis, we find the
level of data quality, just like in the previous graph. Diamonds represent the average
quality level expressed by customers, while squares represent the average quality
level according to information systems professionals. Again, the things to be aware
of are the actual size of this difference and the direction. If the difference is very
large, as we can see for company number five, it means that information systems
managers are not at all aware of the problems that consumers of information are
facing when they deal with the data. The reverse is identified if it starts from the
managers (squares) and ends in the consumers (diamonds), and translates into a

7

2 – Related Works

higher quality assessment by the managers than that provided by consumers.

2.1.2 Data Quality Assessment
DQA[8] is a method which describes the principles that can help organizations
develop usable data quality metrics. In this article, they describe the subjective
and objective assessments of data quality, and present three functional forms for
developing objective data quality metrics. The authors present an approach that
combines the subjective and objective assessments of data quality, and illustrate
how it has been used in practice.

Subjective assessments are the one manifested by the users and generators of
the data: for example, we can obtain subjective assessment by asking to complete a
questionnaire regarding how the individuals (like stakeholders) feels about the data
quality dimensions that we want to analyze.

Objective assessments can be task-independent or task-dependent. Task-independent
metrics reflect states of the data without the contextual knowledge of the appli-
cation, and can be applied to any data set, regardless of the tasks at hand. Task-
dependent metrics, which include the organization’s business rules, company and
government regulations, and constraints provided by the database administrator,
are developed in specific application contexts. A comparison of the previously per-
formed objective and subjective measurements where discrepancies are identified is
suggested in combination with a root cause analysis. The findings should then be
processed by taking the necessary measures for data quality improvement. The DQ
dimensions analyzed by the authors of this paper are:

• Accessibility: how easy it is to have access to the data, especially in cases where
time is of vital importance.

• Appropriate amount of data: the extent to which the volume of data is appro-
priate for the task at hand.

• Beliavability: measures the level of credibility and truthfulness of the data.

• Completeness: measures the level of completeness of the data, or to what extent
it can be considered free from any deficiency.

• Concise representation: measures the level of compactness in the representation
of the data.

• Consistent representation: measures the level of consistency of the data, that
is how much the data is represented with the same format.

• Ease of manipulation: measures the level of ease in manipulating the data and
how easily it is possible to apply it to different tasks.

8

2 – Related Works

• Free-of-error: it measures in what quantity the analyzed data is correct and
reliable.

• Interpretability: measures how much the data is expressed in an interpretable
way, using the correct symbols and units.

• Objectivity: measure of how objective the data is, or how much it is without
prejudice and presented in an impartial way.

• Relevancy: measures the level of applicability of the data with respect to the
current task.

• Reputation: how much reputation the data has, taking into account its origin
and content.

• Security: the extent to which access to data is restricted appropriately to
maintain its security.

• Timeliness: the extent to which the data is sufficiently up-to-date for the task
at hand.

• Understandability: the extent to which data is easily comprehended.

• Value/added: the extent to which data is beneficial and provides advantages
from its use.

The authors state that when a company tries to calculate and define metrics for
the aforementioned data quality dimensions, it essentially always runs into one of
the following functional forms:

• Simple Ratio: ration of desired outcomes to total outcomes.

• Min or Max Operation: minimum or maximum value among normalized indi-
vidual data quality indicator values.

• Weighted Average: Assigning weighting factors to represent the importance of
the variables to the evaluation of a dimension.

The DQA measures the stakeholder expectations and defines quantitative metrics,
by the functional forms, in order to measure the data quality in an objective way.
These functional forms are intended to define a metric by which the various di-
mensions of data quality can be measured. There are several refinements applicable
to these forms, such as adding parameters for sensitivity. Using the simple ratio,
the dimensions of free-of-error, completeness, consistency, concise representation,
relevancy and ease of manipulation can be calculated.

By free-of-error, the authors mean that the data under consideration is correct.
The measure is defined as the division between the number of data that is in an

9

2 – Related Works

error state (i.e. that is not considered complete) and the total number of data
available. The dimension of completeness can be easily measured by calculating the
ratio of the number of incomplete data to the total number of data. Consistency is
also measured with a ratio, but this time the dividend is the number of breaches of
a given consistency type and the divisor is the total number of consistency checks.

The minimum and maximum operations are considered by the authors of the
paper as conservative. This is because they assign an aggregate value to the dimen-
sion which is equal to the lowest quality indicator, which is normalized to belong to
the range between zero and one. The maximum operation is used if a liberal inter-
pretation is warranted. The maximum operator is used only if a free interpretation
of the quality indicators is required. The latter is more useful when dealing with
more complex metrics, such as those concerning the dimension of data accessibility
and their timeliness. An example of using the minimum metrics is to be found at
the dimension concerning the appropriate quantity. Each of these dimensions are
then rated on a scale from 0 to 1, and overall believability is then assigned as the
minimum value. For example, lets assume that the believability of a data source
is rated as 0.6; believability against a common standard is 0.8; and believability
based on experience is 0.7. The overall believability rating is then 0.6 (the lowest
number). An alternative is to compute the believability as a weighted average of
the individual components. A working definition of the appropriate amount of data
should reflect the data quantity being neither too little nor too much. Timeliness
represents how up-to-date the data is with respect to the task it’s used for. For the
multivariate case, an alternative to the min operator is a weighted average of vari-
ables. If a company has a good understanding of the importance of each variable to
the overall evaluation of a dimension, for example, then a weighted average of the
variables is appropriate. To insure the rating is normalized, each weighting factor
should be between zero and one, and the weighting factors should add to one. Re-
garding the believability example mentioned earlier, if the company can specify the
degree of importance of each of the variables to the overall believability measure,
the weighted average may be an appropriate form to use.

What this methodology tries to do is to propose a path, which contains both
subjective and objective entities, to be followed in order to be able to answer the
following question: How good is a company’s data quality? The ultimate goal is to
identify data quality problems and mitigate them, so as to improve a company’s
data status. This road involves the following steps:

• Performing subjective and objective data quality assessments;

• Comparing the results of the assessments, identifying discrepancies, and de-
termining root causes of discrepancies;

• Determining and taking necessary actions for improvement;

10

2 – Related Works

2.1.3 Heterogenous Data Quality Methodology for Data
Quality

HDQM[9] is a methodology which aims to assess and improve data quality of all
types of data managed in an organization. Its main components are: state recon-
struction, quantitative evaluation of data quality problems and selection of appro-
priate improvement activities. HDQM is one of the few methodologies that considers
structured, unstructured and semi-structured data.

Structured data consists in a generalization or aggregation of items described
by elementary attributes defined within a domain items, like a relational database
table. Semi-structured data is characterized by the lack of a rigid, formal structure.
Typically, it contains tags or other types of markup to separate textual content from
semantic elements, like an XML file. Unstructured data can be found in different
forms: from web pages to emails, from blogs to social media posts, etc. 80% of
the data we have is known to be unstructured. Regardless of the format used for
storing the data, the most common format are textual documents made of sequences
of words.

The main DQ dimensions analyzed in this method are accuracy and currency.
The accuracy used inside this method is the so called Syntactic accuracy which is
measured by means of comparison functions that evaluate the distance between a
value v and another value x belonging to the domain, which is considered as the
correct representation of the real-life phenomenon that v aims to represent. The
currency used is the normalized currency, defined as the ratio between Actual and
Optimal currency. Currency is usually defined as the “temporal difference between
the date in which data are used and the date in which data have been updated”.
Therefore, Normalized currency is the ratio between the minimum time span that
data have become old (Optimal currency) and the Actual currency of these data.
More specifically, Normalized currency concerns how promptly data are updated
with respect to how promptly they should be to users needs and the main domain
constraints.

HDQM aims to provide indications on the optimal DQ improvement program
that an organization should undertake with respect to its peculiar needs and con-
straints. HDQM consists of three main phases and each of them is composed of a
number of steps. In particular, the main phases are:

1. State reconstruction, which aims to reconstruct all the relevant knowledge
regarding the organizational units, processes, resources and conceptual entities
involved in the organization.

2. Assessment, which aims to obtain a quantitative evaluation of data quality
problems. DQ dimensions are measured in order to assess the current level of
data quality and to set the new DQ targets that must be reached at the end
of the DQ improvement program

11

2 – Related Works

3. Improvement, where improvement activities are selected by evaluating their
effects in terms of DQ dimensions/cost ratio.

State reconstruction is a complex phase that encompasses a preliminary task of
problem identification and three tasks of reconstruction. The problem identification
task aims to identify the most relevant data quality problems as they are perceived
by all the actors involved in the business processes. This means to focus on the
most important data only, the so called master data and on those data that are
involved in some organizational shortcoming. The subjective perception given by
internal and external actors is quantified by means of focused interviews and survey
questionnaires.

The assessment phase of the HDQM consists of two steps. Firstly it starts by
ranking the resources that have been identified during the previous step, in order to
establish feasibility and risk for the subsequent improvement phase. Secondly, the
actual quantitative measurement of data quality is performed. In this assessment,
the relevant dimensions are measured by applying appropriate metrics. The data
quality improvement phase starts with an analysis of data quality requirements
which in this model is performed using a process-oriented approach.

It follows a selection of activities for data quality improvement. This is done
by using both a data-driven and process-driven strategy in order to produce a
Resource/Improvement Activity matrix, starting from a data quality requirement
definition, passing through a selection of the data quality improvement activity
and ending with the selection and evaluation of the most adequate improvement
processes. Finally, an improvement process is chosen and evaluated based on this
matrix. The selected process should incorporate all relevant dimensions and re-
sources.

The HDQM provides a novel approach to data quality cost considerations. Apart
from stating quantitative methods to cost-benefit analysis, the model proposes to
qualitatively compare costs with benefits. First, a Resource/Activity matrix is used
to identify candidate improvement processes followed by an evaluation of costs for
each of the candidate processes. The qualitative approach consists of categorizing
costs (very low, low, medium, high, very high) and subsequently, comparing the
values along with their effects on dimensions (data quality dimension/cost ratio) in
order to find the appropriate improvement process.

2.1.4 Task Based Data Quality
TBDQ[10] is a method which uses subjective and/or objective measurements to
assess DQ. The method attempts to improve DQ by analyzing and modifying orga-
nizational processes (which are considered as a sequence of tasks) which potentially
create DQ problems. Is a process-driven method. Re-engineering the current pro-
cess in an organization could prove very expensive hence, modifying the processes
in TBDQ does not mean altering the current tasks, but to add new improving tasks

12

2 – Related Works

to counter the effects of risky tasks. The main components are: planning and eval-
uating assessment, evolution and execution of improvement. The DQ dimensions
treated are: accuracy, completeness, consistency and timeliness.

The TBDQ performs an initial assessment by means of survey questionnaires
followed by the objective assessment using metrics such as a simple ratio. The as-
sessment phase of the TBDQ consists of two steps. Firstly, the goals and scope
of data quality for the business are defined in the planning phase. This includes
specifying a minimum level of data quality, defining and assigning weight to the
dimensions and identifying those tasks within the process that can lead to data
quality issues. In the subsequent evaluation step, weights are assigned to the data
quality problems by using a pair-wise comparison matrix of the analytical hier-
archical process[11]. A questionnaire-based approach is suggested for subjective
assessments, combined with a simple ratio metric for objective assessments of data
quality. Based on this, the data quality issues receive value. It is also suggested that
subjective and objective assessment results are compared as a form of validation

The improvement phase according to the TBDQ consists of two steps. Firstly,
prioritization of data units is suggested and data improvement tasks such as data
correction or notification designed and proposed in the evolution step. The decision
on a suitable task is based on an “award system” comparing the different tasks based
on execution costs and level of improvements. In the execution steps, the tasks and
modified process units are performed. In addition, the execution is analyzed in
terms of scope and achieved amount of improvement. A cost-benefit analysis is
considered from a qualitative perspective. The model uses the award system in
order to choose the improvement tasks. The processes are evaluated on the basis
of their execution costs and the level of improvement. This is done by means of
a Time-Driven Activity-Based Costing as proposed in[12]. The cost considerations
are made towards budget constraints, non-quality costs, improvement costs and
cost-benefit analysis.

2.2 Technologies
In this section we will talk about all the technologies used to achieve the goal set
by this thesis, reporting the key concepts and justifying the choices made.

2.2.1 Scala
Scala1 is a general purpose programming language. It was created and developed by
Martin Odersky and was officially released on January 20, 2004. The reasons for the
birth of this language are to be found in the need to have a better version of Java.

