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Chapter 1

Introduction

In the era of big data, the technological ability to store and process large amounts of
information has arisen previously unseen possibilities. Data has quickly become a
valuable resource and consequently a new market where billions of data are bought,
sold and exchanged at any given moment. The economic importance of data has
issued many privacy concerns. Especially the rise of web applications has led citi-
zens, during their online life, to be the object of incessant and ever more advanced
tracking and profiling activities about their behaviors.
This loss of privacy should not be underestimated: our behavioural patterns, ideas
and relationships are already being used for targeted advertising to better sell us
products we don’t need or persuade us which politician is worthy our vote. This
type of advertisement is deteriorating the quality of online information by giving
priority to sensationalist headlines and news based on fear, hate and anger that
generate more traffic.
But even if the data collected is not for profiling purposes, the privacy issues do
not run out. Once a user’s data goes into circulation, there is no turning back.
When a collection of data is shared publicly or sold between companies, user’s in-
formations can still be extracted and used with malicious intent. For example the
data extracted from citizens can likely be used to decide who deserves access to a
certain service, insurance, loan etc., creating new forms of discrimination.
Within this context a discussion has been raised on the need to impose restrictions
on data collection and its usage. This has led to the passing of laws attempting to
curb the problem, first of all the General Data Protection Regulation (GDPR) in
Europe.
This is why it is important to take steps to prevent the data collected from be-
ing traced back to individuals. Unfortunately removing just the user’s identifiers
(name, phone ecc.) is not enough to make them anonymous as shown in some
famous studies[1][2]. Indeed, an attacker looking for private data can link some
user’s attributes called quasi-identifiers (QIs) with external information such as
other datasets, public lists or direct knowledge of the user to identify the person
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1 – Introduction

and gain access to further sensible data.
Moreover, more and more applications incessantly collect large amounts of data,
making it necessary to anonymise them in real time and not retrospectively.
In parallel with the need for greater privacy, many studies have been done on data
anonymization. Following the path laid out by them, this thesis will focus on how
to anonymize large amounts of data with zero delays.

1.1 Goals
The core of the thesis is a new method called z-anonymity that aims to anonymize
a continuous streaming of large amounts of data making decisions without delays
based only on the last window of time. The whole work is an effort to achieve the
best perfomance in terms of privacy level, computational time and usefulness of
the anonymized data. The proposed algorithm combines several techniques used
in the field, particularly the generalization of numeric and non-numeric attributes
as a substitute for suppression alone and also data perturbation. Moreover, the
algorithm is able to adjust by itself the main parameter z as data arrives to be
more flexible if volume and type of data significantly change over time. The result
are tested and evaluated on different use cases to provide a context as comprehensive
as possible of the potential merits and limitations.

1.2 Related Works
The focus on privacy has led mathematical models, algorithms, or other approaches
to anonymizing data to become increasingly common. Among them several focus on
data streams. [3] and [4] use microaggregation to achieve k-anonymity, l-diversity
and differential privacy. [5][6] involve clustering data. The generalization applied to
k-anonymity is presented in several studies[7][8]. Other works apply k-anonymity
to a stream of data[9], also with concepts of generalization[10][11] where each quasi-
identifier has a pre-defined domain generalization hierarchy. Often the streaming
data are temporarly stored and published with a certain delay using sliding win-
dows ([12][13]). However they are all based on the tuple accumulation strategy.
That is, streaming tuples are postponed until they satisfy the given publication
condition, i.e., reach a certain privacy level or satisfactory data utility. [14] faces
this problem with a delay-free anonymization framework to preserve the privacy of
electronic health data streams in real time using l-diverse counterfeit values.
My thesis is based upon the paper “z-anonymity: Zero-Delay Anonymization for
Data Streams”[15] where the authors expose the functioning of the algorithm and
a probabilistic model to derive k-anonymity properties from z-anonymized streams.
In turn, the paper is based on another algorithm called α-mon [16] .
Regarding instead the concept of enthropy, it has been first introduced by C. E.
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1 – Introduction

Shannon in [17] and has been applied to database in a similar way to what is pro-
posed in the thesis in [18].
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Chapter 2

Anonymization: a summary

There are several methods and algorithms to preserve privacy in published data,
all of them require fuzzing and changing the data. The purpose is to prevent the
data from being linked back to the person from whom it was extracted, causing
a leakage of privacy. Unfortunately, obscuring only personal data is not enough,
as it is possible to find a pattern among other data that is uniquely tied to a
person. This has been proven by several studies, a famous one[1] has identified the
subscribers from a dataset published by Netflix to support the Netflix Prize data
mining contest. In [2] it was found that 87% of the population in the United States
had reported characteristics that likely made them unique based only on three fields
of information: 5-digit ZIP, gender and date of birth. These attributes that can
trace back to a person identity but are not unique are called quasi-identifiers (QIs)
and they are manipulated usually in three ways to lower the risk of re-identification:

• Suppression: the QI is simply not released.

• Generalization: the QI is replaced with a more general attribute, i.e. the age
23 could be released as interval [20,25].

• Perturbation: noise is added to original data to hide what is true information
and what is not.

For example the perturbation is used among other methods in differential privacy.
Differential privacy first appeared in [19] and can be considered as a set of math-
ematical definitions that assures a privacy standard by describing the patterns of
groups within the dataset while withholding information about individuals in the
dataset. The idea is that, considering a database on which are willing to extract
overall statistics, the applied function is differential privacy compliant if the pres-
ence or absence of a singular row in the database doesn’t change the amount of
gathered information. The biggest difference here with respect to the methods
we’re going to see is to shift the focus from dataset anonymization to the function
that performs statistics.
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2 – Anonymization: a summary

In contrast, generalization and suppression are widely used by k-anonymity which
is the classical model to anonymize a static dataset and the one which we will focus
on.

