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Abstract

Background: The aim of this thesis is to explore the solutions that Deep Learning
techniques can offer in the field of Medical Imaging, in particular for breast cancer
characterisation in magnetic resonance images. The thesis proposes the development
of a Deep Learning architecture for a concrete problem such as the evaluation
of pathological complete response (pCR) to neoadjuvant chemotherapy in breast
cancer.

Methods: The mpMRI dataset analysed includes 37 patients, each of whom
underwent two studies: before and after 2 cycles of NAC. An index slice was
extracted from each available sequence by an experienced radiologist. Pathological
results were used as ground truth. The proposed architecture seeks to make the
most of the multi-parametric nature of the dataset, extracting features separately
from each of the available image modalities (DCE, DWI and T2). The resulting
sub-sequences are used as input for a multi-task ensemble learning model that
takes into account the different type of information represented by each of them, as
well as the time dimension due to the two studies per patient. The use of a specific
branch for each sub-sequence combined with the use of Grad-CAM aims to provide
an additional level of interpretability to a model that starts directly from full slices.

Results: Using 4-fold cross-validation, with each training set consisting of 28
patients and each validation set of 9, the mean area under the receiver operating
characteristic (ROC) curve (AUC) of the model was 0.90, with a positive predictive
value of 86.3% using all the available sub-sequences. Experiments with different
configurations have shown that the combined use of all sub-sequences and both
studies (pre-NAC and post-NAC) available per patient results in a model capable
of better performance and generalisation.

Conclusion: The work conducted in this thesis demonstrates the great potential
of Deep Learning applied in this specific medical field, proposing a solution that
achieves significant results in the use of an mpMRI dataset for early prediction of
pCR to NAC, an area that is still little explored in the available literature and that
could provide valuable information in a crucial task such as treatment prediction.
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Chapter 1

Introduction

In a world that is becoming more data-driven with each passing day, it should come
as no surprise that the availability of large-scale data is slowly but surely shaping
every aspect of our lives. With an average of about 1.7 MB of data per second
generated by each person, as estimated by the International Data Corporation
(IDC), steadily shifting towards individuals over companies, the challenge of making
the most of the great potential hidden in this growing mass of digitized information
permeates every sector of research, be it industrial or academic.

Information is a valuable resource that can be integrated into any activity, in
order to improve it from an organizational and productive point of view. It can
help in understanding an event, predicting others, or finding seemingly invisible
correlations among them. But analysing and finding meaning in large amounts of
often unstructured data is not a straightforward task. The three "Vs" of "big data",
as first theorized by Douglas Laney [1], can give a more precise idea of the scope
of this task: volume, variety and velocity describe in fact the main characteristics
of this field. With an estimated 44 ZB of stored data (as of 2020), this volume
is growing at an exponential rate, contributing to the speed with which data are
collected and available, in an ever-increasing variety of formats and types.

In this scenario, the development and increased affordability of hardware and
software with fast and cost-efficient computational power has been a driving force
for the development of solutions that not only allow efficient analysis and storage
of this large amount of data, but also use them as a starting point for training
models capable of autonomously extracting complex representations.

This is the case of machine learning, whose purpose is to learn the representation
of data used as input, extracting generalized patterns from it, in order to then
make predictions on new data never seen before; that is, learning from data, to
perform tasks without being explicitly programmed to do so.

Deep Learning can be seen as a complex and, to some extent, natural evolution
of machine learning algorithms, an evolution made possible by the growing amount

1



Introduction

of data that can be used as input and processed with increasing power. Designing
a hierarchical, layered architecture capable of extracting highly abstract features
from data and emulating the human brain learning process, can also be applied to
the most fundamental processing element of these architectures, the neuron. These
stacked non-linear features extractor have achieved impressive results by taking
full advantage of the information contained in large-scale data, without the need
for a domain expert to reduce the complexity of the data.

Quoting Andrew Ng: "The analogy to Deep Learning is that the rocket engine is
the Deep Learning models and the fuel is the huge amounts of data we can feed to
these algorithms.” [2].

It is therefore not surprising that Deep Learning is being used in a variety of
increasingly essential and innovative applications, from natural language processing
to computer vision. In this last field, among the many applications, Medical Image
Analysis represents one of the most difficult and stimulating challenges, with results
in continuous evolution that make its contribution no longer negligible in a crucial
field such as medicine.

The aim of this thesis is to realize a Deep Learning architecture able to help
in the resolution of a concrete problem, the prediction of pathological complete
response in neoadjuvant treatment of breast cancer. Neoadjuvant chemotherapy
(NAC) is widely used to treat locally advanced breast tumors before surgery,
aiming to reduce tumor size and enabling breast-conservation surgery instead of
mastectomy, among other advantages. Pathological complete response (pCR), the
absence of residual invasive disease in the breast or lymph nodes, is associated
with a significantly improved disease-free and overall survival. However, a pCR
is achieved in just around the 30% of the patients after the completion of NAC,
making the prediction of treatment response a crucial early step for identifying
patients who do not benefit from NAC, allowing them to immediately undergo
a different treatment. Speeding up and helping the decision-making process of a
radiologist can therefore be extremely important in such a context, and one possible
way to achieve this goal is to intensively exploit the information contained in the
MRI studies performed on the patient, with particular focus on a study acquired
before the start of NAC therapy and one after completing the first two cycles.

The architecture proposed in this thesis aims to make the most of a dataset that,
in addition to the aforementioned temporal component consisting of the two studies
per patient, is composed of mpMRI studies, i.e. multi-parametric, allowing access
to different sequences using different acquisition protocols, each containing peculiar
information about the lesion. A multi-branch ensemble learning architecture is
therefore used to process all this heterogeneous information as best as possible,
trying to produce a result that is not only reliable, but also enjoys a certain level of
interpretability in the decision-making process. This is done by trying to maintain
the highest possible level of automation, reducing the need for domain knowledge
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and manual intervention by qualified personnel on the source data to a minimum.
The use of all the latest state-of-the-art techniques in the field of Deep Neural

Networks is only part of the construction of such a specific architecture, which uses
as a starting point the studies available in the literature on breast MRI analysis
with Deep Learning, addressing all the challenges typical of the Medical Imaging
field, from the scarcity to the structure of the source data, to specific and often
necessary architectural choices, up to the integration with a traditional medical
pipeline.
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Chapter 2

Medical Image Analysis

Medical Imaging defines the techniques and processes used to generate images
of the human body for various clinical purposes such as medical procedures and
diagnosis or medical science including the study of normal anatomy and function [3].
Extending its definition to that of discipline, it can be considered part of biological
imaging and incorporates radiology.

The technological evolution of this field, which has reached various stages over
the years, from the first applications of X-rays to the most recent MRI modalities,
now poses new challenges and possibilities in the era of big data and digitization.
The role of images, which are becoming more numerous and richer in information,
is increasingly key in the decision-making process of medical experts, from diagnosis
to prognosis and treatment of a disease.

But the interpretation of these complex images can be tedious and prone to
misinterpretation, requiring a great deal of effort from qualified personnel. The
introduction of tools to support the quantification and classification of these data
is an important step towards new standards of quality, service efficiency, and costs
of healthcare along with the reduction of medical errors [4].

2.1 Computer-Aided Diagnosis
CAD systems, standing for Computer-Aided Detection/Diagnosis, have over time
become an integral part of routine clinical work.

The idea and enthusiasm for computers capable of totally replacing humans in
medical tasks dates back to the first examples of digitization of medical images in
the 1960s. But, following a common trend for this type of technology in those years,
excessive enthusiasm soon gave way to disinterest in the face of poor results due to
the lack of adequately powerful technologies at the time. In the 1990s, however,
the concept of CAD as we understand it today re-emerged, this time as a tool to
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be used alongside a radiologist rather than replacing him completely [5].
From a technical point of view, these systems use pattern recognition and

classification techniques to help either in the detection of an abnormality or in its
classification. This makes them particularly suitable for application in the field
of detection and diagnosis of cancerous lesions, a potentially repetitive task for a
radiologist but one with well-defined rules to be learned by a machine.

Supporting evidence from existing medical literature, together with the rapid
development of hardware and software capable of sustaining such applications and
scaling better on the huge amount of data available, as well as the now achieved
integration and standardization by regulatory bodies such as the FDA, make CAD
systems central to many applications such as breast cancer detection.

2.2 Breast Cancer and NAC
According to the World Health Organization, impacting around 2.1 million women
each year, breast cancer is the main cause of cancer-related death among women
and the second most common tumor overall. Outcomes for breast cancer are very
different depending on factors such as the cancer type, the person’s age, and the
extent of disease. The five-year survival rates in developed countries is between 80
and 90%, sinking to 40% for developing countries [6].

Therefore, early detection and an appropriate diagnosis leading to a correct
treatment are critical for improving the survival rate to a certain extent.

NAC, Neoadjuvant Chemotherapy, refers to the systemic treatment of breast
cancer prior to surgery, and is an important option in patients with early-stage breast
lesions. This therapy can convert an unresectable, inoperable tumor to an operable
one, as well as increasing the chances of breast-conserving surgery in patients
with operable breast cancers. Another advantage is the possibility of observing
direct and early stages of response to treatment, allowing fast modifications of the
treatment plan in the event of poor response [7]. This kind of observation offers the
chance for the evaluation of treatment response with complete pathologic response
acting as a surrogate marker of survival, as well as representing an excellent model
to determine the predictive role of tumor characteristics thanks to its correlation
with clinical outcome [8]. Establishing the response to therapy is therefore a
crucial step, and can be done through clinical and pathologic examination, and
using breast imaging studies. Since neoadjuvant chemotherapy induces changes
in the morphology of the tumor, the distribution of residual tumor may change
in studies acquired at different time points during the therapy process. For this
reason, the choice of the imaging modality should be taken according to its ability
to clearly demonstrate the extent of disease at presentation, making MRI the most
informative one for neoadjuvant treatment.
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2.3 Magnetic Resonance Imaging (MRI)
One of the most important discoveries in the field of medical imaging, MRI, or
Magnetic Resonance Imaging, uses the natural properties of the body’s magnetic
field to produce extremely detailed images of any part of the body. It is particularly
suitable for disease detection, diagnosis, and treatment monitoring (especially in
non-bony parts or soft tissues of the body), being a non-invasive technology that
produces detailed, three dimensional anatomical images.

Using a powerful magnet, the protons in the body are forced to align with
a strong generated magnetic field. In particular, the protons’ axes, normally
aligned in a random way, will be all aligned creating a magnetic vector oriented
along the axis of the scanner. The strength of this filed is usually between 0.5
and 1.5 Tesla [9]. An additional energy, a radio-frequency current, is then used
to stimulate the protons, which will now spin out of equilibrium, deflecting the
magnetic vector. When the radio-frequency field is turned off, the realignment of
the protons to the magnetic field causes a radio wave to be emitted. Receiver coils
are used to detect this signal, plotting its intensity on a new generated grey scale,
cross sectional image. The environment and the chemical nature of the molecules,
determining specific tissues or abnormalities, produce different relaxation times (the
time needed to realign after the radio-frequency is switched off). These different
magnetic properties make it possible to distinguish between these tissues, such as
water and fat. Different pulse sequences can emphasize different aspects, as in the
case of “fat suppression”, which will remove the signal from fat leaving only the
abnormalities laying in it. Finally, a further distinction can be made on the basis of
the proton relaxation time considered: T1 relaxation represents the time required
for the magnetic vector to return to the state of rest, while T2 relaxation considers
the return to the state of rest of the axial spin.

2.4 The Future of Medicine?
In a context where the exponential growth of available and processable data,
coupled with astonishing results achieved by machine learning (Deep Learning in
particular), places the emphasis on the possibility of automating human labour,
specific considerations must be made for the medical field. Geoffrey Hinton, a
charismatic figure in the artificial neural network field, stated that "it is quite
obvious that we should stop training radiologists” and Andrew Ng affirmed how
“a highly-trained and specialized radiologist may now be in greater danger of being
replaced by a machine than his own executive assistant” [10].

While the available literature suggests how a considerable progress has been
made in recent years, both in terms of accuracy and efficiency, in the use of CAD
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systems (and more specifically in all the main steps of breast tumor detection
and classification), many challenges still remain and many questions need to be
answered regarding the integration of this breakthrough technology to the medical
workflow. An investigation paper carried out by the European Society of Radiology
(ESR) [11] has concisely listed most of the issues that machine learning has to face
in the medical field: from the need for large, unbiased and annotated datasets, to
the regulating issues (often inadequate to handle the rapidity with which algorithms
evolve by using the same validation standards applied, as example, to new drugs).
Furthermore, medico-legal responsibility should not be underestimated, with the
question "who is responsible for the diagnosis" more relevant than ever due to the
introduction of outputs from "black-box" algorithms to the clinical workflow.

It should become more and more clear how the figure of a radiologist can’t
be totally replaced by an algorithm, however the impact of machine learning is
undeniable and potentially decisive into shifting the expertise of trained radiologist
from more time-consuming and mechanical tasks to more sophisticated and useful
ones. The only radiologists at risk of losing their job are the ones who refuse to
work with AI [12].
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Chapter 3

Deep Learning applied for
Breast DCE-MRI

The complex nature of MRI sequences, which constitute a source of information
in four dimensions (three spatial dimensions plus the temporal one), provides a
valuable source of information in the medical field, while introducing an element of
difficulty for their correct interpretation, and not only by a neural network.

Reading and analyzing such information-rich sequences, leading to a diagnostic
result, can be a very error-prone and tedious task for a human. The introduction of
Computer-aided Detection and Diagnosis systems (CAD) in the clinical workflow
can potentially reduce the radiologists’ workload, reduce the inter- and intra-
observer variability and provide a second reading, by automating some of the
diagnostic tasks.

A typical CAD system is composed by two main phases: the analysis one and the
diagnostic one. During the former, after a pre-processing stage, anatomical structure
of the images and their features are extracted. This can be achieved by delineating
a region of interest (ROI) and acquiring its features (CADe). These features are
then used in the diagnostic phase, by integrating them in a classification procedure
(CADx). The basic components of a CAD system are, therefore: pre-processing,
segmentation, feature extraction and selection, and classification [13].

The aim of the following analysis is to explore the available literature about these
"modules", retracing all the steps from image acquisition to tumor classification
and treatment response prediction in the field of breast DCE-MRI, focusing on the
state-of-the-art approaches, most of them exploiting a Deep Learning solution.
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3.1 Applications in the Medical Field
We can define radiomics as the conversion of medical images into high dimensional
mineable data [14]. Traditional machine learning methods require hand-engineered
features, both quantitative and qualitative, composing a “radiomic signature” used
to learn patterns in data. While attaining promising results even in the specific field
of the prediction of pathologic response to neoadjuvant therapy in breast cancer,
as Cain et al. [15] demonstrated by training two multivariate machine learning
models (logistic regression and SVM) only on features of pre-treatment MRIs, or in
still not fully explored contexts such as multi-parametric MRIs, where Tahmassebi
et al. [16] achieved high accuracy and stable performances testing eight different
classifiers, the trend in medical imaging analysis is rapidly shifting towards Deep
Learning.

Even if the use of Deep Learning in the era of big data analytic in the context of
medical imaging is far from fully documented, the ability provided by Deep Learning
algorithms to remove human knowledge in parsing any substantial information is a
crucial step [17]. Being able to learn features as data representatives, directly from
raw medial images, without additional effort or prior knowledge is indeed a key
characteristic of Deep Learning algorithms, that if combined with the increasingly
available computational power explains the growing popularity of this approach
in the medical imaging field, and also in the specific breast DCE-MRI one. But,
although several overview papers such as Lo Gullo et al. [18] and Debelee et al. [19]
have stated the impressive performance of Deep Learning, especially Convolutional
Neural Networks, compared to traditional machine learning, several new challenges
need to be tackled.

