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Abstract 
Nowadays machine learning (ML) is a field of study that is applied in numerous fields 

of application: Image classification, Identity fraud detection, Market forecasting, 

Customer segmentation and others. Another interesting field of study for ML is 

Video Game. In a virtual environment we can train an Artificial Intelligence (AI) and 

not script it with thousands of lines of code. A ML-AI could be a Non Player 

Character that interact with a human player in a friendly or hostile way. It could be 

an agent that learn how to perform a task in a single player game. The idea of this 

dissertation is to create a virtual environment with three different AIs trained with a 

different approach: Reinforcement Learning, Imitation Learning and Curriculum 

Learning. These agents are trained to compete against a human player in a racing 

game. 

  



5 
 

Contents 
Acknowledgements ........................................................................................................................................... 3 

Abstract ............................................................................................................................................................. 4 

List of figures ..................................................................................................................................................... 7 

1 Intro ................................................................................................................................................................ 8 

1.1 Purpose of the research .............................................................................................................................. 8 

1.2 What is Machine Learning ........................................................................................................................... 9 

1.3 The reasons of Machine Learning ............................................................................................................. 10 

1.4 How Machine Learning Uses Data ............................................................................................................. 10 

1.5 Types of Machine Learning ........................................................................................................................ 11 

2 Theoretical Background ................................................................................................................................ 12 

2.1 Reinforcement Learning ............................................................................................................................ 12 

2.1.1 Sparse Reward ........................................................................................................................................ 13 

2.1.2 Dense Reward ......................................................................................................................................... 13 

2.2 Imitation Learning ..................................................................................................................................... 14 

2.3 Curriculum Learning .................................................................................................................................. 19 

3 Methodology ................................................................................................................................................ 22 

3.1 Software and Libraries Used ...................................................................................................................... 22 

3.2 The Game Scenario: Machicar (Machine Learning Car) ............................................................................ 23 

3.2.1 Level Design ............................................................................................................................................ 24 

3.2.2 Obstacles ................................................................................................................................................ 29 

3.2.3 Player Control ......................................................................................................................................... 30 

3.2.4 Neural Network For AI ............................................................................................................................ 30 

3.2.5 The Policy Update, Policy Gradient Method And PPO ........................................................................... 33 

3.2.6 The Agent Training and Implementation ............................................................................................... 36 

3.3 The Learning Methods ............................................................................................................................... 46 

3.3.1 Reinforcement Learning Implemented .................................................................................................. 47 

3.3.2 Imitation Learning Implemented ............................................................................................................ 48 

3.3.3 Curriculum Learning implemented ......................................................................................................... 53 

4 Tests .............................................................................................................................................................. 57 

4.1 Metric 1: Lap time ..................................................................................................................................... 59 

4.2 Metric 2: percentage of lap at full throttle, medium throttle and low throttle ........................................ 59 

4.3 Metric 3: number of crashes ..................................................................................................................... 60 

5 Conclusions ................................................................................................................................................... 76 

6 Bibliography .................................................................................................................................................. 78 

 



6 
 

 

  



7 
 

List of figures 
FIGURE 1: MACHINE LEARNING .......................................................................................................................................... 9 
FIGURE 2: THREE TYPES OF ML WITH SUBSECTION .......................................................................................................... 11 
FIGURE 3: THE REINFORCEMENT LEARNING CYCLE .......................................................................................................... 12 
FIGURE 4: MACHINE LEARNING SOCCER .......................................................................................................................... 17 
FIGURE 5: MACHICAR ....................................................................................................................................................... 18 
FIGURE 6: TRACK 1 ............................................................................................................................................................ 24 
FIGURE 7: TRACK 2 ............................................................................................................................................................ 24 
FIGURE 8: TRACK 3 ............................................................................................................................................................ 25 
FIGURE 9: THE TRACK PARTS ............................................................................................................................................ 25 
FIGURE 10: SEVEN RANDOM GENERATED TRACKS .......................................................................................................... 26 
FIGURE 11: VORONOI DIAGRAM ...................................................................................................................................... 26 
FIGURE 12: THE GENERATED SPLINE ................................................................................................................................ 27 
FIGURE 13: VERTICES AT THE SIDE .................................................................................................................................... 27 
FIGURE 14: UV COORDINATES GENERATED ..................................................................................................................... 29 
FIGURE 15: 4 DIFFERENT OBSTACLES ............................................................................................................................... 29 
FIGURE 16: CAR'S NEURAL NETWORK .............................................................................................................................. 30 
FIGURE 17: THE RAYCASTS AROUND THE CAR ................................................................................................................. 31 
FIGURE 18: DECISION REQUESTER .................................................................................................................................... 36 
FIGURE 19: CAR MOVEMENT SCRIPT ................................................................................................................................ 41 
FIGURE 20: CAR AGENT SCRIPT......................................................................................................................................... 42 
FIGURE 21: CAR NEURAL NETWORK SCRIPT ..................................................................................................................... 43 
FIGURE 22: COMMAND PROMPT TRAINING COMMAND ................................................................................................. 46 
FIGURE 23: RL CAR ............................................................................................................................................................ 47 
FIGURE 24: RL TRAINING GRAPHS .................................................................................................................................... 47 
FIGURE 25: IL CAR ............................................................................................................................................................. 48 
FIGURE 26: GAIL DISCRIMINATOR SCHEME ...................................................................................................................... 50 
FIGURE 27: DEMONSTRATION RECORDER ....................................................................................................................... 50 
FIGURE 28: IL TRAINING GRAPHS ..................................................................................................................................... 52 
FIGURE 29: CL CAR ............................................................................................................................................................ 53 
FIGURE 30: CL TRAINING GRAPHS .................................................................................................................................... 56 
FIGURE 31: SCENARIO 1 .................................................................................................................................................... 58 
FIGURE 32: SCENARIO 2 .................................................................................................................................................... 58 
FIGURE 33: SCENARIO 3 .................................................................................................................................................... 58 
FIGURE 34: TRACK1 ........................................................................................................................................................... 61 
FIGURE 35: TRACK2 ........................................................................................................................................................... 66 
FIGURE 36: TRACK3 ........................................................................................................................................................... 71 

 

  

file:///C:/Users/dignu/Desktop/NEW%20-%20Thesis%20-%20A%20comparison%20of%20Different%20Machine%20Learning%20Techniques%20to%20Develop%20the%20AI%20of%20a%20Virtual%20Racing%20Game.docx%23_Toc63336006
file:///C:/Users/dignu/Desktop/NEW%20-%20Thesis%20-%20A%20comparison%20of%20Different%20Machine%20Learning%20Techniques%20to%20Develop%20the%20AI%20of%20a%20Virtual%20Racing%20Game.docx%23_Toc63336015
file:///C:/Users/dignu/Desktop/NEW%20-%20Thesis%20-%20A%20comparison%20of%20Different%20Machine%20Learning%20Techniques%20to%20Develop%20the%20AI%20of%20a%20Virtual%20Racing%20Game.docx%23_Toc63336017


8 
 

1 Intro 

1.1 Purpose of the research 
The goal of this project was to develop virtual environment where 3 different AIs 

compete with a player to win a car race. The AIs were trained with a particular ML 

technique: Reinforcement Learning (RL), Curriculum Learning(CL) and Imitation 

Learning(IL). The three elements were later compared to choose the best learning 

technique for this task. Previous work has been made on this subject. 

Amira Youseef et al used IL and RL combined to create a shooting game where AI 

agent has more human-like behavior[1] . Kun Shao et al used a particular version of 

Curriculum Transfer Learning (a different version of CL) to train multiple units in 

StarCraft micro-management[2]. ShuQin Li et al train a reinforcement learning agent 

to play Surakarta, a particular chess-like board game[3]. My idea was not to combine 

or develop a single learning technique but create an environment with 3 different 

ML agents and a player where they race all against each other. The purpose was to 

master the learning approaches and show how Machine Learning can create 

interesting challenge for a human player in the field of gaming. Moreover I wanted 

to bring some innovations and hints for future development of the library unity ml 

agents. This is one of the tools I used in the creation of this project, it is an 

interesting library in continuous and fast development. 

 

 

 

 

 



9 
 

1.2 What is Machine Learning 

 

Figure 1: Machine Learning 

Machine Learning (ML) is a very popular technique of future prediction or 

information classification. It can help a lot of people in the process of decision 

making. The algorithm of ML are trained over batches of examples. With this the 

build their own experience database and data history. The agent of ML are trained 

again and again over the examples and in this way they can identify patterns in data 

and they can make predictions for the future.  

With the help of ML, humans can create intelligent systems that are able of taking 

decisions autonomously. 

Machine Learning is a combine different science field: mathematics, statistics and 

computer science. Math helps us for developing machine learning models; statistics 

draws inferences from data and computer science deals with the implementation of 

algorithms. 