1https://www.scala-lang.org/

13

https://www.scala-lang.org/

2 – Related Works

This led its creator to make a new language, dealing with the missing opportunities
of Java but which had the same basic idea, such as Java Virtual Machines. During
compilation, Scala file translates to Java byte code and runs on JVM (Java Virtual
machine). Scala was designed to be both object-oriented and functional. It is a pure
object-oriented language in the sense that every value is an object and functional
language in the sense that every function is a value. The name of Scala is derived
from word scalable which means it can grow with the demand of users. Is statically
typed but has a lightweight syntax, is fully inter-operable with Java, so that libraries
written in either language may be referenced directly in Scala or Java code, and
is a perfect fit for Domain Specific Language: is a programming language with a
higher level of abstraction optimized for a specific class of problems[13]. Scala has
many features of functional programming languages like Scheme, Standard ML and
Haskell, including currying, immutability, lazy evaluation, and pattern matching.

The choice to use Scala was trivial, since all the source code of Apache SparkTM,
the tool protagonist of this thesis, has been written in Scala.

2.2.2 Apache Hadoop
Apache Hadoop2[14] is a collection of open-source software utilities which have the
purpose of simplifying the use of a cluster in order to solve problems concerning the
analysis and processing of huge amounts of data, exploiting the enormous compu-
tational capacity made available by the cluster itself. It also contains a framework
dedicated to distributed storage systems which provides process support for big
data, applying the MapReduce[15] programming model. The concept behind the
design of the individual components of Hadoop is that hardware failure is the prac-
tice and must be automatically handled by the system itself, without diverting the
user’s attention and efforts.

Currently, Hadoop is a top-level project of Apache, used and maintained by a
big community of contributors and users. Published with the open-source license
Apache 2.0, it is used by the largest computer companies including Yahoo!, Face-
book, Adobe, EBay, IBM, LinkedIn and Twitter. Before Hadoop, data processing
was carried out by High Performance computing and Grid Computing systems.
However, Hadoop offers a set of easy-to-use libraries and takes advantage of data
replication on individual nodes to improve data access times, avoiding, if possible,
to transfer them over the network. The idea behind Hadoop was born from the need
to find a new methodology to be able to process huge amounts of data quickly and
effectively. Hadoop queries often require reading a large amount of data (Gigabytes
or even Terabytes), unlike queries on traditional systems where it is often required
to read a single or a few records in a table.

2https://hadoop.apache.org/

14

https://hadoop.apache.org/

2 – Related Works

The core of Apache Hadoop is composed of a part that deals with storage,
commonly called Hadoop Distributed File System (HDFS), and a part that deals
with processing, following the MapReduce paradigm. The storage system divides
the largest files into fixed-size blocks and distributes them to all the nodes that
make up the cluster. Subsequently, the code written by the user is packaged and
also sent on the aforementioned nodes, so as to be able to process the data in a
parallelizable way: this method takes advantage of the concept of data location,
where the individual nodes of the cluster applies the user’s code to those blocks
that are in their possession. This allows an acceleration in data processing, also due
to the efficiency obtained by exploiting this so-called locality. All these expedients
allows us to obtain the results in such short times that is not remotely comparable
with what we would have from a conventional architecture composed of a single
mainframe.

The base Apache Hadoop framework is composed of the following modules:

• Hadoop Common – contains libraries and utilities that supports other Hadoop
modules. it is the main core of the Apache framework;

• Hadoop Distributed File System (HDFS) – a distributed file-system that stores
the data used in the processing part, providing very high aggregate bandwidth
across the cluster;

• Hadoop YARN – a platform responsible for managing computing resources in
the clusters;

• Hadoop MapReduce – an implementation of the MapReduce programming
model for large-scale data processing.

• Hadoop Ozone – an object store for Hadoop;

The Hadoop system is a highly reliable one, as it can run on commodity hardware
clusters and has been designed to continue to function even if one or more cluster
nodes fail. The system is highly scalable as nodes can be added or removed to
the cluster on necessity. The ability to exploit distributed architectures to its own
advantage is absolutely not to be underestimated and, Hadoop allows us to focus
on the data processing part rather than the underlying structure.

2.2.3 Apache Kafka®
Apache Kafka®3[16] is a scalable, fault-tolerant, and highly available distributed
streaming platform that can be used to store and process data streams. The plat-
form aims to provide its users with high troughput and low latency guarantees in

3https://kafka.apache.org/

15

https://kafka.apache.org/

2 – Related Works

order to manage data streams in real time. It consists of three main elements: the
cluster, the Streams API and the Connect API. The first element has the task of
storing the data flows, which are represented within Kafka as sequences of messages
continuously produced by applications and sequentially consumed by others. The
Connect API is used to insert data into Kafka and extract it to external systems,
such as HDFS, databases, etc. The Streams API, on the other hand, has the task of
allowing developers to create complex processing structures to read input streams
from Kafka. Each single message is saved within Kafka with a key-value pair: the
data can be divided into different partitions within multiple topics. Within each of
these partitions, messages are sorted by their offset, which represents the position
of the message within the partition itself. The messages are then indexed and stored
with a timestamp. The processes that have the task of reading these messages are
called consumers. A Kafka cluster is composed of several servers, which take the
name of brokers, and the partitions, previously mentioned, are distributed on all
the nodes of the cluster: this allows Kafka to deliver an enormous amount of data
flows guaranteeing its users fault tolerancy.

Figure 2.2: The architecture of Apache Kafka®

16

2 – Related Works

2.2.4 Apache Spark
Apache Spark4 is a open-source unified analytics engine for large-scale data process-
ing. Spark provides its users with a series of APIs, which allows them to program
clusters while maintaining guarantees on the tolerance of failures and exploiting
the parallelism of data. The project has its origins at the University of California,
as it was the subject of academic research and, subsequently, it was donated to the
Apache foundation, with the aim of making it open-source and accessible. The mo-
tivation behind the born of Apache Spark was that using MapReduce for complex
iterative jobs or multiple jobs on the same data involves lots of disk I/O and since
the cost of main memory was decreasing, the solution proposed by Spark was that
of keeping more data in main memory instead on disks: data is read only once from
the external storage and is shared across the main memory of each server which is
part of the cluster, thus improving the speed of the jobs.

Spark is based on a basic component (Spark Core) that is exploited by all the
high-level data analytics components. Consequently, when the efficiency of the core
component is increased also the efficiency of the other high-level components in-
creases.

Spark allows its users to implement both iterative programs and perform ex-
ploratory data analysis. As for the latency, the comparison with MapReduce does
not hold up either, as the difference lies within several orders of magnitude. In
order to function, Apache Spark needs two basic components: a cluster manager
and a distributed storage system. As for the former, support for YARN, Mesos and
Kubernetes is already integrated, along with standalone mode, which is Spark’s
native cluster. For the latter, Spark can tie into a large set of systems, such as
Alluxio, HDFS, Amazon S3, or even a custom solution, just to name a few. Often,
for testing and debugging purposes only, Spark can be run locally: in this case, the
executors are the CPU cores it is running on and the distributed system is that of
the local machine.

The structure of a Spark program is composed of a Driver, which contains the
main method, defines the flow of the application and accesses Spark through the
use of the SparkContext object (starting from Spark 2.0, the entry point has be-
come the SparkSession object if we want to take advantages of the abstractions
offered by DataFrames and DataSets). The Driver also defines the Resilient Dis-
tributed Datasets (RDDs), which are allocated to the cluster nodes, and the parallel
operations to be applied to the latter are invoked.

These parallel operations applicable on RDDs can be divided into two main
categories: Transformations and Actions. A transformation is applied to an RDD
and produces a new RDD. An action is a function that is applied on an RDD and
produces a value. Transformations are called "lazy", as they are only performed if

4https://spark.apache.org/

17

https://spark.apache.org/

2 – Related Works

Figure 2.3: The full Apache SparkTM stack.

an action is called on the resulting RDD. This means that if no action is called on
the RDD, all transformations will never be performed, as the developer does not
require explicitly the framework to produce a result.

The SparkContext (or SparkSession) object allows us to create RDDs and sub-
mit executors that perform specific operations in parallel on the RDDs. The worker
nodes of the cluster execute the application through the executors: each executor
runs the operations specified in the Driver on its RDD partition. The great advan-
tage of Spark is that it also allows local execution, on a single node or computer:
threads are used to parallelize and run the application on the RDDs. This is very
useful for developing and testing applications before deploying them on a cluster.

Before continuing with the definitions, it is necessary to report the terminology
used in the Spark application development environment.

• Application: we refer to a program created by the user based on Spark. It is
composed of a driver and executors, which belong to the cluster.

• Application jar: a jar5 which contains the Spark application.

• Driver Program: it is considered as the entry point of the Spark program: here
we find all the functions that have the purpose of managing and transforming
the RDDs, as well as creating the SparkContext.

• Cluster Manager: often an external service, such as YARN, which has the task
of managing the resources located on the cluster.

5https://docs.oracle.com/javase/tutorial/deployment/jar/index.html

18

https://docs.oracle.com/javase/tutorial/deployment/jar/index.html

2 – Related Works

• Deploy Mode: it is used to define where the driver will actually run.

– Cluster mode - the driver runs within the cluster itself, together with the
various executors.

– Client mode - the driver is not inside the cluster.

• Worker Node: this term refers to any node in the cluster capable of executing
code within the cluster.

• Executor: it is a cluster node that has the task of executing the portion of
code it receives and applying it to the data block in its possession.

• Task: with task we indicate the smallest possible unit of work within spark:
each executor has the purpose of executing one task at a time.

• Stage: with stage we indicate a grouping of tasks that are directly dependent
on each other, that is, we cannot divide them into separate entities.

• Job: it consists of a series of stages and represents the largest unit of work
within Spark. Usually a job corresponds to an action on RDDs and is made
up of a series of stages.

Figure 2.4: architecture overview of a spark cluster launched in cluster mode.

RDD Abstraction

The data is represented as resilient distributed dataset[17], a read-only multiset of
data items distributed over a cluster of machines, that is maintained in a fault-
tolerant way. RDDs are partitioned collections of objects spreaded across the nodes
of a cluster, stored in main memory and only if they do not fit, stored on local

19

2 – Related Works

disks. A Spark program is written in terms of operations or these RDDs, that are
built and manipulated thru a set of parallel transformations and actions. RDDs do
not need to be materialized at all times. Instead, an RDD has enough information
about how it was derived from other RDDs (its lineage) to compute its partitions
from data in stable storage. This is a powerful property: in essence, a program
cannot reference an RDD that it cannot reconstruct after a failure. For each RDD,
Spark maintains a set of metadata, known as Directed Acyclic Graph (DAG), which
represents its lineage: this is used for two main reasons: first, RDD are "lazy" which
means that the chain of transformations are applied on the input RDD only when
an action is required by the programmer (like saving the RDD on external HDFS-
compliant); second, since Spark is built on the same idea of Hadoop (hardware
fault is a common thing), when an RDD which was on a node that failed (or maybe
was too slow and the calculation was moved on another node), all the necessary
informations for the recreation of the RDD are inside the DAG. Another key factor
of RDD is that they are immutable: once an RDD is created, it cannot be modified,
only a new RDD can be obtained by applying transformations and actions that are
exposed through Spark. The lazy evaluation brings a lot of benefits, like:

• Increased manageability: by lazy evaluation, users can organize their Apache
Spark program into smaller operations, reducing the number of passes on data
by grouping operations.

• Computation savings and increased speed: since only necessary values get com-
pute, it saves the trip between driver and cluster, thus speeding up the process.

• Reduced Complexity: the two main complexities of any operation are time and
space. Using Apache Spark lazy evaluation we can overcome both, since we do
not execute every operation, Hence, the time gets saved. It let us work with an
infinite data structure. The action is triggered only when the data is required,
it reduces overhead.

Recently, a further abstraction was conceived, trying to overcome that provided
by RDDs. In the first version of Spark, RDDs were the main API but, starting
from the second version, the Datasets API was recommended as the primary re-
placement, without however deprecating that of RDDs, in fact even now, with the
third iteration of the framework, RDD abstraction is present as a lower layer of the
entire API dedicated to Datasets.

Spark Core

Contains the basic functionalities of Spark exploited by all components. It provides
distributed task dispatching, memory management, fault recovery, scheduling and
basic I/O functionalities, all exposed through an Application Programming Inter-
face. This interface mimics the functional programming paradigm: a driver program

20

2 – Related Works

has the task of evoking all the operations applied on the RDDs in parallel, sending
functions to Spark, which has the task of scheduling them and executing them in
parallel on the cluster that has available. These operations have an RDD as input
and produce a new RDD as an output. Fault tolerance guarantees are maintained
by keeping track of all the transformations that an RDD undergoes, from start to
finish. This mapping is called lineage, and is used in case of failures to reconstruct
the RDD to its pre-failure state. An RDD can contain any type of Scala, Java, or
Python object.