2.1 k-anonymity
k-anonymity (or k-anon) imposes that the quasi-identifiers of each person contained
in the release cannot be distinguished from at least k − 1 individuals whose QIs
also appears in the release. In other words, if each individual is part of a larger
group of k individuals with the same quasi-identifiers then no assumption can be
made about who the single person is as shown in table 2.1 and table 2.2. The

Name Postcode Age Gender Has Cancer
Sara 10125 48 Female No
Marco 10115 56 Male Yes
Susanna 10134 42 Female No
Sofia 10121 40 Female Yes

Table 2.1: Orginal data from cancer tests in a certain day

Name Postcode Age Gender Has Cancer
User x 101** [40,50] Female No
*** *** *** *** ***

User y 101** [40,50] Female Yes
User z 101** [40,50] Female No

Table 2.2: Published data

published data in table 2.2 respect k-anonymity with k = 3: even if we knew that
Sofia had a cancer screening that day, we cannot deduce what the result of the
examination is. On the contrary, Tommaso, being the only male, would have been
easily identifiable, so his result has been suppressed. Of course, this comes with a
loss of information. In general, anonymization works on balancing the amount of
privacy and the usefulness of the data, and this thesis is no exception. However, k-
anonymity has some flaws, in particular it can lead to attribute disclosures when a
group is homogeneous with respect to some fields. For example, holding the case in
Table 2.2, an attacker cannot make assumptions about whether Sofia is user x,user
y or user z but if all three users had cancer, he could still infer with certainty
that Sofia has cancer. This is why k-anonymity usually comes with complementary
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2 – Anonymization: a summary

methods such as l-diversity or t-closeness to overcome its limits. Also, the k-anon is
conceived for tabular and static data, so the dataset must be completely available
at anonymization time. This does not fit with increasingly frequent applications
that collect and use large amounts of data in real-time, i.e. e-commerce transaction,
positions of rental bikes, website traffic, IoT stuff ecc. This is why z-anon, starting
from k-anon concepts, tries to reach anonymization without any delay.

2.2 z-anonymity
The concept of z-anonymity is treated in the paper “z-anonymity: Zero-Delay
Anonymization for Data Streams”[15]. The goal of the authors is to find a way
to anonymize data that are:

• High dimensional

• Available as a stream

The data stream is intended as a continuos observation of users attributes. An
observation is defined as (t, u, a), which means that at time t a user u exposed an
attribute a. Similarly to k-anon, when a new attribute arrives it is released only
if at least z − 1 individuals have presented the same attribute, with the difference
that it does not consider the entire data history but only the past window of time
∆t. Figure 2.1 shows the data stream along with the z-anon mechanism.

Input Output

Time

[
[

[
[

[

[
[

[

Figure 2.1: A graphical example of z-anon extracted from [15].
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As explained in [15]:

Assume z = 3. At time t0 user u0 is the first to expose the attribute-value
a0. The attribute a0 is z-private at time t0, hence it shall be obfuscated.
Still, the information that u0 exposed the attribute a0 is kept in memory
for a time equal to ∆t. At time t1, user u1 also exposes a1. Since the
number of observations in ∆t is still smaller than 3, the observation is not
released. At time t2 user u0 re-expose again a0 – extending the lifetime
of the observation, but not changing the number of unique users having
exposed a0. At time t3, user u2 exposes a0 – making the total users in the
past ∆t equal to 3. Thus the attribute-value pair a0 is not z-private at
time t3 and the observation (t3 , u2 ,a0 ) can be be released. At time t1 +
∆t the attribute a0 related to user u1 expires, hence the total user count
decreases back to 2. The same happens when u0 observation expires (at
t2 + ∆t), so that when u3 exposes a0 at t4 the observation cannot be
released.

2.2.1 Implementation
The data structures of z-anon are made of:

• An hash table H(a): with the set of user for a.

• A Least Recently Used list LRU(a) of tuples (t, u)

• A counter ca

The hash table H contains all the attributes and users that appeared in the last
time window ∆t; once an observation (t, u, a) arrives, the attribute a is stored in
H (if not present) and the user u is added to the set H(a) as shown in Algorithm
1 (lines 2-3). The counter ca keeps track of how many user are present in the H(a)
so it’s incremented every time a new user is added. If u is already present in the
set then H does not change, in this case only LRU(a) is updated. LRU(a) is a list
ordered by timestamp of users that have exposed a; when a new user u arrives, the
tuple (t, u) is added at the end of the list, if it’s already present then it is moved
at the end of the list and its t updated with the new timestamp (lines 12-13).
LRU(a) is needed to speed up the the evict process: infact the list of tuples (t, u)
is scanned at any moment from the beginning to remove each tuple (tÍ, uÍ) where
tÍ < t−∆t. Consequently, if a user is removed, ca is decreased and H(a) updated
(lines 15-23).
These data structures ultimately serve to make the decision to suppress or output a
new observation (t, u, a) when it arrives, simply if ca >= z then (t, u, a) is released
(lines 25-27).
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Algorithm 1 Pseudo code of z-anon
1: Input: (t, u, a)
2: if a /∈ H then
3: H(a) = {u}
4: ca = 1
5: LRU(a) = [(t, u)]
6: else
7: if u /∈ H(a) then
8: H(a)← u
9: ca = ca + 1
10: LRU(a)← (t, u)
11: else
12: (tÍ, u)← (t, u)
13: Move (t, u) at the end of LRU(a)
14: end if
15: for ((tÍ, uÍ) = first(LRU(a)); tÍ < t−∆t; (tÍ, uÍ) = next) do
16: remove (tÍ, uÍ) from LRU(a)
17: remove u from H(a)
18: ca = ca − 1
19: if ca = 0 then
20: remove a from H
21: remove a from LRU
22: end if
23: end for
24: end if
25: if ca >= z then
26: OUTPUT (t, u, a)
27: end if