Building a model and implementing is not enough, we must tune the model in a 

proper way to have accurate results. To reach an optimum we tune something 

called hyperparameters. 
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1.3 The reasons of Machine Learning 

The world today is evolving and changing fast and so are the needs of people. 

Moreover, we are living a fourth industrial revolution of data. In order to get 

meaningful information from data and learn how people interface with them we 

need algorithms that can select them and give us a result that benefit us. Machine 

Learning has changed dramatically several industries like medicine, healthcare, 

manufacturing, banking and so on. It has become an indispensable part of modern 

industry. 

The computation power, in this scenario Machine Learning has added a new 

dimension in our perception of information. Machine Learning is around us every 

day: apps, phones, IoT devices we use on a daily basis are enhanced by Machine 

Learning. 

For example, Google can autocomplete your research while you are writing on the 

keyboard, this feature is based on your browsing habits. Spotify operates in a similar 

way: it is capable perform predictions based on your listen history and 

recommending the music and the podcast that you would want to listen. In this way 

you can easily discover music and website close to your interest but it will be hard to 

find a brand new artist or website far from your bubble. 

Moreover, Machine Learning is taking over monotonous iterative tasks. This is 

possible thanks to the great amount of data that we generate everyday.  

 

 

1.4 How Machine Learning Uses Data 

With a massive increase in data, there is a need of a strong system to handle this 

load of information. Deep Learning for example can generate predictions with a 

massive amount of data. 
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Machine Learning algorithms find patterns in data to perform classification and 

future predictions. When a new input arrives in the model ML uses the pattern 

found before and try to perform a future prediction. We can optimize our models 

using various techniques like gradient descent or exhaustive search. In this way the 

model learns to adapt to new example and give us better results. 

 

 

1.5 Types of Machine Learning 
ML algorithms can be classified into 3 main types: 

-Supervised Learning 

-Unsupervised Learning 

-Reinforcement Learning 

 

Figure 2: Three types of ML with subsection 
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2 Theoretical Background 

2.1 Reinforcement Learning 
In this kind of learning an agent gather observation of the world, it interacts with 

these performing actions and it receives rewards (or reinforcements) that tell him 

how well (or bad) it is behaving. For example, in the game of chess rewards can be 0 

for losing, 1 for winning and 0.5 for draw. The goal of reinforcement learning (RL) is 

maximizing the sum of rewards. The reward function may be unknown to the agent. 

You can try to picture yourself playing a game where nobody explain you the rules. 

You continue to make moves and at a certain point the referee yells that you have 

won (or lost). This is reinforcement learning.  

 

Figure 3: The reinforcement learning cycle  

 

When you design an AI, a good start is formalizing a reward function. This function is 

often short and easy to formalize. Take a racing game as example, we do not need 

some crazy and long code to make the agent understand if it has won, lost or crash.  

Another example could be the game of chess, it is not hard to define that if you do 

checkmate you win and if you receive it you lose. These two cases are example of 

Sparse Reward and an agent will have more difficulties learning process. A simpler 

scenario is Dense Reward.  
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2.1.1 Sparse Reward  
For the majority of the training process a sparse reward function rests 0, only in a 

few state/action transitions it has a positive or negative value. In the game of chess 

for example, it could be +1 for a winning game and -1 for a losing game. An RL agent 

in a sparse reward environment will receive almost no feedback, it will be hard to 

tell for him about the goodness of his actions. 

 

2.1.2 Dense Reward 
This kind of reward function gives a nonzero value to most of state/action transition, 

in this way, at every time step (almost) the agent gets feedback. If you think of chess 

again, a dense reward function could be +1 for every piece captured by the agent 

and -1 for every piece captured by the opponent. 

Learning in environments with dense rewards turns is less challenging than with 

sparse rewards. The reason of that is that the agent will often visit state/action 

transition that do not give any reward. Indeed, the most possible trajectories will 

have a zero reward. In this way the agent is obliged to explore a very large set of 

trajectories before learning a policy. 

An example of sparse reward experiment is the “Leveraging Demonstrations for 

Deep Reinforcement Learning on Robotics Problems with Sparse Rewards” of Mel 

Vecerik et al. Here we see one of the biggest companies of Machine Learning trying 

to solve a sparse reward problem: the insertion tasks, a mechanical arm has to 

insert a plug in a socket 

The researcher at Deepmind created an ad hoc sparse reward function which 

returned +10 if the plug was within a little distance to the goal. The reward r is 

defined like this: 
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𝑟 =

{
 
 

 
 0, ∑ 𝑊𝑔||𝑔𝑖 − 𝑥𝑖||2

𝑖 ∈𝑠𝑖𝑡𝑒𝑠

> 𝜖

10, ∑ 𝑊𝑔||𝑔𝑖 − 𝑥𝑖||2
𝑖 ∈𝑠𝑖𝑡𝑒𝑠

< 𝜖
 

where 𝑥𝑖 is the position 𝑖𝑡ℎ tip site on the plug 

𝑔𝑖 is the 𝑖𝑡ℎ goal site on the socket 

𝑊𝑔 contains weighting coefficients for the goal site error vector 

𝜖 is a proximity threshold 

If the robot put the plug in a position that is inside the threshold, the reward of +10 is 

given and the episode is terminated [5]  

 

 

2.2 Imitation Learning 

There are domains that are too complex to find the right definition of a reward 

function. If we think of a racing car in a circuit, how can we define the right behavior 

of this agent? It should arrive first defeating the other opponents, but it should also 

drive safe and not crash. It should not waste energy/fuel in moment where it is not 

requested. It should not make the passengers bouncing like a ball (if there is a 

passenger on board), but it must make an emergency brake if there is a dangerous 

situation ahead. The process of weighting the factors could be tricky. There is also 

an essential factor we have forgotten to mention: consider other opponents in the 

race. If we forgot a factor, the behavior will select a high weight for the omitted 

factor. This will happen because the behavior is trying to render the remaining 

factors at their max. 
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If we want to eliminate this issue, one technique is to do protracted testing in 

simulation, find what are the bad behaviors and adjust the reward function so that 

these are eliminated. Another way is to build a reward function based on other 

sources of data. One source is the agent itself, the other can be real human racers. 

The field of imitation learning has a focused: learn the right behavior observing an 

expert. We give to the agent a batch of expert examples and then we let it learn 

from them. The problem of imitation learning has two approaches. 

The first is Imitation Learning (IL) in his natural form. The agent takes state-action 

pairs and use supervised learning on them. The goal of this process is learning a 

policy π(s). There was some success in robotic with this approach, but some issues 

arose. Imitation learning has a superior limit: the teacher. It will never pass the 

teacher and his optimal policy 𝜋∗(s). When humans learn with imitation, we 

consider them apes to describe their behavior. In a similar way we can consider an 

ape agent because it use imitation learning. It does not understand the meaning of 

his actions. Furthermore if the training set has a small deviation this will bring a time 

increasing error. This could lead to major failure. 

A second and smarter approach is Inverse Reinforcement Learning (IRL). How it 

works? The agent observes the expert’s actions and try to understand and formulize 

an approximation of the reward function of the expert . After a reward function is 

obtained the agent will derive a policy. In this way we do not need thousands (or 

even millions) of examples from the expert behavior, the agent will obtain a robust 

policy also with a few examples. Moreover, if the learner understand that an expert 

could have a suboptimal behavior it could achieve better results than the expert 

because it is optimizing a reward function and not copying a behavior.  
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The main goal now is to find a reward function from the expert rewards. Our point 

of start could be a rational behavior of the expert. 

Here we have the first issue: a lot of rewards functions are like that. One simple 

example is 𝑅∗(𝑠, 𝑎, 𝑠′) = 0. Another issue is the hypothesis itself: taking an expert as 

rational is quite unrealistic. Let’s think about a robot that is learning chess. If it 

observes Magnus Carlsen making a losing move he would assume that Magnus 

wants to rationally lose. 

To overcome the problem of a reward function equal to zero we have to change our 

approach. Bayes would come in handy. Let D be the observed data, and  𝐻𝑅 be the 

hypothesis that R is the right reward function. The Bayes rules is something like 

𝑃(𝐻𝑅|𝐷) = 𝑃(𝐷|𝐻𝑅)𝑃(𝐻𝑅) 

𝑅 = 0 is a very good hypothesis if we consider the prior probability 𝑃(𝐻𝑅) 

simplicity-based (0 is simple).  

𝑃(𝐷|𝐻𝑅) is infinitesimal if 𝑅 = 0, because it does not explain the choose of the 

expert: why that particular behavior out of many?  

𝑃(𝐷|𝐻𝑅) will be much larger if R has one only 𝜋∗(s). 

We have not to consider the expert as perfect, he could make some sporadic faults. 

In this sense we allow 𝑃(𝐷|𝐻𝑅) ≠ 0 whatever is the value of D (Optimal, Suboptimal 

or Not-Optimal in reference to R).  

So we made the assumption that an agent chooses with a stochastic policy and not 

with a deterministic policy. This is not done because it represent in a better way 

human data, but because it allows us to use simpler mathematical methods. 

