
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Transparent access to local/edge/cloud
services: the autonomous driving use

case

Supervisors

Prof Fulvio RISSO

Dr Marco IORIO

Candidate

Mario GIORDANO

April 2021

Acknowledgements

To my family, my girlfriend and my friends, who supported me throughout this
journey.

“All we have to decide is what to do with the time that is given us.”
J.R.R. Tolkien

ii

Abstract

Nowadays, there is a lot of talk about autonomous driving and all the possibilities
it could offer in the future and those that it already offers, alongside with all the
challenges that robotic automation brings. This kind of application requires a
huge computational effort, best carried out to small data centers at the edge of
the network or in the cloud. For resiliency reasons (e.g., network outages), the
same service must be also offered locally. Monitoring the network status and
deciding what instance of the service has to be used, should not be taken care
of by the autonomous vehicle itself. All things considered, this thesis aims at
investigating the problem of providing transparent access to the services mentioned
above, by implementing a network layer responsible for network monitoring and
of the forwarding of the data to the appropriate service instance. To achieve the
goal, this thesis deeply investigated Kubernetes and ROS2. An image recognition
application (e.g., identifying the other vehicles and the pedestrians) has been
considered as a use-case. The ROS2 topology is composed of an image publisher,
simulating a camera feed, a local and a remote YOLO node, the local and remote
object recognition nodes and an image viewer node, used to view the images images
elaborated by YOLO. The above-mentioned network layer has been developed by
leveraging Kubernetes functionalities. Two Kubernetes clusters have been deployed:
one remote (e.g., at the edge), into which only the remote YOLO instance is running,
and one local (e.g on the robot), for all the other nodes. The virtualization of the
autonomous driving service has been obtained by making use of the concept of
Kubernetes Service, which exposes either the local or the remote YOLO node. The
image publisher node will contact the YOLO node by using the Kubernetes Service
IP address, then Kubernetes itself will forward the traffic to the right destination,
based on the Selector field of that service. By changing that field, we can decide
what the actual destination will be. In this way, the ROS2 nodes will not have to
care about the actual traffic destination. The selector has to change dynamically,
therefore a Kubernetes Operator is deployed into the cluster; it monitors the
status of the network by means of “Quality” and “Signal Strength” indicators.
As soon as one of those two metrics does no longer meet the requirements, the
Service Selector is changed to local. Hence, all computations start to be performed
locally (with lighter algorithms) and the robot continues to operate correctly. All
in all, the investigated approach has shown to be promising, allowing to save
local computational resources by leveraging the ones available at the edge of the
network. Yet, it automatically fallbacks to local services as well in case the network
connectivity is no longer available, to avoid the occurrence of possibly safety critical
issues.

Table of Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Structure . 3

2 Kubernetes 4
2.1 Kubernetes History . 4
2.2 Containers . 5
2.3 Containerize An Application . 6
2.4 Kubernetes Features . 8
2.5 Kubernetes Components . 8

2.5.1 Control Plane Components 9
2.5.2 Worker Node Components 10
2.5.3 Addons . 11

2.6 Kubernetes Objects . 11
2.6.1 Namespaces . 13
2.6.2 Labels and Selectors . 13
2.6.3 Annotations . 14
2.6.4 Pods . 14
2.6.5 ReplicaSet . 14
2.6.6 Deployments . 14
2.6.7 DaemonSet . 15
2.6.8 Services . 15
2.6.9 Configmaps . 16

2.7 Networking . 16
2.7.1 Calico . 18

3 ROS 20
3.1 ROS History . 20
3.2 ROS Working Principles . 21

3.2.1 Nodes . 21
3.2.2 Messages . 22

ii

3.2.3 Topics . 23
3.2.4 Services . 24
3.2.5 Actions . 24

3.3 ROS1 and ROS2 . 25

4 Initial Investigation and Requirements Analysis 28
4.1 Turtlebot . 29
4.2 LiDAR . 31
4.3 Depth Camera . 33
4.4 Specifications and Constraints Analysis 35

4.4.1 Camera Specifications . 35
4.4.2 Latency Constraints . 37

5 Running ROS2 onto Kubernetes 39
5.1 Containerizing ROS2 . 39
5.2 ROS2 Discovery Problem . 40

5.2.1 FastDDS . 41
5.2.2 Discovery Server . 42
5.2.3 Configuration Files . 43

5.3 Discovery Server Test Demo . 45

6 Traffic Routing in Kubernetes 50
6.1 Native Features . 50

6.1.1 Kube-proxy Modification . 51
6.1.2 Service Selector . 51
6.1.3 Network Policy . 52
6.1.4 Manually Created Endpoints 53

6.2 Kubernetes Enhancement Proposals 54
6.2.1 Service Topology (KEP 536) 56
6.2.2 Service Internal Traffic Policy (KEP 2086) 57
6.2.3 Topology Aware Subsetting (KEP 2004) 57

6.3 Service Mesh Based Solutions . 60
6.3.1 Linkerd . 61
6.3.2 Istio . 61
6.3.3 Solutions Evaluation . 62

6.4 Conclusions . 63

7 Network Status Monitoring 65
7.1 Kubernetes Operator Pattern . 65

7.1.1 The Network Operator . 66
7.2 Demo . 68

7.2.1 YOLO . 69

iii

7.2.2 Liqo . 70
7.2.3 Topology and Components 72

8 Conclusions and Future Work 75

iv

Chapter 1

Introduction

Autonomous driving and robotics have been, in these last years, a very popular
topic among professionals and even non professionals. Big companies like Google
with Waymo (currently owned by Alphabet, a Google parent company), Amazon
with Zoox and Tesla with Autopilot, are all participating in the challenges offered
by the developement of a fully-autonomous driving system.

Such systems must be able to deal with huge amounts of data coming from
external sensors like RGB cameras, depth cameras, LiDARs and others.

At every instant, the system has to perform object detection on the RGB camera
feed, combine it with depth information collected from depth cameras and/or
LiDARs, keep track of what eventual other nearby vehicles are doing by means
of the data sent among themselves and many other things. Everything has to be
done respecting a huge time constraint because all that information is no longer
meaningful if it takes one second or even more to be elaborated and sent back to
the system since, especially at higher velocities, everything could change in the
blink of an eye.

It is evident, at this point, that for a system to be able to perform such things it
is necessary a huge computational effort. Old autonomous system prototypes
used to perform all of these tasks by means of an onboard computer system, which
therefore was not only responsible of collecting the data, but also elaborating it
and sending it back to the vehicle control systems. These onboard computers were
huge machines, which left basically no space for eventual passengers. That made
sense from a developement perspective, but not from a more commercial point of
view.

Nowadays, with the advent of technologies such as 5G, which enables users
to take advantage of enormous upload and download speeds even wirelessly, the
computational effort mentioned above could be more suitable to be carried on data
centers at the edge of the network, or even in the cloud. This would relieve the
system itself of the majority of the workload.

1

Introduction

In order to face possible network outages, the vehicle must still be able to carry
on those elaborations (maybe with less precision, therefore requiring less resources),
thus two different instances of the data elaboration service have to be
made available: one remote (e.g. on the edge) and one local (e.g. onboard). The
autonomous system, though, should not have to care about what instance
of it is using and neither how and when it should switch betweem them.

Working on a real autonoumous system, though, requires a huge amount of
work and, most importantly, a huge economic effort. That is why, for the scope of
this thesis, we tried to find a way to approximate a real system with something
less expensive and more suited for this work. The solution has been found in the
service robotic world, and that is why this thesis is done in collaboration with the
PIC4SeR, the Politecnico Interdepartemental Center For Service Robotics. They
introduced and helped us approaching a world that was unknowkn for the most
part. Even though a robotic system complexity is definitely lower than the one
of a real autonomous system, it was enough given the goals of this work are not
focused on the vehicle itself but on the networking side.

Considering all of the above, this thesis objective has been developing a
network layer that takes care of :

• Virtualizing the service so that the vehicle does not have to worry about
what destination it is sending the data to, but only about actually sending
it.

• Transparently modifying the service requests and redirecting them to
the correct service instance.

• Deciding, at any given time, what instance of the service is the best
one, by monitoring network status and possibly predict malfunctionings.

1.1 Related Work
Computational offloading to the cloud/edge for mobile devices (e.g., smart-
phones, Unmanned Aerial Vehicles, Autonomous Vehicles) is a topic that nowadays
has become more and more relevant, considering, for example, the amount of
data that an autonomous vehicle has to analyze at each moment and the time
constraints that it must respect. Offloading this computational effort will not only
bring advantages in terms of speed, but also in terms of energy consumption,
which is a very important factor to keep in mind when it comes to mobile devices.

Many of the works treating this argument are focused mainly on the automotive
sector, and most of them heavily rely on the 5G infrastructure because of the
need to have a huge bandwidth and very low latencies. The work described in [1]
aims at providing an introduction and an overview of the physical layer design

2

Introduction

that enables Ultra-Reliable Low-Latency Communication (URLLC) on the
5G techonology. In particular, [2] discusses and elaborates how this technology
can enable the cooperation between edge and cloud offloading, until now almost
impossible due to techonological limitations.

Another recurring paradigm is the Multi-access Edge Computing (MEC),
which has been introduced and analyzed in [3]; it is based on the idea that running
applications and performing tasks at the edge of the network, therefore closer to
the mobile device that is requesting the service, brings improved performances and
reduces network congestion.

An important aspect to keep in consideration is the fact that, especially in the
automotive field, the mobile devices that need to offload to the edge/cloud move
very fast, thus the distance between them and server they are trying to contact
may vary greatly in a short amount of time: by leveraging the capabilities offered
by 5G, [4] investigates on how to maintain a low latency between the roaming
vehicle and the service hosted on the MEC server.

Aside from the latency problem, it is also fundamental to remember that servers,
while having a great computational power, do not have an infinite amount of
available resources. Therefore, a vehicle not only has to choose the server which
offers the lowest latency as possible, but it has also to take in consideration the
load that the particular server is undergoing at that moment and also predict how
the load will change in the near future by exchanging data with nearby vehicles.
This concept is analyzed end elaborated in [5].

All the works mentioned above do not take in consideration the possibility
of containerizing the autonomous system services; this approach has been
analyzed and elaborated by both [6] and [7].

1.2 Structure
This thesis is structured as follows: the next two chapters are focused on giving
an introduction to the two main technologies used in this work, Kubernetes and
ROS, by presenting both their basics and a little bit of history. Chapter five is
concentrated on an initial investigation regarding hardware specifications of the
robotic system that has been dealt with and latency constraints that the system has
to respect while chapter six puts the spotlight on what has been done in order to
make a ROS system properly run inside a Kubernetes cluster. Chapter
seven focuses on analyzing traffic routing solutions offered by Kubernetes and
chapter eight presents the network monitoring solution as well as the demo
that has been prepared to show the achieved results. The last chapter talks about
conclusions and gives suggestions about future works.

3

Chapter 2

Kubernetes

In these last years, a huge migration has been seen: developers and companies
started to prefer containers over standard virtual machines due to the improve-
ments they bring. At the beginning, every container had to bemanaged manually,
but, especially as applications dimensions began to increase, doing so had become
a very bothersome and time consuming task.

That is when Kubernetes [8], a containerized application orchestrator, started
to gain a lot of popularity. Kubernetes allowed developers to easily manage and keep
track of the health of their containerized software. After a first configuration, most
of the work can be done automatically by the Kubernetes system itself, requiring
human intervention only in case of problems that cannot be solved automatically.

This chapter presents the Kubernetes architecture, a bit of its history and also
an introduction to virtualization, in particular the concept of container, fundamental
in understading Kubernetes.

2.1 Kubernetes History
Around the year 2004, Google presented Borg, a small project that aimed to
create an internal large-scale cluster management system. Fast forward to 2014,
Kubernetes was introduced as an open source version of Borg and, in June of the
same year, the first GitHub commit was done. The following year, Kubernetes
v1.0 gets released and Google signs a partnership with the Linux Foundation. This
collaboration gave birth to the Cloud Native Computing Foundation, which aims
to building a sustainable ecosystem for cloud applications to grow. In the same
year, the v1.1 update was released, bringing major performance improvements and
new features.

The successive year, 2016, though, is the year that will give Kubernetes popu-
larity. Along with the release of Helm, the Kubernetes packet manager, and the

4

Kubernetes

v1.5 release, which brought Windows Server compatibility, 2016 was the year of
the biggest Kubernetes deployment to date: Pokemon GO. Due to the massive and
unexpected user base, it pushed the Kubernetes system like never before, therefore
allowing the developers to discover and solve several problems. In 2017, enterprises
like Docker, Amazon and Microsoft started to adopt and support Kubernetes and
v1.9 was released, bringing new features like beta Windows support along with
general improvements.

Figure 2.1: Container orchestrators usage as reported in [9]

By now, Kubernetes has reached v1.20 and, despite the fact that other container
orchestration solutions exist, more than 75% of the companies included in the
CNCF [9] report declared that Kubernetes is the go-to choice.

2.2 Containers
In order to properly understand what Kubernetes does and how it does it, it is
fundamental to have at least a basic grasp of what a container is.

Before containerization and virtualization were even a thing, applications ran on
physical servers. With this approach, though, there was no separation between
different applications, so, for example, a problem in one application could influence
another one, or an application could use all the resources available, leaving the
others starving. A solution was to run each application in a different physical
machine, but clearly this is not acceptable, since, aside from the economic cost
of owning and managing several physical machines, it would lead to a possibly
enormous waste of resources.

5

Kubernetes

Figure 2.2: Evolution of applications deployment

A proper solution did not arrive until the birth of the concept of virtualiza-
tion. By means of a Hypervisor running on top of the host machine operating
system, virtualization allows to create many Virtual Machines(VM) on a single
physical machine. Each VM is an exact copy of the underlying hardware, thus
allowing the user to run a different operating system on each one of them. Thanks to
this, applications running in a VM are completely separated from the applications
running on another VM, therefore increasing the reliability of the whole system.
In this way, physical servers’ resources can be used in a much better way, thus
reducing the cost of having and managing several physical machines. VMs have a
remarkable problem: since each single VM is a complete copy of the underlying
hardware and runs its own operating system, they come with a considerable
overhead.

In more recent years, a new solution proposal was born: containers. A container
can be seen as a lightweight VM. Lightweight because, unlike traditional VMs,
each container contains only a copy of the application it has to run and the necessary
libraries, thus leading to having a dimension of the order of Megabytes, instead of
Gigabytes, an uptime of the order of seconds, instead of minutes. The hypervisor
of the container world is called Container Runtime (for example, Docker Engine),
and it runs on top of the host operating system. Another important feature
of containers, is their portability: being they decoupled from the underlying
structure, they can easily be deployed on different OS and cloud distributions.

2.3 Containerize An Application
As it has just been introduced, in order to run an application inside a Kubernetes
cluster it needs first to be containerized. To do so all that is needed is to create a so

6

Kubernetes

calledDockerfile, which contains all the information (such as required environment
variables, commands to be executed, etc...) about the container image that it is
going to be generated. After the image has been built, it can be either started
directly by interacting with the Docker CLI, or, like in this case, into a container
orchestrator, for instance, Kubernetes.

Every Docker image has an entrypoint; an entrypoint is the first command
that the container will execute as soon as it starts running and its whole lifecycle
depends on it. Most of the times, the entrypoint is the command that will start
the main application of the container and as soon as its execution ends, whether
it was because of an error, or just because it rightfully terminated, the container
terminates as well.

1 ############################
2 # STEP 1 build executable binary
3 ############################
4 FROM golang:alpine AS builder
5 # Install git.
6 # Git is required for fetching the dependencies.
7 RUN apk update && apk add --no-cache git
8 WORKDIR $GOPATH/src/client/
9 COPY . .