14
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2.2.2 z-anon limitations and goals of the thesis
z and ∆t are parameters that can be tuned, so a large z and a small ∆t results in
higher anonymization, viceversa with a small z and a large ∆t also rarer values are
released.
This is because z always remains the same regardless of data traffic. This is not
very efficient: the same z can anonymize everything at a time of low data traffic,
as happens at night, and anonymize very little at peak times with large amounts
of data. Moreover, attributes below z are simply blurred, while it’s possible to
preserve the same level of privacy also releasing some attributes.
Solutions to these problems proposed in the thesis are:

• Achieve greater utility of the data avoiding suppression and instead replacing
the attributes, whenever it’s possible, with a more generic value that is not
z-private

• Allow the algorithm to vary the parameter z by calculating it as data arrives.

• Adding data instead of subtracting it: fake attributes are output to disrupt
the data and not making the true private information recognizable.

15



Chapter 3

Datasets

3.1 Overview
To evaluate the algorithm we tested the results on three use cases. We simulated
a stream of data from three different datasets with very diverses characteristics
in order to have a better understanding of its impact in more situation. To get
started, the three datasets are different in terms of the data field:

• Transactions from an ecommerce store1

− Each row in the file represents an event of a user and it’s related to a
product.

unix_time user_id category_code product_id
0 1569880800 554748717 appliances.environment.water_heater 3900821
1 1569880801 519107250 furniture.living_room.sofa 17200506
2 1569880801 550050854 computers.notebook 1307067
3 1569880804 535871217 electronics.smartphone 1004237
4 1569880805 512742880 computers.desktop 1480613
5 1569880810 520571932 apparel.shoes.keds 28719074

Table 3.1: Ecommerce store head

1https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store
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• Network traffic

− Collected monitoring traffic of a real network. For each connection is
extrapolated the top and second level domain of the requested server as
attribute.

unix_time ip_address domain
0 1494809696036 246.111.10.51 uol.com.br
1 1494809696250 180.105.185.9 mega.co.nz
2 1494809696519 180.105.185.9 mega.co.nz
3 1494809697295 246.111.10.51 uol.com.br
4 1494809699743 246.25.221.89 wasabii.com.tw
5 1494809701606 180.102.208.78 mega.co.nz

Table 3.2: Traffic domains head

• Positions of private vehicles

− Every record has an address, a latitude and a longitude.

unix_time device_id latitude longitude address
0 1545100000 2828722 44.9107 8.294838 ITALIA*PIEMONTE*AT*ASTI*A21
1 1545100003 4180363 45.083263 7.697360 ITALIA*PIEMONTE*TO*TORINO*CORSO. . .
2 1545100006 3338380 44.914364 7.846230 ITALIA*PIEMONTE*TO*POIRINO*SP029
3 1545100006 4209757 43.910472 10.943764 ITALIA*TOSCANA*PT*PISTOIA*A11
4 1545100009 4304898 45.007003 7.620442 ITALIA*PIEMONTE*TO*NICHELINO*A55
5 1545100009 4234898 45.018253 7.482941 ITALIA*PIEMONTE*TO*BRUINO*VIA. . .

Table 3.3: Vehicle positions head

3.2 Categories
Since we’ll be dealing with generalization, we made sure to derive datasets where
it was possible to fit attributes into categories. Most datasets that are collected
these days are already well categorized or matched to tags so it’s not hard to get a
generalization hierarchy for each attribute.
For example, the ecommerce transaction dataset in Table has a category_code field
with a hierarchy of categories divided by dots, with the rightmost category being
the most specific and the leftmost the most universal.
Website domains being all second level domains have no categories (except .com,

17
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Ecommerce Domains Positions
Number of tuples 3,000,000 11,000,000 1,798,399
Distinct attributes 121,903 27,482 77,028
1-level categories 453 83 22,667
2-level categories 31 NaN 1,308
3-level categories 12 NaN 77
4-level categories 2 NaN 23
5-level categories NaN NaN 6

Table 3.4: All datasets - Number of categories

.org which we have excluded to use). We used the cisco umbrella api to get them2.
In this way a site like facebook.com is associated to the social_network category.
The position dataset has a natural category structure consisting of country-region-
city-street embedded in the address. Also, having geographic coordinates available,
we used a more elastic form of generalization based on distances: we have subdi-
vided the considered territory in cells of a certain largeness in meters obtaining a
grid.
Each geographical point falls into a certain cell, which thus becomes its own cate-
gory. We created five grids, each with cells of different sizes in order to have multiple
levels of generalization. This makes it easy to vary cell precision and generalization
levels with a single list passed as a parameter.

3.3 Users distribution
One of the features that most impacts the effectiveness of the algorithm on a dataset
is the user distribution. As we will see in fact if a user exposes several attributes it
is easier that he is not anonymized because it is possible to find a pattern unique
to him. Vice versa, a dataset composed of many inactive users will be highly
anonymized with little effort. For example, as summarized in Table 3.5 and repre-
sented in Figure 3.1, the ecommerce dataset has a lot of occasional users that tend
to appear and not come back. Instead, the dataset on network traffic is completely
the opposite: although considering many more tuples, the monitored users are al-
ways the same and each of them appears in average more than 1,400 times. The
locations dataset represents a middle ground by having users occurencies an order
of magnitude larger than the ecommerce.