Spark SQL

SparkSQL[18] is the Spark component used for structured data processing. It takes
advantage of the abstraction made available by the Dataset API and behaves as
if it were an SQL engine. It integrates support for the Hive query language and,
of course, can interface with tables on it. It allows us to have more detailed infor-
mation on the data structure and to execute SQL queries. It also features further
optimization, which has the task of improving and optimizing all the queries applied
to both datasets and RDD, called Catalyst.

Datasets are a distributed collection of structured data which provide both the
benefits of RDDs and the optimization of the execution of the SparkSQL engine,
which uses information on the nature and structure of the data to calculate the best
execution plan before running the actual code. The DataFrame are a particular
case of Datasets that are organized in named columns, conceptually they can be
represented as relational database tables. A DataFrame is a Dataset of Row objects.
A DataFrame can be built from different sources, such as structured textual data
files (CSV or JSON for example), existing RDDs, Hive tables or external relational
databases. Datasets are generalized structures with respect to DataFrames: they
are collections of objects associated with the same class, whose schema corresponds
with the attributes of the class itself. They are very similar to RDDs but contain
advanced optimizations, such as Encoders, which have the task of serializing objects
to be able to transmit them over the network to the executors. These Encoders allow
Spark to perform operations such as filtering, sorting and hashing without having
to deserialize the object. A dataframe can be considered as the natural evolution of
the RDD, since we have two optimizations already present for RDDs but improved
and adapted to the context of the dataframe:

• Custom Memory Management: takes the name of Tungsten Project and allows
us to save a lot of memory since storage takes place in memory outside the
heap and is in binary format. This allows us to avoid the overhead produced
by having a garbage collector and avoid java serialization.

• Optimized Execution plan: before executing any query, an execution plan is
created and optimized for the best possible execution.

21

2 – Related Works

Figure 2.5: The Catalyst query optimizer pipeline.

Spark Streaming

The birth of Apache Spark Streaming was more a necessity than anything else, as
the production of data in almost instant times required, once again, the need to
create a new method to be able to analyze them, also respecting the requirements
in terms of latency and processing speed that entails. Just think of the fact that in
20146, 500 million tweets were sent daily.

Spark Streaming was added as part of the Apache Spark suite in 2013 to provide
scalable, fault-tolerant, and high-throughput stream processing to handle real-time
data streams. It allows us to connect to different sources that produce data streams,
such as Kafka, Amazon Kinesis or Apache Flume and the processing itself takes
place through the use of complex algorithms, created with the help of high-level
functions, such as those made available by Scala. Finally, the results can be sent to
external file-systems and databases. The nature of the birth of Spark Streaming is to
be found within the various problems that arose when Hadoop was used to manage
and process streaming data: the batch approach of Hadoop is not recommended, as
it involves a great latency that it is not at all suitable for real-time processing. Spark
Streaming allows us to overcome these barriers, offering support for both batch
and streaming processes, thus conveying a single platform with common tools to
problems of a completely different nature. This feature has undoubtedly accelerated
the spread and adoption of Spark Streaming compared to its competitors: often,
to add streaming support, a programmer had to make simple and small changes to
analysis pipelines already oriented to batch processing. The integration does not
stop at the simple modification, in fact it is also possible to combine data of a static
nature with data of a streaming nature, all while maintaining the optimizations
already provided by the Spark platform, such as the Apache Spark SQL component.
The main abstraction at stake is the Discretized Stream7, which is an architecture
that takes advantage of the rich library and the guarantees of fault tolerance already
made available by Spark.

6https://blog.twitter.com/official/en_us/a/2014/the-2014-yearontwitter.html
7usually abbreviated with DStream

22

https://blog.twitter.com/official/en_us/a/2014/the-2014-yearontwitter.html

2 – Related Works

Figure 2.6: High-level architecture of how Apache Streaming works

All the optimizations mentioned above, such as data location and task allocation
based on available resources, are still being exploited thanks to the conversion
done by DStreams. All this allows for an excellent load balancing and a really
fast recovery from machine failures. DStreams are the main abstraction of Apache
Streaming: they are a continuous sequence of RDDs (of the same type) representing
a continuous stream of data. DStreams can either be created from live data (such
as data from HDFS, Kafka or Flume) or can be generated by transforming existing
DStreams using operations such as map, window and reduceByKeyAndWindow.
While a Spark Streaming program is running, each DStream periodically generates
a RDD. The main idea behind DStreams is to represent an infinite stream of data
as a sequence of finite batches, which can be treated as if they were static data
frames. Therefore it is possible to use all the implementations and optimizations
already present for analyzing continuous streams of data.

Apache Spark Structured Streaming

Often referred to as Apache Spark Streaming 2.0, Structured Streaming8 can be
seen as the natural evolution of how Spark handles streaming data. Structured
Streaming is a scalable and fault-tolerant stream processing engine built on the
Spark SQL engine. Internally, Structured Streaming queries are processed using
a micro batch, which is composed of an engine that processes a defined series of
small jobs sequentially, in such a way as to ensure latencies of the order of 100
milliseconds and providing guarantees of tolerance to failures. With the arrival of
version 2.3, a new analysis engine has been introduced, still in the planning phase,

8https://spark.apache.org/docs/2.4.7/structured-streaming-programming-guide.
html

23

https://spark.apache.org/docs/2.4.7/structured-streaming-programming-guide.html
https://spark.apache.org/docs/2.4.7/structured-streaming-programming-guide.html

2 – Related Works

which can even guarantee latencies in the order of milliseconds, but guaranteeing at-
least-once processing. The main difference with Spark Streaming (often also called
Spark Streaming Legacy) is that there is no batch concept here: with each trigger,
new data arrives, which can be continually hung on an infinite table.

The semantic guarantee of the end-to-end exactly-once was the basis on which
the Structured Streaming designers focused more: in order to achieve this, every
single component was designed in such a way to be able to trace in a reliable and
accurate the entire progress of the processing, in order to manage any type of failure
by starting the process from the exact point of interruption or restarting it entirely.
Each source is supposed to have its own internal offset, such as Kafka does, in
order to allow tracking of the reading within the stream. The engine uses ad-hoc
techniques, such as checkpointing and write-ahead logs to record the offset of the
data processed in each single trigger.

Figure 2.7: Visual representation of how the result of a query in Structured Stream-
ing looks like [19].

To better understand and appreciate these properties offered by Spark Struc-
tured Streaming, allow us to do a little digression on the meaning of the concepts
aforementioned, such as At-least-once, At-most-once and Exactly-once: lets sup-
pose we have, upstream, a source that produces a series of messages in real time
and a downstream application that has to perform some kind of calculations on
these messages.

• At-least-once: the guarantee is given to process the data at least once by all
the entities forming the process. This translates into the fact that a data can
be re transmitted from the source in the event that it is lost before being
processed. Since we have this re transmission, it could happen that the same
data is processed more than once.

24

2 – Related Works

• At-most-once: is translated into a best-effort. The processing of a data is guar-
anteed at least once by all the entities of the process, i.e. we do not have any
re transmission in case of failures.

• Exactly-once: even if the source retries sending a message, it leads to the
message being delivered exactly once to the streaming application. Exactly-
once semantics is the most desirable guarantee, but also a poorly understood
one. This is because it requires a cooperation between the source system itself
and the application consuming the messages.

As for the input data, Structured Streaming has a few types of sinks already
implemented:

• File Source: reads files written in a directory as a stream of data. The formats
that are supported are simple TXT files, parquet files, JSON files, CSV and
ORC files. It is necessary to put every single file inside the target folder, which
in most file systems, can be achieved by file move operations, in order to trigger
the read from Spark Structured Streaming. This source is also fault-tolerant,
which means that once the analysis has begun, in the event that any problem
arises that interrupts the execution of the program, Spark is able to resume
exactly where it left off.

• Kafka source: reads data from Kafka. It’s compatible with Kafka broker ver-
sions 0.10.0 or higher. This is also fault-tolerant, mainly due to the nature of
kafka itself.

• Socket source: reads UTF-8 text data from a socket connection. Note that, as
mentioned by the official documentation, this should be used only for testing
as this does not provide end-to-end fault-tolerance guarantees.

• Rate source: generates data at the specified number of rows per second, each
output row contains a timestamp and value. This source is intended for testing
and bench-marking. This source is fault-tolerant.

In the context of streaming, the time event is certainly essential for the correct
functioning of an application that analyzes data in real time. In these cases, what
matters most is the time when the event was generated (such as a log file to check
the status of a server) rather than when this information reached Spark. For this
reason, Spark Structured Streaming offers the possibility to manage the arrival
of delayed data, through the use of the watermark. This function allows us to
manage the data arriving late to our pipeline. By default, Spark updates all the
data (also the late ones) without any defined policy. Since by the very nature
of how the results of a streaming query are calculated, Spark needs to keep a
series of extra information for each input data, in order to create and maintain
aggregates. Through the use of watermarking we can reduce the burden of this

25

2 – Related Works

overhead. By applying the watermark, we are going to communicate to Spark to
keep the intermediate states of the data for a fixed time (watermark parameter),
in order to eliminate them once this period of time is over.

Window aggregation operations based on the time event of the input data are
easily obtainable and often used a lot in Spark Structured Streaming. Usually,
the data is grouped in order to calculate different aggregates on them, obtaining
fundamental information to make the best business decisions. The introduction
of the watermark in the equation simplifies and greatly optimizes the analysis of
streaming data and allows us to have queries that run for entire weeks, if not even
months.

Figure 2.8: Visual representation of how window aggregations work in Spark Struc-
tured Streaming [20].

Another useful function, made available by Spark Structured Streaming, is the
possibility of de-duplicating the data we are dealing with. To do this, we need to
have a unique identifier present within the data, more precisely a column that plays
this role. Spark will keep a small internal state to be able to delete all that data we
have already encountered. Here too, we have the option of using watermarking to
eliminate those aggregate states that have exceeded a certain threshold. In case we
don’t decide to use the watermark, the aggregate status will continue to increment,
as Spark needs this data to be able to distinguish new data from old data.

Once we have defined all our application logic on what we want to do with the
data we have taken as input, we must go and define how to extract the results we
have obtained. First we need to specify the details about the output, such as the
data format, location etc. Next we also need to specify the output mode, the query

26

2 – Related Works

name (optional), the trigger interval (also optional) and the checkpoint location.
The latter is used for output sinks that can guarantee end-to-end fault-tolerance.
Output mode is how the query result will be saved. There are three types of output
modes and they are:

• Append: as the word itself says, in this mode only the new rows that were
generated by the last trigger will be added. This method is supported only for
those type of queries that do not modify already produced rows. This is also
the default way.

• Complete: the entire result table will be output after every single trigger. This
method is supported for aggregation queries.

• Update: in this mode, only the rows that have changed since the last trigger
will be outputted by the application.

2.2.5 Apache Hive
Apache Hive[21][22] is an open-source relational database system for analytic big-
data workloads. Hive focused mainly on Extract-Transform-Load (ETL) or batch
reporting workloads that consisted of reading huge amounts of data, executing
transformations over that data (e.g., data wrangling, consolidation, aggregation)
and finally loading the output into other systems that were used for further anal-
ysis. Hive structures data into the well-understood database concepts like tables,
columns, rows, and partitions. It supports all the major primitive types – integers,
floats, doubles and strings , as well as complex types such as maps, lists and structs.
The latter can be nested arbitrarily to construct more complex types. In addition,
Hive allows users to extend the system with their own types and functions. The
query language is very similar to SQL and therefore can be easily understood by
anyone familiar with SQL. While the tables are logical data units in Hive, table
metadata associates the data in a table to HDFS directories. The primary data
units and their mappings in the HDFS name space are as follows:

• Tables: a table is stored in a directory in HDFS.

• Partitions: a partition of the table is stored in a subdirectory within a table’s
directory.

• Buckets: a bucket is stored in a file within the partition’s or table’s directory
depending on whether the table is a partitioned table or not.

27

2 – Related Works

Figure 2.9: Hive System Architecture

2.2.6 Apache HBase
HBase[23][24] is the abbreviation of Hadoop Database and it runs on top of the
Hadoop as a scalable big data store system. Take advantage of of Hadoop’s dis-
tributed file system and MapReduce model by default. It is referred as the colum-
nar database because, in contrast to a relational database which stores data in
rows, HBase stores data in columns. HBase is modeled after the Google’s BigTable
project, so it provides distributed data storage capabilities like the BigTable[25] on
HDFS. Some of the key features of HBase are listed below:

• Horizontally scalable.

• Fault tolerant storage capability for sparse data.

