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Summary

Nowadays, machine learning approaches have become an integral part in a
wide variety of technologies and use-cases, ranging through a lot of diverse
fields: from healthcare to automotive, or from banking to supply chain
optimization, arriving also at the point of directly influencing our everyday’s
life (e.g. with smart-home devices, or even just with smartphones).
In each of the aforementioned, usually, a big quantity of data needs to be
collected, so that the various algorithms which are applied can provide better
models and thus, give results that most of the times coincide with the "ground
truth".
To improve these performances, what is usually done by several companies
developing machine learning-based solutions, is to cyclically train from
zero their models with bigger quantities of data, which are accumulated by
their platforms over time.
As it can be imagined, the process of defining an entirely new classifier after
every predefined time window, can be expensive in terms of time and,
more importantly, resources.
In an era where companies, especially start-ups, rely on external infrastruc-
tures provided "as a service" to deliver their products to the customers,
saving is of vital importance, and thus the training process mentioned above
can’t be the best way to go.
In this work, we collaborated with a small company to try and solve this
issue, exploiting those approaches defined as incremental: a single classifier
is kept over time and updates due to the presence of new data are applied
directly to that instance, giving it thus the possibility to adapt to possible
changes in data without the need of starting from the beginning the learning
mechanism.
The classifiers taken into consideration are the following three: Naïve-Bayes
classifier, Random Forest classifier and Extra-Trees classifier.
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From our results, the performances are comparable to the ones obtained
following the standard approaches, outlining so a new path that can be
pursued for the implementation of this type of solutions.
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Chapter 1

Introduction

With Machine Learning (ML) we refer to the study of that set of algo-
rithms and methodologies having the ability of improving themselves over
experience, as stated by Tom Mitchell in [1].
This kind of algorithms has been increasingly adopted by the industry for
solving several tasks, becoming thus a core element of a lot of platforms and
technologies.
The experience mentioned above is expressed in the form of sample data,
which is collected over time by its related system, and has the role of building
the knowledge that can be used for defining a model: the latter is what will
make decisions or predictions without the need of being programmed to do
so [2].
The quality, which can be defined by performing a wide set of measures,
about how a given model makes its predictions/decisions is influenced by the
amount of data which is provided to the model. So, what is usually done
by companies in the "practical" world, is to define an entirely new estimator
whenever a certain amount of time elapses, or when a given amount of data
is collected.
The main drawback of exploiting this type of approach is that a lot of
resources are wasted, since it is needed to define again a new model, needing
to go through the whole data set when one of the two conditions (or both)
stated above are met.
To address the issue of reusing the entire data set several times, incremental
learning approaches can be considered. The goal of these techniques is
to update a given model without the need of analyzing again what can be
defined as "old" knowledge, but instead using only "new" training data.
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In this way, the resulting model keeps its dependency to old knowledge, but
has the ability of adapting to new training data without looking again at
what happened in the past.
In the following work, we collaborated with RestWorld S.r.l., a start-up
based in Turin, and we implemented these techniques on three classifiers,
which will be explained in a more detailed way in chapter 2: Naïve-Bayes
classifier, Random-Forest classifier, and Extra-Trees classifier.
The implementations, instead, will be discussed in chapter 3.
The different implementations have been validated by deriving several metrics
that are well known in machine learning, such as accuracy, precision, recall,
f1-score, macro and weighted average. The values for the mentioned metrics
have been obtained performing different tests on a local machine.
The various tests and the obtained results are going to be commented in
chapter 4, in which there will also be a comparison with what is provided by
the standard techniques.
Finally, in chapter 5, we are going to suggest some future work and possible
enhancements that can be followed.
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Chapter 2

Problem statement and
state of the art techniques

In this work we are interested in adopting incremental learning approaches
for solving a real-world problem, and in comparing them to the standard
ones, by using the same "core" algorithms.
Here we are defining in detail the scenario in which the solution is conceived
and developed, and also the goal of the project. At the end, we are considering
some state of the art techniques for the given scenario.

2.1 Goal and scenario
RestWorld S.r.l. is a small start-up based in Turin which operates in the job
market, more specifically in the catering world. They provide a platform
which has the role of finding optimal candidates for a given restaurant: the
underlying system needs candidates and restaurateurs to fill a form (the one
for the first different from the one for the second), and then the "matching"
is performed by analyzing the collected data.
For what concerns the candidates, the following information is collected:

• Sector in which the candidate would like to find a position (one possible
choice among Saloon, Kitchen and Cafe);

• Time availability: it is when the candidate is available for working
(chosen among Full-time, Part-time, By Call and On weekends);

• Workshift, which is chosen among Breakfast, Lunch and Dinner ;
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• Premise, that has the role of representing the kind of activity(ies) for
which the applicant would like to work for (several categories can be
selected from here, e.g. Fast food, Risto-pub, Pizzeria, Farmhouse, Diner,
Catering, Restaurant, Starred restaurant);

• Start Time, indicating from when the candidate is available (a single
choice can be made amid Now, Next week, Next month);

• Transport type, that states how the user can reach the work place
(Car, Motorbike, Bike, Public transport, Sharing services, Walk);

• Transfers availability, a flag depicting the availability from the appli-
cant to transfer for job-related causes;

• Gender of the candidate;

• Address of the candidate;

• Name of the candidate;

• Surname of the candidate;

• Birth date of the candidate.

Instead, regarding restaurants’ data, the platform collects the subsequent
information:

• Restaurant name;

• Referent, that is basically the restaurateur’s name;

• Address where the restaurant is located;

• Management type, which has to be chosen among Family run, Sole
proprietorship, Franchise;

• Restaurant type: several values can be chosen for this attribute (e.g.
Cafe, Brewery, Fast food, Starred restaurant, Wine shop, Canteen, Diner
and many others);

• Cuisine type: it represents what the restaurant can offer to its cus-
tomers (the possible values are Homemade, Gourmet, Minimal, Pied-
montese, Vegetarian, Meat, Fish);
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• Customer Type, indicating the categories of customers frequenting
mostly the activity into consideration (chosen amid Young people, Uni-
versity students, Office workers, Families, Informal, Formal and, finally,
Tourists);

• Number of employees working in the restaurant (selected among Less
than 5, Between 5 and 10, Between 10 and 15, Between 15 and 20, and
More than 20 );

• Average served people: it has the role of giving an idea about how
many people are served by the restaurant in a day (this attribute can
take a single value among Less than 30, Between 30 and 60, Between 60
and 100, and More than 100 );

• Average price that is spent having a meal in the restaurant (chosen
amid Less than 15€, Between 15€ and 20€, Between 20€ and 30€, More
than 30€ );

• Opening days of the restaurant;

• Workshifts adopted by the restaurant (Breakfast, Lunch, Dinner, and
Pub);

• Contact platform on which the restaurant can be reached (multiple
options, like Mail, WhatsApp, SMS, Phone, and Facebook are available);

• E-mail;

• Telephone.

Currently, the matching process is completed without the use of any partic-
ular ML solution, in fact the candidate-restaurant pairing is made by
manually analyzing the gathered information, and trying to derive the best
couples possible, in order to satisfy both the applicants and the restaurateurs.
The crisis caused by the COVID-19 pandemic, that we are still facing and
struggling against, has surely impacted this sector in a huge manner. But, it
is quite clear that the approach adopted in here can become unsustainable
in the future, assuming that the amount of data grows over time.
Also, it has become more and more common the adoption of those solutions
provided "as a service" for storing data, especially in small companies like
the one that we are talking about right now. Thus, it is likely that having
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to deal with a big amount of information entails high costs for maintaining
the needed infrastructure.
So, the goal of this work is to build a ML solution able to perform the pairing
process introduced before with an incremental approach, in order to not
keep and reanalyze old data, relying only on new knowledge: this could
permit to have a faster model and lower costs for the used services.

2.2 State of the art techniques
Given the predominantly categorical data we have to deal with, and the
"pairing" that we prefer to express through a label y (e.g. y = −1 denoting a
"no-match", y = 0 a "possible match", and y = 1 indicating a "match"),
the problem under study can be represented as a supervised task, in which
the training samples are tagged and it is needed to define a model able to
provide one class after receiving certain data (i.e. the information related to
a candidate and a restaurant) in input.
This kind of problem, by the state of the art, can be solved with several
different techniques, but in here we want to focus on the following, as they
are going to be extended for obtaining the incremental models:

• Naïve-Bayes classifier;

• Random Forest classifier;

• Extra-Trees classifier.

Here below, we are going to analyze them one by one, denoting their working
principles.

2.2.1 Naïve-Bayes classifier
The Naïve-Bayes classifiers, in statistics, are part of those classifiers so
called "probabilistic". Probabilistic classifiers have the peculiarity of being
able to predict a probability distribution over a set of several classes,
accepting in input an observation, instead of only providing in output the
most likely class the latter belongs to.
As stated in [3] by Trevor Hastie, this type of classifiers have the advantage
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of providing a classification which can be advantageous in its own right,
but also when we need to combine several classifiers for defining ensemble
models.
Going back to the Naïve-Bayes classifier, it exploits the popular Bayes’
theorem, assuming a strong independence among the features of the samples
provided in input (from here the adjective naïve).
The Bayes’ theorem has the role of describing the probability of a particular
event, by basing on some prior knowledge of conditions which can be somehow
related to the event taken into consideration [4]. Mathematically, it is
described by the following equation [5]:

P (A|B) = P (B|A)P (A)
P (B) (2.1)

in which A and B are the different events of interest, with P(B) being
different from 0.
The following characteristics have to be kept in mind:

• P(A|B) is a conditional probability representing how likely the event
A occurs given that the event B is true;

• similarly, P(B|A) is the conditional probability indicating the possi-
bility of event B to occur given that A is true;

• both P(A) and P(B) are the probabilities of observing separately A and
B, and they are called marginal probabilities.

The probabilistic model

In the precise context of the classifier taken into consideration, the theorem
stated above has the role of defining the probabilistic model behind the
classifier. In fact, in an abstract manner, the Naïve-Bayes classifier is a
conditional probability model. Starting from a problem instance (which
can be called sample) to be classified, that can be represented by a vector
x = (x1, . . . , xn), in which n features are described and assumed as strongly
independent among each other, conditional probabilities are defined for each
of the possible K classes, and they are expressed as p(Ck | x = (x1, . . . , xn)).
Given a situation in which n is high, or one in which each feature could take
a lot of different values, the model can be reformulated exploiting the Bayes
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theorem, as described in [6]:

p(Ck | x) = p(Ck) p(xk)
p(x) (2.2)

The equation stated above can be "translated" into a more readable form as
the following:

posterior = prior× likelihood
evidence (2.3)

Since the denominator is not depending on C, and we are given the various
values xi of the features, we can state that the denominator can be considered
as constant.
The numerator, instead, is considered equal to the joint probability model
p(Ck, x1, . . . , xn) that, using the well known chain rule for multiple recur-
rences of the conditional probability, can be rewritten in the subsequent way:

p(Ck, x1, . . . , xn) = p(x1, . . . , xn, Ck)
= p(x1 | x2, . . . , xn, Ck) p(x2, . . . , xn, Ck)
= p(x1 | x2, . . . , xn, Ck) p(x2 | x3, . . . , xn, Ck) p(x3, . . . , xn, Ck)

(2.4)

Obtaining thus:

p(Ck, x1, . . . , xn) = p(x1 | x2, . . . , xn, Ck) · · · p(xn−1 | xn, Ck) p(xn Ck) p(Ck) (2.5)

It is at this point that the conditional independence assumptions made
before become very important. Assuming that all the features in x are
mutually independent, it can be said that:

p(xi | xi+1, . . . , xn, Ck) = p(xi | Ck) (2.6)

Thanks to this, the joint model expression can be rewritten as follows:

p(Ck | x1, . . . , xn) ∝ p(Ck)
nÙ

i=1
p(xi | Ck) (2.7)
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From the probabilistic model to the classifier

Up until now, only the definition of the probabilistic model lying behind the
Naïve-Bayes classifier has been defined, and it can be called theNaïve-Bayes
probability model. For obtaining the classifier from the aforementioned
model, it needs to be combined with a decision rule.
In the field of decision theory, the decision rule is a function which is able to
define a mapping of an observation to a correspondent appropriate action.
As it can be clear, this type of rules play a fundamental role in the theory
of statistics, and actually can be considered as related to the concept of
"strategy" in a game theory.
The effectiveness of a decision rule is always defined through the adoption
of a loss function, that should specify the outcome obtained from an action
under several "states". In the case of Naïve-Bayes, it is the negative joint
log-likelihood (at least for most of the practical situations).
The rule which is usually applied is to select the hypothesis having the highest
probability (i.e. the most probable), exploiting the so called MAP decision
rule, where MAP stands for "Maximum A Posteriori". This technique can
be used to retrieve a point estimate of some quantity, currently unobserved,
by basing on data that is empirical.
More in detail, it can be considered as the regularization of the MLE
(Maximum Likelihood Estimation), since it shares the same goal. but includ-
ing an optimization objective that includes also a prior distribution. This
prior distribution has the function of quantifying the additional information
which is available from prior knowledge of a given event.
The prior of a given class can be calculated in two ways:

• by considering classes as equiprobable, with p(Ck) = 1
K

;

• by defining an estimate for the probability of the class from the training
set.

Thus, to define a proper classifier and estimate the parameters needed for the
distribution of a feature, one must consider a distribution or define models
that are nonparametric, as specified by [7].
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There are three main probability distributions which are often employed
in the definition of a Naïve-Bayes classifier:

• Gaussian (normal) distribution;

• Multinomial distribution;

• Bernoulli distribution.
Each one of them aims at solving a particular and well defined problem:
for example, the Gaussian distribution is used in those situations in which
it is necessary to deal with continuous data, and thus it is assumed that
the continuous values that are associated to each of the possible classes are
distributed via a Gaussian distribution.
Instead, the Multinomial distribution is adopted whenever there is an interest
in considering the frequencies with which certain events have been generated
via a multinomial (p1, . . . , pn) where pi is considered as the probability of
event i to occur.
For the problem described in this work, the most suitable distribution, in our
opinion, is the Bernoulli distribution. This because it permits to describe
inputs considering the features as independent binary variables (booleans),
keeping the problem discrete.
The Bernoulli probability density function is the following:q = 1− p if k = 0

p if k = 1
(2.8)

And can also be rewritten in this way:

pk(1− p)1−k (2.9)

Since we have to work with strictly categorical data, the assumptions pro-
vided by the Bernoulli distribution highly reflect our use case, and so we
decide to take into consideration a Naïve-Bayes classifier using this kind of
distribution. In the following chapters we will dig deeper in the estimation
process of this classifier.
After all, the main advantage of Naïve-Bayes classifiers is that of being highly
scalable, since they can keep their number of parameters linear with respect
to the number of variables in the learning problem. Also, they have the
"pro" of being able to evaluate their Maximum Likelihood with a closed form
expression taking linear time, as specified in [8].
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2.2.2 Random Forest classifier
The Random Forest classifier is a particular classifier which is based on
the Random Forest. With Random Forest (or Random Decision Forest)
we refer to a specific family of ML techniques, also known as ensemble
learning techniques: in them, several different algorithms are used together,
in order to achieve higher predictive performances with respect to the
ones that could be obtained by using only one of the algorithms alone [9].
Here below, we are going to describe briefly the background necessary to
understand the working principles of the Random Decision Forest and a bit
of its history.