We can find numerous IRL algorithms like Feature Matching, Feature Matching with 

FLANN or Maximum Entropy IRL. 
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If an agent understand the expert’s actions it can use IRL to learn an optimal or 

suboptimal policy. Moreover if we have a multiagent environment agents can learn 

an good policy watching the other policies. This could happen in a cooperative or 

competitive environment. 

A competitive example could be the soccer machine learning: we want to teach to 

agents how to play soccer. We can give them a set of expert demonstrations, real 

humans playing the game, then we let them play against each other and they will 

learn from the expert actions and from the opponent. 

 

Figure 4: Machine Learning Soccer 

A cooperative example could be a car that has to learn to drive in a circuit. We give 

the agent a set of expert actions, real human racing, and then we let a number N>1 

of car running over the circuit. They will try to get an optimal policy from the 

expert’s action and they will help each other to choose the best policy out of the N 

car racing. 

 



18 
 

 

Figure 5: Machicar 

 

The core point in inverse reinforcement learning is that the expert behaves in an 

optimal or sub-optimal way. This is feasible if the expert does not know that he is 

been watched. The agent should observe the expert in live action from a hidden 

camera. This is not a rational situation if the expert knows that a learning agent is 

watching him.  

As an example, think about a robot in driving school that learns from a real human 

racer how to drive in traffic. The robot is using IRL algorithm and it assume that the 

teacher is behaving in an optimal way unaware of the agent. But that is not happen: 

the human racer wants the robot to learn driving methods and tricks in quick way 

and well enough, so he the human will modify his behavior noticeably. He might 

stress out the errors to avoid, like accelerating in curves or braking too much 

without changing gears. He might explain what to do in case of an emergency like a 
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crash with an obstacle, a fire or a car to car accident. He might drive too carefully or 

too fast. 

These behaviors are not useful and not right when driving alone so inverse RL 

algorithms will not be able to understand the right reward function. Meanwhile, we 

need the human to be unaware and the agent to make the right supposition about 

the expert, it is a cooperative game between machines and humans. 

 

2.3 Curriculum Learning 
Animals and humans can learn better and faster if the learning process is composed 

on examples with a crescent order of difficulties. This process is much better than 

examples presented at random. These training strategies can be transferred to 

neural networks and we can call them “curriculum learning”. 

In our western society we can say that functional member of the society needs 20 

years of training. The learning process is based on a well organized education 

system: there will be something like a curriculum with different notions at different 

times, exploiting previously learned notions to facilitate the process of solving new 

tasks. If we decide the examples and their order we can guide training and 

accelerate it exceptionally. 

Elman in 1993 propose the idea of a curriculum to train a machine in learning 

grammar. The key point is starting small, learn with  simple task or subtasks, and 

then gently increase the level of difficulty. Elman was using a recurrent network. 

With his experimental results, Elman showed that innate knowledge of grammar or 

a massive knowledge of rules is not the most important point in the process of 

learning correct grammar structures, indeed he presented a better approach: to 

start with a simpler architecture, restrained in complexity, and then enlarge it as the 

knowledge enlarges[6]. 
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At an abstract level, a curriculum is a sequence of different lessons. Each lesson of 

training is associate with a particular set of weights and training examples. In the 

beginning the weights favor simpler examples. The next lesson is associated will 

have different weights and examples with an increase of difficulty. In the end of the 

training the examples will be reweighted uniformly, in this way the last train can be 

performed on the target training set (or distribution).  

Formally, let ξ be a random variable, the learner will use ξ as an example.  

Let P(ξ) be the target training distribution, the learner should learn a function of 

interest from this distribution.  

Let 0 ≤ 𝑊𝛿(𝜉) ≤ 1 be the set of weights applied to ξ at step 𝛿 in the curriculum 

progression, with 0 ≤ 𝛿 ≤ 1 and 𝑊1(𝜉) = 1. The corresponding training distribution 

at step 𝛿 is 

𝑄𝛿(𝜉)  ∝  𝑊𝛿(𝜉)𝑃(𝜉)   ∀𝜉 

Such that ∫𝑄𝛿(𝑧)𝑑𝑧 = 1 Then we have 

𝑄1(𝜉) = 𝑃(𝜉) 

Now let 𝛿 increases as a monotonically sequence from 0 to 1 

We call the sequence of distribution 𝑄𝛿  a curriculum if we have an increase of the 

entropy. 

𝐻(𝑄𝛿) < 𝐻(𝑄𝛿+𝜖)   ∀𝜖 > 0 

And 𝑊𝛿(𝑧) is monotonically increasing in 𝛿, that is 

𝑊𝛿+𝜖(𝜉) > 𝑊𝛿(𝜉)   ∀𝜖, 𝜉 > 0 

To explain better this definition we can consider a simple setting where 𝑄𝛿  is 

focused on a limited set of examples and increasing 𝛿 implies including new 

examples into the set. The reinforce of 𝑄𝛿  increases with 𝛿 and the progression of 
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training distributions corresponds to a sequence of embedded training sets. It all 

starts with a little set (simpler example) and we continue until the end where we 

have the target of training set. We desire to see an increase of entropy with the 

increase of diversity of training examples. And we want the weights of  particular 

examples to increase as they get included in the training set[7]. 

A previous research on the effectiveness of Curriculum Learning was made by 

Zhipeng Ren et al. They compare three different algorithms to play 12 different Atari 

2600 games. The algorithm considered are Deep Q Network(DQN), Prioritized 

Experience Replay(PER) and Deep Curriculum Reinforcement Learning (DCRL). The 

research shows that DCRL outperform the other two algorithms[8] 
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3 Methodology 

3.1 Software and Libraries Used 
My goal was to implement in practice three different learning algorithm: 

Reinforcement, Imitation and Curriculum. In order to achieve this, I created a 3D 

racing game. In this game all the AI will have a different Neural Network trained with 

a different learning technique. The player will compete against this AI in a race. To 

implement and develop the game I used Unity Engine. 

Unity is a very powerful engine to develop videogame in 2D or 3D. It has a primary 

scripting API in C#. For 2D it allows the importation of sprites and an advanced 2D 

world renderer. For 3D games Unity can have texture compression, mipmaps and 

resolution settings for each platform that the game engine supports. It also provides 

supports for bump mapping, reflection mapping, parallax mapping, screen space 

ambient occlusion and shadow maps. Unity is used to develop almost 50 percent of 

the mobile games on the market and 60 percent of the augmented and virtual 

reality content. It can be used also in the development of movie, automotive, 

architecture, engineering and construction. 

To develop a machine learning game I had to use a machine learning library. Unity 

fitted my needs with its Unity ML-Agents 

Unity ML-agents is an open source library that enables games and simulations to 

serve as environment to training machine learning agents. The agent can be trained 

using reinforcement learning, imitation learning, curriculum learning or other ML 

methods through a Python API.  

The toolkit is composed of 5 different elements: A training Environment, a Python 

Low-Level API, the External Communicator, the Python trainer and the Gym 

Wrapper. The training environment is the scene where we built our own game. Here 

the agents observe and take actions. The Python Low-Level API is an external tool 
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that manipulates the machine learning brain during training. The external 

Communicator communicates with the Python API and the learning environment. 

The python trainer lives in the Python API and runs all the algorithms involved in 

training. 

To plot all the graphs about the performance of my Neural Net I used TensorFlow, an 

open source software library for dataflow and differentiable programming. It is a 

symbolic math library, and it can be used for machine learning application such as 

neural networks 

The combination of Unity, the unity ml agents library and the TensorFlow library is  

the toolkit I used to develop my game 

To test my AI and plot the metrics I used MATLAB software 

 

 

3.2 The Game Scenario: Machicar (Machine Learning Car) 
As mention before, the player will compete against different AI all trained with a 

machine learning approach. The objective of the game is to complete 3, 5 or 7 laps 

(decided by user) and to be the first between all the cars. The game has 3 tracks 

created by a human and 10 tracks randomly generated by an algorithm. Every track 

has walls on both sides of the street. In every track we have a few obstacles. If the 

car (player or AI) hit a wall or an obstacle a crash happens. 

Every track has a number of checkpoints alongside the road. Whenever the AI or the 

player crash they will restart from the last checkpoint passed. 

In the beginning of the track we have a Start Line. When the player or the AI passed 

the Start Line for the first time a timer starts. When the player or the AI passed the 

Start Line for the second time the timer is stopped and recorded, this will be the first 
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lap time of the car. In the end the timer is restarted, and it will record the second lap 

time. 