• Supports parallel processing, HDFS and MapReduce.

• High adaptable data model.

• Ability to host large tables.

• Real-time lookups.

• Automatic load balancing.

• Supports block cache.

• JAVA API for clients.

28

2 – Related Works

2.2.7 PostgreSQL
PostgreSQL9 is a powerful, open source object-relational database system that uses
and extends the SQL language combined with many features that safely store and
scale the most complicated data workloads. The POSTGRES project, led by Profes-
sor Michael Stonebraker, was sponsored by the Defense Advanced Research Projects
Agency (DARPA), the Army Research Office (ARO), the National Science Foun-
dation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986.
The initial concepts for the system were presented in[26], and the definition of
the initial data model appeared in[27]. The design of the rule system at that time
was described in[28]. The rationale and architecture of the storage manager were
detailed in[29].

9https://www.postgresql.org/

29

https://www.postgresql.org/

Chapter 3

Main core

In this chapter we will report what was the core of this thesis. First of all we will
explain how the framework developed by Agilelab currently works, highlighting
the main components and their functions. Subsequently we will go to expose what
have been the changes applied to allow the aforementioned framework to support
streaming data.

3.1 Data-Quality Framework
DQ is a framework developed by Agilelab and published under the GNU GPLv31

license as an open-source project on GitHub2. The framework was created in order
to create parallel and distributed quality checks in big data environments. It can
be used to calculate metrics and perform checks on structured and unstructured
data and is based entirely on Spark. Compared to other data quality products, this
framework performs checks at a very low level of the data, without applying or
exploiting any kind of SQL abstraction. The main purpose of this framework is to
apply a series of calculations and checks on large amounts of data in a single pass,
without having to repeatedly analyze the input data, since very often, this phase is
only the beginning of a pipeline much more complex that has the task of performing
different types of calculations and transformations on the aforementioned data, in
order to apply and extract business strategies and decisions. A typical framework
execution flow consists in loading various sources on which we want to carry out data
quality analyzes, calculate a series of metrics (3.1.2) and apply a series of checks
(3.1.3) on the latter to verify the values obtained. Finally, the framework loads the
results (metrics, composed metrics, column checks, file checks, load checks) on an

1https://www.gnu.org/licenses/lgpl-3.0.en.html
2https://github.com/agile-lab-dev/DataQuality

30

https://www.gnu.org/licenses/lgpl-3.0.en.html
https://github.com/agile-lab-dev/DataQuality

3 – Main core

external database and also offers the possibility to save them on the local filesystem
(3.1.4).

Doing this in a single pass is a fairly fundamental concept, as data is very often
in raw form and available in huge quantities. This framework aims to analyze the
various dimensions that characterize data qualities, reporting objective values on
which decisions can be made subsequently.

Figure 3.1: The architecture of the Data Quality framework proposed by Agilelab

In the Figure 3.1 we can see how the framework is structured from an architec-
tural point of view. The data governance part indicates all those business decisions
and strategies that will be applied to the data being analyzed through the use of
a configuration engine, which has the purpose of conducting the analysis through
entities that will be defined later in this chapter. The latter will produce a series of
configuration files that will start the analysis by the framework, which in turn will
produce results that can be saved on an external database for further analysis.

The Data Quality Engine block can subsequently be divided into five main sub-
components, which we will analyze in detail in the following sub-chapters. The Data
Quality framework is split in tow main modules:

• Config engine: a web application that helps writing data quality configuration
files and validating them.

• Core engine: the main module of the data quality framework, which runs the
Spark Application, calculates all that is defined in the configuration files. This
component can be ran locally on a single machine or in client mode on a cluster
manager (YARN).

31

3 – Main core

All the main logic of the program is defined through the use of Typesafe3 con-
figuration files. In order to successfully launch the application, we need to create
and fill two Typesafe configuration files: an application configuration and a run
configuration.

In the first file we are going to specify the name of the application and the
version of execution, the paths where we are going to save the various types of
results (such as checks, metrics, virtual sources, etc.). Furthermore, the type and
main parameters of the external database on which the results obtained are to
be saved must also be specified here. Postgres, SQLite and Oracle are currently
supported. In addition, we can specify an email address to send notifications and
error reports, in case we cannot wait for the execution to finish and we need to
know when this happens.

In the second configuration file, we must specify all the sources that will be
the protagonist of our analysis and all the metrics and checks that we want to be
performed on the aforementioned elements. The entities that we can configure are
the following:

• Sources: are considered as the entry point to the application. They represent
files and tables to be processed inside the framework itself.

• Virtual sources: leverages plain SQL queries in order to apply transformations
on the defined sources.

• Metrics: metrics are formulas that can be applied to a table or a column. For
each workflow we can define a set of metrics to process in one-pass run.

• Composed metrics: additional metrics that are made of other base metrics.

• Checks: checks are the control unit of the application, can be applied to metric
results in order to check if it fits defined user-constraint (greater/lesser than
or equal to some constant value or other metric result). Returns "Boolean"
values, which can be easily evaluated.

• Targets: set of files and alarms to which will be passed results of previous
modules in order to save or/and notify by email.

• Postprocessing: set of transformations to finalize any results and prepare re-
ports.

3.1.1 Source
In the Data Quality batch job the workflow specification is defined by a sequence
of steps, the first of which is to define the data sources.

3https://github.com/lightbend/config

32

https://github.com/lightbend/config

3 – Main core

1 Sources: [
2 {
3 id = "GOT_B"
4 type = "HDFS"
5 path = "./docs/examples/data/battles.csv"
6 delimiter = ","
7 header = true
8 fileType = "csv"
9 keyFields = ["name","year","defender_king"]

10 },
11 ...

Listing 3.1: Example of a Typesafe configuration for an HDFS-compliant file source.

The listing 3.1 contains the entity that has to be written in the configuration
file in order to define a source. In this listing, we are defining an HDFS-compliant
source, labelled with GOT_B and which is found at the path in a CSV format.

There are two macro data source types, SOURCE (listing 3.1) and VIRTUAL
SOURCE (listing 3.2). For the first type, the framework supports Hadoop Dis-
tributed File System with formats CSV (delimiters must be provided), AVRO
(schema must be provided), Parquet (schema is inferred) and fixed length for-
mats (schema must be provided explicitly). Support is also provided for relational
database tables, such as Oracle, Postgres and SQLite. there is also support for
sources from Hive and HBase.

The virtual sources are generated starting from conventional sources to which
SQL-like operations are applied, actually creating new sources, which will be treated
during the course of the application like the "real" sources. Taking as example the
listing 3.2, that virtual source is created from the join of two sources: "GOT_B"
and "GOT_D". The type field is used by the application to know ho to treat this
virtual source and the sql field contains the query used to perform the join. These
SQL-like operations are as follows:

• Filter-SQL: this label tells the framework to apply a sql query to a parent
source and use the result as a virtual source.

• Join-SQL: perform a full-outer-join between the given sources and related
columns.

• Join: perform any other supported join between the given sources and related
columns.

1 VirtualSources: [
2 {
3 id = "DFB"

33

3 – Main core

4 type = "JOIN -SQL"
5 parentSources = ["GOT_B","GOT_D"],
6 sql = "select␣avg(length(d.Name))␣as␣

NAMES_LENGTH␣from␣GOT_D␣as␣d␣join␣GOT_B␣as␣b␣on␣
d.Allegiances=b.attacker_1"

7 save = true
8 },
9 ...

Listing 3.2: Example of a Typesafe configuration for creating virtual sources.

In this section we must provide the information necessary for the application so
that it can correctly load the input data. Among the data that we must provide in
the configuration file (as shown by listing 3.1) we find the following:

• id: this is the identifier with which the program will refer to this source.

• path: the full path to the file location in the filesystem.

• fileType: currently, the framework supports reading CSV, Parquet, Avro and
fixed length files.

• header: boolean value to indicate if the file has the header or not. It is used
to ignore the first line (in the case of a CSV file for example) and extract the
schema starting from the fields present there.

• date: this parameter can be optional, as if absent4 it is taken from the appli-
cation configuration file.

• delimiter: the separator character between two values on the same line is high-
lighted. If absent, the default "," is used.

• quote: it is used to indicate the possible quotation character, if the values are
enclosed within two quotation marks or other characters; If it is absent, the
default one is used.

• escape: indicates the character to be used as escape; If it is absent, the default
one is used.

• schema: field used to define the schema that we want to use to handle this
file. In case both the schema and the header are defined, an illegal argument
exception is thrown.

4Variables that may or may not have a value are identified in Scala with the Option type.

34

3 – Main core

• keyfields: This field is only for the final part of the pipeline: here we indicate
which columns of the file (and relative values) we want to keep when we go to
save this source thru the postprocessing and target phases.

The flow begins with the analysis of the configuration file, from which the pa-
rameters that define the sources are retrieved and a map is returned with the key
to the id of the source and as a value the class that defines the source, such as
HdfsFile. Subsequently, this map is iterated and for each source, the dataframe is
loaded and the relative load checks are performed. As for the virtual sources, the
fundamental parameters are retrieved from the configuration file and are created
starting from the basic sources.

3.1.2 Metric
Metrics are the main working unit of the Data Quality process. They specify the
actual calculation to be made in order to get Key Performance Indicators and an an-
alytical overview over input sources data. This is done by creating the proper Type-
safe config like listing 3.3. The metrics embed the information about the sources
we are analyzing, reporting meaningful results that will be used in the check phase.
Thru these results, we can extrapolate useful informations about the raw state of
the data. There are two macro metric types, COLUMN and FILE: the former
are applied on single or multiple columns of an input source or virtual source. The
latter consists only in the Row_count, which reports the number of rows of a
given source, often used as a comparison value with other metrics.

1 Metrics: [
2 {
3 id = "customer_row_count"
4 name = "ROW_COUNT"
5 type = "FILE"
6 description = "rowcount"
7 config = {
8 file = "customer"
9 }
10 },
11 {
12 id = "null_values"
13 name = "NULL_VALUES"
14 type = "COLUMN"
15 description = "null␣values␣in␣column␣attacker_size"
16 config = {
17 file = "GOT_B",
18 columns = ["attacker_size"],
19 positions = [1]
20 }

35

3 – Main core

21 },
22 ...

Listing 3.3: Example of a Typesafe configuration for a file metric and a column
metric.

In the listing 3.3 we can observe an example of a definition of a column metric
and a file metric: The first metric, of type file, will count the number of rows in the
"customer" source; the second metric will count the number of null_values in the
column "attacker_size" of the "GOT_B" source.

The following is a list of column metrics provided by the application. All metrics
take as input the values of the column defined in the configuration file, in the Metrics
section:

• Distinct_values: calculates count of distinct values in processed elements. If
we have a big diversity of elements and do not need an exact result, we should
use approximate distinct values.

• Approximate_distinct_values: as above, is an optimized version of dis-
tinct values.

• Null_values: calculates amount of null values in processed elements.

• Empty_values: calculates amount of empty strings in processed elements.

• Min_number: calculates minimal value for provided elements.

• Max_number: calculates maximal value for provided elements.

• Sum_number: calculates sum of provided elements.

• Avg_number: calculates mean value for provided elements.

• Std_number: calculates standard deviation for provided elements.

• Min_string: calculates minimal length of processed elements.

• Max_string: calculates maximal length of processed elements.

• Avg_string: calculates average length of processed elements.

• Formatted_date: calculates amount of strings in provided date format.

• Formatted_number: calculates amount of elements that fit provided for-
mat.

• Formatted_string: calculates amount of strings with specific requested length.

36

3 – Main core

• Casted_number: calculates amount of string that can be casted to numeri-
cal, in double format.

• Number_in_domain: calculates amount of elements in provided domain
set.

• Number_out_domain: calculates amount of elements out provided domain
set.

• String_in_domain: calculates amount of string from provided domain.

• String_out_domain: calculates amount of string out of provided domain.

• String_values: calculates count of appearance of requested string in pro-
cessed elements.

• Regex_values: calculates amount of rows that fits the provided regular ex-
pression.

• Numbers_values: calculates count of requested values’ appearance in pro-
cessed elements.

• Median_values: calculates these metrics by using TDigest5 library. We have
also First_quantile,Third_quantile,Get_quantile andGet_percentile.

• Top_N: calculates top N element for processed elements, with N user-specified.

• Column_eq: calculates number of equal rows.

• Day_distance: calculates the number of the rows for which the day difference
between the two columns given as input is less than the threshold.

• Levenshtein_distance: calculates amount of rows where Levenshtein dis-
tance between two columns is lesser than threshold. Informally, the Levenshtein
distance is defined as the distance between two words, which is the minimum
number of single-character required to change one word into the other. This is
a string metric for measuring the difference between two sequences.