Decision Trees

To understand correctly Random Forests, it is mandatory to introduce first
the concept of Decision Trees. With decision tree learning we refer to a
widespread predictive modeling approach used in ML, which exploits the
notion of decision tree for performing a classification/regression task: obser-
vations of a given item (that are represented in the branches of the tree) are
exploited in order to draw conclusions about the target value of the item
under study (that instead is represented in the leaves). In the case of a
classification task, the decision tree is also called Classification Tree, and
each leaf has the role of representing each of the possible labels. Instead, the
branches have the task of describing the conjunctions of the features which
lead to a given label.
In the field of decision analysis, decision trees are well suited for decision
making tasks, since they are able to represent them both explicitly and
visually, but they are very often used also in data mining [10].
The objective of a decision tree, in data mining, is to define a model with
the ability of predicting the value of a target variable by considering several
input variables.
Assuming that, for simplicity, the input features are discrete-valued and that
there is a single feature (i.e. the target feature) which has to be classified,
the decision tree is a tree in which the internal nodes (non-leaf) have the
role of representing distinctly the features, while the arcs coming from the
mentioned nodes do represent the possible values that can be taken by them.
Each arc leads to an adjuvant decision node, and thus to another input
feature.
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The various leaves of the tree are instead labeled with a probability distribu-
tion over the various possible classes or with a class, denoting thus the fact
that the data set provided in input is classified into a probability distribution
or into a class.
In order to build a decision tree, a splitting of the source data has to be
performed, so that the root node can be defined and, similarly, the children
ones. This operation is based on a set of rules regarding the classification
features, as mentioned in [11]. Then, the process is recursively repeated on
the obtained subsets, with the recursive partitioning approach. When
the splitting adds no more value to the classification, the partitioning is
interrupted and considered complete.
This entire process is also known as Top-Down Induction of Decision
Trees (TDIDT), and is considered as a greedy algorithm [12].
Nowadays, several decision trees algorithms are present, and the most im-
portant ones are the following:

• ID3 (that is the short for Iterative Dichotomiser 3);

• C4.5 (which is the successor of ID3);

• CART (short for Classification And Regression Tree) [13];

• CHAID (Chi-square automatic interaction detection), which is able to
perform multi-level splits in the definition of the classification tree [14];

• MARS, that is an extension of decision tree with the ability of handling
better numerical data;

• Conditional Inference Trees, which are based on a statistic approach
that exploits non-parametric tests as splitting criteria.

As it has been described previously, the algorithms used for the construction
of the decision trees work following a top-down approach, by selecting at
each iteration a variable that splits in the best manner the set of items [15].
This concept of best can be represented in different ways, depending on the
algorithm, by using different metrics.
The metrics have the role of measuring the degree of homogeneity of the target
variable within the considered subset, and they are in fact computed over
each candidate subset. Then, the results obtained are combined (averaged,
for example) in order to give a measure of quality of the considered split.
The most used metrics are Gini impurity (used by CART), that shouldn’t
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be confused with the Gini index, and the Information gain (used by ID3
and C4.5), which is based on the concepts of entropy and information content.
Decision trees have the advantage of being very easy to use and to understand
[16], and this, of course, is good for non-experts so that they can interpret
them without struggling.
Also, they are very good in handling both categorical and numerical
data [16]: this is very important, because not all ML algorithms have this
peculiarity.
Other very important powers of the decision trees are that they can perform
well with large data sets, and also that they don’t require a high data
preparation.
Instead, for what concerns the limitations, we can find that a small change
in the training data could have a big impact on the tree, influencing the
predictions made, and making it not very robust.
Another disadvantage is given by the fact that in order to learn completely
the tree an NP-complete problem has to be solved, and this also for simple
concepts [17]. Thus, in practical cases, heuristics like the greedy algorithm
are used for obtaining locally optimal decisions at each of the nodes, without
giving the guarantee that the globally optimal tree is returned. To solve this
issue, methods such as the Dual Information Distance (DID) can be
applied [18].
Last but not least, decision trees could have the problem of not generalizing
well from the training data and becoming thus very complex, falling into an
overfitting problem. Pruning or similar mechanisms could be exploited to
avoid this situation.

History

The first method behind the Random Forest was introduced by Tin Kam Ho
in 1995 [9]. He stated that forests of trees in which the splitting is performed
by using oblique hyperplanes could permit to have a gain in accuracy as they
grow without suffering from the overtraining problem, as long as the forests
are randomly restricted to be sensitive to the dimensions of the selected
features.
Subsequently, other works have been conducted (such as [19]), in which has
been concluded that also other splitting methods tend to have the same
behavior. This observation that a more complex classifier (e.g. a larger
forest) can achieve to higher accuracy in an almost monotonically way is
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actually in contrast to the common belief that a classifier at a certain point
is hit by overfitting.
The explanation of this resistance has been stated by Kleinberg in his theory
of stochastic discrimination [20].
Ho’s random subspace selection idea [19] has been very influential in the
design of random forests: in fact, in this method, a forest of trees is grown,
and the variation among them is computed by performing a projection of
the training data into a randomly chosen subspace before fitting each node
or tree.
Instead, the idea of randomized node optimization, in which a random proce-
dure is in charge of selecting the decision at each node, has been introduced
by Thomas Dietterich in [21].

Ensemble learning

In the field of supervised learning (which is the one under study), the chosen
algorithm, in order to perform the classification, must complete firstly the
activity of searching through the entire hypothesis space in such a way to
retrieve the optimal one able to carry out good predictions for a particular
problem, as said in [22].
Even in situations in which the mentioned hypothesis space is made of well
defined hypotheses for the problem that has to be solved, it could be tricky
to find the correct one. The goal of ensembles is to combine the multiple
hypotheses present in the hypothesis space, so that a better hypothesis can
be obtained.
An ensemble itself can be considered as a supervised learning algorithm,
since it could be trained and, later, used to perform classification tasks. In
fact, a trained ensemble could be considered as the single hypothesis, which
is not necessarily contained in the hypothesis space that we mentioned above.
This leads to a high flexibility in the function which is represented: flexibility
that could lead, theoretically, to an higher over-fit of the training data
with respect to the adoption of the single model, but that from a practical
standpoint of view could be limited with approaches such as Bagging (see
later).
With ensembles, the obtained results have the tendency of being better if
there is a significant assortment among the adopted models, as said in [23].
Thus, in many ensemble methods, diversity is promoted among the combined
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models [24]: but of course, this doesn’t the prevent the utilization of the
same model more times.

Bagging

Previously, we introduced the concept of Bagging. It is the abbreviation
for Bootstrap aggregating, and it refers to that meta-algorithm created
with the goal of improving the accuracy and the stability of a ML algorithm.
It is considered as an extension of the Bayesian Model Averaging (BMA)
approach, which is another algorithm that permits to perform predictions
by adopting an average defined over several models, for which weights are
defined from the posterior probability obtained in each model given the data
[25].
What is performed by the Bootstrap aggregating technique is the following:
starting from a training set D, which has size n, m new training sets Di (of
size n’) are generated, by performing a sampling with replacement from D in
a uniform way.
Since the sampling is completed with replacement, it is clear that some
observations can be repeated in the various Di sets. According to [26], if
nÍ = n and n is a large value, what happens is that the set Di is expected to
have a number of unique examples representing ≈63.2% of D, with the rest
of the observations being duplicates. The described type of sample can be
defined as a bootstrap sample.
The adoption of the sampling with replacement permits to secure that each
of the generated bootstrap samples is independent from its peers, because
of the fact that they do not depend on the samples chosen previously while
sampling.
After the definition of the m bootstrap samples, m models (that in the case of
a Random Forest are Decision trees) are trained using the aforementioned
bootstrap samples, and a combination of them is defined by performing an
average of the output (in the case of a regression problem), or by performing
a majority voting (in the situation of a classification task, i.e. the one of
interest).
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The classification algorithm can be summarized in the following way:

Algorithm 1 Bootstrap aggregating algorithm.
1: procedure Bagging(D, I, m)
2: ó D is the training set
3: ó I is the inducer
4: ó m is the number of bootstrap samples
5:
6: ó Execution
7: for i← 1 to m do
8: ó Create new training set Di from D with replacement
9: Di ← bootstrap sample from D

10: ó Build classifier Ci from the set Di, using I
11: Ci ← I(Di)
12: end for
13:
14: ó Classifier C∗ is generated using the set of classifiers Ci on D
15: C∗(x)← arg max

y∈Y

Ø
1

i:Ci(x)=y

ó Get the most often predicted label y

16: end procedure

This technique has its advantages and disadvantages, which we are going to
list here below.

Advantages:

• The fact of having several "weak" learners permits to outperform a single
learner over a data set, with a reduced risk of over-fitting the data;

• As proved by [27], bagging helps in removing variance in those data sets
called high variance low-bias;

• Since each bootstrap can be manipulated on its own before the combi-
nation step, the entire algorithm can be executed in parallel [28].
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For what concerns, instead, the disadvantages, they are the following:

• When dealing with a data set with high bias, bagging could bear this
high bias into the aggregates [27];

• The resulting model has a loss of interpretability, because of the inter-
mediary steps that are done;

• It could be very expensive from the computational standpoint of view,
depending on the data set taken into consideration.

To summarize, Random Forests have the very big advantage of achieving
higher accuracies with respect to single decision trees, and this is one of the
main reasons why this model has been also adopted in this study. Also, the
nice thing about Random Decision Forests is that they can be actually used
as a black-box in practical cases, since almost no configuration is required.
The only drawback that is introduced regards the loss of interpretability of
the model, which has been also mentioned above.

2.2.3 Extra-Trees Classifier
The Extra-Trees Classifier is considered as a variant of the Random
Forest. In fact, it shares the same structure of the Random Decision Forest,
performing an additional step of randomization.
Two differences can be denoted:

• Instead of using a bootstrap sample, each tree of the forest is trained
with the entire learning sample;

• The top-down splitting which is performed in the tree learner is random-
ized.

The randomization mentioned above implies that a random "cut-point" is
selected, instead of finding the the locally optimal one for each of the features
under consideration (e.g. Gini impurity or Information gain).
In order to select the value, a uniform distribution within the empirical range
of the feature is selected (in the training set of the tree). Then, from all the
splits that are generated, the one yielding the highest score is chosen in order
to split the node.
As in an ordinary random forest, it can be specified the number of randomly

17



Problem statement and state of the art techniques

selected features which have to be examined at each node. This number, for
classification tasks, is by default equal to √p, while in regression tasks it is
usually set to p [29].

Now that we have described the state of the art techniques which can be
adopted in order to solve the problem of interest, we are going to describe
how we exploited them in such a way to design and implement an incremental
solution for it.
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Chapter 3

Design and
implementation

In order to solve the problem stated in the previous chapter, we decide to
design and implement an incremental version for each of the algorithms
described.
In this way, the incremental versions can be compared with the standard
ones, in such a way to find differences in their behaviors and to determine
which of them performs better.
In the following, we want to describe in detail the various steps needed
in order to come with a solution, starting from a high-level design of the
algorithm and arriving at last at the practical implementations.

3.1 Design
In this section, we want to describe the design process that we faced in order
to solve the given problem.
The goal of our design process was to come up with the definition of a
high-level algorithm with the ability of being common to all the classifiers
that we made work in an incremental way, and that we are going to describe
in the next sections.
For common, we want to intend the capability of the algorithm’s structure
to adapt to the various types of classifiers that can be used with it. This
implies a great flexibility, because of the fact that the underlying system
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has to be constructed once and can be reused several times just by making
little changes in the initialization phase (e.g. the choice of the classifier to use).

3.1.1 Algorithm definition
As introduced in the previous chapters, we want our classifiers to perform
the retraining operations only on the subset of data D which is collected in
a given amount of time t or that matches a certain amount of information
(e.g. a number of collected samples equal to m).
In this way, the adopted classifier doesn’t have to reconsider information which
has been already processed in previous iterations, but instead analyzes only
recent data, with an operation of partial fitting (which will be described
in a more detailed way later).
From a conceptual point of view, the algorithm we propose is not very
articulated or complex, in fact it could be summarized by the following key
points:

• Collect an amount of data D such that a time window t is met or a
number of samples m is collected;

• Let the adopted classifier C fit on D, via a partial fitting operation: it is
important to denote the fact that, at this step, C is being updated, so
a single instance of the classifier is present for the whole process, and,
iteratively, it is "tuned" by using the new amount of data. Thus, the
knowledge gained by the classifier during the previous iterations is not
lost, instead, it is used as a starting point for the new portion of data;

• Evaluate C to monitor its overall performance;

• Repeat the previous steps when conditions are met again.

Please note that this algorithm doesn’t act as a streaming or online learning
technique: in fact, the retraining process is not performed whenever a new
sample of data arrives, but instead it is completed when the given conditions
are met, exploiting the well known concept of batch.
Of course, to perform the evaluation step, it is necessary to define a test
split over which predictions are made when the retraining is performed: we
decide to define it in the first iteration of the algorithm.
The described algorithm, as it can be noted, follows a very simple logic,
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and this can be considered as an advantage: it aims to solve a problem
which maybe is not fundamental at the initial stages of a ML algorithm in
a production environment, but that, as time passes, gains more and more
importance when a lot of data is collected and has to be reprocessed every
time a retraining of the model has to be performed.
We can provide a more detailed description of the aforementioned algorithm
by the following:

Algorithm 2 Incremental learning algorithm.
procedure Incremental(I, m, t)

2: ó I is the inducer used for defining the classifier
ó m is the number of samples needed before retraining C

4: ó t is the time window needed before retraining C

6: ó Initialization
i← 0

8:
ó Execution

10: while there is the need of training the model do
if i = 0 then

12: D0 ← data collected at the beginning
Dtrain0 ← training split from D0

14: Dtest0 ← test split from D0
C ← I(Dtrain0) ó Starting instance of the classifier

16: Acc0 ← performance metrics of C over Dtest0
else

18: if m samples are collected OR t time has passed then
Di ← data collected in m samples or in time t

20: C ← I(Di) ó Update the classifier with new data
Acci ← performance metrics of the updated C over Dtest0

22: end if
end if

24: i← i + 1
end while

26: end procedure

As it can be observed, it is formulated easily, and it is very simple to be
understood: this, for what concerns us, was one of the main objectives of
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the work. In fact, we wanted to provide a solution that, at least from a high
level, could be interpreted easily even by company figures who do not deal
frequently with ML approaches.

In the following sections, we are going to discuss how we implemented it
for the various classifiers taken into consideration, describing also the initial
conditions with which we had to deal with. But, before doing that, it is
necessary to explain the concept of partial fitting and how it relates to the
various models.

3.1.2 Partial fitting
The concept of partial fitting is one that is gaining more and more importance
in ML. The idea lying behind it is the following: there are situations in
which estimators have to be trained on very big amounts of data and, as a
consequence, it is not always possible to fit the model with the entire load of
information.
Thus, a particular learning technique can be adopted: Out-of-Core learn-
ing. This technique is used whenever the data which the model needs to
fit on can’t be kept in the computer’s main memory, and actually there are
three main approaches that can be followed in order to deal with it 1:

• Extract non important features from instances so that the size of data
can diminish;

• Define an incremental algorithm;

• Define a way to stream the instances.

In the case under study we have decided to follow the second option, because
of the fact that it is very expensive to maintain an infrastructure able to deal
with the instances in a streaming fashion (e.g. as soon as a sample comes,
process it). Also, we did not want to define a strong discrimination among
the features before the training process.
As it is true that initially, in the given scenario, the amount of available data
is very reduced, we are interested in following this approach in order to have

1https://scikit-learn.org/0.15/modules/scaling_strategies.html
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a good scalability for future situations, since it is likely that the amount of
data will grow exponentially once that the new platform will be published.
Given the incremental algorithm which has been described previously, we
now want to focus on how the fitting operation of the model can be performed
partially, and so by only considering a given amount of data.
It is necessary to say that there isn’t a unique solution for the partial fitting
which can be applied to all the classifiers indistinctly, but instead in each
classifier it has to be performed by following approaches that are a bit differ-
ent.
Here below, we are going to explain how the partial fitting is completed in the
various classifiers that we decided to consider as state of the art techniques,
and so with the Naïve-Bayes classifier, the Random Forest classifier and the
Extra-Trees classifier.