2https://docs.umbrella.com/investigate-api/reference#get_
domains-categorization-domain
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Ecommerce Domains Positions
Number of tuples 3,000,000 11,000,000 1,798,399
Distinct users 410,609 7,809 23,500

Avg. samples per user 7.3 1,408.6 76.5

Table 3.5: All datasets - Users
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Figure 3.1: Samples per user

3.4 Attributes distribution
Since rarer attributes are anonymized while more frequent attributes are allowed to
pass, it is also important to consider whether the datasets consist of a few recurring
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attributes or many occasional ones. Obviously attributes, being very specific, are
also often rare. As we can see in Figure 3.2 the number of occurrences for attributes
that appear few times is much higher. From the point of view of the usefulness of the
data this is not good because only the very recurring attributes, which are those in
the tails of the graphs, are likely to be released. The generalization thus allows not
to anonymize all this data but to release a more generic attribute. Obviously, the
more generic an attribute is, more likely it is to have been exposed previously. For
example, Figure 3.3 shows the distribution considering the attributes as they are
proposed in the data (Fig. 3.3a), then removing the attribute and keeping the most
specific category (Fig. 3.3b), and finally also removing the most specific category
and keeping a second (Fig. 3.3c) and a third (Fig. 3.5d) level of generalisation . It
is possible to see that by generalising more and more rare attributes disappear in
favour of frequent but less attributes. With a 3-level generalization the ecommerce
store encloses the whole dataset with only 11 attributes.
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Figure 3.2: Samples per attribute

This is different for domains, they have only one level of generalisation with a
distribution similar to that of non-generalised attributes (Fig. 3.4).
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The positions dataset represents again a middle ground, in fact it has the first level
of generalisation like that of the domains (Figure 3.5b) but at the same time the
more general categories are few and always the same(Fig. 3.5c and Fig. 3.5d).
This is explained by the fact that the surveys are almost all in Piedmont and in a
few adjacent regions/states, so the streets are very specific but the regions are the
same recurring ones.
Looking at the characteristics of the ecommerce and positions datasets, we expect to
always find a category that allows us not to suppress attributes altogether, whereas
we expect to have to anonymize more in the case of domains.
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Figure 3.3: Samples per attribute, Ecommerce dataset
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Chapter 4

z-anonymity with
generalization

4.1 The algorithm
So let’s consider a stream of observations arriving in the form of (t, u, s) where s is
a string formed by the concatenation of the various levels of generalisation.

Definition 4.1.1 s = large_category*(...)*specific_category*attribute

The idea is to save in the data structure also the categories with their respective
counters. This way, when a new string arrives, it is possible to know the counter
of each generalisation level and thus what can be output.
To do this, however, we had to rework the entire structure to make the algorithm
efficient even with four or five times as many attributes in memory.
In particular, it is very important to be able to access the data in O(1) time. With
such a long list of attributes and the amount of traffic for which the algorithm is
designed, any different time to access data would kill its usability.
To do this we incorporated LRU and hash table into a single data structure, an hash
table of sorted dictionaries Dn that guarantee access in O(1) time but that is able
to keep memory of the insertion order and to remove and reinsert any key-value
pairs in O(1) time. How does an ordered dictionary work? unlike a hash table it
stores keys in a doubly-linked list that makes deleting a key constant O(1) time
and then uses a second, hidden, dict to find the doubly-linked list node belonging
to the key in O(1) time.

Definition 4.1.2 D(u, t) = ordered dictionary: an hash table that also keeps track
of the order in which keys are added, u is the key and t is the value.

In this way each attribute of the hash table is composed of a dictionary sorted by
user arrival. This makes the process of expelling old users very fast. In addition,
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not all users beyond the time window are ejected but only those who have exposed
the attribute in question and thus affect the counter. All these measures take up
slightly more memory but really speed up the process.
The result is that the algorithm is able to handle the larger amount of data more
efficiently. So when a choice has to be made about what to output, the counter
of the most specific attribute is checked to see if it’s above the z threshold, if it is
not, the next most generic attribute is checked to see if it is above the threshold,
etc. As long as one attribute do meet the condition and is output or no attribute
is found and then nothing is released (line 23 - 27 of Algorithm 2).

Algorithm 2 Pseudo code of z-anon with generalization
1: Input: (t, u, s)
2: for a in split(s) do //Add every category or attribute of s
3: if a /∈ H then
4: H(a) = new D(u, t) //Create a dictionary for every new attribute
5: ca = 1
6: else
7: if u /∈ H(a) then
8: H(a)← new D(u, t)
9: ca = ca + 1
10: else
11: D(u, tÍ) update t
12: Move D at the end of H(a)
13: end if
14: end if
15: for (DÍ = first(H(a)); DÍ(u) < t−∆t; DÍ=next) do
16: remove DÍ from H(a)
17: ca = ca − 1
18: if ca = 0 then
19: remove a from H
20: end if
21: end for
22: end for
23: for a in reverse(split(s)) do // Find the most specific attribute not z-private.
24: if ca >= z then
25: OUTPUT (t, u, a)
26: break
27: end if
28: end for
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4.2 First observations
First remarks to be made are about the amount of information that generalisation
allows to be preserved. In Table 4.1 we can see the amount of tuples that are
released based on their level of generalization, taking the ecommerce dataset as
an example. With standard z-anonymity only tuples with 0-generalization would
have been released, so with z = 20, 73% of the data would have been anonymized.
Instead, in this way we manage to suppress only 6.4% releasing in most cases an
attribute just a one level of generalization higher. Even if we have to consider
different z values to see the impact on the other datasets (Tables 4.2 and 4.3) the
basic point stands: the anonymized tuples are always few and in their place is
output a more or less specific category .