In spite of the automated feature extraction advantages, data centrality poses
additional challenges that can be especially hard to solve in the medical field,
one of them representing the need of large datasets to provide sufficient training
samples. On one hand, the performance of CNNs in this field increases when
more training data is available, contrary to radiomics algorithms [20], on the other
hand Hamidinekoo et al. [21] schematically indicated in their overview paper that
more standardized procedures, both in technical phases like image acquisition by
scanners and annotation operations for an appropriate ground truth, as well as a
better interpretability of information provided by the layers of the model are still
required for building suitable datasets. Finally, it is worth noticing how several
studies have assessed that an optimal result is achieved when CNN are used for
fusion classification together with human-engineered radiomic features, suggesting
that prior knowledge, when available can still make a substantial difference [22].

All these advantages and future challenges will become clearer while analyzing
the implementation choices of state-of-the-art Deep Learning approaches used in
the CAD pipeline for breast DCE-MRI, here taken in consideration.
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3.2 Pre-processing
Each step of the MRI-based radiomics workflow lacks standardization in the pub-
lished literature. Granzier et al. [23] in their systematic review, using a Radiomics
Quality Score (RQS) applied to different studies, stated that the overall promising
state-of-the-art results are difficult to compare, due to the great methodological
differences especially in segmentation, feature selection and model development.
In particular, considering the information-rich data provided by DCE-MRI, very
different choices can be made to exploit them: focusing on the 3D spatial aspect, or
on different slices extracted by them rather than on the temporal dimension, using
images acquired at different time-points. These choices, that represent a crucial
aspect of the state-of-the-art approaches, will be further explored when the specific
studied solutions will be described, both in lesion detection and in classification.

However, preliminary low-level operations on the image aimed to reduce noise and
improve quality represent a crucial pre-processing step described in all available
literature references. These operations also include a first segmentation step,
involving the whole breast, which by exploiting anatomical features extracts a mask
only representing the breast parenchyma, thus removing other tissues, the pectoral
muscle and the chest wall.

3.2.1 Image Normalization and Denoising
Since Deep Learning algorithms are very sensitive to these factors, essential image
pre-processing operations are image resizing, as well as normalization (by excluding
extreme values, transforming the value range, subtracting the mean and dividing by
the variance) and bias-correction to eliminate the heterogeneity of light distribution.

It must be noted that the peculiar characteristics of a DCE-MRI dataset usually
involve additional steps even in this phase, combining the traditional normalization
used for Deep Learning networks with more domain specific applications. The
introduction of a contrast agent, implicating a considerable variation along the
temporal dimension, generates a different intensity distribution in the post-contrast
frames, compared to pre-contrast ones. A subtraction between the former and the
latter is often performed, aiming to emphasize the contrast enhancement while
suppressing the constant background.

Applying a denoising deep neural network like DnCNN on the normalized images
could also be a viable solution [24].

3.2.2 Breast Volume Segmentation
The process of breast volume segmentation in MRI images is not so straightforward,
and many automated or semi-automated solutions have followed across the years,
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from conventional image processing ones, to conventional machine learning all the
way to Deep Learning.

The removal of unwanted voxels (hence reducing the following computational
effort) was initially achieved with pixel-based approaches, like the one based on
Otsu’s thresholding and morphological refinements post-processing proposed by
Viganti et al. [25]. Other geometrical and atlas-based solutions are now outper-
formed by Deep Learning algorithms, in particular the ones exploiting the semantic
segmentation provided by U-Nets [26].

Piantadosi et al. [27] automatically segmented the breast parenchyma from air
and other tissues by applying a 2D U-Net to the 3D volume MRI data, feeding
the architecture with a composition of different slices from different projection
planes. The use of a 2D network instead of a 3D one allowed the saving of around
66% of trainable parameters, while achieving state-of-the-art result measured in
accuracy, sensitivity and Dice Similarity Coefficient (DSC). The performance was
also comparable on all projection planes. In a follow-up study [28] this solution was
further expanded by segmenting the three projection planes with different U-Net
networks, using a multi-planar approach by merging these three outputs with a
combination rule (the Weighted Majority Voting strategy performed best).

Xu et al. [29] also assessed the potential of U-Net breast segmentation, specif-
ically on transverse fat-suppressed DCE-MRI, enhancing the performance with
appropriate post-processing, exploiting the segmented breast candidates’ volumes
(in the choice making step the smaller one was deemed as a scar and discarded).

Figure 3.1: Segmentation results. Red line: the segmentation of proposed method;
green line: manual segmentation; yellow line: the overlap of green line and red line
(extracted from the original paper by Xu et al. [29]).

Zheng et al. [30] helped the 2D U-Net in the still difficult task of identifying the
boundary between breast and pectoral muscle on MRI images by adding, along
with the pre-processed MRI slice, two spatial coordinates indicating the breast
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position. The middle point of the breast-air boundary was selected as the origin of
coordinates, allowing the so created coordinate-guided U-Net to perform better
than a traditional one, especially by avoiding false positives.

The advantages of U-Net were also extensively reported in [31], where no
significant benefits emerged in the use of 3D U-Nets over 2D ones and in the use of
pre-contrast T1 weighted images with or without fat suppression.

3.2.3 Motion Correction
Once the volume of interest (VOI) is efficiently cropped, the next pre-processing
step requires a motion correction technique (MCT) to perform image registration:
to reduce motion artefacts that may occur in the image acquisition stage, the
volumetric images acquired at different time-points need to be aligned, in order
to better compare their respective information. This can be a crucial operation
especially when tumor volumes are evaluated before and after chemotherapy, or
when a subtraction between a post and a pre-contrast image needs to be done.

In most of the literature examined, motion correction operations were not
specified, or simply achieved with an affine 3D transformation. Antonio Galli et
al. [32] assessed the impact of motion correction on Deep Learning approaches
used on breast MRI-DCE, suggesting that a simple MCT can still increase the
performance of lesion segmentation tasks, while having an almost irrelevant influence
on lesion classification.

The use of Deep Learning for the task of image registration is still new and
barely covered in literature.

3.2.4 Data Augmentation
In a context where the lack of training data is a major issue and large annotated
dataset are often unavailable, data augmentation can represent an essential solution.
Through transformations like rotation, translation and flipping (which are partic-
ularly suitable for MRI images), new training images can be created, improving
the performance of Deep Learning networks while also avoiding overfitting. This
can also help in the task of balancing the often-unbalanced classes within medical
datasets. Almost the totality of the current literature used this pre-processing
technique.

An innovative approach could be represented by the use of Generative Adversarial
Networks (GANs), able to perform photo-realistic image synthesis. Guan and
Loew [33] explored the application of GANs both for image augmentation and
transfer learning to improve the performance of a CNN classifier, using a breast
mammogram dataset: the generated GAN ROIs helped the training process,
avoiding overfitting, and the image augmentation provided by GANs was shown
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as necessary to train a CNN from scratch. However, they did not succeed into
training a CNN with transfer learning only on generated ROIs.

The application of this image synthesis approach on MRI image data was tested
by Shin et al. [34], by generating abnormal brain tumor MRI images with a GAN
based on pix2pix. Improvements in segmentation performance were measured, as
well as allowing the training on a completely anonymized dataset.

Figure 3.2: Real and synthetic abnormal ROIs generated from GAN (extracted
from the original paper by Guan and Loew [33]).

3.3 Lesion Detection
An accurate breast lesion detection through segmentation is a decisive step in a
CAD workflow, representing an essential tool in providing a meaningful input to
the classification module, in extracting a ROI to perform quantitative radiomics
analysis or into evaluating tumor region changes. This challenging task, made
difficult by the complexity of the background breast tissue and by the tumor shape
irregularity, is now approached with Deep Learning methods, thus avoiding manual
segmentation and classical machine learning methods dependent on handcrafted
features.

As in the case of breast segmentation, the U-Net architecture seems to be the
most common choice in the latest literature, being able to perform an efficient tumor
segmentation using MRI slices, both in a 2D and 3D U-Net fashion [35]. However,
very different implementation choices are available within this same architecture,
based on how to exploit the 4D data provided by DCE-MRI and the different
clinical screening settings. Dalmış et al. [36] focused only on the early-phase scans,
extracting spatial information from them: given a MRI axial slice, a U-Net outputs
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a likelihood map for each voxel, combining those maps provides a likelihood volume
used to select a candidate. Among those candidates, false positives are further
reduced through the use of a 3D CNN, able to exploit the 3D morphology of the
candidate regions.

Figure 3.3: Sample slices showing the great variation inherent in the task of lesion
detection (extracted from the original paper by Zhang et al. [35]).

Lu et al. [37] instead took advantage of four different image modes from breast
MRIs (T1W, T2W, DWI, and SYN), building a four-mode linkage backbone with
a CNN (DenseNet, with transfer learning and data augmentation performed best)
used for feature extraction. The features extracted from the four different image
modes are then concatenated and used to refine the tumor segmentation task by
initializing a U-Net with a modified upsampling process, which uses a sub-pixel
method.

The temporal dimension of breast MRI plays a key role in [38], where the tumor
segmentation is still achieved with a U-Net, but with a training that uses three
different, well-defined temporal acquisitions of the same MRI slice as channels of
the input image. This approach obtained a good compromise between results in
terms of DSC and efficiency provided by the simple architecture (no additional
nets are required to train temporal features).

An attempt of using both sides of the spatio-temporal information was made by
Chen et al. [39], using a convolutional long short-term memory network for feature
extraction. This architecture is particularly suitable for processing sequence data
with spatial correlation, and the use of three parallel ConvLSTM pathways, each
given respectively the current, preceding and subsequent sequence of the same slice,
allows the extraction of 3D information around the lesion. After a feature fusion
stage, a U-Net with only two pooling operators is trained for lesion segmentation.
Besides a promising result provided by the dice coefficient, this work also assessed
how a dice coefficient loss is more suitable to solve the unbalance problem in breast
lesion segmentation.
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A radically different approach is taken in consideration by Maicas et al. [40],
proposing a deep reinforcement based method for accurate lesion detection with
less inference time. A deep Q-network is used to decide the next segmentation
action, evaluating the features extracted from a bounding box by a ResNet network
“agent”. The DQN network can decide to translate/scale the bounding box, or to
end the search for the lesion. State-of-the-art performance is achieved.

3.4 Lesion Classification
The final step of a CADx system is the classification of the lesion, meaning the
binary classification of a lesion as benign or malignant. An automated approach that
provides the radiologist with a valuable aid can be particularly useful considering
the complex nature of a breast DCE-MRI scan, where even the slightest change in
the lesion’s temporal enhancement pattern can be decisive in determining the nature
of the lesion itself. The literature trend of the last years shows, as predictable,
a strong trend towards Deep Learning approaches, exploiting automatic feature
extraction from the segmented lesion ROIs. However, some studies still value the
additional support provided by classical hand-engineered features.

The first implementation of a CNN for this task can be tracked back to Antropova
et al. [41], which already adopts one of the still most common architectural choices
in this field, in relation to one of the main problems of medical imaging, namely
the lack of training data: a pre-trained CNN is used. An AlexNet architecture,
pre-trained on the ImageNet database, is employed as a feature extractor from
ROIs, features that are then used as input for a Support Vector Machine (SVM),
classifying the lesions. The obtained area under the receiver operating characteristic
curve (AUROC), useful as a metric because independent of cancer prevalence, was
0.85, showing promising potential. The use of Deep Learning architectures in this
task rapidly increased, showing again different variations based on how to 4D data
was used.

In [42], a mixture ensemble of CNN has been employed to efficiently process
the high-dimensional data, with a fixed number of “expert” networks focusing
each on a region of the input space and a “gating” network used to properly fuse
their outputs. All the CNNs are trained together in an end-to-end optimization
approach, achieving good performance and fast execution time.

The temporal dimension plays a key role in [43], where three different time-points
of the same ROI are used as input in the color channels of a pre-trained VGG19
network, operating as feature extractor. Specifically, features are extracted from
the five max-pooling layers, and then average-pooled along the spatial dimension,
before as being used as input for an SVM. It is also worth noticing how the best
results were achieved when traditional hand-crafted CADx features were fused
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together with the CNN extracted ones.

Figure 3.4: (a) Examples of slices with the corresponding ROIs extracted. Benign
case on the left, malignant one on the right. (b) ROIs, extracted from the pre-
contrast time-point (t0) and the first two post-contrast time-points (t1, t2), input
into the three color channels of VGG19 (extracted from the original paper by
Antropova et al. [43]).

In a follow-up study, Antropova et al. [44] took another step forward, improving
the accuracy, by also including the spatial dimension along the temporal one,
exploiting Maximum Intensity Projections (MIP): the idea is to use the same
architecture as before, but with MIP images as input for the VGG19. They are
obtained by a subtracted MR image collapsed by selecting the voxel having the
maximum intensity along the projection through all transverse slices, forming a 2D
image from a 4D DCE-MRI, therefore retaining information about enhancement
changes throughout the whole lesion volume. Hu et al. [45] obtained even better
results by max-pooling CNN features from all slices of a given lesion, reducing the
image at feature level on the axial dimension instead of image level, as in the MIP
case.

Long Short-term Memory (LSTM) networks were also tested in the task of lesion
classification, allowing morphological and temporal information to be captured by
extracting features from different time-points of the same MRI ROI using pretrained
CNNs, one for each. The extracted features are then used to train the LSTM
network, outperforming in this way a fine-tuned VGGNet [46].

Besides the focus on Deep Learning, knowledge provided by the radiomics
field has regained great consideration in recent studies, but this time integrated
along with the data extracted features. Gravina et al. [47] followed the radiomics
methodology of the “three time points”, using well defined time-points of a single
slice as channels for the input image to a fine-tuned CNN, combining all the outputs
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from all the slices of a single lesion with a specified rule, to classify each one as
benign or malignant. The results are independent of the image acquisition protocol
used and of the selected pre-trained CNN, as long as three different temporal
acquisitions are available and the network adopts a three-channel input layer the
approach remains valid. In [48] instead, the inclusion of some peritumor tissue,
adjacent to the ROI containing the tumor, has been considered: this approach
further demonstrated how Deep Learning methods have the potential to outperform
ROI or radiomics based ones in diagnostic accuracy, and by evaluating different
bounding boxes showed how the inclusion of a relatively small amount of peritumor
tissue along with the tumor itself as input ROI for a pre-trained CNN can provide
useful information, boosting the accuracy.

Feng et al. [49] included some domain knowledge along the data-driven features,
to better relate those otherwise “black box” features to a clinically relevant phenom-
ena. The main idea is to divide the DCE-MRI sequence in different sub-sequences,
each one specifically focusing on a different feature type (exploiting pre-processing
techniques), constraining in this way those features to semantic characteristics of
the lesion. After this sequence division module, an adaptive weighting one is used
for feature integration. The different sub-sequences are individually processed by
different Deep Learning architectures, chosen accordingly to the specific highlighted
characteristics of the lesion. The weighting will then integrate all those features
and has also the ability to determine which sub-sequence contributed the most to
the classification choice. This approach achieved state-of-the-art results on the used
dataset in terms of sensitivity, specificity and accuracy, showing the importance of
implementing domain knowledge into Deep Learning.

Further attention to feature extraction is given in [50], where a CMSL-driven
deep network is used to learn more separable inter-class features and more compact
intra-class features, tackling the heterogeneity problem of tumors. CMSL, standing
for “cosine margin sigmoid loss”, embeds the deep feature vectors onto a hyper-
sphere and learns a decision margin between classes in the angular feature space. A
3D ResNet, trained with CMSL, outperformed other architectures, learning more
underlying feature patterns in data.