• Co-moment: calculates covariance between values of two columns.

• Covariance: In probability theory and statistics, covariance is a measure of
the joint variability of two random variables.

• Covariance_Bessel: In statistics, Bessel’s correction is the use of n − 1 in-
stead of n in the formula for the sample variance and sample standard devia-
tion, where n is the number of observations in a sample.

5https://github.com/isarn/isarn-sketches

37

https://github.com/isarn/isarn-sketches

3 – Main core

Through the definition of dedicated config files and the use of basic arithmetic
formulas, we can compose different metrics by creating new ones. As reported by
listing 3.4, using the id of the metrics preceded by the $ symbol in the formula
field, we can create new custom metrics, which implement rules or business logic.
We can use either a base metric or another composed metric in the formula. In the
example reported by listing 3.4 we have a composed metric that will simply add
two to the result of the metric with id "row_count", mentioned above.

1 ComposedMetrics: [
2 {
3 id = "SE"
4 name = "qwe"
5 description = "qwe"
6 formula = "$row_count +2"
7 },
8]

Listing 3.4: Example of a Typesafe configuration for a composed metric.

After having grouped all the sources within a Scala Sequence, a map is applied
and the following steps are performed for each element:

• creation of classes that contain information about file metrics, if any. These
are always obtained from the configuration file.

• creation of classes that contain information about column metrics, if any.

• call to the processAllMetrics function. This function will be detailed within
the subsection 3.3.3.

In figure 3.2 we can observe the results of column metrics obtained after an
execution of the application. The column metric with id "null_values" reported in
listing 3.3 has its result in the row number 5 of the figure 3.2. The file metric with
id "customer_row_count", also reported in listing 3.3, has its result in row 2 of
figure 3.3. The result of the composed metric with id "SE" reported in listing 3.4
is reported in figure 3.4, being the only composed metric used in the application
configuration.

3.1.3 Check
Checks are the main part of the Data Quality job. They define the crucial parts
of our analysis pipeline. Applied mostly over metric results or SQL queries, they
allow to really understand the input data quality. Basically, through the checks we
are going to define the rules to be applied to the metrics deriving from the sources
examined. Their task is to report whether the applied rule was successful or not,
allowing us a deep control on the state of the analyzed data. A typically check

38

3 – Main core

consists in a comparison between a metric and a threshold value defined by the
user: the check reports if the comparison holds true or not, saving the result on the
supporting database, if present.There are four base types of checks:

Load

These are the only checks that are applied to the sources rather than the metrics.
They are executed during the loading phase of the sources, in order to minimize
calculation time and their task is to check file formats and serialization (CSV or
Avro), check if the file exists in the given path and if the number of columns are
equal or greater than a given parameter. Listing 3.5 reports an example of a load
check: this one will check if the "customer" source can be loaded with the "UTF8"
encoding.

1 LoadChecks: [
2 {
3 id = "customer_encoding_check"
4 type = "ENCODING"
5 source = "customer"
6 option = "UTF -8"
7 },
8]

Listing 3.5: Example of a Typesafe configuration for a load check.

Snapshot

Compare a calculated metric over a snapshot of the input data versus a given
threshold. This is the most common check used by the framework’s users. We have
four subtypes:

• Differ_by_Lt: calculates the relative error between two given metrics.

• Equal_to: checks if a threshold/metric result is equal to a given value.

• Greater_than: checks if a given value is greater than a certain threshold/-
metric result.

• Less_than: checks if a given value is less than a certain threshold/metric
result.

Listing 3.6 reports a trend check where we are checking if the metric "row_count"
is greater than the user-defined threshold 10: in case the inequlity holds true, a
succes message will be reported.

39

3 – Main core

1 Checks: [
2 {
3 id = "teracheck"
4 type = "snapshot"
5 subtype = "GREATER_THAN"
6 description = "check␣for␣number␣rows␣limit␣with␣

threshold␣on␣table␣A"
7 name = "row_check"
8 config = {
9 metrics = ["row_count"]
10 params = {threshold: "10"}
11 }
12 },
13]

Listing 3.6: Example of a Typesafe configuration for a snapshot check.

Trend

Analyze previous results of the metric in order to evaluate the behaviour of the
data. Previous results are intended to be found in a configured historical metrics
database. They are based on the following formula, which is used in whole or only
one of the two parts.

(1− T) ∗ A <= C <= (1 + T) ∗ A (3.1)

In 3.1 T is the user-defined threshold, A is the average result and C is the current
result of the metric. When we perform this kind of check, we retrieve from the
historical metrics database the average results of the interested metric, calculated
across n last executions and we check if the inequality holds true or not. This type
of check is identified by the subtype Average_bound_full_check, while using
Average_bound_upper_check will use the latter part of the above formula
and Average_bound_lower_check the former. As additional fields, the trend
check accepts two types of rules when comparing the metrics: the first is called
"record" and compares the current metric result with previous n records; the second
is called "date" and compares the current metric result with results made in last n
days. As for parameters, we can specify a threshold between [0, 1] that represents
the allowed difference level between results to pass the check and a time-window
which represents the amount of days/records we are considering. There is a subtle
difference between records and dates: when we run the batch job, we specify a
reference date among the various parameters. When we want to consider only the
last n records, the results with the same date as that used during this execution are
taken. Instead, when we want to consider the time window, the results obtained

40

3 – Main core

in the last n previous days of execution are considered. Listing 3.7 brings us an
example of how to write a trend check: we are checking if the metric "row_count"
satisfies equation 3.1, with T equal to 0.5 and time window equal to 2. This mean
that we will considerate the last "two days" of execution.

1 Checks: [
2 {
3 description = "some␣basic␣trend",
4 id = "trend_check",
5 subtype = "AVERAGE_BOUND_FULL_CHECK",
6 type = "trend"
7 config = {
8 metrics = ["row_count"],
9 params = {threshold: "0.5", timewindow: "2"},
10 rule = "record"
11 },
12 },
13]

Listing 3.7: Example of a Typesafe configuration for a trend check.

SQL

These have the task to run a query on a source which is a remote database and
check if the result is zero or not.

• Count_eq_zero: returns success if the result of the query is zero, else failure.

• Count_not_eq_zero: returns success if the result of the query is not zero,
else failure.

The result of the load check defined in listing 3.5 is at row 1 of figure 3.5. The
result of the snapshot check define thru listing 3.6 can be found at row 2 of figure
3.6 and the trend check of listing 3.7 can be found in the first row of figure 3.6.

3.1.4 Target
Targets are the components to be leveraged to obtain outcomes from the previous
steps, like saving the metrics and check results and/or generate notifications, alerts
and e-mails. Targets are grouped by two types:

• Regular: saves the result as files of predefined format. All those files will have
a predefined schema.

• System: used to define a list of checks and alerting, if some of them failed.
E-mail servers configuration should be placed in the application config file in
order to get these notifications and alerts.

41

3 – Main core

1 Targets: [
2 {
3 type = "FILE -METRICS"
4 config = {
5 fileFormat = "csv"
6 path = "./tmp/results"
7 delimiter = ","
8 }
9 },

10]

Listing 3.8: Example of a Typesafe configuration for a target.

Listing 3.8 reports an example of a target configuration: we are telling the appli-
cation to save all the file metrics in a CSV format in the "path", using as delimiter
",".

3.1.5 Postprocess
Postprocess is the final block of the Data Quality job workflow. Its purpose is to
enrich and transform particular DataFrames (built from sources and virtual sources)
in order to obtain the desired form, which may be used in future applications, i.e.
for reporting. Currently, there are four types of postprocessing:

• Enrich: attaching values or constants to already defined DataFrame or new
one. Is used to connect source, metrics, checks and all additional together to
create "body" of the future report.

• Transpose by key: transposing the input DataFrame, but keeping key columns
untouched. It’s creates extra rows.

• Transpose by column: on the other hand, transposing each column individ-
ually (detaching header and putting it as a column). In particular, in takes
key/all columns in the order as they are present, adding column with header
to the left and adding/trimming extra columns to fit required structure.

• Arrange: rearrange columns in the DataFrame and cast them to a specific
type.

Result of each postprocessor is a DataFrame stored as file (csv, avro), which can
be used as an input to next pipeline. All post processing are executed in the order
they were defined. This phase was strongly influenced by the use-case in which the
framework was born, therefore it brings with it limitations, such as the particular
format of the output tables and the schema with which they are created.

42

3 – Main core

1 Postprocessing: [
2 {
3 mode = "enrich"
4 config = {
5 source = "BTL_FILTERED"
6 metrics = ["y_avg","1011"]
7 checks = ["teracheck"]
8 extra = {
9 pasta = "test"

10 person = "Rocco"
11 ingridient = "Cream"
12 test = "Test"
13 }
14 saveTo = {
15 fileName = "tera_enriched"
16 fileFormat = "csv"
17 path = "./tmp/postproc"
18 delimiter = ","
19 }
20 }
21 },
22]

Listing 3.9: Example of a Typesafe configuration for a postprocess.

Listing 3.9 indicates that the source "BTL_FILTERED", which has already the
keyfields "name", "year", "battle_number", "attacker_king" and "defender_king" to
be saved as a CSV file with the name "tera_enriched" with the addition of three
new columns: "y_avg", "1011" (which are both metrics calculated during the current
run) and "teracheck" which is a check result. Moreover, we are requiring also the
addition of four more columns (found in the extra field) with the relative values.

3.2 Evolving the framework to a new Scenario
The current framework is able to satisfy the main requests necessary to perform a
data quality analysis for standard data, i.e. all those forms of data that are finite
in nature. Very often, this type of data is available even before carrying out the
actual analysis, but it is still necessary to be able to subject them to a preventive
analysis before going to make business decisions on them.

Naturally, with the evolution of the main big data scenarios, the need arose to
be able to carry this execution logic also in streaming environments. In this type
of big data analysis, the data to be analyzed are never known a priori, only their
structure is. This places more emphasis on the need to have tools similar to this
framework to perform the analysis in near real time. Being able to analyze the

43

3 – Main core

Figure 3.2: A report of the columnar metric results

Figure 3.3: A report of the file metric results

data and, at the same time, perform checks on their goodness is not a fact to be
underestimated.

In the current case, that is the one already solved by the current framework,
we can consider the various data analyzed as simple tables that have a certain
structure and to which we can apply calculations to obtain results or simply apply
SQL queries to obtain the aggregates that interest us. To accomplish this, Spark
provides us with many abstractions, which allow us to simplify the logic we need
to develop. In the case of streaming data, the original table is to be understood as
if it was a table to which new results are continuously appended, bringing with it
a series of very different problems from those faced in the current version.

The difficulties to be able to face this type of conversion are certainly not few,

44

3 – Main core

Figure 3.4: A report of the composed metric results

Figure 3.5: A report of the load check results

above all because there are many abstractions at play that do not facilitate the
task. The basic concept is already very different, since in the first case we already
have a finite set of data available for which we want to obtain some metrics while, in
the second, we must consider that the data is potentially infinite and, consequently,
also the logic to be applied are profoundly different. We will see in the following
chapter that the problems are numerous and simply adding new sources (of the
streaming type) is not a solution.

3.3 Methodology
In this section we will report what changes have been applied to be able to modify
the framework in order to obtain support for streaming datasets. The structure will
try to follow the one presented in the previous sections, in order to have a concise
structure divided by key concepts of the application and will focus on why certain
choices were made.

3.3.1 Streaming container
Before getting to grips with the core of the program and its various components, we
need to prepare and set up the streaming application container. The first element
to create and configure is the SparkSession. The SparkSession is the entry point
of a Spark application, starting from version 2.0 (previously, the entry point was

45

3 – Main core

Figure 3.6: A report of the check results

the SparkContext) and allows us to create DataFrame, Dataset, access Spark SQL
services, run SQL queries, load tables and access the DataStreamReader interface,
which allows us to load Datasets starting from streaming sources. The SparkSession
also allows us to enable Apache Hive support. Spark does not place any constraints
on the number of sessions that can be opened and, once it is no longer needed, they
can be stopped with the SparkSession.stop method. Among the various methods
made available by SparkSession, the first we have to deal with is the builder method:
this allows us to retrieve a spark session if it exists, otherwise it builds another. The
builder allows us to set other parameters concerning the session, such as the name
of the application (which will appear in the webUI6 available on localhost:4040),
specify the master (if spark will run locally or on a cluster, in the case of local
run, we can also specify the number of cores which translates into the number
of executors) and any configuration files. Another very important method that a
Spark session makes available to us is the ability to import the implicits. These
contain the encoders for the basic types of Scala, which are essential to be able to
serialize and deserialize the data that we are going to insert in the datasets.