z = 1 z = 3 z = 5 z = 10 z = 20
0-generalization 100% 64.2% 51.5% 37.5% 27%
1-generalization 0% 35.2% 47.1% 58.6% 64%
2-generalization 0% 0.1% 0.3% 0.8% 2.3%
3-generalization 0% 0% 0% 0.1% 0.3%
Anonymized 0% 0.5% 1.1% 3% 6.4%

Table 4.1: Ecommerce - % of output tuple per level of generalization and z. ∆t=1
hour.

z = 1 z = 5 z = 20 z = 100 z = 900
Attribute 100% 88.9% 82% 72.1% 46.7%
Category 0% 11% 17.2% 23.2% 28.6%

Anonymized 0% 0.1% 0.8% 4.7% 24.7%

Table 4.2: Domains - % of output tuple per level of generalization and z. ∆t=1
hour.

z = 1 z = 2 z = 5 z = 50 z = 150
Street 100% 88.3% 70.6% 19.8% 5.4%
City 0% 10.1% 24.8% 51.7% 48.7%

Province 0% 1.3% 3.7% 22.5% 34%
Region 0% 0.2% 0.6% 3.2% 8%
Country 0% 0.1% 0.2% 2.5% 3.5%

Anonymized 0% 0% 0.1% 0.3% 0.4%

Table 4.3: Positions - % of output tuple per level of generalization and z. ∆t=1
hour.
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4.3 Evaluate with k-anon
One way to evaluate the impact of the algorithm is to evaluate the relationship
with k-anonymity. Obviously z-anon cannot guarantee k-anonymity (and this is
not the goal) since it does not consider combinations of attributes and users from
the entire dataset but just windows of time. However, makes it possible to calculate
the probability of the release data to respect k-anon (Definition 4.3.1) in case an
attacker observes the traffic for multiple time windows and therefore adjusts the
parameters accordingly.

Definition 4.3.1 pk−anon = Probability of satisfying k-anonymity.

All of these evaluations are done retrospectively just to assess how well the algo-
rithm worked and with what parameters. In the next chapter we will discuss more
extensively the tuning of z.
Impact of z on pk−anon is shown in Figure 4.1. Obviously increasing z will result
in more suppressed data and higher probability of k-anonymity, but the choice of z
depends very much on the type of traffic: data extracted from the ecommerce site,
having many users but less recurring, maintains a very high pk−anon with low values
of z (Fig. 4.1a), on the contrary with the domains data, for the characteristics of
the dataset explained in the previous chapter, is difficult to guarantee a decent
pk−anon at least until about z = 800 (Fig. 4.1b).
Ultimately, the positions dataset linearly improves pk−anon as z increases with dis-
creet results above 150 (Fig. 4.1c).

While the effect of generalization on data utility is prominent, its impact on the
probability of achieving k-anonymity is less obvious since it releases many more
attributes and users. Also in this case the results vary a lot depending on the case
taken into consideration. The data curve where generalization is considered satis-
fies pk−anon more slowly than the other one with a very pronounced difference in
the domains case (Fig. 4.2b) and almost no difference in the ecommerce case (Fig.
4.2a).
This means that, using generalization, we will need higher z to keep the same level
of privacy. This is an acceptable compromise considering, as shown before, that
z-anon with generalization can output a lot of useful data even with higher z.

26



4 – z-anonymity with generalization

0 10 20 30 40 50

z
0.0

0.2

0.4

0.6

0.8

1.0

p_
ka

no
n

k = 2
k = 3
k = 4

(a) Ecommerce

0 200 400 600 800

z
0.0

0.2

0.4

0.6

0.8

1.0

p_
ka

no
n

k = 2
k = 3
k = 4

(b) Domains

0 25 50 75 100 125 150 175 200

z
0.0

0.2

0.4

0.6

0.8

1.0

p_
ka

no
n

k = 2
k = 3
k = 4

(c) Positions

Figure 4.1: Impact of z on k-anonymity - no generalization
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4.4 Evaluate over time
Being applied on a stream, z-anonymity inevitably is conditioned by the amount
of data, attributes or users that passed in the last window of time. That amount,
regardless of dataset, varies with a certain periodicity within day, week etc.. So it’s
useful to represent how data is released over time and also how it fulfills pk−anon

during the simulation.
In order to calculate that we need to keep track of the tuples that have been output.
To do this we used a deque which is a double-ended queue, i.e., it allows items to
be added and removed from both ends (Fig. 4.3). This way when a tuple is output,
it is added to the end of the deque and with each new tuple the deque is cleaned
by removing the too old tuples from the beginning.
This deque contains the elements that have been output in the last window of time,
calculating pk−anon on this data gives us a measure of how the algorithm is working.

Figure 4.3: Deque - both items at the ends can be managed

Let’s start with ecommerce data. First, we have to choose proper parameters, from
Figure 4.1a we can deduce that z = 10 should be enough and, since the dataset
covers a period of time of two days and a half, a window of time of one hour sounds
good. The result is plotted in Figure 4.4a that shows how the traffic volume varies
and how it is released: in the blue band are the tuples that were suppressed because
they had no attribute or category that exceeded z, instead the other colored bands
represent the order of detail whereby the data is output. The level of detail is how
many attributes the string s is composed of. So 4-detail represents a very specific
attribute, while 1-detail is the most generic possible.
In this case pk−anon oscillates around 0.6 depending on the traffic volume, as it does
in a similar way the positions dataset even if it requires a little higher z (Fig. 4.4c).
Instead, as we have seen, the domain dataset needs a much higher z, so using
for example z = 900 we see that, not being able to generalize further, so much
is anonymized and in particular we see how as traffic increases pk−anon collapses.
(4.4b).
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Chapter 5

Self-tuning z

As mentioned, so far we have considered a constant z throughout the simulated
time. So the amount or type of data is not considered. A more useful approach
for a streaming algorithm, that does not know retrospectively the traffic pattern,
would be to vary z as needed.
Obviously, the calculation can only be done on the data that are available, i.e.,
those from the last time window.
How then to decide which value of z is most suitable at any moment? we have
considered two algorithms:

• Incremental approach

• Binary search

In both cases the assumption is to obtain a z that satisfies a certain pk−anon. So z
adjusts itself according to what goal is given to it in the input parameters.
These new parameters are:

• k_goal: whether the data should be 2-anonymized, 3-anonymized etc.

