
Master Thesis

Development of a discrete event
simulation tool with genetic

algorithms for the design and
optimization of automated

warehouses

Marco Torlaschi

Supervisor
Franco Lombardi

Co-Supervisor

Emiliano Traini

Final Report for the Thesis

Master in Computer Engineering

DIGEP -Dipartimento di Ingegneria Gestionale e della

Produzione

Politecnico di Torino

Italy, Turin

December 2020

Abstract
The automatization and optimization of production systems is central in the new

industrial development, and a big part of production efficiency reside in logistics.
Automated warehouse can aid in creating smarter and more flexible storage systems.
while using less space and energy then classic systems. They provides a fully digital
controllable environment where it is easier to apply responsive policy to enhance the
functionality not only of logistics, but of the entire production system. However, due
to the number of variable and the interdependence of operations,it is not trivial to
asses the best combination of technologies, infrastructures and strategy of operation
for a given situation. The goal of this Master Thesis is to develop a proof of concept
for a tool which able to check the different options and than select the optimal for
the specific application. For the evaluation of the performance of a warehouse i
used a discrete event simulation, capable of simulating the operation of a specific
situation given the parameters about the warehouse and the task it has to perform,
and output a set of statistics about operations. The simulator support different
technologies, different size, infrastructures setup and strategies of operation. The
simulator is written in Python using the SymPy framework. The simulator is then
used to optimize the warehouse parameter against a fitness computed on the output
statistics. The optimizer ,also written in Python, skims different set of parameters,
running the simulations and evaluating the result the find the optimal solution
based on throughput, energy consumption, cycle time, infrastructure usage and
other metrics, weighted at user will. The optimization uses a genetic algorithm, a
optimization method which is inspired by biological evolution. Some case study are
utilized and discussed to present the software functionality.

3

Contents

1 Introduction 11

2 State of the Art 14
2.1 Autonomous storage technologies . 14
2.2 Simulation . 16
2.3 Optimization . 16

3 Metodology and Software description 17
3.1 Simulation . 17

3.1.1 Discrete events simulation . 17
3.1.2 Simulator implementation principle 17

3.2 Optimization . 18
3.2.1 Optimization interface . 18
3.2.2 Genetic algorithm . 18

3.3 Software description . 19
3.3.1 Simpy . 20
3.3.2 IdeaSim package . 20
3.3.3 Task package . 24
3.3.4 Trace package . 25
3.3.5 Resources package . 26
3.3.6 SimMain Package . 30
3.3.7 Strategy Module . 31
3.3.8 Opt package . 38

4 Verification, results and discussion 40
4.1 Introduction . 40
4.2 Dimension . 41

4.2.1 Depth . 41
4.2.2 Width . 42
4.2.3 Hight . 43

4.3 Infrastructures . 44
4.3.1 Lifts number . 44
4.3.2 Shuttles number . 45
4.3.3 Satellites number . 46

4.4 Operation strategy . 47
4.4.1 Strategy parameter . 47

4.5 Trace parameter . 48
4.5.1 Warehouse space occupied . 48
4.5.2 Interarrival time . 49

4

5 Scenarios discussion 50
5.1 Introduction . 50
5.2 Few items types . 51

5.2.1 Transelevator . 51
5.2.2 Lift,shuttle,fork . 52
5.2.3 Lift,shuttle,satellite . 52

5.3 Many items types . 52
5.3.1 Transelevator . 53
5.3.2 Lift,shuttle,satellite . 53

5.4 Few Tasks . 53
5.4.1 Transelevator . 54

5.5 Many Tasks . 54
5.5.1 Transelevator . 55
5.5.2 Lift,shuttle,satellite . 55

5.6 Small Area . 55
5.7 Fragile items (reduced acceleration) 56

6 Conclusions 58

List of Figures

2.1 Transelevator . 14
2.2 AVS-RS digram . 15
2.3 Shuttle system . 15

4.1 Variating Nx . 41
4.2 Variating Nz . 42
4.3 Variating Ny . 43
4.4 Strategy only y . 44
4.5 Variating Nli . 44
4.6 Variating Nsh with Nli=2 . 45
4.7 Variating Nsa with Nsh=1 . 46
4.8 Variating Log(strategy par y/strategy par x) 47
4.9 Variating start fullness . 48
4.10 Variating int mean . 49

7

List of Tables

5.1 Optimization inputs by scenario . 50
5.2 Few items types optimization results 51
5.3 Many items types optimization results 53
5.4 Few tasks optimization results . 54
5.5 Many tasks optimization results . 55
5.6 Fixed area optimization results . 56
5.7 Reduced acceleration optimization results 57

9

Chapter 1

Introduction

The automated warehouse market, worth 18 billion U.S. dollars in 2019, is esti-
mated to grow to 30 billion in 2025 [1]. Given the rate of growth of the system
new technologies and applications are bound to be created, creating a ever more
variegated environment around the simple core idea of automating the storage of
goods. Applications range from bulk material in a manufactory intake to single
small perishable products of food retail industry. This ecosystem of applications
need to be represented by an equally vast landscape of technological solutions , to
fit the different use case.

All of this is should to be viewed in the framework of Industry 4.0, where an
automated warehouse is more than a storage systems without human interaction.
A modern production chain can deploy a range of method to increase efficiency,
dynamically responding to exogenous events and adapt to prediction. Inside this
mindset a automated warehouse can keep up with the complexity and speed of
change of the rest of the production and distribution system. It can deploy smart
and dynamic strategy of operation to achieve better performance, efficiency, and
energy saving than a tradition human operated storage, where is harder to implement
complex and fast changing policy[8].

Considering the number of possibility that the present, and future, of storage
present designer and customers need a way to make informed decision. We can split
the process of deploying a warehouse in two:

❼ Design. The design of the warehouse before construction. Selecting the best
technology and hardware for the specific scenario. Application have constraint,
like dimension, and specific need, like throughput.

❼ Operative. The strategy of storage to be used after construction, during op-
eration, like where to put a specific type of item.

This two aspect are linked, a design can better suit a operative strategy and vice
versa. Given the high complexity of the resulting problem, and the non-human
information heavy environment, some sort of model is needed.One approach is to
create a mathematical model of the system. This has been done but the discrete
and parallel nature of operation present a problem that is hard to fully represent
with only statistical methods.

The goal of this thesis is to present a different way, that of process based discrete
event simulation. This is done by creating a software that simulated, step by step,
every operation of the warehouse, thus attacking the chaotic nature of the system

11

a priori, not trying to tame the complexity but by reproducing it. I implemented a
simulator that can than be used to connect the scenario as input, i.e. the parameter
of the system, with statistics about the operation as output. This can be used as is,
to evaluate a design, or can be used as a function for an optimization, given goals
for the design. In this thesis i present the results of the simulation with changing
parameter as a way to show its functionality and evaluate the results.

In this thesis i also utilized the simulation to find the optimal warehouse in
same scenario. The optimization used is a genetic algorithm, a method inspired by
biological evolution. I choose it because it perform well when the problem present
different approaches to the optimal solution and where sub-solution are meaningful.
The scenario results are shown and discussed, with a focus on energy efficiency
strategy.

Chapter 2

State of the Art

2.1 Autonomous storage technologies

One can easily think about different way to implement an autonomous storage sys-
tems, and the transition between technologies isn’t trivial. This is the problem that
lie under the development of methods and tools for evaluating warehouse design.

The most widespread technology is the Automated Storage and Retrieval System
(AS/RS). This system is based on transelevator that can horizontally move along
warehouse corridor and vertical to reach all the warehouse floor. The advantage of
this technology, on precedent systems based on conveyor belt, is the added flexibility
in implementation and easier maintenance of infrastructures. But this systems have
a hight initial investment cost.

Figure 2.1: Transelevator

14

From this technologies two different solution have been developed:

❼ CBAS/RS (Crane-Based Automated Storage / Retrieval System)

❼ AVS/RS (Autonomous Vehicle System / Retrieval System)

The former is based on conveyor belt and cranes. The latter, arose from the
development in autonomous vehicle technology, where cranes are substituted by
free moving vehicles. They give a better flexibility in the warehouse design, the
number of vehicle is not fixed and they are able to reach deeper into rack, opening
up the possibility on warehouse layouts. A subset of these technology, the one most
analyzed in this thesis, are SBS/RS (Shuttle Based Storage / Retrieval System). It
works with shuttles that can be moved between floors by the lift, allowing for great
flexibility in operation and warehouse design.

Figure 2.2: AVS-RS digram

Figure 2.3: Shuttle system

Given the increase in flexibility that these new technologies permit, a grater
emphasis can and need to be put in design, thus the emergent need for smarter
tools of modeling, analysis and optimization of autonomous warehouses.

2.2 Simulation

The complex nature of warehouse operation has lead to the need of modeling the
system, with the purpose of crafting a tool to connect the design of a warehouse to
it’s performance. This is a useful aid in the design and decision process behind the
development of new technologies and aid to costumer in installation choice. There
are two main path that can be taken to achieve modeling, the first being analytical
model and the second a simulation.

The analytical model is used to model a particular mode of operation [10][11][26][9].
This is useful to asses the performance of a single technology and has the has advan-
tage, over simulation, of being interpretable and and analytically optimized. The
concurrency nature of operation pose a problem, given that the behavior of the sys-
tem can be chaotic, to the analytical modeling. Model can be very complex and
a stochastic approach need to be taken to represent the nonlinear nature of the
system, thus lowering the fidelity of the model to the real system.

The other approach is the simulation, taken by many [12][4][13][5]. The simu-
lation approach gives up in the interpretability of the analytical model to achieve
a closer adherence to the real system, by reproducing steps by steps the operation,
thus reproducing the concurrency and non-linearity as is. The first clear drawback
of simulation is that the can require significant processing power. This is a problem
in case of realtime application, but not when the model has to be used for design.
Most simulation are written to simulate only one technology or mode of operation,
but this method have the capability of taken as parameter not only the parameter
of warehouse construction but alse the technology and strategy of operation (the
goal of this thesis).

2.3 Optimization

The other need, after modeling the system, is the optimization of operations. Opti-
mization can work to optimize a single aspect, like a single parameter of a technology
[25] or the warehouse infrastructure [15], or the whole warehouse design, like in this
thesis.

Various methods of optimization are used, each model and goal present differ-
ent need [19][16][23][22]. In this thesis, the genetic method is applied, for reasons
explained in the methodology chapter.

The optimization can be used with different fitness. There are many metric that
can be chosen as parameter to optimize. One of the more used is cycle time, which
is widely used as performance metric for warehouse but doesn’t really represent well
all the possible feature of the system. The fitness can be defined as a combination
of more metric, using a multi-objective optimization. Many research used a combi-
nation of operation time and energy efficiency [21][24][3]. The tool proposed in this
thesis allows for the definition of the fitness as a combination of many metrics, and
the scenarios presented mainly use construction cost and energy consumption.