10 # Fetch dependencies.
11 # Using go get.
12 RUN go get -d -v
13 # Build the binary.
14 RUN go build -o /go/bin/client
15 ############################
16 # STEP 2 build a small image
17 ############################
18 FROM alpine
19 # Copy our static executable.
20 COPY --from=builder /go/bin/client /go/bin/client
21 # Run the server binary.
22 ENTRYPOINT ["/go/bin/client"]

Figure 2.3: Example Dockerfile to Build and Run a Go Program

Online repositories like Dockerhub, contain a huge amount of container
images ready to be pulled and used. These pre-built images can, not only
be run right away, but they can also be used as a starting point for custom
Dockerfiles, for example, the Ubuntu Docker image can be used as a foundation
for containerizing an application that needs a Linux environment in order to be
executed.

7

Kubernetes

2.4 Kubernetes Features
As said previously, when the number of containers we need to manage increases, it
becomes more and more difficult to keep track of everything that is going on and
even doing a simple operation means that the developer has to take in considerations
many containers at once.

That is when container orchestrators come to the rescue. After being con-
figured based on the needs of the developer, they can automatically manage many
tasks, from replacing crashed containers, to automatizing a canary release.

Here are some of the features Kubernetes provides the user with:

• Self-healing: whenever a container fails or does not respond to user defined
health-checks, Kubernetes will automatically restart it or replace it. The new
containers will not be advertised until they are ready to serve requests.

• Automatic scheduling: the user provides the Kubernetes system with a
cluster of nodes it can use to run tasks. After telling the system what kind of
resources a specific container needs, Kubernetes will automatically deploy it
to make the most out of the resources it has.

• Automated rollouts and rollbacks: the user can describe the desired
state for its deployment and the Kubernetes system will gradually change
the current state until it will reach the desired one. If something goes wrong
during the rollout goes wrong, Kubernetes will automatically rollback to the
latest stable state.

• Service discovery and load balacing: containers can be exposed by either
using a DNS name or their own IP address. Kubernetes will also do load
balancing and distribute the traffic in order to keep the deployment stable.

• Storage orchestration: users are allowed to automatically mount a storage
system of choice, such as local storages, public cloud provider and more.

• Secret and configuration management: Kubernetes lets the user store
and manage sensitive information, like passwords and SSH keys. Those secrets
can be deployed and updated withouth having to rebuild container images,
and without exposing them in the stack configuration.

2.5 Kubernetes Components
Whenever a cluster is created, two kind of worker machines, called nodes, are
created: worker and control plane.

8

Kubernetes

Each cluster must have at least one control plane node, even though usually
multiple are created to provide resiliency and high availability. The goal of the
control plane is to manage worker nodes and Pods across the cluster.

On the other hand, worker nodes host Pods, where a Pod is a set of running
containers in the cluster, and there must be at least one worker node per cluster.

Figure 2.4: Kubernetes Components

2.5.1 Control Plane Components
Control plane components make global decisions about the cluster and detect
and respond to cluster events. These components can be run on any machine in
the cluster, but usually, for simplicity, they are scheduled on the same machine.
This machine will not be used to run user containers.

Here is a list of these components:

• kube-apiserver: the API server is a component of the Kubernetes control
plane which exposes the Kubernetes API. It acts as the front-end of the
Kubernetes control plane. It intercepts API requests, validates and processes
them. The main implementation of the Kubernetes API server is kube-apiserver.
It can scale by increasing the number of replicas and traffic can be balanced
between those istances.

• etcd: key-value store used as Kubernetes’ backing store for all cluster data.
Distributed, consistent and higly-available. To ensure data consistency across
all nodes in the cluster, etcd uses the Raft Consensus algorithm [10].

9

Kubernetes

• kube-scheduler: it watches for newly created Pods and select a node for
them to run on. In order to make a good scheduling decision, it takes in
consideration factor such as resource requirements, user constraints, data
locality and more.

• kube-controller-manager: it runs the controller processes. A controller
is a control-loop which keeps track of the current state and, in case of any
problems, it tries to get the current state back to the desired one. At a logical
level, each one of these controller processes is separated from the others, but
to simplify things, they are all compiled into a single binary and run in a
single process.
Some of these controllers are:

– Node controller: notices and responds when nodes go down;
– Replication controller: maintains the correct number of pods for every
replication controller object in the system;

– Endpoints controller: populates the Endpoints object. It basically
joins Services and Pods;

– Service Account and Token controllers: create default accounts and
API access token for new namespaces.

• cloud-controller-manager: this component embeds all the cloud-specific
control logic. It lets the user link its cluster into the cloud provider’s API,
and separates the components that interact only with the cluster from those
which interact with the cloud platform. Even in this case, multiple controller
processes are compiled into a single executable in order to reduce complexity.
The controllers that can have cloud dependencies are:

– Node controller: to check whether a node in the cloud has been deleted
after it stops responding;

– Route controller: to set up routes in the cloud infrastructure;
– Service controller: to create, update and delete cloud provider load
balancers.

2.5.2 Worker Node Components
These components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

They are:

10

Kubernetes

• kubelet: it runs on each node in the cluster and checks whether containers
in a Pod are running. The kubelet takes a set of PodSpecs and makes sure
that the containers describe in those PodSpecs are healthy and running.
The kubelet only manages containers created by Kubernetes.

• kube-proxy: it is a network proxy that runs on each node in the cluster,
implementing a part of the Kubernetes service concept. It allows Pods to
communicate to destinations both inside and outside the cluster, by maintaning
network rules on nodes.
kube-proxy forwards the traffic itself, if there is no available packet filter on
the underlying operating system.

• Container runtime: it is the software responsible for running containers.
Multiple container runtimes are available, such as: Docker, containerd, and
any implementation of the Kubernetes Container Runtime Interface.

2.5.3 Addons
By means of already existing Kubernetes resources, addons implement new cluster
features. Since these provide cluster-level features, such as DNS (the only addons
which every cluster should have) or a Dashboard, resources for addons belong to
the kube-system namespace.

2.6 Kubernetes Objects
Kubernetes objects are persistent entities that represent the cluster desired state.
So, whenever an object is created, the user is telling the Kubernetes system what
it wants the cluster’s workload to look like.

In order to interact with a Kubernetes object — by creating, updating or deleting
it — the user must use the Kubernetes API. To use the Kubernetes API, the user
can either use a CLI tools, such as kubectl, which automatically makes the necessary
API calls, or interact with them directly in its own program by means of one of
the Client Libraries.

The fields necessary to describe an object are:

• apiVersion: which version of the API is being used for the project

• kind: what kind of object it is being described

• metadata: data that helps uniquely identifying the object

• spec: the object desired state

11

Kubernetes

• status: the object current state, as supplied by the Kubernetes system itself

In order to deploy an object into a Kubernetes cluster, the most common way
to do so is to describe it in a .yaml file containing all the necessary information.
An example of such a file is provided in figure 2.5, which shows the description of a
Kubernetes Deployment resource.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx-deployment
5 labels:
6 app: nginx
7 spec:
8 replicas: 3
9 selector:

10 matchLabels:
11 app: nginx
12 template:
13 metadata:
14 labels:
15 app: nginx
16 spec:
17 containers:
18 - name: nginx
19 image: nginx:1.14.2
20 ports:
21 - containerPort: 80

Figure 2.5: An example .yaml file that describes a Deployment object

Usually these files are then provided to kubectl, which will take care of con-
verting all the data contained in them into JSON format and make the proper
requests to the API Server.

The Kubernetes API allows the user to do four main operations on Kubernetes
resources:

• Create: creates the resource in the storage backend. After its creation, the
desired state is applied

• Update: comes in two forms:

12

Kubernetes

– Replace: replaces the existing resource specifications with the provided
ones.

– Patch: applies a change to a specific field.

• Read: comes in three forms:

– Get: retrieves a specific object by its name
– List: retrieves all objects of a specific type within a namespace
– Watch: streams the results for one or more objects as they get updated

• Delete: deletes a specific resource

More info on this can be found in the Kubernetes API documentation [11].
Next, some of the fundamental objects will be briefly presented.

2.6.1 Namespaces
Namespaces are nothing more than virtual clusters backed by the same physical
cluster. Namespaces are intended to be used when the cluster’s resources need to
be divided between multiple users or projects.

A Kubernetes cluster has four default namespaces:

• default: default namespace for objects with no other namespace

• kube-system: namespace for objects created by the Kubernetes system

• kube-public: namespace readable by all users, even non-authenticated ones,
used to make some resources visible and readable publicly throughout the
whole cluster

• kube-node-lease: namespace for the lease objects associated with each node,
used to improve performances of the node heartbeats as the cluster scales

2.6.2 Labels and Selectors
Labels are key/value pairs attached to objects, intended to be used to specify
identifying attributes that are meaningful to the user, but do not have an
implication to the core system.

Labels can be attached at the object creation time and added/deleted/modified
at any subsequent time. Each object can have multiple labels, the only constraint
is that each key must be unique for that object.

By means of Selectors, labels can be used for grouping together multiple
objects that have some particular characteristic in common.

13

Kubernetes

2.6.3 Annotations
Annotations, like Labels, are key/value pairs attached to a specific object. Un-
like Labels, though, Annotations are used to add information not useful for
identifying the object. They allow also characters not allowed by Labels.

The informations described by Annotations can be retrieved and used by external
tools and libraries.

2.6.4 Pods
Pods are the smallest deployable computing unit that can be created and
managed in Kubernetes. A single Pod contains one or more containers, with shared
storage/network resources, with specifications for how to run them.

The most common use case is having a single container per Pod. In this case,
the Pod can be seen as a wrapper for the container. Kubernetes will then manage
the Pod, instead of directly managing the container itself.

Another way of using a pod, even though it is less common than the previous
one, is running multiple containers in the same pod. These containers are tightly
coupled and need to share resouces in order to properly work.

In practice, the user will rarely directly create a Pod resource. Pods are
ephemeral resources, so they cannot, for example, handle replication and self-healing
by themselves.

2.6.5 ReplicaSet
A ReplicaSet is in charge of maintaining a stable number of replica Pods.
By means of a selector, it can identify what Pods it can acquire.

Using the value of the fields in its configuration file, a ReplicaSet knows how
many replicas of the Pods it manages should be running in the cluster, and how
to create a new Pod in order to meet the required replicas amount. ReplicaSet are
usually not directly created and deployed, instead they are deployed by means of
the higher-level concept of Deployments, which automatically create them, along
with providing declarative updates to Pods.

2.6.6 Deployments
A Deployment manages the creation, the update and the deletion of Pods. It does
so by creating a ReplicaSet, that will then create the Pods themselves. That is
why, usually, applications are managed and deployed by creating or modifying a
Deployment, instead of manually creating ReplicaSets and/or a Pods. An example
configuration file for a deployment can be seen in figure 2.5.

14

Kubernetes

Figure 2.6: Pods in a Node

2.6.7 DaemonSet
By means of a DaemonSet, the user can ensure that all, or some, Nodes, run a
copy of a Pod. If a node is added to the cluster the DaemonSet will make sure to
add a Pod to it. If a node gets deleted, all the Pods are garbage collected.

By deleting a DaemonSet, all the Pods created by it, will be cleaned up.

2.6.8 Services
Services give the user the possibility of exposing an application running on a
set of Pods as a network service. There is no need of modifying the application in
such a way as to use a particular or unfamiliar discovery mechanism, Kubernetes
will automatically assign to each Pod an IP address and a single DNS name for
a set of Pods. Traffic is also automatically load balanced between them.

Services are particularly useful in order to avoid having to deal with Pods’
non-static IP addresses. Since Pods are often destroyed and created to match
the desired state of the cluster they are running in, if we imagine having a set of
Pods offering a service to other Pods, the latter will have a difficult time keeping
track of which IP to connect to. Exposing a set of Pods via a Service, will enable
other Pods to connect to those by using the IP address or the DNS name of the

15

Kubernetes

Service itself.
There are different Service types:

• ClusterIP: the Service is exposed on a cluster-internal IP, thus making it
only reachable from within the cluster. This is the default option;

• NodePort: the Service is exposed on each Node’s IP at a static port;

• LoadBalancer: exposes the Service externally using a cloud-provided load
balancer;

• ExternalName: the Service is mapped to the DNS entry defined in the field
externalName.

Figure 2.7: ClusterIP Service

2.6.9 Configmaps
Configmaps allow to store non-confidential key-value pairs. They can easily by
consumed by Pods, and enable the user to decouple the application code from
configuration data.

In this way, applications are made even more portable, since they do not depend
on environment-specific configurations anymore.

2.7 Networking
The Kubernetes network model follows the so called IP-per-pod model. Each Pod
receives a unique IP address in the cluster, that other Pods can use to interact
with the containers running inside it.

16

Kubernetes

Containers running inside the same Pod, will share the same IP and MAC
address and can communicate with each other by reaching their ports on localhost.
Since they share the same network namespace, the usage of ports in a Pod must
be coordinated.

Figure 2.8: Pod to Pod communication

Each Pod network capabilities can be restricted by using Network Policies.
They act as a whitelist, allowing only the specified ingress or egress traffic on a
specific set of Pods.

Kubernetes imposes some fundamental requirements on the network implemen-
tations:

• Pods on a Node can communicate with all Pods without a NAT

• Agents on a Node, such as system deamons or kubelet, can communicate with
all Pods on that Node

• Pods in the host network can communicate with all the Pods on all Nodes
without NAT

This model and these requirements were devised in order to allow a transition
from traditional VMs to containers as smooth and simple as possible.

A CNI, acronym for “Container Network Interface”, is a CNCF project that
consists of a specification and libraries for writing plugins used to configure network
interfaces in Linux containers. A CNI is only concerned by containers’ network
connectivity and removing allocated resources when containers are deleted. It will

17

Kubernetes

Figure 2.9: Node to Node communication

assign to each Pod a virtual ethernet pair and an IP address and new routes will
be added to the routing table.

There are several implementations of this network model available to be
used on Kubernetes, following there is a brief introduction to the one that has been
used in this thesis.

2.7.1 Calico
Calico [12] is an open-source network solution for containers and VMs. It is an
implementation of the interface defined by the CNI. Calico is not only supported
by Kubernetes, but also by other platforms like OpenShift, OpenStack and Docker
EE.

The main components of Calico, depicted in figure 2.10, are:

• etcd: all necessary information about the cluster and other components are
stored here. This is the entrypoint for calicoctl, the command line tool to
manage calico network and policies

• BIRD: a BGP client. BIRD will establish connections between nodes in order
to share their router and enable inter-node communication.

18

Kubernetes

• FELIX: by using the data stored in etcd, this is the component responsible
of enforcing policies.

• IPAM: stands for IP Address Management, and it is used during the network
creation process. It keeps tracks of what IP are currently assigned and in-use.

Figure 2.10: Calico Architecture

19

Chapter 3

ROS

At the beginning, developing complex and robust robot behavior was not only a
difficult and time consuming task, but it had to be done explicitly for one
particular kind of robot platform, since the software had to be written taking
very strongly in consideration the hardware it was going to run onto. Thus,
it was rarely, if not never, possible to re-use a piece of already existing code without
having to adapt it to the new platform. Needless to say, this was an enormous
effort to take on, especially for smaller companies or laboratories. It is clear
that a new approach was desperately needed. That is where ROS comes
to aid. ROS stands for Robot Operating System and, despite what the name
suggests, it is not a real operating system; it is a collection of libraries, tools
and conventions especially devised to enable developers to share and re-use robot
behavior independently of the platform it was initially thought for. This also
allows different teams to cooperate: one team might have a lot of expertise
when it comes to robot movements, while another might be the best in developing
software for sensors data elaboration; while this is still a complex job, with the
help of ROS those two team can easily share their work and therefore as a result
obtaining a way better robot behavior than if they did everything by themselves.
Before delving into ROS specifications, a little bit of history.