• pk−anon_goal: the probability of having a k-anonymized data.

• Update rate: how often must z be calculated.

• (Only for incremental) z0: starting z.
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5.1 Incremental approach
The incremental approach is the simpler of the two. Algorithm 3 shows how it
works. After setting the goals, at each update z is slightly adjusted according to
whether it is below or above the target (line 8 - 12).
This type of approach is a step up from a fixed z as depicted in figure 5.1 (let’s
consider ∆t = 1 hour, k_goal = 2 and pk−anon_goal = 0.8 for all use cases). Here
z, represented by the red line, anonymizes according to the target in a dynamic
way. From the figure we can see some limitations of this method: z follows the
trend of pk−anon lowering and raising itself depending on the data, the pk−anon

curve increases when traffic drops because z is naturally lagging by calculating the
probability on past data and not predicting future ones. The problem can in part
be contained by increasing the frequency with which z like in figure 5.2 where it’s
update every 5 minutes. Same speech for positions: z does a good job of keeping
pk−anon almost constant above 0.8 (Figure 5.4). The problem arises with a dataset
such as domains, in fact in this case even with a high z0 and a 5 minute update_rate
z remains too low to satisfy the probability of reaching k-anon.
To summarize, by changing z incrementally we already get results. Moreover, the
algorithm - very simple - can be improved by changing the increment according to
the proximity or distance from the target. In any case we need a suitable z0 and
this means to know the data retrospectively. The next method uses binary search
to overcome this limitation and get a z dependent only on the goal.

Algorithm 3 Algorithm with incremental tuning
1: z = z0
2: Initialize k_goal
3: Initialize pk−anon_goal
4: Set update_rate
5: Input: (t, u, s)
6: if t− last_update == update_rate then
7: Compute pk−anon on H
8: if pk−anon < pk−anon_goal then
9: z = z + 1
10: else
11: if pk−anon > pk−anon_goal then
12: z = z − 1
13: end if
14: end if
15: end if
16: ... Algorithm 2
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Figure 5.1: Ecommerce - z0 = 10, update_rate = 30 min
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Figure 5.2: Ecommerce - z0 = 10, update_rate = 5
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Figure 5.3: Domains - z0 = 900, update_rate = 5 min
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Figure 5.4: Positions -∆t = 1 hour, z0 = 50, update_rate = 30
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5.2 Binary search
Instead of calibrating an initial z and going by trial and error, a more suitable
approach is to calculate at each update exactly which z satisfies pk−anon in the data
structure. So we took a range of z wide enough such that we can assume that
there exists a z within the range for which our data structure will have the desired
pk−anon. Formally:

∃z in [1, N ] Ð pk−anon of H == pk−anon_goal

It thus becomes a search algorithm and the fastest way to find the position of a
value in an ordered array is binary search. The algorithm 4 shows the search loop
that basically splits the range of possible z at each iteration (lines 8 - 19).

Algorithm 4 Algorithm with binary search
1: Initialize k_goal
2: Initialize pk−anon_goal
3: Set update_rate
4: lowerBound = 1
5: upperBound = N
6: Input: (t, u, s)
7: if t− last_update == update_rate then
8: while z not found do
9: z_mid = (lowerBound+ upperBound)÷ 2
10: Compute pk−anon on H using z_mid
11: if pk−anon == pk−anon_goal then
12: Exit with z = z_mid
13: end if
14: if pk−anon > pk−anon_goal then
15: upperBound = z_mid− 1
16: else
17: lowerBound = z_mid+ 1
18: end if
19: end while
20: end if
21: ... Algorithm 2
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So the search time is best-case scenario O(1) if the right z is exactly in the range
middle and worst-case scenario O(logN) when the search reaches the deepest level
of the tree.
Always considering a time window of one hour, from the results in Figure 5.5 we
can see how in this way the algorithm calculates a z which allows to have results
that are around the set goal. It does so very effectively with easy to anonymize
datasets like the ecommerce one (Fig. 5.5a) and also the positions dataset which
has the only weakness when traffic suddenly increases and the still low z exposes
too many attributes (Fig. 5.5c). The dataset of domains is much more oscillating,
but it never goes below 0.6 and manages not to anonymize too much using very
high z (Fig. 5.5b).
Figure 5.6 illustrates how they perform instead with a more ambitious target such
as pk−anon = 0.9 and k = 3.
We see how the algorithm is perfectly capable of scaling z which follows the traffic
volume almost perfectly. The domain dataset is also more stable around the target
(Fig. 5.6a).
Obviously a higher target implies more anonymization - so blue bands more visible
in the dataset of ecommerce and domains - and more generalization as evident in
the case of locations where streets almost stop being published at the expense of
cities and provinces (Fig. 5.6b).
In addition to these three examples, as mentioned earlier, we derived a fourth use
case from the position dataset. Using in fact latitude and longitude we can map the
territory into cells and frame each tuple in a certain cell. Using larger or smaller
diameters, we can thus construct a generalization hierarchy at will and not rigidly
tied to dataset categories. Figure 5.7 shows two examples with different diameters
- specified in the legend - just to give an idea of how in certain areas it is possible
to generalize elastically depending on dataset and objectives.
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Figure 5.5: Binay search - pkanon_goal = 0.8, k = 2, update_rate = 30min
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Figure 5.6: Binay search - pkanon_goal = 0.9, k = 3, update_rate = 30min
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Figure 5.7: Binay search - pkanon_goal = 0.9, k = 3, update_rate = 30min
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5.3 Entropy
Of course, higher values of z involve more anonymization and loss of information.
How to measure this impact? One way to evaluate the amount of information
is entropy, which is usually expressed as the number of bits required to store or
transmit the information.
Formally a entropy H of a discrete random variable X with outcomes x1, ..., xn

which occur with probability P (x1), ..., P (xn) is:

H(X) = −
nØ

i=1
P (xi)log2P (xi)

The concept of entropy can be applied to datasets if one considers each record as
an outcome and its probability as the number of times it recurs in the dataset. If,
for example, all records were unique their probability would be 1

tot_record
.