Partial fitting in Naïve-Bayes classifier

As we have explained in chapter 2, we decide to consider in our study a
Naïve-Bayes classifier.
Since the data we have to work on is available in a limited amount (see later)
and that it is strictly categorical, it is correct to assume that the training
data is distributed following a Bernoulli distribution.
In order to understand how the partial fitting can be performed in here, it is
necessary to think about how the model performs the predictions. In the
previous chapter we stated that they are made by the model exploiting the
concepts of MLE and of MAP.
We want to focus mainly on the first of the two mentioned above. The
Maximum Likelihood Estimation for the Bernoulli distribution can be easily
computed and can lead to interesting observations, thus we are going to
perform it from a theoretical point of view here below.
We recall the definition of the Bernoulli distribution:q = 1− p if k = 0

p if k = 1
(3.1)

And also this more compact definition for it:

pk(1− p)1−k (3.2)
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Since we have to deal with multiple features, the expression becomes the
following:

nÙ
i=1

pxi(1− p)(1−xi) (3.3)

The equation defined above, in very simple terms, represents the likelihood
function of p, and so we can rewrite it:

L(p) =
nÙ

i=1
pxi(1− p)(1−xi) (3.4)

In order to compute the MLE, it is way easier to reason in terms of log-
likelihood instead, which is:

l(p) = log p
nØ

i=1
xi + log(1− p)

nØ
i=1

(1− xi) (3.5)

The MLE, as it can be read from the name, consists of determining the
maximum value for the parameter p of the log-likelihood function.
Thus, a partial derivative for p has to be computed:

∂l(p)
∂p

=
qn

i=1 xi

p
−

qn
i=1(1− xi)
(1− p) (3.6)

Given that the log-likelihood function is concave, it is enough to set the
partial derivative equal to 0 in order to find the value of p:

nØ
i=1

xi − p
nØ

i=1
xi = p

nØ
i=1

(1− xi) (3.7)

With a little simplification step, we can easily come up to this:

p = 1
n

nØ
i=1

xi (3.8)

As it can be clear, the parameter p results to be simply the arithmetic
mean of the features.
Thus, it is possible to say that a classifier which is based on this probability
distribution, as the Naïve-Bayes classifier chosen by us, needs only the mean
of the input features in order to perform its predictions.
This observation permits to state that the classifier can be incrementally
trained by updating p in a very simple way: in fact, as it is represented by
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the mean, it can be locally stored in pair with the total number of already
considered input features, and then adjourned just by looking at the new
data points and at the mentioned values.
The tools which we are going to describe and use in the following sections
perform this step completely in an autonomous way and with the method
outlined above, so it is not necessary to give additional details.
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Partial fitting in Random Forest classifier

For what concerns the Random Forest classifier, described conceptually in
chapter 2, the topic of partial fitting is quite delicate.
As far as we have been able to verify, in the literature there aren’t proper
research studies or methods that implement directly the partial fitting
operation in a Random Decision Forest.
Instead, there are several tools - one in particular - which try to perform
something similar by exploiting particular packages that are usually adopted
for parallelization tasks (remember that partial fitting has been firstly defined
in the field of out-of-core learning).
More in detail, the tool taken into consideration deals with the partial fitting
concept in the following way:

• A Random Forest classifier C is defined, with a given amount of estima-
tors (decision trees) N ;

• On the first amount of data which has to be processed, the classifier
C is trained by fitting the N estimators on the data, using rather Gini
impurity or Information Gain as metric;

• For each of the following data batches, additional N estimators are
added to the classifier C: these "new" estimators are the only ones which
will be fitted on the data of the most recent batch.

In this way, in the classifier, there will be a number of estimators dedicated
to a single batch of data, without needing to have all the estimators of the
model to fit on the whole data set.
Of course, a maximum number of estimators has to be defined in order to
not have a resulting model which is very slow and big.
The mentioned tool is going to be presented in the section related to the
implementation, since it is related to the more "practical" part of the problem.
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Partial fitting in Extra-Trees classifier

Since the Extra-Trees classifier is simply a variant of the Random Decision
Forest, there are actually no differences with what has been previously stated
for the random forests. In fact, in this context, the same tool can be used,
and so the partial fitting mechanism adopted in this situation is the same.

Having described the general incremental algorithm and the concept of
partial fitting that has to be exploited in order to make it effective, we can
now discuss about how it has been implemented from a practical point of
view.
In the following, we are going to explain in detail the steps followed in order
to come up with a solution, starting from the data retrieval phases and
arriving then at the various implementations defined for the classifiers taken
into consideration.
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3.2 Implementation

For implementing the algorithm introduced in the previous section, we had
to perform several intermediate steps. In the following pages, we want to
describe all of them exhaustively, starting from a brief description of the
used tools.

3.2.1 Used tools

Nowadays, several programming languages could be used for solving ML
problems: from C++ to Python, or from R to Java. More and more
frameworks are being released for each of them almost regularly, making
thus ML accessible to wider audiences.
In this work, we decided to use Python because of its simple syntax which
leads to a better readability. This is a big advantage, since it permits to
people who is not very confident with coding to understand what is being
described by the analyzed source code.
Python is an object-oriented programming language, and it is available for
free in several versions, where each of them has its own peculiarities. In here,
we have chosen the version 3.7 because of the fact that it is quite recent
(and so more likely to be supported for a longer time) and because of its
good compatibility with the packages that we have favored for solving the
given task.
Detailed information about it, with the related documentation, can be found
at the official website 2.
Also, we have made the decision of using it because of the high offer of ML
frameworks with respect to the other programming languages mentioned
above: in fact, there are lots of them for almost all of the tasks that we can
imagine, from simple ML tasks to more articulated computer vision problems
which need to exploit deep learning techniques.
Since the problem under study is a supervised learning problem, which we
have decided to solve by applying and comparing different algorithms, we
needed a framework offering all of them. This framework is well represented
by scikit-learn.

2https://www.python.org
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Scikit-learn 3 is a very popular open source framework which can be used
also commercially (since it is licensed under the BSD license) that offers a
very large number of tools for performing predictive data analysis tasks. It
is built on top of other very famous Python packages, such as NumPy 4

and SciPy 5, and the problems which it helps to solve are the following:

• Clustering;

• Classification;

• Regression;

• Model selection;

• Preprocessing;

• Dimensionality reduction.

In our case, we used it for performing the classification tasks, and for
evaluating them. It offers a variety of classifiers based on as many algo-
rithms: Naïve-Bayes classifiers, SVMs (Support Vector Machines), Gaussian
Processes, Nearest Neighbors, Decision Trees, Random Forests (with their
variants) and many many others.
As it can be noted, the classifiers which we wanted to try are all offered in
the scikit-learn toolkit, so the choice of the mentioned framework can be
considered coherent.
Last but not least important, scikit-learn, for some of its classifiers, offers a
direct API for performing the partial fitting operation, which is compulsory
for our incremental algorithm.
In our case, the API could be exploited only for the Naïve-Bayes classifier,
since it is not available yet for the Random Forest classifier. In fact, for the
latter, we had to rely on another package which we are going to describe in
the following pages.

Another tool that we have decided to adopt is pandas 6.
Pandas is an open source tool which is built on top of Python, and that

3https://scikit-learn.org/stable/
4https://numpy.org
5https://www.scipy.org
6https://pandas.pydata.org
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offers several ways to manipulate and analyze data in a very efficient way.
Among its interesting features, it can be found that it provides a particular
object calledDataFrame which permits to handle data exploiting integrated
indexing, and so in an efficient and, most importantly, fastly.
It offers interesting approaches exploiting in-memory structures for reading
and writing data, supporting also a wide variety of formats, such as CSV
files, SQL databases or even the HDF5 format.
Among its high number of offered functionalities, it is important to denote
the ability of joining and merging data sets keeping a high performance, and
also the proficiency in performing operations such as slicing, subsetting or
even indexing data sets with a large size. In it, code paths that are consid-
ered critical are written in a lower level language like C, which underlines
the fact that it has been developed in order to maintain standards of high
performance.
We employed it primarily for manipulating the different data sources repre-
senting the customers’ information and the restaurateurs’ information, in
such a way to join them correctly and define properly the inputs for the
various classifiers.

As mentioned previously, the partial fitting API offered by scikit-learn is
not available yet for all the classifiers. Among the excluded classifiers, we
can find the Random Forest classifier.
Because of this, we had to search for alternatives offering something similar,
and we luckily found IncrementalTrees.
IncrementalTrees is an open source library, available on GitHub 7, which
can be used for commercial purposes, as it has a MIT license.
The goal of this library is to provide the partial fitting API offered by
scikit-learn for the Random Forest classifier and for its variants (such as the
Extra-Trees classifier), in order to allow incremental training also in them.
As it is stressed from the authors of the library, it doesn’t directly implement
partial fitting for single decision trees (e.g. for Decision Tree classifiers),
rather it removes the requirement that in a Random Decision Forest the
individual decision trees are always trained with the same data.
This approach, generally, requires that the number of weak learners is
increased (probably), but it "reduces memory burden, training time and

7https://github.com/garethjns/IncrementalTrees
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variance", the authors claim.
For achieving this, the mentioned library exploits another library, which is
Dask 8.
Dask is a library born for performing parallel computing tasks in Python.
Among its interfaces, it provides scalable ML by working at the side of other
libraries, such as scikit-learn.
In fact, it tries to provide a single unified interface around familiar APIs of
scikit-learn, pandas and NumPy, in such a way that whoever is familiar with
them can easily use also this.
A nice feature which is offered by the library is the ability of dealing with
IL tasks. As a matter of fact, it provides a bridge between scikit-learn and
Dask by wrapping the needed scikit-learn estimator in its Incremental
meta-estimator.
A meta-estimator is an estimator which takes in input another estimator,
and in this case it permits to use the concept of Dask Arrays wherever a
scikit-learn estimator expects NumPy arrays 9.
Coming back at the IncrementalTrees library, it provides incremental
versions of the following models:

• Random Forest classifier;

• Extra-Trees classifier;

• Random Forest regressor;

• Extra-Trees regressor.

In this work, we have used the first two.

The last library that we used was matplotlib 10.
Matplotlib is a library that permits to create static, animated, and also
interactive visualizations in Python. It is an open source project, of which
the first version has been implemented by John Hunter [30].
We adopted it extensively in the experimental validation phase of our work,
which is described in a detailed way in the next chapter.

8https://docs.dask.org/en/latest/
9https://ml.dask.org/incremental.html

10https://matplotlib.org

31

https://docs.dask.org/en/latest/
https://ml.dask.org/incremental.html
https://matplotlib.org


Design and implementation

After having introduced the various tools that we have used, we can now
describe all the steps that we had to face in order to implement the designed
IL algorithm from a practical point of view.

3.2.2 Data retrieval
The first operation that was needed to be performed was the retrieval of the
data necessary for training the model.
As it has been described in chapter 2, the data related to customers and
restaurants is collected via ad hoc forms made available to the platform users
through Google Forms. Even if it could seem easy to retrieve the gathered
data from the filled in forms and work on it, this was not possible.
This is because of the fact that, up until now, the forms adopted by the
company are still referring to an old structure which it is planned to be
dismissed in the future, and to be substituted with another configuration
which collects all the information described in the statement of the problem.
Thus, we had to find a workaround and behave in a different way: in fact, we
committed to generate "fake" data instances using mock information. This
can be also justified by the fact that the pandemic which we are still facing
had a huge impact on the job market in the catering world: there has been
a significant decrease in the offer from restaurateurs, being the restaurants
closed for very long times and constrained to follow the various preventive
rules given by the Ministry of Health.
Hence, we now want to describe entirely the process with which it has been
possible to generate a fictitious data set able to represent the real situation
of the platform.
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3.2.3 Data generation
As it has been made clear by the company with which the work has been
conducted, the available amount of data was low and there weren’t the
conditions for which it could have become accessible in a short time.
For this reason, we agreed to proceed with the generation of a fictitious data
set able to represent the typology of information which the platform would
have been ready to collect in the future.
To do this, the first thing we did was to consider all the needed features by
the platform (and thus by the model), by distinguishing what was demanded
for the candidates, and what for the restaurateurs.
They are listed in the problem statement, but in order to be more clear, we
are going to indicate them also in here.
Needed features for the candidates:

• Sector;

• Time availability;

• Workshift;

• Premise;

• Start Time;

• Transport type;

• Transfers availability;

• Gender;

• Address;

• Name;

• Surname;

• Birth date.

Instead, for the restaurateurs:

• Restaurant name;

• Referent;
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• Address;

• Management type;

• Restaurant type;

• Cuisine type;

• Customer type;

• Number of employees;

• Average served people;

• Average price;

• Opening days;

• Workshifts;

• Contact;

• E-mail;

• Telephone.

First of all, we decided to generate the data sources separately. So, we
devoted a Python script to the candidates generation, and another script to
the formation of the information related to restaurateurs.

Constant values

Starting from the candidates, we defined some constant data structures in
order to represent the possible values that the various features can take.
For example, we designated a constant set of italian common names to be
assigned to the applicants, differentiated by gender (e.g. ["Mario", "Luca",
"Luigi", ...] for males and ["Sofia", "Giulia", "Aurora", ...] for females), and
a constant set of common surnames, like ["Bianchi", "Rossi", "Verdi", ...].
For the attributes that we consider strong, and so those attributes that the
applicants are forced by the platform to choose from a given set of possibilities,
we had to deal with all the possible values, which are the following:
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• Sector: ["Saloon", "Kitchen", "Cafe"];

• Time availability: ["Full", "Part", "Call", "Weekends"];

• Workshift: ["Breakfast", "Lunch", "Dinner"];

• Premise: ["FastFood", "Risto-pub", "Pizzeria", "Farmhouse", "Diner",
ecc.];

• Start Time: ["Now", "NextWeek", "NextMonth"];

• Transport type: ["Car", "Motorbike", "Bike", "PublicTransport", ecc.].

For the Transfers availability attribute, which is provided through a
yes/no option, we decided to use simple a boolean flag. We adopted a similar
approach for the Gender feature of the candidate.
For what concerns the Address, we determined also in this case a constant
data structure listing the most important cities in Italy, like ["Torino", "Mi-
lano", "Venezia", "Roma", "Bologna", ecc.]. Because of the fact that, in any
case, the platform used in production will perform a filtering task a priori by
considering candidates and restaurants in the same city, we made the choice
of considering only the 10 most common cities in Italy. This has been done
mainly for the sake of simulating in a more accurate way the real scenario.
For each city, we created a CSV configuration file listing the most known
streets of the city represented by the file. This has been done in order to
declare a sort of helper function able to generate addresses which are some
sort of real, at least for the pair city-street name (see later).
Instead, for defining birth dates having sense, we chose to set thresholds for
the year, represented by the inclusive range [1965, 2000]. To obtain valid
birth dates, we made the decision of using only days from 1 to 28, which are
present for all the months of the year.
By the way, the birth date is not one of the attributes that is used for
matching a given candidate with a restaurateur, so, like others, it has been
generated for being the most faithful as possible to the real situation.

For the restaurants, we followed a very similar approach, with some small
changes. In fact, for the attribute Restaurant name, we wanted to keep the
data generation process very simple, so we simply defined a constant prefix
for it, such as "Restaurant". In the generation phase it has been exploited
and paired to an index - different for each restaurant entry - in order to have
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distinct names.
The exact same thing has been done for the Referent feature, by using
instead as prefix the constant value "Restaurateur".
The Address attribute has been managed in the same manner described for
the candidates.
Also in here, for those attributes that we consider strong, we decided to
adopt constant data structures aiming at keeping all the possible values for
each of them.
We recall the entire set of possible values:

• Management type: ["FamilyRun", "SoleProp", "Franchise"];

• Restaurant type: ["Cafe", "Brewery", "FastFood", "Starred", ecc.];

• Cuisine type: ["Homemade", "Gourmet", "Minimal", "Piedmontese",
"Vegetarian", ecc.];

• Customer type: ["Young", "University", "Office", "Families", "Infor-
mal", ecc.];

• Number of employees: ["Less5", "5And10", "10And15", "15And20",
"More20"];

• Average served people: ["Less30", "30And60", "60And100", ecc.];

• Average price: ["Less15", "15And20", "20And30", "More30"];

• Opening days: ["Monday", "Tuesday", "Wednesday", "Thursday", "Fri-
day", "Saturday", "Sunday"];

• Workshifts: ["Breakfast", "Lunch", "Dinner", "Pub"];

• Contact: ["Mail", "WhatsApp", "SMS", "Phone", "Facebook"]

For the E-mail attribute, as we did not want to use real addresses, we simply
defined a common suffix "@mail.com" to be preceded by the Restaurant
name value while generating data, in order distinct values also for this
feature.
We behaved similarly with the Telephone attribute, by designating a con-
stant prefix like "+393310123" to be followed by a unique index associated
to each restaurant entry.
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Now that we have explained the basic configuration which we exploited
for generating the fictitious data, we are going to describe how the two mock
data sources have been generated.