3.1 ROS History
The first ideas of what would later become ROS, came together around 2007,
when its creators, Eric Berger and Keenan Wyrobek, at the time PhD students
at Stanford, noticed that many of their colleagues struggled because of the
multiple sides of robotics: an expert in computer vision may not be an expert
when it comes to hardware, and so on. They consequentely started developing
software and received some funding to support the creation of the PR1 hardware

20

ROS

prototype, the one the initial pieces of software was thought for. Later that year,
the ROS project migrated to Willow Garage, a technology incubator, and started
to receive contributions even from outside the incubator. It was then already clear
that ROS was destined to be a multi-robot platform, not only related to the
PR1 and the PR2 (an upgraded PR1 developed while inside at Willow Garage). By
the end of 2008, the team reached a couple of important goals: a PR2 managed
to not only navigate continuosly for two days straight, but also to move around
the office, open doors and plug itself into the power outlet; soon after that an
early version of ROS was released along with the first bits of documentation. The
successive big goal was reached in 2010 when Willow Garage managed to gift eleven
PR2 to different institutions around the world, thus boosting ROS popularity; this
led, after the official release of ROS v1.0, to the first drone and autonomous
car running on ROS. In 2012, Willow Garage gave birth to the Open Source
Robotics Foundation (OSRF) which, after immediately being given a software
contract by DARPA, became in 2013 the primary software maintainer for ROS
and absorbed Willow Garage itself. Since then, a new version of ROS has been
released on a per year basis, gaining more and more popularity everyday, to the
point that NASA and tech giants like Microsoft and Amazon took an interest in it,
with NASA announcing the first robot running ROS in space in 2014. Lastly, the
biggest recent step has been the announcement and the release of ROS2, which
offers significant changes to the ROS API and support to more recent technologies.

3.2 ROS Working Principles
A ROS system is generally composed of multiple not tightly coupled nodes,
where a node is a process responsible for, usually, a single task. Each one of those,
in order to achieve a more complex robotic behavior, must communicate with the
other components of the system and that can be done by means of messages.
Those are exchanged on channels called topics, and each single node can
subscribe to and publish on multiple topics at the same time. ROS has
an integrated node discovery system, therefore, as soon as a node enters the
system, its presence will automatically be announced to all the other nodes, so that
they can be aware of what topics the new node is publishing on and which ones it is
subscribing to. Figure 3.1 depicts an example ROS system in which multiple ROS
nodes publish and subscribe to one or more particular ROS topics. In the following
sub-sections there will be a deeper presentation of the main ROS concepts.

3.2.1 Nodes
As mentioned above, a node is a running process that, usually, carries out a single,
specific task (e.g. retrieving a camera feed, controlling the robot wheels). A

21

ROS

Figure 3.1: An example of ROS System

complete ROS system is composed of many nodes, sharing data with each other
in order to achieve the determined robotic behavior.

This leads tomany benefits, such as additional fault tolerance, since the failure
of a single node does not spread to the others, reduced code complexity with respect
to monolithic systems and makes it easier to use alternative implementation of a
node, even if written in a language different from the one the node was originally
developed with. In order to be uniquely identifiable, every single node has a
Graph Resource Name, which is the identifier of the resource in the hierarchical
naming structure of ROS, as well as a type, a combination of the package the
resource belongs to and, in the node case, its executable name. A node can be
written by using the ROS Client Library.

3.2.2 Messages
As anticipated earlier in this chapter, nodes can communicate with each others by
publishing messages on specific topics. Messages are nothing more than a data
structure that describes what kind of data that particular message will be used
to deliver. Most primitive types (e.g. boolean, integer, floating point) are available,
and it is also possible to define primitive types arrays as well as nested structures,
similar to C structs. A message definition is stored in a text file with msg
extension which is then kept in the msg subfolder of the related package. Messages,

22

ROS

exactly as nodes do, follow the ROS naming conventions, so in order to use a
particular message we will have to refer to nameOfThePackage/nameofTheMsgFile.
Additionaly, messages go through a versioning based on a MD5 sum of the
msg file itself; two nodes can exchange a particular message only if both are using
the same message type and the MD5 sum matches. Each message definition can
include a special type called Header , which includes metadata about the message
like, for example, a timestamp. Some of these fields can even be automatically
set by ROS itself, so developers are exhorted to use them. Figure 3.2 shows the
definition of the LaserScan message, which main field is the ranges array; it contains
all the data measured by a 2D LiDAR sensor.

1 std_msgs/Header header
2 float32 angle_min
3 float32 angle_max
4 float32 angle_increment
5 float32 time_increment
6 float32 scan_time
7 float32 range_min
8 float32 range_max
9 float32[] ranges

10 float32[] intensities

Figure 3.2: The definition of the LaserScan Message

3.2.3 Topics

Topics are named buses over which nodes can communicate, and were thought
for unidirectional streams of data. Each topic is strongly connected to the
type of the message that it is used to transmit. Nodes can either publish on or
subscribe to a particular topic, in this way they do not have to care about who is
they are communicating with and only focus on the data they receive and transmit.
A single topic can have multiple subscribers and multiple publishers and a
single node can publish on and subscribe to several topics at the same time. As
long as the right message type is being used, everyone can subscribe and publish
to a topic. The default communication protocol is TCP, but nodes can
communicate even over UDP. The negotiation regarding the transport protocol is
done by nodes themselves at runtime.

23

ROS

3.2.4 Services
Sometimes, though, a many-to-many unidirectional communication is not what
one might need, especially when a request/reply interaction is needed (e.g. a
node wants to know what the state of sensor is). That is when services come to
aid. Services are defined in files with srv extensions, by default kept into the
srv subfolder, in which two messages are defined: one for the request and one for
the reply. A client can use a service by simply sending to another node a request
message, and waiting for the reply. Services, exactly like topics, are tightly coupled
with the messages they are used to exchange and follow the same naming schema.
Services are subjected to versioning (as for messages, MD5 sum of the srv file)
and therefore, client and server nodes can communicate only if the MD5 sums
match.

Figure 3.3: ROS Service

3.2.5 Actions
On occasions, it may happen that a service requested by a client takes quite some
time to be completed and, by using ROS services, the client cannot either cancel
the request nor know the state of it. Actions were thought exactly to address
this problem: a client requesting an action can interrupt it whenever it wants
and it will constantly receive feedbacks regarding its completion percentage. An
action can be easily described into a file with action extension, into which
a few messages are defined: goal, feedback and result. The goal message
is the one initially sent by the requesting client to the server, and it describes
the final state that it wants the system to reach; the feedback message is sent
periodically from the server to the client, containing updates on the requested
action state; lastly, the result message is the final message to be sent and it
contains the final state of the system. An example use of a ROS action can be
related to robot movements: the user may want to make the robot move from
a point A to a point B, so, after issuing the movement command, it will receive
updates on the state of the robot until it reaches the destination. Needless to say,
actions follow the same naming convention as all other ROS resources presented so
far.

24

ROS

Figure 3.4: ROS Action

3.3 ROS1 and ROS2
After many years developing ROS, the team behind it gained a lot of experience
and learnt what kind of important features were missing or had to be improved, and
what had to be removed. To apply all that knowledge onto ROS would have meant
making massive changes in the code and consequentely introducing the possibility
of causing important unstability issues. That is why the team decided to start
from scratch and develop a brand new ROS, ROS2[13]. In this thesis, ROS2
has been used since ROS1 is reaching its end of life and no new functionalities will
ever be added. The only updates the last version of ROS1 (ROS Noetic) will get is
the support for Python3, which ROS2 uses by default.

The followings are some of the main differences between the two:

• ROS API: ROS1 API supported only C++ and Python and each one
of them had completely independent libraries built from the ground up,
respectively roscpp and rospy. That means that some features could be added
to one library and not the other and also that the API was not necessarily
the same in the two cases. ROS2 tries to solve this problem by adding a
layer: rcl. rcl is a base library written completely in C that contains all
the ROS2 basic features. Other languages libraries are built on top of that.
In case a new feature needs to be added, the majority of the work will be
done only on rcl, while the other languages just need to add the binding
to that new feature. This leads to having similar API for the supported
languages (currently C++, rclcpp and Python3, rclpy), an easier time creating
other languages libraries and new features will spread much faster in all the
supported languages.

• Cpp and Python Compatibility: for most of its life ROS1 supported only
Python2 and C++ 98. In its latest version it added support to Python3
and C++ 11/14, even though the latter is not guaranteed to work properly
without breaking some dependencies. On the other hand, ROS2 supports by
default Python3 and C++ 11/14, and support for C++ 17 is on the way.

• Node Writing Convention: ROS1 did not have specific rules on how

25

ROS

to write nodes, so that made really difficult for developers not only to write
clean and organized code, but it made it almost impossible to share it, since
the same node implementation could be completely different if written by two
different developers. ROS2 solves that by introducing a convention that
must be followed.

• ROS Master: in order for a ROS1 system to work, a ROS Master node was
needed. It basically acted as a DNS server for all the other nodes, allowing
them to discover each other and thus communicate. ROS2 eliminates the
need of that: every single node can automatically discover other nodes using
broadcast traffic, and this led to the possibility of creating fully distributed
systems.

Figure 3.5: Discovery Mechanism Comparison

• Services: ROS2 services are asynchronous, that means that a callback
function can be added in the node that will be triggered as soon as the server
sends the reply back, thus allowing the main thread not to be stuck on
waiting for it.

• Actions: in ROS1 actions were not a core functionality, they were just
added to solve some of the problems encountered with services being syn-
chronous and not having a feedback cancellation mechanism. ROS2 added
them to its core, and they use a combination of topics and services.

26

ROS

• Quality of Service: by means of QoS settings, ROS2 allows the developer
to define how nodes should handle interactions with other nodes (e.g. is
it okay to lose a message?). Nodes that talk with each other, need to have
compatibile QoS settings in order to properly work.

• OS Compatibility: ROS1 is compatible exclusively with Ubuntu, while
ROS2 added support to MacOS and Windows 10, making it more easily
usable in many more environments.

• Networking: while ROS1 uses a custom made network middleware, ROS2 is
based on already existing solutions, specifically FastDDS an implementation
developed by eProsima of DDS (Data Distribution Service, more is told about
it later).

27

Chapter 4

Initial Investigation and
Requirements Analysis

The first step toward the final goal of this thesis was gathering information about
the hardware, with special focus on the CPU and the sensors, that is nowadays
available and equipped on robotic systems and the time constraints that an au-
tonomous system (therefore, real-time) should respect. In particular, a TurtleBot
3 Waffle Pi was kept in consideration, since this was the robotic platform available
in the PIC4SeR laboratory, which this thesis was written in collaboration with.

The PIC4SeR, acronym for PoliTO Interdepartemental Center For Ser-
vice Robotics, is, as the name suggest, a service robotics research center born from
the collaboration of five different departments of the Politecnico di Torino:
DET (Electronic and Telecommunication Department), DAUIN (AUtomatic and
INformatics Department), DIMEAS (Mechanical and AeroSpatial Engineering
Department), DIATI (Environment, Land and Infrastructure Department) and
DAD (Design and Architecture Department).

By definition, a service robot is a robot that helps humans to perform
useful tasks; tasks that can space from simple but repetitive house chores, to
helping mountain rescue teams to localize and save people buried under an avalanche.
The PIC4SeR goal is to support the service robotics market, which currently is
in a rapidly expanding phase, by providing it with innovative solutions achievable
only in research centers where a real multidisciplinary approach is possible and
therefore help it develop faster.

The sensors, particularly the cameras, that were considered in this phase are real
sensors used on board of either robotic platforms, or autonoumous driving vehicle
(Tesla, specifically) in order to get as close to a real application as possible.

In this chapter, the Turtlebot platform will be briefly presented, as well as the
LiDAR and the Depth Camera technology.

28

Initial Investigation and Requirements Analysis

Finally, the collected data and the consequent constraints will be introduced.

4.1 Turtlebot
Turtlebots are low-cost, entry level robotic platforms running on open-
source software. The first Turtlebot was developed at Willow Garage (the same
technology incubator in which ROS was initially developed in) in late 2010. They
consist of a mobile base, distance sensors (either 2D and 3D) and a Single Board
Computer. They are specifically designed to be easy to build and to use, with-
out the need to utilize very particular tools. Being their core technology SLAM
(Simultaneous Localization And Mapping) and navigation, they are particularly
suitable for home service robots: they can do things like autonomously map-
ping and driving around a room, or follow someone as they walk around the house.
There is also the possibility to use an arm attachment, specifically thought and
designed for enabling object manipulation.

Figure 4.1: All Turtlebot iterations

Throughout time, three different versions of Turtlebots came out, each one
in different flavors (except for the original Turtlebot):

• Turtlebot: the original Turltebot developed at Willow Garage. Especially
thought for ROS deployment, it was built on top of Create, the iRobot’s
research robot. It mounted an Asus 1215N dual core laptop, a 3000 mAh
battery, a Kinect sensor and a Turtlebot power board with gyroscope. It could
easily be assembled by means of single allen wrench.

29

Initial Investigation and Requirements Analysis

• Turtlebot 2: it came out in two different editions, TurtleBot 2e and TurtleBot
2i. They both were created on top of a YUJIN Kobuki with addition of a
2200 mAh battery pack, a Kinect sensor, an Asus 1215N dual core laptop
and a fast charger. In addition, the 2i edition had native support for robotic
arms. Exactly as in the case of its predecessor, the Turtlebot 2 was very easily
assemblable by using a single allen wrench.

• Turtlebot 3: the most recent Turltebot iteration, it includes three edition:
Burger, Waffle and Waffle Pi. As their predecessors, their hardware is built on
top of a common starting point, but it differentiates, among other things, in
what are, for the scope of this work, key aspects: onboard CPU and available
sensors. Talking about the Single Board Computers, Burger and Waffle Pi both
use a Raspberry Pi 3 B/B+ (quad-core, 64-bit working at, respectively,
1.2GHz and 1.4GHz with 1Gb of RAM), while the Turtlebot 3 Waffle operates
on a Intel Joule 570x (quad-core, 64-bit working at 1.7GHz with 4Gb or
RAM). When it comes to the installed sensors, all three of them are equipped
with the same 2D LiDAR sensor (specifically, the LDS-01) and, while the
Turltebot 3 Burger has no camera sensor, the other two do: Turtlebot 3 Waffle
is provided with an Intel Realsense R200, a RGB Depth camera, while the
Waffle Pi edition uses the Raspberry Pi v2.1 camera sensor, which is a
simple RGB camera.

Figure 4.2: Close-up on the Turltebot 3 Waffle Pi

30

Initial Investigation and Requirements Analysis

4.2 LiDAR
LiDAR, acronym for Light Detection And Ranging, is a method used mainly for
detecting the presence of obstacles and measuring distances. Its working principles
are basically the same as a traditional radar, but, instead of using radio waves
to do measurements, it uses ultraviolet, visibile or near infrared laser light
(the wavelenght is chosen depending on the target of that particular sensor): the
LiDAR sensor illuminates its surrounding and by measuring the time that the
reflection (more specifically, diffuse reflection, as in contrast to specular reflection)
takes to get back to the source it can measure distances between the sensor and
the measured object and even make a 3D representation of it.

Figure 4.3: Diffuse vs Specular Reflection

The LiDAR techonology finds application not only in robotics and autonomous
driving, but in a wide variety of fields like astronomy (where, for example, is
used, with the help of reflectors put on the Moon’s surface, to measure with a
millimiter precision the distance between the Earth and its satellite), archaeology,
geology and many more.

LiDAR sensors can come in three different variants, as illustrated in the following
list:

• LiDAR 1D: one-dimensional LiDAR are the simplest form of LiDAR sensors
available and their only actual use is as distance measurement device. They
are composed of a single fixated laser beam which, when pointed toward a
reflective surface, allows the sensor, by means of the time it takes the light to
go from the source to the surface and back, to accurately measure how distant
the object in question is.

31

Initial Investigation and Requirements Analysis

Figure 4.4: 1D LiDAR

• LiDAR 2D: two-dimensional LiDAR are nothing more than a one-dimensional
LiDAR in which the laser beam and the sensor are rotating around one
axis. This allows the device to measure not only the distance from reflective
surfaces, but an angle as well. Measurements are taken at a fixated rate,
for example, the LiDAR available on board of Turtlebot 3 platforms, takes a
measurement once every one degree angle, so to scan the whole surrouding
environment it needs 360 measurements. This kind of LiDAR can be used,
not only to measure distances, but also to perform simple 2D mapping.
It is important to notice, though, that this variant is only able to detect
obstacles that are put at the same height as the sensor, everything above
and below it will be lost. Therefore, a single two-dimensional LiDAR is not
enough for an autonomous driving system, even at very low speeds like the
ones achievable by Turtlebots.