3.3.2 Source
The first step is the creation and definition of the streaming sources that the ap-
plication will have to support. As for the input sinks, the focus was on file folders
and Kafka.

Regarding the first, we defined a new case class which contained the following
parameters: id, path, fileType, header, date, delimiter, quote, escape, schema and
keyfields. Basically we find the same parameters used to define a static source. This
is because the difference, from this point of view, is very slight: in this case, path
indicates the path to the folder that will contain the files and not the absolute
path for the single file. The conceptual difference between static files (such as a
CSV file) and dynamic sources is very small: in the first case, we are going to
specify the absolute path to Spark (on an HDFS for example) to load the file we
want to analyze; in the second case, we specify to Spark which is the absolute path
of the folder where we will find the file that we want to analyze. Otherwise, the

6https://spark.apache.org/docs/2.4.7/monitoring.html

46

https://spark.apache.org/docs/2.4.7/monitoring.html

3 – Main core

various extra options and parameters are very similar since the difference is between
analyzing a single file or keeping track of a folder where files are continuously added.

As regards the file formats, we have decided to replicate the support already
provided by the basic version of Spark Structured Streaming, so support for CSV,
JSON, ORC and Parquet files is offered. For the actual data loading part, we had
to create a Scala object named StreamingFolderReader, which incorporates all the
functions to load the various supported file formats of a streaming nature. For
all the above-mentioned formats, we have chosen to make it mandatory for the
user to insert a schema during the definition of the source itself. This restriction
allows us to use a consistent schema, even in the event of query failure. Spark also
offers the possibility of schema inference of a dataset in loading phase by setting
spark.sql.streaming.schemaInference to true, but we preferred the first approach.
Within this object we have condensed the different functions to load the various
types of formats mentioned above, paying particular attention to what are the
individual needs and precautions for each format.

All loading functions return a sequence of dataframes: this is because the original
dataframe is repartitioned according to the value present in sparkContext.defaultParallelism.
This parameter is useful to leverage all the Spark’s optimizations and is the key to
obtain a good-performing application.

As for the kafka sources, the parameters that characterize the case class are:

• id: identifier used within the application.

• server: a comma separated list to identify the kafka server (s) and its ports,
i.e. "host1: port1, host2: port2".

• date: this parameter can be optional, as if absent it is taken from the applica-
tion configuration file.

• subscribe: a comma separated list of topics to subscribe7.

• subscribePattern: a Java regex string representing the pattern used to sub-
scribe to topic(s)8.

• assign: a json string {"topicA":[0,1],"topicB":[2,4]} that represents specific Top-
icPartitions to consume9.

• startingOffset: allowed values are "earliest", "latest" (streaming only), or json
string """ {"topicA":{"0":23,"1":-1},"topicB":{"0":-2}} """. The start point when

7Only one of "assign", "subscribe" or "subscribePattern" options can be specified for Kafka
source.

8see 7
9see 7

47

3 – Main core

a query is started, either "earliest" which is from the earliest offsets, "latest"
which is just from the latest offsets, or a json string specifying a starting offset
for each TopicPartition.

• dataStored: here the type of data that contains the topic is highlighted and
the allowed values are UTF8, JSON or Avro.

• schema: field used to define the schema that we want to use to handle this file.

• keyfields: This field is only for the final part of the pipeline: here we indicate
which columns of the file (and relative values) we want to keep when we go to
save this source.

Here too we have created a new Scala object, called KafkaReader: for the general
structure, we have decided to follow the one reported for StreamingFolderReader, so
we have a main function that contains all the methods to load the various formats
that we have decided to support.

The constraint that only one from "assign", "subscribe" or "subscribePattern"
can be defined is strengthened via code, through a check on which of the three
variants has been set by the user and, if there are more than one, an IllegalParam-
eterException is thrown, ending the execution of the program.

The dataStored and schema parameters are used for parsing the binary values
present within the raw Kafka message.

When we read a Kafka source to create a dataframe, what we get is a dataframe
with the following schema (3.10). These are fields of a Kafka record and the meta-
data associated with it. In our case, what interests us is the message itself, which we
find inside value in binary format, so we need a way of parsing the field. With the
dataStored parameter we are asking the user to tell us in what format the data was
entered into the Kafka message: we currently support JSON, Avro and standard
strings.

For the first case, we consider the message in JSON format, so when we go to read
from the topic(s), we perform a conversion and apply the contents of the schema
parameter to the result, so as to obtain the message with the same structure with
which it was put into Kafka. What we get is a dataframe with the same schema
present inside the JSON file.

As for Avro, in the schema parameter we expect to find the path to retrieve the
.avsc file, which contains the message’s schema. If it is not present, the application
throws an IllegalParameterException, ending the execution. Also in this case, we
perform the conversion of the binary value in Avro format, applying the above
mentioned schema to obtain a correctly structured message. What we get is a
dataframe with the same schema present inside the .avsc file.

The latter case is the most trivial, as we simply convert the binary values of key
and value into UTF8 encoded strings, obtaining a dataframe with structure [key:
String, value: String].

48

3 – Main core

In conjunction with the loading of the streaming sources, the application per-
forms the calculation of the load checks 3.1.3. In detail, the post load checks are
calculated, i.e. checks on the exact number of columns or if the latter exceeds a
certain user defined threshold or not. Once the sources have been loaded and the
load checks performed, we continue by uploading the result of the load checks on
the external database.

1 root
2 |-- key: binary (nullable = true)
3 |-- value: binary (nullable = true)
4 |-- topic: string (nullable = true)
5 |-- partition: integer (nullable = true)
6 |-- offset: long (nullable = true)
7 |-- timestamp: timestamp (nullable = true)
8 |-- timestampType: integer (nullable = true)

Listing 3.10: Schema of a DataFrame created from a Kafka Sink without further
transformations

3.3.3 Metric
The concept adopted by the original program to calculate metrics is that there is
first a conversion of the static dataframe to rdd and then a three-point process that
is intended to actually calculate the metrics. There is a basic optimization as regards
the calculation of metrics, with the aim of reducing the overhead introduced by the
use of a large number of classes and instances. This optimization consists in creating
abstract calculators, which have the task of performing the actual calculation of the
metrics required by the user. The creation does not respect a one-to-one relationship
with user-defined metrics, but a single calculator instance is created for each type
of metric characterized by the same parameters, even if it has different columns as
the subject of the analysis, even from different datasets. Furthermore, the metrics
are calculated for each partition of the dataset, in order to take advantage of the
parallelism offered by Spark.

In order to calculate the metrics, the framework uses a process divided into
three steps: first it iterates over the RDD and passes the values of the columns
under examination to the respective calculators. Then the partition calculators are
updated and finally they are reduced in order to merge the results. Throughout
this process, column and file metrics are stored separately. The raw calculation is
performed with the help of a function made available to Spark, the treeAggregate.

These steps are performed by the MetricProcessor object, which takes for each
defined source as input, a dataFrame, the related column and file metrics that the
user wants to calculate and the key fields of the dataframe. The function returns two
maps: the first contains information regarding the column metrics and the second
that of files.

49

3 – Main core

The first map contains, as a key, a sequence of names of the metrics obtained and
as a value a further map, which in turn contains as a key the class that represents
a metric of columns and as a result a tuple: the first value, a Double , contains the
result of the calculated metric while the second value contains any extra parameters.

The second map contains, in a similar way to the first, a key represented by the
class that abstracts the concept of file metrics within the program and as a value a
tuple, identical to the previous one.

The treeAggregate (Figure3.7) method is a specialized implementation of aggre-
gate that iteratively applies the combine function to a subset of partitions. This is
done in order to prevent returning all partial results to the driver where a single-pass
reduce would take place as the classic aggregate does. For all practical purposes,
treeAggregate follows the same principle as aggregate with the exception that it
takes an extra parameter to indicate the depth of the partial aggregation level.
Aggregate lets us transform and combine the values of the RDD at will. It uses two
functions:

The first operation transforms and adds the elements of the original collection
of type [T] in a local aggregate of type [U] summarized as: (U,T) => U. This
operation is applied locally to each partition in parallel.

The second operation takes two values of the result type of the previous operation
[U] and combines it in to one value. This operation will reduce the partial results
of each partition and returns the actual total.

Figure 3.7: A visual representation on how treeAggregate works [30].

A deep connoisseur of Spark will surely have noticed that this involves a big
problem for the purpose of our thesis, as the treeAggregate (and, of course, the
aggregate) is not a function supported by dataFrame of a streaming nature. The

50

3 – Main core

problem that arose was to find a way to apply user-defined functions to a finite
group of rows of the dataFrame, in order to extrapolate the metrics requested by
the user.

In order to perform the required calculation without having to upset the nature
of the application and the abstractions put in place by the original developers
to calculate the metrics, we decided to apply a series of functions to convert the
external logic of how this calculation is performed.

First of all, we created a KeyValueGroupedDataset from the original dataframe
with the help of the groupByKey function. This function has been applied to the
dataframe with the addition of three columns and a watermark:

the first column we added was that of the timestamp, obtained through the
current_timestamp function, which returns the current timestamp as a timestamp
column. We need this to be able to operate with the abstraction provided by the
windowing functions.

This choice is motivated by the fact that, when we talk about streaming dataframes,
we cannot absolutely calculate any type of value or aggregate. For example, think
about the requirements for calculating the average value of a set of data: we need
all the data that make up that set. This, unfortunately, is not obtainable when
we are dealing with streaming source datasets, as the original data can be part
of a presumably infinite collection. For this reason, we have decided to insert the
timestamp in the original dataset in order to have values for certain time frames. In
this way, we have a finite time interval where we can calculate any required metric
or aggregate, as we consider the data that fall within this last interval. With this
abstraction that we wanted to introduce, we can summarize the whole core of the
thesis, as our analysis moves from having absolute results to having results relative
to time intervals.

The second column we inserted in the starting dataFrame is a window: a window
is made up of two columns, which represent the beginning of a window and its end
and is characterized by three fundamental parameters: the first indicates which
column of the dataset that contains the time event on which to apply the window,
the second indicates the duration of the window in terms of time, known by the
name of window duration and the third and last parameter is the sliding window,
i.e. every time a new window is generated. With this last column we have enclosed
the concept expressed previously: move the logic of the calculation for streaming
sources. By wrapping the data that comes in continuously in time intervals, we can
apply the abstractions and optimizations already present for static datasets.

Finally, we have applied a watermark so that the intermediate stage accumu-
lated during the analysis does not become too onerous to manage. By applying the
watermark to the timestamp column, we are telling Spark to discard any data that
reaches the application in an instant longer than that indicated by the watermark,
in order to "close" the analysis of that batch of data.

51

3 – Main core

The grouping by key was performed on the two columns produced by the win-
dow application, i.e. window start and window end. Subsequently, the mapGroups
function was applied to be able to calculate the metrics using the code already
working for static datasets. mapGroups applies the given function to each group of
data. For each unique group, the function will receive the group key and an iterator
that contains all of the elements in the group. The function can return an element
of arbitrary type which will be returned as a new Dataset. This function needs an
implicit Encoder in order to convert from Spark SQL internal representation to that
of the JVM and vice versa. As an Encoder, we have decided to use kryo encoders.
These encoders save each line of the dataset as simple flat binary objects.

Applying this logic we were able to obtain the required results; the metric cal-
culation returns a sequence of dataframes, one for each source of which we want to
calculate metrics, characterized by the following parameters:

• Tuple containing the window’s starting and ending timestamps.

• Map where we have a sequence of metric names as a key and another map as
a value; the latter contains the column metric as a key and a double, which
represents the result, as a value. We also have optional additional parameters
(used for the TOP_N metric).

• Map where we have as a key a file metric and as a value a double for the result,
with optional extra parameters

Through a series of basic transformations made available by Spark, such as map
and flatMap, we were able to correctly extrapolate and structure the metrics of
both the column and the files obtained from the datasets, in order to obtain a clear
and understandable representation by the user.

The next step was to create a common representation of these two types of
metrics, since it is necessary for the calculation of composite metrics, which require
all available metrics as input, in order to create new ones through the application
of user-defined formulas. This purpose was achieved with the help of a new case
class that incorporates the common characteristics of the two metrics, such as the
name of the metric, the final result and the subject of the analysis (the column
to which it was applied for the case of column metrics; the source to which it was
applied for the case of file metrics). The latter was used to feed the function that
takes care of calculating compound metrics: as input it takes all the metrics and
takes the results to use them within user-defined formulas.

For the actual calculation, we apply the same logic already seen for the calcu-
lation of the metrics: we group by key the dataset composed of the two types of
metrics and apply the mapGroups. In this way we are able to apply a function to
a finite group of metrics, managing to calculate the compound metrics.