Generation

As we have mentioned previously, we made the decision of dedicating a script
for the generation of data related to the candidates and another one for the
information of the candidates.
We followed a very similar approach in both of them, and now we want to
describe it, starting from the generation of the candidates.
What we had in mind was to obtain a file in CSV format containing all
the information related to the applicants. To do this, we simply used the
filereader and filewriter APIs provided by default in Python.
Since the type of data that we had to deal with - as it can be noted - was
strictly categorical, we wanted to assume a Bernoulli probability distribution
for the features. In order to do this, we had to format the CSV header
properly.
In fact, we desired to have a data set which could have been used directly
with all the classifiers that we wanted to test. As the RF classifier and the
ET classifier (in both standard and incremental versions) don’t have strict
requirements in how - intending the structure - data should be provided to
the model, some constraints have to be respected for the input data in the
case of the BernoulliNB Naïve-Bayes classifier offered by scikit-learn 11.
That particular classifier requires that the data provided in input is formatted
only through binary features. So, we agreed in defining a data set in which
all the attributes are expressed with binary values, and so with values equal
to 0 or equal to 1.
For achieving this situation, we prepared the CSV file header by defining
one column for each possible value of each categorical (or strong) feature
described previously. Conceptually, something like this:

• Sector -> columns Sector_Saloon, Sector_Kitchen, Sector_Cafe;

11https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
BernoulliNB.html
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• Time availability -> columns Time_Full, Time_Part, Time_Call,
Time_Weekends;

• Workshift -> columns Workshift_Breakfast, Workshift_Lunch, Work-
shift_Dinner ;

• Premise -> columns Premise_FastFood, Premise_Risto-pub, ecc.;

• Start Time -> columns Start_Now, Start_NextWeek, ecc.;

• Transport type -> columns Transport_Car, Transport_Motorbike,
Transport_Bike ecc.

For the attributes Transfers availability and Gender, as we mentioned
previously, we used boolean flags, which in this context have been translated
into the columns Transfers_Yes, Transfers_No for the first, and the columns
Gender_Male, Gender_Female for the second.
The column for the Address remained Address without the need of being
"separated", since it did not represent a categorical feature.
Having defined all the needed columns for all the categorical attributes, it
has been possible to define the complete header for the desired CSV file
representing the candidates data source: this has been done by exploiting
the filewriter API briefly introduced in the previous page.
After the definition of the header, data had to be finally generated. In order
to not dedicate a very long time for this task, and to mimic the real situation
of the system for which the available amount data was limited, we decided
to create a number of candidates equal to 150.
This has been done simply by keeping the CSV file open, and perform 150
iterations in the open stream. In each iteration, we set up a random value
(or a set of random values) for each of the categorical features. The value - or
values, in case of multiple choices available for an attribute - has been used
to extract one or more options from the constant data structure representing
the set of possibilities for a feature.
After the options have been extracted from the constant data structures,
we had to map them properly to the various columns of the header. For
doing this, we implemented a helper function for each attribute, and in it
we used dictionaries where the keys were represented by a header (e.g.
"Premise_FastFood") and the values by the binary 0 or 1.
With a little portion of code, we checked the extracted value and we provided
a suitable mapping for the CSV file.
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A little exception was made for the Transfers availability and theGender.
For the first, we selected a random number r between 0 and 1, leading to
the following consequences:

1. if r = 0: Transfers_Yes = 0 and Transfers_No = 1;

2. if r = 1: Transfers_Yes = 1 and Transfers_No = 0.

Instead, for the second, we did something different. As a matter of fact, for
the sake of simplicity, we decided to perform a check on the current index i
of the iteration:

1. if i was even: Gender_Male = 1 and Gender_Female = 0;

2. if i was odd: Gender_Male = 0 and Gender_Female = 1.

The operation described above permitted to have an equal number of males
and females, and also made possible to generate correctly the names and
surnames for the candidates: by checking the value of i, we had been able to
know if we had to extract a random name from the male ones, or from the
female ones.
In order to not come up with duplicate names, we designed an appropriate
function checking the existence of a given name in the available collection,
that when finds an occurrence it takes in charge the re-generation of the
name-surname pair.
Previously, we mentioned that in order to generate the Address we used a
configuration CSV file for each city available in the data structure representing
them.
More precisely, we defined a file for each city, containing the most common
streets of the related city and the various neighborhoods in which they are
located. From a helper function, we build a dictionary containing all the
associations city-neighborhood-street, and from another we permit to extract
a valid address.
In this way, it was possible to assign an address to a candidate.
The Birth date, instead, was simply created by extracting three random
numbers:

• one in the inclusive range - mentioned in the previous pages - describing
the thresholds for the birth years;

• one in the inclusive range [1,12], for defining a month;
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• one in the inclusive range [1,28], for selecting a day available in all the
months and avoid invalid dates.

After the extraction of all the needed information from the various data
structures, it has been possible to finally write an entry representing a
candidate in the CSV file. This was the last step for the creation of the fic-
titious candidates, so we can now focus on the generation of the restaurateurs.

For the restaurateurs - as mentioned - we decided to follow a similar
approach. In fact, the first thing that we did was to define properly the
header of the CSV file, in such a way to be used directly with all the classifiers
under study.
The header definition mimed the one previously described for the candidates,
and it has been done again by defining a column for each possible value of
each categorical feature. And so, in the following way:

• Management type -> columns Mgmt_Family, Mgmt_SoleProp, ecc.;

• Restaurant type -> columns Rest_Cafe, Rest_Brewery, ecc.;

• Cuisine type -> columns Cuisine_Homemade, Cuisine_Gourmet,
Cuisine_Minimal, ecc.;

• Customer type -> columns Cust_Young, Cust_University, ecc.;

• Number of employees -> columns Emp_Less5, Emp_5And10, ecc.;

• Average served people -> columns People_Less30, People_30And60,
ecc.;

• Average price -> columns Price_Less15, Price_15And20, ecc.;

• Opening days -> columns Opening_Monday, Opening_Tuesday, ecc.;

• Workshifts -> columns Workshift_Breakfast, Workshift_Lunch, ecc.;

• Contact -> columns Contact_Mail, Contact_WhatsApp, ecc..
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The columns related to the non-categorical attributes like Restaurant
name, Referent and Address did not need to be decoupled as the previous
ones.
At that point, we have been able to write the correct header in the file.
Also in here, for saving time and staying loyal to the real scenario, we decided
to create a number of restaurateurs equal to 150. The generation of these
entries for the CSV file related to the restaurants information has been
performed with the same methodology of the other data source: so, we
iterated 150 times in the open file stream.
In each iteration, denoted by the index i, we again extracted a random
number for each categorical feature. These numbers - as in the case of the
candidates - are used to get one or more possible values from the constant
data structures representing the possible choices for the attributes, simply
by accessing them by index.
Again, we exploited a helper function to perform a mapping among the
extracted values and the header columns, in the same way described for the
other data source.
For what concerns the Restaurant name and the Referent, we directly
used the iteration index i as a suffix for the various prefixes mentioned in
the preceding pages, like in the following:

• i = 0 (first entry) -> Restaurant1 and Restaurateur1 ;

• i = 5 (sixth entry) -> Restaurant6 and Restaurateur6.

The Address for the restaurant was retrieved with the same procedure
explained for the other data source, while the Telephone and the E-mail
have been again defined by taking advantage of the index i and the predefined
prefix and suffix:

• i = 0 (first entry) -> restaurant1@mail.com and +393310123001 ;

• i = 99 (entry n°100) -> restaurant100@mail.com and +393310123100.

At this point, it has been conceivable to have a data source able to represent
also the restaurateurs.

Having the two needed data sources, the next step that we had to deal with
was the generation of the labels to be used in the training and evaluation
phases of the model. We are now going to describe how this has been done.
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Defining the labels

In order to train - and also to test - supervised learning models, it is necessary
that the used data set contains labels.
In the situation under study, a label should be assigned to each candidate-
restaurateur couple. We decided to call this label Affinity score, and we
assumed the following possible values for it:

• y = −1 for denoting a "no-match" situation: the candidate and the
restaurateur are not compatible at all;

• y = 0 for denoting a "possible match": the candidate and the restau-
rateur have a slight compatibility;

• y = 1 for denoting, instead, a "match": the candidate and the restau-
rateur are compatible.

The situation represented by the affinity score y = 0 has the aim of assigning
some candidates to those restaurants for which, in the real case, there won’t
be any matches.
Since the number of labels is higher than two, this supervised learning
problem is considered to be a multi-class one.
The process of assigning the affinity scores to the data sources generated in
the previous steps has been completed with the help of the company. They
cooperated with us by analyzing a part of the couples candidate-restaurateur,
looking at the various attributes in order to find a degree of affinity.
For saving time, it has been made the decision to define manually only a
number of affinity scores equal to 25, for each candidate.
The 25 restaurateurs for which the score has been provided faithfully have
been chosen iteratively, meaning that, in the case of the first candidate,
the labels were provided for the first 25 restaurants, while for the second
candidate the scores were given from the 26th restaurateur to the 50th, and
so on.
Initially, for the 125 restaurateurs not considered with a candidate, we used as
default label y = 0. Anyway, this proved to be inappropriate: the resulting
set of scores had a vast majority of "possible matches", influencing in a
negative way the models.
Thus, for each candidate, we decided to keep the scores related to the
associations with 25 restaurateurs, and no more.
We made the decision of keeping these affinity scores in an appropriate CSV
file, declared with the following column headers:
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• Candidate_Id;

• Restaurant_Id;

• Affinity_score.

Once that the affinity scores have been defined, we had the need of building
properly the actual data set to be used as input.
We are now going to describe what we did in order to achieve this goal.

Merging the data sources

As we have described in the previous pages, we arrived at a point in which
we had three data sources:

1. A data source for the information related to candidates;

2. A data source for the information related to restaurants;

3. A data source for the affinity scores.

In order to have a consistent data set, the mentioned sources had to be
merged properly, in such a way to have entries representing the following
information:

• Candidatei, Restaurantj, Scoreij

For doing this, we exploited pandas and its functionalities.
More in detail, we started by copying the content of the various CSV files
representing the sources into three separate DataFrame objects, one for
each source. Then, we performed some additional operations on them.
Starting from the DataFrame related to the candidates, we decided to remove
those attributes that we did consider as not fundamental for the matching,
which are:

• Address, because of the a priori filtering performed by the application’s
back-end;

• Name;

• Surname;
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• Gender, represented by the two columns Gender_Male and Gen-
der_Female;

• Birth date.

More precisely, we established that the matching between a candidate and a
restaurateur should be performed by taking into account only those attributes
that can be considered as sort of common between the sources, avoiding thus
a useless and wrong overhead.
We did a similar thing in the DataFrame related to the restaurateurs, by
removing the following features:

• Restaurant name;

• Referent;

• Address, also here because of the a priori filtering;

• E-mail;

• Telephone.

Then, we performed a first merge between the candidates and the restaurants,
by paying attention to respecting the structure outlined in the data source
related to the affinity scores.
This has been done by defining a fake pivot attribute on the two DataFrame
instances, and by using the merge API offered by pandas. Afterwards, the
result of the merge has been written to a single DataFrame exploiting the
concat functionality.
Of course, several checks have been made to guarantee consistency with the
arrangement of the scores and, at merge completion, the pivot attribute has
been dropped.
At this point, the labels were still missing in the DataFrame.
For that, we removed first the useless information from the DataFrame related
to the affinity scores, such as the Candidate_Id and the Restaurant_Id:
subsequently, we again exploited the concat functionality to have a single
DataFrame representing the entire data set.
Finally, we exported the DataFrame to a CSV file.
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Having the complete data set, we have then been able to implement
the IL algorithm - with the various incremental models - and the standard
approaches, to be used as a benchmark.
In the following pages, we want to discuss about how this has been done.

3.2.4 Incremental models
In order to implement the IL algorithm described in the previous section,
the needed code was not much.
Starting from the very beginning, the first thing we did was to divide the
entire data set into a training and a testing portion. We decided to use
for training the 80% of the original data set, and thus the 20% for testing.
Since the platform was offline at the time of this work, we had the need of
simulating an environment in which new - or unseen - data was available,
such that the various models could be trained with an incremental approach.
For doing this, we chose to define a variable called split factor.
The split factor had the goal of splitting the training data set into chunks,
to be used iteratively as new samples for our models. In this way, it was
at least possible to simulate the satisfaction of the IL algorithm’s condition
related to the collection of m samples.
For example, knowing that the original data set had information for 150
candidates, and that for each candidate we had a number of restaurants
associated equal to 25, it is evident that the length - in terms of number of
entries - (or cardinality) of the data set was 150 ∗ 25 = 3750.
Keeping as training data set the 80% of it, it can be said that 3000 samples
were available for performing the incremental training.
Assuming a split factor s = 6, for example, it was possible to define six
chunks of 500 samples each.
In the chapter related to the experimental validation, we assumed different
values for the split factor, in order to compare the various results and to find
the most appropriate one for the needs of the company.

Coming back at the implementation aspect, once that we defined the
approach for simulating the arrival of new data to the system, the IL algorithm
was pretty straightforward to implement.
In that context, the initial thing to do was to instantiate the incremental
model to be used.
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As mentioned before, we considered three different models:

• BernoulliNB as the NB classifier provided by scikit-learn;

• StreamingRFC as the RF classifier provided by the IncrementalTrees
library, which is an extension of theRandomForestClassifier available
in scikit-learn;

• StreamingEXTC as the ET classifier provided by the IncrementalTrees
library, which is an extension of the ExtraTreesClassifier available in
scikit-learn.

For the BernoulliNB, we chose to not set any particular parameter in the
definition of the model, keeping it thus with its default configuration.
Instead, for the other two classifiers based on the RF, we had to provide the
following parameters:

• n_estimators_per_chunk, which defines the number of estimators
that will be learned during the training over a chunk;

• max_n_estimators, that sets a threshold for the number of learners
in the forest. It can be also set to NumPy’s infinite.

Also for the n_estimators_per_chunk we tried out several values, which
will be listed in the next chapter. Instead, for the max_n_estimators we
assumed infinite, since we did not want to give a constraint on the forest’s
size, letting it instead grow on its own.
With the models defined, we have then been able to implement the IL
algorithm simply by looping s times.
In each iteration i, we retrieved a different chunk of data Di, and we used it
to partially fit the models. To fit partially a model, both scikit-learn and
IncrementalTrees provide a partial_fit API: it simply requires in input the
set of features - denoted by X - and the set of labels - denoted by y - of the
current chunk.
After the completion of the partial fitting in the iteration, we computed
the performances of the models at the step i, by predicting the labels for
the testing set previously defined. For this task several metrics have been
considered, which will be explained in detail in the following chapter.
At the end of the loop, it was possible to consider the IL algorithm as
implemented.
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What we did later was to implement the standard models, in order to
have a comparison and to draw some conclusions about the obtained results
in the incremental versions.

3.2.5 Standard models
As already said, for being able to state the quality of the obtained incremental
models, we decided to implement also their standard versions.
In order to do this, we simply considered the entire data set, without splitting
it in chunks. But, as in the incremental implementation, we derived from
it a training set and a testing one, with proportions respectively equal to
the 80% and the 20% of the original set.
Then, we instantiated the following standard models:

• BernoulliNB as the standard NB classifier;

• RandomForestClassifier as the standard RF classifier;

• ExtraTreesClassifier as the standard ET classifier.

All the models mentioned above are provided by scikit-learn.
As in the incremental implementation, the BernoulliNB has been defined
without any parameter, keeping thus its default configuration.
For what concerns instead the RandomForestClassifier and the ExtraTreesClas-
sifier, the following parameters have been set in their definition:

• n_estimators, representing the total number of estimators present in
the forest;

• criterion, representing the metric used by the forest in order to deter-
mine the best attribute for performing the splitting (e.g. ’gini’ for the
Gini impurity, or ’entropy’ for the Information Gain).

In order to train them, it has been enough to use the fit function, which
behaves in the same manner of the partial_fit used for the incremental
models: in fact, it takes in input the set of features X and the set of labels y.
Then, after the completion of the training, we let the various models perform
the predictions on the test data set, in order to evaluate their performances.
At that point, the entire system has been considered ready for its experimental
validation, which will be described later.
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Having described the entire implementation process that we had to face,
from the data retrieval to the accomplishment of the incremental models, we
now want to give a short review about the code has been organized.