3.5 NAC Response Prediction
Finally, particular attention was paid to the recent literature dealing with the
prediction of NAC treatment response. In this scenario prediction of pathologic
complete response is crucial, and other considerations besides the binary classifi-
cation of the segmented lesion need to be considered, such as taking into account
and comparing the follow-up DCE-MRI scans with the pre-treatment ones, rather
than evaluating only the initial scans to perform the prediction process.
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A first evaluation on how to exploit the temporal dimension of DCE-MRI scans
in relation to the prediction of response to neoadjuvant chemotherapy was done
by Huynh et al. [51] by feeding a pre-trained VGGNet with different subsets of
MRI data (acquired before and after treatment), separated in pre-contrast, first
and second post-contrast time-points (the different combinations, as well as the
integration in a RGB channel where also evaluated). The performance of this
features was tested by an Linear Discriminant Analysis (LDA) classifier, showing
how ROIs from the pre-contrast time-point subset are particularly useful.

Ha et al. [52] explored the capability of a CNN to predict NAC treatment
response by only using breast DCE-MRI scans obtained prior the initiation of
the therapy, achieving an accuracy of 88%. Ravichandran et al. [53] performed a
similar attempt on pre-treatment MRIs with comparable results when considering
both the pre and post-contrast phase, but further increased performance by adding
clinical HER2 status to the CNN’s consensus.

The use of two breast tumor MRI slices acquired before and after the first
round of chemotherapy was analysed by El Adoui et al. [54] with the use of a
CNN employing two VGG-like branches. Using slices from the appropriately pre-
processed and aligned VOIs from both the DCE-MRI scans notably improved the
classification accuracy.

Figure 3.5: Overview of the architecture proposed by El Adoui et al. [54]. The
branches take two 120 x 120 breast tumor ROIs. Each branch uses four blocks of
2D convolutuion (32 kernels for the first two, 64 for the remaining), with ReLu as
activation function and Max Pooling.

In a follow-up study [55] the 3D nature of the data was exploited, modifying the
CNN architecture: the two branches, fed with pre and post chemotherapy slices,
are now repeated three times, processing respectively the axial, transversal and
coronal slice of the DCE-MRI data. The proposed 3D approach achieved an AUC
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value of 0.92, delivering a very good performance and demonstrating again the
additional value of MRI data acquired after the first round of chemo.

The potential of Deep Learning architectures for this specific task, as well
as that of the combined use of data from pre- and post-NAC studies is further
confirmed by Byra et al. [56], showing how a Siamese network using data after
the second cycle of NAC can improve prediction compared to a neural network
based solely on studies acquired before the start of therapy. The best AUC value
reported was 0.84, and regardless of the data considered, the performance of
automated Deep Learning architectures was better than models using manually
extracted morphological features. These results are further extolled by Choi et
al. [57], using a simple architecture based on AlexNet to obtain good results on a
dataset consisting not only of MRI but also PET/CT images. Several quantitative
features are extracted and used as a baseline for predicting response to therapy,
demonstrating the potential of CNNs and once again the usefulness of integrating
studies performed after the first cycles of NAC.

Qu et al. [58] made another step towards performance improvement by building
a Deep Learning model able to predict pCR to NAC from pre and post NAC
MRI data: a multi-path CNN was inputted by six distinct enhancement phases
from pre-NAC MRI and by other six from post-NAC. The individual feature
extraction process for each of the 12 channels involved a concatenation of max-
pooling layers and cropping operations. A molecular sub-type index was also
added as an additional input channel in the feature concatenation stage, which did
however not provide any benefits in terms of accuracy but could still carry valuable
information for clinical practice. The combined model, using both pre and post
NAC data, produced impressive state-of-the-art results in terms of AUC (0.97) and
positive predictive value (100%), exploiting in the best possible way the changes
inside the tumor, both in volume after the therapy and during the enhancement
phases, dealing in the most efficient way such a difficult and crucial task.

The idea of a multi-path architecture is also explored by El Adoui et al. [59],
developing two parallel CNN sub-networks, each analysing pre- and post-NAC
studies separately. The extracted features are concatenated and used for pCR
prediction, post dropout and a fully connected layer. The inputs taken into account
are VOIs extracted from lesions shown in DCE-MRI images. An interesting
experiment is done giving in input to the network these volumes both segmented
(i.e. extracting only the tumour) and not (i.e. including besides the tumour also
the surrounding tissue) analysing then the different performances. It is also the
combined use of both pre- and post-NAC studies that records the best AUC (0.91).
Interestingly, the non-segmented input obtains the best results, a result that is
also confirmed by visual inspection made possible by Grad-CAM. In particular,
the area surrounding the tumour seems highly relevant for non-pCR patients,
while the tumour itself is more focused for pCR patients. The importance of the
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region surrounding the lesion is emphasised not only by the latter but also by
several studies analysed, both in the case of lesion classification and NAC treatment
response, as it can provide information related to lymphocytic infiltration.

3.5.1 The NAC Baseline
The studies analyzed show how the use of Deep Learning applied to NAC response
prediction can drastically improve the whole clinical workflow when used in con-
junction with the knowledge of radiologists, which can be crucial especially for NAC
where an early feedback provided to a radiologist can really make the difference in
the care of a patient. The solutions differ greatly in terms of the input data used
and the architecture employed, as well as the performances and the type of focus
chosen for the output.

Starting with these results as a baseline, this thesis aims to build an architecture
that exploits a mpMRI dataset as input (a case still not fully explored in literature),
using only full slices, for assessing treatment response to NAC.

Network Dataset (MRI Patients) MRI Sequences Used Input Type Architecture Performance
Tahmassebi et al. [60] 37 DCE, DWI, T2 Qualitative/quantitative features XGBoost AUC: 0.86
Huynh et al. [51] 64 DCE (3-Time-Points) ROI crops VGGNet AUC: 0.85
Ha et al. [52] 141 DCE Voxel crops VGGNet-like Acc: 88%
Ravichandran et al. [53] 166 DCE (pre-treatment only) Patches from index slice CNN with 6 blocks AUC: 0.77
El Adoui et al. [54] 42 DCE ROI crops VGGNet-like AUC: 0.96
El Adoui et al. [55] 42 DCE ROI crops VGGNet-like AUC: 0.92
Qu et al. [58] 302 DCE ROI crops Custom Multi-path CNN AUC: 0.97
El Adoui et al. [59] 42 + 14 external for validation DCE, DWI VOI crops Custom Multi-input CNN AUC: 0.91

Table 3.1: Characteristics and classification performance of other NAC studies.
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The Dataset

The analyzed dataset consists of 37 patients who were diagnosed with histopatho-
logically established breast cancer and underwent NAC treatment between April
2008 and April 2013.

Some precise inclusion criteria were followed: each patient was over 18 years
old, not pregnant, not lactating and had not undergone nor given any signs of
contraindications for MRI or MRI contrast agents.

All patients underwent mpMRI; in particular, the sequences considered refer
to a scan performed two weeks before the start of the first NAC cycle, and to one
performed after two cycles of the neoadjuvant therapy.

The assessment of pathological treatment response was achieved through the
residual cancer burden (RCB) score, with RCB 0 standing for pCR.

The RCB is an index that combines pathology measurements of the primary
tumor and nodal metastases and has been shown to be effective for the prediction
of disease recurrence and survival across all breast cancer subtypes [61].

Originally defined by Symmans et al. [62] as a continuous variable calculated on
the bi-dimensional diameters of the primary tumour bed, on its proportion that
contains invasive carcinoma, on the number of axillary lymph nodes containing
metastatic carcinoma and on the diameter of the largest metastasis, it is a reli-
able indicator for assessing pathological treatment response, especially after NAC
treatment [63].

Out of the 37 patients 9 achieved a pCR with no evidence of residual disease,
28 did not.

4.1 MRI Modalities
The mpMRI scans of the breast have been acquired at 3 Tesla in the prone position
(Trio Tim; Siemens Medical Solutions, Erlangen, Germany) using a dedicated
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4-channel breast coil (In Vivo, Orlando, FL), providing high-resolution and high-
quality imaging of both breasts.

The following protocol was used before and during NAC:

• DCE-MRI: a hybrid DCE-MRI protocol was used with the following se-
quences: until December 2011 a T1-weighted volume-interpolated breath-hold
examination sequences (TR/TE, 3.62/1.4 milliseconds; FOV, 320 mm; 72
slices; 1.7 mm isotropic; matrix, 192 x 192; one average; TA, 13.2 seconds
per volume; 37 measurements) and T1-weighted turbo fast low-angle shot
3-dimensional sequences with selective water excitation (TR/TE, 877/3.82
milliseconds; FOV, 320 mm; 96 slices; 1 mm isotropic; matrix, 320 x 134; one
average; TA 2 minutes) with a total time of acquisition of 9:20 minutes [64].
From January 2012, a transversal T1-weighted time-resolved angiography with
stochastic trajectories was acquired (water excitation fat saturation; TR/TE,
6.23/2.95 milliseconds; flip angle, 15 degrees; FOV, 196 x 330 mm2; 144 slices;
spatial resolution, 0.9 x 0.9 x 1 mm; temporal interpolation factor 2; temporal
resolution, 14 seconds; matrix, 384 x 384; one average; center k-space region
with a resampling rate of 23%; re-acquisition density of peripheral k-space of
20%; and TA, 6:49 minutes).

• DWI: a double-refocused, single-shot echo-planar imaging with inversion
recovery fat suppression: TR/TE/time of inversion, 13700/83/220milliseconds;
FOV, 340 117mm; 40 slices at 3.5mm; matrix, 192 x 64 (50% oversampling);
2 averages; b-values, 50 and 850 s/min2; and TA, 3 minutes 19 seconds.

• T2: a T2-weighted turbo spin echo sequence with fat suppression: time of
repetition (TR)/time of echo (TE), 4800/59 milliseconds; field of view (FOV),
340 mm; 44 slices at 4 mm; flip angle, 120 degrees; matrix, 384 x 512; and
acquisition time (TA), 2:35 minutes.

The total MRI examination time for each study lasted from 10 to 12 minutes. A
standard dose of gadoterate meglumine (Gd-DOTA; Dotarem; Guerbet, France) of
0.1 mmol/kg body weight was injected intravenously as a bolus at 4 mL/s followed
by a saline flush.

The great heterogeneity of the dataset, which differs profoundly in the protocols
used in addition to the obvious and inevitable variations inherent in the acquisitions
made on the various patients, represents at the same time the greatest challenge
to overcome and the greatest asset to build an architecture capable of making
predictions on new data.

Being mpMRI studies, that is multi-parametric, for each patient a potentially
large amount of information is available to be extracted from different sequences
(DCE-MRI, DWI and T2), each of which could provide significant indicators to
predict the response to NAC therapy.
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Figure 4.1: Example of slices extracted from sequences belonging to the same
pre-NAC study. Starting from left: DCE-MRI, DWI, T2.

Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) has
been shown as a powerful solution in screening different tumor tissues, gaining an
increasing popularity in the field of breast cancer early detection, due to the high
sensitivity and high resolution in dense breast tissues as well as the characteristic
of retaining high 3D resolution and dynamic information. A 3D volume of the
breast is acquired at different times, before and after of the intravenous injection
of a contrast agent, thus resulting in a 4D volume (three spatial dimensions and a
temporal one).

This non-invasive acquisition technique allows the visualization of the extent of
disease and its angiogenic properties, as well of visualization of lesion heterogeneity,
detection of changes in angiogenic properties before morphological alterations,
and can carry very useful information for the prediction of overall response either
before the start of therapy or early during treatment, as extensively documented
by Turnbull [65].

DWI, standing for Diffusion-Weighted Imaging, can instead provide insights into
tissue micro-structure by visualization and quantification of water diffusivity. It
allows the evaluation of the Apparent Diffusion Coefficient (ADC), which has been
proven helpful for cancer sub-typing in breast cancer patients and in prediction of
response to neoadjuvant chemotherapy. Spick et al. [66] showed that DWI of breast
lesions can provide consistent characteristics to support its use as a potential QIB
(Quantitative Imaging Biomarker), being an objective characteristic derived from
an in vivo image that can be measured and used to indicate a biological process,
disease process, or drug response.

Finally, the T2-weighted sequences can provide a valuable aid in false-positive
rate reduction, distinguishing well-circumscribed breast carcinomas from common
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benign breast masses. In addition, edema, mucus, hemorrhage and cystic fluid
within a lesion are clearly depicted on T2-weighted sequences [67].

Adding a further level of available information, as well as complexity, to the
dataset is the temporal nature of a prediction based on response to NAC therapy:
for each patient two studies are available, carried out at different times (two weeks
before the first cycle of NAC and after two cycles) using the same acquisition
modalities.

4.2 Machine Learning with mpMR for
Early Prediction of Response to
Neoadjuvant Chemotherapy

In 2018, Tahmassebi et al. [60] conducted a joint study by Florida State University
and the Medical University of Vienna, stating the potential of machine learning to
perform early prediction of pathological complete response to NAC on the same
dataset used for this thesis.

Since the objective of the latter study is the same as that of the architecture
proposed in this thesis, but using classical machine learning algorithms instead of
Deep Learning, it is important to deepen the results already achieved, inspecting
them taking into account the various substantial differences.

The study used 8 machine learning algorithms (logistic regression, support
vector machine, linear discriminant analysis, decision tree, random forest, stochastic
gradient descent, adaptive boosting and extreme gradient boosting “XGBoost”) to
predict the pCR based on the RCB class on the mpMRI data.

In order to properly train and use these algorithms, intensive feature extraction
work is required to facilitate the learning process from the input data. These
hand-crafted features inevitably add a semi-automatic component to the pipeline,
requiring the prior intervention of experienced personnel, which can be very time-
consuming. In particular, two experienced radiologists extracted both qualitative
and quantitative features from the imaging data (23 features for each lesion). As
features are measurable properties of the data, in the case of an mpMRI dataset
they will include parameters such as lesion size, signal intensity, presence or absence
of edema, shape, margins, as well as mean plasma flow, volume distribution and
the mean, minimum, and maximum ADC coefficient. By using recursive feature
elimination an optimum ranking of the features has been computed, reflecting
in this way their importance in the model and showing how both quantitative
and qualitative features, containing information found in all the available image
modalities (DCE, DWI, T2), are necessary.

Regarding the classification process, the best results were yielded by XGBoost.
XGBoost is a machine learning algorithm developed by Tianqi Chen and Carlos
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Figure 4.2: Feature importance of mpMRI model in prediction of RCB class
(extracted from the original paper by Tahmassebi et al. [60]).

Guestrin [68] which gained popularity for prediction problems on small-to-medium
structured data, exploiting its decision-tree-ensemble with gradient boosting nature.

Figure 4.3: Best AUC (mean AUC) reported for each classifier (extracted from
the original paper by Tahmassebi et al. [60]).

On the mpMRI NAC dataset, taking full advantage of the hand-crafted features,
the model achieved a good performance on pCR prediction, with a mean AUC
value of 0.86 based on 4-fold cross-validation.

These results constitute an important reference point, not only to highlight the

25



The Dataset

potential of machine learning applied to a multi-parameter MRI dataset, but also
to build a new Deep Learning architecture that extracts features from the same
dataset in a totally different way.