Let’s now consider our datasets. We can consider as records the users and as
columns the attributes they have exposed. In this case we have groups of users
who have exposed the same attributes and who will have the same outcome prob-
ability. The definition becomes:

H = −
Ø
G

|G|
U
log2
|G|
U

Where:

• G is a group of users with same attributes

• U is the group of all users.

Note that any user belongs only to one group:

• ΣG|G| = U

• Gi
u
Gj = ∅ ∀i, j, i /= j

In the same way we can calculate the entropy on the deque introduced in the pre-
vious chapter and evaluate its path in time. In Figure 5.8 are plotted both the
entropy that would have the data without going through z-anonymity (or using z
=1) and using the self-adjusting z with binary search.
We see that ecommerce and positions datasets on average have higher entropy due
to greater data complexity, many different products and therefore lot of informa-
tion. They are also the datasets where, however, z-anonymity results in greater loss
of information because the final data is generalized to a few groups that can be rep-
resented with a low amount of information as we saw in the characterization of the
datasets. On the contrary, the domains dataset, even having more anonymization,
releases more attributes than categories and this results in less information loss.
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Figure 5.8: Entropy before and after z-anonymization - pk−anon_goal =
0.8, k_goal = 3
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5.4 Impact of parameters on results
We have seen that by changing the parameters we have different results on the
order of magnitude of z and therefore also the amount of information that is lost.
Although it is intuitive that the value of z increases with higher targets, Figures 5.9
and 5.10 quantify exactly the range in which z moves when changing pk−anon_goal
and k_goal respectively. Tending to raise pk−anon_goal corresponds to an exponen-
tial increase in the median of z for ecommerce and locations datasets. This is in line
with the characteristics of the two datasets that are easier to anonymize and thus
get a pk−anon_goal of 0.7 with low z. The ecommerce dataset achieves spontaneous
3-anonymization without using z up to about pk−anon_goal of 0.5. The domains
dataset instead needs high z since pk−anon_goal of 0.3 and it exceeds a median of
1000 for pk−anon_goal of 0.9.
Increasing k_goal instead results in a linear increase in the median of z for all
datasets (Fig. 5.10).

Using the formulas of previous paragraph, we saw that we can compute the original
entropy and the entropy of the anonymized dataset. I will call residual information
the ratio between the entropy after anonymization and before anonymization.

Definition 5.4.1 Residual information = final H ÷ starting H

In Figure 5.11 we see how this residual information changes as pk−anon_goal varies.
The dataset for which the most information is lost is the ecommerce dataset while
- as shown before - on the opposite side stands the domain dataset that seems to
lose little information even with high pk−anon_goal.
Varying k_goal even on entropy has no particular impact, at least not for the order
of magnitude considered (Figure 5.12).
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Figure 5.9: Impact of pk−anon_goal on z
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Figure 5.10: Impact of k_goal on z
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Figure 5.11: Impact of pk−anon_goal on residual information
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Chapter 6

Adding noise

We have so far proceeded to protect the data by filtering the input tuples, a large
selection at the entrance that only works by subtracting from the original data, a
user-attribute pair can only be output as long as it is confused with other pairs with
the same attribute. However, this condition can be met not only by suppressing
but also by adding fictional user-attribute pairs that make an attribute no longer
z-private.
By introducing a few fake pairs you can thus output attributes that were under
threshold by a small margin and at the same time, as long as they are a minority,
they do not compromise the usefulness of the final data.
Obviously, fake tuples must be consistent with previously issued data to prevent
an attacker from easily recognizing them. The chosen user must therefore have
exposed a similar attribute and in as recent time as possible.
If we keep generalization hierarchies we can derive a possible method to do that:
every time we have to search for a user suitable for a certain attribute, we have
to search among the users who have exposed the category that contains that at-
tribute. For example, if we need users to output Via Po, we will have to look
for them among those who have exhibited Torino. Categories already work as a
clustering of attributes to search users from.

6.1 The algorithm
Algorithm 5 shows how it works. You start searching from the most recent users
and form a list of users who meet this criteria. If there are enough users to fill the
gap with z then they are put into output.
Obviously the appropriate user must not have exposed the attribute under consid-
eration because it would not impact z-anonymity (line 11).
This mechanism can be triggered at any time, but for reasons of speed, usefulness
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6 – Adding noise

and data reliability it is best to use it only when the attribute is not too far from
the threshold. we’ll call this range diff which is the distance from the counter to
z.

Definition 6.1.1 diff = z − ca

diff can be left as a parameter either as an absolute value or relative to z.