3.2.6 Code structure
Earlier, some hints regarding the structure of our code have been given.
In here, we want to dig deeper and provide a complete overview of how the
various portions of code have been organized.
We destined a Python script for each data source to be generated: thus, we
had a script for the candidates and one for the restaurants.
Each of them relied on some helper functions. We decided to have all of
these functions in a unique place, so we had also a script dedicate to them
only.
The various functions, on their own, relied to some CSV configuration files,
like in the case of the streets and neighborhoods of a city. All of these files
have been kept in other folders outside the project, separated properly by
city name.
Then, for merging the two data sources - three if we want to consider also the
file containing the labels - we used again a separate script, which provided
at output the complete data set in CSV format.
Finally, we dedicated one Python script for the IL algorithm implementation,
and another one for the standard one.

Now that the design and the implementation of our solution to the problem
stated in chapter 2 have been explained, we can focus on its experimental
validation.
In the next chapter, we are first going to list and describe all the performance
metrics that we used, and then we are going to show the obtained results.
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Chapter 4

Experimental validation

After having implemented the IL algorithm, it was needed to establish its
performance by comparing it to its standard counterpart. In order to do this,
and to obtain the best configuration possible for the models, we measured
the quality by adopting several performance metrics.
In this chapter, we want to explain in a detailed manner the chosen metrics,
and then we want to show the results obtained with the various configurations.

4.1 Metrics
As introduced, we first want to list and describe the metrics that we have
chosen for drawing our conclusions about the solution provided for the
problem stated in chapter 2.
We decided to use the following performance metrics:

• Confusion matrix;

• Accuracy;

• Precision;

• Recall;

• F1-score;

• Macro averages;

• Weighted averages;
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• Execution time.

The choice of considering a number of metrics this high was mainly due to
the fact that we wanted to have a broader knowledge of what was happening
under the hood in the various models: this permitted us to establish clearer
if, for the problem under study, the incremental approaches were better than
the standard ones.
We now want to focus on each metric, describing it in an accurate way.

4.1.1 Confusion matrix
The confusion matrix is in absolute the most important metric in the field of
ML. From it, in fact, it is possible to derive almost all of the other metrics
listed above.
This matrix has been also defined as Error matrix by Stephen Stehman in
[31], and it is provided through a specific table design in order to visualize
the performance of a classification algorithm.
In it, each row has the role of representing the number of instances predicted
for a given label, while each column acts as a depiction of the number of
actual instances of a given label.
Also, it can be seen as a special version of contingency table.
In a binary classification task, its layout would be the following:

Label y y = 1 y = 0
y = 1 TP FP

y = 0 FN TN

Table 4.1: Confusion matrix layout in a binary problem

From this basic layout, four values can be differentiated:

• TP (True Positives): it represents the number of actually positive
samples that have been predicted as positive by the classifier, making
thus a correct classification;

• FP (False Positives): it represents the number of actually negative
samples that the classifier has predicted as positive, making a mistake
in the classification;
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• FN (False Negatives): it represents the number of actually positive
samples that the classifier has wrongly predicted as negative;

• TN (True Negatives): it represents the number of actually negative
samples that the classifier has correctly predicted as negative.

In the case under study, that is a multi-class classification problem, we
imagined the confusion matrix structure to be the following:

Affinity score y y = 1 y = 0 y = −1
y = 1 T1 F10 F1−1

y = 0 F01 T0 F0−1

y = −1 F−11 F−10 T−1

Table 4.2: Confusion matrix layout in the multi-class problem

From the table above, instead, we can derive these values:

• T1: it represents the number of "match" situations correctly predicted
by the classifier taken into consideration;

• F10: it represents the number of "possible match" situations for which
the classifier has wrongly predicted a "match";

• F1−1: it represents the number of "no match" cases for which the
classifier has wrongly predicted a "match";

• F01: it represents the number of "match" situations for which the
classifier has wrongly predicted a "possible match";

• T0: it represents the number of "possible match" situations that have
been correctly predicted by the classifier;

• F0−1: it represents the number of "no match" situations for which the
classifier has wrongly predicted a "possible match";

• F−11: it represents the number of "match" situations for which the
classifier has wrongly predicted a "no match";

• F−10: it represents the number of "possible match" situations for
which the classifier has wrongly predicted a "no match";

51



Experimental validation

• T−1: it represents the number of "no match" situations that have been
correctly predicted by the classifier.

From this layout, almost all of the other metrics can be derived. In the
following sections, we want to explain how.

4.1.2 Accuracy
The accuracy is a performance metric that is directly derived from the
confusion matrix.
Probably, it is one of the simplest that can be found, and it simply represents
the ratio of the number of samples correctly predicted by the classifier over
the total number of samples.
Keeping in mind the values of the confusion matrix described in the previous
section, it can be said that the equation for computing the accuracy of binary
classifier is the following:

Accuracy = (TP + TN)
(TP + FP + FN + TN) (4.1)

As it can be seen, the sum (TP + TN) represents the total number of samples
correctly classified, while (TP + FP + FN + TN) is simply the totality of
samples.
Instead, by looking at the confusion matrix for the multi-class problem, the
accuracy equation becomes the following one:

Accuracy = (T1 + T0 + T-1)
(T1 + F10 + F1-1 + F01 + T0 + F0-1 + F-11 + F-10 + T-1)

(4.2)

This one has been used in the current study.
As comfortable and good as it can seem, the accuracy metric is not always a
pure source of truth.
With highly unbalanced data sets, for example, it could easily happen that
the classifier learns to predict only the most frequent label, without knowing
absolutely nothing for the other/s.
In a situation like this, the accuracy would be high, but actually the classifier
would perform really bad, by predicting always the same label.
That’s why it is important to consider also other performance metrics, espe-
cially when the used data set is not perfectly balanced.
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4.1.3 Precision
Precision is another very common metric.
It is also called Positive Predictive Value and, in a classification task,
it has the goal of representing the ratio between the number of correctly
predicted positive items - i.e. the true positives - and the total number
of elements that the classifier predicted as positive - i.e. the sum of true
positives and false positives.
In the binary case, its formula can be written in the following way:

Precision = TP

(TP + FP ) (4.3)

In this way, it is possible to tell how many samples are really positive from
all the ones predicted as positives by the classifier.
In a multi-class problem, the computation of this metric should be performed
for each one of the classes.
Thus, in this study, there would be the need to compute three separate preci-
sion values, which we decide to call Precision1, Precision0 and Precision−1.
Precision1 is the precision which is computed for the class y = 1, and so for
the "match" situations. The following equation is used:

Precision1 = T1

(T1 + F10 + F1−1)
(4.4)

As it can be seen, the denominator is simply the sum over the first row
related to the label y = 1 of the confusion matrix.
Precision0 is the precision computed for the affinity score y = 0, and so for
the "possible match" cases.

Precision0 = T0

(T0 + F01 + F0−1)
(4.5)

Finally, it is possible to write also the equation for Precision−1, which
instead is related to the "no match" situations.

Precision−1 = T−1

(T−1 + F−11 + F−10)
(4.6)
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4.1.4 Recall
The Recall, also known as Sensitivity or True Positive Rate (TPR) is
a very important metric.
It has the goal of representing the ratio between the number of positive
samples that are correctly classified by the classifier - i.e. the true positives
- and the total number of actually positive samples - i.e. the sum of true
positives and false negatives -.
In a binary scenario, this translates into the following formula:

Recall = TP

(TP + FN) (4.7)

In this way, it is possible to establish how many samples are correctly classified
as positives from the actual positives.
Also here, for the multi-class problem, it is necessary to compute a recall
value for each one of the classes: in our case, we defined Recall1, Recall0,
and Recall−1.
Recall1 is the recall value related to the affinity score y = 1, and so for the
"match" cases. It is driven by the following equation:

Recall1 = T1

(T1 + F01 + F−11)
(4.8)

As it can be seen, the denominator is represented simply by the sum of the
values over the column related to the label y = 1 in the confusion matrix.
Recall0, instead, is the recall value for the class y = 0, that represents the
"possible match" situations.
It is computed with the following equation:

Recall0 = T0

(T0 + F10 + F−10)
(4.9)

Ultimately, the recall value related to the affinity score y = −1 is Recall−1.
Its equation is the subsequent:

Recall−1 = T−1

(T−1 + F1−1 + F0−1)
(4.10)
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4.1.5 F1-score
From the precision and recall metrics it is possible to retrieve the F1-score
(F1).
F1 is a metric having the role of measuring the accuracy of a given test, and
in a binary scenario it is computed with the harmonic mean of precision
and recall.
Here its equation:

F1 = 2 · Precision ·Recall

(Precision + Recall) (4.11)

This value can take a value in the range [0,1], and the following considerations
can be made:

• if F1 = 1, the classifier has perfect values for both Precision and Recall;

• if F1 = 0, the classifier has Precision = 0, or Recall = 0.

In the multi-class problem under consideration, it is necessary to derive a
F1 value for each one of the classes available. Thus, we defined F11, F10 and
F1−1.
F11 is the F1 value related to the class y = 1. So, it needs to be computed in
the following way:

F11 = 2 · Precision1 ·Recall1
(Precision1 + Recall1)

(4.12)

Similarly, F10 is the F1 value for the class y = 0, and it can be found by
applying the subsequent equation:

F10 = 2 · Precision0 ·Recall0
(Precision0 + Recall0)

(4.13)

Finally, F1−1 is the F1 value for the "no match" cases, and thus the affinity
score y = −1.
The equation is this:

F1−1 = 2 · Precision−1 ·Recall−1

(Precision−1 + Recall−1)
(4.14)
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4.1.6 Macro average
As explained in the previous pages, in a multi-class problem it is necessary
to compute a metric value for each of the represented labels.
It is easy to understand that having several values could be not so comfortable
for deriving generic conclusions about the classifier being used.
That’s for this reason that the Macro average can be used.
The Macro average is simply the standard average of a given number of
values over the number of classes. In our case, there would be the following
three Macro averages:

• Macro-Precision;

• Macro-Recall;

• Macro-F1

The Macro-Precision is the average of the Precision values previously de-
fined:

Macro-Precision = (Precision1 + Precision0 + Precision−1)
3 (4.15)

Similarly, the Macro-Recall is the average of the Recalls:

Macro-Recall = (Recall1 + Recall0 + Recall−1)
3 (4.16)

And finally, the Macro-F1:

Macro-F1 = (F11 + F10 + F1−1)
3 (4.17)

It can be noted that this metric has a small disadvantage. More in detail,
like the accuracy, it is sensitive to unbalanced data sets: in fact - as it can
be seen on the denominator - it assumes that the different classes are equally
distributed in the data set.
In a data set where one of the classes is a lot less present, it is highly probable
that the Precision and Recall values for the class - and as a consequence
the F1 - are low, decreasing the Macro average value.
That is the reason why we decided to consider also the Weighted average,
which we are now going to explain.
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4.1.7 Weighted average
The Weighted average, similarly to the Macro average, has the goal of
combining several values related to a given metric into a single one.
Instead of computing a standard average - which assumes equal weights for
all the classes -, it is derived by considering the actual number of samples
related to a class as its weight.
Thus, considering a metric M in a multi-class problem represented by a
number of classes y = k, the generic equation can be expressed as:

Weighted-M = (w1 ·M1 + w2 ·M2 + . . . + wk ·Mk)
(w1 + w2 + . . . + wk) (4.18)

The w values represent the various weights for the classes.
For the problem under study, we retrieved the following weighted averages:

• Weighted-Precision;

• Weighted-Recall;

• Weighted-F1.

It is important to denote that the weights can be easily retrieved by summing
up the values present on the fixed columns of the confusion matrix. So, they
would be the following:

• w1 = (T1 + F01 + F−11);

• w0 = (F10 + T0 + F−10);

• w−1 = (F1−1 + F0−1 + T−1).

Having defined the weights, the three metrics described above can be defined.
The Weighted-Precision is the weighted average of the Precision values.
Abbreviating Precision1, P recision0 and Precision−1 into P1, P0 and P−1
respectively, we can write the following equation:

Weighted-Precision = (w1 · P1 + w0 · P0 + w−1 · P−1)
(w1 + w0 + w−1)

(4.19)
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Similarly, we can derive the Weighted-Recall.
Again, we abbreviate Recall1, Recall0 and Recall−1 into R1, R0 and R−1
respectively, and we define the subsequent:

Weighted-Recall = (w1 ·R1 + w0 ·R0 + w−1 ·R−1)
(w1 + w0 + w−1)

(4.20)

Finally, the Weighted-F1 can be defined:

Weighted-F1 = (w1 · F11 + w0 · F10 + w−1 · F−11)
(w1 + w0 + w−1)

(4.21)

In this way, we are able to give to each class its "importance" in the classifier,
without conditioning the metrics.

4.1.8 Training time
The last metric that we chose to consider was the training time.
By training time t we mean the time spent by the classifier to train on a
chunk of data Di at an iteration i in the IL algorithm.
We used it mainly for having an idea about the time spent by the classifier/s
when a partial fitting operation is performed: in this way, it could have been
possible to have a comparison with the time spent by the respective standard
versions when the training is directly executed over the entire data set.
We know that the mentioned metric highly depends on the used hardware,
and so can’t be considered as a pure "truth". Anyway, it helped us to draw
conclusions about the overall implementation of the solution.
For testing purposes, the various training time values have been computed
on a MacBook Pro (Mid 2014) with the following technical characteristics:

• CPU: Intel Core i5 Dual-Core 2,6 Ghz;

• RAM: 8 GB 1600 MHz DDR3;

• Graphics: Intel Iris 1536 MB.

We decided to not use as a metric the entire execution time of the IL al-
gorithm, since in our opinion it wouldn’t be totally fair: the incremental
approaches - being iterative - in our environment would just introduce a lot
of overhead due to the immediate repetition of the partial fit operations,
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causing a higher execution time.
This wouldn’t happen with the standard approaches, in which the training
is performed just once.
It is important to underline the fact that in the real scenario the partial fit
is executed after a certain amount of time/samples, and not as soon as the
training is completed over the previous data chunk.

Having described all the metrics that we chose to adopt, we are now going
to show the obtained results.

4.2 Obtained results
In this section, we want to show the obtained results.
The experiments have been carried by considering different values for the
following parameters:

• Split factor s;

• Number of estimators per chunk Nec (in the incremental models based
on RF and ET);

• Number of estimators Ne (in standard RF and ET);

• Criterion cr (in both incremental and standard models based on RF and
ET).

More in detail, the subsequent values have been used:

• s: [2, 4, 6];

• Nec: [10, 50];

• Ne: [10, 50];

• cr: ["gini", "entropy"].

We are now going to consider singularly the various incremental models, in
comparison with their standard versions.
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4.2.1 Naïve-Bayes classifier
For what concerns the Naïve-Bayes classifier, the tests have been conducted
only considering the various values for the parameter s.
We are now going to show the most relevant information obtained in the dif-
ferent configurations, like the confusion matrices in some of the intermediate
steps of the incremental version, and the derived metrics.