Patient DCE (MRI1) DWI (MRI1) T2 (MRI1) DCE (MRI2) DWI (MRI2) T2 (MRI2)
1 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
2 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn_fs Resolve_0_850_FS+ tirm_tra
3 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
4 t1_dyn 2min ep2d_diff_stir_10b tirm_cor t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_cor
5 t1_dyn 2min ep2d_diff_stir_10b tirm_cor t1_dyn 2min ep2d_diff_stir_10b tirm_cor
6 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
7 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
8 t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_cor t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_cor
9 t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_cor t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_cor
10 t1_dyn 2min ep2d_tra_2b_spair tirm_sag t1_dyn 2min Resolve_0_850_FS+ tirm_tra
11 TWIST_tra_dyn Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
12 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
13 t1_dyn 2min ep2d_diff_stir_10b tirm_cor t1_dyn 2min ep2d_diff_stir_10b tirm_cor
14 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
15 t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_tra t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_tra
16 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
17 t1_dyn_fs Resolve_0_850_FS+ tirm_tra t1_dyn_fs Resolve_0_850_FS+ tirm_tra
18 TWIST_tra_dyn Resolve_0_850_FS+ tirm_tra TWIST_tra_dyn Resolve_0_850_FS+ tirm_tra
19 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
20 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
21 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
22 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
23 TWIST_tra_dyn Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
24 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
25 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
26 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
27 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
28 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
29 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_sag
30 t1_dyn 2min ep2d_diff_stir_2b_sl3.5 tirm_tra t1_dyn 2min ep2d_diff_PA_SPAIR tirm_sag
31 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
32 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
33 t1_dyn 2min Resolve_0_850_IR+ tirm_tra TWIST_tra_dyn Resolve_0_850_IR+ tirm_tra
34 t1_dyn 2min Resolve_0_850_IR+ tirm_tra t1_dyn 2min Resolve_0_850_IR+ tirm_tra
35 TWIST_tra_dyn Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
36 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra
37 t1_dyn 2min Resolve_0_850_FS+ tirm_tra t1_dyn 2min Resolve_0_850_FS+ tirm_tra

Table 4.1: Sequences available for each patient. Three for the pre-NAC MRI
study, three for the post-NAC MRI study.
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Deep Learning Architecture

The proposed architecture aims to optimally utilize the abundant information
found in mpMRI scans in order to correctly classify full slices containing a lesion,
predicting whether or not pCR is achieved. The idea is to identify and extract
sub-sequences for each patient, and then appropriately include the time dimension
represented by the available second mpMRI scan, performed after two cycles of
NAC.

5.1 Input Data
The multi-parametric scanning protocol used, allows access to different types of
sequences, each with its own properties to be exploited in order to extract as much
information as possible from the lesion. Specifically, Dynamic Contrast- Enhanced
MRI (DCE-MRI) provides a complex sequence of rich lesion information that
can simultaneously reflect morphological and hemodynamic related characteristics,
while the Diffusion-Weighting Imaging (DWI) can reveal the free water molecules
diffuse movement information of lesions, and the T2-weighting images have an
intense signal for edematous lesions.

Let the dataset be represented by D = {Pw
i , yi}i=1D with Pw

i a patient and
y ∈ Y = {0,1} the label for the lesion, having value yi = 0 when pCR is achieved
and yi = 1 otherwise. Since for each patient Pi two mpMRI studies are available,
the index w ∈ W = {1,2}, represents the selected study, pre-NAC or post-NAC.
For each of these studies we identify and extract Sk sub-sequences, with k index of
a sequence. Finally, each sub-sequence is represented by Xj slices. The selected
sub-sequences will thus be:

• Lesion slices extracted from DWI sequences.
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• Lesion slices extracted from T2 sequences.

• Lesion slices extracted from the peak-enhancement phase of DCE-MRI se-
quences.

• Lesion slices extracted from DCE-MRI sequences according to the 3 Time-
Points paradigm and combined into the RGB channel of a single image. No
image registration is performed.

Therefore, we can represent the input data as D = {Sw,ki , yi}i=1D with w ∈ W =
{1,2} (w = 1: pre-NAC study, w = 2: post-NAC study) and k ∈ K = {1,2,3,4}
(k = 1: DWI, k = 2: T2, k = 3: DCE peak, k = 4: DCE 3TP). Moreover,
Sw,ki = {Xw,k

i,j }.
Xw,k
i,j thus denotes the j-th slice of the k-th sub-sequence in the w-th study of

patient i.

Figure 5.1 shows an example of input, consisting of four slices extracted from
the sub-sequences defined for both the pre-NAC and post-NAC study.

It is important to note that it is obviously not possible to use all the slices
available for each scan as input, since this choice would inevitably introduce
excessive noise in the learning phase, at the expense of valuable information.

To overcome this problem while limiting manual intervention on the data to the
bare minimum, an index slices is extracted by an experienced radiologist (K.P. 14
years of experience) from each available sequence.

An index slice is nothing more than the slice within the sequence where the
lesion is most visible. It can be identified with relative ease and efficiency, allowing
to recognize the ideal input data with respect to the amount of information carried.

5.2 Architecture Structure
To optimally extract all lesion features, emphasizing the morphological, hemody-
namic and water molecular diffusion information according to the specific sub-
sequence, as well as the pre- and post-NAC studies for each patient, the architecture
is designed to execute this process independently for each sub-sequence.

This should not only improve the performance of the architecture, but hopefully
also provide an additional level of interpretability, indicating how much each of the
sub-sequences affects the final classification choice with respect to pCR.

According to recent literature and given the size of the dataset, using a pretrained
network for feature extraction should be the most feasible solution: ResNet50
pretrained on ImageNet is the most suitable choice.

Being probably the most disruptive innovation in the field of computer vision
since the introduction of AlexNet [69], the ResNets theorized by He et al. [70]
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Figure 5.1: Example of index slices used as input, from left to right: DWI, T2,
DCE-MRI peak and DCE-MRI 3-Time-Points. The top and bottom rows show
the pre-NAC and post-NAC study of the same patient respectively. In the case of
DCE-MRI 3-Time-Points (last column), the image is obtained by inserting slices
from different and precise time instants into the three RGB channels. No image
registration was performed.

break the taboo of an extremely deep but still performing and easy-to-train neural
network.

The goal of increasing the depth of a network has always been countered
by the problem of vanishing gradient during back-propagation. The repeated
multiplications on many levels can in fact make the gradient infinitesimally small,
saturating or even worsening the performances of the network with great rapidity.

The solution to the problem has been found moving the focus of attention from
the stacked layers, considered at first as the possible culprits, to the mapping
instead. The theory allows in fact the construction of a deep network with the
same identical performances of a shallower one, using only identity mappings in
the additional layers for which they differ. Working on the mapping instead it
is possible to obtain great results of optimization to a practically null cost. The
hypothesis is that letting the stacked layers fit a residual mapping is easier than
letting them directly fit the desired underlying mapping. In a certain sense, the
blocks in this way "simply" fine-tune the output of their previous block, instead of
having to learn the output from scratch.

Networks employing these residual blocks with skipped connections are less
vulnerable to perturbations that may cause to leave the manifold, thus avoiding
the need for additional data to recover.

All these elements make a pretrained ResNet particularly appropriate for this
architecture, having to extract in the most efficient way possible spatial features from
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very complex and heterogeneous input data, such as MRI sequences of different
protocols, constituting among other things a very small dataset and therefore
prohibitive to analyze without the aid of transfer learning.

The Deep Learning architecture will be in this way composed by four ResNet50,
one for each sub-sequence, from which features are extracted at the last convolutional
layer, with dimension 2048. These features are then concatenated and, following
some dropout and a fully connected layer, are used for the prediction of pCR.

Figure 5.2: Overview of the proposed architecture. Four ResNet50 process sub-
sequences, pre- and post-NAC. Each individual ResNet outputs a classification
result for its sequence. The final classification regarding pCR is performed following
the concatenation of features extracted from the ResNets, after some Dropout and
a Fully Connected Layer.

It is important to note that the same sub-sequences, but from the two different
studies (post and pre-NAC) available for the same patient, are analyzed by the
same ResNet50, using weight-sharing. The assumption at the base of this choice
is that two sequences coming from two studies of the same patient carried out in
different temporal instants, but afferent to the same acquisition protocol, should
produce about the same effect on the parameters of a ResNet. Weight-sharing
should therefore ensure an almost identical result but with a great computational
advantage given the large number of parameters to be optimized in the entire
architecture.
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5.3 Multi-Task Learning
The classification for pCR performed using the vector composed of all concatenated
features is not the only one done by the architecture: each ResNet50 is also linked
to a fully connected layer with two neurons, which will predict the result for the
single sub-sequence. This sort of multi-task learning aims not only to improve the
performance of the architecture in general, but also to provide an additional layer
of interpretability.

The multi-task approach allows to extrapolate useful information contained
in multiple related tasks, improving in this way the generalization capability of
the entire network. Overviews on Multi-Task Learning for Deep Neural Networks
have stated how this technique can, among other advantages, help the network’s
attention focusing (as more task will more likely provide additional evidence for the
relevance or irrelevance of the features) and also introduce a sort of representation
bias (since the model will prefer representations that other tasks also prefer) [71].

Again, having a dataset so heterogeneous in terms of acquisition mode and
difference between the various full slices used as input, focusing on different tasks
may prove to be a fundamental and necessary solution. For a given MRI study of
a patient, it is in fact possible that a sub-sequence may introduce an unforeseen
amount of noise: focusing on each sub-sequence as a single task can help the
architecture to determine more precisely which of these sub-inputs to consider as
more reliable to make predictions about the patient.

This could not only help to improve the training and the performance of the
network, but could reduce the "black box"-effect generated at the output, showing
the relative performance on each acquisition mode present in the mpMRI dataset,
suggesting which of these provided the most significant features to make the final
prediction.

5.4 Hand-Crafted Features Auxiliary Task
In the literature reviewed and in the computer-automated processing medical
imaging field, the joint utilization of raw data and features engineered from these
data based on specific domain knowledge, leads very often to optimal and easily
interpretable results.

While the goal of this Deep Learning architecture is to perform the prediction
in the most rapid and automated way possible starting only from the scans, it
is possible to add an additional branch that uses as input also the hand-crafted
features extracted by two expert radiologists from the same dataset, and then
evaluate its overall contribution in terms of performance.

We used the same data as in the study done by Tahmassebi et al. [60], and in
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particular the choice fell on the first 7 features ordered according to their importance
in the machine learning algorithms used (see figure 4.2).

Each slice, whether it comes from the pre- or post-NAC study and regardless of
the sub-sequence to which it belongs, in addition to the information relating to the
image data will also carry as input the following numerical/categorical features:

• MRI Mean-Transit-Time.

• MRI ADC (min), MRI ADC (max).

• MRI size anterior-posterior, MRI size cranial-caudal, MRI size left-right.

• MRI edema.

Each input will thus have a shape of:

x4
1,1 x4

1,2 . . . x4
1,224

... . . . . . . . . .

... . . .
. . . . . .

x224,14 x4
224,2 . . . x4

224,224

x3
1,1 x3

1,2 . . . x3
1,224

... . . . . . . . . .

... . . .
. . . . . .

x3
224,1 x3

224,2 . . . x3
224,224

x2
1,1 x2

1,2 . . . x2
1,224

... . . . . . . . . .

... . . .
. . . . . .

x2
224,1 x2

224,2 . . . x2
224,224

x1
1,1 x1

1,2 . . . x1
1,224

... . . . . . . . . .

... . . .
. . . . . .

x1
224,1 x1

224,2 . . . x1
224,224

With xk and k ∈ K = {1,2,3,4} (k = 1: DWI, k = 2: T2, k = 3: DCE peak,
k = 4: DCE 3TP) representing the values of each of the 4 sub-sequences input slice
used, of shape 224 x 224 x 3 (representing respectively rows, columns and channels
of the resized image data) and the additional feature vector:

f1 f2 . . . f7

If the four slices are each processed by a ResNet, the feature vector will be
used as input for a simple MLP (multilayer perceptron) which will perform a
simple binary classification with respect to the pCR prefix. Also in this case the
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features extracted from this branch are concatenated with the others, before the
aggregated output of all the branches. A graph of this additional branch can be
seen in Figure 5.3, the features are concatenated in the same level where those
extracted from the other branches using ResNets are concatenated.

Figure 5.3: The axuiliary Features branch plot. The last fully connected layer is
used for the task-specific prediction. The features extracted by the previous fully
connceted layer are concatenated with the ones extracted by the 4 ResNets.

5.5 Grad-CAM
Finally, Grad-CAM is used to aid understanding of the choices made by the
architecture during learning. Grad-CAM, developed by RR Selvaraju et al. [72],
produces a gradient-weighted localization map, highlighting the most important
regions of the image, decisive for the final choice in the classification task performed.
This can be especially useful given the use of full slices. In this way, it is possible
to test whether the architecture can independently focus its attention on the area
containing the lesion, without any bounding box previously selected by a radiologist.

5.6 Experimental Settings
5.6.1 Axial Resampling
The first preliminary step was, starting from the index slices identified, to resample
the entire dataset composed of MRI slices (in .dicom format) into the axial plane.
The original sequences are in fact presented with different spatial orientations (axial,
coronal, sagittal) and with the aim of having input data as uniform as possible, the
choice fell on the axial plane, often considered as the easiest to use in the training
phase of a neural network.

The operation was performed by working on the starting .dicom files and exploit-
ing the attributes contained in them, in particular the fields ImagePositionPatient,
ImageOrientationPatient, and PixelSpacing were suitably modified to perform a
resampling in the axial plane that did not lose any information.
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Figure 5.4: The Grad-CAM activation map for a slice of the DCE peak sub-
sequence. The architecture seems to focus on the area of the lesion to make its
decision

Figure 5.5: Example of coronal (left) to axial (right) resampling, computed for
the same DCE-MRI index slice.

5.6.2 Resizing and Normalization
To achieve maximum compatibility with the pretrained ResNet50, all slices are
resized to a fixed size of 224 x 224 x 3 with the gray-scale image repeated three
times in the RGB channel for all sub-sequences, except in the case of the DCE-MRI
3-Time-Points. In this specific case three slices were selected from DCE-MRI
sequences of the same study, but in three precise time instants according to the
"Three Time Points" approach: t0 pre-contrast, t1 approximately two minutes after
CA injection and t2 approximately six minutes after CA injection. Each of these
slices constitutes an RGB channel of the input image.

Given the heterogeneity of the input, with different sequences acquired by
scans using different parameters, some signal normalization is necessary. As a
pre-processing step, Z-Score Normalization is applied sample-wise. The distribution
mean and standard deviation is calculated for each feature. Then, the mean is
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subtracted from each feature and this value is divided by the standard deviation:

Z = X−µ
σ

5.6.3 Data-augmentation
Considering the limitations of available data, data augmentation plays a key role
in increasing training data.

By processing at an image level, data augmentation can be performed with elastic
transformations as well as intensity variations. Specifically, given the symmetry
of the breast lesion, a flip on the vertical axis is performed. Changes in signal
intensity, and affine transformations are also executed.

In detail, the values used by the Data Generator used to perform the data
augmentation are:

• Vertical flip = True

• Zoom in/out from the original image with a random value of max 0.3

• Brightness range (to change signal intensity) with a random value between
0.3 and 5

• Shear range (to perform an affine transformation) with a random value of max
0.3

Figure 5.6: Data augmentation examples generated from a DCE-MRI peak slice

5.6.4 Input Slices
A very important parameter that can be set concerns the number of slices considered
for each input scan. In fact, the index slice is always included but there is the
possibility of adding more slices starting from it. For example, by setting the
parameter slices = 3, in addition to the index slice the three immediately following
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slices will be included as well as the three immediately preceding ones, bringing
the total number to 7. The optimal value recorded is around 3: a lower number
reduces excessively the information available to the model in the learning phase,
and a higher number introduces an excessive number of slices where the lesion is
not sufficiently visible, thus adding only noise.