Chapter 3

Metodology and Software
description

3.1 Simulation

3.1.1 Discrete events simulation

The simulation is implemented as a Discrete events simulation. This type of
simulation models systems by events that happen at a single point in time, modifying
the state of system. The simulation can jump to next event time because between
states nothing can happen. Discrete events simulation are widely used for modeling
logistic systems [7].

3.1.2 Simulator implementation principle

The implementation of the simulator is done encapsulating most of the operation
logic inside the methods of the Strategy class. It is thus possible to tailor the
simulation to a specific case of study. The technology and strategy of allocation
can be selected by parameters,so that different possibility can be directly tested
against each others by an optimization algorithm that can consider technology as a
numerical parameter.

As of now, the implemented technologies are:

❼ AS/RS

❼ AWS/RS(telescopic fork)

❼ AWS/RS(shuttle-satellite)

These are chosen because they represent a good spectrum from mostly linear op-
eration, AS/RS, to very parallel, AWS/RS(shuttle-satellite). This can be seen in
operation flowcharts above. Using this simulator we can evaluate if the increase in
concurrency is worth the added overhead, and possibly infrastructure cost, in more
complex technologies.

17

3.2 Optimization

3.2.1 Optimization interface

The optimization interface is written with the goal of making any existing method
implementation easy to fit to work with the simulator. To achieve this one can
define a set of the simulation parameter to be a range of valid value (using the
classes OptimizationParameter and OptRange). A solution is a simple float
array, from 0 to 1, of length equals to the number of parameter that are defined
as a range. This array is then mapped to the ranges. The optimization algorithm
doesn’t need know specific about the meaning of values, or their valid values.

The fitness is computed as a weighted sum of the fields in Monitor.Results, so
that is possible to optimize for a single metric or create a specific complex of factor
to fit a specific situation.

3.2.2 Genetic algorithm

Genetic algorithms are a class of optimization method inspired by natural selection
[18]. They are metaheuristics, they aren’t guaranteed to find the best solution,
but are useful in problem where the solution space is too big and exact method
need much run-time to be useful. A heuristic method only check solutions based on
algorithm that provide better results then random search.

A genetic method create a set of solutions (called population), then solutions are
removed from the population or used to produce new solution based on a evaluation
test, this value is often called fitness. Others natural phenomenas can be emulated
to improve the methods, like bottleneck effect, founder effect, population separation
and others.

The steps used in this implementation are:

1. A random population is created.

2. A set of solution are select by Fitness proportionate selection (also called
roulette wheel selection)[17]. The probabilities for each solution to be selected
is:

pi =
fiPN
j=1 fj

(3.1)

Where f is the fitness and N the number of solutions. This method allow for
’bad’ solution to be selected,albeit less likely , so to have good recombination.

3. New solution are generated by couple from the selected solution, using the
crossover method. This is done by having each value of the new solution be
one of the values for that fields in the parents, which parent selected randomly.

4. Each new solution is then mutated. Each field of the solution has a proba-
bility of changing, thus creating new alleles.

5. New solutions replace the worst one in the population.

6. Repeat from step 2.

18

The bottleneck effect is implemented. In natural science a bottle event happen
when a population is reduced drastically by an outside cause (like a very cold winter)
and is then able to return to to its previous size. This reduce the gene pool, selecting
the best one at surviving the event, thus triggering a mutation of the general gene
pool for the population [20]. This is emulated in the genetic algorithm by having
a probabilities for each generation of substituting more than the usual faction of
population. This is useful for, from time to time, eliminating bad sub-solutions and
leaving space to new one to emerge.

This type of algorithm has synergies with the warehouse optimization prob-
lem. First of all sub-solutions , like the number of lift or the strategy parame-
ter, have meaning. So having a population where many solution coexist and using
the crossover method for generation new one enable the ability to aggregate sub-
solutions. The solutions containing the good sub-solution, that are probably not
optimal, can fuse to create a better solution. This effect is difficult to obtain using
standard neighbourhood search (typical of other optimization methods) because a
big jump, of many need to happen. The other big advantage of having a population
is that vastly different approach, like using lots of lift and few shuttle against the
contrary, are searched concurrently.

The problem now lies in tuning the parameter of the algorithm. The most
important are:

❼ the population size. If the size of the population is too small it became unable
to represent all approaches to the solution and to maintain a good poll of sub-
solution. If the population is to big a lot of overhead is added for generating
and testing an unnecessary amount of solutions.

❼ The fraction of the population to be substituted. If it is too small a lot
of generation are necessary to obtain a change of the pool and bad solution
remain in the pool polluting new solutions. If to big the effect is similar to that
of a small population, good sub-solution are deleted and approach unexplored.

❼ The mutation rate. If too small it become slow to mutate bad alleles in good
one. If too big it become difficult to fine tune alleles to optimize good solution.

So if time is not a problem a big population with small swap and mutation is the
best choice. If instead time is a factor a balance need to be found.

3.3 Software description

The simulation software is written in python, using the SymPy framework, and
contains the following packages:

❼ IdeaSim

❼ SimMain

❼ Resources

❼ Task

❼ Trace

19

In addiction there is a package called Opt which contains the modules for the
optimization.

3.3.1 Simpy

Simpy is a opensource python framework for process-based discrete-event simulation
[2].

A process in simpy is python generator function that yield event to be managed
by the simpy environment. An event can be:

❼ process wait a period of time, env.timeout()

❼ another process to be started, env.process(process to start)

❼ a request for a resource

Resource models anything that is shared between processes. Simpy define three
types of resource:

❼ Resource, the basic resource that can be requested by a limited number of
processes.

❼ Container, it represent a resource that is consumed as an homogeneous good.

❼ Store, a set of python object.

The simulation run by jumping to the next event scheduled and handling the events.
Simulation can be run in real-time by setting a delay for each simulation step.

3.3.2 IdeaSim package

IdeaSim is an extension of the SimPy framework. It adds support and logic for
easier request of resources based of filter functions, event generation and handling,
performer objects witch execute actions that are dependent from other actions or
conditionally executed based of the state of the simulation.

It contains five modules:

❼ Actions

❼ Event

❼ Manager

❼ Resources

❼ Simulation

20

Simulation module

The Simulation module defines the Simulation class which extends of the SimPy
Environment class. It encapsulate, as well as the simpy environment, the basics
utility for this type of simulation:

❼ A logger class, under Simulation.Logger. The method to log a message is
Simulation.logger.log(self,msg,indent=0,type=Type.Normal). It takes:

– The msg argument is the message to be logged.

– The indent argument control how many space indentation are added in
the output line. Useful for log readability

– The type argument take one value from the Simulation.Logger.Type
enumeration. It is used to differentiate log from normal activity from
error and warnings

The log can be enable and disabled via the method Logger.enable(boolean).
The logger add at the start of the line the simulation time at which the log
was generated.

In this implementation pretty much all events are logged, plus details about
the event. Indentation is used to show hierarchy between different log sources.

❼ The management of resources. Resources are gonna be explained in details in
their module section. The management of resource is critical for performance
so method to access them are designed to reduce the computation complexity
of search methods and size of the sets. Four attribute are used too store them:

– Simulation.free res which is a Resources object. This is a class that
extend the SymPy FilteredCointainer. Sympy processes can ask for
resources from this class.

– Simulation.free map which is a dictionary mapping the id of a resource
to its free status (true if contained in free res)

– Simulation.all res which is a dictionary mapping the id of all resources
to the resource instance.

– Simulation.all performer is a list containing all performer. Performer
are a subset of the resource which need to be accessed often but are few
in comparison to all resources, so having a smaller list to search for them
greatly help performance.

Operation that can be performed on resources are:

– Adding a new resource to simulation. The method used is add res(res).

– Finding resources. This is the process used for retrieving an instance of a
resource given the id (using the method find res by id(id,free=True))
or a list of resources filtered by a function (using the method
find res(func,free=True)). The func argument is lambda that takes
as argument a resource and return a boolean. The free argument if
for searching for free resources only. For finding a performer the method
find performed(func,free=True) should be preferred for performance
optimization.

21

– Getting a resource. Getting mean waiting until the request resource is
free and than blocking it, removing it from the free set.
Similar to the find operation the getting can be done by id, using get res by id(id),
or by a filter function using get res(func,sort by=None). If no sort
function is specified a random resource is selected. The sort argument
take a lambda taking a resource as argument and returning a numerical
value. The smallest value is selected.

– Putting a resource. Putting mean freeing a resource that was previously
requested via a get method. The method is put res(res).

– The method is free(res) to know to free status of a resource.

❼ The manager instance. The Manager class manage events (details in Manager
module section).

❼ Other simple functionality:

– A status that can be anything passed as argument in the instantiation
of the Simulation class. Used to have some data globally readable for all
the simulation object (event,,processes,resources). Method get status()
to read it and modify status() to read and modify it. Event can have
conditional trigger based on the status that are reevaluated upon modi-
fication.

– The method wait(delay) used by simulation processes to wait delay
simulation steps.

– A global mutex that can be used to enforce a global sequence of operation
in the simulation.

Resources module

The Resources module defines class used to manage infrastructures in the simulation.
The class defined are:

❼ Resource that represents every object that can be required by a process
in the simulation. It generates automatically an unique id for each resource
instantiated. It also keep track of the total time it has been used for monitoring
purpose.

❼ Performer extend the Resource class and represent a resource that can per-
form an activity. Using the method Performer.add mapping(action type,func)
is possible to define a function to be called when an action is set to be per-
formed by the performer. This is done via the Performer.perform(action,takan inf)
method where action is an Action instance and taken inf a list of Re-
sources already requested by the Action Graph (details in the Actions Mod-
ule). The function used has to yield values as yielded to the SimPy. It also
define the IllegalAction exception.

❼ Movable interface used for resource that can be moved. It has a position
argument and the Move(position) method which only logs the movement
and should be overridden in implementation.

22

❼ Resources class that extend the SimPy FilteredStore. Precesses can ask
for a resources and wait until it is available and put a resource when not more
needed.

Event module

The Event module define the Event class. An Event represent something that is
going to happen inside the simulation. Its argument are:

❼ time,at which simulation step the event should be triggered. If None is
passed the event isn’t scheduled and has to be launched manually via the
launch method.

❼ event type used by Manager to call a function mapped to the event

❼ param a dictionary for adding information to a specific instance

Manager module

The Manager module defines the Manager class. This class is used as a single-
ton inside the simulation object. It manages the triggering of events. Using the
add mapping(event type, func) method is possible to add a function to be
called when a event of a specific type is triggered. The event instance is passed
as argument to this function. If the function return an ActionsGraph object the
actions are executed. The function can raise the Manager.RetryLater(*args,
delay=None) exception, to ask the manager to reschedule the event delay steps
in the future.

Actions module

The Actions module defines classes used to represent and menage actions that can
be performed by a Performer. The class defined are:

❼ Action is a single action that ha to be performed. It has an auto-generated
its unique id and takes nine arguments:

– action graph is the ActionGraph of which the action part of.