We start by considering a split factor s = 2. In this case, the original data
set is split in two equal parts, thus the partial fitting operation is applied
twice on the incremental model.
Here below, it is possible to see what has been obtained on the various
iterations of the IL algorithm:

i = 1, 2 Precision Recall F1

y = 1 (i = 1) 0.48 0.38 0.43
y = 0 (i = 1) 0.31 0.14 0.19

y = −1 (i = 1) 0.67 0.80 0.73
y = 1 (i = 2) 0.42 0.38 0.40
y = 0 (i = 2) 0.28 0.10 0.15

y = −1 (i = 2) 0.66 0.76 0.70

Table 4.3: Metrics obtained for incremental NB with s = 2

i = 1, 2 Precision Recall F1

M.avg (i = 1) 0.48 0.44 0.45
W.avg (i = 1) 0.57 0.61 0.58
M.avg (i = 2) 0.45 0.41 0.42
W.avg (i = 2) 0.55 0.58 0.56

Table 4.4: Avg metrics for incremental NB with s = 2

It is possible to note that the classifier doesn’t behave good at all, and
even gets worse on the second iteration.
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Anyway, this is also valid for the standard version:

Standard Precision Recall F1
y = 1 0.42 0.38 0.40
y = 0 0.28 0.10 0.15

y = −1 0.66 0.76 0.70

Table 4.5: Metrics obtained for the standard NB

Standard Precision Recall F1
M.avg 0.45 0.41 0.42
W.avg 0.55 0.58 0.56

Table 4.6: Avg metrics obtained for the standard NB

It is also possible to see that what is produced at i = 2 by the incremental
classifier coincides with what is given by the standard one.
For what concerns the accuracy behavior over time, it has been observed that
the one obtained for the incremental model converges to the one provided
by the standard one, with a value ≈ 58%.
In Figure 4.1, it is possible to see that the weighted F1-score of the

incremental model converges to the value obtained with the standard one.
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Incremental vs Standard: F1-score comparison for s=2
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Figure 4.1: F1-score comp. for NB with s = 2

The next test has been executed using s = 4.
In this situation, we considered the metrics obtained for the iterations
i = 1, 2, 4:

i = 1, 2, 4 Precision Recall F1
y = 1 (i = 1) 0.44 0.37 0.40
y = 0 (i = 1) 0.24 0.12 0.16

y = −1 (i = 1) 0.66 0.77 0.71
y = 1 (i = 2) 0.48 0.38 0.43
y = 0 (i = 2) 0.31 0.14 0.19

y = −1 (i = 2) 0.67 0.80 0.73
y = 1 (i = 4) 0.42 0.38 0.40
y = 0 (i = 4) 0.28 0.10 0.15

y = −1 (i = 4) 0.66 0.76 0.70

Table 4.7: Metrics obtained for incremental NB with s = 4
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Instead, the averaged metrics are the following:

i = 1, 2, 4 Precision Recall F1
M.avg (i = 1) 0.45 0.42 0.42
W.avg (i = 1) 0.55 0.58 0.56
M.avg (i = 2) 0.48 0.44 0.45
W.avg (i = 2) 0.57 0.61 0.58
M.avg (i = 4) 0.45 0.41 0.42
W.avg (i = 4) 0.55 0.58 0.56

Table 4.8: Avg metrics obtained for incremental NB with s = 4

It is possible to note a behavior not so different from the test conducted
with s = 2: in fact the incremental classifier, after some time, will settle and
converge again to the standard one, for which the metrics are displayed in
Table 4.5 and Table 4.6.
Also in here, we plotted the trend followed by the weighted F1-score, which
is possible to see in Figure 4.2.
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Figure 4.2: F1-score comp. for NB with s = 4
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The last test on the Naïve-Bayes classifier has been conducted with a split
factor s = 6.
The following metrics have been obtained:

i = 2, 4, 6 Precision Recall F1
y = 1 (i = 2) 0.44 0.36 0.40
y = 0 (i = 2) 0.20 0.08 0.11

y = −1 (i = 2) 0.65 0.78 0.71
y = 1 (i = 4) 0.44 0.38 0.41
y = 0 (i = 4) 0.27 0.16 0.20

y = −1 (i = 4) 0.67 0.77 0.71
y = 1 (i = 6) 0.42 0.38 0.40
y = 0 (i = 6) 0.28 0.10 0.15

y = −1 (i = 6) 0.66 0.76 0.70

Table 4.9: Metrics obtained for incremental NB with s = 6

Regarding the averaged ones, instead:

i = 2, 4, 6 Precision Recall F1
M.avg (i = 2) 0.43 0.41 0.41
W.avg (i = 2) 0.54 0.58 0.56
M.avg (i = 4) 0.46 0.43 0.44
W.avg (i = 4) 0.56 0.59 0.57
M.avg (i = 6) 0.45 0.41 0.42
W.avg (i = 6) 0.55 0.58 0.56

Table 4.10: Avg metrics obtained for incremental NB with s = 6

As in the previous two tests, the incremental classifier converges to the
standard one, but the overall bad metrics obtained suggest to not adopt this
model for this particular problem.
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Also here, the weighted F1-score trend has been monitored, and can be
seen in Figure 4.3.
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Figure 4.3: F1-score comp. for NB with s = 6

In the following section, we are going to discuss about the tests carried out
for the incremental RF classifier.

65



Experimental validation

4.2.2 Random Forest classifier
For the RF classifier, we have carried out a higher number of tests with
respect to the NB classifier.
This was necessary, because of the fact that the RF - in addition to the
split factor s - depends also on the number of estimators per chunk Nec (in
the incremental version), on the number of estimators Ne (in the standard
version), and on the criterion cr used for performing the splitting.

The first test that we performed was with s = 2 and cr = ”gini”.
In it, we considered N = Nec = Ne = 50 and N = Nec = Ne = 100.
The following metrics have been derived:

i = 1, 2 Precision Recall F1
y = 1 (i = 1, N = 50) 0.86 0.73 0.79
y = 0 (i = 1, N = 50) 0.50 0.19 0.28

y = −1 (i = 1, N = 50) 0.82 0.97 0.89
y = 1 (i = 2, N = 50) 0.87 0.81 0.84
y = 0 (i = 2, N = 50) 0.70 0.09 0.16

y = −1 (i = 2, N = 50) 0.83 0.98 0.90
y = 1 (i = 1, N = 100) 0.84 0.72 0.77
y = 0 (i = 1, N = 100) 0.42 0.10 0.17

y = −1 (i = 1, N = 100) 0.81 0.97 0.88
y = 1 (i = 2, N = 100) 0.88 0.84 0.86
y = 0 (i = 2, N = 100) 0.60 0.08 0.14

y = −1 (i = 2, N = 100) 0.84 0.99 0.91

Table 4.11: Metrics for incremental RF with s = 2, cr = ”gini”
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Instead, the averaged ones are the ones depicted in Table 4.12.

i = 1, 2 Precision Recall F1
M.avg (i = 1, N = 50) 0.73 0.63 0.65
W.avg (i = 1, N = 50) 0.80 0.82 0.79
M.avg (i = 2, N = 50) 0.80 0.63 0.63
W.avg (i = 2, N = 50) 0.83 0.84 0.81

M.avg (i = 1, N = 100) 0.69 0.60 0.61
W.avg (i = 1, N = 100) 0.78 0.81 0.78
M.avg (i = 2, N = 100) 0.77 0.63 0.64
W.avg (i = 2, N = 100) 0.83 0.85 0.81

Table 4.12: Avg metrics for incremental RF with s = 2, cr = ”gini”

Of course, they should be compared with the various metrics obtained for
the standard implementation, which are available in Table 4.13 and Table
4.14.
It is possible to note that with a big chunk of data, the incremental model
behaves very similarly to the standard one, and this can be considered as
a good result: in fact, if there is the wish of performing the partial fitting
when a big amount of data is collected, this could be the way to go.

Standard Precision Recall F1
y = 1 (N = 50) 0.86 0.90 0.88
y = 0 (N = 50) 0.53 0.12 0.19

y = −1 (N = 50) 0.88 0.98 0.93
y = 1 (N = 100) 0.87 0.93 0.90
y = 0 (N = 100) 0.67 0.16 0.25

y = −1 (N = 100) 0.90 0.98 0.94

Table 4.13: Metrics obtained for the standard RF with cr = ”gini”
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Standard Precision Recall F1
M.avg (N = 50) 0.76 0.67 0.67
W.avg (N = 50) 0.84 0.87 0.84

M.avg (N = 100) 0.81 0.69 0.70
W.avg (N = 100) 0.87 0.88 0.86

Table 4.14: Avg metrics obtained for the standard RF with cr = ”gini”

For what concerns the accuracy trends, they are available in Figure 4.4
and Figure 4.5.
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Figure 4.4: Acc. comp. for RF with
s = 2, N = 50, cr = ”gini”
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Figure 4.5: Acc. comp. for RF with
s = 2, N = 100, cr = ”gini”

It can be noted that the standard RF classifier actually performs better with
a higher number of estimators, while the incremental one performs basically
in the same way.
In any case, they do not differ much, and this gives an advantage for the
incremental version, which processed less data at a time.
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The following test has been performed using s = 4 and keeping cr = ”gini”.
The metrics obtained at the various iterations can be seen in Table 4.15.

i = 1, 2, 4 Precision Recall F1
y = 1 (i = 1, N = 50) 0.74 0.43 0.55
y = 0 (i = 1, N = 50) 0.35 0.08 0.13

y = −1 (i = 1, N = 50) 0.70 0.94 0.81
y = 1 (i = 2, N = 50) 0.81 0.47 0.60
y = 0 (i = 2, N = 50) 0.71 0.06 0.12

y = −1 (i = 2, N = 50) 0.71 0.98 0.82
y = 1 (i = 4, N = 50) 0.86 0.57 0.68
y = 0 (i = 4, N = 50) 1.00 0.01 0.03

y = −1 (i = 4, N = 50) 0.74 0.99 0.84
y = 1 (i = 1, N = 100) 0.79 0.53 0.63
y = 0 (i = 1, N = 100) 0.38 0.08 0.13

y = −1 (i = 1, N = 100) 0.73 0.96 0.83
y = 1 (i = 2, N = 100) 0.85 0.58 0.69
y = 0 (i = 2, N = 100) 0.57 0.05 0.10

y = −1 (i = 2, N = 100) 0.74 0.98 0.84
y = 1 (i = 4, N = 100) 0.89 0.62 0.73
y = 0 (i = 4, N = 100) 1.00 0.01 0.03

y = −1 (i = 4, N = 100) 0.75 0.99 0.85

Table 4.15: Metrics for incremental RF with s = 4, cr = ”gini”

What can be immediately seen is that by increasing the split factor the per-
formance decreases. Also, the classifier seems to lose its ability in predicting
y = 0, providing thus null metrics for the latter.
By the way, the averaged metrics can be considered good, at least for the
labels y = 1 and y = −1.
It is possible to check them in Table 4.16.
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i = 1, 2, 4 Precision Recall F1
M.avg (i = 1, N = 50) 0.60 0.49 0.49
W.avg (i = 1, N = 50) 0.68 0.70 0.66
M.avg (i = 2, N = 50) 0.75 0.50 0.51
W.avg (i = 2, N = 50) 0.74 0.73 0.68
M.avg (i = 4, N = 50) 0.87 0.52 0.52
W.avg (i = 4, N = 50) 0.80 0.76 0.71

M.avg (i = 1, N = 100) 0.63 0.52 0.53
W.avg (i = 1, N = 100) 0.72 0.74 0.70
M.avg (i = 2, N = 100) 0.72 0.54 0.54
W.avg (i = 2, N = 100) 0.76 0.76 0.72
M.avg (i = 4, N = 100) 0.88 0.54 0.54
W.avg (i = 4, N = 100) 0.82 0.78 0.73

Table 4.16: Avg metrics for incremental RF with s = 4, cr = ”gini”

The accuracy trends for this test case are depicted in Figure 4.6 and 4.7.
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Figure 4.6: Acc. comp. for RF with
s = 4, N = 50, cr = ”gini”

1 2 3 4
Iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Incremental vs Standard: s=4, Nec = 100, Ne = 100, cr = gini
Inc. RF
Std. RF

Figure 4.7: Acc. comp. for RF with
s = 4, N = 100, cr = ”gini”

It is possible to see that the incremental version keeps its accuracy without
considering the number of estimators: anyway, it is lower than the one
obtained for s = 2.
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A third test has been executed by using s = 6, and cr = ”gini”.
In this case, the results available in Table 4.17 have been achieved.

i = 2, 4, 6 Precision Recall F1
y = 1 (i = 2, N = 50) 0.78 0.46 0.58
y = 0 (i = 2, N = 50) 0.80 0.05 0.10

y = −1 (i = 2, N = 50) 0.71 0.97 0.82
y = 1 (i = 4, N = 50) 0.86 0.44 0.58
y = 0 (i = 4, N = 50) - - -

y = −1 (i = 4, N = 50) 0.70 0.99 0.82
y = 1 (i = 6, N = 50) 0.88 0.42 0.57
y = 0 (i = 6, N = 50) 1.00 0.01 0.03

y = −1 (i = 6, N = 50) 0.69 0.99 0.82
y = 1 (i = 2, N = 100) 0.79 0.35 0.49
y = 0 (i = 2, N = 100) 0.57 0.05 0.10

y = −1 (i = 2, N = 100) 0.68 0.97 0.80
y = 1 (i = 4, N = 100) 0.83 0.38 0.53
y = 0 (i = 4, N = 100) - - -

y = −1 (i = 4, N = 100) 0.68 0.99 0.81
y = 1 (i = 6, N = 100) 0.84 0.38 0.53
y = 0 (i = 6, N = 100) - - -

y = −1 (i = 6, N = 100) 0.68 0.99 0.81

Table 4.17: Metrics for incremental RF with s = 6, cr = ”gini”

As in the previous test, the incremental classifier - over time - loses its ability
to predict y = 0, making the multi-class problem degenerate to a binary one.
Also, it can be seen that the obtained metrics are worse than the ones
obtained with s = 4, underlining the fact that the smaller the data used by
the incremental algorithm is, the worse it will perform.
This is confirmed also by the averaged metrics, available in Table 4.18.
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i = 2, 4, 6 Precision Recall F1
M.avg (i = 2, N = 50) 0.76 0.49 0.50
W.avg (i = 2, N = 50) 0.74 0.72 0.67
M.avg (i = 4, N = 50) 0.52 0.48 0.47
W.avg (i = 4, N = 50) 0.68 0.72 0.67
M.avg (i = 6, N = 50) 0.86 0.48 0.47
W.avg (i = 6, N = 50) 0.78 0.72 0.66

M.avg (i = 2, N = 100) 0.68 0.46 0.46
W.avg (i = 2, N = 100) 0.70 0.69 0.63
M.avg (i = 4, N = 100) 0.50 0.46 0.44
W.avg (i = 4, N = 100) 0.66 0.70 0.64
M.avg (i = 6, N = 100) 0.51 0.46 0.45
W.avg (i = 6, N = 100) 0.66 0.71 0.64

Table 4.18: Avg metrics for incremental RF with s = 6, cr = ”gini”

Finally, the behavior followed by the accuracy in both cases can be found
in Figure 4.8 and Figure 4.9.
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Figure 4.8: Acc. comp. for RF with
s = 6, N = 50, cr = ”gini”
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Figure 4.9: Acc. comp. for RF with
s = 6, N = 100, cr = ”gini”

As introduced previously, the performance decreases as the amount of pro-
cessed data decreases. Also, in this case, the difference between the accuracies
starts to be notable, being higher than the 20%.
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After having performed all the tests for cr = ”gini”, we decided to try
also cr = ”entropy”.
The first test we performed in this context was with the following parameters:
s = 2 and cr = ”entropy”.
The metrics we obtained are available in Table 4.19.

i = 1, 2 Precision Recall F1
y = 1 (i = 1, N = 50) 0.86 0.73 0.79
y = 0 (i = 1, N = 50) 0.50 0.14 0.22

y = −1 (i = 1, N = 50) 0.81 0.97 0.88
y = 1 (i = 2, N = 50) 0.88 0.81 0.84
y = 0 (i = 2, N = 50) 0.64 0.09 0.16

y = −1 (i = 2, N = 50) 0.83 0.99 0.90
y = 1 (i = 1, N = 100) 0.87 0.74 0.80
y = 0 (i = 1, N = 100) 0.57 0.16 0.24

y = −1 (i = 1, N = 100) 0.81 0.97 0.88
y = 1 (i = 2, N = 100) 0.88 0.81 0.85
y = 0 (i = 2, N = 100) 0.67 0.05 0.10

y = −1 (i = 2, N = 100) 0.82 0.99 0.90

Table 4.19: Metrics for incremental RF with s = 2, cr = ”entropy”

It can be immediately seen that the obtained results are very similar with
the ones found using the Gini impurity as criterion, so to use one or another
can be considered as a simple matter of taste.
For what concerns the averaged metrics, they can be seen in Table 4.20.
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i = 1, 2 Precision Recall F1
M.avg (i = 1, N = 50) 0.72 0.62 0.63
W.avg (i = 1, N = 50) 0.79 0.81 0.79
M.avg (i = 2, N = 50) 0.78 0.63 0.64
W.avg (i = 2, N = 50) 0.83 0.84 0.81

M.avg (i = 1, N = 100) 0.75 0.62 0.64
W.avg (i = 1, N = 100) 0.80 0.82 0.79
M.avg (i = 2, N = 100) 0.79 0.62 0.61
W.avg (i = 2, N = 100) 0.83 0.84 0.80

Table 4.20: Avg metrics for incremental RF with s = 2, cr = ”entropy”

As in the previous tests, we want to show also the metrics which are
obtained from a standard RF using cr = ”entropy”. They are available in
Table 4.21.