Figure 4.5: 2D LiDAR Figure 4.6: 3D LiDAR

• LiDAR 3D: the last LiDAR variant is a further evolution of the previous

32

Initial Investigation and Requirements Analysis

one. Multiple laser beams and sensors are put at different heights in order
to be able to obtain data related to the third dimension, previously impossible
to collect because of the reason explained above. This kind of sensor by itself
offers already enough data for a basic autonomous driving system.

4.3 Depth Camera
Digital cameras, like the ones nowadays available in every smartphone, output 2D
images composed of millions of pixels; each one of those pixels contains some data
that, usually, is associated with and RGB value, which describes the amount
of red, green and blue (thus RGB) present in that particular pixel. Values can
oscillate between 0 and 255, so, for example, RGB(255, 255, 255) is pure white
and RGB(0, 0, 0) is pure black. The same goes for depth cameras, but, whereas
standard digital cameras pixels hold the previously mentioned RGB values, their
pixels hold another kind of data, called depth. This value measures the distance
between the camera and the photographed objects. Depth information is
very useful to the vehicle; thanks to it, it can determine how distant nearby ostacles
actually are and not only, by means of object recognition algorithms, what those
ostacles are. Some depth cameras also have an RGB sensor, so their pixels hold
RGB-Depth (RGBD) data.

Figure 4.7: RGB vs Depth Image

The depth information can be measured in different ways, therefore multiple

33

Initial Investigation and Requirements Analysis

types of depth camera exist, each one with its own advantages and disadvan-
tages; some of those will be now briefly introduced:

• Structured Light Cameras: this type of depth cameras works by emitting
light, usually infrared, in a specific visual or time pattern (sometimes, a
combination of the two). Since the emitted pattern is known, the changes
in the perceived reflected pattern allow the camera to compute the distance
value between itself and the illuminated things for every pixel. Due to how
they work, this kind of cameras works better in close environments and
at close distances. Also, since they use light in the infrared spectrum, they
can be disturbed by other cameras or infrared emitting devices.

Figure 4.8: Structured Light Figure 4.9: Stereo

Figure 4.10: Time of Flight

• Stereo Depth Cameras: those cameras basicallymimic how human eyes
work: two sensors placed a small distance apart take two images and compare
them; since the distance between the sensor is known, the depth value can
be calculated. The measurable distance is directly proportional to how
much the two sensors are distant from each other: the more they are
far apart, the bigger it is. These cameras can work with any kind of light,
but they are usually equipped with an infrared light emitter in order to both
increase the precision of the measurement and also to help them in case of
scarce illumination. Contrarily to what happens with structured light cameras,
they are not bothered by infrared noise and multiple cameras can be used in
the same space withouth any interference. They are suitable for outdoors
applications.

34

Initial Investigation and Requirements Analysis

• Time of Flight Cameras: this last type of cameras works by measuring how
long an emitted beam of light takes to get back to the source. By sweeping
this light beam all over their surroundings they can easily collect depth data.
Previously introduced LiDAR sensors work in the same way, as they are,
as a matter of fact, a particular kind of time of flight device, which uses laser
light. The measurable distance depends on the power of the light emitting
source and the emitted light wavelenght. The biggest disadvantage of
these cameras is that they are very susceptible to other light sources,
since every light that hits the sensor but it is not emitted by the camera itself,
will degrade the quality of the final measurement.

4.4 Specifications and Constraints Analysis
As anticipated in the beginning of the chapter, in this phase I collected some data
related to cameras used in the robotic and autonomous driving field in order to get
a better general idea on especially the order of magnitude of the throughput
the network should deal with: at each moment the network must be able to transfer
the data collected by the sensors to the data center and back and it has to do so
in the shortest amount of time possible. Taking in consideration that the data
must also be elaborated, it is evident that the network has to be able to deal with
quite an amount of stress. Lastly, I did a brief estimation of possible maximum
latency times that a system constituted of a 2D LiDAR and/or a depth camera
should concern itself with.

4.4.1 Camera Specifications
The estimations about the throughput have been calculated by assuming that all
the cameras are working at their maximum performances, even though this
is not necessarily true in real applications (usually, lower resolutions are used,
especially when it comes to RGB only images), since the goal was obtaining worst
case scenarios. The considered cameras are:

• Intel Realsense R200: this is the camera available on the Turltebot 3 Waffle.
It is a RGB Stereo-Depth camera, with the depth sensor working at a
maximum resolution of 480x360p@60FPS, and the RGB sensor working at
1920x1080p@30FPS.

• Intel Realsense R435: an updated model of the previous camera. The
depth sensor now operates at a maximum resolution of 1280x720p@90FPS,
while the RGB sensors still operates at the same resolution and framerate as
on the other model.

35

Initial Investigation and Requirements Analysis

• AR0132AT: an RGB only camera. It has been considered since it is the sen-
sor availble onTesla vehicles. It works at a resolution of 1280x960p@45FPS.

• Raspberry Pi Camera Module v2.1: the RGB camera equipped on the
Turtlebot 3 Waffle Pi. It runs at a maximum resolution of 1920x1080p@30FPS.

In table 4.1, further data can be found. Follows a brief explanation of its content:

• Model: the model of the camera sensor and the platform it can be found
equipped on.

• Max Resolution: the maximum operating resolution of the available sensors.
In particular, the notation RAW10/12 means that every pixel captured by
that sensor contains 10/12 bits of data.

• Max Framerate: how many frames per second the sensor can capture.

• Viewing Angle: the maximum Vertical and Horizontal viewing angle of the
camera.

• Range: related only to depth sensors, it represents the minimum and maxi-
mum distance it can measure.

• Type: the types of the sensors available on the device.

• Frame Dimension: approximate dimensions of a single frame captured by
that particular sensor. It is calculated by multiplying the bit depth and the
maximum resolution.

• Bit Depth: amount of data stored in each pixel

• Throughput: an estimated throughput, calculated by multiplying the fram-
erate with the frame dimension.

Model Max Resolution Max Framerate Viewing Angle Range Type Frame Dimension Bit Depth Throughput

Intel Realsense R200
480x360
Depth 60 V46° ± 5°

H59° ± 5° 0.5 - 10m Stereo Depth
and
RGB

∼337KB 16bits ∼158Mbps

1920x1080
RAW10 30 V43° ± 2°

H70° ± 2° ∼2.5MB 10bits ∼593Mbps

Intel Realsense R435
1280x720
Depth 90 V90° ± 3°

H63° ± 3° 0.2 - 10m Stereo Depth
and
RGB

∼1MB 10bits ∼790Mbps

1920x1080
RAW10 30 V69.4° ± 3°

H42.5° ± 3° ∼2.5MB 10bits ∼593Mbps

AR0132AT 1280x960
RAW12 45 RGB ∼1.8MB 12bits ∼633Mbps

Raspberry Pi
Camera Module

v2.1

1920x1080
RAW10 30 V62.2°

H48.8° RGB ∼2.5MB 10bits ∼593Mbps

Table 4.1: Cameras Specifications

36

Initial Investigation and Requirements Analysis

By looking at the throughput values (the lowest one is approximately 158Mbps),
it was immediately clear that using those cameras at their native resolutions and
framerates was not feasible and thus some sort of compression of the camera feed
was mandatory.

4.4.2 Latency Constraints
By definition, for a real-time signal elaboration application to be rightfully
called so, it must respect a fundamental constraint: the time it takes for a
single signal sample to be analyzed and elaborated must be lower than
the sampling period (the time the sensor takes to produce a single sample of
the signal).

Taking in consideration a depth camera (particularly the R200) at a resolution
of 320x240p and a framerate of either 60FPS or 30 FPS, and a LiDAR 2D, an
initial time constraint has been calculated, with the sampling period computed as
the inverse of the frequency at which the sensor operates.

The result can be seen in the following table:

Sensor Resolution Sampling Period Frame Size

Depth Camera 320x240@30FPS ∼33ms ∼150KB
320x240@60FPS ∼17ms

LiDAR 2D 1 measurement per degree
(360 per sampling period) ∼200ms ∼3KB

Table 4.2: Latency Constraints

It is evident that the hardest contraints are set by the camera sensors that
at 30FPS and 60FPS have respectively a sampling period of ~33ms and ~17ms: in
that amount of time the system must transmit 150Kb of data, elaborate it and
send it back to the autonomous platform.

By taking in consideration the time constraint imposed by the depth camera
working at 30FPS (~33ms), table 4.3 illustrates how that influences the system
from a network point of view. It is clearly noticeable that, even when the system
has a gigabit connection available, the time left to the data center to elaborate the
received information and send it back to the system is very short.

In table 4.4 it can be seen what those two time constraints mean for the
autonomous system by taking in consideration Italy’s current speed limits.

37

Initial Investigation and Requirements Analysis

Data Center
Location

Average
RTT From
Data Center

Connection
Speed

Frame
Size

Transfer
Time

Time Left for
Elaboration and

Response

Edge ∼4ms 100Mbps 150KB ∼12ms ∼17ms
1000Mbps ∼1ms ∼28ms

Cloud ∼10ms 100Mbps 150KB ∼12ms ∼11ms
1000Mbps ∼1ms ∼22ms

Table 4.3: Real Time Constraints Applied to the Network

Speed Distance Traveled in ∼33ms Distance Traveled in ∼17ms
50 Km/h ∼0.46m ∼0.24m
90 Km/h ∼0.83m ∼0.45m
110 Km/h ∼1.00m ∼0.52m
130 Km/h ∼1.20m ∼0.61m

Table 4.4: Latency applied to Italy’s Speed Limits

38

Chapter 5

Running ROS2 onto
Kubernetes

Aside from both ROS2 and Kubernetes being the go-to choice in their respective
fields, there is another reason why it has been decided to make ROS2 work on
top of Kubernetes: the concept of Kubernetes everywhere. Into a Kubernetes
cluster we are able to run many different applications, even very different in nature,
at the same time (e.g., a ROS2 system and a web server) and make them interact
with each other. By means of the interaction among applications in the same
cluster, it is possible to build more complex applications than the ones that are
deployed in each single Pod. The goal is basically to use Kubernetes as if it were
an operating system, even though it is not.

Many applications are already easily deployable and usable in a Kubernetes
environment, but this is not the case of ROS2. A ROS2 system is usually deployed
on a single LAN and, more often than not, on a single machine, therefore,
while being composed of many independent nodes, it is not really thought for being
used in a distributed environment such the one Kubernetes offers.

In this chapter, it is going to be illustrated the process by which a ROS2 system
was made runnable onto a Kubernetes cluster, in particular how the incompatibility
between the ROS2 discovery mechanism and Kubernetes was solved.

5.1 Containerizing ROS2
ROS2 is, by design, a very easily containerizable application. Since a ROS2
system is nothing else than a collection of communicating nodes running
independent processes, it is simple enough to imagine each one of these running
in a separate Kubernetes Pod, therefore in a different container. In order to
containerize a ROS2 node, there are two main alternatives: write a Dockerfile

39

Running ROS2 onto Kubernetes

starting from a Docker Ubuntu image, or write one starting from one of the already
available ROS2 Docker images.

Starting from the Ubuntu Docker image will give the user more freedom, since
it allows to choose exactly what ROS2 version has to be installed and with what
packages/tools. Installing ROS2 is actually quite a simple task; by just following
the installation guide on the ROS2 website (available for several operating systems),
it is possible to either install it via Debian packages, or by dowloading the sources
and building it ourselves. In a matter of minutes, ROS2 will be installed and almost
ready to operate; almost beacuse one last step is needed before being able to run a
node: sourcing the ROS2 workspace. By doing so, the current terminal session
is populated with the right settings and environment variables, allowing the
user to invoke ROS2 tools directly from there. Now, by executing the command
ros2 run <package_name> <executable_name> a ROS2 node can be started.

New packages can be added to the system; they can either be installed as
pre-built packages (mainly ROS2 official packages), or built using the colcon
tool. By means of a package.xml file available in the root folder of every ROS2
package, it can automatically take care of the task of building the required package
along with the needed dependencies (if available in the system). Another very
useful tool to build packages is rosdep (stands for ROS Dependencies); rosdep uses
the same package.xml file as colcon in order to gather information about all
the required package dependencies and then will proceed to install them into the
current ROS2 workspace, if not already present. After building a node from source,
it is necessary to source the new workspace in order to be able to use it.

If, on the other hand, the ROS2 Docker image alternative is chosen, the user will
not have to care about installing ROS2 itself, since it already comes preinstalled in
the image itself, but only about building and installing necessary packages
and start the node. In both cases, though, the endpoint field of the Dockerfile
should be populated with the command that spins the ROS2 node. Doing so
allows, as explained above, the node to start as soon as the container is up and
running.

5.2 ROS2 Discovery Problem
As explained above, containerizing ROS2 nodes is quite a simple task, and the
same goes for running those Docker images into Kubernetes: all that is needed is to
create a YAML file to describe either a Kubernetes pod or deployment, and specify
the Docker image’s name in the image field of the configuration file. Kubernetes
will then automatically pull the requested image, create the desired resource and
run the specified image.

Despite this, ROS2 is not completely compatible with Kubernetes just as

40

Running ROS2 onto Kubernetes

it is, the problem residing in its discovery mechanism: ROS2 takes advantage,
as explained in chapter 3, of multicast traffic in order to allow nodes to discover
each other; broadcast traffic, though, is not compatible with all Kubernetes
CNIs. Since it is not realistically possible to assume that every Kubernetes cluster
that ROS2 has to be deployed onto will be under full control by part of the user, it
is mandatory to find a way to force the discovery protocol to use unicast traffic,
in this way making it fully compatible with whatever CNI may be running on the
available Kubernetes cluster.

5.2.1 FastDDS
The whole discovery mechanism of ROS2 is based on the Data Distribution
Service framework and its wire interoperability protocol, Real Time Publish
Subscribe (RTPS), in particular on the eProsima FastDDS implementation[14].
The Data Distribution Service (DDS) is a connectivity framework defined and
maintained by the Object Managenent Group, a computer industry standards con-
sortium which main goal is to provide specifications of portable and interoperable
object models; DDS aims at providing a dependable, high-performance, interop-
erable, real-time, scalable data exchange by using a publish-subscribe pattern.
DDS itself takes care of everything related to the data transfer, because of this
applications using it do not have to care about having information regarding other
participants. On top of that, RTPS ensures that information published on a topic
can be consumed by one or more subscribers running on either the same DDS
implementation or a different one. It is designed to be able to run over multicast,
best-effort, connectionless transports, like UDP. Some main features are:

• Communication Policies: configurable best-effort and reliable publish-
subscribe communication policies for real-time applications.

• Plug and Play: new applications are automatically discovered as soon as
they enter the network and removed when leaving it.

• Type Safety: to prevent programming errors from compromising other nodes.

• Modularity: to allow basic devices to implement just a part of the protocol,
but still be able to interact with the network.

• Fault Tolerance: it enables a distributed discovery mechanism, therefore
the network will not have a single point of failure .

Taking all this in consideration, it is clear that the solution to the encountered
compatibility problem has to be searched for in the DDS world.

41

Running ROS2 onto Kubernetes

5.2.2 Discovery Server
The solution was provided by eProsima itself (i.e., the same developers of the DDS
implementation used by ROS2), for situations in which the basic multicast-based
mechanism was not suitable: the Discovery Server [15]. They extended their
DDS implementation with a client-server mechanism, much like the one used
by ROS1 (it used a master node for metatraffic); the Discovery Server will receive
all the metatraffic coming from the network participants and distribute it to
each one of them. Multiple instances of a Discovery Server can be run on the
same network, in order to provide some resilience since the server is a single point
of failure. It is also possible to multiple Discovery Servers, each one responsible
for a different client subset, and have them exchange the collected metatraffic
so that every client has knowledge about topics even if they are not published
and subscribed by nodes in their subset. Figure 5.1 briefly compares a ROS2
topology that uses the standard multicast discovery mechanism, with one the uses
the Discovery Server one.