 

3.2.1 Level Design 
- The first track (designed by a human) is elliptical composed of four 90 degree 

turns. It has 11 checkpoints 

 

Figure 6: Track 1  

- The second track (designed by human) has more turns, and it is longer: six 90 

degrees turns, and a long 180 degree turns. It has 17 checkpoints 

 

Figure 7: Track 2 
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The third track (designed by human) is the most complicated, composed of ten 90 

degrees turn, one long 180 degree turn and two shorts 180 degree turn 

 

Figure 8: Track 3  

These first three tracks were assembled using 4 prefabs from the unity karting 

microgame free asset  

 

Figure 9: The track parts 
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-The other 7 tracks are generated using an algorithm developed by Ian Hudson[9] 

modified by me 

  

 

Figure 10: Seven random generated tracks 

The algorithm that randomly generate the track is composed by three steps.  

1) Create a Voronoi Diagram. It is a partitioning of a plane with n points into convex 

polygons such that each polygon contains exactly one generating point and every 

point in a given polygon is closer to its generating point than to any other 

 

Figure 11: Voronoi diagram  
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2) Create the spline that will be track. To do this the tool selects a random cell from 

the Voronoi diagram, then selects one of its edges. From the edge we select the cell 

that contains the edge. This process continues until a certain number of cells are 

chosen. After all the cells are chosen the tool gets the outer edge of all the selected 

cells. This gives us a spline. The tool applies a smooth to the spline. This will be the 

curve to build the track from.  

 

Figure 12: The generated spline  

3) The final step is to build the actual mesh of the track. This is achieved by adding 

vertices to both part of the spline. 

 

Figure 13: Vertices at the side  
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Here I changed the code of Ian Hudson. I got the oPoints (oriented points) of the 

spline. The oPoints are the one in the middle between the two red dots in the image 

above. They are oriented with the z axis tangent to the spline, the x axis 

perpendicular to the spline and the y axis perpendicular and pointing up. The z axis 

of the oPoint give us the track direction (clockwise). In the code I cycled through all 

the oPoints, at both side of each oPoints I instanciated a wall prefab. Every fifty 

oPoints I instaciated a checkpoint in the middle. At the first oPoint I instaciated the 

Starline. 

Below we can see a snippet of the code I insert in the SplineCreator.cs file 

 
//... 
//cycle through all the oPoints 
for (int i = 0; i < oPoints.Length; i++)  
{ 
    //at the first oPoints I instantiate the startLine 
    if (i == 0)  
    { 
        GameObject sl = Instantiate(_startLine, oPoints[i].Position, oPoints[i].Rotation); 
        sl.transform.Rotate(0, 90, 0); 
    } 
 
 
 //every 150 oPoints I instatiate a checkPoint 
    if((i % 150) == 0) {   
        if(i!= 0) {  
            GameObject checki = Instantiate(_checkPoint, oPoints[i].Position, 
oPoints[i].Rotation); 
            checki.transform.Rotate(0, 90, 0); 
        } 
    } 
 
 
 //I cycle through the two points at the side of the oPoint 
    for (int j = 0; j<pTwoDShape.Vertices.Count; j++)   
    { 
        Vector3 fwd = oPoints[i].Rotation * Vector3.forward; 
        Vector3 pos = oPoints[i].Position + (pTwoDShape.Vertices[j].x * fwd); 
        //in this way I got the exact position of the points at the side of the oPoints 
        pos.y = oPoints[i].Position.y + pTwoDShape.Vertices[j].y;   
  //pos is the position of one of these points 
        Instantiate(_wally, pos, oPoints[i].Rotation); //I instatiate the wall 
  //... 
    } 
} 
//... 
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In this way the tracks are generated with a beginning (the Start Line) a series of 

waypoints (checkpoints)  and borders on the side. 

In the end the code Ian defined each vertex has an UV coordinate. In this way the 

mesh can have a texture applied to it. After all the vertices have been defined, the 

tool creates triangles and so the mesh is ready. 

 

Figure 14: UV coordinates generated  

 

3.2.2 Obstacles 
Around every track are randomly placed 4 kind of obstacles 

  Figure 15: 4 different obstacles 
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3.2.3 Player Control 
The player controls the car with 4 buttons: 

“W” increases the throttle value and move forward 

“S” decreases the throttle value and move backward 

“A” decreases the turn value and move left 

“D” increases the turn value and move right 

 

3.2.4 Neural Network For AI 
The cars’ AI are neither hard scripted nor have a Finite State Machine system. They 

have been trained with ML technique and with the same brain they can drive 

alongside all the tracks. How do I achieve this goal? How the same AI can be 

implemented to work on different tracks with a good performance? Neural 

Networks (NN) is the answer. Train a neural network with a good training process 

can give you a brain (AI) that has a good performance on different tracks and it can 

be challenging to play against the player. 

A neural network is composed of an input layer, one or more hidden layers and an 

output layer. Each car in the game has the same NN composed by a layer of 16 unit 

in input 2 hidden layers of 128 unit and one unit in the output layer.  

 

Figure 16: Car's neural network   
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Intuitive explanation 

What are these numbers? The 16 inputs unit are the distances calculated by the 

raycasts. A raycast is a ray casted from an origin, going towards a direction with a 

fixed length. In my case the rays start from the car and go in 16 different direction 

with a certain angle around the y axis (0, 10, 20, 45, 90, 135, 160, 170, 180, -10, -20,  

-45, -90, -135, -160, -170 degrees). Their length is 20 meters (or unity’s unit). The 

raycasts go all around the car in order to perceive all the obstacles around it. If the 

raycast hits a car, a wall or an obstacle the neural network receives the distance 

from this object. If ray does not hit an object the neural net receives the value 20 

(maximum distance) from that ray 

 

Figure 17: The raycasts around the car 

The hidden layers make all the calculation to give us an output that maximize the 

reward. The output layer consist of two nodes: the throttle value, varying from -1 

(full brake) to +1(full throttle); the turn value, varying from -1 (45 degrees turn on 

the left on the steering wheel) to +1 (45 degrees turn on the right on the steering 

wheel). 

The reward function gives positive value if the car has a positive throttle value. It 

gives negative value if the car hit a wall or an obstacle or a car. 
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During the process of training we will form a policy 𝜋 that maps from state s to the 

best action a. The policy is the strategy that the agent employs to determine the 

next action based on the current state. 

Formally  

The action space A defined as follow 

𝐴 = (𝑎1, 𝑎2) 𝑤𝑖𝑡ℎ (𝑎1, 𝑎2) ∈ ℝ ∩ [−1,+1]  

(𝑎1 is the throttle value and 𝑎2 is the turn value) 

The state space S is defined as follow 

𝑆 = (𝑠1, … , 𝑠16) 𝑤𝑖𝑡ℎ (𝑠1, … , 𝑠16) ∈ ℝ ∩ [0,+20]    

These are the raycasts shoot at a maximum 20 units of distance 

The reward function R is 

−0.5   𝑖𝑓(𝑠1, … , 𝑠16) < 1.3 (the car is too close to a wall, an obstacle or a car) 

+ 𝑎1 ∗ 0.005   𝑖𝑓 𝑎1  >  0 (the car has a positive throttle value) 

+0.1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑎𝑟 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 

+1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑎𝑟 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑠 𝑎 𝑙𝑎𝑝 
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3.2.5 The Policy Update, Policy Gradient Method And PPO 
To update the policy 𝜋 in my project I use a policy gradient method called PPO, 

Proximal Policy Optimization. We have to define what is a policy gradient method 

first.  

Policy Gradient Methods are a subclass of Policy-Based methods that evaluate an 

optimal policy’s weights using the gradient ascent algorithm. This algorithm starts 

with guessing the value of the weights that maximize the expected return. Then it 

evaluates the gradient at that point that indicates the direction of the steepest 

increase of the function of expected return, and so it makes a small step towards 

that direction. The algorithm loop through this process until it reaches the maximum 

expected returns. 

The family of Policy Gradient Method are wide, in literature we can find several 

examples of those: Trust Region Policy Optimization (TRPO), Advantage Actor Critic 

(A2C), Cross-Entropy Method (CEM), Vanilla PG (VPG).  

A new Policy Gradient Method was presented in 2017: Proximal Policy Optimization 

(PPO).  

PPO tries to find the best improvement step on a policy using the data available, 

without stepping so far and cause a performance collapse. PPO is a family of first 

order methods that use some workaround to keep the new policies not far from the 

old one. The variant I use was PPO-Clip. This one relies on a particular clipping in the 

objective function and it removes stimuli for the new policy to get far from the old 

one. Here I explain the algorithm as it was presented by openAI. 

“PPO-clip updates policies with the parameter 𝜃 

𝜃𝑘+1 = 𝑎𝑟𝑔max
𝜃
𝐸 [𝐿𝐶𝐿𝐼𝑃(𝜃)] 

Where 𝐿𝐶𝐿𝐼𝑃  is the surrogate clipped objective function and it can be defined as 
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𝐿𝐶𝐿𝐼𝑃(𝜃) = min (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡 , 𝑐𝑙𝑖𝑝 (

𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖) 𝐴𝑡)  (23) 

Where 𝜖 is a small hyperparameter that indicates how much the new policy is 

getting far from the old one. 𝐴𝑡 is an estimator of the advantage of the new policy at 

timestep t. 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the new stochastic policy at timestep t. 𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) is the 

old stochastic policy at timestep t. 