Standard Precision Recall F1
y = 1 (N = 50) 0.88 0.88 0.88
y = 0 (N = 50) 0.63 0.16 0.25

y = −1 (N = 50) 0.87 0.98 0.93
y = 1 (N = 100) 0.87 0.90 0.88
y = 0 (N = 100) 0.63 0.16 0.25

y = −1 (N = 100) 0.88 0.98 0.92

Table 4.21: Metrics for the standard RF with cr = ”entropy”

The averaged ones can be seen in Table 4.22.
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Standard Precision Recall F1
M.avg (N = 50) 0.80 0.68 0.69
W.avg (N = 50) 0.85 0.87 0.84

M.avg (N = 100) 0.79 0.68 0.69
W.avg (N = 100) 0.85 0.87 0.84

Table 4.22: Avg metrics for the standard RF with cr = ”entropy”

Instead, the following accuracy trends have been derived.
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Figure 4.10: Acc. comp. for RF
with s = 2, N = 50, cr = ”entropy”
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Figure 4.11: Acc. comp. for RF
with s = 2, N = 100, cr = ”entropy”

It is possible to see that, by using a higher number of estimators per chunk,
the incremental classifier performs really close to the standard one, having
also a quite good accuracy.
This could be a good solution.
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The next test has been carried out by using a split factor s = 4, and
remaining with cr = ”entropy”.
The Table 4.23 shows the metrics that have been obtained through some of
the iterations.

i = 1, 2, 4 Precision Recall F1
y = 1 (i = 1, N = 50) 0.76 0.49 0.59
y = 0 (i = 1, N = 50) 0.38 0.08 0.13

y = −1 (i = 1, N = 50) 0.72 0.94 0.81
y = 1 (i = 2, N = 50) 0.82 0.50 0.62
y = 0 (i = 2, N = 50) 0.67 0.05 0.10

y = −1 (i = 2, N = 50) 0.72 0.97 0.83
y = 1 (i = 4, N = 50) 0.86 0.56 0.68
y = 0 (i = 4, N = 50) 1.00 0.01 0.03

y = −1 (i = 4, N = 50) 0.73 0.99 0.84
y = 1 (i = 1, N = 100) 0.76 0.49 0.59
y = 0 (i = 1, N = 100) 0.43 0.08 0.13

y = −1 (i = 1, N = 100) 0.72 0.95 0.82
y = 1 (i = 2, N = 100) 0.84 0.51 0.64
y = 0 (i = 2, N = 100) 0.62 0.06 0.12

y = −1 (i = 2, N = 100) 0.73 0.98 0.83
y = 1 (i = 4, N = 100) 0.89 0.58 0.70
y = 0 (i = 4, N = 100) 0.50 0.01 0.03

y = −1 (i = 4, N = 100) 0.74 0.99 0.85

Table 4.23: Metrics for incremental RF with s = 4, cr = ”entropy”

Like in the previous tests, it is possible to observe that again, using less data,
the results are less good.
This is confirmed by the averaged metrics, available in Table 4.24.
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i = 1, 2, 4 Precision Recall F1
M.avg (i = 1, N = 50) 0.62 0.50 0.51
W.avg (i = 1, N = 50) 0.69 0.72 0.68
M.avg (i = 2, N = 50) 0.74 0.51 0.52
W.avg (i = 2, N = 50) 0.74 0.74 0.69
M.avg (i = 4, N = 50) 0.87 0.52 0.51
W.avg (i = 4, N = 50) 0.80 0.76 0.71

M.avg (i = 1, N = 100) 0.64 0.51 0.52
W.avg (i = 1, N = 100) 0.70 0.72 0.68
M.avg (i = 2, N = 100) 0.73 0.52 0.53
W.avg (i = 2, N = 100) 0.75 0.75 0.70
M.avg (i = 4, N = 100) 0.71 0.53 0.52
W.avg (i = 4, N = 100) 0.76 0.77 0.72

Table 4.24: Avg metrics for incremental RF with s = 4, cr = ”entropy”

Also in this case, the behavior of the accuracies over the iterations have
been plotted. They can be seen in Figure 4.12 and Figure 4.14.

1 2 3 4
Iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Incremental vs Standard: s=4, Nec = 50, Ne = 50, cr = entropy
Inc. RF
Std. RF

Figure 4.12: Acc. comp. for RF
with s = 4, N = 50, cr = ”entropy”
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Figure 4.13: Acc. comp. for RF
with s = 4, N = 100, cr = ”entropy”

The values obtained by the two incremental classifiers are very similar, with
the first - having a smaller number of estimators - behaving slightly better.
In any case, the difference with the standard version is ≈ 10%.
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The last test we performed with the RF classifier was for s = 6.
For the metrics, we obtained the values represented in Table 4.25.

i = 2, 4, 6 Precision Recall F1
y = 1 (i = 2, N = 50) 0.80 0.33 0.47
y = 0 (i = 2, N = 50) 0.67 0.03 0.05

y = −1 (i = 2, N = 50) 0.67 0.98 0.79
y = 1 (i = 4, N = 50) 0.83 0.37 0.51
y = 0 (i = 4, N = 50) - - -

y = −1 (i = 4, N = 50) 0.68 0.99 0.81
y = 1 (i = 6, N = 50) 0.84 0.35 0.49
y = 0 (i = 6, N = 50) - - -

y = −1 (i = 6, N = 50) 0.67 0.99 0.80
y = 1 (i = 2, N = 100) 0.77 0.35 0.48
y = 0 (i = 2, N = 100) 0.80 0.05 0.10

y = −1 (i = 2, N = 100) 0.68 0.97 0.80
y = 1 (i = 4, N = 100) 0.85 0.39 0.53
y = 0 (i = 4, N = 100) 1.00 0.01 0.03

y = −1 (i = 4, N = 100) 0.68 0.99 0.81
y = 1 (i = 6, N = 100) 0.87 0.36 0.51
y = 0 (i = 6, N = 100) - - -

y = −1 (i = 6, N = 100) 0.68 0.99 0.80

Table 4.25: Metrics for incremental RF with s = 6, cr = ”entropy”

As in the experiments performed with cr = ”gini”, this is the worst scenario.
This is also confirmed by the averaged metrics, which are depicted in Table
4.26.
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i = 2, 4, 6 Precision Recall F1
M.avg (i = 2, N = 50) 0.71 0.44 0.44
W.avg (i = 2, N = 50) 0.71 0.68 0.62
M.avg (i = 4, N = 50) 0.50 0.45 0.44
W.avg (i = 4, N = 50) 0.66 0.70 0.63
M.avg (i = 6, N = 50) 0.50 0.45 0.43
W.avg (i = 6, N = 50) 0.65 0.69 0.63

M.avg (i = 2, N = 100) 0.75 0.46 0.46
W.avg (i = 2, N = 100) 0.72 0.69 0.63
M.avg (i = 4, N = 100) 0.84 0.46 0.46
W.avg (i = 4, N = 100) 0.77 0.71 0.64
M.avg (i = 6, N = 100) 0.52 0.45 0.44
W.avg (i = 6, N = 100) 0.67 0.70 0.63

Table 4.26: Avg metrics for incremental RF with s = 6, cr = ”entropy”

The accuracy trends, instead, are visible in Figure 4.14 and Figure 4.15.
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Figure 4.14: Acc. comp. for RF
with s = 6, N = 50, cr = ”entropy”
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Figure 4.15: Acc. comp. for RF
with s = 6, N = 100, cr = ”entropy”

It is possible to note that the accuracies decrease in both contexts, confirming
what has been said in the previous scenarios.

79



Experimental validation

4.2.3 Extra-Trees classifier
For what concerns the ET classifier, we performed exactly the same tests of
the RF classifier.
So, again, we are first going to consider what we obtained for cr = ”gini”,
and then what has been retrieved by using cr = ”entropy”.

The first test we carried out was with s = 2, and cr = ”gini”.
The obtained metrics are listed in Table 4.27.

i = 1, 2 Precision Recall F1
y = 1 (i = 1, N = 50) 0.84 0.81 0.83
y = 0 (i = 1, N = 50) 0.44 0.18 0.26

y = −1 (i = 1, N = 50) 0.86 0.96 0.90
y = 1 (i = 2, N = 50) 0.87 0.88 0.88
y = 0 (i = 2, N = 50) 0.58 0.09 0.16

y = −1 (i = 2, N = 50) 0.86 0.98 0.92
y = 1 (i = 1, N = 100) 0.86 0.80 0.83
y = 0 (i = 1, N = 100) 0.48 0.21 0.29

y = −1 (i = 1, N = 100) 0.84 0.96 0.90
y = 1 (i = 2, N = 100) 0.87 0.88 0.88
y = 0 (i = 2, N = 100) 0.57 0.10 0.18

y = −1 (i = 2, N = 100) 0.87 0.98 0.92

Table 4.27: Metrics for incremental ET with s = 2, cr = ”gini”

It can be immediately seen that the values obtained are higher than the ones
seen on the RF with the same configuration.
This is probably due to the random effect which regulates the ET classifier’s
behavior.
For what concerns the averaged metrics, they are available in Table 4.28.
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i = 1, 2 Precision Recall F1
M.avg (i = 1, N = 50) 0.71 0.65 0.66
W.avg (i = 1, N = 50) 0.81 0.83 0.81
M.avg (i = 2, N = 50) 0.77 0.65 0.65
W.avg (i = 2, N = 50) 0.84 0.86 0.83

M.avg (i = 1, N = 100) 0.73 0.65 0.67
W.avg (i = 1, N = 100) 0.81 0.83 0.81
M.avg (i = 2, N = 100) 0.77 0.66 0.66
W.avg (i = 2, N = 100) 0.84 0.86 0.83

Table 4.28: Avg metrics for incremental ET with s = 2, cr = ”gini”

They confirm what has been said by looking at the single metrics.
In Table 4.29, it is possible to see the metrics obtained instead by the
standard ET classifiers, with cr = ”gini”.

Standard Precision Recall F1
y = 1 (N = 50) 0.87 0.94 0.90
y = 0 (N = 50) 0.62 0.21 0.31

y = −1 (N = 50) 0.91 0.97 0.94
y = 1 (N = 100) 0.87 0.93 0.90
y = 0 (N = 100) 0.59 0.21 0.31

y = −1 (N = 100) 0.90 0.97 0.94

Table 4.29: Metrics for the standard ET with cr = ”gini”

The averaged ones are instead available in Table 4.30.
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Standard Precision Recall F1
M.avg (N = 50) 0.80 0.71 0.72
W.avg (N = 50) 0.87 0.88 0.86

M.avg (N = 100) 0.79 0.70 0.72
W.avg (N = 100) 0.86 0.88 0.86

Table 4.30: Avg metrics for the standard ET with cr = ”gini”

Also for the ET classifier, we wanted to plot the behavior of the accuracies
in the current scenario. It can be observed in Figure 4.16 and 4.17.
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Figure 4.16: Acc. comp. for ET
with s = 2, N = 50, cr = ”gini”
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Figure 4.17: Acc. comp. for ET
with s = 2, N = 100, cr = ”gini”

As it is possible to see, the accuracies obtained for the incremental ET
classifiers are very close to the standard ones, especially when the number of
estimators is higher. In fact, in the last case, the accuracy is higher than the
85%, while the standard one is around the 87%.
This is a very good situation, in which the incremental approach seems to
be appropriate.
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As for the RF, the next test has been performed by using s = 4, and
maintaining as criterion cr = ”gini”.
For this scenario, the metrics obtained can be viewed in Table 4.31.

i = 1, 2, 4 Precision Recall F1
y = 1 (i = 1, N = 50) 0.79 0.64 0.70
y = 0 (i = 1, N = 50) 0.24 0.10 0.14

y = −1 (i = 1, N = 50) 0.78 0.93 0.85
y = 1 (i = 2, N = 50) 0.85 0.71 0.77
y = 0 (i = 2, N = 50) 0.58 0.14 0.23

y = −1 (i = 2, N = 50) 0.80 0.97 0.88
y = 1 (i = 4, N = 50) 0.90 0.81 0.85
y = 0 (i = 4, N = 50) 0.60 0.04 0.07

y = −1 (i = 4, N = 50) 0.82 0.99 0.90
y = 1 (i = 1, N = 100) 0.81 0.64 0.71
y = 0 (i = 1, N = 100) 0.29 0.10 0.15

y = −1 (i = 1, N = 100) 0.78 0.94 0.85
y = 1 (i = 2, N = 100) 0.86 0.69 0.77
y = 0 (i = 2, N = 100) 0.53 0.13 0.21

y = −1 (i = 2, N = 100) 0.79 0.97 0.87
y = 1 (i = 4, N = 100) 0.89 0.79 0.84
y = 0 (i = 4, N = 100) 0.56 0.06 0.12

y = −1 (i = 4, N = 100) 0.82 0.99 0.90

Table 4.31: Metrics for incremental ET with s = 4, cr = ”gini”

As it happened with the RF, when the number of chunks increases - and so
less data is used - the measured values are lower.
This suggests that the incremental approach should be adopted only when
the amount of data (m) is high.
The averaged metrics can be viewed in Table 4.32.
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i = 1, 2, 4 Precision Recall F1
M.avg (i = 1, N = 50) 0.60 0.56 0.57
W.avg (i = 1, N = 50) 0.73 0.76 0.73
M.avg (i = 2, N = 50) 0.74 0.61 0.63
W.avg (i = 2, N = 50) 0.79 0.81 0.78
M.avg (i = 4, N = 50) 0.77 0.61 0.61
W.avg (i = 4, N = 50) 0.82 0.84 0.80

M.avg (i = 1, N = 100) 0.62 0.56 0.57
W.avg (i = 1, N = 100) 0.74 0.77 0.74
M.avg (i = 2, N = 100) 0.73 0.60 0.62
W.avg (i = 2, N = 100) 0.78 0.80 0.77
M.avg (i = 4, N = 100) 0.75 0.62 0.62
W.avg (i = 4, N = 100) 0.81 0.84 0.80

Table 4.32: Avg metrics for incremental ET with s = 4, cr = ”gini”

For what concerns the accuracy trends, they are depicted in Figure 4.18
and 4.19.
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Figure 4.18: Acc. comp. for ET
with s = 4, N = 50, cr = ”gini”
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Figure 4.19: Acc. comp. for ET
with s = 4, N = 100, cr = ”gini”

It is possible to observe that the performances are still very good, but a bit
worse than the ones seen in the previous test.
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The last test that has been carried out for cr = ”gini”, was with split
factor s = 6.
The values in Table 4.33 show the metrics that are obtained with that
configuration.

i = 2, 4, 6 Precision Recall F1
y = 1 (i = 2, N = 50) 0.81 0.55 0.65
y = 0 (i = 2, N = 50) 0.40 0.08 0.13

y = −1 (i = 2, N = 50) 0.74 0.96 0.84
y = 1 (i = 4, N = 50) 0.84 0.66 0.74
y = 0 (i = 4, N = 50) 0.50 0.03 0.05

y = −1 (i = 4, N = 50) 0.77 0.98 0.86
y = 1 (i = 6, N = 50) 0.90 0.68 0.78
y = 0 (i = 6, N = 50) 0.75 0.04 0.07

y = −1 (i = 6, N = 50) 0.77 0.99 0.87
y = 1 (i = 2, N = 100) 0.81 0.50 0.62
y = 0 (i = 2, N = 100) 0.47 0.10 0.17

y = −1 (i = 2, N = 100) 0.73 0.96 0.83
y = 1 (i = 4, N = 100) 0.85 0.65 0.74
y = 0 (i = 4, N = 100) 0.60 0.04 0.07

y = −1 (i = 4, N = 100) 0.77 0.98 0.86
y = 1 (i = 6, N = 100) 0.89 0.68 0.77
y = 0 (i = 6, N = 100) 0.75 0.04 0.07

y = −1 (i = 6, N = 100) 0.77 0.99 0.87

Table 4.33: Metrics for incremental ET with s = 6, cr = ”gini”

Also in here, it is possible to note that the performances degrade.
A confirmation for that is also given by the averaged metrics, available in
Table 4.34.