5.6.5 Hyperparameters

The optimal number for batch size found in the experiments was 12, the learning
rate 0.0001.

An adaptive learning rate strategy is also applied, with the learning rate being
reduced by an order of magnitude when the loss on the validation set is in a
plateaus. This evaluation is computed every 5 epochs.

The initial number of epochs is set at 100, however during the experiments the
ideal number of epochs to use for effective model training without over-fitting was
noted to be 15. A checkpoint containing model weights is saved after each batch if
improvements are measured.

Alternatively, an "early stopping" strategy can be used, where the training is
stopped earlier when no more improvements are found in the loss term of the
validation set. In this case, at the end of training the weights of the model that
reported the best results are loaded before the final prediction. However, in
reporting performance, the choice made was to consider experiments using a fixed
number of epochs so that the results are not overly based on validation folds.

To further counteract over-fitting, a very likely risk given the large number of
parameters present in the architecture and the nature of the dataset, L2 regulariza-
tion with α = 0.0001 is applied to the convolutional layers of ResNet50, as well as
dropout of 0.5 applied to the vector of concatenated features. Before the output
layer for pCR prediction, a fully connected layer with 128 neurons is added, making
use of relu as an activation function.

A summary of the hyper-parameters tested and the optimal values chosen can
be seen in Table 5.1.

5.6.6 Loss Function

The model is trained in a end-to-end manner using binary cross-entropy as a loss
function. Since the model produces multiple outputs, one for the pCR and one for
each of the included sub-sequences (plus the optional hand-crafted features branch),
the overall loss function takes into account all of these instances, each specifically
weighted with a γ index. The main goal is obviously to predict the pCR, whose
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weight will therefore be 1; the optimal measured γ value for sub-sequences is 0.2.

Loss = LosspCR +
KØ
k=1

γLossk

A further loss function tested, given its affinity with the type of dataset used, is
the focal loss. Originally proposed by Lin et al. [73] for Dense Object Detection,
the focal loss can be considered as an extension of the cross-entropy loss function
that would down-weight easy examples and focus on training on hard negatives.
It is a dynamically scaled cross entropy loss, where the scaling factor decays to
zero as confidence in the correct class increases. This can address the issue of the
class imbalance problem, represented in the dataset by the larger number of slices
belonging to patients who did not achieve pCR.

Lfocal = −αt(1− pt)γ log(pt)

with γ > 0 tunable focusing parameter and

αt =
I
α, if y = 1
1− α, otherwise (5.1)

and α value between 0 and 1 used to balance the positive labeled samples and
negative labeled samples.

5.6.7 Cross-validation
The dataset is split at the patient level in a 8/2 manner for training and validation.
To overcome over-fitting, 4-fold cross-validation was used. In each split, the ratio
of patients who achieved pCR to those who did not is kept as homogeneous as
possible with the original distribution of the dataset. All lesions from the same
patient were kept together in the same fold in order to eliminate the impact of
using correlated lesions for both training and testing.

5.6.8 Evaluation Metrics
The evaluation metrics used are binary accuracy and AUC. In particular, the choice
to use the Area Under Curve of the Receiver Operating Characteristic is due to the
fact that the ROC Curve summarizes the trade-off between the true positive rate
and false positive rate for a predictive model using different probability thresholds.
This is particularly useful for a dataset that presents a class unbalance like the one
analyzed, in fact the chance of a high number of false negatives raises a problem
that is not sufficiently emphasized by a metric such as accuracy. These metrics are
computed for each fold, and an average one is used as a final result.
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The prediction is done for each slice, then a majority voting scheme is applied
to obtain the result per patient, based on the diagnosis made for the slices of its
sub-sequences.

Parameter Tested values Optimal values

Slices 0, 1, 2, 3, 4, 5 3

Batch size 6, 8, 12 12

Learning rate 0.1, 0.001, 0.0001, 0.0005 0.0001

L2 regularization 0.1, 0.001, 0.0001 0.0001

Dropout rate 0.4, 0.5, 0.6, 0.7, 0.8 0.5

Momentum rate 0.8, 0.9, 0.99 0.9

Table 5.1: Tested and optimal values of the used parameters.
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Experimental Results

In order to fully understand the results obtained from the proposed architecture
and to make a correct comparison with other solutions, it is important to remember
the previously exposed characteristics of the dataset. In particular, the use as input
of index slices (i.e. complete slices extracted from the single MRI slices) and not of
ROI (i.e. an annotated area containing only the lesion) has a decisive impact both
on the performance of the network and on the architectural choices made on it.

Different configurations of the architecture were tested, taking advantage of
its multi-branch nature, and thus trying to underline its strengths in the use of
multi-task learning to exploit the multi-parametric nature of the MRI dataset.

6.1 Settings

6.1.1 Hardware and Software

The models were run on a Linux Shared-Memory Cluster using a Intel Xeon E5-2680
v3 2.50 GHz with 12 cores as CPU and a nVidia Tesla K40 (12 GB) with 2880
cuda cores as GPU.

The architecture was constructed using Python (V3.7.6) based on Keras (V2.3.1)
with TensorFlow (V2.1.0).

6.1.2 Performance Measures and Experimental Method

For the binary classification problem regarding treatment response to NAC therapy,
with label 0 assigned to slices from patients who achieved pCR and label 1 assigned
to slices from patients who did not achieve pCR (i.e. with RCB score other than
0), the following basic measures were assessed:
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• True Positives (TP): number of samples in the no-pCR class that are correctly
classified.

• True Negatives (TN): number of samples in the pCR class that are correctly
classified.

• False Positives (FP): number of samples in the pCR class that are incorrectly
classified.

• False Negatives (FN): number of samples in the no-pCR class that are incor-
rectly classified.

From these, the following measures considered important for assessing classifica-
tion performance on this dataset were calculated:

• Accuracy: measures the percentage of correctly classified instances.

Acc = TP+TN
TP+TN+FP+FN

• Sensitivity: also known as True Positive Rate, measures the proportion of
positives (no-pCR) that are correctly identified.

Se = TP
TP+FN

• Specificity: also known as True Negative Rate, measures the proportion of
negatives (pCR) that are correctly identified.

Spe = TN
TN+FP

The operating point for the calculation of these parameters is left at 0.5
Finally, the main indicator used to assess performance is calculated from the

Receiver Operating Characteristic (ROC) curve, using the Area Under the ROC
Curve (AUC).

6.2 Experiments
The model used below as a baseline has the following architectural features: all four
branches are included, thus processing the DWI, T2, DCE_peak and DCE_3TP
sub-sequences, each of which is extracted from both the pre-NAC and post-NAC
studies.

The slices parameter is set to 3, i.e. a total of 6 slices plus the index slice for
each sequence. As each of the four folds consists of 28 patients for training and 9
for validation, the total number of slices used as input for each of the branches will
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be 196 for training (repeated twice, the first time using pre-NAC slices and the
second time using post-NAC slices) and 63 for validation.

The epochs are set to 15, batch size is 12, learning rate is equal to 0.0001, as is
the L2 regularization, and a dropout value of 0.5 is applied to the concatenated
features vector before the last FC layer with 128 neurons. The loss function used
is the binary cross-entropy, with a weight of 1 assigned to the task specific loss
regarding pCR prediction using the features extracted from all the branches and a
weight of 0.2 to each loss regarding the pCR prediction task using only one specific
sub-sequence. A class weight argument was also used in the training phase, giving
a higher weight to the class in the minority in the dataset, i.e. pCR, in order to
decrease the number of false positives.

Branch Input Slices (Training) Input Slices (Validation)

DWI (196, 224, 224, 3)
(196, 224, 224, 3)

(63, 224, 224, 3)
(63, 224, 224, 3)

T2 (196, 224, 224, 3)
(196, 224, 224, 3)

(63, 224, 224, 3)
(63, 224, 224, 3)

DCE_peak (196, 224, 224, 3)
(196, 224, 224, 3)

(63, 224, 224, 3)
(63, 224, 224, 3)

DCE_3TP (196, 224, 224, 3)
(196, 224, 224, 3)

(63, 224, 224, 3)
(63, 224, 224, 3)

Table 6.1: Branches used with their inputs. Each branch will have as input two
arrays (one pre-NAC and one post-NAC) composed of 196 or 63 slices (for training
or validation) resized to 224x224x3.

The results obtained with this configuration achieve a mean AUC value (calcu-
lated on the 4 folds) of 0.90 for the classification of the single slice, and of 0.91 for
the classification at patient level.

Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP 0.90 85.3 86.3 82.7

Table 6.2: Mean 4-fold classification, performance for pCR at slice level.

Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP 0.91 86.1 89.3 79.2

Table 6.3: Mean 4-fold classification, performance for pCR at patient level.
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It is interesting to note that the performance for the ’final’ classification task,
using features extracted from all sub-sequences, is always clearly better than that
of the single sub-sequence tasks, also and above all due to the greater weight given
to its loss in the network training phase, the weights of which will be updated
accordingly. It remains however a first suggestion towards the better performance
of an ensamble model with respect to the use of single sub-sequences.

Sub-sequence AUC Acc (%) Se (%) Spe (%)
DWI 0.69 55.6 53.3 66.7
T2 0.60 54.0 53.1 60.1
DCE_peak 0.65 62.3 63.2 56.5
DCE_3TP 0.78 71.8 87.6 29.2

Table 6.4: Mean 4-fold classification, performance for pCR at slice level for single
sub-sequence tasks.

The full model also records, as one would expect, varying performances on
individual folds. Each fold is in fact made up of several patients, which already
introduces a certain diversity, and is in addition composed of full slices that are
often profoundly different depending on the protocol used and the location of the
breast or lesion.

Fold AUC Acc (%) Se (%) Spe (%)
Fold 1 1 96.8 95.2 100
Fold 2 0.96 88.9 92.9 81.0
Fold 3 0.97 81.0 75.5 100
Fold 4 0.69 74.6 81.6 50.0

Table 6.5: Classification performance for pCR at slice level, for single fold.
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Figure 6.1: Plot of loss and AUC for each epoch, Fold 1 and Fold 2. The value of
the loss functions, both for training and validation, is equal to the weighted sum of
the individual loss terms for each task. It can be seen that training and validation
loss, in blue and green respectively, decrease towards optimal values as the epochs
pass, with the training loss being much faster in this descent which risks leading to
overfitting. A trend inversely proportional to the latter occurs instead in the AUC
value recorded, with the value recorded for training soon stable on 1 and that of
validation more oscillating. 43
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Figure 6.2: Plot of loss and AUC for each epoch, Fold 3 and Fold 4. It can
be seen that in Fold 4, which performed worst in the reported experiment, the
validation loss decreases in the first few epochs and then increases steadily, thus
compromising the AUC value recorded on this fold.
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Figure 6.3: ROC plot for pCR at slice level, for each single fold. The architecture’s
excellent performance is confirmed in 3 out of 4 folds, with AUC values of 1, 0.96,
0.97 and 0.69 respectively.

The graphs summarise the performance of the model using all sub-sequences for
each individual fold, showing the loss and AUC trends for training and validation,
the ROC curve and the Grad-CAM activation map respectively.
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Figure 6.4: Grad-CAM activation map focusing on the results obtained for both
a patient who has achieved pCR and a patient who has not. Even though the
architecture is based on full slices without any manually drawn bounding boxes, it
is able to detect the tumour.

The results obtained, which can be visualised and more easily interpreted using
Grad-CAM, show that the architecture is able to focus its attention on the lesion,
while using full slices as input without any supporting prior knowledge. It is
interesting to note that the area of greatest importance for decision making does
not only include the tumour, but also a large portion of the surrounding tissue,
suggesting that this may be of some importance in correctly performing treatment
response prediction.

This result is in line with both the purely medical literature, which emphasises
that the area surrounding the lesion contains important information especially
about lymph nodes, and the recent literature using Deep Learning for this task, as
in the case of the already mentioned El Adoui et al. [59] study.
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Figure 6.5: Grad-CAM activation map for different patients, highlighting the
great heterogeneity of the input full slices and the ability of the network to focus
on the lesion and surrounding tissue.
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6.2.1 Experiment with Features-Branch
The architecture, with the same parameters, was tested with the addition of the
extra branch using hand-crafted features. The vector composed of the 14 extracted
features, 7 for the pre-NAC and 7 for the post-NAC studies, used as input for the
branch using the MLP to perform a further classification task on the pCR, however,
worsened the overall results of the architecture. The reduced number of available
features, extracted at patient level and repeated for each respective slice, and the
insignificant number of optimisable parameters in the relative branch compared to
those of the ResNet used at image level, are probably the cause of the negative
influence of this sub-task.

The mean AUC over the four folds is 0.87 at the slice level and 0.88 at the
patient level.

Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP,
Features-Branch

0.87 75.0 84.7 56.0

Table 6.6: Mean 4-fold classification with features-branch, performance for pCR
at slice level.

Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP,
Features-Branch

0.88 77.8 85.7 62.5

Table 6.7: Mean 4-fold classification with features-branch, performance for pCR
at patient level.

6.2.2 Experiment without Class-Weigh
and with Focal Loss

Correctly training the architecture by appropriately addressing the imbalance of
data available for the two classes is one of the crucial steps. To this end, an
experiment was performed without the "class weight" parameter in order to verify
whether its use actually improves performance, and finally an experiment using a
loss function that intrinsically deals with this imbalance: the focal loss.

In both cases, performance did not improve with respect to the baseline model
described above.
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In the case of the experiment without class weight, it can be seen that the
specificity drops dramatically, indicating that the model tends to incorrectly classify
negative (pCR) slices as positive (no-pCR achieved) as the latter are in the majority
for training, thus negatively affecting the correct setting of the weights. This
suggests that the class weight parameter does bring benefits.

Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP 0.89 86.5 93.1 41.7

Table 6.8: Mean 4-fold classification without class-weight, performance for pCR
at slice level.

The focal loss instead, while useful, is not entirely suitable for this dataset (it
was designed for datasets with much greater imbalances of the order of 1:1000).

Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP 0.82 75.0 85.8 69.8

Table 6.9: Mean 4-fold classification with focal loss, performance for pCR at slice
level.

6.2.3 Experiment with different Slices

The number of slices to be included as input obviously has a great impact on the
capacity of the network. As already reported, the ideal number has been identified
as 3, i.e. the inclusion of three slices before and three slices after the index slice.
A lower number incorporates too little information, a higher number uses slices
where the lesion begins to be too little visible, thus adding noise.

Sub-sequences Slices AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP 2 0.88 81.1 81.7 80.0

DWI, DCE_peak
T2, DCE_3TP 4 0.87 67.3 60.0 82.4

Table 6.10: Mean 4-fold classification with different slice parameter, performance
for pCR at slice level.
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6.2.4 Experiments with different Branches

The fundamental concept of the proposed architecture is obviously its use of
different branches, creating a multi-input ensemble learning model. Experiments
were therefore carried out using only certain branches, in order to verify the
variation of performance as they changed.

pre-NAC or post-NAC Only

A first attempt was made to test the network using as input only slices from
sub-sequences belonging either to pre-NAC or post-NAC studies, and not both
simultaneously as in the baseline model.

Each of the four ResNets will then be used exclusively to extract features from
a single input array, instead of two (with weight sharing). The results are in
line with what reported in the literature, with both models, pre-NAC only and
post-NAC only, having considerably poorer performance than the model using
both. In particular, performance was extremely poor in the pre-NAC only model,
suggesting that information from full slices belonging to MRI studies prior to the
start of neoadjuvant therapy is insufficient to predict treatment response.