Figure 5.1: Default Discovery and Discovery Server Mechanisms

The Discovery Server does not come pre-installed with FastDDS (planned
for future FastDDS updates), so anyone who wants to use its functionalities has
to build it on their computer. The procedure is fairly easy and well explained in
the related GitHub repository page, the only requirement is that the application
that needs to take advantage of the Discovery Server has to be running on top
of FastDDS 2.0.2, or newer. Summarizing, the procedure consists in cloning
the Discovery Server GitHub repository (https://github.com/eProsima/Discovery-
Server) along with all its dependencies and running the colcon tool in the root
folder; after that, the workspace has to be sourced by means of the appropriate
script (in case bash is being used, the script will be the one named setup.bash)

42

Running ROS2 onto Kubernetes

generated by the colcon building process. By doing so, the current terminal session
will be populated with the right environment variables and settings so that the
user is able to run the Discovery Server directly from the terminal itself.

5.2.3 Configuration Files
Since this is not the default discovery mechanism, all the applications that want
to take part in the network must be configured in such a way that forces
the underlying FastDDS to use the new client-server mechanism. A configu-
ration is needed for the Discovery Server as well, to set things such as the
IP address and port on which it will listen for metatraffic and its unique
identifier. In order to make the configuration an easier process and especially
not bound to hardcoded settings, FastDDS uses XML configuration files;
as soon as a FastDDS instance starts running, it will look in the running di-
rectory for a file called DEFAULT_FASTRTPS_PROFILES.xml, if there is no
such file it will try to use the file pointed to by the environment variable FAS-
TRTPS_DEFAULT_PROFILES_FILE, if any; in case neither of those two alter-
natives is a valid option, it will start with default settings.

In the following pieces of code, a configuration file for a Discovery Server and a
client will be shown and briefly explained.

The main fields in the Discovery Server configuration file are:

• Prefix: an unique ID used to identify the server in the network. Usually
FastDDS automatically provides those, but it is necessary to explicitly set it
in the case of the Discovery Server, since it has to be used into the clients
configuration files.

• Address: the IP address on which the server will listen to for incoming
metatraffic. It is set to 0.0.0.0 in order to make the server listen on all
interfaces.

• Port: the port onto which the will listen for incoming connections. The same
port has to be set into the clients configuration file.

• Discovery Protocol: set to SERVER. Tells the underlying FastDDS that
the application running on top of it will act as a Discovery Server

43

Running ROS2 onto Kubernetes

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <DS>
3 <servers>
4 <server prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f" persist="SERVER" profile_name="UDP

server" name="server">ñ→
5 <ListeningPorts>
6 <locator>
7 <udpv4>
8 <port>6000</port>
9 </udpv4>

10 </locator>
11 </ListeningPorts>
12 </server>
13 </servers>
14 <profiles>
15 <participant profile_name="UDP server">
16 <rtps>
17 <prefix>
18 4D.49.47.55.45.4c.5f.42.41.52.52.4f
19 </prefix>
20 <builtin>
21 <discovery_config>
22 <discoveryProtocol>SERVER</discoveryProtocol>
23 </discovery_config>
24 <metatrafficUnicastLocatorList>
25 <locator>
26 <udpv4>
27 <address>0.0.0.0</address>
28 <port>6000</port>
29 </udpv4>
30 </locator>
31 </metatrafficUnicastLocatorList>
32 </builtin>
33 </rtps>
34 </participant>
35 </profiles>
36 </DS>

Figure 5.2: Configuration File for a UDP Discovery Server

When it comes to clients, the most notable fields in the configuration file are:

• Prefix: the unique ID of the Discovery Server that the client will have to
contact to exchange metatraffic.

• Address: actual IP address of the Discovery Server. That is where the
metatraffic has to be sent to.

• Port: the port onto which the client has to contact the Discovery Server.

• Discovery Protocol: set to CLIENT. Tells the underlying FastDDS that
the application running on top of it will act as a client.

44

Running ROS2 onto Kubernetes

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <profiles>
3 <participant profile_name="UDP client" is_default_profile="true" name="client">
4 <rtps>
5 <builtin>
6 <discovery_config>
7 <discoveryProtocol>CLIENT</discoveryProtocol>
8 <discoveryServersList>
9 <RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">

10 <metatrafficUnicastLocatorList>
11 <locator>
12 <udpv4>
13 <address>10.109.90.228</address>
14 <port>6000</port>
15 </udpv4>
16 </locator>
17 </metatrafficUnicastLocatorList>
18 </RemoteServer>
19 </discoveryServersList>
20 </discovery_config>
21 </builtin>
22 </rtps>
23 </participant>
24 </profiles>

Figure 5.3: Configuration File for a UDP Client

5.3 Discovery Server Test Demo
The next step was to integrate this discovery mechanism into Kubernetes
and test if it behaved properly. In order to do so, the Discovery Server had
to run inside the same Kubernetes Cluster as the ROS2 application; a Docker
image of it has been built, by simply creating a Dockerfile that, starting from
a Ubuntu Docker image, installs FastDDS and builds the Discovery Server as
described previously. As discussed above, every FastDDS application which has
to use the Discovery Server mechanism needs a configuration file; passing a file
to a Kubernetes pod is easily done by means of a Configmap and by combining
that with the previously mentioned FASTRTPS_DEFAULT_PROFILES_FILE
environment variable, ROS2 nodes running inside a Kubernetes Pod can access the
needed configuration file and thus use the new discovery mechanism.

The actual test has been conducted by using an already existing ROS2 demo
deployment, the dummy robot. It consists of four different ROS2 nodes, initially
designed to be deployed onto the same machine:

• dummy_map_server: it constantly publishes an empty map with a peri-
odic update

45

Running ROS2 onto Kubernetes

• dummy_laser: continuously publishes fake laser scans.

• dummy_joint_state: publishes fake joint state data.

• robot_state_publisher: after parsing a URDF (Universal Robot Def-
inition Format; used to describe a robot and its components in an XML fash-
ion) file, it listens to the incoming joint states published by the dummy_joint_state
node. It elaborates them and publishes transforms data for the example robot
that can be visualized by means of Rviz, a GUI ROS2 topic visualizer.

The first thing I did was creating a separate Docker image for each one of these
nodes, in order to be able to run them separately into the Kubernetes cluster; after
that the Discovery Server was deployed, along with a Kubernetes Service to expose
it, in order to have a static IP to which the other nodes can send traffic to (the
same IP which has to be inserted in the address field of the client configuration
file). At this point, all the other nodes can be started. As anticpated, by means
of a Rviz instance, a GUI topic visualizer tool that comes installed with ROS2,
running inside a Pod in the same cluster (which is also hosting a noVNC session,
to provide a graphic environment to a Pod), all the published topics can be
visualized exactly as showed by the original dummy robot demo deployment guide,
thus meaning that the discovery server works as planned. Two failure scenarios
have also been tested:

• Failure of the Discovery Server Pod: if the Discovery Server should for
any reasons crash, its Pod will automatically be deleted and recreated
by Kubernetes. This does not lead to any discovery problem, since, after an
initial transition period, all the discovery data will be obtained again thanks
to heartbeat messages sent by clients to the server.

• Failure of one or more clients: if one or more client nodes should fail, the
server will remove their entries after a short period of time. As soon as the
failed Pods are recreated, the discovery phase will be repeated making
the nodes effectively part of the network again.

In figures 5.4 and 5.5, an overlook on how a Discovery Server based ROS2 system
topology is seen from both the point of view of ROS and Kubernetes.

It is fundamental to pay attention to some things:

• Kubernetes treats all the Pods (shortened as KP in the image) in the same
way, no matter whether they are running a Discovery Server, or a client.

• The only data exchanged between the clients and the Discovery Server is the
discovery metatraffic. User traffic is exchanged directly among nodes.

46

Running ROS2 onto Kubernetes

• It is not important on which node Kubernetes schedules the Pods, since
Kubernetes assures that every Pod in the same cluster is always able to
directly contact others.

Figure 5.4: Topology from Kubernetes POV

Figure 5.5: Topology from ROS2 POV

Now a ROS2 system is completely compatible with any Kubernetes cluster
independently of what CNI is running onto it.

In figures 5.6 and 5.7, we can respectively see what is the impact on CPU and
memory usage of plain Kubernetes (in particular a K3s cluster, where K3s is
a very lightweight version of Kubernetes, designed specifically to be used in low
resources environments), plain ROS2 (running up to a 32 nodes system) and ROS2
on Kubernetes (up to 32 ROS2 nodes, plus the discovery server). The tests have
been executed on a Intel i7-7700HQ CPU (quad-core at 2.8GHz base frequency
boostable at 3.8GHz, hyperthreading enabled) with 16GB of RAM, running plain,
GUI-less Ubuntu 20.04. It is clearly visible that the biggest impact on resource
usage (for both CPU and memory) has been caused by K3s, while ROS2, at least
when running two basic nodes, had an almost unnoticeable one. Considering the
specifications of a Raspberry Pi 3 B+ (the onboard computer of the Turtlebot3) it
is evident that the amount of necessary resources is huge, especially when it comes
to memory consuption, which already exceedes the 1GB available on the Raspberry

47

Running ROS2 onto Kubernetes

Figure 5.6: Impact on CPU

Figure 5.7: Impact on Memory

Pi 3 when only an empty K3s cluster is running. As expected, increasing the
number of running nodes increases the amount of requested resources: 32 nodes
require, in both cases (plain ROS2 and ROS2 on K3s), a huge amount of memory,
respectively 1.03GB and 2.09GB, which is definetely too much for a Raspberry Pi
3 to handle; the CPU average load is quite high as well, touching peaks of 6.2%
in the case of ROS2 working on top of K3s. Aside from the evident difference in
magnitude, we cannot see any big differences on the rate with which the resource
usage grows in ROS2 vanilla and in ROS2 on K3s.

48

Running ROS2 onto Kubernetes

The next step is analyzing different alternatives for forwarding the traffic to
specific destinations in Kubernetes; the next chapter will be focused on that.

49

Chapter 6

Traffic Routing in
Kubernetes

One of the objectives of this thesis is to allow the autonomous system to use a service
without having to care about what actual instance of it (either remote or
local) is actually using; it is therefore necessary to find a mechanism that allows
us to do. This mechanism has to be responsible of redirecting the incoming
traffic to the most appropriate service instance without the autonomous system
noticing any difference or having to modify the requests it is sending. In figure
6.1, an example system can be seen: traffic exiting the autonomous system will be
received and forwarded to the right service instance by an intermediate participant
which implements the routing mechanism. Since Kubernetes is responsible for the
actual network connectivity, the traffic routing feature has to be provided by either
a Kubernetes native functionality, or by a third party solution. Many possible
alternatives have been evaluated, and some of them have also been tested, not
always succesfully, because of either incompatibility with ROS2 (more precisely
with FastDDS), or just because they did not actually provide the required feature,
but only a similar one. In this chapter, all the considered ideas, as well as the one
that has eventually been chosen, are briefly introduced, giving an explanation on
how they work and their pro and cons.

6.1 Native Features
The alternatives that are now going to be presented are based on already tested
and working features offered by Kubernetes. Every single one of the solutions
presented in this section allows us to achieve the desired goal: redirecting the traffic
to specific destinations. All these options will now be introduced with their pros
and cons.

50

Traffic Routing in Kubernetes

Figure 6.1: Traffic Redirecting Mechanism

6.1.1 Kube-proxy Modification
This first possibility consists in manually modifying the Kubernetes source
code, in particular kube-proxy (the Kubernetes component responsible of main-
taining network rules on nodes), and adding the endpoint selection functionality
by ourselves and thus making it perfectly compatible with all our needs. While
this is the solution that allows the best performances, since the functionality
will be directly integrated in the source code, it is definetely the one that requires
the most work by the user, both the first time it is applied and in the long run.
Being this a custom addition to Kubernetes, it will not be carried over to new
Kubernetes versions when they are released; this either forces the user to keep
using a potentially outdated version of Kubernetes, which is not recommended
since every new Kubernetes version introduces new features, bug fixes and general
improvements, or to rewrite and re-add the feature at every update, which is quite
a time consuming task. In addition, given that in the majority of cases Kubernetes
users want to keep traffic in a local zone in order to reduce costs and improve
network performances, this modification, which aims at doing the exact opposite,
is very unlikely to be accepted as a KEP and successively added in future releases.

6.1.2 Service Selector
This option, which is the one that has eventually been chosen for the scope
of this work, relies on using Kubernetes Services and more specifically leverage
the Selector field in their specifications. Indeed, the Service specifications include
a Selector field which explicitly determines what Pods are going to be
exposed by it (the Pods to which the incoming traffic will be forwarded to); an
Endpoint resource is then created by kube-proxy to collect all the references to
the Pods that match the Selector. If that field is changed, the Endpoint resource
will be populated by the references to the Pods that match the new Selector and

51

Traffic Routing in Kubernetes

therefore the traffic will be redirected toward them. This solution not only does
not introduce overhead but it is also a native Kubernetes feature, very fast and
easy to implement. In order to apply this solution to our case, we need to create
a service which, in turn, exposes either our remote, or our local instance of the
service. We can do that by assigning to each one of these endpoints a different
label, the same label that has to be matched by the Selector the exposing Service.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 labels:
5 name: local-listener-service
6 name: local-listener-service
7 spec:
8 #Exposes all the Pods that have both "app" and "version" labels with those values
9 selector:

10 app: listener
11 version: local

Figure 6.2: Definition of a Service with a Selector

6.1.3 Network Policy
A Network Policy is a construct by which Kubernetes allows network traffic at IP
address or port level to be controlled. They behave as whitelists, allowing
to specify what ingress or egress traffic the selected Pod should be able to receive
and send. By default a Pod is non isolated, meaning that it is allowed to receive
and send traffic to whichever destination it wants; as soon as a Network Policy
is applied to it, it becomes isolated. Allowed traffic destinations and sources
can either be single endpoints identified by their IP address, whole namespaces
identified by labels or a Pod/set of Pods also identified by labels. A universal
selector is also available; it can be used to allow all the ingress and/or the egress
traffic no matter what the source/destination is. If this universal selector is applied
to both ingress and egress traffic, the behavior will be the same as Pods without
Network Policies. In figure 6.3, we can see the definition of a Network Policy
which regulates the traffic for the Pods with label name and value local-pod. This
Network Policy will influence both ingress and egress traffic, allowing all egress
traffic, and only the ingress traffic coming from Pods with label name with value
discovery-server.

In order to use this feature, it is important to remember how ROS2 nodes
communicate with each other: each node can publish data on a topic and one or
more nodes can subscribe to that and receive the data. Keeping that in mind, if

52

Traffic Routing in Kubernetes

1 apiVersion: networking.k8s.io/v1
2 kind: NetworkPolicy
3 metadata:
4 name: allow-local
5 spec:
6 podSelector:
7 matchLabels:
8 name: local-pod
9 policyTypes:

10 - Ingress
11 - Egress
12 ingress:
13 - from:
14 - podSelector:
15 matchLabels:
16 name: discovery-server
17 ports:
18 egress:
19 - {}

Figure 6.3: Definition of a Network Policy

the ingress and egress traffic for a specific ROS2 node is blocked (allowing only the
discovery traffic, since it is important that other nodes are aware of its existance),
traffic will be received and elaborated only by the non-blocked node and
this is basically the same as explicitly selecting a specific destination. In our case,
this translates in allowing the endpoint that generates the traffic to send it to both
remote and local instances at the same time; by means of a Network Policy, ingress
traffic of the local instance will be blocked when the remote service is reachable,
and allowed when it is not. The only traffic that will be always allowed to every
endpoint is the discovery traffic, in order to allow a quicker switch since we will
not have to wait for the discovery to happen. While this solution works, does not
introduce any overhead and is easy to implement, it is not advisable to block all
the traffic for a specific Pod, since there is always the risk of mistakenly blocking
necessary traffic. Also, it is important to notice that the source endpoint will send
twice as much traffic: the source is not aware of the applied Network Policy, thus
it will try to communicate with both the endpoints at the same time.