Since everything written inside the Spark lambdas is executed in parallel by
the various executors of the cluster, we must make sure that every single object

52

3 – Main core

is serializable. For this reason we had to modify the methods that performed the
computation of composed metrics, since non-serializable objects were passed.

The concept of serializable is fundamental in Spark: everything we write to the
driver and that must be executed by executors must be serializable. To serialize an
object means to convert its state to a byte stream so that the byte stream can be
reverted back into a copy of the object after it has traveled across the network that
links the Spark cluster. When we write lambda functions for example, these will be
transmitted over the network to each executor along with the part of the data where
it will have to be applied, and then be rebuilt on the other side of the connection.
As reported by10, serialization plays an important role in the performance of any
distributed application. Formats that are slow to serialize objects into, or consume
a large number of bytes, will greatly slow down the computation. Often, this will
be the first thing we should tune to optimize a Spark application. Spark aims to
strike a balance between convenience (allowing us to work with any Java type in
your operations) and performance. It provides two serialization libraries:

• Java serialization: Spark serializes objects using Java’s ObjectOutputStream
framework, and can work with any class that implements java.io.Serializable.
Java serialization is flexible but often quite slow.

• Kryo serialization: Spark can also use the Kryo library to serialize objects more
quickly. Kryo is significantly faster and more compact than Java serialization
(often as much as 10x), but does not support all Serializable types.

3.3.4 Check
As regards the calculation of the checks, the logic we applied is the same as that
used for the previous cases. Since, basically, the logic that is used to perform the
calculation in the case of static data is the same used in the calculation of compound
metrics: as input, all the previously calculated metrics are taken, i.e. those of file,
column and composed ones, and the checks are calculated on those metrics specified
by the configuration file.

In the streaming case, we went to group all the metrics for the start and end
of the window and applied the mapGroups function. In the lambda we used the
functions already implemented for the calculation of the checks, making the neces-
sary changes so that we could take advantage of serialization and deserialization,
taking advantage of the parallelization offered by Spark. This function gives us a
dataset consisting of the main information concerning the checks, such as the type,
the result, the name, the description, the metric object of the check and finally the
status. The latter contains the result of the check itself, i.e. whether it was passed

10https://spark.apache.org/docs/2.4.7/tuning.html

53

https://spark.apache.org/docs/2.4.7/tuning.html

3 – Main core

or not. When we create a check, we usually compare the value of a certain metric
with a threshold. If our statement is true (for example we want to know if the
number of columns is greater than a certain value) then the check status will be
successful, otherwise it will fail. The status has the purpose of quickly reporting
the result of the check itself, communicating the failure or not, which often weighs
in the decision and analysis on the quality of a given source.

3.3.5 Target and Postprocess
Regarding this section, it was not necessary to add support for the streaming en-
vironment, as it is not common to have to perform post-processing operations on
the data just analyzed. The basic concept is to run the analysis of streaming data
on an incoming stream, reducing unnecessary interactions as much as possible, to
make the analysis as fast as possible. Since in most cases, this data will go as input
to new pipelines for future analysis, it was not considered necessary to add support
for particular change or save operations. For the same reason, support for joins
between streaming datasets has been overlooked, as it is not a common operation
in this area. The only type of target currently implemented is the saving on the
external database, which has the task of containing all the results coming from the
various checks and metrics.

54

Chapter 4

Evaluation

In this chapter we will present a comparison between the work of the basic frame-
work and the one with streaming support. The analysis will start from a common
dataset, which presents possible data quality problems (such as the lack of values),
followed by a brief description of the data quality dimensions that we will analyze
and will end with the comparison of the results obtained in both methods.

4.1 The analysis
Due to the very nature of the design, it is very difficult to make a direct compari-
son in terms of performance or overhead introduced between the two applications.
Speaking only in terms of execution speed, it is obvious to state that the basic
framework is faster than the two, we can even say that it represents, again in terms
of execution times, a lower limit to the framework presented by this thesis. Since
a streaming application can also be designed to ideally run for an infinite amount
of time, we absolutely cannot evaluate the result of this search in terms of time.
The overhead introduced by the second version of the application, of course, is sub-
stantial, but even this measurement is quite complicated to perform, since it deals
with abstractions contained within the JVMs that run under the Spark process.
Being able to perform an analysis of this kind would require the skill and time in
dissecting the structure of the JVM itself and unfortunately, it was not the purpose
of this thesis. For the reasons set out above, it was decided to perform a direct
comparison between the two applications, analyzing in both cases the same dataset
that presented some artificial data quality problems.

4.2 The dataset
Since it is very difficult to find datasets that are "dirty", i.e. that have problems
related to the quality of the data they contain, such as missing values, we decided to

55

4 – Evaluation

take an existing and complete dataset and to add some impurities. The protagonist
of our analysis is a dataset provided by USGS1, which is a scientific agency of
the United States government. In particular, the database chosen contains all the
records of the earthquakes that occurred during the year of 2011: among the various
recorded values, which appear as columns of the analyzed CSV file, we find the
following (we limited ourselves to reporting only those of interest, but for the record
the CSV file contains 21 column fields):

• Date and Time: represent the date and time when the phenomenon was recorded.

• Latitude;

• Longitude;

• Depth: the depth at which the phenomenon occurred, in kilometers.

• Magnitude;

• Root Mean Square: as reported by the documentation, "The root-mean-square
(RMS) travel time residual, in seconds, using all weights. This parameter pro-
vides a measure of the fit of the observed arrival times to the predicted arrival
times for this location".

• ID: unique identifier for each single record, used as the registration key.

The database consists of a total of 710 entries, and was first analyzed by the frame-
work without the modifications for the streaming support and, subsequently, by
the framework resulting from this thesis. As for the impurities introduced, we have
changed about 25% of the rows of the dataset: we report precisely the errors intro-
duced:

• addition of null rows: we have deleted a series of records, leaving only the
date and time fields, to simulate incomplete registrations of entries within the
dataset.

• sabotage of latitude and longitude values: excessive values have been intro-
duced for these two parameters. Since, by definition, latitude can be between
-90.0 and 90.0, we have modified rows to contain values that exceed that range,
both negative and positive. Similarly we proceeded with regard to longitude,
which we know to be defined only in the interval -180.0 and 180.0.

• Unscrupulous increase in depth values: here too we wanted to simulate errors
by exceeding the maximum acceptable values for this measurement, by enter-
ing values such as 999.999 km, where the maximum value present inside the
database before the modification was 612.10 km.

1https://www.usgs.gov/

56

https://www.usgs.gov/

4 – Evaluation

• values of magnitude equal to zero: again to simulate errors in the insertion of
records, we have decided to modify a random number of rows by placing the
magnitude value equal to zero. What is the point of a database that keeps all
the earthquakes that have occurred if the magnitude of these is equal to zero?

• finally, we have also decided to put an rms value of 20 in some rows, knowing
that the value of 2.0 has never been exceeded in the database.

All these changes were made to simulate a dataset in poor condition from the
point of view of data quality. We remind you that the database is easily available
from the USGS website, since they are real data. In order to have a more uniform
distribution of these impurities, it was decided to apply them to every fifth row
of the dataset. This choice was motivated by how the analysis of the streaming
framework is carried out and will be further explored subsequently.

4.3 Results
The analysis focused on checking the range of values that the columns of the dataset
could assume. First of all, we loaded the dataset into the framework: the data of our
interest are found in a csv file consisting of 710 rows and 21 columns, as previously
mentioned. As for the so-called "static" part, we omitted the manual scheme and we
preferred to have it deduced by Spark. For the metrics of our interest, we opted to
mainly check the columns considered most important to us, namely the id, latitude,
longitude, depth, magnitude and rms. For the first column, we calculated metrics for
the number of distinct values, nulls, and blank values. The first metric is motivated
by the fact that we know that a unique id is present for each measurement recorded
within the dataset, so from this first metric we can deduce if ids are missing, since
the number of rows should correspond to the number of unique ids. For the other
two metrics, the motivation was driven by the desire to know, if the first metric
does not correspond with the number of rows in the dataset, how many of these
are null or simply not present. For latitude and longitude, in addition to counting
the number of null values present, we have chosen to return the maximum and
minimum value of each one to understand if there was the possibility that some
entries in the dataset have values that exceed the intervals of these two dimensions.
The same reasoning was applied to the remaining columns mentioned above. Recall
that these metrics are only the first step to perform an in-depth analysis of the data
quality of this dataset. As composed metrics, we have decided to calculate simple
percentages of null values, to get a relative idea of the incompleteness of this dataset:
the general formula applied for each metric that calculates the number of values
is the following: we multiply the metric of interest by hundred and divide by the
row_number metric, which gives us the total number of rows in the file. In this
way, we can have the percentage, for example, of the null values of the longitude

57

4 – Evaluation

with respect to the entire dataset. The checks are simply the transposition of what
we have already discussed in the previous section, that is, we check if the longitude,
latitude, depth, magnitude and rms values are in the logical intervals to which they
must belong.

Figure 4.1: The results of the columnar metrics of the static case.

Figure 4.2: The results of the composed metrics of the static case.

In figure 4.1 we can see reported the various results of the aforementioned met-
rics. The table shows various information, such as the name of the metric, the date
the analysis was performed, the source and the type of metric. We can observe that
we find a total of 604 distinct values regarding the ID keys. This results is given
by the fact that we have 106 rows where there is no unique id value. In fact, in the
second row we can see that we have exactly 106 null values for the id column. As
for the longitude and latitude, we can immediately observe that for both columns
we have two maximum values well beyond the threshold of their range, in fact
we recorded 999.999 as the maximum value. As for the minimum values, we find

58

4 – Evaluation

Figure 4.3: The results of the file metrics of the static case.

Figure 4.4: The results of the file metrics of the static case.

-210.123 for both. Finally, we have 89 null values for longitude and 81 for latitude.
We also find 92 missing values for the rms and 97 for the magnitude. Already from
this first analysis we can confidently affirm that our dataset is not free from prob-
lems. In figure 4.2 we can observe the results of the compound metrics. In the first
line we see the percentage of distinct values, which is 85.07: this translates into
the fact that we have 85% of values other than null as regards the ids, which is
a fairly acceptable value but far from a dataset free of quality problems. We have
14.92% null values for the id, 11.40% null values for latitude and 12.53% null values
for longitude: this confirms the results obtained from the basic metrics. For depth
we have 14.36 percent null values and 13.66 percent null values for magnitude. In
figure 4.3 we have the result of the only file metric calculated or the row metric:
the result matches the number of rows of the file itself. In figure 4.4 we have the
summary of the controls applied. Starting from the first line, we can see that the
check on the upper end of the depth range has failed, as the framework has found
a maximum depth value greater than the threshold value set by us, that is 700.
On the other hand, for as far as the lower bound is concerned, the check reports
success, since there is no value less than the zero threshold value: it would not
make sense to manage negative depths in an earthquake-focused dataset. Follow-
ing the report, we observe that the checks on the maximum and minimum, both
of the longitude and of the latitude have all had negative results, as the program
has detected maximum and minimum values higher than the threshold set by us.
The check on the maximum value of the rms column also failed as there are values
greater than ten. The last line also reports a failure as the inequality is not strict,
so the zero value found within the dataset is equal to the threshold value we have
defined. As expected, the base version of this framework does its job, managing to

59

4 – Evaluation

identify and reporting all these data quality problems.
The streaming analysis started from the definition of the main parameters of the

application, that is the duration of the window, the sliding interval and the duration
of the trigger. The first parameter defines the width of the window we want to use
to analyze the incoming data and the second defines how often we generate a new
window. For these first two parameters, we opted for five minutes, in order to have
well-defined windows with no overlapping values. The last parameter defines the
interval that must pass between one saving and the other of the results: here too
we have set a value equal to five minutes. Subsequently, we proceeded to upload
the dataset: in this case, we simply defined a folder where we will find our csv
files, specifying the header since it is a requirement of the streaming application.
To simulate a streaming environment, we created a script in Python. This program
takes as input a csv file and splits it into as many files as required, which are inserted
in the destination folder with a frequency equal to the one passed as parameter.
As parameters, we have set the generation of a row every two seconds. So, since we
have a five minute window, we should find 150 values in each window.