Sub-sequences MRI Study AUC Acc (%) Se (%) Spe (%)
DWI, DCE_peak
T2, DCE_3TP pre-NAC 0.77 63.5 72.9 47.0

DWI, DCE_peak
T2, DCE_3TP post-NAC 0.86 78.2 89.1 51.8

Table 6.11: Mean 4-fold classification with different MRI studies, performance
for pCR at slice level.

Two Branches and Three Branches

The architecture was tested by trying out the various possible pairs of sub-sequences,
thus having as tasks the two predictions related to the specific sub-sequences used
and the prediction of the pCR carried out by exploiting the features extracted from
both branches. It is important to note that the number of slices used as input
for the single ResNet is the same as the baseline model, it is only the number of
ResNet itself that varies, and therefore the length of the feature vector used to
make the final prediction.
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Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI - DCE peak 0.85 75.4 79.9 68.5
DWI - T2 0.76 65.0 63.5 72.6
DWI - DCE 3TP 0.84 76.2 91.8 39.3
T2 - DCE peak 0.80 74.6 79.8 62.5
T2 - DCE 3TP 0.77 75.8 94.8 26.8
DCE peak - DCE 3TP 0.83 77.4 86.7 56.0

Table 6.12: Mean 4-fold classification using only two sub-sequences, performance
for pCR at slice level.

It is interesting to note that in all cases the performance is worse than in the
model using all sub-sequences simultaneously. In particular, AUC and specificity
are particularly affected by the use of only two branches. This result suggests that
features extracted from all four sub-sequences are necessary to perform a correct
classification, with the information contained in one of them possibly being key for
the patients contained in a given fold.

The use of all the information available in the mpMRI dataset is therefore key
to the construction and training of a network capable of effectively generalising on
such a small ad heterogeneous dataset composed of full slices.

The same experiment was carried out with only three branches active at the
same time:

Sub-sequences AUC Acc (%) Se (%) Spe (%)
DWI - DCE peak - T2 0.84 74.6 76.0 73.2
DWI - DCE peak - DCE 3TP 0.83 75.8 88.8 45.8
DCE peak - DCE 3TP - T2 0.82 76.9 86.8 51.2
DCE peak - DCE 3TP - DWI 0.84 77.0 91.3 42.9

Table 6.13: Mean 4-fold classification using only three sub-sequences, performance
for pCR at slice level.

The addition of a third branch makes the results more consistent in terms of
AUC and specificity, but they are still lower than in the model using all four
sub-sequences.

51



Chapter 7

Discussion and Future
Developments

The results obtained from the proposed architecture are in line with those of
other state-of-the-art studies dealing with treatment response prediction for NAC
therapy, and even with some discrepancies due to the different datasets used and
different architectural choices seem to confirm several assumptions made in the
recent literature.

7.1 Discussion and Comparison
It is useful to recall once again the starting point from which these results were
obtained, i.e. the dataset used, which is often one of the obstacles to making an
objective comparison in terms of pure numbers with other studies on the same
subject. The dataset used does not have a large number of patients and has
a large number of different and heterogeneous sequences. However, this latter
element embodied in the multi-parametric nature of the MRI studies was used as
the major source of information and innovation in the implemented architecture.
The substantial difference with the other Deep Learning studies considered is
represented by the use of full slices as input, i.e. the whole acquired image of the
breast area and not ROIs previously extracted from radiologists or already labelled
data. Having to learn from such raw and diverse data, not very large in number,
represents the biggest challenge of the model implemented.

In the light of these considerations, the first and perhaps most natural comparison
to be made in terms of results is with the study by Tahmassebi et al. [60], carried
out on the same dataset but without directly using the images as input, but rather
quantitative and qualitative features extracted from them and used for traditional
machine learning methods. Using XGBoost as a classifier, the AUC value recorded
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was 0.86, using features extracted from all the different sequences available in the
dataset, some of which were obtained by comparing the post-NAC study with the
pre-NAC study. The architecture proposed in this thesis, with the values considered
as baseline (obtained from the best configuration) of AUC: 0.90, Accuracy: 81.7,
Sensitivity: 81.4, Specificity: 82.7, shows a better performance. This confirms
an assumption that is almost taken for granted in the literature, namely that
Deep Learning models have the ability to outperform traditional machine learning
algorithms. In addition, Thambassemi et al. state that hand-crafted features
extracted from all types of sequences (DCE, DWI, T2) were necessary to obtain
good results. This is also confirmed by the proposed architecture, but in terms of
input images, showing better results using all four identified sub-sequences and
thus underlining the potential of an mpMRI dataset.

Network Dataset (MRI Patients) MRI Sequences Used Input Type Architecture Performance
Tahmassebi et al. [60] 37 DCE, DWI, T2 Qualitative/quantitative features XGBoost AUC: 0.86
Proposed Architecture 37 DCE, DWI, T2 Full slices Multi-task ensemble learning model AUC: 0.90

Table 7.1: Comparison of the proposed architecture with the baseline study.

A first study using an end-to-end neural network to perform feature extraction
that can be used as a comparison is that of Ravichandran et al. [53]. Although the
dataset has a large number of 166 patients, the input consists of simple patches
extracted from DCE-MRI index slices. The only study that is considered at all is
the pre-NAC one, obtaining with a fairly simple architecture an AUC value: 0.77.
The architecture proposed in this thesis obtains the same AUC using only pre-NAC
studies, a value that increases considerably in the case of post-NAC studies and
further when both are used simultaneously.

Network Dataset (MRI Patients) MRI Sequences Used Input Type Architecture Performance
Ravichandran et al. [53] 166 DCE (pre-treatment only) Patches from index slice CNN with 6 blocks AUC: 0.77
Proposed Architecture (pre-NAC) 37 DCE, DWI, T2 (pre-treatment only) Full slices Multi-task ensemble learning model AUC: 0.77
Proposed Architecture 37 DCE, DWI, T2 Full slices Multi-task ensemble learning model AUC: 0.90

Table 7.2: Comparison of the proposed architecture with the pre-NAC only study.

The importance of both studies is widely shared in the most recent literature
although considerable results were also obtained only from images taken before the
start of therapy, as in the case of Ha et al. [52]. In the latter case the accuracy
achieved was 88% on a dataset of 141 patients from which 3107 volumetric slices
of the lesion were extracted by an experienced radiologist and given as input to a
VGG16-like architecture. The architecture developed in this thesis, in order to be
able to stand comparison with such a dataset, must use the results coming from
the experiments conducted to the maximum of its potential, that is with both pre-
and post-NAC studies, obtaining a similar accuracy of 85.3%, but being able to
count on less data and above all not previously processed by radiologists except for
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the identification of the index slice.
A more direct comparison can be made with the studies of El Adoui et

al. [54], [55], [59]. These studies in fact introduce the idea of a multi-branch
architecture capable of considering and processing both pre-NAC and post-NAC
studies. They also use a dataset comparable in size (42 patients) to the one used in
this thesis (37 patients), but working with ROIs extracted around the lesion rather
than a full slice.

In [54] an architecture using two distinct VGG-like blocks independently pro-
cesses ROIs extracted and recorded from the two available studies, concatenating
the extracted features before making the prediction. The AUC value recorded in
the best performing model is 0.96 (obtained using 25% of the data as validation
set, not specified if in k-fold cross-validation). In [55] the branches of the previous
architecture are tripled, going to process separately ROIs extracted from axial,
transversal and coronal slices, thus focusing on features extracted from all spatial
dimensions of the DCE-MRI dataset. In this case the best recorded AUC is 0.92.

More interesting is the comparison with [59], where the same dataset of 42
patients used previously is expanded with 14 new studies used for validation.
Again, the volume of interest containing the lesion is first extracted from axial
DCE-MRI slices and used as input for an architecture that has two branches to
independently analyse pre- and post-NAC before concatenation. The best result
was recorded when the input, in addition to the lesion, also contained the immediate
surrounding region, with a final AUC of 0.92, sensitivity of 92.2 and specificity of
79.1. Also in this study Grad-CAM is used, showing that for a correct prediction
the network considers important not only the lesion but also the surrounding
area. The architecture developed in this thesis is very similar in performance and,
although based on full slices, it seems to confirm that other areas of surrounding
tissue in addition to the lesion itself are indeed important according to Grad-CAM.
Network Dataset (MRI Patients) MRI Sequences Used Input Type Architecture Performance
El Adoui et al. [54] 42 DCE ROI crops VGGNet-like AUC: 0.96
El Adoui et al. [55] 42 DCE ROI crops VGGNet-like AUC: 0.92
El Adoui et al. [59] 42 + 14 external for validation DCE, DWI VOI crops Custom Multi-input CNN AUC: 0.91
Proposed Architecture 37 DCE, DWI, T2 Full slices Multi-task ensemble learning model AUC: 0.90

Table 7.3: Characteristics and classification performance with other studies.

Network Input Type AUC Accuracy Sensitivity Specificity
El Adoui et al. [59] VOI crops 0.91 88 92.2 79.1
Proposed Architecture Full slices 0.90 81.7 81.4 82.7

Table 7.4: Characteristics and classification performance with El Adoui et al. [59].

The impressive results obtained by Qu et al. [58] deserve a special mention:
on a dataset using manually segmented lesions extracted from 244 patients for
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training and 58 for validation, they obtained results of AUC: 0.97, sensitivity: 96,
specificity: 100. The study proposes a multi-branch architecture that uses as input
six lesions extracted from different time instants from the pre-NAC study and
another six from the post-NAC study, before concatenating the extracted features
for the final prediction. In addition to the values recorded, the study also states
that the combined use of both studies for NAC treatment prediction is important,
recording much lower values using only pre-NAC slices and good but not great
results with post-NAC slices. This result also occurs in the proposed architecture.

In conclusion, no other studies in the field of treatment response prediction
to NAC therapy have been found to date that make intensive use of the various
information contained in different sequences of a multi-parameter MRI dataset, and
in general the use of full slices is normally avoided in the literature, preferring an
input with less noise but obtainable only through previous processing or through
the work of a radiologist.

In spite of this, the performances recorded are in line with those reported in the
other studies considered, behaving according to the most accredited hypotheses
in this field and above all demonstrating the potential of an architecture that can
still be developed in the future.

7.2 Limitations of the Study
The most obvious limitation to the results of the proposed architecture is due to
the small number of patients available in the dataset. In addition to the usual
difficulties in the field of medical imaging to obtain organised and structured
data, participation in a study aiming at detecting treatment response requires
an additional MRI study (the one after two cycles of NAC) to which the patient
willing to participate must agree to undergo. Testing the architecture on a larger
and more diverse dataset can provide a much more effective measure of the real
capabilities of the network.

Furthermore, although the study minimised inter-observer and intra-observer
variability by using human input only for the simple task of identifying the index
slice, it uses the entire extracted slice as input. This, in addition to the various
difficulties explained above, makes the imaging protocol used much more incisive
(compared to using a ROI of the lesion as input). It would therefore be useful to
test the architecture using mpMRI studies applying other acquisition protocols,
possibly acquired in other centres, thus overcoming the retrospective and single
centre nature of the study.

A prospective and multi-center study may help in the construction of a model
capable of effective generalisation in predicting treatment response for NAC therapy,
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adapting to different clinical situations.

7.3 Future Developments
The potential shown by this architecture, despite the non-optimal conditions of
the dataset, demonstrates the possibility of further developments related to the
proposed solutions. If, on the one hand, it would be desirable to resolve the
limitations highlighted above, on the other hand, even with the current conditions
it could be possible to develop new ideas linked to the progress of Deep Learning
techniques.

Sophisticated and increasingly used techniques such as generative adversarial
networks could be used to produce synthetic inputs and thus artificially increase
the number of data available for training, with the added possibility of balancing
the minority class (patients achieving pCR). But other more immediate and less
performance-intensive approaches can also be explored, exploiting the multi-task
nature of the network. The features already extracted in the baseline study could be
used to add further tasks related to them, asupicably increasing the generalisation
capabilities of the architecture, with a trend in the literature that sees excellent
results when Deep Learning techniques are combined with a priori knowledge
extracted by qualified personnel.

In addition, the most important "building blocks" of the network consisting of
the ResNet50s pre-trained on ImageNet could be made more efficient by improving
their ability to process medical images, using for example the Deep Colorization
approach proposed by Morra, Piano et al. [74] that by transforming input slices
into RGB helps the transfered learning component of the architecture to process
data more compliant with those on which it was trained.
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Conclusions

The use of computer-aided systems in the medical field is an increasingly concrete
and not negligible reality, and the pervasiveness of data-driven applications in
every sector, whether academic, industrial or simply everyday, suggests that these
tools will be even more decisive in the future. The parallel development, aided by
adequate technological support, of techniques and approaches capable of exploiting
this data, offers more and more solutions to be explored: the use of Deep Learning
architectures to analyse breast cancer MRIs is certainly one of them, as highlighted
by the important role it plays in the most recent literature.

Among the possible uses in the development of a detection and classification
system, ranging from segmentation to distinguishing a lesion between malignant
and benign, treatment response prediction is particularly important. Having a
rapid response on the efficacy of neoadjuvant chemotherapy can prevent the patient
from unnecessarily undergoing the wrong treatment, allowing more effective ones
to be chosen. The architecture developed in this thesis aims to accomplish this
task, being designed after a careful analysis of other state-of-the-art models used
for this purpose and trying to solve the characteristic problems of this specific field
using the most advanced Deep Learning techniques.

The multi-task ensemble learning model created succeeds in making the most of
the information contained in a multi-parameter MRI dataset, yielding promising
results in line with the most accredited studies in this field. To the best of our
knowledge, the proposed architecture is the first to separately analyse different
MRI acquisition modes, pre-NAC and post-NAC, starting from an input composed
of full slices. These results, which can still be further developed, are achieved by
limiting the need for prior knowledge and intervention on the dataset, trying to
provide an approach capable of generalising as much as possible in a field which
unfortunately still lacks a certain degree of standardization with regard to the data
used, and are intended as a further aid in carrying out such a critical clinical task.

57



Bibliography

[1] Douglas Laney. 3D Data Management: Controlling Data Volume, Velocity,
and Variety. Tech. rep. META Group, Feb. 2001. url: http : / / blogs .
gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-
Controlling-Data-Volume-Velocity-and-Variety.pdf (cit. on p. 1).

[2] Caleb Garling. Andrew Ng: Why ‘Deep Learning’ Is a Mandate for Humans,
Not Just Machines. May 2015. url: https://www.wired.com/brandlab/201
5/05/andrew-ng-deep-learning-mandate-humans-not-just-machines/
(cit. on p. 2).

[3] Debashis Ganguly, Srabonti Chakraborty, Maricel Balitanas, and Tai-hoon
Kim. «Medical Imaging: A Review». In: vol. 78. Sept. 2010, pp. 504–516.
isbn: 978-3-642-16443-9. doi: 10.1007/978-3-642-16444-6_63 (cit. on
p. 4).

[4] Sabyasachi Dash, Sushil Shakyawar, Mohit Sharma, and Sandeep Kaushik.
«Big data in healthcare: management, analysis and future prospects». In:
Journal of Big Data 6 (June 2019). doi: 10.1186/s40537-019-0217-0
(cit. on p. 4).

[5] Kunio Doi. «Computer-Aided Diagnosis in Medical Imaging: Historical Re-
view, Current Status and Future Potential». In: Computerized medical imaging
and graphics : the official journal of the Computerized Medical Imaging Society
31 (June 2007), pp. 198–211. doi: 10.1016/j.compmedimag.2007.02.002
(cit. on p. 5).