– type is the type used in the mapping of the Performer

– who is the id of the performer that has to do the action. It can also be
a filter function the select among the performer blocked by the Action-
Graph.

– sort by is the function to be used to rank the performer in case a filter is
used in the who argument. The lower return value is going to be selected.

– param is a dictionary used to pass information about the action to the
performer

– after is a list of the actions id that this action has to wait for the com-
pletion. Actions selected have to be in the same ActionGraph

23

– condition is a function evaluated before before execution of the action.
If the return value false the action will be skipped (the function mapped
on the Performer isn’t called) but the action is considered completed
(other action waiting for it are free to be executed). The function take
as arguments the Simulation instance and a list of the resources taken
by the ActionGraph

– on false function to be called if condition returned false

– branch is the id of a Branch that ha to be true for the action to be
executed. Branches are special action that are going to be explained later.
Like for condition an action is considered completed even if skipped.

❼ Block is a class that extends Action. It is a special action that is not per-
formed by a Performer but is for requesting a Resource. All arguments are
the same but who is the resource to be requested.

❼ Free is a class that extends Action. It works like block but for releasing a
resource.

❼ GenerateEvent is a class that extend Action. It is a special action used to
launch an event. It only takes the action graph, after and branch argu-
ments plus the Event to be triggered

❼ Block is a class that extend Action. It is special action that only check the
condition for the execution (given in the condition argument) and act as flag
inside the ActionsGraph. Other action can be dependent upon the state of a
branch. Used to account for different actions path if special cases are emerging
after an ActionsGraph scheduling.

❼ ActionsGraph is a container for a set of Actions that are linked with de-
pendency. If a function mapped on the Manager to an Event return an
ActionsGraph its execution is scheduled. Care has to be taken when creat-
ing an ActionsGraph not to create deadlocks with dependency.

❼ Executor is the class that manage the execution of an ActionsGraph. It’s
instantiated by the Manager for every ActionsGraph returned by an event.
It defines the AbortExecution exception that can be raised anywhere inside
an execution to abort the whole ActionsGraph execution.

3.3.3 Task package

The Task package contains modules that define classes use to represent and schedule
the handling of pellets. It contains 3 modules:

❼ Item module defines the Item(item type, weight) class. The class repre-
sents a single pallet, and an unique id is assigned to it. The Item has an
item type which is a string id that tell the warehouse if two pallet can be
placed in the same Channel. A channel is a LIFO container where only the
first pallet can be retrieved, so only items of the same type can be stored in
it. One Item also has a weight (in Kg) which is used in energy consumption
calculation. Every pallet has the same size and can be put in any channel (if
empty).

24

❼ Task module defines the Task(item, order type) which represent a single
handling order of a single pallet. It takes as argument an instance of Channel,
which is the pallet to be handled, and a order type that is one of Order-
Type.DEPOSIT and OrderType.RETRIEVAL. They tell the warehouse
if the pallet should be taken from the bay to a channel or the order way around,
they are value of an enumeration defined in the same module. On a retrieval
order the item asked is one of that type, not a specific one. In practice items
with the same type are indistinguishable.

❼ TaskDispatcher defines the TaskDispatcher(simulation, tasks) class.
This class is used as a singleton inside the Warehouse. The tasks argument
is a dictionary with time of scheduling as keys and Task objects as values.
Upon creation it schedule events that will start the operation management
of that task. More task can be added after using the add future task(self,
time, task) method.

3.3.4 Trace package

The Trace package implements the creation of the a trace of orders for the simulation.
The trace is a sequence of tasks with he time of arrival to the warehouse. This is
done via the method trace generator(trace par) defined inside the Trace module.
This method takes a TraceParameter object and returns a dictionary with time
as keys and Tasks object as values. TraceParameter is class defined in the same
module that contains the parameter of the trace creation, that are:

❼ sim time, the time in simulation steps(seconds) until the trace has to be
generated, and the simulation run time. The last seconds are left without
task to allow the warehouse to perform all task assigned before the end of the
simulation. This is useful for differentiate the case where the warehouse wasn’t
able to complete the task cause of low throughput from the case when a task
was schedule in the last few seconds.

❼ types, a list of float representing the probability of each item to be of one
type. The length of the list is the number of different type of items that exist.
The sum of the probabilities must be one.

❼ int mean, the average time between tasks. The trace is generate using a
exponential distribution with int mean as λ parameter

❼ start fullness, fraction of the ubik of the warehouse that are filled at the start
of the simulation. The same item type distribution and the same strategy
(selected in the SimulationParameter) is used for the pre-filling, to ensure
a realist starting state.

❼ seed, the seed used for the random generation, useful for testing different
design on the same trace. Random if None. Retrieval and deposit are gen-
erated with the same probabilities (so that the fullness of the warehouse is
maintained), with the exception that no retrieval will be generate for types
not yet present in the warehouse.

25

3.3.5 Resources package

The Resources package defines the infrastructures of the warehouse, the modules
are:

❼ ActionType defines an enumeration, ActionType, that defines the set of
action that can be performed by infrastructures. The values are:

– MOVE, movement action

– GET FROM BAY, loading a pallet from the bay

– DROP TO BAY, unloading a pallet to the bay

– PICKUP, used when a machine (i.e. a lift) picks up another machine
(i.e a shuttle)

– DROP, use when a machine (i.e. a shuttle) drops up another machine
(i.e a satellite)

– BLOCK, special action used for requesting a resource

– FREE , special action used for releasing a resource

❼ Movement defines some classes an methods to control position and movement
of infrastructures

– Position(section, level, x, z) identifies a point in the where house. The
values are not absolute but relative to the dimension of infrastructures. A
level value of 2 mean being in the second floor (all count start from zero).
A section the portion of the warehouse reached by a lift. Every section
has lift and every lift a section, in a one to one relation. It’s impossible
to move anything from one section to another so each section behaves
almost as a separate warehouse. The x dimension is the row of channel
depth wise, the z dimension is how deep the point i in the channel.

– MovableResource(sim, position, acc, max v, par extend the Re-
source class. The added arguments are:

✯ position, an instance of Position

✯ acc, the acceleration (ms−2) of the machine. It also set the deceler-
ation.

✯ max v max velocity reached by the machine (ms−1)

✯ par instance of SimulationParameter. An object containing all
the parameter of the warehouse.

The method Move(sim, position, parameter) takes the position where
the Resource has to move and return the time taken for the movement.
The distance d is computed using the method Distance. Then the for-
mulas used are:

tacc = vmax/a (3.2)

sacc = vmaxt
2
acc (3.3)

Then if d > sacc (so that there is time to reach vmax):

ttot = t2acc + (d− sacc)/vmax (3.4)

26

else:
ttot =

q
d/a (3.5)

Then the result is rounded to the second using a stochastic rounding.
The probability of rounding up is x − floor(x). This assure that the
average of rounding on same value converge on the real value. This has
to be done because rounding error from recurrent movement time (i.e.
the time taken by the lift from bay to first level) are going to sum up,
substituting the real value with the one the rounding method converge
to. For example a movement of 10.6, using nearest integer, is going to
become a effective movement of 11 . If this is a movement that appears
often this would stray the simulation further and further from reality.

The Move method also updates the energy consumption of the resource,
using the EnergyModel module. The other method of the class, drag
is used when the resource is loaded on another resource that move. It
updates the position of the resource and call the same method on loaded
resource if needed.

– Distance(p1, p2, parameter) method takes two position, and an in-
stance SimulationParameter, and returns the manhattan distance in
meter. If positions have different sections it return a infinite value.

❼ Bay, is the bay where pallet are taken and deposited. It only have position
and it can perform no action(other than blocking and freeing)

❼ Channel is where pallet are put. The channel class extends the Resource
class and the LifoStore class, defined in the same module, that is an extension
of the SymPy Store class. The do put method is overridden to have the
same functionality but making the Store LIFO instead of FIFO. This is done
to emulate the real channel in which only the last pallet put is accessible. Only
item of the same type can be put in a channel. Argument of the channel class,
other then the one inherited from the resource class,are:

– capacity, how many pallet it can contain.

– lift, an instance of the lift of the section in which the channel is put.

– position

– orientation, in the same level and x position 2 channel are present (the
shuttle run between two row on channels). The value is LEFT or RIGHT,
representing the two position a channel can be relative to the shuttle
space, part of the Channel.Orientation enumeration.

The class exposes the method first item z position that returns the z posi-
tion of the first occupied ubik. Used for satellite (or fork) movement distance
computation.

❼ Lift, the lift is the infrastructure that can move vertically. The class Lift is
an extension of MovableResource and Performer. It can perform three
action:

– MOVE, this action type (mapped to the method move lift) moves the
lift to a position. Possible parameter are :

27

✯ ”level”, the goal level of the movement

✯ ”resource”, the id of a resource whose position level is the goal of
movement

✯ ”auto”, the lift will go to the level of a shuttle that is blocked by
the ActionGraph, in case of more the one the first to have been
blocked is select.

✯ ”auto sat”, the lift will go to the level of a satellite that is blocked
by the ActionGraph

– PICKUP, this action type (mapped to the method pickup) tell the lift
to load a shuttle. It does not check that the positions coincide, so right
positioning have to be assured by the action sequence. Possible parameter
are :

✯ ”shuttle”, the id of the shuttle to load

✯ ”auto”, like for movement, it select a blocked shuttle

– DROP this action type (mapped to the method drop) tells the lift to
unload a shuttle. The shuttle is put on the same level as the lift on
position x = 0. It take no parameter.

❼ Shuttle, the lift is the infrastructure that can move in the x dimension. The
class Shuttle is an extension of MovableResource and Performer. It can
perform three action:

– MOVE, this action type (mapped to the method move shuttle) move
the shuttle to a position. Possible parameter are :

✯ ”x”, the goal x position of the movement

✯ ”resource”, the id of a resource whose position x is the goal of move-
ment

✯ ”auto”, the shuttle will go to the position of a satellite that is blocked
by the ActionGraph

– PICKUP, this action type (mapped to the method pickup) tells the
shuttle to load a satellite. It does not check that the positions coincide,
so right positioning have to be assured by the action sequence. Possible
parameter are :

✯ ”satellite”, the id of the satellite to load

✯ ”auto”, like for movement, it select a blocked satellite

– DROP this action type (mapped to the method drop) tell the shuttle
to unload a satellite. The shuttle is put on the same x position as the
shuttle on position z = 0. It take no parameter.

❼ Satellite, the satellite is the infrastructure able to move inside channels and
load pallet. In this simulator it is also used to emulate a fork, if the technology
select use it. It can perform five action:

– MOVE, this action type (mapped to the method move satellite) move
the satellite to a position. Possible parameter are :

✯ ”z”, the goal z position of the movement

28

✯ ”resource”, the id of a resource whose position z is the goal of move-
ment

– PICKUP, this action type (mapped to the method pickup) tells the
satellite to load a pallet. The parameter it needs is ”channel id”, the id
of the channel in which the satellite loading.