6.1.4 Manually Created Endpoints
This solution is based on the use of Services defined without selectors. While for
standard Services Kubernetes automatically takes care of creating and populating
an Endpoint resource with all the references to the exposed Pods, the same does
not happen for Services without selectors. Since the selector field does not exist,

53

Traffic Routing in Kubernetes

Kubernetes does not know how to populate the Endpoint resource and therefore
leaves the task of creating and populating it to the user. By modifying the Pods to
which the Endpoint resource refers to, it is possible to decide to what destinations
the Service should forward traffic to. This option achieves the same results as
the Service Selector solution introduced above (manually creating Endpoint
resources gives the user more freedom, but that is not needed for the scope of this
thesis), but it introduces more work on the developer side, that is why the
other solution was preferred to this.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: my-service
5 spec:
6 ports:
7 - protocol: TCP
8 port: 80
9 targetPort: 9376

Figure 6.4: Service Without
Selectors

1 apiVersion: v1
2 kind: Endpoints
3 metadata:
4 name: my-service
5 subsets:
6 - addresses:
7 - ip: 192.0.2.42
8 ports:
9 - port: 9376

Figure 6.5: Definition of an
Endpoint Resource

6.2 Kubernetes Enhancement Proposals
All these ideas are Kubernetes Enhancement Proposals (often referred to
as KEPs) that aim at providing Kubernetes with a way of doing traffic routing
based on the topology of the cluster. They all take advantage of the concept
of Kubernetes Service; this Service will expose a set of Pods of which we want
to choose the most appropriate at every instant. By default, Kubernetes Service
select a Pod in a round robin fashion; the solutions that are going to be introduced
in this section all work by altering this behavior. To apply this solutions to our
case, it was simply necessary to expose both the remote and the local Pods with
a Kubernetes Service and set in its specifications the right fields defined by each
of these alternatives. This topology-based traffic routing feature right now is not
available in plain Kubernetes and it corresponds exactly to what was needed: a
means by which telling Kubernetes what is our preferred traffic destination based
on the node location in the cluster, in this case a remote node, or a local one.
Being them, as a matter of fact, only enhancement proposals, they were either
still not available in a standard Kubernetes installation, or needed to be enabled
(disabled by default, because in alpha state) by means of Kubernetes Feature Gates,

54

Traffic Routing in Kubernetes

key-value pairs that allow the user to enable or disable Kubernetes features. The
considered KEPs are, in particular, Service Topology (KEP 536), Topology Aware
Subsetting (KEP 2004), Service Internal Traffic Policy (KEP 2086), and will be
introduced in the following subsections. Before doing so, though, it is needed to
introduce three other Kubernetes features that are used by the KEPs mentioned
above in order to have a better understanding of them:

• Standard Topology Labels: defined in KEP 1659 [16], those labels (topol-
ogy.kubernetes.io/region and topology.kubernetes.io/zone) allow to define two
possible topology groups in a cluster: regions and zones. A zone is a subset of
a region, a region can contain multiple zones and each zone can have multiple
nodes. The already existing label kubernetes.io/hostname, used to identify a
precise node, has been proposed to be integrated in this KEP by changing its
name to “topology.kubernetes.io/node”.

Figure 6.6: Zones and Regions

• EndpointSlices: released in Kubernetes v1.17 as beta feature, they offer a
more scalable and fast alternative to standard Endpoint resources.
Traditionally, when a Service is deployed an Endpoint resource is automatically
created by Kubernetes in order to keep track of all the Pods that are exposed
through that service. When the number of exposed Pods becomes very large,
though, the respective Endpoint resource does so as well, introducing a lot of
network and processing overhead when it has to be modified by either
adding or removing Pods. EndpointSlices have been designed especially to
avoid that: they behave in the exact same way as standard Enpoints do, but
they have a customizable limit of Pods they can manage: if the number of
Pods grows larget than that value, another EndpointSlice is created in order
to keep track of newcoming Pods.

• EndpointSlices Subsetting: defined in KEP 2030 [17] and possibly released
as an alpha feature in Kubernetes v1.21 (the current version is 1.20). Two labels

55

Traffic Routing in Kubernetes

(endpointslice.Kubernetes.io/forZone and endpointslice.Kubernetes.io/forRegion)
are introduced by means of which the user will be allowed to subset an End-
pointSlice resource based on the zone and the region the endpoints (i.e. backend
Pods, not Endpoint resource) belong to. This gives the possibility of routing
traffic to specific zones/regions.

6.2.1 Service Topology (KEP 536)
A newly introduced field in the Service specifications called topologyKeys allows
the user, by means of the previously mentioned Standard Topology Labels along
with the kubernetes.io/hostname label, to decide where incoming traffic should
be preferably forwarded to. More than one of those labels can be inserted in the
topologyKeys field and will be evaluated in the same order as they are written in
service definition; therefore, it is important, in order to have a proper behavior,
to write them in order of specificity, starting from the less specific label. A
universal selector (‘*’) is also available; it matches with every Pod, without
caring about topology and is usually written in the last position to be used as a
fallback in case the previous labels did not match with any Pods. It is important
to notice that, in case the universal selector is not specified, if no Pod is found that
matches the defined labels, the traffic will be dropped. Under the hood, Service
Topology works by comparing the values of the specified labels of both the node
from which the traffic is coming from and the nodes to which the Pods exposed by
the Service belong to; the first of those nodes that matches, will be selected.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: my-service
5 spec:
6 selector:
7 app: my-app
8 ports:
9 - protocol: TCP

10 port: 80
11 targetPort: 9376
12 topologyKeys:
13 - "kubernetes.io/hostname"
14 - "topology.kubernetes.io/zone"
15 - "topology.kubernetes.io/region"
16 - "*"

Figure 6.7: Example Service Using TopologyKeys

There has been a proposition to introduce the use of custom labels in future

56

Traffic Routing in Kubernetes

versions of this KEP (which is exactly what was needed for this particular use-case,
considering that the remote destination is to be preferred over the local one), but
that will not see the light of the day since this feature will be dismissed as of
Kubernetes v1.20 and replaced by the combination of the two KEPs that will be
presented in the next subsections. The decision to dismiss the Service Topology
feature has been made for sake of simplicity; the user had to do too much work in
order to obtain a behavior which is, in the majority of cases, the only one really
needed: keeping traffic as close as possible to the source in order to reduce
costs of traffic traversing different zones.

6.2.2 Service Internal Traffic Policy (KEP 2086)
This feature will be made available in Kubernetes v1.21 as an alpha feature. It
introduces a new field called internalTrafficPolicy [18] in Service specifications,
with three possible different values:

• Cluster: the Service will behave exactly as if no internalTrafficPolicy value
was defined, forwarding traffic to the first available Pod. If Topology Aware
Subsetting (more on this in the next subsection) is configured, it will fallback
to that.

• PreferLocal: the Service will try to keep the traffic into the local node; if
no Pod is available in it, it will fallback to the Cluster behavior.

• Local: very similar to PreferLocal, but in this case, if no available Pod is
found, traffic will be dropped.

This KEP works by comparing the value of the label kubernetes.io/hostname of the
node traffic is originating from and the nodes to which the available Pods belong to.
The similarities with the previously presented Service Topology are quite evident,
but in this case the user will not have to worry about selecting the right topology
labels and putting them in the right order, it will just have to specify the wanted
behavior.

6.2.3 Topology Aware Subsetting (KEP 2004)
This KEP [19] is thought as of a hint for the EndpointSlice controller; by
setting the value of endpointslice.kubernetes.io/subsetting to Auto, the controller
will try to keep all the traffic in the local zone (as for the other KEPs, it does so
by comparing nodes’ labels) as long as it has a sufficient number of endpoint (as
in network endpoints, Pods). If there are not enough endpoints, traffic will be
routed to other zones as well. This proposal bases its whole logic upon two main
assumptions:

57

Traffic Routing in Kubernetes

• Incoming traffic is directly proportional to the number of allocatable CPU
cores in that zone. If the number of CPU cores is not retrievable, it will
fallback to the number of available nodes.

• Service capacity is proportional to the number of endpoints in a zone,
assuming that every endpoint has the same computational power as the
others.

This solution works by splitting EndpointSlices into EndpointSlice Groups
(subsets of an EndpointSlice resource), which are only consumed by one zone and
receive traffic only from that zone. The expected number of Pods belonging to
each group is calculated by doing total_endpoint × nodes_in_zone/total_nodes.
Each Group is filled as much as possible by following this algorithm:

1. Iterate through all the existing zones filling each Group with the correspondant
local Pods. By the end of this part a 7situation like the one depicted in figure
6.4 will be reached.

2. If the current zone has enough endpoints to achieve a traffic load below the
overload threshold (maximum traffic overload for each endpoint, by default
is 50%), it will be put into a endpoints_available pool. On the contrary, if the
current zone has not enough endpoints, it will be put into a endpoints_required
pool. Both pool are implemented as priority lists, in which the zone with
most extra endpoints (or with the most insufficient number of them) will be
put first.

3. Iterate through both pools; endpoints are removed from zones belonging to
the first pool and assigned to zones in the second one. It is important to
notice that endpoints are not actually moved from one zone to another,
but they are just logically assigned to another EndpointSlice Group and
therefore will from now on receive traffic and serve requests only from the
zone to which the Group belongs to. If the zone from which the endpoint
has been taken from has still enough endpoints to achieve overload below the
threshold, it will be put again in the endpoints_available pool; the same goes
for the receiving zone in case it still has not enough endpoints. This will go
on until either one of the two pools is empty. In figure 6.5 it can be seen
what would happen if a zone (in this case, Zone C) had not enough endpoints
to acheve a traffic load below the maximum overload threshold, and a zone
(in particular Zone A) had more than enough endpoints to achieve that same
goal; at this particular point of the algorithm, a Pod in Zone A would be
logically moved into the EndpointSlice Group of Zone C, so that it could be
used by the receiving zone in order to decrease the traffic overload.

58

Traffic Routing in Kubernetes

4. If the available pool is empty and the required one is not, the behavior will
fallback to a random approach, delivering traffic to endpoints without caring
about topology.

5. Otherwise, iterate through the available pool again assigning endpoints to
zone which have a number of endpoints less than the expected one. This will
be repeated until either the available pool is empty, or every zone has at least
the expected number of endpoints.

Figure 6.8: A Three Zones Cluster After the First Step of the Algorithm

Figure 6.9: A Three Zones Cluster After the Conclusion of the Algorithm

It has been tested that applying this algorithm with too few endpoints leads
to a high probabilty of having an imbalaced traffic load and EndpointSlice
churn (endpoints migrating too frequently from a Group to another), that is
why Topology Aware Subsetting will start functioning only when the number of
endpoints is greater than a starting threshold plus a padding. By default
the starting threshold is set to three times the number of zones, but it can be
customized; the padding is used in order to defer the mechanism change in
case of too frequent endpoints addition or removal (e.g, the number of endpoints is
exactly the threshold value, an endpoint is added and then removed; withouth a
padding, Topology Aware Subsetting would start and stop in a very short time).

59

Traffic Routing in Kubernetes

In conclusion, the three alternatives that have just been introduced had to be
discarded, not only because they were going to be discontinued (KEP 536), or not
ready for testing, but mainly because, while they aim at providing the possibility
of doing traffic routing based on the topology of the cluster, those solutions main
goal is to keep traffic as close to its source as possible, in other words they try to
keep traffic into a local zone and this is exactly the opposite of what is needed
for the goals of this thesis.

6.3 Service Mesh Based Solutions
The concept of Service Mesh initially appeared when microservices became more
popular: microservices belonging to the same application were often developed in
different languages, and this introduced problems when it came to service discovery
and communication. Service Meshes take care of solving those problems.

Services Meshes are responsible for managing the network traffic between service
by means of proxies called sidecars that are deployed alongside each service; they
are generally used to make communication between services safe and reliable.
These proxies operate at Layer 7 of the OSI network stack, meaning that they can
use information contained into HTTP headers or other application level metadata.
The service mesh pattern focuses mainly on handling the traffic that is generated
and that travels inside a data center (or a Kubernetes cluster). Aside from offering
reliability features, Service Meshes are often used in testing environments and when
particular update rollout patterns are followed.

A Service Mesh is generally constituted by two components:

• Data Plane: lightweight proxies distributed as sidecars; in the case of
Kubernetes, they are processes that run side by side with applications inside
each Pod.

• Control Plane: provides the configuration for the proxies, issues TLS cer-
tificates and contains policy managers.

There are many different option when it comes to choosing a Service Mesh
implementation, but two of the most popular ones (and also the ones that have been
considered in this work) are Istio and Linkerd. Each one of them offers more or
less the same set of basic functionalities, but if more complex functionalities are
needed the user must be ready to do some work in order to set them up properly.

Both the considered Service Mesh alternatives offer a very similar solution that
allows a Service to split the incoming traffic (by means of weights defined into
its specification) between two or more different istances of the Pods it exposes (e.g.,
a canary release, which consists in the gradual redirection of a portion of the traffic
toward a new version of a certain service, while the rest of it is still forwarded

60

Traffic Routing in Kubernetes

toward the previous working version of it. This avoids, in case of problems in
the updated version, a complete outage of the service): the concept of Virtual
Service for Istio and the Traffic Split on Linkerd.

6.3.1 Linkerd
The solution proposed by Linkerd [20] is, as mentioned above, called Traffic Split.
Each set of Pods we want to split traffic among has to be exposed by a Service (e.g.,
a Service exposing remote Pods and a Service exposing local Pods); all these Services
must in turn be exposed by a TrafficSplit resource, a Linkerd custom resource.
This, by means of a weight value assigned to each one of the exposed Services,
will split traffic among them and consequentely among the Pods exposed by
those. By properly setting weights, we can easily decide to send all the traffic
toward a specific Service. In order to take advantage of this feature, though, the
Pods must contact the TrafficSplit resource and not the exposed services. Moreover,
it needs to be contacted by means of its domain name and not by directly using
its IP address.

1 apiVersion: split.smi-spec.io/v1alpha1
2 kind: TrafficSplit
3 metadata:
4 name: traffic-split
5 namespace: web-app
6 spec:
7 service: web-server
8 backends:
9 - service: web-server-v1

10 weight: 100
11 - service: web-server-v2
12 weight: 0

Figure 6.10: TrafficSplit Example

6.3.2 Istio
The option proposed by Istio [21] is called Virtual Service. A VirtualService
is a custom resource belonging to the Istio system and it allows to expose two
or more sets of Pods, splitting traffic among them using a user-defined weight,
very much likely Linkerd does; the difference here is that using Istio there is no
need of exposing those sets of Pods with Kubernetes Services because
they can be directly referenced by the VirtualService itself. Same as for Istio, the
VirtualService must be referred to by using its domain name.

61

Traffic Routing in Kubernetes

1 apiVersion: networking.istio.io/v1alpha3
2 kind: VirtualService
3 metadata:
4 name: virtual-service
5 spec:
6 hosts:
7 - web-server
8 http:
9 route:

10 - destination:
11 host: web-server
12 subset: v1
13 weight: 50
14 - destination:
15 host: web-server
16 subset: v2
17 weight: 50

Figure 6.11: VirtualService Example

6.3.3 Solutions Evaluation

Both solutions, while in principle they can do exactly what it is needed, cannot
be used in this particular case because neither the TrafficSplit nor the Virtu-
alService can be addressed by ROS2 by using their domain name since FastDDS
cannot be made to contact a destination identified by its domain name,
but only by using its IP address. Also these two solutions are, compared to all the
others mentioned so far, the only ones which introduce an additional overhead
since they are not part of basic Kubernetes and therefore add an additional layer
on top of the standard architecture (the traffic directed to each Pod must now
also traverse a proxy before being actually received by the actual destination).
A basic performance comparison has been conducted by running a simple
test application not based on ROS using a plain Kubernetes cluster, a cluster
with Linkerd installed and one with Istio installed; in table 6.1 the results of this
comparison are presented.

It is important to notice that performances have been evaluated on a much
more powerful machine than a Single Board Computer like the one used on-board
of a Turtlebot, for which the increased resource usage could be more relevant. It
can be noticed how the memory usage increases of more or less the same amount
in both Linkerd and Istio cases, while the CPU usage is higher when Linkerd is
used, and stays very similar to the plain Kubernetes with Istio. The latency has
been measured from a Pod to another in the same local (that is why the measured
latencies are very small) cluster exposed by the Traffic Split feature; if we take
in consideration the already strict time constraints introduced in chapter 4, this

62

Traffic Routing in Kubernetes

latency, while not greatly increased, could still present a problem for the system.