(23) can be rewrite in a simplified version like that 

𝐿𝐶𝐿𝐼𝑃(𝜃) = min (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡 , 𝑔(𝜖, 𝐴𝑡)) 

where 

𝑔(𝜖, 𝐴) = {
(1 + 𝜖)𝐴     𝑖𝑓 𝐴 ≥ 0

    (1 − 𝜖)𝐴     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Now we take the two separate cases: A ≥ 0, we have a positive advantage with the 

new policy; A < 0 we have a negative advantage 

 

𝑖𝑓 𝐴 ≥ 0 The objective function reduces to 

𝐿𝐶𝐿𝐼𝑃(𝜃) = min (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
, 1 + 𝜖)𝐴𝑡 

Because the advantage is positive the objective function will increase if 𝜋𝜃(𝑎𝑡|𝑠𝑡) 

increases. The min in this function puts a limit on how much the objective will 

increase. If 𝜋𝜃(𝑎𝑡|𝑠𝑡) > (1 + 𝜖)𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) the min takes action and this term hits 

the ceiling of  (1 + 𝜖)𝐴𝑡. In this way the new policy will not benefit by going too far 

from the old one. 

 

𝑖𝑓 𝐴 < 0 The objective function reduces to  
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𝐿𝐶𝐿𝐼𝑃(𝜃) = max (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
, 1 − 𝜖)𝐴𝑡 

Because the advantage is negative the objective function will increase if 𝜋𝜃(𝑎𝑡|𝑠𝑡) 

decreases. The max in this function puts a limit on how much the objective will 

increase. If 𝜋𝜃(𝑎𝑡|𝑠𝑡) < (1 − 𝜖)𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) the max takes action and this term hits 

the ceiling of  (1 − 𝜖)𝐴𝑡. Again the new policy will not benefit by going too far from 

the old one. 

That is why this algorithm is called Proximal Policy Optimization, because we are 

moving from an old policy to a proximal new policy. PPO achieves this 

disadvantaging new policy from going too far from the old one.  

PPO-Clip Pseudocode 

1. Input: initial policy parameters 𝜃0, initial value function parameters 𝛺0 

2. for i = 0,1,2, … do 

3. Collect set of trajectories 𝐷𝑖 = {𝜏𝑘} by running policy 𝜋𝑖  in the environment 

4. Compute rewards 𝑅𝑡 

5. Compute advantage estimator 𝐴𝑡 based on the current value function 𝑉𝛺𝑖  

6. Update the policy by maximizing the PPO objective 

 𝜃𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
1

|𝐷𝑖|𝑇
∑ ∑ min (

𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑

(𝑎𝑡|𝑠𝑡)
𝐴𝑡, 𝑔(𝜖, 𝐴𝑡))

𝑇
𝑡=0𝜏∈𝐷𝑖

 

 via stochastic gradient ascent 

7. Fit value function by regression on mean squared error: 

 𝛺𝑖+1 = 𝑎𝑟𝑔min
𝛺

1

|𝐷𝑖|𝑇
∑ ∑ 𝑚𝑖𝑛(𝑉𝛺(𝑠𝑡 − 𝑅𝑡)

2𝑇
𝑡=0𝜏∈𝐷𝑖

 

 via some gradient descent algorithm 

8. endfor”[10][11]  
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3.2.6 The Agent Training and Implementation 
The unity ml-agents library offers you a powerful tool for developing machine 

learning application. We have to follow a workflow in order to make everything 

work. We are skipping the detail of the setup that you can find here 

https://github.com/Unity-Technologies/ml-

agents/blob/release_9_docs/docs/Installation.md 

In unity ml we have a few crucial components on the timeline: 

The episodes are composed by multiple steps. At each step the agent collects 

observations, send these to the policy and receives a vector of actions in response, 

in the end we have the calculation of the reward. 

The “Decision Requester” let you decide the decision period, or rather how long 

each tuple observation-action-reward must be in term of steps. It also let you decide 

if your agent can take actions in between steps. In my case I have 

 

Figure 18: Decision Requester 

So every 5 steps we have a full cycle observation-action-reward, and the agent can 

take actions in between.  

My episodes do not have a fixed step length, meanwhile they end when certain 

conditions happen. I have set a maximum number of steps in the training process, 

when the agent reaches the max step number the training stops. 

The workflow I follow to develop my agents is the following: 

1 Implement the Agent in c# 

2 Set the unity environment and the parameter of unity’s hierarchy 

https://github.com/Unity-Technologies/ml-agents/blob/release_9_docs/docs/Installation.md
https://github.com/Unity-Technologies/ml-agents/blob/release_9_docs/docs/Installation.md
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3 Set the hyperparameter in an external .yaml file 

4 Launch the training from a command prompt 

 

1) First I scripted “MyAgent” derived from the superclass Agent (this is one of the 

main class of the library). 

public class MyAgent : Agent 

Then I override inside the class the four main functions for an Agent: 

 

public override void OnEpisodeBegin(){...} 

public override void CollectObservation(VectorSensor sensor){...} 

public override void OnActionReceived(float[] vectorAction){...} 

public override void Heuristic(float[] actionsOut){...} 

 

 

The first method OnEpisodeBegin() set up the Agent instance at the beginning of an 

episode. In my case I restart some variables that belong to the car: the velocity, the 

angular velocity, the throttle value, the steer value is all set to zero. If the car has 

finished a full lap, the episode is ended and the car restart from the initial position. 

The position of the car is reset to the initial position if it has not passed even a 

checkpoint, it is reset to the position of the last checkpoint passed otherwise. 
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public override void OnEpisodeBegin() 
{ 
    if (hasFinishedLap) 
    { 
        this.transform.localPosition = startpos; 
        this.transform.rotation = startrot; 
        hasFinishedLap = false; 
        StartLineFlag = false; 
    } 
    if ((hasCollided || lapOverTime > overTime))     
    { 
        hasFinishedLap = false; 
        StartLineFlag = false; 
        GetComponent<Rigidbody>().velocity = Vector3.zero; 
        GetComponent<Rigidbody>().angularVelocity = Vector3.zero; 
        action_throttle = 0; 
        action_steer = 0; 
        hasCollided = false; 
 
        if (lastCheckpointPassed != null) 
        { 
            this.transform.localPosition = lastCheckpointPassed.position; 
            this.transform.rotation = lastCheckpointPassed.rotation; 
        } 
        else 
        { 
            this.transform.localPosition = startpos; 
            this.transform.rotation = startrot; 
        } 
    } 
} 

 
The second method CollectObservation(VectorSensor sensor){...} takes a 

VectorSensor as argument, these are the data structure that unity ml uses to take 

observation from the environment. We can take observation as float, int, Vector3 

and other datatypes. In my case I use float observations. At every step, the function 

cycle through an array of raycasts. Every ray is shot in a different direction (around 

the car) and if one of these hit something that belongs to the wallObstacleCarLayers 

(if it hit a wall, an obstacle or a car) at raycastDistance (20 units) the distance is 

registered as a float and sent to the neural network with the function 

addOservation(float observation). If the distance is less than 1.3f a collision is 

registered (hasCollided = true). 
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public override void CollectObservations(VectorSensor sensor) 
{ 
    for(int i = 0; i < raycasts.Length; i++) 
    { 
        RaycastHit hitInfo = new RaycastHit(); 
        var hit = Physics.Raycast(raycasts[i].position, raycasts[i].forward, 
out hitInfo, raycastDistance, wallObstacleCarRaycastLayers.value, 
QueryTriggerInteraction.Ignore); 
        var distance = hitInfo.distance; 
        float distancef = distance; 
        if (!hit) distance = raycastDistance; 
        var obs = distance / raycastDistance; 
        float obsf = obs; 
        sensor.AddObservation(obsf); 
        if (distance < 1.3f) 
        { 
            hasCollided = true; 
        }     
} 

 
 

The third method OnActionReceived(float[] vectorAction) takes a vector of float as 

argument. This is the response of the neural network after the policy received the 

observations. As told before the float values are two: the throttle value and the 

steering value that belong to the continuous interval [-1, +1]. This two float values 

tare assigned to the variables action_steer and action_throttle. These two variables 

are read by an external script (PM) that is responsible of the car movement. In 

OnActionReceived I also set the rewards. If a collision happened (hasCollided == 

true) the EndEpisode function is called and a negative reward is assigned. If the 

throttle value is positive a little positive reward is assigned. If a checkpoint is passed 

a positive reward is assigned. If the lap has finished a positive reward is assigned and 

the EndEpisode() function is called. 
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public override void OnActionReceived(float[] vectorAction) 
{ 
    action_steer = Mathf.Clamp(vectorAction[0], -1f, 1f); 
    action_throttle = Mathf.Clamp(vectorAction[1], -1f, 1f); 
 
    if (hasCollided) 
    { 
        AddReward(-0.5f); 
        EndEpisode(); 
    } 
 
    if (action_throttle > 0) 
    { 
        AddReward(action_throttle * (0.005f)); 
    } 
 
    if (hasPassedOneCheckpoint) 
    { 
        AddReward(0.1f); 
        hasPassedOneCheckpoint = false; 
    } 
 
    if (hasFinishedLap) 
    { 
        AddReward(+1); 
        EndEpisode(); 
    } 
} 

 
The last method Heuristic(float[] actionsOut) takes as argument a vector of float, 

this vector is the actions registered by the function itself. The heuristic provides 

custom decision making logic or manual control of an agent using keyboard, mouse, 

or game controller input. We can say that the Heuristic is the human control logic. In 

unity hierarchy we can set the Behavior Type to be Heuristic, in this way our agent 

will follow the command that we implement in the Heuristic() function. This is 

mandatory to implement and it can help the developers in debugging and before 

training to see if the agent can perform the action that we want to teach him. 