– GET FROM BAY, this action type (mapped to the method get from bay)
tells the satellite to load a pallet from the bay. The parameter it needs
is ”item”, an instance of the item taken.

– DROP this action type (mapped to the method drop) tell the satellite
to unload a pallet in a channel. Like for PICKUP, it needs a ”channel id”
parameter.

– DROP TO BAY this action type (mapped to the method drop to bay)
tells the satellite to unload a pallet a the bay. It doesn’t need any pa-
rameter.

❼ EnergyModel module defines a the energy method. This method takes
two position and return the energy consumed. It derives the infrastructure
that is moving from moving direction.

The model use to compute consumption is a modification of the one defined
by Ekren [14][6]. The specific powers of x axis movements are:

px,a = (axf+gcr,x)
vx,get
ηx

(3.6)

px,c = (gcr,x)
vx,get
ηx

(3.7)

px,d = (dxfr − gcr,x)
vx,get
ηx

(3.8)

Where ax and dx are acceleration and deceleration, fr is the mass resistance
factor, g is gravity acceleration, c the friction coefficient and η the transmission
yield. This formulas are equal for the z axis, been both horizontal movement.
The specific powers of y axis movements are:

py,a,U = (ayfr + gcr,y + g)
vx,get
ηx

(3.9)

py,c,U = (gcr,y + g)
vx,get
ηx

(3.10)

py,d,U = (−dyfr + gcr,y + g)
vx,get
ηx

(3.11)

py,a,D = (ayfr − gcr,y + g)
vx,get
ηx

(3.12)

py,c,D = (−gcr,y + g)
vx,get
ηx

(3.13)

py,d,D = (dyf−gcr,y + g)
vx,get
ηx

(3.14)

Where U is for movements going up and D for movements going D. Energy is
then computed using:

ex = px,atx,a + px,ctx,c + px,dtx,d (3.15)

29

ez = px,atx,a + pz,ctz,c + pz,dtz,d (3.16)

ey,U = py,a,U ty,a + py,c,U ty,c + py,d,U ty,d (3.17)

ey,D = py,a,Dty,a + py,c,Dty,c + py,d,Dty,d (3.18)

Where t is time spent accelerating (a),decelerating(d) or keeping constant (c).
This times are computed as for movement time in Movement module.

3.3.6 SimMain Package

The SimMain Package contains modules used to launch a simulation and gather
information about it. I will now describe the modules it contains

SimulationParmater module

The SimulationParmater module defines a class contain all the supported parameter
of the Warehouse. The parameter are:

❼ Nx, number of floor

❼ Ny, number of channels layer per floor.

❼ Nz, width of the warehouse in number of ubik.

❼ Lx, floor height in meter

❼ Ly, dimension of channel in the x (shuttle movement) direction (meter).

❼ Lz, dimension of ubik in z (satellite or fork) movement direction.

❼ Ax, acceleration of the lift (ms−2)

❼ Ay, acceleration of the shuttle (ms−2)

❼ Az, acceleration of the satellite (ms−2)

❼ Vx, max velocity of the lift (ms−1)

❼ Vy, max velocity of the shuttle (ms−1)

❼ Vz, max velocity of the satellite (ms−1)

❼ Cr, friction coefficient

❼ Fr, mass resistance factor

❼ rendiment, rendiment of the engines

❼ Wli, weight of the lift (multiplied by 10 in case of AS/RS) in kg

❼ Wsh, weight of the shuttle in kg

❼ Wsa, weight of the lift in kg

❼ Nli, number of lifts

30

❼ Nsh, number of shuttles per lift, put in the same section of the lift. Total
number of shuttles is Nli ∗Nsh

❼ Nsa, number of satellites per shuttle, put in the same section as the shuttle.
Total number of satellites Nli ∗Nsh ∗Nsat

❼ bay level, the level at which the bay is placed. Can be in between floor, if a
decimal is passed

❼ tech, the technology used. Where 0 means AS/RS,1 means AWS/RS(telescopic
fork) and 2 AWS/RS(shuttle-satellite).

❼ strat, The strategy used to select the channel where to put/take a pallet. A
value of 0 means random, a value of 1 means nearest avaible channel with
weighted manhattan distance and 2 emptier channel. More Strategy can be
implemented.

❼ strat par x and strat par y are the weight for the weighted manhattan
distance. The strat par x is for x distance and strat par y for y (vertical)
distance. Double zero is equivalent to random, and equals value is equivalent
to a true manhattan distance.

Warehouse module

The Warehouse module defines the class Warehouse(sim, parameter, trace parameter).
This class constructs and contains all the Resources object used in the simulation,
as well as calling the trace generator and the TaskDispatcher for scheduling the
tasks events. If takes as argument the Simulation object, a SimulationParam-
eter object and a TraceParameter object. If the parameter Nz can’t be evenly
divide between channels, channel of capacity as close to equal as possible are cre-
ated. Then, if the start fullness parameter in the TraceParameter object isn’t
zero, channels are occupied using the same strategy selected for the simulation.

3.3.7 Strategy Module

The Strategy module contains the logic of operations of the warehouse. This is done
in the Strategy via the strategyn and Implementn where the n is the strategy
and the technology number. In this way is easy to add support for addition technol-
ogy or strategy in the simulation, by adding the relative method. Strategy method
take the Task to be done e return the id of the channel selected. Implemented
strategy are:

❼ strategy0, randomly selects a viable channel. Viable for a deposit task mean
empty or not full contain the same type of items as the task one, for a retrieval
contain the right type of item.

❼ strategy1, selects the nearest viable channel using the weighted manhattan
distance, using the formula:

distance = wxLxchannelx + wyLy|channellevel − baylevel| (3.19)

Where wx is the strat par x and wy is strat par y. In case of more channels
with the minimum distance one is randomly selected.

31

❼ strategy2, select one of the emptier channel

The Implementn method takes the Task and the channel id selected by the strat-
egy, returning an ActionGraph build to achieve the task. Implemented technology
are:

❼ AS/RS in implement0, this technology use a lift embedded in a moving
column,so that the lift can move in 2 dimension. This is emulated in the
simulator with a parallel movement of a Lift (on the y axis) and a Shuttle
(on the x axis). The technology also fork for moving pallet inside channels.
This is emulated with a satellite movement.
Flowcharts for retrieval and deposit are:

Start Deposit

Retract
fork

Move lift
to bay

Load pallet

Move lift
to channel

Extend
fork

Deposit
pallet

End

Start Retrieval

Retract
fork

Move lift
to channel

Extend
fork

Load pallet

Move lift
to bay

Deposit
pallet
in bay

End

Movement of zero distance require no time, so no branches are required, in
this tech, for favorable starting state. For example if the fork doesn’t need to
retracted at the start of a deposit, the action is executed anyway because the

32

movement take no time (and consume no energy) thus not invalidating the
simulation. Branches are be used for other technologies, were extra movement
aren’t free or a different sequence has to be used.

❼ AWS/RS(telescopic fork) in implement1, this technology uses a lift and a
shuttle. The shuttle is moved between levels by the lift. The shuttle has a
fork used form moving pallet in channels. Like for AS/RS the fork movement
is emulated by a satellite movement. When a resource is not used for a portion
of the action sequence it freed so that another execution can block it. The
current execution will block it again (and possible wait for it to be freed)
when the sequence need it again. For example, in a retrieval, when the shuttle
has been dropped in the floor to load the pallet the lift is released, and then
blocked again when the shuttle has finished is movement. In this way more
tasks can be execute in parallel, and resource are used for most of the time, if
task are available.

Flowcharts are:

Start Deposit

Is the
shuttle

loaded on
the lift?

In parallel

Move lift
to the
shuttle
level

Retract
the fork

Move
shuttle
to x=0

Lift load
shuttle

Lift move
to bay

Load pallet

Lift move
to channel

floor

Lift unload
shuttle

Shuttle
move

to x =
channelx

Extend
fork

Unload
pallet

End deposit Deposit

No

Yes

Start Retrieval

Is the
shuttle on
the same
floor as

the
channel?

Is the
shuttle

loaded on
the lift?

In parallel

Move lift
to the
shuttle
level

Retract
the fork

Move
shuttle
to x=0

Lift load
shuttle

Lift unload
shuttle

Lift move
to Channel

Shuttle
move

to x =
channelx

Extend
fork

Load pallet

In parallel

Move lift
to channel

Retract
Fork

Lift load
shuttle

Move
shuttle

to x = 0

Lift move
to bay

Unload
pallet
in bay

End Retrieval

No

Yes

No

Yes

33

❼ AWS/RS(shuttle-satellite) in implement2, this technology use lifts (for y
movement), shuttles (for x movement) and satellites (for z movement). Lifts
can shuttles and shuttles can load satellites. Satellites load pallets. Like for
AWS/RS(telescopic fork) resource are freed when not required by that portion
of the sequence.

Start Deposit

Is the
shuttle

loaded on
lift and
satellite

on
shuttle?

Are
shuttle

and
satellite
on the
same
level?

In parallel

Move shut
to x = 0

Move sat
to z = 0

Lift move
to level =
shuttlelevel

In parallel

Move sat
to z = 0

Shuttle
move

to x =
satellitex

Lift load
the shuttle

Lift move
to level =
satellitelevel

Unload
the shuttle

Shuttle
move

to x =
satellitex

Shuttle
load sat

In parallel

Lift move
to level =
shutllelevel

Move
Shuttle

to x = 0

Lift load
shuttle

Lift move
to Bay

Load
Pallet

Lift move
to channel

floor

Lift unload
shuttle

Shuttle
move

to x =
channelx

Unload
satellite

Satellite
enter the
channel

Unload
pallet

End Deposit

No

Yes

No

Yes

34

Start Retrieval

Are
shuttle

and
satellite
on the
channel
level?

Is the
shuttle

loaded on
lift and
satellite

on
shuttle?

In parallel

Move shut
to x = 0

Move sat
to z = 0

Lift move
to level =
shuttlelevel

Lift load
the shuttle

Lift move
to level =
satellitelevel

Unload
the shuttle

Shuttle
move

to x =
satellitex

Shuttle
load sat

Is the
satellite
on the
channel
level?