Cluster Type CPU Usage Memory Usage (MiB) Latency (min/avg/max)
Plain Kubernetes 28% 872 0.034/0.055/0.130ms

Linkerd 33% 1363 0.034/0.074/0.183ms
Istio 29% 1378 0.045/0.078/0.232ms

Table 6.1: Perfomance Comparison

6.4 Conclusions
As anticipated, the selected alternative is the one based on the use of Service
Selectors, since it is the simplest and easiest to implement working solution which,
not only does not introduce any computational overhead, but it has been a core
feature of Kubernetes since early versions, so by now it is has been thoroughly
tested in a wide variety of cases and it is guaranteed to keep existing even in future
Kubernetes versions.

Some tests have been conducted to evaluate the performance of this switching
mechanism. Both TCP and UDP connections have been tested, by deploying into
Kubernetes a simple client-server system (both TCP and UDP versions have
been written in Go), where the client sends a packet once every 1ms toward a
Kubernetes Service the exposes at every instant only one of the two servers available,
based on its Selector. Inside the packets sent by the client there is a packet number
field, that will be printed by the server in order to check whether there was packet
loss or not. At every packet sent (the client) and at every packet received (the
server) a timestamp will be printed as well, to evaluate the behavior of the system
when a switching occurs.

The TCP system, as expected, does not work very well with this mechanism
since in this case the client and the server instaurate a stateful connection. What
happens is that when the switching occurs, the client keeps sending traffic to
the server it did the handshake with, thus it will not be influenced by the
switching. In order to make it change destination, it is necessary to kill the client
Pod and wait for Kubernetes create another one. As soon as the new Pod is up
and running, it will perform the handshake with the new destination exposed by
the Service and will start communicate.

On the other hand, the UDP system works as predicted with the client
sending the traffic to the actual destination exposed by the Kubernetes Service,
being UDP is a stateless protocol. There is no packet loss when migrating from
one server to another and the switching happens in less than a millisecond (the

63

Traffic Routing in Kubernetes

client sends one packet every millisecond and the last packet received by the initial
server is the one that immediately precedes the first packet received by the final
server).

The last thing that is needed in order to achieve all the goals of this thesis is a
way to monitor the network status and switch to the most appropriate
Service instance (at this point, this just means changing the Service selector)
consequently. This will be done by means of Kubernetes operator deployed into
the cluster. More on that, along with the description of the final demo, in the next
chapter.

64

Chapter 7

Network Status Monitoring

The last step towards the goal of this thesis is to define a way of monitoring the
status of the network the autonomous system is connected to in order to be
able to select the most appropriate instance of the service that has to be used: if
the quality of the network is good enough, the remote instance will be preferred
and used by the vehicle, while, if the quality is deemed not to be good enough
or if the network connectivity is dropped completely, the local instance will be
contacted. The component responsible of doing so, is also responsible of interacting
with the Kubernetes cluster (by means of the Kubernetes API) since it has to
change the Selector field of the Kubernetes Service exposing our local or remote
Pods (the switching mechanism has been explained in the previous chapter) based
on the quality of the network connectivity. This chapter is focused on explaining
how this component works and will also introduce and describe the demo that has
been prepared to demonstrate the final results achieved by this thesis.

7.1 Kubernetes Operator Pattern
A Kubernetes Operator is a software extensions to Kubernetes used to manage
applications and their components. It follows the Kubernetes principles, in par-
ticular the Control Loop, an infinite loop that keeps track of the status of the
Kubernetes cluster and, as soon as the state is no longer equal to the one defined
or requested by the user, it will make the necessary changes in order to make it so.
In a single cluster there can be multiple controllers that implement that logic,
each of them responsible of keeping track of at least one Kubernetes resource. A
controller can either carry out the needed actions by itself or, as it happens in most
of the cases, by interacting with the Kubernetes API server (the Kubernetes
component responsible of elaborating incoming Kubernetes API requests).

Since the developer knows how the system should behave in standard conditions

65

Network Status Monitoring

and how it should respond in case of problems, he can write an Operator in order
to automatically take care of the tasks that it normally should manually take
care of, beyond what plain Kubernetes offers.

An Operator is, at the end of the day, simply a program, so in principle it
could be written in any existing programming language, even though it is
preferable to use one which offers a good Kubernetes client library and is simple to
containerize and run into a Kubernetes cluster.

The go-to choice for most operators is Go language [22]; Kubernetes itself is
written in Go so this guarantees a very smooth interaction between it and the
operator. In order for a Go program to interact with a Kubernetes cluster, it needs
to use the client-go library.

Figure 7.1: The Operator Pattern

7.1.1 The Network Operator
As it can be noticed in figure 7.1, usually an operator works by keeping track of
the status of a Custom Resource Definition (CRD) and, as soon as a change arises,
it starts trying to adjust the observed cluster status in order to make it converge as
the user desires it to be. That is not the case of the operator written for this thesis.
This operator does not monitor a Kubernetes resource, but it monitors the status
of the network which is completely unrelated to the cluster and something that
no Kubernetes feature natively allows. The algorithm behind the operator is quite
a simple one, given that the goal of this work was not developing a refined, precise
and cutting-edge network monitoring application; it is based on the usage of the
Linux command line tool iwconfig (an example output of which can be seen in
figure 7.2), in particular on the values of the fields Link Quality and Signal Level.
Now, an explanation of the algorithm:

1. An infinite cycle starts and once every second the iwconfig [23] command is

66

Network Status Monitoring

executed.

2. The Link Quality and Signal Level values are parsed. If an error during parsing
arises, that means that iwconfig has not returned the right values. That could
happen in two cases: there is no WiFi network card onboard (this can be
excluded since we now beforehand that the system has one available), or the
WiFi network card is not connected to any network.

3. If the network card has completely lost connection to the network, the operator
will immediately switch to the local instance of the service the vehicle is using.

4. If, on the other hand, the values have been successfully parsed, the algorithm
takes them in consideration: if either one of them is below a certain thresh-
old, the operator will switch to the local service. As soon as both of them are
above the same threshold, it will switch back to the remote one.

5. An hysteresis time has been introduced to avoid too frequent instance
switching in case the above-mentioned values are oscillating near the threshold.
A switch cannot happen if another one happened too recently.

1 wlan0 IEEE 802.11bgn ESSID:"NETGEAR64"
2 Mode:Managed Frequency:2.452GHz Access Point: C0:FF:D4:91:49:DF
3 Bit Rate=57.8 Mb/s Tx-Power=20dBm
4 Retry long limit:7 RTS thr:off Fragment thr:off
5 Power Management:on
6 Link Quality:47/70 Signal Level=-63dBm
7 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
8 Tx excessive retries:0 Invalid misc:8 Missed beacon:0

Figure 7.2: An Example Output of the iwconfig Tool

Both the hysteresis time and the name of the interface the tool has to run onto
can be defined by means of environmental variables into the description file of the
Deployment. In order to use this operator, it is simply needed to containerize it and
write a definition for a Kubernetes Deployment that uses its Docker image. It is
important to notice that containers make use of virtual network interfaces, so,
without an explicit configuration, it will not be able to detect and interact with
the network cards belonging to the host machine. Kubernetes allows a container
running into a Pod to use the network namespace of the host by setting, into the
specifications file, the field hostNetwork to true. In this way, the Pod can access all

67

Network Status Monitoring

the network interfaces present on the host. In the specific case of our operator, it
can now execute iwconfig on the correct wireless interface.

7.2 Demo
In order to present in a more practical way the achievements of this thesis, a demo
has been designed. It has been created by keeping in mind a realistic service that an
autonomous vehicle may actually use: object detection. The object detection has
been performed by YOLO (acronym for You Only Look Once), an object detection
algorithm written and designed by Joseph Redmon and Ali Farhadi that works on
top of the Darknet neural network (designed and developed by Joseph Redmon).
Since the demo has not been run on a robotic device, but on home PCs, we needed
a way to simulate a camera feed for the object detection algorithm to work on
and a way to watch the results of that elaboration. On top of that, for it to
work properly, a Discovery Server was necessary, in order to allow ROS2 to execute
the node discovery. Aside from the actual working components of the demo, it is
important to notice that in a realistic scenario the local instance of the service and
the remote one may not, and most probably they will not, belong to the same
Kubernetes cluster. Plain Kubernetes does not offer a way of doing service
discovery among different cluster, especially if we consider that the remote
cluster may not be fully under our control, but belonging to the owners of the data
center it is run into. Given all of that has just been said, a way of merging two
different clusters and making them behave as if they were a single one was needed;
this, in the Kubernetes world, is called Cluster Federation. Federated clusters share
pieces of their configuration, which is then usually managed by a cluster called
host cluster. Any resource configured to take advantage of the federation, will treat
all the member clusters like if they were a single distributed cluster. A common
use-case for Federation is when an application has to be scaled across multiple data
centers, which is very similar to our goals. Different alternatives exist to enable
cluster federation, like:

• Kubefed: standing for Kubernetes Cluster Federation [24], is a Kubernetes
feature, currently alpha, that provides the necessary mechanisms to allow
the federation of multiple clusters. It is implemented as an extension of
the Kubernetes API which basically redefines all the standard Kubernetes
resources that will now be Federated objects (e.g., FederatedDeployment) and
defines some now federation-specific objects. The main drawbacks are: the
federated clusters do not exchange information among themselves, thus they
are not aware of the federation; any modification applied directly to one of
those clusters, is not propagated to the others, therefore creating a divergence;
also, this approach builds a federated ecosystem on top of a non-federated one:

68

Network Status Monitoring

it not only re-implements a lot of the already existing features to adapt them
to a federated system, but it also creates new kinds of objects not compatible
with a standard cluster.

• Submariner: a third-party solution [25] to achieve federation between multi-
ple clusters at L3 via encrypted VPN tunnels. It addresses the problematics
presented in the previous alternative: this approach does not require the
definition of a new API, it just relies on some new Custom Resource Defini-
tions that store the metadata necessary to enable the communication among
clusters. Submariner successfully manages to transparently share Pods and
Services amoung different clusters, thus making it preferable to Kubefed. This
alternative really emphasizes the importance of information sharing among
clusters, but it may encounter some scalability problems when the amount of
shared resources increases; it is therefore important to keep local objects into
the local cluster as much as possible.

• Liqo: a framework developed at the Politecnico of Torino. It allows to
seamlessly federate multiple clusters. It works in a similar way to Submariner,
but, to my experience, has proven way easier to deploy, especially for clusters
belonging to the same LAN and that is the main reason why it ended up being
chosen for this thesis. More about it will be told in a later section.

Before delving into a deeper explanation on the topology of the demo and its
components, a brief introduction will be given about YOLO and Liqo, being them
fundamental technologies for the scope of this thesis and, especially Liqo, for the
scope of a real application.

7.2.1 YOLO
YOLO (You Only Look Once) [26] is a state-of-the-art, real-time object detection
system. It is very accurate and fast, designed to be built and run using the CUDA
(Compute Unified Device Architecture) API on top of CUDA enabled Nvidia graphic
cards. It offers the possibility of being built and run on top of a CPU instead of
a GPU as well, at the price of significantly worse performances (e.g., running
it on a Pascal Titan X GPU makes it work at 30FPS with a mean Average Precision
of 57.9% on a COCO dataset, while running it with the same configuration on a
i7-7700HQ CPU, while the mAP remains the same, it reduces the perfomances to
~4 FPS).

YOLO works in a different way from previous detection systems: to do the
detection, they divide the image in multiple pieces and apply to each one of them
the detection model; zones with high scores are considered detections. YOLO, on
the other hand, applies a single neural network to the whole image; the neural

69

Network Status Monitoring

Figure 7.3: Comparison of YOLO and Other Detection Systems

network will divide the image into smaller regions and do the detection. This
brings advantages such as the fact that, since the neural network is fed the whole
image and not just a subsection of it at a time, the predictions are informed by
the global context in the image, and that the prediction is made with a single
network evaluation, instead of what happens with other systems that require
thousands evaluations for a single-image. A brief performance comparison
between YOLO and other object detection systems can be seen in figure 7.3 [26].

By default, YOLO will do the detection on single images and save the results in
image files for the user to use. Needless to say, this is not suitable for a real-time
application. In order to make YOLO show the results in real-time and correctly
take as input the feed of a camera, it is needed to compile the underlying Darknet
using OpenCV, an open source library mainly aimed at real-time computer vision
(on the YOLO website it is recommended to compile it using CUDA as well, because
of the performance issues mentioned above). For the scope of this work, YOLO
has been used with a very lightweight configuration file (based on the Pascal
Visual Object Classes dataset), in order to counterweight it being executed on a
CPU instead of a GPU, and thus improve performance.

7.2.2 Liqo
As mentioned above, we can imagine as a realistic situation that the local and
remote instance of the service do not run in the same Kubernetes cluster, since
the remote one will run in a data center that will likely not belong to us, thus
we cannot simply add that machine to our cluster as a node. It is therefore
needed a way that allows us to logically treat those two cluster like a single

70

Network Status Monitoring

entity, without them actually being so. Liqo [27], a framework developed at the
Politecnico of Torino, allows us to seamlessly and securely share resources
and services among any cluster on which Liqo is installed. It aims at extending
the Pod-to-Pod and Pod-to-Service communication (guaranteed by Kubernetes
when it comes to resources belonging to the same cluster) to multiple clusters.
It allows Pods belonging to different clusters to communicate without the need
of a NAT (exactly like it happens in a traditional Kubernetes system). In case
there is some overlapping between Pods and Services CIDRs (the IP pools of
Pods and Service) of two peering clusters, Liqo will use a NAT to automatically
take care of that. Liqo can be installed and used no matter what Kubernetes
distribution or CNI it has been adopted. Also, Liqo does not require the user to
do any modification to the cluster in order for it to be installed and work. This
makes it especially suitable for cases like the one of this thesis. Liqo enables the
user to run tasks on any connected cluster, without it having to behave differently
from what it is accustomed to do in a standard Kubernetes environment.

Figure 7.4: Impact on CPU Figure 7.5: Impact on Memory

From the user perspective, a connected cluster will appear as a node belonging
to its cluster, while, as a matter of fact, it is not. This local virtual node pretends
to have available resources (the resources of the whole remote cluster it represents)
and to actually handling all the Pods that are scheduled onto it, but it actually acts
as a proxy toward the remote cluster. In figures 7.4 and 7.5, we can see what is the
impact of Liqo on CPU and memory usage when it is used to federate two clusters
deployed in the same LAN. The test have been conducted on an Intel i7-7700HQ
CPU with 16GB of available RAM. While not as big as K3s, it can be seen how Liqo
has quite an important impact both on CPU and on memory usage. It is clear then
that some optimizations are needed in order to make it suitable for mobile systems
with limited available resources, such as a Turtlebot. When the Liqo enabled
clusters are deployed into the same LAN, Liqo will automatically discover them
and make their resources available for all the others to use. If, on the other hand,
they do not belong to the same local network, the user will have to manually create
and apply a ForeignCluster custom resource, which defines how Liqo is supposed
to reach the remote cluster. An example of such a defintion is shown in figure 7.6.

71

Network Status Monitoring

Advertisement messages are sent periodically among connected clusters to keep
updated the information about the available resources.

1 apiVersion: discovery.liqo.io/v1alpha1
2 kind: ForeignCluster
3 metadata:
4 name: remote-cluster
5 spec:
6 join: true
7 authUrl: https://liqo-auth.9b0ea54d4b59499e9331.switzerlandnorth.aksapp.io:443

Figure 7.6: A ForeignCluster Resource Example

7.2.3 Topology and Components
Going back to the demo, it is now going to be explained how it works and what are
the parts that it is composed of. As it can be seen by figure 7.7, there are not a lot
of components and the topology is quite simple, but it still needs some explanation
in order to understand how it works. Let us start by examining each single part:

• Image Publisher: it is the ROS2 node responsible of simulating the camera
feed. It receives as input a video file that will be successively published onto
the ROS2 topic image_raw.