85



Experimental validation

i = 2, 4, 6 Precision Recall F1
M.avg (i = 2, N = 50) 0.65 0.53 0.54
W.avg (i = 2, N = 50) 0.73 0.75 0.71
M.avg (i = 4, N = 50) 0.70 0.55 0.55
W.avg (i = 4, N = 50) 0.76 0.78 0.74
M.avg (i = 6, N = 50) 0.81 0.57 0.57
W.avg (i = 6, N = 50) 0.81 0.80 0.76

M.avg (i = 2, N = 100) 0.67 0.52 0.54
W.avg (i = 2, N = 100) 0.72 0.74 0.70
M.avg (i = 4, N = 100) 0.74 0.56 0.56
W.avg (i = 4, N = 100) 0.78 0.79 0.74
M.avg (i = 6, N = 100) 0.80 0.57 0.57
W.avg (i = 6, N = 100) 0.81 0.80 0.76

Table 4.34: Avg metrics for incremental ET with s = 6, cr = ”gini”

The accuracy trends, instead, are shown in Figure 4.20 and 4.21.
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Figure 4.20: Acc. comp. for ET
with s = 6, N = 50, cr = ”gini”
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Figure 4.21: Acc. comp. for ET
with s = 6, N = 100, cr = ”gini”

It can be again said that the accuracies keep degrading, but not as much
as it has been observed with the RF experiments, in fact in here they are
≈ 80%.
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After cr = ”gini”, we considered cr = ”entropy”.
The same tests have been performed, so we are going again to show what
has been obtained for s = 2.
The obtained metrics are available in Table 4.35.

i = 1, 2 Precision Recall F1
y = 1 (i = 1, N = 50) 0.85 0.81 0.83
y = 0 (i = 1, N = 50) 0.56 0.19 0.29

y = −1 (i = 1, N = 50) 0.85 0.96 0.90
y = 1 (i = 2, N = 50) 0.88 0.90 0.89
y = 0 (i = 2, N = 50) 0.62 0.13 0.22

y = −1 (i = 2, N = 50) 0.88 0.98 0.93
y = 1 (i = 1, N = 100) 0.87 0.82 0.84
y = 0 (i = 1, N = 100) 0.47 0.18 0.26

y = −1 (i = 1, N = 100) 0.85 0.97 0.91
y = 1 (i = 2, N = 100) 0.88 0.89 0.88
y = 0 (i = 2, N = 100) 0.60 0.12 0.20

y = −1 (i = 2, N = 100) 0.87 0.98 0.92

Table 4.35: Metrics for incremental ET with s = 2, cr = ”entropy”

It can be noted that there isn’t that much difference with was obtained for
the same split factor on cr = ”gini”.
The averaged metrics are instead listed in Table 4.36.
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i = 1, 2 Precision Recall F1
M.avg (i = 1, N = 50) 0.75 0.66 0.67
W.avg (i = 1, N = 50) 0.82 0.84 0.82
M.avg (i = 2, N = 50) 0.79 0.67 0.68
W.avg (i = 2, N = 50) 0.85 0.87 0.84

M.avg (i = 1, N = 100) 0.73 0.66 0.67
W.avg (i = 1, N = 100) 0.82 0.84 0.82
M.avg (i = 2, N = 100) 0.78 0.66 0.67
W.avg (i = 2, N = 100) 0.84 0.87 0.84

Table 4.36: Avg metrics for incremental ET with s = 2, cr = ”entropy”

Also in here, we want to have a comparison with what is instead produced
by the standard ET classifiers using as criterion cr = ”entropy”.
The metrics they produce can be observed in Table 4.37.

Standard Precision Recall F1
y = 1 (N = 50) 0.87 0.92 0.89
y = 0 (N = 50) 0.50 0.17 0.25

y = −1 (N = 50) 0.89 0.97 0.93
y = 1 (N = 100) 0.87 0.92 0.90
y = 0 (N = 100) 0.58 0.18 0.28

y = −1 (N = 100) 0.90 0.97 0.93

Table 4.37: Metrics for the standard ET with cr = ”entropy”

Instead, the averaged values are presented in Table 4.38.

88



Experimental validation

Standard Precision Recall F1
M.avg (N = 50) 0.75 0.69 0.69
W.avg (N = 50) 0.84 0.87 0.85

M.avg (N = 100) 0.78 0.69 0.70
W.avg (N = 100) 0.86 0.88 0.85

Table 4.38: Avg metrics for the standard ET with cr = ”entropy”

As for the other criterion, it can be said that when the split factor is
low, there is almost no difference between the incremental and the standard
model.
Again, the behavior of the accuracies has been plotted, and it is shown in
Figure 4.22 and Figure 4.23.
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Figure 4.22: Acc. comp. for ET
with s = 2, N = 50, cr = ”entropy”
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Figure 4.23: Acc. comp. for ET
with s = 2, N = 100, cr = ”entropy”

The accuracies prove once again what has been said by looking at the various
metrics.
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The penultimate test we performed was by using as parameters s = 4 and
cr = ”entropy”.
The metrics produced by the aforementioned configuration can be observed
in Table 4.39.

i = 1, 2, 4 Precision Recall F1
y = 1 (i = 1, N = 50) 0.79 0.64 0.70
y = 0 (i = 1, N = 50) 0.28 0.12 0.17

y = −1 (i = 1, N = 50) 0.78 0.93 0.85
y = 1 (i = 2, N = 50) 0.85 0.72 0.78
y = 0 (i = 2, N = 50) 0.53 0.10 0.17

y = −1 (i = 2, N = 50) 0.79 0.97 0.87
y = 1 (i = 4, N = 50) 0.88 0.83 0.85
y = 0 (i = 4, N = 50) 0.60 0.04 0.07

y = −1 (i = 4, N = 50) 0.83 0.99 0.90
y = 1 (i = 1, N = 100) 0.80 0.62 0.70
y = 0 (i = 1, N = 100) 0.28 0.12 0.17

y = −1 (i = 1, N = 100) 0.77 0.94 0.84
y = 1 (i = 2, N = 100) 0.85 0.69 0.76
y = 0 (i = 2, N = 100) 0.61 0.14 0.23

y = −1 (i = 2, N = 100) 0.79 0.97 0.87
y = 1 (i = 4, N = 100) 0.89 0.78 0.83
y = 0 (i = 4, N = 100) 0.50 0.05 0.09

y = −1 (i = 4, N = 100) 0.81 0.99 0.89

Table 4.39: Metrics for incremental ET with s = 4, cr = ”entropy”

Like in the RF and in the ET with cr = ”gini”, there is little decrease in the
values with this split factor. Anyway, this loss is not so big, and the results
have been considered acceptable.
In Table 4.40, it’s possible to see the averaged metrics.
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i = 1, 2, 4 Precision Recall F1
M.avg (i = 1, N = 50) 0.62 0.56 0.57
W.avg (i = 1, N = 50) 0.73 0.76 0.74
M.avg (i = 2, N = 50) 0.73 0.60 0.61
W.avg (i = 2, N = 50) 0.78 0.80 0.77
M.avg (i = 4, N = 50) 0.77 0.62 0.61
W.avg (i = 4, N = 50) 0.82 0.84 0.80

M.avg (i = 1, N = 100) 0.62 0.56 0.57
W.avg (i = 1, N = 100) 0.73 0.76 0.73
M.avg (i = 2, N = 100) 0.75 0.60 0.62
W.avg (i = 2, N = 100) 0.79 0.80 0.77
M.avg (i = 4, N = 100) 0.73 0.61 0.61
W.avg (i = 4, N = 100) 0.80 0.83 0.79

Table 4.40: Avg metrics for incremental ET with s = 4, cr = ”entropy”

Also here the accuracies can be checked. For this purpose, they have been
plotted and can be observed in Figure 4.24 and Figure 4.25.
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Figure 4.24: Acc. comp. for ET
with s = 4, N = 50, cr = ”entropy”
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Figure 4.25: Acc. comp. for ET
with s = 4, N = 100, cr = ”entropy”

The obtained behaviors are not so much different from the ones seen with
cr = ”gini”, and also in here a good compromise is given in terms of number
of samples used (with s = 4, we have that m = 750) and accuracy.
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The last test was performed with s = 6.
In this case, the obtained results are the ones available in Table 4.41.

i = 2, 4, 6 Precision Recall F1
y = 1 (i = 2, N = 50) 0.83 0.58 0.68
y = 0 (i = 2, N = 50) 0.40 0.08 0.13

y = −1 (i = 2, N = 50) 0.74 0.96 0.84
y = 1 (i = 4, N = 50) 0.86 0.63 0.73
y = 0 (i = 4, N = 50) 0.33 0.01 0.03

y = −1 (i = 4, N = 50) 0.76 0.98 0.86
y = 1 (i = 6, N = 50) 0.88 0.62 0.72
y = 0 (i = 6, N = 50) 0.75 0.04 0.07

y = −1 (i = 6, N = 50) 0.76 0.99 0.86
y = 1 (i = 2, N = 100) 0.84 0.59 0.69
y = 0 (i = 2, N = 100) 0.38 0.08 0.13

y = −1 (i = 2, N = 100) 0.75 0.97 0.85
y = 1 (i = 4, N = 100) 0.87 0.65 0.74
y = 0 (i = 4, N = 100) 0.67 0.05 0.10

y = −1 (i = 4, N = 100) 0.76 0.98 0.86
y = 1 (i = 6, N = 100) 0.90 0.65 0.75
y = 0 (i = 6, N = 100) 0.67 0.03 0.05

y = −1 (i = 6, N = 100) 0.76 0.99 0.86

Table 4.41: Metrics for incremental ET with s = 6, cr = ”entropy”

Again, the metrics degrade because of the low amount of data used in the
configuration.
This is summarized by the averaged metrics, which are instead available in
Table 4.42.
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i = 2, 4, 6 Precision Recall F1
M.avg (i = 2, N = 50) 0.66 0.54 0.55
W.avg (i = 2, N = 50) 0.74 0.76 0.72
M.avg (i = 4, N = 50) 0.65 0.54 0.54
W.avg (i = 4, N = 50) 0.74 0.78 0.73
M.avg (i = 6, N = 50) 0.79 0.55 0.55
W.avg (i = 6, N = 50) 0.79 0.78 0.74

M.avg (i = 2, N = 100) 0.66 0.55 0.56
W.avg (i = 2, N = 100) 0.74 0.76 0.73
M.avg (i = 4, N = 100) 0.77 0.56 0.57
W.avg (i = 4, N = 100) 0.79 0.79 0.75
M.avg (i = 6, N = 100) 0.78 0.56 0.55
W.avg (i = 6, N = 100) 0.79 0.79 0.74

Table 4.42: Avg metrics for incremental ET with s = 6, cr = ”entropy”

Finally, the accuracy trends are visible in Figure 4.26 and Figure 4.27.
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Figure 4.26: Acc. comp. for ET
with s = 6, N = 50, cr = ”entropy”
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Figure 4.27: Acc. comp. for ET
with s = 6, N = 100, cr = ”entropy”

These plots lead to the same considerations made for the other criterion.
From this split factor on, there is no advantage in going further with the
usage of smaller amounts of data: the model would lose a lot in accuracy,
because of the computational overhead introduced by the incremental library.
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4.2.4 Training times
For what concerns the training times, we decided to populate two tables: one
related to the incremental versions, and the other for the standard versions.
In the first, we listed the average training time t obtained for the various
split factors s and the different values for Nec in an iteration.
Instead, in the second, we just listed the training times of the various standard
classifiers over the entire data set (basically s = 1).
For the RF and ET classifiers, since the training times with cr = ”gini” and
cr = ”entropy” are very similar, we decided to list only information related
to the first criterion.
The values can be seen in Table 4.42 and Table 4.43.

Incremental s = 2 s = 4 s = 6
NB 0.018 sec 0.010 sec 0.011 sec

RF (N = 50) 0.457 sec 0.338 sec 0.307 sec
ET (N = 50) 0.400 sec 0.299 sec 0.251 sec
RF (N = 100) 0.772 sec 0.597 sec 0.510 sec
ET (N = 100) 0.797 sec 0.544 sec 0.446 sec

Table 4.43: Avg training times for the incremental classifiers

Standard s = 1
NB 0.029 sec

RF (N = 50) 0.471 sec
ET (N = 50) 0.495 sec
RF (N = 100) 0.939 sec
ET (N = 100) 0.996 sec

Table 4.44: Avg training times for the standard classifiers

From the results obtained in the different tests, it is possible to derive a
summary table indicating the best configuration that can be adopted for each
of the classifiers, and describing whether it is better to follow the incremental
approach or the standard one.
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The aforementioned table would be Table 4.45.

Classifier s N cr Incremental vs Standard
NB 6 - - Incremental
RF 4 50 gini Incremental
ET 4 50 gini Incremental

Table 4.45: Best classifier configurations

It can be noted that, in average, the incremental models - considering a
single chunk of data - fit faster than the standard counterparts: this seems
to be obvious, since the latter have to fit on the entire data set, while the
first ones only on a subset of it.
Anyway, it can be seen that the split factor influences a lot the training times
too. The less data is used in the chunk, the faster is the partial fit operation.
In any case, it is important to underline the fact that the incremental models
introduce a performance overhead (especially in the Random Forest and in
the Extra-Trees classifiers), as stated also in the official documentation of
the used tools.
Thus, incremental models should be used carefully and possibly on amounts
of data that are not very small: for this reason we have concluded that, in
the RF and in the ET classifiers, it is better to use s = 4.
In this way, the amount of considered information is not low, and an ac-
ceptable performance is provided by the model (considering also the needed
training time).
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Chapter 5

Conclusions and future
work

In this work, we tried to implement a custom incremental learning algorithm
for a real world scenario.
This has been mainly done for understanding if standard techniques - e.g.
those ones training directly over an entire data set - could be replaced with
others like ours, in order to perform retraining operations by only considering
new training information instead of re-taking into account the whole data
set.
Ideally, this would be really advantageous in a context in which infrastructures
- e.g. for storing data, for training ML models, ecc. - are paid as a ser-
vice: in fact, by using this approach, resources can be saved, as well as money.

Here, we implemented three versions of the same algorithm, which differ
only in the used classifier: in fact, we adopted a Naïve-Bayes classifier based
on a Bernoulli probability distribution, a Random Forest classifier, and an
Extra-Trees classifier.
By performing several tests, it has been possible to observe that the Naïve-
Bayes classifier, in this context, is not suitable at all: both incremental and
standard versions have a really poor performance, which could be partially
justified by the high dimensionality of the problem.
The Random Forest classifier, instead, showed a very good performance in
a standard configuration - i.e. non incremental -, at least for the labels
y = −1 and y = 1: in fact, there is an overall difficulty in predicting y = 0,
degenerating almost in a binary classification task. This is not considered
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to be a huge problem, since the latter is the less important label, while it is
fundamental to behave good with the other two.
This trend has been mimicked by our incremental solution, especially in
those situations where the considered amount of data was quite high (e.g.
with s = 2).
But, it has been also possible to note that whenever the split factor s increases
- and so with s = 4, but mainly with s = 6 - there is a slight worsening of
the various metrics: this is due to the fact that the incremental versions are
originally built to work with a quite high number of records, and so they
suffer whenever the available information is low.
The number of estimators used - in both standard and incremental solutions
- is not very significant.
With the Extra-Trees classifier, we arrived at the same conclusions of the
Random Forest, since it derives from the latter. The only difference is that
it seems to perform a bit better even with a higher value of split factor,
becoming thus the preferable choice.

Considering the overall results, we can conclude that for the problem
taken into consideration it is better to use a Random Forest classifier or an
Extra-Trees one, but paying attention to the used split factor (thus to the
amount of samples m to consider in each iteration): in this case it really
depends on what we are willing to "sacrifice" a bit, meaning that if a higher
accuracy is desired and the time spent for training in a single iteration is not
important, then the split factor could be lower and the model would perform
better.
Instead, if it is more important to save time in an iteration and there aren’t
high constraints on the performance, the split factor can be increased and a
lower amount of data can be adopted for the partial fit.
Of course, it is also important to say that not all problems are suitable for
approaches like this: the available amount of training data is fundamental,
and it is preferred to have it high.

With these considerations being made, we want to propose some future
work. After having implemented this solution just for testing, it would be
interesting and nice to deploy it into a production environment.
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Conclusions and future work

For this purpose, tools like Kubeflow 1 could be adopted for defining a
pipeline containing the ML model able to perform the incremental training,
and for permitting a constant interaction among the model itself and the
other components of the platform - e.g. the back-end -.
An additional study that can be performed on this scenario is the adoption
of the Hoeffding Trees, which is an incremental decision tree learner well
suited for large data streams in where the data distribution doesn’t change
over time [32].

1https://www.kubeflow.org
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