Algorithm 5 Pseudo code of z-anon with noise
1: Input: (t, u, s)
2: ..Algorithm 2
3: if ca >= z then
4: OUTPUT (t, u, s)
5: break
6: else
7: fake_users← initialize empty list
8: diff = z − ca

9: cat = take first category of s
10: for {uÍ, tÍ} = last(H(cat)); first(H(cat)); next {uÍ, tÍ} do
11: if (uÍ is not u) and (uÍ not in H(s)) and (uÍ not in fake_users) then
12: fake_users← uÍ

13: if length(fake_users) == diff then
14: Break For cycle
15: end if
16: end if
17: end for
18: if length(fake_users) == diff then
19: fake_users← u
20: for all uÍ in fake_users do
21: OUTPUT (t, uÍ, a)
22: end for
23: end if
24: end if

Let’s try to see the effectiveness of the agorithm by isolating it from general-
ization. We applied z-anonymity on the datasets using binary search to get the
optimal z. The parameters are: pk−anon_goal = 0.8, k_goal = 3, ∆t = 1 hour,
update_rate = 1 hour. Attributes and categories are then saved in the data struc-
ture but not given in output. Therefore, with diff = 0 data passes only if the
attribute is above or below threshold as in the original z-anonymity.
Table 6.1 shows the results in terms of anonymization and Table 6.2 in terms of
amount of data output. The results are computed for different diff max which
is the maximum distance between the counter and z for which noise algorithm is
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applied. The results are very different from one dataset to another, for this reason
the diff value must be calibrated and parameterized according to the use case. In
general terms, the wider diff is the more tuples have the possibility to be output.
For every tuple that is not anonymized, however, n fake tuples are emitted, creating
imbalances in the output data. For the dataset of domains, that has a high degree
of attributes, in the worst-case scenario means to increase the data in output also
of 1313% against an improvement in anonymization of ten percentage points.

diff max 0 z/4 z/3 z/2
Ecommerce 84% 81% 79.8% 76.6%
Domains 46.3% 39.9% 38.8% 36.7%
Positions 85% 80.8% 78.9% 73.9%

Table 6.1: Noise - % of anonymization

diff max 0 z/4 z/3 z/2
Ecommerce -84% -57% -35.3% +50%
Domains -46.3% +494% +704% +1313%
Positions -85% -34.6% +12.8% +192%

Table 6.2: Noise - % of volume increase

6.2 Noise and generalization
The algorithm considered is hardly usable on its own. However, it could be used
in combination with generalization. Some attributes close to the threshold would
thus be output with a few fake tuples while the others are still generalized. The
algorithm thus becomes a concatenation of Algorithm 4 and Algorithm 5. First we
check if it is possible to emit fake tuples and if it is not we proceed to output a
more general attribute.
To assess the impact of this hybridization, we again used residual information.
Indeed, the addition of noise should allow tuples to be output that would otherwise
be generalized, thus allowing more information to be preserved. The entropy of the
output data is, in this case, calculated without considering fake tuples that would
have made a comparison with the initial data impossible.
The results in Tables 6.3, 6.4 and 6.5 show that the anonymization percentages are
not altered, what changes is the level of detail with which the tuples are emitted.
In fact, a little perturbation allows in fact to preserve more residual information by
decreasing the impact of generalization.
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As already seen before when you consider a diff max too wide with the output
data you exceed the initial data. Especially in the dataset of domains, where you
can more often use the perturbation, the volume increase is rather remarkable even
with a diff max of z/6 and z/5.

diffmax 0 z/6 z/5 z/4
Anonymization 11.9% 11.9% 11.9% 11.9%
Volume increase -11.9% -3.6% +0.1% +9.2%

Residual information 61.3% 63.2% 63.6% 64.4%

Table 6.3: Ecommerce - noise and generalization

diffmax 0 z/6 z/5 z/4
Anonymization 31% 31% 31% 31%
Volume increase -31% +177% +296% +558%

Residual information 89.2% 92.5% 93.3% 94.1%

Table 6.4: Domains - noise and generalization

diffmax 0 z/6 z/5 z/4
Anonymization 0.3% 0.3% 0.3% 0.3%
Volume increase -0.3% +18.6% +28.3% +48%

Residual information 81.9% 84.4% 84.9% 85.8%

Table 6.5: Positions - noise and generalization
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Chapter 7

Conclusions and future
works

Starting with z-anonymity, an algorithm that aims to anonymize large amounts of
data without delays, we introduced several methods to optimize results and perfor-
mances.
The results are clear: generalization allows to anonymize much less while main-
taining high level of privacy and usefulness of the data. At the same time using
a binary search algorithm to find z that reach a certain probability of satisfying
k-anonymity at any given time allows the algorithm to be more resilient to privacy
leaks in the considered time window. Finally, an algorithm to perturb the data with
fake tuples was also proposed as an alternative or complement to generalization.
The algorithm has been tested on three use cases and shows that it works even
with very different distributions of users and attributes.
The final parameters that the algorithm accepts are described in Table 7.1.

Parameter Type
∆t int

pk−anon_goal float
k_goal int

generalization boolean
if not(generalization) z0 int

tuning boolean
if(tuning) update_rate int

noise boolean
if(noise) diffmax int

Table 7.1: Algorithm parameters
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7 – Conclusions and future works

The algorithm is now available as a python module 1 and can be installed with
the bash command:
pip i n s t a l l zanon

7.1 Limitations and future Works
z-anonymity only hides z-private attributes to avoid user reidentification. Other
attacks based on timing or order of appearance are not considered. Moreover, the
algorithm reasons only on the data of the last time window without saving any in-
formation about the periodicity of attributes or users over time. Future works may
improve the algorithm by considering data about lower night or weekend traffic.
This can be done in two ways: introducing machine learning concepts to allow the
algorithm to recognize patterns in the data or inserting prior information.
This way it’s possibile to take precautions to avoid that a sudden increase in data
can lead to low pk−anon, for example varying the time window, accommodating
more hours at times of low traffic, or putting a minimum value at certain times to
z.

1https://pypi.org/project/zanon/
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