 In my case the heuristic is a WASD style control: W/S to increment/decrement the 

throttle value, A/D to increment/decrement the steering value. 

 

 



41 
 

public override void Heuristic(float[] actionsOut) 
{ 
    actionsOut[0] = Input.GetAxis("Horizontal"); 
    actionsOut[1] = Input.GetAxis("Vertical"); 
} 

 

2) We have to set now our environment in Unity. This will be the gym where our 

agent will be trained. In my case I put the agent behind the Start Line of the track. 

The first track where I trained the agent is RandomTrack1 

Every Neural Network will have a MyAgent_PM script (Player Movement). This is the 

script responsible for the car movement. It will read the Throttle and Steer value 

from the Agent script and will make move the car with the max Speed of 10 and the 

max Turn Speed of 100 {change script “MyAgentPM”} 

 

Figure 19: Car movement script 

We have then the MyAgent Script. Here we have to set the raycast layer. Every 

GameObject that the raycasts can perceive must belong to this layer. In our case 

these are the Wall, Car and Obstacles. In the end we have the raycast array. This 

must be set to 16 because 16 are the raycasts that we assign from the hierarchy to 

the inspector. 
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Figure 20: Car Agent script 

In the end we have the Behavior Parameters script. Here we set the name of the 

Behavior we are going to train (MyAgentBehavior). Then we set the Space Size of 

the vector Observation: 16 like the number of the raycasts. The Vector Action 

section is about the Actions that the policy will send to the agent after observations 

are collected. Our space size is 2 (throttle value and steer value) and the space type 

is continuous because the values are float between -1 and +1. When we perform a 

training the Behavior Type must be set to default and the Model must be empty. We 

have to train each brain from scratch. This is a big limitation of unity ml agents that 

is work in progress and maybe it will see the light in a future update 
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Figure 21: Car Neural Network script 

3) After the scripting and the unity parametrization part are done we can focus on 

the setting of the hyperparameters in the yaml file. This part will be different for the 

three kind of neural network. Now we give a generalize explanation of the file. In 

the Unity-ml agents folder we have a config folder. Here we can find or create all the 

yaml files that will contain the hyperparameter of the NN. In my case I add a section  

“MyAgentBehavior” in the trainer_config.yaml file. The name of the behavior  must 

be the same exact name of the one we put in the Behavior Parameters script before. 

  
MyAgentBehavior:     
    trainer: ppo  
    batch_size: 1024  
    beta: 1e-3  
    buffer_size: 10240  
    epsilon: 0.2  
    hidden_units: 128  
    lambd: 0.95  
    learning_rate: 3.0e-4  
    learning_rate_schedule: linear  
    max_steps: 15.0e5  
    memory_size: 128  
    normalize: true  
    num_epoch: 3  
    num_layers: 2  
    time_horizon: 64  
    sequence_length: 64  
    summary_freq: 10000  
    reward_signals:  
        extrinsic:  
            strength: 1.0  
            gamma: 0.99 
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The batch_size is the number of experiences in each iteration of gradient descent. 

The beta is the strength of the entropy regularization, which makes the policy "more 

random”. 

The buffer_size for the PPO is the number of experiences to collect before updating 

the policy model. It can be explained as how many experiences should be collected 

before we do any learning or updating of the model. 

The epsilon influences how rapidly the policy can evolve during training. It is the 

threshold of divergence between the old and the new policies during gradient 

descent updating. 

The hidden units are the number of units in the hidden layers of the NN.  

The lambd is the regularization parameter 𝛾 used when calculating the Generalized 

Advantage Estimate. It can be explained as how much the agent relies on its current 

value estimate when calculating an updated value estimate 

The learning_rate is the inizialization rate for gradient descent. It is the strength of 

each gradient descent update step. 

The learning_rate_schedule indicates how much the learning rate will change over 

time 

The memory_size is the size of the memory that an agent must keep. This coincides 

to the size of the array of floating point numbers used to store the hidden state of 

the recurrent neural network of the policy. 

The normalize is a bool value that if set to true will give the agent the command to 

normalize the vector observation input. 

The num_epoch is the number of passes to make through the experience buffer 

when performing gradient descent optimization 
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The num_layers is the number of hidden layers in the NN 

The time_horizon indicates how many steps of experience to collect per-agent 

before adding it to the experience buffer. When this limit is reached before the end 

of an episode, a value estimation is used to predict the total expected reward from 

the agent's current state. 

The sequence_length defines how long the sequences of experiences must be while 

training 

The summary_freq is the number of experiences that needs to be collected before 

generating and displaying training statistics. 

The reward signal section can be extrinsic, curiosity or GAIL (in my case I used only 

extrinsic and GAIL). This will determine which kind of reward signal are you using. In 

every case the reward signal must have a strength and gamma section. 

The strength indicates the factor by which to multiply the reward given by the 

environment 

The gamma is the discount factor for future rewards coming from the environment. 

This can be imagined as how far into the future the agent should care about possible 

rewards. 

 

4) After all this setup has been made we can launch the training. We must open a 

command prompt, navigate into the unity-ml agents folder, activate the virtual 

environment, and launch the training process with an id. Below we can see the list 

of commands in the cmd. 



46 
 

 

Figure 22: Command prompt training command 

After pressing Enter If everything has done properly the unity logo should appears in 

the command prompt and a message should say “Press Play in Unity”. Now we press  

play in unity and we let the agent train for a max_step amount of time. 

In my case the max_step was 1.5 million. Every 0.5 million I stop the process with 

CTRL-C in the command prompt. I change the track in the unity scene, and I resume 

the training from the command prompt with the –resume command. In this way I 

could train each NN in 3 different tracks (RandomTrack1, RandomTrack2 and 

RandomTrack3). 

When a number max_step of steps is completed the Unity Environment should be 

stopped and a .NN file should be exported. This is our Neural Network. We take this 

file, and we drag it to the Model section of the Behavior Parameters script in unity. 

Now we can press play and see how our Neural Network perform in our 

environment. 

 

 

3.3 The Learning Methods 
We introduced the car’s neutral network, the algorithm behind their policy, the 

training process workflow. These are all common features for all the three Neural 

Networks. We are going now to explain the learning methods in all his differences 
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3.3.1 Reinforcement Learning Implemented 

 

Figure 23: RL car  

CARL (Car Agent Reinforcement Learning) is the first neural network I train. 

For this neural network I followed the exact same process explained in chapter 

3.2.6. 3 random tracks, 0.5 million step each. I change the trainer_config.yaml file. 

Here I create a CARL section where I set up the hyperparameters (the same as the 

one in chapter 3.2.6).  

In the end I launch the training. The result of TensorFlow are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 24: RL training graphs    



48 
 

We can notice from the graph that the “Cumulative Rewards” (the  mean cumulative 

episode reward) grows until a certain threshold and then it becomes stable. The 

same behavior regards “Episode Length” (the mean length of each episodes, 

measured in step). That is because the car has learnt how to drive a full lap. Every 

500k steps there is a gap and then the graphs become stable again. That is the track 

has changed.  

The Entropy shows how random the decisions of the model are. It should slowly 

decrease during a successful training process and it indeed decreases. The Extrinsic 

Reward corresponds to the mean cumulative reward received from the environment 

per-episode. It increases in the exact same way of the cumulative rewards, that is 

because this agent is based only on extrinsic reward. The mean value estimate for all 

states visited by the agent. It should increase during a successful training session 

and it indeed increases. 

 

3.3.2 Imitation Learning Implemented 

 

Figure 25: IL car 

CAIL (Car Agent Imitation Learning) is the second neural network that came in my 

mind. Unity ML propose this kind of learning techniques from the version 0.3. Here 

it is called behavioral cloning and it is based on a simple paradigm: register yourself 
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as human to perform a task and than the agent will learn from you. The problem of 

unity’s behavioral cloning is that the agent will only learn from human 

demonstration. If the human demonstrations came from a trackX the neural 

network will copy the trajectories and it will learn to drive in the trackX as the 

human. Two problems arose from this: the human demonstrations could not be 

optimal and if they were, the agent will learn perfectly to drive in trackX, but it will 

drive badly in other tracks having overfitting. From the Unity ML v0.9 another 

imitation learning technique was introduced: GAIL (Generative Adversarial Imitation 

Learning). GAIL solved both of the previous issue because the agent now learns from 

the human and from the environment itself. 