In the figures from 4.5a to 4.5e we have the set of all the results of the metrics. We
can immediately see that we have many more entries, as the analysis lasted longer,
about 24 minutes: this is the time it takes for the Python script to produce all 710
lines of the original dataset, taking into account that it produced one every two
seconds. The repetition of the metrics in all the figures is due to the fact that the
framework perfoms these calculation for each single window, so having 24 minutes of
data input, the framework produced and analyzed about fives windows. In the first
two columns we can immediately notice the execution windows: the first window
that is created is the one that goes from 12:25:00 to 12:30:00, therefore a five-minute
window. The application, therefore, produces the previously mentioned metrics
every five minutes, reporting the values for the set of rows it is analyzing. The rest
of the table is identical to the static version, in fact we find the same columns. The
difference lies precisely in the results, since the latter are calculated for windows
lasting five minutes. For example, we can see that the DISTINCT_VALUES metric
increases with each window, this is because the number of keys increases every five
minutes. We can already say that this is the desired behavior, that is to have the
ability to calculate metrics on a continuous data stream. As always, remember that
these metrics are intended to trigger the checks, which are the most important part
of the entire analysis pipeline.

In the figures from 4.6a to 4.6b we have the set of all the results of the com-
posed metrics. Here too we can see the analysis window, which always starts from
12:25:00 to 12:30:00. The results obtained in this part are more interesting because
percentages are calculated taking the previous metrics as input. In fact, we can ob-
serve how in the window 12:30:00 - 12:35:00, the percentage of columns with zero
latitude (precisely in row nine of figure 4.6a) was equal to 44.7%, that means more
than one third of the records in that window had a null value regarding latitude,a

60

4 – Evaluation

worrying value from the point of view of the quality of the stream.
Among the figures 4.7a and 4.7b we find the results of the checks carried out in

(a) The results part one.

(b) The results part two.

Figure 4.5: The results of the columnar metrics of the streaming case

61

4 – Evaluation

(c) The results part three.

(d) The results part four.

Figure 4.5: The results of the columnar metrics of the streaming case (cont.)

streaming environments. In particular, we can observe that in 4.7a almost all the
checks are passed: this is because the first part of the dataset is less "dirty" than the

62

4 – Evaluation

(e) The results part five.

Figure 4.5: The results of the columnar metrics of the streaming case (cont.)

final part. These checks guarantee us that, at least for the columns analyzed, up to
the window between 12:40:00 and 12:45:00 the data are within the regular intervals
and therefore are correct. By focusing on 4.7b we can already see how the framework
begins to detect anomalies, given that the number of unsuccessful checks increases.

(a) The results part one.

(b) The results part two.

Figure 4.6: The results of the composed metrics of the streaming case

63

4 – Evaluation

We can therefore confidently affirm that the streaming analysis occurs correctly,
as the same checks fail in both the cases. Of course, the controls do not have the
same timing, but anomalous data are detected in the same way, triggering the same
alarms as in the static case. In these last lines of text lies the main concept about
this new version of the application: we migrated the calculation logic, starting from
analyzing finite datasets to analyze streams of data over constant periods of time.
Connecting this framework to a streaming data produce, like Kafka for example,
assures us that we can have reports, at intervals defined by us, on the quality of
the data that is arriving, regardless of the input stream.

(a) The results part one.

(b) The results part two.

Figure 4.7: The results of the checks of the streaming case

64

Chapter 5

Conclusions

In this final chapter we will recapitulate the results obtained from the work of this
thesis and make proposals for possible future improvements.

As we have seen for the course of this thesis, the support for streaming ap-
plications facilitated by the platform offered by Apache Spark has been correctly
implemented. The confirmation of the achievement of the objectives set at the be-
ginning of this path was also provided by the previous chapter, where we highlighted
that the same alarms are triggered in both use cases, i.e. both the static and the
dynamic subject of this thesis. The ability to analyze and control streaming flows
allow us to apply quality concepts and business strategies, which certainly offer an
advantage on the big data market, before we actually analyze that input flow of
data.

As far as the possibility of optimization and improvement of the solution pro-
posed in this thesis is concerned, the most important is certainly the one regarding
trend checks (3.1.3). It would be interesting to evaluate a possible translation of
the streaming window concepts applied in the context of trend checks. the basic
idea is to consider the results of the previous analyzes as if they were a new stream
of data, applying them a window in which we perform the check calculations while
keeping a minimum of consideration of the previous data, so as to be able to inter-
vene promptly when we notice net changes in the results. A further improvement
to be made is certainly that which concerns the increase in the input sinks that the
application is capable of managing. This can be facilitated by the flexibility offered
by the Apache Spark platform, in particular by structured streaming. This flexibil-
ity is aided by the abstractions offered by the foreach and foreachbatch functions,
and by these means can be easily implemented.

65

Bibliography

[1] Amir Gandomi and Murtaza Haider. “Beyond the hype: Big data concepts,
methods, and analytics”. In: International Journal of Information Manage-
ment 35.2 (2015), pp. 137–144. issn: 0268-4012. doi: https://doi.org/10.
1016/j.ijinfomgt.2014.10.007. url: http://www.sciencedirect.com/
science/article/pii/S0268401214001066.

[2] Hsinchun Chen, Roger H. L. Chiang, and Veda C. Storey. “Business Intel-
ligence and Analytics: From Big Data to Big Impact”. In: MIS Quarterly
36.4 (2012), pp. 1165–1188. issn: 02767783. url: http://www.jstor.org/
stable/41703503.

[3] Nicole Martin. How Much Data Is Collected Every Minute Of The Day. 2019.
url: https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-
much-data-is-collected-every-minute-of-the-day/?sh=4f0945243d66
(visited on 01/21/2021).

[4] L. Cai and Y. Zhu. “The Challenges of Data Quality and Data Quality As-
sessment in the Big Data Era”. In: Data Science Journal 14 (2015). doi:
http://doi.org/10.5334/dsj-2015-002.

[5] Damilola Ojo, Patrick Taleng. Data Quality Dimensions. url: https://www.
deltapartnersgroup.com/managing- data- quality- optimize- value-
extraction.

[6] C. Cichy and S. Rass. “An Overview of Data Quality Frameworks”. In: IEEE
Access 7 (2019), pp. 24634–24648. doi: 10.1109/ACCESS.2019.2899751.

[7] Yang W. Lee et al. “AIMQ: a methodology for information quality assess-
ment”. In: Information & Management 40.2 (2002), pp. 133–146. issn: 0378-
7206. doi: https://doi.org/10.1016/S0378- 7206(02)00043- 5. url:
http://www.sciencedirect.com/science/article/pii/S0378720602000435.

[8] Leo L Pipino, Yang W Lee, and Richard Y Wang. “Data quality assessment”.
In: Communications of the ACM 45.4 (2002), pp. 211–218.

[9] Batini Carlo et al. “A data quality methodology for heterogeneous data”. In:
International Journal of Database Management Systems 3.1 (2011).

66

https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2014.10.007
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://www.jstor.org/stable/41703503
http://www.jstor.org/stable/41703503
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/?sh=4f0945243d66
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/?sh=4f0945243d66
https://doi.org/http://doi.org/10.5334/dsj-2015-002
https://www.deltapartnersgroup.com/managing-data-quality-optimize-value-extraction
https://www.deltapartnersgroup.com/managing-data-quality-optimize-value-extraction
https://www.deltapartnersgroup.com/managing-data-quality-optimize-value-extraction
https://doi.org/10.1109/ACCESS.2019.2899751
https://doi.org/https://doi.org/10.1016/S0378-7206(02)00043-5
http://www.sciencedirect.com/science/article/pii/S0378720602000435

BIBLIOGRAPHY

[10] Reza Va, Mehran Mohsenzadeh, and Jafar Habibi. “TBDQ: A Pragmatic
Task-Based Method to Data Quality Assessment and Improvement”. In: PLOS
ONE 11 (May 2016), e0154508. doi: 10.1371/journal.pone.0154508.

[11] Thomas L Saaty. “Decision making with the analytic hierarchy process”. In:
International journal of services sciences 1.1 (2008), pp. 83–98.

[12] Robert S Kaplan and Steven R Anderson. “Time-driven activity-based cost-
ing”. In: Available at SSRN 485443 (2003).

[13] Arie Van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages:
An annotated bibliography”. In: ACM Sigplan Notices 35.6 (2000), pp. 26–36.

[14] Fay Chang et al. “Bigtable: A Distributed Storage System for Structured
Data”. In: ACM Transactions on Computer Systems 26.2 (June 2008). issn:
0734-2071. doi: 10.1145/1365815.1365816. url: https://doi.org/10.
1145/1365815.1365816.

[15] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Process-
ing on Large Clusters”. In: OSDI’04: Sixth Symposium on Operating System
Design and Implementation. San Francisco, CA, 2004, pp. 137–150.

[16] Matthias J. Sax. “Apache Kafka”. In: Encyclopedia of Big Data Technologies.
Ed. by Sherif Sakr and Albert Zomaya. Cham: Springer International Pub-
lishing, 2018, pp. 1–8. isbn: 978-3-319-63962-8. doi: 10.1007/978-3-319-
63962-8_196-1. url: https://doi.org/10.1007/978-3-319-63962-
8_196-1.

[17] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing”. In: 9th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 12). 2012, pp. 15–
28.

[18] Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In: Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’15. Melbourne, Victoria, Australia: Association for Com-
puting Machinery, 2015, pp. 1383–1394. isbn: 9781450327589. doi: 10.1145/
2723372.2742797. url: https://doi.org/10.1145/2723372.2742797.

[19] Apache Spark. Stream as a Table. url: https://spark.apache.org/docs/
2.4.7/structured-streaming-programming-guide.html.

[20] Apache Spark. window. url: https://spark.apache.org/docs/2.4.7/
structured-streaming-programming-guide.html.

[21] Ashish Thusoo et al. “Hive - a petabyte scale data warehouse using Hadoop”.
In: 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010) (2010), pp. 996–1005.

[22] Ashish Thusoo et al. “Hive: a warehousing solution over a map-reduce frame-
work”. In: Proceedings of the VLDB Endowment 2.2 (2009), pp. 1626–1629.

67

https://doi.org/10.1371/journal.pone.0154508
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://spark.apache.org/docs/2.4.7/structured-streaming-programming-guide.html
https://spark.apache.org/docs/2.4.7/structured-streaming-programming-guide.html
https://spark.apache.org/docs/2.4.7/structured-streaming-programming-guide.html
https://spark.apache.org/docs/2.4.7/structured-streaming-programming-guide.html

BIBLIOGRAPHY

[23] Hiren Patel. “HBase: A NoSQL Database”. In: (May 2017). doi: 10.13140/
RG.2.2.22974.28480.

[24] V. Bhupathiraju and R. P. Ravuri. “The dawn of Big Data - Hbase”. In: 2014
Conference on IT in Business, Industry and Government (CSIBIG). 2014,
pp. 1–4. doi: 10.1109/CSIBIG.2014.7056952.

[25] Fay Chang et al. “Bigtable: A distributed storage system for structured data”.
In: ACM Transactions on Computer Systems (TOCS) 26.2 (2008), pp. 1–26.

[26] Michael Stonebraker and Lawrence A Rowe. “The design of Postgres”. In:
ACM Sigmod Record 15.2 (1986), pp. 340–355.

[27] Lawrence A Rowe and Michael R Stonebraker. The POSTGRES data model.
Tech. rep. CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL EN-
GINEERING and COMPUTER SCIENCE, 1987.

[28] Michael Stonebraker, Eric Hanson, and Chin-Heng Hong. “The design of the
POSTGRES rules system”. In: 1987 IEEE Third International Conference on
Data Engineering. IEEE. 1987, pp. 365–374.

[29] Michael Stonebraker. The design of the Postgres storage system. Tech. rep.
CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB, 1987.

[30] Bartosz Konieczny. tree aggregation. url: https://www.waitingforcode.
com/apache-spark/tree-aggregations-spark/read.

68

https://doi.org/10.13140/RG.2.2.22974.28480
https://doi.org/10.13140/RG.2.2.22974.28480
https://doi.org/10.1109/CSIBIG.2014.7056952
https://www.waitingforcode.com/apache-spark/tree-aggregations-spark/read
https://www.waitingforcode.com/apache-spark/tree-aggregations-spark/read

	List of Figures
	Listings
	Introduction
	Big Data
	Data Quality

	Related Works
	Academic papers
	AIMQ: a methodology for information quality assessment
	Data Quality Assessment
	Heterogenous Data Quality Methodology for Data Quality
	Task Based Data Quality

	Technologies
	Scala
	Apache Hadoop
	Apache Kafka®
	Apache Spark
	Apache Hive
	Apache HBase
	PostgreSQL

	Main core
	Data-Quality Framework
	Source
	Metric
	Check
	Target
	Postprocess

	Evolving the framework to a new Scenario
	Methodology
	Streaming container
	Source
	Metric
	Check
	Target and Postprocess

	Evaluation
	The analysis
	The dataset
	Results

	Conclusions
	References