[6] Michel Coleman et al. «Cancer survival in five continents: a worldwide
population-based study (CONCORD)». In: The lancet oncology 9 (Aug.
2008), pp. 730–56. doi: 10.1016/S1470-2045(08)70179-7 (cit. on p. 5).

[7] Anne F. Schott and Daniel F. Hayes. «Defining the Benefits of Neoadjuvant
Chemotherapy for Breast Cancer». In: Journal of Clinical Oncology 30.15
(2012). PMID: 22508810, pp. 1747–1749. doi: 10.1200/JCO.2011.41.3161.
eprint: https://doi.org/10.1200/JCO.2011.41.3161. url: https:
//doi.org/10.1200/JCO.2011.41.3161 (cit. on p. 5).

58

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://www.wired.com/brandlab/2015/05/andrew-ng-deep-learning-mandate-humans-not-just-machines/
https://www.wired.com/brandlab/2015/05/andrew-ng-deep-learning-mandate-humans-not-just-machines/
https://doi.org/10.1007/978-3-642-16444-6_63
https://doi.org/10.1186/s40537-019-0217-0
https://doi.org/10.1016/j.compmedimag.2007.02.002
https://doi.org/10.1016/S1470-2045(08)70179-7
https://doi.org/10.1200/JCO.2011.41.3161
https://doi.org/10.1200/JCO.2011.41.3161
https://doi.org/10.1200/JCO.2011.41.3161
https://doi.org/10.1200/JCO.2011.41.3161


BIBLIOGRAPHY

[8] Shahla Masood. «Neoadjuvant chemotherapy in breast cancers». In: Women’s
Health 12 (Sept. 2016), pp. 480–491. doi: 10.1177/1745505716677139 (cit.
on p. 5).

[9] Abi Berger. «Magnetic resonance imaging». In: BMJ 324.7328 (2002), p. 35.
issn: 0959-8138. doi: 10.1136/bmj.324.7328.35. eprint: https://www.
bmj.com/content/324/7328/35.full.pdf. url: https://www.bmj.com/
content/324/7328/35 (cit. on p. 6).

[10] «Automation and anxiety». In: The Economist (). issn: 0013-0613. url:
https://www.economist.com/special-report/2016/06/23/automation-
and-anxiety (visited on 04/03/2020) (cit. on p. 6).

[11] Emanuele Neri, Nandita de Souza, Adrian Brady, Angel Alberich Bayarri,
Christoph D. Becker, Francesca Coppola, Jacob Visser, and European Society
of Radiology (ESR). «What the radiologist should know about artificial
intelligence – an ESR white paper». In: Insights into Imaging 10.1 (Apr.
2019), p. 44. issn: 1869-4101. doi: 10.1186/s13244- 019- 0738- 2. url:
https://doi.org/10.1186/s13244-019-0738-2 (visited on 04/03/2020)
(cit. on p. 7).

[12] Thomas H. Davenport and D. O. Keith J. Dreyer. «AI Will Change Radiology,
but It Won’t Replace Radiologists». In: Harvard Business Review (Mar.
2018). issn: 0017-8012. url: https://hbr.org/2018/03/ai-will-change-
radiology-but-it-wont-replace-radiologists (visited on 04/03/2020)
(cit. on p. 7).

[13] Ahmet Yurttakal, Hasan Erbay, Turkan Ikizceli, Seyhan Karacavus, and
Gökalp Çınarer. «ARTICLE A COMPARATIVE STUDY ON SEGMENTA-
TION AND CLASSIFICATION IN BREAST MRI IMAGING». In: IIOAB
Journal 9 (Dec. 2018), pp. 23–33 (cit. on p. 8).

[14] Robert Gillies, Paul Kinahan, and Hedvig Hricak. «Radiomics: Images Are
More than Pictures, They Are Data». In: Radiology 278 (Nov. 2015), p. 151169.
doi: 10.1148/radiol.2015151169 (cit. on p. 9).

[15] Elizabeth Cain, Ashirbani Saha, Michael Harowicz, Jeffrey Marks, Paul
Marcom, and Maciej Mazurowski. «Multivariate machine learning models for
prediction of pathologic response to neoadjuvant therapy in breast cancer using
MRI features: a study using an independent validation set». In: Breast Cancer
Research and Treatment 173 (Oct. 2018). doi: 10.1007/s10549-018-4990-9
(cit. on p. 9).

59

https://doi.org/10.1177/1745505716677139
https://doi.org/10.1136/bmj.324.7328.35
https://www.bmj.com/content/324/7328/35.full.pdf
https://www.bmj.com/content/324/7328/35.full.pdf
https://www.bmj.com/content/324/7328/35
https://www.bmj.com/content/324/7328/35
https://www.economist.com/special-report/2016/06/23/automation-and-anxiety
https://www.economist.com/special-report/2016/06/23/automation-and-anxiety
https://doi.org/10.1186/s13244-019-0738-2
https://doi.org/10.1186/s13244-019-0738-2
https://hbr.org/2018/03/ai-will-change-radiology-but-it-wont-replace-radiologists
https://hbr.org/2018/03/ai-will-change-radiology-but-it-wont-replace-radiologists
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s10549-018-4990-9


BIBLIOGRAPHY

[16] Amirhessam Tahmassebi et al. «Impact of Machine Learning With Multi-
parametric Magnetic Resonance Imaging of the Breast for Early Prediction
of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast
Cancer Patients». In: Investigative Radiology 54 (Oct. 2018), p. 1. doi:
10.1097/RLI.0000000000000518 (cit. on p. 9).

[17] Amirhessam Tahmassebi, Anahid Ehtemami, Behshad Mohebali, Amir Gan-
domi, Katja Pinker, and Anke Meyer-Base. «Big data analytics in medical
imaging using deep learning». In: May 2019, p. 13. doi: 10.1117/12.2516014
(cit. on p. 9).

[18] Roberto Lo Gullo, Sarah Eskreis-Winkler, Elizabeth A. Morris, and Katja
Pinker. «Machine learning with multiparametric magnetic resonance imaging
of the breast for early prediction of response to neoadjuvant chemotherapy».
In: The Breast 49 (2020), pp. 115–122. issn: 0960-9776. doi: https://doi.
org/10.1016/j.breast.2019.11.009. url: http://www.sciencedirect.
com/science/article/pii/S0960977619311014 (cit. on p. 9).

[19] Taye Girma Debelee, Friedhelm Schwenker, Achim Ibenthal, and Dereje W.
Yohannes. «Survey of deep learning in breast cancer image analysis». In: 2019
(cit. on p. 9).

[20] Daniel Truhn, Simone Schrading, Christoph Haarburger, Hannah Schneider,
Dorit Merhof, and Christiane Kuhl. «Radiomic versus Convolutional Neu-
ral Networks Analysis for Classification of Contrast-enhancing Lesions at
Multiparametric Breast MRI». In: Radiology 290.2 (2019). PMID: 30422086,
pp. 290–297. doi: 10.1148/radiol.2018181352. eprint: https://doi.org/
10.1148/radiol.2018181352. url: https://doi.org/10.1148/radiol.
2018181352 (cit. on p. 9).

[21] Azam Hamidinekoo, Erika Denton, Andrik Rampun, Kate Honnor, and Reyer
Zwiggelaar. «Deep Learning in Mammography and Breast Histology, an
Overview and Future Trends». In: Medical Image Analysis 47 (Mar. 2018).
doi: 10.1016/j.media.2018.03.006 (cit. on p. 9).

[22] H. M. Whitney, H. Li, Y. Ji, P. Liu, and M. L. Giger. «Comparison of Breast
MRI Tumor Classification Using Human-Engineered Radiomics, Transfer
Learning From Deep Convolutional Neural Networks, and Fusion Methods».
In: Proceedings of the IEEE 108.1 (Jan. 2020), pp. 163–177. issn: 1558-2256
(cit. on p. 9).

[23] Renée Granzier, Thiemo Nijnatten, Henry Woodruff, Marjolein Smidt, and
Marc Lobbes. «Exploring Breast Cancer Response Prediction to Neoadjuvant
Systemic Therapy using MRI-based Radiomics: A Systematic Review». In:
European Journal of Radiology 121 (Nov. 2019), p. 108736. doi: 10.1016/j.
ejrad.2019.108736 (cit. on p. 10).

60

https://doi.org/10.1097/RLI.0000000000000518
https://doi.org/10.1117/12.2516014
https://doi.org/https://doi.org/10.1016/j.breast.2019.11.009
https://doi.org/https://doi.org/10.1016/j.breast.2019.11.009
http://www.sciencedirect.com/science/article/pii/S0960977619311014
http://www.sciencedirect.com/science/article/pii/S0960977619311014
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1016/j.media.2018.03.006
https://doi.org/10.1016/j.ejrad.2019.108736
https://doi.org/10.1016/j.ejrad.2019.108736


BIBLIOGRAPHY

[24] Ahmet Yurttakal, Hasan Erbay, Turkan Ikizceli, and Seyhan Karacavus.
«Detection of breast cancer via deep convolution neural networks using MRI
images». In: Multimedia Tools and Applications (Apr. 2019). doi: 10.1007/
s11042-019-7479-6 (cit. on p. 10).

[25] Anna Vignati et al. «Performance of a Fully Automatic Lesion Detection
System for Breast DCE-MRI». In: Journal of magnetic resonance imaging :
JMRI 34 (Dec. 2011), pp. 1341–51. doi: 10.1002/jmri.22680 (cit. on p. 11).

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-Net: Convolutional
Networks for Biomedical Image Segmentation». In: (May 2015) (cit. on p. 11).

[27] Gabriele Piantadosi, Mario Sansone, and Carlo Sansone. «Breast Segmentation
in MRI via U-Net Deep Convolutional Neural Networks». In: Aug. 2018,
pp. 3917–3922. doi: 10.1109/ICPR.2018.8545327 (cit. on p. 11).

[28] Gabriele Piantadosi, Mario Sansone, Roberta Fusco, and Carlo Sansone.
«Multi-planar 3D breast segmentation in MRI via deep convolutional neural
networks». In: Artificial Intelligence in Medicine 103 (2020), p. 101781. issn:
0933-3657. doi: https://doi.org/10.1016/j.artmed.2019.101781. url:
http://www.sciencedirect.com/science/article/pii/S0933365718306
985 (cit. on p. 11).

[29] Xiaowei Xu, Ling Fu, Yizhi Chen, Rasmus Larsson, Dandan Zhang, Shiteng
Suo, Jia Hua, and Jun Zhao. «Breast Region Segmentation being Convolu-
tional Neural Network in Dynamic Contrast Enhanced MRI». In: vol. 2018.
July 2018, pp. 750–753. doi: 10.1109/EMBC.2018.8512422 (cit. on p. 11).

[30] Xinpeng Zheng, zhuangsheng Liu, Lin Chang, Wansheng Long, and Yao
Lu. «Coordinate-guided U-Net for automated breast segmentation on MRI
images». In: May 2019, p. 84. doi: 10.1117/12.2524250 (cit. on p. 11).

[31] Homa Fashandi, Gregory Kuling, YingLi Lu, Hongbo Wu, and Anne Martel.
«An investigation of the effect of fat suppression and dimensionality on the
accuracy of breast MRI segmentation using U-nets». In: Medical Physics 46
(Jan. 2019). doi: 10.1002/mp.13375 (cit. on p. 12).

[32] Antonio Galli, Michela Gravina, Stefano Marrone, Gabriele Piantadosi, Mario
Sansone, and Carlo Sansone. «Evaluating Impacts of Motion Correction on
Deep Learning Approaches for Breast DCE-MRI Segmentation and Classifica-
tion». In: Aug. 2019, pp. 294–304. isbn: 978-3-030-29890-6. doi: 10.1007/978-
3-030-29891-3_26 (cit. on p. 12).

61

https://doi.org/10.1007/s11042-019-7479-6
https://doi.org/10.1007/s11042-019-7479-6
https://doi.org/10.1002/jmri.22680
https://doi.org/10.1109/ICPR.2018.8545327
https://doi.org/https://doi.org/10.1016/j.artmed.2019.101781
http://www.sciencedirect.com/science/article/pii/S0933365718306985
http://www.sciencedirect.com/science/article/pii/S0933365718306985
https://doi.org/10.1109/EMBC.2018.8512422
https://doi.org/10.1117/12.2524250
https://doi.org/10.1002/mp.13375
https://doi.org/10.1007/978-3-030-29891-3_26
https://doi.org/10.1007/978-3-030-29891-3_26


BIBLIOGRAPHY

[33] Shuyue Guan and Murray Loew. «Using generative adversarial networks
and transfer learning for breast cancer detection by convolutional neural
networks». In: Medical Imaging 2019: Imaging Informatics for Healthcare,
Research, and Applications. Ed. by Po-Hao Chen and Peter R. Bak. Vol. 10954.
International Society for Optics and Photonics. SPIE, 2019, pp. 306–318. doi:
10.1117/12.2512671. url: https://doi.org/10.1117/12.2512671 (cit.
on pp. 12, 13).

[34] Hoo-Chang Shin, Neil Tenenholtz, Jameson Rogers, Christopher Schwarz,
Matthew Senjem, Jeffrey Gunter, Katherine Andriole, and Mark Michalski.
«Medical Image Synthesis for Data Augmentation and Anonymization Using
Generative Adversarial Networks: Third International Workshop, SASHIMI
2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September
16, 2018, Proceedings». In: Sept. 2018, pp. 1–11. isbn: 978-3-030-00535-1.
doi: 10.1007/978-3-030-00536-8_1 (cit. on p. 13).

[35] Lei Zhang, Zhimeng Luo, Ruimei Chai, Dooman Arefan, Jules Sumkin, and
Shandong Wu. «Deep-learning method for tumor segmentation in breast
DCE-MRI». In: Mar. 2019, p. 14. doi: 10.1117/12.2513090 (cit. on pp. 13,
14).

[36] Mehmet Dalmış, Suzan Vreemann, Thijs Kooi, Ritse Mann, Nico Karssemeijer,
and Albert Gubern-Mérida. «Fully automated detection of breast cancer in
screening MRI using convolutional neural networks». In: Journal of Medical
Imaging 5 (Jan. 2018), p. 1. doi: 10.1117/1.JMI.5.1.014502 (cit. on p. 13).

[37] Wenhuan Lu, Zhe Wang, Yuqing He, Hong Yu, Naixue Xiong, and Jianguo
Wei. «Breast Cancer Detection Based on Merging Four Modes MRI Using
Convolutional Neural Networks». In: May 2019, pp. 1035–1039. doi: 10.
1109/ICASSP.2019.8683149 (cit. on p. 14).

[38] Gabriele Piantadosi, Stefano Marrone, Antonio Galli, Mario Sansone, and
Carlo Sansone. «DCE-MRI Breast Lesions Segmentation with a 3TP U-
Net Deep Convolutional Neural Network». In: June 2019, pp. 628–633. doi:
10.1109/CBMS.2019.00130 (cit. on p. 14).

[39] Mingjian Chen, Hao Zheng, Changsheng Lu, Enmei Tu, Jie Yang, and Nikola
Kasabov. «A Spatio-Temporal Fully Convolutional Network for Breast Lesion
Segmentation in DCE-MRI: 25th International Conference, ICONIP 2018,
Siem Reap, Cambodia, December 13–16, 2018, Proceedings, Part VII». In:
Jan. 2018, pp. 358–368. isbn: 978-3-030-04238-7. doi: 10.1007/978-3-030-
04239-4_32 (cit. on p. 14).