During training, the agent is allowed to act in the environment as usual, gathering 

observations on its own. At high level, GAIL trains the discriminator (a second neural 

network) to distinguish if a particular action-observation couple came from the 

agent itself or from the human’s demonstrations. Then the agent is rewarded by 

how close its observation-actions are close to the human’s demonstrations. The goal 

of the agent is to maximize this reward. The discriminator is updated with the 

agent’s new observations and increases its discriminator ability. GAIL proceeds in an 

iteratively way: the discriminator gets tougher and the agent gets better in tricking 

the discriminator by mimicking the demonstrations. 

GAIL will give a part of the reward to the agent. The other part comes from the 

reward function R explained in chapter 3.2.4. In this way we can combine GAIL with 

Reinforcement Learning. The GAIL reward will have a different (minor) weight from 

the RL reward[11]. 
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The process is divided like that: first you have to play several times through the 

game, in my case I recorded myself racing through the first random generated track 

for 7 laps. In this moment we are saving human’s observations and actions. In order 

to do that I use a demonstration recorder and I save a .demo file.  

 

Figure 27: Demonstration Recorder 

Later I edit the GAIL.yaml file to create a section for my CAIL neural network. Here I 

link the .demo file.  

 

 

  

 Figure 26: GAIL discriminator scheme 
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CAIL:  
    trainer: ppo  
    batch_size: 1024  
    beta: 5.0e-3  
    buffer_size: 10240  
    epsilon: 0.2  
    hidden_units: 128  
    lambd: 0.95  
    learning_rate: 3.0e-4  
    max_steps: 15.0e5  
    memory_size: 256  
    normalize: false  
    num_epoch: 3  
    num_layers: 2  
    time_horizon: 64  
    sequence_length: 64  
    summary_freq: 10000  
    use_recurrent: false  
    reward_signals:  
        extrinsic:  
            strength: 1  
            gamma: 0.99  
        gail:  
            strength: 0.2  
            gamma: 0.99  
            encoding_size: 128  
            demo_path: Project/Assets/ML-
Agents/Examples/MyDemo/demo1_adma_cail/admacail1.demo 

 

 

 

As you can see the yaml file is exactly like the one in chapter 3.2.6 with the 

difference that in the reward signals there is a GAIL section. The strength is 0.2, gail 

reward will be multiplied by this value. In this way GAIL rewards will have a minor 

impact on the reward overall so that the trained agent will focus on receiving 

extrinsic rewards instead of exactly copying the demonstrations. The encoding_size 

is the size of the hidden layer used by the discriminator (that is a NN itself). 

In the end I launch the training process. The tensorflow results are shown below 
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Figure 28: IL training graphs 

These graphs are similar to the Reinforcement Learning one. There are some 

additions: GAIL expert estimate, that indicates the discriminator's estimate for 

states and actions drawn from my demonstrations; Gail policy estimate that show us 

the discriminator estimate for state and actions generated by the policy; GAIL 

reward, here we have the mean cumulative reward generated per episode by the 

discriminator (and it correctly increases); GAIL value estimate indicates the agent's 

value estimate for the GAIL reward (and it correctly increases); learning rate 

determines how large a step the training algorithm takes as it searches for the 

optimal policy, it should decrease over time and it decreases indeed.  
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3.3.3 Curriculum Learning implemented 

 

Figure 29: CL car 

CACHCUL (Car Agent Checkpoint Curriculum Learning) was the third, the last and the 

most interesting neural network I train. It is based on the concept of progressive 

teaching: the agent will learn to solve simple task first and then complex task in a 

progressive way. In unity environment we use the term ‘lesson’. The agent will start 

from lesson1 where it will learn how to perform a task. When certain conditions 

have been reached the agent will pass to lesson2 where it will learn how to solve a 

different (and usually more complex) task. 

To define a curriculum the first step is to decide which parameters will change 

during the process. In my case the ‘config-number’ is changing with the crescent 

value of 0, 1 and 2. The config number will change the raycast and the collision 

matrix of the agent: 

Config Number = 0 -> the agent will have raycasts that perceive only walls; the agent 

will ignore the collision with cars and obstacles 

Config Number = 1 -> The agent will have raycasts that perceive walls and obstacles; 

the agent will ignore the collision with cars 

Config Number = 2 -> The agent will have a raycasts that perceive walls, obstacles 

and cars; the agent will not ignore collisions. 
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private void FixedUpdate() 
{ 
    //Car and car dont collide; Car and obstacle dont collide 
    if (config_number == 0) 
    { 
        Physics.IgnoreLayerCollision(11, 13, true);  
        Physics.IgnoreLayerCollision(11, 11, true); 
    }  
    //Car and car dont collide; Car and obstacle collide 
    else if (config_number == 1) 
    { 
        Physics.IgnoreLayerCollision(11, 13, false); 
        Physics.IgnoreLayerCollision(11, 11, true); 
    } 
     
    //Car and car collide; Car and obstacle collide 
    else 
    { 
        Physics.IgnoreLayerCollision(11, 13, false); 
        Physics.IgnoreLayerCollision(11, 11, false); 
    } 
} 
...  
public override void CollectObservations(VectorSensor sensor) 
{ 
    if (config_number == 0) 
    { 
        //the same as the on in chapter 3.2.6 but with a raycastLayer that is only 
        //wall 
    } 
    else if (config_number == 1){ 
        //the same as the on in chapter 3.2.6 but with a raycastLayer that is only  
        //wall and obstacle 
    } 
    else{ 
        //the same as the on in chapter 3.2.6 but with a raycastLayer that is wall 
        //obstacle and car 
    } 
... 

 

We will define config_number as a reset parameter for the Academy. 

... 
public override void Initialize() 
{ 
    m_ResetParams = Academy.Instance.EnvironmentParameters; 
} 
...       
public override void OnEpisodeBegin() 
{ 
    config_number = m_ResetParams.GetWithDefault("config_num", 2); 
} 
... 
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In the end we will create a section for CACHCUL in the trainer_config.yaml (same as 

CARL but with a different behavior name) and we will create a new yaml file in the 

folder config\curricula that will be our actual curriculum 

  
CACHCUL: 
    measure: progress 
    thresholds: [0.33, 0.66] 
    min_lesson_length: 100 
    signal_smoothing: true 
    parameters: 
        config_num: [0.0, 1.0, 2.0]   

 
Here we define the threshold that the agent has to passed in order to change from a 

lesson to another. I use the measure progress, that is the ration of steps/maxsteps. 

This means that at 33% and at 66% of the training we will have a have a lesson 

change. 

The min_lesson_length is the minimum number of episodes that should be 

completed before the lesson can change. 

The signal_smoothing is a bool that if set to true weight the current progress 

measure by previous values. 

In the parameters section we put the variable that we want to change during the 

training process when the threshold is reached. In my case the variable is 

config_num, that change from 0 to 1 at 33% of the training and from 1 to 2 at 66% 

of the training. 

The results of the training are shown below 
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Figure 30: CL training graphs 

The graphs follow the same behavior as the one of CARL. The only difference is the 

Lesson graph. This graph shows us that every 500k there is a change of lesson.  
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4 Tests 
To test evaluate the performance of my cars I used three different metrics. I found 

this metrics in the book “Analysis Techniques for Racecar Data Acquisition”. In this 

way I got an objective and quantitative way to compare the three different neural 

networks. I test my metrics in a multi agent environment. 

I gather the data of 5CL, 5RL, 5IL and 1 real player running for 7 laps on 3 different 

scenarios on 2 kind of tracks: SEEN and UNSEEN.  

UNSEEN is a track that where the agents and the humans never performed a 

training. The agents were trained on other tracks (with the same process explained 

in chapter 3.2.6), the same for humans, I explained them the control of the game, I 

let them train on a few tracks and then I pose them in front of a brand new track. 

SEEN is the same track, this time agents and humans had a pre training. For agents I 

train them like in the process explained in chapter 3.2.6 (one of the three tracks 

where they performed the training is the SEEN). For humans I let them take 

confidence with the track and then I gather data on their personal best 

performance. 

In this way I got data of 5 CLs, 5 RLs, 5 ILs and 5players over 7 laps, over 3 scenarios 

for the SEEN track. The same for the UNSEEN track. 

Then I made an average of each agent (and human) measure over 7 laps, an average 

of this over 5 different agents, an average of this over 3 different scenarios for the 

two kind of tracks. 
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Figure 31: Scenario 1 

 

Figure 32: Scenario 2 

 

Figure 33: Scenario 3 
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4.1 Metric 1: Lap time  
When the car passed for the first time the Start Line a timer is started. When the car 

passed for the second time the Start Line the timer is stopped, and the value is 

saved. The value saved is the lap time of the first lap. We make the car run for 7 

different laps and we saved 7 different lap time. If at the lap n the lap time of car x is 

less than the lap time of car y means that the car x is performing better than the car 

y in the lap n. To have metric over the full race we do the average of the 7 different 

value. Minor the value better is the performance. 