In parallel

Lift move
to level =
shutllelevel

Move
Shuttle

to x = 0

Lift load
shuttle

Lift move
to level =
channellevel

Lift unload
shuttle

Move
Shuttle
to x =
channelx

Shuttle
unload
satellite

Satellite
move

to ubik

Satellite
load pallet

In parallel

Satellite
move to
z = 0

Lift move
to level =
channellevel

Shuttle
load

satellite

Shuttle
move to
x = 0

Lift load
shuttle

Lift move
to bay

Unload
pallet
to bay

End retrieval

No

Yes

Yes

No

No

Yes

35

Monitor module

The Monitor Module is used to gather and read data about the execution. It define
the Monitor class, that accumulates data during the simulation. The get result(cost param)
method returns an instance of Monitor.Results, which contains the following field:

❼ mean task wait, average time a task has waited

❼ mean task op time, average time for complementing a task based on active
time, working time/tasks done (sec)

❼ mean task tot time, average time for complementing a task based on total
simulation time, tot time/tasks done (sec)

❼ Th, Throughput. Tasks per hour. In practice is the lowest value between task
per hour of the trace (3600/int mean) and the trough theoretical value for the
specific warehouse. To see the real throughput capability the trace λ should be
pushed until the warehouse isn’t able to complete all tasks (completeness <
0).Value is in (task

hour
)

Th = 3600/mean task tot time (3.20)

❼ completeness, fraction of task complement on tasks scheduled by the trace.

❼ working time, total active time of the the warehouse. The warehouse is
considered active when at list one resource is blocked. (sec)

❼ tasks done, number of tasks completed.

❼ time per task, the average time a task time compute from the point of view
of tasks. The time each task as taken is registered and then averaged. Task
can be done in parallel so time per task >= mean task op time.

❼ energy consumed, total energy consumed (Wh).

❼ energy consumed per task, total energy consumed (Wh).

❼ area, energy consumed per task, energy consumed/tasks done (Wh)

❼ volume, total volume of the warehouse, NzLzNyLyNxLx (Wh)

❼ Nx, same as SimulationParameter

❼ Ny, same as SimulationParameter

❼ Nz, same as SimulationParameter

❼ num lift, number of lifts

❼ num shuttle, number of shuttles

❼ num sats, number of satellites

36

❼ lifts util proc, average fraction of the time as lift was performing operation
other then waiting on the active time.

lifts util proc =

PLifts
n

nutil proc

working time

num lift
(3.21)

❼ shut util proc, same as lifts util proc bu for shuttles.

❼ sat util proc, same as lifts util proc bu for satellites.

❼ lifts util, same as lifts util proc but considering all the time the lift has spent
blocked waiting.

❼ shut util,same as lifts util but for shuttles.

❼ sat util, same as lifts util but for satellites.

❼ single CT, single cycle average time. A cycle is defined as two times the lift
is at the bay. Single cycle is when it has done only a deposit or retrieval task.
(sec)

❼ double CT, double cycle average time. A double is a cycle where a deposit
and a retrieval are done. (sec)

❼ single CT V, variance of single cycle time

❼ double CT V, variance of double cycle time

❼ single CT E, average energy used in a single cycle, (Wh).

❼ double CT E, average energy used in a single cycle, (wh).

❼ strat param, -1 if strat par y = 0, else strat par x
strat par y

❼ cost, the cost of building the warehouse, computed using ConstParam

The class CostParam contains cost for infrastructure. It’s parameter are:

❼ lift, price of a shuttle loading lift;

❼ transelevator

❼ shuttle fork, cost of shuttle with fork, as used in AWS/RS(telescopic fork)

❼ shuttle, cost of a satellite loading shuttle, as used in AWS/RS(shuttle-satellite)

❼ satellite

❼ scaffolding, cost of one m2 of floor

main module

The main module to launch a simulation. It define the Test class that contains the
test(parameter, trace parameter, log=False)->Monitor.Results method, which
launch the simulation. It takes a SimulationParameter object ,a TraceParam-
eter object and optionally a Monitor.CostParam object. The log argument is a
boolean that control if the log is printed. The value returned is a Monitor.Results
object containing statistics about the simulation (as described above).

37

3.3.8 Opt package

The opt package contains modules use for the optimization.

Optimization module

The optimization module defines classes that are used to run optimizations. Class
defined are:

❼ OptRange class is used to define a range of values for a parameter. low is
the minimum, high the maximum and decimal is a boolean to select if the
range is discrete (only integer value) or real value in the interval are valid.

❼ OptParameter is an extension of SimulationParameter that can take Op-
tRange as parameter. The method map takes a Solution object and return
the SimulationParameter object with value set as the solution imply.

❼ FitnessParameter is an extension of Monitor.Results. Each parameter is
the weight for the which every value in the Monitor.Results.

❼ Solution(opt par, t par, fitness par, array) class is a List of float be-
tween 0 and 1. It represent a specific solution given the OptParameter.
Every not fixed parameter, so OptRange, in OptParameter is mapped to
a value of the array. To retrieve SimulationParameter from the solution
each value is mapped from the array from the [0-1] interval to [low-hight] and
rounded to nearest integer if float=FALSE. This assure that the optimization
algorithm doesn’t need to know anything about the specific of simulation or
warehouse. The array parameter take a list of integer the will be used as seed
for simulations. If the list contains more then one element more simulation are
run and average results are taken. The get fitness method return the fitness
calculated as: X

Results
i wivaluei (3.22)

❼ Opt exposes the method optimization(opt par, trace par, fitness par,
generations, processes) which is used to launch an optimization. Other
then the three parameter class it takes a generation arguments which is
the number of cycle of optimization that have to be run and a processes
argument which is the number of process in the process pool used for execution
of simulations. Each simulation run in a process.

Genetic module

The genetic module implements the genetic optimization algorithm. The method
used to launch a cycle is opt that takes the following arguments:

❼ opt par, OptimizationParameter object.

❼ t par, TraceParameter object.

❼ f par, FitnessParameter object.

❼ pop size, the size of the population, how many solutions are kept alive.

38

❼ pop swap, the fraction of population that is replaced each generation. The
worst pop size ∗ pop swap solutions are deleted, and the same number are
newly generated.

❼ mut, average mutation of a mutating value of the solutions. Mutation is
computed as newV alue = oldV alue + mut ∗ r, where r is a random value
generated by a normal distribution.

❼ mut change, increase of mut each generation, mutnew = mutold∗mut change.

❼ mut perc, average fraction of value of the solutions that are mutated.

❼ bottle neck prob, probability for a generation to be bottleneck.

❼ bottle neck swap, population replaced in a bottle neck generation.

❼ n processes, size of process pool.

Internally the method defines the Chromosome class, which is an extension
of Solution. This class defines the method Mutation, that mutated the solution
as described above, and the Crossover(c1,c2), that takes two Chromosome and
generate a new one. The new solution is generated by selecting each value randomly
from one of the two Chromosome.

The other class defined is Population, the contains and manage the population
of Chromosomes. It exposes the following methods:

❼ get best, returns the Chromosome with minimum fitness

❼ get couple, yield couples of Chromosome used to generate a new Chromo-
some. The algorithm to select the couple is:

– Chromosome are sorted by fitness;

– For each Chromosome the value following value is computed:

vi =
j<iX
j=0

1

fitnessj
(3.23)

– then values are normalized, vi = vi/vmax, so that the max value is 1.

– For each Chromosome that has to be selected a random float between 0
and 1 r is generated, the selected Chromosome is the one where vi−1 <
r ≤ vi.

❼ generation, advance the population by a generation. This is done by choosing
pop swap couples, using them to generate pop swap new chromosomes. Then
the pop swap worst chromosomes are deleted and replaced by the new one.

The initial population is randomly generated. Every cycle the opt method yield the
best solution, update the mut parameter and call generation() on the pop.

39

Chapter 4

Verification, results and discussion

4.1 Introduction

The verification of the simulation is made hard by the fact that is not trivial to
model the system mathematically. So to check the simulator results i run simulation
variating only one parameter and checking that results are what we expect. All the
following graphs are generate using the following parameter, and only changing the
one studied:

rendiment = 0.9,
Fr = 1.15,
Cr = 0.02,
Nsa = 2,
Nsh = 3,
Nli = 3,
Vz = 1.2,
Az = 0.7,
Vy = 0.9,
Ay = 0.8,
Vx = 4,
Ax = 0.8,
Cy = 0,
Wli = 1850,
Wsh = 850,
Wsa = 350,
Lz = 1.2,
Ly = 1.5,
Lx = 1,
Nz = 50,
Ny = 10,
Nx = 50,
bay level = 0,
tech = 0,
strategy = 1,
strategy par x = 1,
strategy par y = 1,
types = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1],

40

sim time = 21600,
seed = 1,
start fullness = 0.5,
int mean = 25,
When variating dimension (Nx,Ny,Nz) the others are changed to maintain the

same volume (and are in the case of Nx and Nz). Plots are made for the three
implemented technology, where tech0 is transelevator + fork, tech1 is elevator +
shuttle + fork and tech2 elevator + shuttle + satellite.

Interesting features of each results are then briefly discussed

4.2 Dimension

4.2.1 Depth

Figure 4.1: Variating Nx

When changing Nx, also Nz is changed to maintain the base area constant. So

41

in fact we are changing the base shape of the warehouse. We can see that this isn’t
changing most of the metrics for tech1 and 2, the only apparent effect is a initial
decrease of satellite utilization, as we should expect given that small Nx means big
Nz, so a big travel time for satellites. We don’t sea a similar variation in shuttle
utilization probably due to the fact that channels for operations a re selected using
the manhattan distance (strategy par x=1 and strategy par y=1) so channels far
away in the x axis are not very used.

For tech0 we can sea a surge in energy consumption. This is due to the fact
that using a transelevator a lot of mass has to be moved in the x dimension. The
plateau is, like for the shuttle utilization, due to the strategy stop selecting far away
channels.

4.2.2 Width

Figure 4.2: Variating Nz

As we expect variating Nz we the results are the same as Nz, but mirrored.

42

4.2.3 Hight

Figure 4.3: Variating Ny

Here we can see the effect of a tall warehouse(the base is keep as a square and
the volume maintained constant). It interesting to see how it affect differently the
energy consumption of different technologies. Tech0 better it’s energy efficiency
because horizontal movement are as costly as vertical one. In contrary tech 1 and
2 perform worse in a tall system due to vertical movement been the ones moving
more mass. This can be mitigated be tuning the strategy parameter to consider the
alter the weight of vertical movement in the selection of channels.

Using a strategy that only takes into account vertical distance (strategy par x=0),
that effect disappear for tech 1 and 2. For the transelevator the right balance has
to be found.

43

Figure 4.4: Strategy only y

4.3 Infrastructures

4.3.1 Lifts number

Figure 4.5: Variating Nli

44

Form this figures we can see that the with only one lift the warehouse can keep up
with the tasks (as denoted by th Th value). The strategy, as implemented, break
up when a long backlog of operation is present, thus greatly worsening performance
and energy efficiency.

Increasing the number of lift also increase the number of shuttle for tech1 and
shuttle + satellite for tech2, thus the steeper increase in cost in respect to tech0 and
the descending resource utilization.

4.3.2 Shuttles number

Figure 4.6: Variating Nsh with Nli=2

For this plot the number of lift was set to 2 (nstead of 3), too better show the shuttle
number effect. We can see that tech2 isn’t able too keep up with only one shuttle.
Looking at the lifts utilization plot we can see that, for the 2 tech, the shuttle (and
not the lift) become the bottleneck of the system, even if tech1 is able to keep up

45

with the tasks. The plateau in the same plot since 2 shuttle show that increasing
further the shuttle number is not very useful, due to the lifts being the bottleneck.