62

https://doi.org/10.1117/12.2512671
https://doi.org/10.1117/12.2512671
https://doi.org/10.1007/978-3-030-00536-8_1
https://doi.org/10.1117/12.2513090
https://doi.org/10.1117/1.JMI.5.1.014502
https://doi.org/10.1109/ICASSP.2019.8683149
https://doi.org/10.1109/ICASSP.2019.8683149
https://doi.org/10.1109/CBMS.2019.00130
https://doi.org/10.1007/978-3-030-04239-4_32
https://doi.org/10.1007/978-3-030-04239-4_32


BIBLIOGRAPHY

[40] Gabriel Maicas, Gustavo Carneiro, Andrew Bradley, Jacinto Nascimento, and
Ian Reid. «Deep Reinforcement Learning for Active Breast Lesion Detection
from DCE-MRI». In: Sept. 2017, pp. 665–673. isbn: 978-3-319-66178-0. doi:
10.1007/978-3-319-66179-7_76 (cit. on p. 15).

[41] Natalia Antropova, B Huynh, and Maryellen Giger. «SU-D-207B-06: Predict-
ing Breast Cancer Malignancy On DCE-MRI Data Using Pre-Trained Convo-
lutional Neural Networks». In: Medical Physics 43 (June 2016), pp. 3349–3350.
doi: 10.1118/1.4955674 (cit. on p. 15).

[42] Reza Rasti, Mohammad Teshnehlab, and Son Phung. «Breast Cancer Diagno-
sis in DCE-MRI using Mixture Ensemble of Convolutional Neural Networks».
In: Pattern Recognition 72 (Aug. 2017). doi: 10.1016/j.patcog.2017.08.
004 (cit. on p. 15).

[43] Natalia Antropova, Benjamin Q. Huynh, and Maryellen L. Giger. «A deep
feature fusion methodology for breast cancer diagnosis demonstrated on three
imaging modality datasets». In: Medical Physics 44 (2017), pp. 5162–5171
(cit. on pp. 15, 16).

[44] Natalia Antropova, Hiroyuki Abe, and Maryellen Giger. «Use of clinical MRI
maximum intensity projections for improved breast lesion classification with
deep convolutional neural networks». In: Journal of Medical Imaging 5 (Feb.
2018), p. 1. doi: 10.1117/1.JMI.5.1.014503 (cit. on p. 16).

[45] Qiyuan Hu, Heather Whitney, and Maryellen Giger. «Transfer Learning in
4D for Breast Cancer Diagnosis using Dynamic Contrast-Enhanced Magnetic
Resonance Imaging». In: (Nov. 2019) (cit. on p. 16).

[46] Natalia Antropova, Benjamin Huynh, Hui Li, and Maryellen Giger. «Breast
lesion classification based on dynamic contrast-enhanced magnetic resonance
images sequences with long short-term memory networks». In: Journal of
Medical Imaging 6 (Aug. 2018). doi: 10.1117/1.JMI.6.1.011002 (cit. on
p. 16).

[47] Michela Gravina, Stefano Marrone, Gabriele Piantadosi, Mario Sansone,
and Carlo Sansone. «3TP-CNN: Radiomics and Deep Learning for Lesions
Classification in DCE-MRI». In: Sept. 2019, pp. 661–671. isbn: 978-3-030-
30644-1. doi: 10.1007/978-3-030-30645-8_60 (cit. on p. 16).

[48] Jiejie Zhou et al. «Diagnosis of Benign and Malignant Breast Lesions on
DCE-MRI by Using Radiomics and Deep Learning With Consideration of
Peritumor Tissue». In: Journal of Magnetic Resonance Imaging 51 (Nov.
2019). doi: 10.1002/jmri.26981 (cit. on p. 17).

63

https://doi.org/10.1007/978-3-319-66179-7_76
https://doi.org/10.1118/1.4955674
https://doi.org/10.1016/j.patcog.2017.08.004
https://doi.org/10.1016/j.patcog.2017.08.004
https://doi.org/10.1117/1.JMI.5.1.014503
https://doi.org/10.1117/1.JMI.6.1.011002
https://doi.org/10.1007/978-3-030-30645-8_60
https://doi.org/10.1002/jmri.26981


BIBLIOGRAPHY

[49] Hongwei Feng, Jiaqi Cao, Hongyu Wang, Yilin Xie, Di Yang, Jun Feng, and
Baoying Chen. «A knowledge-driven feature learning and integration method
for breast cancer diagnosis on multi-sequence MRI». In: Magnetic Resonance
Imaging (Mar. 2020). doi: 10.1016/j.mri.2020.03.001 (cit. on p. 17).

[50] Luyang Luo, Hao Chen, Xi Wang, Qi Dou, Huangjin Lin, Juan Zhou, Gongjie
Li, and Pheng-Ann Heng. «Deep Angular Embedding and Feature Correlation
Attention for Breast MRI Cancer Analysis». In: (June 2019) (cit. on p. 17).

[51] Benjamin Huynh, Natasha Antropova, and Maryellen Giger. «Comparison of
breast DCE-MRI contrast time points for predicting response to neoadjuvant
chemotherapy using deep convolutional neural network features with transfer
learning». In: Mar. 2017, 101340U. doi: 10.1117/12.2255316 (cit. on pp. 18,
20).

[52] Richard Ha et al. «Prior to Initiation of Chemotherapy, Can We Predict Breast
Tumor Response? Deep Learning Convolutional Neural Networks Approach
Using a Breast MRI Tumor Dataset». In: Journal of Digital Imaging 32 (Oct.
2018). doi: 10.1007/s10278-018-0144-1 (cit. on pp. 18, 20, 53).

[53] Kavya Ravichandran, Nathaniel Braman, Andrew Janowczyk, and Anant
Madabhushi. «A deep learning classifier for prediction of pathological complete
response to neoadjuvant chemotherapy from baseline breast DCE-MRI». In:
Feb. 2018, p. 11. doi: 10.1117/12.2294056 (cit. on pp. 18, 20, 53).

[54] Mohammed El Adoui, Amine Larhmam, Stylianos Drisis, and Mohammed
Benjelloun. «Deep Learning approach predicting breast tumor response to
neoadjuvant treatment using DCE-MRI volumes acquired before and after
chemotherapy». In: Mar. 2019, p. 90. doi: 10.1117/12.2505887 (cit. on
pp. 18, 20, 54).

[55] Mohammed El Adoui, Stylianos Drisis, and Mohammed Benjelloun. «Pre-
dict Breast Tumor Response to Chemotherapy Using a 3D Deep Learning
Architecture Applied to DCE-MRI Data». In: Apr. 2019, pp. 33–40. isbn:
978-3-030-17934-2. doi: 10.1007/978-3-030-17935-9_4 (cit. on pp. 18, 20,
54).

[56] Michał Byra, Katarzyna Dobruch-Sobczak, Ziemowit Klimonda, Hanna Piotrzkowska-
Wroblewska, and Jerzy Litniewski. «Early Prediction of Response to Neoad-
juvant Chemotherapy in Breast Cancer Sonography Using Siamese Con-
volutional Neural Networks». In: IEEE Journal of Biomedical and Health
Informatics PP (July 2020), pp. 1–1. doi: 10.1109/JBHI.2020.3008040
(cit. on p. 19).

64

https://doi.org/10.1016/j.mri.2020.03.001
https://doi.org/10.1117/12.2255316
https://doi.org/10.1007/s10278-018-0144-1
https://doi.org/10.1117/12.2294056
https://doi.org/10.1117/12.2505887
https://doi.org/10.1007/978-3-030-17935-9_4
https://doi.org/10.1109/JBHI.2020.3008040


BIBLIOGRAPHY

[57] Joon Ho Choi et al. «Early prediction of neoadjuvant chemotherapy response
for advanced breast cancer using PET/MRI image deep learning». In: Sci-
entific Reports 10 (Dec. 2020). doi: 10.1038/s41598-020-77875-5 (cit. on
p. 19).

[58] Yu-Hong Qu, Hai-Tao Zhu, Kun Cao, Xiao-Ting Li, Meng Ye, and Ying-Shi
Sun. «Prediction of pathological complete response to neoadjuvant chemother-
apy in breast cancer using a deep learning (DL) method». In: Thoracic Cancer
11.3 (2020), pp. 651–658. doi: 10.1111/1759-7714.13309. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/1759-7714.13309. url:
https://onlinelibrary.wiley.com/doi/abs/10.1111/1759-7714.13309
(cit. on pp. 19, 20, 54).

[59] Mohammed El Adoui, Stylianos Drisis, and Mohammed Benjelloun. «Multi-
input deep learning architecture for predicting breast tumor response to
chemotherapy using quantitative MR images». In: International Journal of
Computer Assisted Radiology and Surgery 15 (June 2020). doi: 10.1007/
s11548-020-02209-9 (cit. on pp. 19, 20, 46, 54).

[60] Amirhessam Tahmassebi et al. «Impact of Machine Learning With Multi-
parametric Magnetic Resonance Imaging of the Breast for Early Prediction
of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast
Cancer Patients». In: Investigative Radiology 54 (Oct. 2018), p. 1. doi:
10.1097/RLI.0000000000000518 (cit. on pp. 20, 24, 25, 31, 52, 53).

[61] Christina Yau et al. «Abstract GS5-01: Residual cancer burden after neoad-
juvant therapy and long-term survival outcomes in breast cancer: A multi-
center pooled analysis». In: Cancer Research 80.4 Supplement (2020), GS5-
01–GS5-01. issn: 0008-5472. doi: 10.1158/1538-7445.SABCS19-GS5-01.
eprint: https://cancerres.aacrjournals.org/content. url: https:
//cancerres.aacrjournals.org/content/80/4_Supplement/GS5- 01
(cit. on p. 21).

[62] W. Fraser Symmans et al. «Measurement of Residual Breast Cancer Burden
to Predict Survival After Neoadjuvant Chemotherapy». In: Journal of Clinical
Oncology 25.28 (2007). PMID: 17785706, pp. 4414–4422. doi: 10.1200/JCO.
2007.10.6823. eprint: https://doi.org/10.1200/JCO.2007.10.6823.
url: https://doi.org/10.1200/JCO.2007.10.6823 (cit. on p. 21).

[63] Yuka Asano et al. «Prediction of survival after neoadjuvant chemotherapy for
breast cancer by evaluation of tumor-infiltrating lymphocytes and residual
cancer burden». In: BMC Cancer 17 (Dec. 2017). doi: 10.1186/s12885-
017-3927-8 (cit. on p. 21).

65

https://doi.org/10.1038/s41598-020-77875-5
https://doi.org/10.1111/1759-7714.13309
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1759-7714.13309
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1759-7714.13309
https://onlinelibrary.wiley.com/doi/abs/10.1111/1759-7714.13309
https://doi.org/10.1007/s11548-020-02209-9
https://doi.org/10.1007/s11548-020-02209-9
https://doi.org/10.1097/RLI.0000000000000518
https://doi.org/10.1158/1538-7445.SABCS19-GS5-01
https://cancerres.aacrjournals.org/content
https://cancerres.aacrjournals.org/content/80/4_Supplement/GS5-01
https://cancerres.aacrjournals.org/content/80/4_Supplement/GS5-01
https://doi.org/10.1200/JCO.2007.10.6823
https://doi.org/10.1200/JCO.2007.10.6823
https://doi.org/10.1200/JCO.2007.10.6823
https://doi.org/10.1200/JCO.2007.10.6823
https://doi.org/10.1186/s12885-017-3927-8
https://doi.org/10.1186/s12885-017-3927-8


BIBLIOGRAPHY

[64] Katja Pinker et al. «A Combined High Temporal and High Spatial Resolution
3 Tesla MR Imaging Protocol for the Assessment of Breast Lesions». In:
Investigative radiology 44 (Aug. 2009), pp. 553–8. doi: 10.1097/RLI.0b013e
3181b4c127 (cit. on p. 22).

[65] Lindsay Turnbull. «Dynamic contrast-enhanced MRI in the diagnosis and
management of breast cancer». In: NMR in biomedicine 22 (Jan. 2009),
pp. 28–39. doi: 10.1002/nbm.1273 (cit. on p. 23).

[66] Claudio Spick et al. «Diffusion-weighted MRI of breast lesions: A prospec-
tive clinical investigation of the quantitative imaging biomarker characteris-
tics of reproducibility, repeatability, and diagnostic accuracy». In: NMR in
Biomedicine 29 (Aug. 2016). doi: 10.1002/nbm.3596 (cit. on p. 23).

[67] Christine Westra, Vandana Dialani, Tejas Mehta, and Ronald Eisenberg. «Us-
ing T2-Weighted Sequences to More Accurately Characterize Breast Masses
Seen on MRI». In: AJR. American journal of roentgenology 202 (Mar. 2014),
W183–90. doi: 10.2214/AJR.13.11266 (cit. on p. 24).

[68] Tianqi Chen and Carlos Guestrin. «XGBoost: A Scalable Tree Boosting
System». In: Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785 (cit.
on p. 25).

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. «ImageNet Classifi-
cation with Deep Convolutional Neural Networks». In: Neural Information
Processing Systems 25 (Jan. 2012). doi: 10.1145/3065386 (cit. on p. 28).

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: June 2016, pp. 770–778. doi: 10.1109/
CVPR.2016.90 (cit. on p. 28).

[71] Sebastian Ruder. «An Overview of Multi-Task Learning in Deep Neural
Networks». In: (June 2017) (cit. on p. 31).

[72] Ramprasaath Rs, Michael Cogswell, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. «Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization». In: Oct. 2017, pp. 618–626. doi: 10.1109/
ICCV.2017.74 (cit. on p. 33).

[73] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.
«Focal Loss for Dense Object Detection». In: IEEE Transactions on Pattern
Analysis and Machine Intelligence PP (July 2018), pp. 1–1. doi: 10.1109/
TPAMI.2018.2858826 (cit. on p. 37).

[74] Lia Morra, Luca Piano, F. Lamberti, and Tatiana Tommasi. «Bridging the
gap between Natural and Medical Images through Deep Colorization». In:
(May 2020) (cit. on p. 56).

66

https://doi.org/10.1097/RLI.0b013e3181b4c127
https://doi.org/10.1097/RLI.0b013e3181b4c127
https://doi.org/10.1002/nbm.1273
https://doi.org/10.1002/nbm.3596
https://doi.org/10.2214/AJR.13.11266
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Medical Image Analysis
	Computer-Aided Diagnosis
	Breast Cancer and NAC
	Magnetic Resonance Imaging (MRI)
	The Future of Medicine?

	Deep Learning applied for Breast DCE-MRI
	Applications in the Medical Field
	Pre-processing
	Image Normalization and Denoising
	Breast Volume Segmentation
	Motion Correction
	Data Augmentation

	Lesion Detection
	Lesion Classification
	NAC Response Prediction
	The NAC Baseline


	The Dataset
	MRI Modalities
	Machine Learning with mpMR for Early Prediction of Response to Neoadjuvant Chemotherapy

	Deep Learning Architecture
	Input Data
	Architecture Structure
	Multi-Task Learning
	Hand-Crafted Features Auxiliary Task
	Grad-CAM
	Experimental Settings
	Axial Resampling
	Resizing and Normalization
	Data-augmentation
	Input Slices
	Hyperparameters
	Loss Function
	Cross-validation
	Evaluation Metrics


	Experimental Results
	Settings
	Hardware and Software
	Performance Measures and Experimental Method

	Experiments
	Experiment with Features-Branch
	Experiments without Class-Weigh and with Focal Loss
	Experiment with different Slices
	Experiments with different Branches


	Discussion and Future Developments
	Discussion and Comparison
	Limitations of the Study
	Future Developments

	Conclusions
	Bibliography