• Image Viewer: it is the ROS2 node responsible of visualizing the images
elaborated by the object detection node. It listens to the ROS2 topic detec-
tion_image published by the YOLO nodes. Alongside it, runs an instance
of noVNC in order to allow us to have a graphical user interface, necessary
for the Image Viewer node to properly work and for us to actually see the
detection results.

• YOLO Local: ROS2 node deployed into the local cluster, responsible of
doing object detection. It subscribes to the image_raw topic and publishes the
results onto the detection_image one. It runs on a ROS2 porting of YOLOv3.
It is a less sofisticate and performant instance of YOLO, suitable for system
with limited resources.

• YOLO Remote: it works exactly as its local version, but, as the name sug-
gests, it is deployed onto the remote cluster. A more complex and performant
version of YOLO that leverages the huge amount of resources offered by the
data center.

72

Network Status Monitoring

Figure 7.7: Demo Topology

As figure 7.7 shows, the demo is deployed onto two clusters, one local, acting
as the autonomous vehicle, and one remote, acting as the data center. Thanks
to Liqo, we are able to make these two cluster behave as if they were one, and
thus deploying the remote instance of YOLO into the remote node. Even though
it is not explicitly shown in the figure, a Discovery Server is present in order to
guarantee that ROS2 is able to properly execute the node discovery.

The data flow is structured as follow:

1. The Image Publisher starts transmitting a video file toward the Kubernetes
Service named YOLO_service.

2. YOLO_service will take care of forwarding the traffic to the actual destination,
defined at each moment by its Selector field.

3. Only one between YOLO Remote and YOLO Local will receive the image feed
and therefore execute the detection. Only the YOLO node that has actually
done the object recognition will publish the data on the relative topic.

4. The Image Viewer will receive the traffic from the YOLO instance that
performed the actual work and it will show the results.

It is, after all, a quite simple data flow, but, in order for it to work, it was
necessary to apply some preliminary configuration to the ROS2 nodes, in
particular to the underlying FastDDS implementation. By default, each ROS2 node
announces itself to the Discovery Server (or to other nodes, in case the traditional
multicast discovery is used) using its own IP address. This, though, would

73

Network Status Monitoring

destroy, not only the demo, but the traffic routing itself, since the data coming
from the Image Publisher would be sent towards the actual Pods instead of the
Kubernetes Service that exposes them and does the traffic routing. FastDDS can be
configured to overcome such an obstacle: by means of the same XML configuration
file used in order to make ROS2 work with a Discovery Server, the user can define
with which IP address each participant should announce itself with. In this
case, we make both YOLO nodes announce themselves with the IP address of the
YOLO service, in this way, when the Image Publisher sends data, it will be sent
toward the service, therefore achieving the desired behavior. As introduced earlier
in this chapter, the automatic switching based on the network status is taken care
of by an Operator; it is not explicitly shown in figure 7.7, but it must be deployed
into the local cluster since it has to run the iwconfig tool on the wireless interface
of the autonomous system.

In figure 7.8, an example detection performed by a complete YOLO version
(not the lightweight one) using the COCO dataset. The quality of the detection
changes as intended, based on the status of the network connectivity: by moving
the device away and closer to the network (and even completely disconnetting
it from the network), it can be seen how the device never stops elaborating
the data feed, but just automatically uses the most appropriate YOLO instance
(immediately noticeable by looking at the labels of the detections).

Figure 7.8: Example YOLO Detection

74

Chapter 8

Conclusions and Future
Work

The topic of autonomous vehicles currently is one of the most discussed ones,
with big companies such as Google, Amazon and Tesla participating in the race for
the development of a fully autonomous system.

Such systems must, at every moment, deal with an enormous amount of
data coming from a variety of sensors; this data has to be elaborated in a very
short amount of time, since otherwise it will no longer be meaningful for the
vehicle. This requires a huge computational effort that might be best offloaded
to a data centers at the edge of the network, or in the cloud. With the advent
of the 5G technology, which grants an enormous bandwidth to mobile devices,
this possibility has become more and more reachable.

This thesis main goal has been developing a network layer responsible of
virtualizing an autonomous system and providing it with a way of offloading the
computational effort on a remote machine by taking in consideration, at each
moment, the status of the network connectivity. In particular, this objective has
been achieved by means of a combination of ROS2, responsible for simulating a
robotic platform (the easiest way of approximating a real autonomous vehicle), and
Kubernetes, leader in the field of containerized applications orchestration.

The idea of offloading to the edge/cloud of the network has been already treated
in many other works (see Related Works subsection in chapter 1), but almost none
of those does so by taking advantage of containers and container orchestrators,
that is why this work focuses on this new approach. Another motivation has been the
idea of integrating the autonomous system world, in this particular case the
ROS2 ecosystem, into the concept of Kubernetes everywhere, in which Kubernetes
behaves similarly to an operating system, allowing a variety of applications of
different nature to be deployed into the same environment and seamlessly

75

Conclusions and Future Work

communicate with each other.
The solution is based on the concept of Kubernetes Service: by means of a

Selector, it exposes all the Pods that have a label matching its value. If the Selector
changes, the set of network endpoints changes. In this case, we imagined creating
a set of Pods representing the local instance of the services needed by the vehicle,
and a set of Pods representing the remote ones. An operator is then responsible for
keeping track of the network status, by means of the iwconfig tool: by parsing
and evaluating its output, it will automatically change the value of the Selector
to expose either the remote or local instances.

The proposed solution proved to be working, offering a switching time of
the order of the millisecond, but it is limited only to the UDP world, since it is a
stateless communication protocol. TCP introduces the necessity of sharing the
state of the connection between the local and remote instances; without doing
so, the system does not behave as desired and no switching happens, in the worst
case leaving the vehicle without the possibility of analyzing the incoming data.

Another outcome of this work has been the difficult coexistence of ROS2 and
Kubernetes, mainly when it comes to ROS2 discovery system. It has been possible
to make them cooperate by using a Discovery Server which forces the underlying
DDS to make use of unicast traffic, instead of the standard multicast one (not
compatible with most Kubernetes network implementations). In this way, though,
the improvements introduced by a distributed discovery mechanism are lost.

When it comes to performance, the data collected when running a K3s cluster
(a very lightweight version of Kubernetes) and a very simple ROS2 system shows
that they add quite an significant overhead, especially in terms of memory
consumption (K3s and ROS2 together require more than 1GB of RAM), thus, while
they still might be suitable for modern and more performant mobile devices (e.g.,
a Raspberry Pi 4 B), they definetely are not for a platform such as the Turtlebot3.

Future work may be focused on:

• Improving the Network Monitoring Algorithm: the current algorithm
is very simple, since it was not the main focus of this work. More precise
and refined approaches could be considered, even a very lightweight machine
learning based solution.

• TCP Compatibility: as of now, the switching mechanism does not behave
properly when TCP is used. Adding TCP compatibility might be useful to
make the solution usable in more situations.

• ROS2 Alternative: as explained, ROS2 is not a very good choice when it
comes to integrating it into Kubernetes. It might be useful to search for an
alternative to ROS2 and apply this solution to it.

76

Bibliography

[1] T. -K. Le, U. Salim, and F. Kaltenberger. «An Overview of Physical Layer
Design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15,
16, and 17». In: IEEE Access 9 (2021), pp. 433–444. doi: 10.1109/ACCESS.
2020.3046773 (cit. on p. 2).

[2] E. Coronado, G. Cebrian-Marquez, and R. Riggio. «Enabling Computation
Offloading for Autonomous and Assisted Driving in 5G Networks». In: 2019
IEEE Global Communications Conference (GLOBECOM). 2019, pp. 1–6. doi:
10.1109/GLOBECOM38437.2019.9013490 (cit. on p. 3).

[3] R. Soua, I. Turcanu, F. Adamsky, D. Führer, and T. Engel. «Multi-Access
Edge Computing for Vehicular Networks: A Position Paper». In: 2018 IEEE
Globecom Workshops (GC Wkshps). 2018, pp. 1–6. doi: 10.1109/GLOCOMW.
2018.8644392 (cit. on p. 3).

[4] K. Gilly, A. Mishev, S. Filiposka, and S. Alcaraz. «Offloading Edge Vehic-
ular Services in Realistic Urban Environments». In: IEEE Access 8 (2020),
pp. 11491–11502. doi: 10.1109/ACCESS.2020.2965258 (cit. on p. 3).

[5] L. Li, H. Zhou, S. X. Xiong, J. Yang, and Y. Mao. «Compound Model of Task
Arrivals and Load-Aware Offloading for Vehicular Mobile Edge Computing
Networks». In: IEEE Access 7 (2019), pp. 26631–26640. doi: 10.1109/ACCESS.
2019.2901280 (cit. on p. 3).

[6] Christian Berger, Bjornborg Nguyen, and Ola Benderius. «Containerized
Development and Microservices for Self-Driving Vehicles: Experiences & Best
Practices». In: Apr. 2017, pp. 7–12. doi: 10.1109/ICSAW.2017.56 (cit. on
p. 3).

[7] Y. Wang and Q. Bao. «Adapting a Container Infrastructure for Autonomous
Vehicle Development». In: 2020 10th Annual Computing and Communication
Workshop and Conference (CCWC). 2020, pp. 0182–0187. doi: 10.1109/
CCWC47524.2020.9031129 (cit. on p. 3).

[8] Kubernetes Documentation. url: https://kubernetes.io/docs/home/
(cit. on p. 4).

77

https://doi.org/10.1109/ACCESS.2020.3046773
https://doi.org/10.1109/ACCESS.2020.3046773
https://doi.org/10.1109/GLOBECOM38437.2019.9013490
https://doi.org/10.1109/GLOCOMW.2018.8644392
https://doi.org/10.1109/GLOCOMW.2018.8644392
https://doi.org/10.1109/ACCESS.2020.2965258
https://doi.org/10.1109/ACCESS.2019.2901280
https://doi.org/10.1109/ACCESS.2019.2901280
https://doi.org/10.1109/ICSAW.2017.56
https://doi.org/10.1109/CCWC47524.2020.9031129
https://doi.org/10.1109/CCWC47524.2020.9031129
https://kubernetes.io/docs/home/

BIBLIOGRAPHY

[9] Kim McMahon. 2019 CNCF Survey. Blog Post. 2020. url: https://www.
cncf.io/blog/2020/03/04/2019- cncf- survey- results- are- here-
deployments- are- growing- in- size- and- speed- as- cloud- native-
adoption-becomes-mainstream/ (cit. on p. 5).

[10] Raft Consensus Algorithm. url: https://raft.github.io/ (cit. on p. 9).
[11] Kubernetes API Doc. url: https://kubernetes.io/docs/reference/

(cit. on p. 13).
[12] Calico Documentation. url: https://docs.projectcalico.org/about/

about-calico (cit. on p. 18).
[13] ROS2 Documentation. url: https://docs.ros.org/en/foxy/index.html

(cit. on p. 25).
[14] FastDDS Repository. url: https://github.com/eProsima/Fast-DDS (cit.

on p. 41).
[15] Discovery Server Repository. url: https://github.com/eProsima/Discov

ery-Server (cit. on p. 42).
[16] Topology Labels. url: https://github.com/kubernetes/enhancements/t

ree/master/keps/sig-architecture/1659-standard-topology-labels
(cit. on p. 55).

[17] Endpoint Slice Subsetting. url: https : / / github . com / kubernetes / en
hancements / tree / master / keps / sig - network / 2030 - endpointslice -
subsetting (cit. on p. 55).

[18] Service Internal Traffic Policy. url: https://github.com/kubernetes/en
hancements/tree/master/keps/sig-network/2086-service-internal-
traffic-policy (cit. on p. 57).

[19] Topology Aware Subsetting. url: https://github.com/kubernetes/en
hancements/tree/master/keps/sig- network/2004- topology- aware-
subsetting (cit. on p. 57).

[20] Linkerd Doc. url: https://linkerd.io/2.10/overview/ (cit. on p. 61).
[21] Istio Docs. url: https://istio.io/latest/docs/ (cit. on p. 61).
[22] Go Docs. url: https://golang.org/doc/ (cit. on p. 66).
[23] iwconfig manual. url: https://linux.die.net/man/8/iwconfig (cit. on

p. 66).
[24] KubeFed Repository. url: https://github.com/kubernetes-sigs/kubefed

(cit. on p. 68).
[25] Submariner Docs. url: https://submariner.io/ (cit. on p. 69).

78

https://www.cncf.io/blog/2020/03/04/2019-cncf-survey-results-are-here-deployments-are-growing-in-size-and-speed-as-cloud-native-adoption-becomes-mainstream/
https://www.cncf.io/blog/2020/03/04/2019-cncf-survey-results-are-here-deployments-are-growing-in-size-and-speed-as-cloud-native-adoption-becomes-mainstream/
https://www.cncf.io/blog/2020/03/04/2019-cncf-survey-results-are-here-deployments-are-growing-in-size-and-speed-as-cloud-native-adoption-becomes-mainstream/
https://www.cncf.io/blog/2020/03/04/2019-cncf-survey-results-are-here-deployments-are-growing-in-size-and-speed-as-cloud-native-adoption-becomes-mainstream/
https://raft.github.io/
https://kubernetes.io/docs/reference/
https://docs.projectcalico.org/about/about-calico
https://docs.projectcalico.org/about/about-calico
https://docs.ros.org/en/foxy/index.html
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Discovery-Server
https://github.com/eProsima/Discovery-Server
https://github.com/kubernetes/enhancements/tree/master/keps/sig-architecture/1659-standard-topology-labels
https://github.com/kubernetes/enhancements/tree/master/keps/sig-architecture/1659-standard-topology-labels
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2030-endpointslice-subsetting
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2030-endpointslice-subsetting
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2030-endpointslice-subsetting
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2086-service-internal-traffic-policy
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2086-service-internal-traffic-policy
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2086-service-internal-traffic-policy
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2004-topology-aware-subsetting
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2004-topology-aware-subsetting
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2004-topology-aware-subsetting
https://linkerd.io/2.10/overview/
https://istio.io/latest/docs/
https://golang.org/doc/
https://linux.die.net/man/8/iwconfig
https://github.com/kubernetes-sigs/kubefed
https://submariner.io/

BIBLIOGRAPHY

[26] Joseph Redmon and Ali Farhadi. «YOLOv3: An Incremental Improvement».
In: arXiv (2018) (cit. on pp. 69, 70).

[27] Liqo Docs. url: https://doc.liqo.io/ (cit. on p. 71).

79

https://doc.liqo.io/

	Introduction
	Related Work
	Structure

	Kubernetes
	Kubernetes History
	Containers
	Containerize An Application
	Kubernetes Features
	Kubernetes Components
	Control Plane Components
	Worker Node Components
	Addons

	Kubernetes Objects
	Namespaces
	Labels and Selectors
	Annotations
	Pods
	ReplicaSet
	Deployments
	DaemonSet
	Services
	Configmaps

	Networking
	Calico

	ROS
	ROS History
	ROS Working Principles
	Nodes
	Messages
	Topics
	Services
	Actions

	ROS1 and ROS2

	Initial Investigation and Requirements Analysis
	Turtlebot
	LiDAR
	Depth Camera
	Specifications and Constraints Analysis
	Camera Specifications
	Latency Constraints

	Running ROS2 onto Kubernetes
	Containerizing ROS2
	ROS2 Discovery Problem
	FastDDS
	Discovery Server
	Configuration Files

	Discovery Server Test Demo

	Traffic Routing in Kubernetes
	Native Features
	Kube-proxy Modification
	Service Selector
	Network Policy
	Manually Created Endpoints

	Kubernetes Enhancement Proposals
	Service Topology (KEP 536)
	Service Internal Traffic Policy (KEP 2086)
	Topology Aware Subsetting (KEP 2004)

	Service Mesh Based Solutions
	Linkerd
	Istio
	Solutions Evaluation

	Conclusions

	Network Status Monitoring
	Kubernetes Operator Pattern
	The Network Operator

	Demo
	YOLO
	Liqo
	Topology and Components

	Conclusions and Future Work