4.3.3 Satellites number

Figure 4.7: Variating Nsa with Nsh=1

Like for Nsh for this plot the number of shuttle per lift was set to 1. We can
see from the lifts and shuttles utilization that with 1 satellite the z dimension is the
bottleneck.

46

4.4 Operation strategy

4.4.1 Strategy parameter

Figure 4.8: Variating Log(strategy par y/strategy par x)

In this plot we an see the effect of the axis weight on selection of the channels. On
the we have only horizontal and on the right only vertical.

47

4.5 Trace parameter

4.5.1 Warehouse space occupied

Figure 4.9: Variating start fullness

The start fullness in the fraction of the ubik that are occupied at the start of the
simulation and, due to the way traces are generated, is maintained for in average
for the whole simulation. The biggest effect is on energy consumption, specially for
tech0, where as seen before an increase in distance travel represent a significant hit
to energy performance.

48

4.5.2 Interarrival time

Figure 4.10: Variating int mean

This is the parameter controlling the mean time between tasks. With to fast arrival
the warehouse break down as seen for too few lifts case. The energy consumed plot
has been substituted by the energy per task plot, too better display the performance
independently by the tasks amount.

49

Chapter 5

Scenarios discussion

5.1 Introduction

In this section i’m going to run the optimization for different hipotetical cases of
warehouses destination. The cases are have different costraint or traces and reppre-
sent different real-world scenarios of aplliction. For each scenerio the optimization
try to minimize respectivly the cost and the energy consumption of operation. Op-
timization for the tree supported technologies are separeted. The cost is computed
cosidering the costs of consturction with an amortisation pariod of ten years, plus the
cost of the energy consumed. All scenarion start from the same basic parameter,with
modificatin specific for the cases. Ranges rappresent minimum and maximum values
that can be checked by the optimizer. The duration of simulation is 3 hour.

Table 5.1: Optimization inputs by scenario

Type Few Items Many Items Few Tasks Many tasks Small Area Reduced acc
rendiment Fixed 0.9 0.01 0.01 0.01 0.01 0.01
Fr Fixed 0.05 0.05 0.05 0.05 0.05 0.05
Cr Fixed 0.00 0.00 0.00 0.00 0.00 0.00
Nsa To optimize [1,3] [1,3] [1,3] [1,3] [1,3] [1,3]
Nsh To optimize [1,3] [1,3] [1,3] [1,3] [1,3] [1,3]
Nli To optimize [1,5] [1,5] [1,5] [1,5] [1,5] [1,5]
Vz Fixed 1.2 1.2 1.2 1.2 1.2 1.2
Az Fixed 0.7 0.7 0.7 0.7 0.7 0.2
Vy Fixed 0.9 0.9 0.9 0.9 0.9 0.9
Ay Fixed 0.8 0.8 0.8 0.8 0.8 0.2
Vx Fixed 4.00 4.00 4.00 4.00 4.00 4.00
Ax Fixed 0.8 0.8 0.8 0.8 0.8 0.2
Cy Fixed 0.00 0.00 0.00 0.00 0.00 0.00
Wli Fixed 1850.00 1850.00 1850.00 1850.00 1850.00 1850.00
Wsh Fixed 850.00 850.00 850.00 850.00 850.00 850.00
Wsa Fixed 350.00 350.00 350.00 350.00 350.00 350.00
Lz Fixed 1.2 1.2 1.2 1.2 1.2 1.2
Ly Fixed 1.5 1.5 1.5 1.5 1.5 1.5
Lx Fixed 1.00 1.00 1.00 1.00 1.00 1.00
Nz To optimize [10,50] [10,50] [10,50] [10,50] 10.00 [10,50]
Ny To optimize [3,20] [3,20] [3,20] [3,20] [3,20] [3,20]
Nx To optimize [10,50] [10,50] [10,50] [10,50] 10.00 [10,50]
bay level Fixed 0.00 0.00 0.00 0.00 0.00 0.00
strategy Fixed 1.00 1.00 1.00 1.00 1.00 1.00
strategy par x To optimize [0,10] [0,10] [0,10] [0,10] [0,10] [0,10]
strategy par y To optimize [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]
Mean time between tasks Fixed 25.00 25.00 100.00 20.00 25.00 25.00
Ubik occupied fraction Fixed 0.5 0.5 0.5 0.5 0.5 0.5

The optimization is done via the Genetic method using the following parameter:

50

❼ 1000 generations

❼ population size of 30

❼ mutation probability for a character of 0.3

❼ mutation rate of 0.2

❼ population swapping of 0.2

❼ 0.1 bottleneck probability

❼ 0.8 bottleneck population swap

5.2 Few items types

This scenario rappresent an eviroment where few types of different items are present.
This could be the input warehouses for a manifactur using simple input material.
This is simulated by only having two types of of items.

Table 5.2: Few items types optimization results

Transelevatore Lift, shuttle, fork Lift, shuttle, satellite
Type Cost Energy Cost Energy Cost Energy

Nz Optimized 13.00 41.00 19.00 24.00 24.00 42.00
Ny Optimized 4.00 7.00 9.00 4.00 5.00 5.00
Nx Optimized 36.00 13.00 19.00 24.00 38.00 12.00
Average task op time (sec) Performance 15.49 13.64 22.40 21.71 25.17 24.10
Average task tot time (sec) Performance 25.41 25.41 25.41 25.41 25.41 25.41
Th (tasks/hour) Performance 141.66 141.66 141.66 141.66 141.66 141.66
Completeness Performance 1.00 1.00 1.00 1.00 1.00 1.00
task done Performance 425.00 425.00 425.00 425.00 425.00 425.00
Energy consumed (KWh) Performance 7.28 0.89 20.09 0.23 22.41 1.84
Energy per tasks (Wh) Performance 17.15 2.10 47.27 0.56 52.73 4.33
Working time (sec) Performance 6584.00 5798.00 9521.00 9228.00 10699.00 10242.00
Time per task (sec) Performance 23.26 18.71 54.71 46.16 185.02 504.00
Area Optimized 468.00 533.00 361.00 576.00 912.00 2520.00
Volume Optimized 1872.00 3731.00 3249.00 2304.00 4560.00 4.00
Lifts Optimized 3.00 5.00 4.00 3.00 2.00 8.00
Shuttles Optimized 0.00 0.00 4.00 6.00 4.00 24.00
Satellites Optimized 0.00 0.00 0.00 0.00 4.00 0.32
Lifts util Performance 0.43 0.25 0.33 0.44 0.82 0.32
Shuttles util Performance 0.00 0.00 0.45 0.34 0.82 0.32
Sats util Performance 0.00 0.00 0.00 0.00 0.87 0.12
Single cycle (sec) Performance 85.00 162.08 63.31 29.72 20.81 17.18
Double cycle (sec) Performance 46.00 5.71 133.78 10.97 31.51 22.15
Single cycle energy (Wh) Performance 27.25 67.10 28.52 0.11 21.79 2.57
Double cycle energy (Wh) Performance 15.32 0.05 91.30 0.27 49.31 0.48
Strat par Optimized 10.00 1.94 10.00 9.50 10.00 1.50
Cost (euro) Performance 6.29 10.71 11.58 11.62 18.49 47.85

5.2.1 Transelevator

Here we can se that when only energy efficiency is searched, a larger (in the z
dimension, and smaller x) warehouse is better. This is probably due to two factor:

❼ the x movement are the costly (energy wise) for a transelevtor system.

51

❼ the z axis can be split in more sections by adding lift, that are broghut from 3
to 5 (the maximum allowed by the optimization parameter). This reduce also
the z distance of movement.

The strategy is changed to take more into account the vertical distance. This can be
seen in almost every scenerio present here, beign the vertical movements the more
energy hungry for all technology. The energy saving is almost 90

5.2.2 Lift,shuttle,fork

Cost

Here we can see that a very tall warehouse is chosen. This is probably due to
shuttle beign more costly than lift. So to avoid needing long x movement (which
would requiere more shuttle) a tall shape is chosen.

Energy

We observe here the opposite that the transelevator case. When the shuttle high
cost is not considered x and z movement are to be preferred, beign the shuttles
more energy efficient than a lift. The energy saved is considerable with a minimun
increase in the cost.

5.2.3 Lift,shuttle,satellite

The difference between cost and energy optimization is the base shape, heavely pref-
fering z lenght in the latter. The dimension is split using more lift and pararrelized
adding a swarm of satellite. This greatly increase the cost, as count of shuttle double
and 20 more satellites are needed

5.3 Many items types

This scenario ,the opposite of the last one, present a situation where lots of different
goods need to be stored. In this case 40 types are handled.

52

Table 5.3: Many items types optimization results

Transelevatore Lift, shuttle, fork Lift, shuttle, satellite
Type Cost Energy Cost Energy Cost Energy

Nz Optimized 17.00 17.00 15.00 48.00 17.00 15.00
Ny Optimized 5.00 19.00 5.00 4.00 6.00 5.00
Nx Optimized 29.00 11.00 17.00 28.00 44.00 29.00
Average task op time Performance 25.38 17.77 23.35 21.75 25.36 24.97
Average task tot time Performance 25.41 25.41 25.41 25.41 25.41 25.41
Th Performance 141.66 141.66 141.66 141.66 141.66 141.66
Completeness Performance 1.00 1.00 1.00 1.00 1.00 1.00
task done Performance 425.00 425.00 425.00 425.00 425.00 425.00
Energy consumed Performance 16.96 14.22 9.95 2.04 29.06 4.42
Energy consumed per tasks Performance 39.90 33.45 23.41 4.80 68.38 10.39
Working time Performance 10787.00 7555.00 9924.00 9245.00 10779.00 10230.00
Time per task Performance 459.92 37.97 68.24 48.59 210.40 73.20
Area Optimized 493.00 187.00 255.00 1344.00 748.00 435.00
Volume Optimized 2465.00 3553.00 1020.00 5376.00 4488.00 2175.00
Lifts Optimized 1.00 2.00 2.00 5.00 2.00 5.00
Shuttles Optimized 0.00 0.00 4.00 5.00 4.00 10.00
Satellites Optimized 0.00 0.00 0.00 0.00 4.00 10.00
Lifts util Performance 1.00 0.67 0.68 0.24 0.81 0.28
Shuttles util Performance 0.00 0.00 0.59 0.37 0.81 0.26
Sats util Performance 0.00 0.00 0.00 0.00 0.86 0.28
Single cycle Performance 28.76 55.01 27.63 63.02 25.24 31.54
Double cycle Performance 21.35 16.14 35.42 26.19 31.71 29.96
Single cycle energy Performance 53.64 58.71 12.91 2.56 33.10 4.61
Double cycle energy Performance 38.02 16.13 23.77 4.21 56.11 5.37
Strat par Optimized 8.89 0.74 2.99 0.06 8.14 0.79
Cost Performance 4.50 6.89 7.56 15.01 18.65 34.92

5.3.1 Transelevator

Like with the few items case a bigger area is preferred for energy efficiency but
without the same success, in terms of energy saved, as before.