 

4.2 Metric 2: percentage of lap at full throttle, medium throttle and low 

throttle 
When the Start Line is passed three timers start:  

-0.9-1.0 timer, this will be incremented every frame if the 0.9 < throttle value <=1  

-0.5-0.9 timer this will be incremented every frame if the 0.5 < throttle value <=0.9 

-0.0-0.5 timer this will be incremented every frame if the 0.1 < throttle value <=0.5 

We plot these values on a 3D graph. On the x axis we have the number of the lap, 

on the y axis we have the three different timers, on the z axis we have the amount 

of second of a single throttle value over a single lap. If a car has a 0.9-1 timer greater 

than the other two timer means that the car will be faster and better in term of 

performance. To have metric over the full race we do the average over the 7 

different laps. In this way we will have the average of time a car passed at full 

throttle, the average of time a car passed at average throttle and the average of 

time a car passed at low throttle. Greater the full throttle value better is the 

performance. 
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4.3 Metric 3: number of crashes 
In the beginning of the first lap we set the value crashNum at zero. Any time the car 

hits a wall or an obstacle a crash is registered and the value crashNum is 

incremented by one. At the end of the first lap we save the value of crashNum and 

we reset this variable to zero. The saved value is the number of crashes over the 

first lap. Let us say hypothetically that at lap n the car x registered K crashes and the 

car y registered L crashes. If K < L the car x is performing better and safer than the 

car y at lap n. To have a metric over the full race we do the average of the 7 

different values. Minor the value better is the performance. 
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TRACK 1 

 

 

Figure 34: Track1 
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TRACK1 SEEN 

Metric1 Lap time 

If SD is Standard Deviation and CV is Coefficient of Variation we have 

For all data gathered we have 1.10 < SD < 1.48;   1.4*10-3 < CV < 1.8*10-3  

 

 

Metric2 Percentage 

For all data gathered we have 0.08 < SD < 1.57;   7.3*10-3 < CV < 515.4*10-3  
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Metric3 Number of crashes 

For all data gathered we have 0.11 < SD < 0.5;   0.8*10-3 < CV < 2.27*10-3 

 

 

We can see how all SD are < 1.57 this means that data are clustered around the 

mean. CV are < 0.23% for metric 1 and 3, this means that there is no variability 

around this data. Meanwhile CV in metric 2 is much higher, CV are < 51.5%, this 

means that we have more variability in this dataset. 
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TRACK1 UNSEEN 

Metric1 Lap time 

For all data gathered we have 0.54 < SD < 1.11;   1.1*10-3 < CV < 1.5*10-3  

 

 

Metric2 Percentage 

For all data gathered we have 0.63 < SD < 1.23;   8.8*10-3 < CV < 482.8*10-3  
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Metric3 Number of crashes 

For all data gathered we have 0.26 < SD < 0.7;   0.48*10-3 < CV < 1.11*10-3 

 

We can see how all SD are < 1.23 this means that data are clustered around the 

mean. CV are < 0.15% for metric 1 and 3, this means that there is no variability 

around this data. Meanwhile CV in metric 2 is much higher, CV are < 48.2%, this 

means that we have more variability in this dataset. 
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TRACK 2 

 

Figure 35: Track2 
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TRACK2 SEEN 

Metric1 Lap time 

For all data gathered we have 1.21 < SD < 1.38;   1.35*10-3 < CV < 1.7*10-3  

 

 

Metric2 Percentage 

For all data gathered we have 0.02 < SD < 1.59;   7.9*10-3 < CV < 502.4*10-3 
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Metric3 Number of crashes 

For all data gathered we have 0.23 < SD < 0.61;   0.7*10-3 < CV < 2.02*10-3 

 

We can see how all SD are < 1.21 this means that data are clustered around the 

mean. CV are < 0.20% for metric 1 and 3, this means that there is no variability 

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.2%, this 

means that we have more variability in this dataset. 
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TRACK2 UNSEEN 

Metric1 Lap time 

For all data gathered we have 1.19 < SD < 1.32;   1.31*10-3 < CV < 1.59*10-3  

 

 

Metric2 Percentage 

For all data gathered we have 0.021 < SD < 1.67;   7.2*10-3 < CV < 501.2*10-3 
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Metric3 Number of crashes 

For all data gathered we have 0.13 < SD < 0.41;   0.62*10-3 < CV < 1.92*10-3 

 

 

We can see how all SD are < 1.67 this means that data are clustered around the 

mean. CV are < 0.19% for metric 1 and 3, this means that there is no variability 

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.1%, this 

means that we have more variability in this dataset. 

 

  



71 
 

 

 

TRACK 3 

 

Figure 36: Track3 
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TRACK3 SEEN 

Metric1 Lap time 

For all data gathered we have 1.19 < SD < 1.27;   1.39*10-3 < CV < 1.68*10-3  

 

Metric2 Percentage 

For all data gathered we have 0.03 < SD < 1.28;   6.91*10-3 < CV < 501.3*10-3 
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Metric3 Number of crashes 

For all data gathered we have 0.19 < SD < 0.62;   0.68*10-3 < CV < 2.22*10-3 

 

We can see how all SD are < 1.27 this means that data are clustered around the 

mean. CV are < 0.22% for metric 1 and 3, this means that there is no variability 

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.1%, this 

means that we have more variability in this dataset. 
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TRACK3 UNSEEN 

Metric1 Lap time 

For all data gathered we have 1.21 < SD < 1.39;   1.36*10-3 < CV < 1.72*10-3  

 

Metric2 Percentage 

For all data gathered we have 0.01 < SD < 1.71;   7.01*10-3 < CV < 503.2*10-3 
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Metric3 Number of crashes 

For all data gathered we have 0.22 < SD < 0.5;   0.55*10-3 < CV < 1.87*10-3 

 

We can see how all SD are < 1.39 this means that data are clustered around the 

mean. CV are < 0.18% for metric 1 and 3, this means that there is no variability 

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.3%, this 

means that we have more variability in this dataset. 
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5 Conclusions 
In this thesis, it has been studied in deep the incredible and new world of Machine 

Learning focusing on videogames. We have seen a focus on three techniques: 

Reinforcement, Imitation and Curriculum. I successfully applied these techniques 

onto self driving cars in a Virtual Environment of a racing game. This Virtual 

Environment is a great benchmark that could be used in future to test other 

machine learning cars. 

In the end the ML cars have been tested with 3 different objective metrics. The 

results have shown how Curriculum is the best approach for this kind of task.  

CL has the smallest Lap Time on average. The time passed at full Throttle for CL is 

the highest. So it has better performance. We see how CL has less crashes and so it 

is the safest driving car. 

Real Players will pass more time at full throttle, but they have a bigger lap time. That 

is because they have a bigger number of crashes. So we can say that players try to 

complete the track going at max-speed, but they will crash more than CL having a 

worst performance. 

To conclude I can say that Machine Learning could be a powerful tool for game 

developer but with some limitations: The first limitation of ML is computational 

power. Once the Reward function and the NN are well implemented, a train of 90 

hours on a super-cluster-computer could be launched. This training will give us an AI 

with better performance than one trained on a 500$ laptop. This creates a gap in 

development where big corporation will probably have the best performing agents. 

Indie game could suffer from this fact. 

Moreover if there is no cap in the learning process, the agent will become smarter 

and smarter and hard (if not impossible) to defeat. In my project this was solved by 
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restarting the reward at the end of the lap. In this way the reward is not a function 

that tends to infinity. 

If we do not use take the right precautions we end up having an over powerful AI 

that can not be beaten. That is frustrating and not challenging (or fun) for players. In 

my project we can see how on average players perform worst than CL, but the AI is 

beatable.  

The future of ML in videogame is flourishing and promising. The machine will learn 

to solve more and more tasks. The problem is that sometimes we see AI like an 

enemy to beat. AlphaGo in 2016 won against Lee Sedol in the game of GO, after 

some years Lee retired with this statement “Even if I become the number one, there 

is an entity that cannot be defeated”. Of course it cannot be beaten, the AI was 

trained for years with a super-computer studying the best players’ technique in the 

world. How can you compete against such an entity? Imagine closing a real person 

in a room and train him all his life to play a specific game. Imagine that his trainer 

will be the best player in the world. It is very probable that this person will become 

the best player in the world, but it is also probable that he will have suicidal tenders. 

Let the computers be computers and humans be humans. 

We should change our point of view on AI. It is not an entity to be beaten but a tool 

to be used. AI could analyze our gameplay to give us hints to improve are moves. AI 

could be a fair competitor to play against. It is not an undefeatable totem. 
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