5.3.2 Lift,shuttle,satellite

Cost

The number of items types seem not to effect this technology as much as the others.
Almost the same warehouse parameters are choosen.

Energy

In this case long channels cannot be exploited so the basic strategy of splitting the
warehouse in more section, using more lift, is deployed.

5.4 Few Tasks

This scenario present a very low throughput requirement. The mean time between
tasks is 100 seconds instead of 25.

53

Table 5.4: Few tasks optimization results

Transelevatore Lift, shuttle, fork Lift, shuttle, satellite
Type Cost Energy Cost Energy Cost Energy

Nz Optimized 11.00 46.00 45.00 16.00 16.00 34.00
Ny Optimized 3.00 6.00 9.00 5.00 3.00 6.00
Nx Optimized 41.00 17.00 13.00 44.00 14.00 29.00
Average task op time Performance 20.38 16.57 49.73 30.42 50.42 41.11
Average task tot time Performance 89.26 89.25 89.26 89.25 89.25 89.25
Th Performance 40.33 40.33 40.33 40,33 40.33 40.33
Completeness Performance 1.00 1.00 1.00 1.00 1.00 1.00
task done Performance 121.00 121.00 121.00 121.00 121.00 121.00
Energy consumed Performance 5.29 0.49 4.31 0.57 1.35 0.11
Energy consumed per tasks Performance 43.72 4.06 35.60 4.69 11.15 0.93
Working time Performance 2467.00 2006.00 4929.00 3681.00 6101.00 4974.00
Time per task Performance 25.04 19.33 64.28 40.18 84.37 58.43
Area Optimized 462.00 799.00 585.00 704.00 224.00 986.00
Volume Optimized 1386.00 4794.00 5265.00 3520.00 672.00 5916.00
Lifts Optimized 1.00 5.00 1.00 4.00 1.00 0.13
Shuttles Optimized 0.00 0.00 3.00 4.00 2.00 0.24
Satellites Optimized 0.00 0.00 0.00 0.00 4.00 0.14
Lifts util Performance 0.99 0.22 0.83 0.21 0.72 10.41
Shuttles util Performance 0.00 0.00 0.50 0.30 0.67 24.97
Sats util Performance 0.00 0.00 0.00 0.00 0.41 0.14
Single cycle Performance 72.83 26.00 39.79 201.88 25.64 10.41
Double cycle Performance 35.48 5.82 79.00 204.39 35.43 24.97
Single cycle energy Performance 67.79 49.99 23.07 3.17 4.07 0.31
Double cycle energy Performance 21.12 1.92 38.36 5.16 9.63 0.60
Strat par Optimized 10.00 1.35 5.72 4.48 8.02 1.39
Cost Performance 2.98 11.79 9.84 11.16 9.64 30.05

5.4.1 Transelevator

When optimizing by cost infrastructure are reduced to the minimal (only one lift),
given that tasks are slow.

When optimization by energy the same strategy as few items type (emphasis on
the z dimension and lots of lifts) is deployed. This is the strategy used by all three
technologies, probably due to the fact that concurrent operation cannot be used (the
delay between tasks is bigger than the time taken a single task)

5.5 Many Tasks

This scenario present a higher than normal throughput requirement. The mean time
between tasks is 20 seconds instead of 25.

54

Table 5.5: Many tasks optimization results

Transelevatore Lift, shuttle, fork Lift, shuttle, satellite
Type Cost Energy Cost Energy Cost Energy

Nz Optimized 29.00 29.00 29.00 30.00 14.00 12.00
Ny Optimized 3.00 7.00 7.00 9.00 10.00 7.00
Nx Optimized 16.00 41.00 41.00 30.00 45.00 30.00
Average task op time Performance 15.28 12.19 19.53 18.35 20.17 19.64
Average task tot time Performance 20.18 20.18 20.19 20.18 20.19 20.19
Th Performance 178.33 178.33 178.33 178.33 178.33 178.33
Completeness Performance 1.00 1.00 1.00 1.00 1.00 1.00
task done Performance 535.00 535.00 535.00 535.00 535.00 535.00
Energy consumed Performance 6.87 3.68 9.13 4.59 6.71 4.44
Energy consumed per tasks Performance 12.83 6.87 17.06 8.58 12.54 8.29
Working time Performance 8175.00 3054.00 10453.00 9816.00 10789.00 10505.00
Time per task Performance 30.20 21.33 67.61 46.62 261.81 75.82
Area Optimized 464.00 1392.00 1189.00 1200.00 630.00 360.00
Volume Optimized 1392.00 22272.00 8323.00 10800.00 6300.00 2520.00
Lifts Optimized 2.00 4.00 3.00 5.00 3.00 5.00
Shuttles Optimized 0.00 0.00 3.00 10.00 3.00 10.00
Satellites Optimized 0.00 0.00 0.00 0.00 3.00 10.00
Lifts util Performance 0.67 0.36 0.46 0.32 0.49 0.35
Shuttles util Performance 0.00 0.00 0.68 0.25 0.85 0.33
Sats util Performance 0.00 0.00 0.00 0.00 0.95 0.36
Single cycle Performance 43.32 84.51 37.91 44.09 19.66 21.88
Double cycle Performance 23.05 12.41 47.65 23.33 29.43 27.88
Single cycle energy Performance 21.66 20.13 8.94 3.34 10.53 4.40
Double cycle energy Performance 8.93 1.63 26.41 6.53 0.95 3.34
Strat par Optimized 10.00 4.25 9.73 3.31 0.70 5.57
Cost Performance 4.41 28.49 14.52 26.67 17.50 35.28

5.5.1 Transelevator

Like before, splitting in section adding lifts.

5.5.2 Lift,shuttle,satellite

Technologies using shuttles can exploit parallel movement, in a situation where inter
arrival time is shorter than the cycle time, to save energy. But having a slower cycle
times and lifts being still a bottleneck they have for to use more of them to keep up
with tasks, even when optimizing by cost, than the transelevator technology.

5.6 Small Area

This scenario analyze the problem of having a small warehouses area. This is done
by locking the area parameter(Nx and Nz) of the warehouse to 10.

55

Table 5.6: Fixed area optimization results

Transelevatore Lift, shuttle, fork Lift, shuttle, satellite
Type Cost Energy Cost Energy Cost Energy

Nz Optimized 10.00 10.00 10.00 10.00 10.00 10.00
Ny Optimized 4.00 6.00 8.00 5.00 18.00 8.00
Nx Optimized 10.00 10.00 10.00 10.00 10.00 10.00
Average task op time Performance 14.86 15.62 19.52 18.00 19.97 19.81
Average task tot time Performance 20.19 20.19 20.19 20.18 20.19 20.19
Th Performance 178.33 178.33 178.33 178.33 178.33 179.33
Completeness Performance 1.00 1.00 1.00 1.00 1.00 1.00
task done Performance 535.00 535.00 535.00 535.00 535.00 535.00
Energy consumed Performance 6.22 1.28 23.37 1.17 15.38 1.97
Energy consumed per tasks Performance 11.63 2.39 43.69 2.19 28.76 3.69
Working time Performance 7952.00 6513.00 10444.00 6928.00 10688.00 10600.00
Time per task Performance 27.78 18.24 79.53 43.92 108.84 31.96
Area Optimized 100.00 100.00 100.00 100.00 100.00 100.00
Volume Optimized 400.00 600.00 800.00 500.00 1800.00 800.00
Lifts Optimized 2.00 5.00 3.00 5.00 3.00 5.00
Shuttles Optimized 0.00 0.00 3.00 10.00 6.00 10.00
Satellites Optimized 0.00 0.00 0.00 0.00 6.00 10.00
Lifts util Performance 0.67 0.28 0.52 0.31 0.63 0.33
Shuttles util Performance 0.00 0.00 0.71 0.24 0.61 0.31
Sats util Performance 0.00 0.00 0.00 0.00 0.66 0.34
Single cycle Performance 40.57 138.35 43.28 48.18 20.04 19.71
Double cycle Performance 14.69 0.29 70.44 26.23 24.60 23.53
Single cycle energy Performance 21.27 3.77 26.30 0.98 13.28 1.60
Double cycle energy Performance 5.73 0.29 81.50 1.59 18.19 1.87
Strat par Optimized 6.97 3.77 10.00 8.03 9.20 1.97
Cost Performance 3.37 7.51 7.30 15.96 21.91 33.42

5.7 Fragile items (reduced acceleration)

This scenerio present the problem of having a goods that have to be handled with
care, thus limiting the acceleraion in movement. This is done by locking the accel-
eration to 0.2m/sec2.

56

Table 5.7: Reduced acceleration optimization results

Transelevatore Lift, shuttle, fork Lift, shuttle, satellite
Type Cost Energy Cost Energy Cost Energy

Nz Optimized 11.00 30.00 18.00 44.00 10.00 43.00
Ny Optimized 5.00 3.00 14.00 9.00 11.00 5.00
Nx Optimized 20.00 49.00 16.00 42.00 27.00 17.00
Average task op time Performance 18.00 15.97 24.33 22.98 25.33 24.61
Average task tot time Performance 25.41 25.41 25.41 25.41 25.41 25.41
Th Performance 141.66 141.66 141.66 141.66 141.66 141.66
Completeness Performance 1.00 1.00 1.00 1.00 1.00 1.00
task done Performance 425.00 425.00 425.00 425.00 425.00 425.00
Energy consumed Performance 1.79 0.55 5.87 1.18 4.07 2.29
Energy consumed per tasks Performance 4.21 1.30 13.80 2.78 9.58 5.38
Working time Performance 7635.00 6788.00 10341.00 9382.00 10766.00 10548.00
Time per task Performance 30.91 24.28 119.53 50.53 192.73 83.90
Area Optimized 220.00 980.00 288.00 1848.00 270.00 731.00
Volume Optimized 1100.00 2940.00 4032.00 16632.00 2970.00 3655.00
Lifts Optimized 2.00 4.00 2.00 4.00 3.00 4.00
Shuttles Optimized 0.00 0.00 2.00 8.00 3.00 8.00
Satellites Optimized 0.00 0.00 0.00 0.00 6.00 24.00
Lifts util Performance 0.64 0.34 0.59 0.34 0.53 0.38
Shuttles util Performance 0.00 0.00 0.88 0.27 0.85 0.36
Sats util Performance 0.00 0.00 0.00 0.00 0.76 0.14
Single cycle Performance 57.06 121.14 32.78 46.85 20.99 25.99
Double cycle Performance 13.36 7.05 39.57 25.95 42.14 30.04
Single cycle energy Performance 8.90 11.23 7.60 1.20 3.68 2.24
Double cycle energy Performance 1.46 0.50 19.81 2.24 6.50 3.43
Strat par Optimized 3.44 0.57 2.56 2.41 8.74 3.16
Cost Performance 3.93 8.52 8.12 29.45 17.58 49.03

57

Chapter 6

Conclusions

The discrete simulation approach for modeling warehouse allows for great flexibility,
especially if the simulation is written as a framework where business logic can be
defined in plain python. Using this method is possible, and easy with basic pro-
gramming skills and language knowledge, to adapt the model to a specific case. An
autonomous warehouse producer can implement in the simulation its set of technol-
ogy and logic of operation, and thus have a functional model of fitted for its need
without starting from scratch.

The tool can also be used for theoretical research, for example for testing logics
of operation developed outside of the simulation scope. This is made possible by
the general structure of the simulator.

The other use for the simulator can be the integration with others models, to
achieve a wider representation of the industry process. This can be very useful in
the process of building a digital double of a particular production or distribution
system. This is by the fat that the simulator is written in Python, and not using a
particular simulation tool, thus allowing for easy manipulation of input and output
of the model.

The simple results of simulation discussed above, show how even only variating
an input parameter its possible to identify some technology specific behaviour. This
quirks can be non trivial to discover a priori, due to concurrent systems intrinsic
complexity.

Energy saving is becoming a central concern in industry, an is probably going to
grow in importance in the future. A simulator have to be capable of computing the
energy efficiency of the warehouse, being it a performance parameter that is joining
cycle time and deployment cost in the core evaluation metrics. Optimizations thus
need to be multi objective to be used generally, each user has its own constraint and
goals.

The optimizators runs presented is this thesis shown that the space for big energy
saving exist, without greatly increasing building cost. The energy saving strategy
is not general for all scenarios but need to be tailored to the specific design of
warehouse, but this method could be used to identify a set recurrent directions.

58

References

[1] url: https://www.statista.com/statistics/1094202/global-warehouse-
automation-market-size/.

[2] url: https://simpy.readthedocs.io/en/latest/contents.html.

[3] R. Accorsi et al. “Time and energy based assignment strategy for unit-load
AS/RS warehouses”. In: cited By 0. 2015. url: https://www.scopus.com/
inward/record.uri?eid=2- s2.0- 84949679507&partnerID=40&md5=

766cfb60e931e5eb6a6e934c6c67f970.

[4] T. Bartkowiak et al. “Novel approach to semi-automated warehouse for man-
ufacturing: Design and simulation”. In: vol. 591. 1. cited By 0. 2019. doi: 10.
1088/1757-899X/591/1/012040. url: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85072109861&doi=10.1088%2f1757-899X%2f591%

2f1%2f012040&partnerID=40&md5=8ddb84e1dcedf95d10005dcecb40a1aa.

[5] A.C. Brito and J.A. Basto. “Automated warehouse design using visual inter-
active simulation”. In: cited By 0. 2006, pp. 593–598. doi: 10.7148/2006-
0593. url: https : / / www . scopus . com / inward / record . uri ? eid = 2 -

s2.0- 84857774381&doi=10.7148%2f2006- 0593&partnerID=40&md5=

521ac1bd4d94610f96f2f12c4f3a5913.

[6] Ekren BY. “Graph-based solution for performance evalua- tion of Shuttle-
Based Storage and Retrieval System. Int J Prod Res 55(21):6516–6526”. In:
(2017). doi: http://dx.doi.org/10.1080/00207543.2016.1203076.

[7] Sprock T. Bock C. “SysML models for discrete event logistics systems”. In:
(2020). doi: http://dx.doi.org/10.6028/JRES.125.023.

[8] L.S. Duncan. “SYSTEM DESIGN TRENDS IN AUTOMATED WAREHOUS-
ING.” In: cited By 0. 1985, pp. 23–34. url: https://www.scopus.com/

inward / record . uri ? eid = 2 - s2 . 0 - 0022314228 & partnerID = 40 & md5 =

15664ec19033550dcdc09bf8b7ab8e32.

[9] M. Eder. “An analytical approach for a performance calculation of shuttle-
based storage and retrieval systems”. In: Production and Manufacturing Re-
search 7.1 (2019). cited By 5, pp. 255–270. doi: 10.1080/21693277.2019.
1619102. url: https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85066146716&doi=10.1080%2f21693277.2019.1619102&partnerID=

40&md5=cab538fff2bbf8bde724f6762386a514.

59

[10] M. Eder. “An approach for a performance calculation of shuttle-based storage
and retrieval systems with multiple-deep storage”. In: International Journal
of Advanced Manufacturing Technology 107.1-2 (2020). cited By 2, pp. 859–
873. doi: 10.1007/s00170-019-04831-7. url: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85079778212&doi=10.1007%2fs00170-

019-04831-7&partnerID=40&md5=cbabdff2e7470a9e0f0ca1a9dd6d1915.

[11] M. Eder. “An approach for performance evaluation of SBS/RS with shuttle
vehicles serving multiple tiers of multiple-deep storage rack”. In: International
Journal of Advanced Manufacturing Technology 110.11-12 (2020). cited By 0,
pp. 3241–3256. doi: 10.1007/s00170-020-06033-y. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85091165258&doi=10.1007%

2fs00170-020-06033-y&partnerID=40&md5=70d6105339874ebe418bff018ed48f69.

[12] B.Y. Ekren. “A simulation-based experimental design for SBS/RS warehouse
design by considering energy related performance metrics”. In: Simulation
Modelling Practice and Theory 98 (2020). cited By 5. doi: 10 . 1016 / j .

simpat.2019.101991. url: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85072840199&doi=10.1016%2fj.simpat.2019.101991&

partnerID=40&md5=9ad6eecae756c71c7d7a10523ecb8d33.

[13] B.Y. Ekren, Z. Sari, and T. Lerher. “Warehouse design under class-based stor-
age policy of shuttle-based storage and retrieval system”. In: IFAC-PapersOnLine
28.3 (2015). cited By 16, pp. 1152–1154. doi: 10.1016/j.ifacol.2015.06.
239. url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84953878654&doi=10.1016%2fj.ifacol.2015.06.239&partnerID=40&md5=

5157607c597bb94e662e20958a5f7add.

[14] Sari Z Lerher T Ekren BY Akpunar A. “A tool for time, variance and energy
related performance estimations in a shuttle- based storage and retrieval sys-
tem. Appl Math Model”. In: (2018). doi: http://dx.doi.org/10.1016/j.
apm.2018.06.037.

[15] L. He, L. Zhao, and X. Ma. “Optimization design of automated warehouse
storage area based on nonlinear programming”. In: Dongnan Daxue Xuebao
(Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition)
37.SUPPL. 2 (2007). cited By 3, pp. 309–315. url: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-41949134063&partnerID=40&md5=

a8089b1517273e9c3e6804b786ee5004.

[16] K. Liu and Z. Cao. “Energy-optimized task scheduling of automated ware-
house based on improved grey wolf optimizer”. In: Jisuanji Jicheng Zhizao
Xitong/Computer Integrated Manufacturing Systems, CIMS 26.2 (2020). cited
By 1, pp. 376–383. doi: 10.13196/j.cims.2020.02.010. url: https://
www.scopus.com/inward/record.uri?eid=2-s2.0-85082474966&doi=10.

13196%2fj.cims.2020.02.010&partnerID=40&md5=e671b0d022b19502557edde1889c2809.

[17] Bäck Thomas Thiele Lothar. “A Comparison of Selection Schemes Used in
Evolutionary Algorithms”. In: (1996). doi: https://doi.org/10.1162/

evco.1996.4.4.361.

[18] Mitchell Melanie. An Introduction to Genetic Algorithms. MIT Press, 1996.
isbn: 9780585030944.

60

[19] T. Nishi et al. “Cell-Based Local Search Heuristics for Guide Path Design of
Automated Guided Vehicle Systems with Dynamic Multicommodity Flow”. In:
IEEE Transactions on Automation Science and Engineering 17.2 (2020). cited
By 0, pp. 966–980. doi: 10.1109/TASE.2019.2952920. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85083193027&doi=10.1109%

2fTASE.2019.2952920&partnerID=40&md5=4af0e8ca4043fc877eae8b7c8f34a747.

[20] Lande R. “Genetics and demography in biological conservation”. In: (1988).
doi: https://doi.org/10.1126/science.3420403.

[21] M. Rajković et al. “A Multi-objective optimization model for minimizing cost,
travel time and CO¡inf¿2¡/inf¿ emission in an AS/RS”. In: FME Transactions
45.4 (2017). cited By 5, pp. 620–629. doi: 10.5937/fmet1704620R. url:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021253157&

doi=10.5937%2ffmet1704620R&partnerID=40&md5=c621e7ae13fb5a6d18ebcc7ebeef45e9.

[22] N.C. Truong, T.G. Dang, and D.A. Nguyen. “Optimizing automated storage
and retrieval algorithm in cold warehouse by combining dynamic routing and
continuous cluster method”. In: Lecture Notes in Electrical Engineering 554
(2020). cited By 0, pp. 283–293. doi: 10.1007/978-3-030-14907-9_28.
url: https : / / www . scopus . com / inward / record . uri ? eid = 2 - s2 . 0 -

85066297740&doi=10.1007%2f978-3-030-14907-9_28&partnerID=40&

md5=e65fff446767380412e58315a6adf85f.

[23] L. Xing et al. “A novel tabu search algorithm for multi-AGV routing problem”.
In: Mathematics 8.2 (2020). cited By 3. doi: 10.3390/math8020279. url:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080112878&

doi=10.3390%2fmath8020279&partnerID=40&md5=a03f46264c01ed0ee87f86654ec4b2f7.

[24] B. Yetkin Ekren. “A multi-objective optimisation study for the design of an
AVS/RS warehouse”. In: International Journal of Production Research (2020).
cited By 1. doi: 10.1080/00207543.2020.1720927. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85078928052&doi=10.1080%

2f00207543.2020.1720927&partnerID=40&md5=e3c256925adaee7894374dcd927a9fa7.

[25] F. Zhang et al. “Design Optimization of Redundantly Actuated Cable-Driven
Parallel Robots for Automated Warehouse System”. In: IEEE Access 8 (2020).
cited By 0, pp. 56867–56879. doi: 10.1109/ACCESS.2020.2981546. url:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082933575&

doi=10.1109%2fACCESS.2020.2981546&partnerID=40&md5=93ee46f90619166e9f11e6e86c1505ab.

[26] X. Zhao et al. “Analysis of the Shuttle-Based Storage and Retrieval System”.
In: IEEE Access 8 (2020). cited By 0, pp. 146154–146165. doi: 10.1109/

ACCESS.2020.3014102. url: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85090295945&doi=10.1109%2fACCESS.2020.3014102&

partnerID=40&md5=b72f50a7c0192dc24355e665386cb3b4.

61

