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Chapter 1

Introduction

The network threats landscape changes at an increasingly faster pace and the failure
in mitigating such threats has a twofold consequence: an economic loss for the
victims and an infrastructure cost, in terms of bandwidth and throughput, for the
whole network. A report of Netscout1 about the first half of 2020 highlights a
15% increase of cyber-attacks with respect to 2019, for a total of 4.83 millions
of DDoS attacks observed by the company and a total 10 millions at the end of
20202. Moreover, the same Netscout report states that the attackers shifted their
targets towards fundamental services during the COVID-19 pandemic, such as E-
commerce, healthcare and educational services.
However, not only the average number of attacks increased during the first pandemic
lock-down, with a spike in the number of attacks between April and May 2020, but
the type of attacks has changed and adapted to the new targets. The average
attack duration has reduced by around 50%, with an increase in complexity and
strength of the attack: DDoS attacks that exploits a single attack vector, i.e. the
exploitation of a flaw in a network protocol or software, has decreased by 43% with
respect to 2019, while the number of attacks exploiting more than 15 vectors at
the same time has increased by more than 2.800% in the last couple of years. The
same report shows that the preferred attack vector is the DNS protocol, counting
more than 1 million of attacks alone and an amplification factor of 160:1 for DDoS
amplification attacks.

However, DDoS attacks are not the only popular cyber-attack type: web appli-
cation attacks like SQL injection or cross-site scripting (XSS) are as much popular
and widespread among attackers, if not more. In fact, the European Union Agency
For Cybersecurity (ENISA) threat landscape report3 of 2020 lists web-based and
web application attacks in the top four positions of the most recurrent and danger-
ous attacks, while DDoS attacks and botnets can be found at the sixth and tenth
position respectively. Moreover, the Akamai company provides a periodic report4

1https://www.netscout.com/threatreport

2https://www.netscout.com/blog/asert/crossing-10-million-mark-ddos-attacks-2020

3https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020

4https://www.akamai.com/uk/en/resources/our-thinking/state-of-the-internet-report/

web-attack-visualization.jsp
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of the web attacks it observes inside networks monitored by its systems. The report
that covers the week between February 7 2021 and February 14 2021 states that
over 145 millions of web attacks attempts have been observed. The vast majority
of these attacks is composed by SQL injection, accounting for 60% of the total,
while XSS attacks reach almost the 18%.

Hence, the typical countermeasures for these types of cyber-attacks have to
rapidly adapt to this ever-changing landscape. Intrusion Detection and Prevention
Systems (IDS, IPS or IDPS) are one of the possible tools that are used, together
with firewalls, to mitigate the effectiveness of many cyber-attacks. An Intrusion
Detection System (IDS) is the tool, software or hardware, that allows the auto-
mated detection of intrusions inside a monitored network, while the same tool is
called Intrusion Prevention System (IPS) in case it also automates the counter-
measures against these intrusions. These tools can operate in different positions of
the network and are typically split into Network-based IDS (NIDS) and Host-based
IDS (HIDS): a NIDS monitors a portion of the network by analysing the passing
traffic, while a HIDS monitors the activities of the single host where it is deployed.
Moreover, traditional network-based IDS solutions, like Snort5 or Suricata6 are
typically based on the concept of “signature” to identify threats occurring in the
network they are monitoring. Signatures can be described as sets of characteris-
tics of a network packet or aggregates of packets (e.g. TCP flows) that signal the
presence of an ongoing attack. However, signatures are typically hand-crafted by
experts, which base the patterns of a signature on the knowledge of existing at-
tacks and known exploits. For example, the Emerging Threats7 list contains a set
of publicly available signatures compatible with the syntax used by Snort and Suri-
cata. Even if the signature-based type of approach yields very good results in the
detection of known attacks, the rapidly-changing threats landscape makes difficult
to constantly adapt and create new signatures to detect cyber-attacks. Further-
more, the variation of some patterns inside a known attack may be enough to avoid
the detection of an IDS: a Malwarebytes 2019 report8 describes the possibility of a
malware capable of dynamically adapting its attack pattern to avoid detection, by
using artificial intelligence and machine learning techniques.

A possible solution to solve the shortcomings of classic signature-based detection
is to integrate their detection capabilities with automatically adapting detection
engines, based on machine learning classifiers. By using machine learning based
techniques, it is possible to create classifiers able to take advantage of patterns inside
the malicious traffic, to detect intrusions without manually creating a signature for
each new attack type. Moreover, the resulting IDS gains the ability of generalising
the characteristics of a family of threats, leading to an easier detection of previously
unknown attacks or modified patterns.

5https://www.snort.org/

6https://suricata-ids.org/

7https://rules.emergingthreats.net/

8https://resources.malwarebytes.com/files/2019/06/Labs-Report-AI-gone-awry.

pdf
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With the improvement of signature-based detection as objective, this work pro-
poses a pipeline for the creation, selection and integration of machine learning
classifiers inside an existing IDS, Suricata. The creation and selection of these ML
models has been performed using a dataset containing some of the most widespread
cyber-attacks: DoS and DDoS attacks, botnets, bruteforce and web-based attacks.
Due to the objective of integrating the classifiers inside a working IDS, different
algorithms have been compared both in terms of classification capabilities and in
terms of time performances, to obtain an optimal solution for each different type
of attack. The adopted ML algorithms have been random forests, support vector
machines and neural networks. Then, the best models obtained have been inte-
grated inside Suricata, modifying the existing signature syntax with the addition
of ad-hoc keywords to perform the ML-based classification. Moreover, in order to
obtain the networks statistics of interest to train the classifiers and performs the
predictions, the Tstat9 tool has been employed and integrated inside Suricata and
its functionalities have been expanded as necessary.

Finally, the following chapters cover both the theoretical aspects of this ap-
proach and the analysis of the adopted solution and the obtained results. More in
detail, Chapter 2 introduces the concept of network traffic statistics and the possible
techniques used to obtained them; Chapter 3 presents an overview of the network
attacks used for this work’s experiments, together with the main tools to performs
these attacks; Chapter 4 proposes a taxonomy of intrusion detection systems, the
different approaches existing and an overview of the actual software solutions that
can be found, including Suricata; finally, Chapter 5 ends the theoretical section
of this work with the description of a typical machine learning workflow and the
technical explanation of the classification algorithms used.
Then, Chapter 6 illustrates the design of the proposed solution, composed by the
creation and selection of machine learning models and the subsequent integration
inside the Suricata IDS; Chapter 7 analyses the characteristics of the used dataset,
while Chapter 8 lists the results obtained during the experiments with the pro-
posed solution. At last, Chapter 9 performs a comparison of other existing similar
solutions, by describing them and highlighting differences and similarities, while
Chapter 10 sums up the workflow of this work and the obtained result, pointing
out some limitations of the proposed solution and suggesting some future improve-
ments. Appendix A and Appendix B contain the manuals to use the provided
solution and to expand it, from the perspective of a final user or a developer,
respectively.

9http://tstat.polito.it/
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Chapter 2

Network traffic statistics

This chapter contains a description of the statistics that can be extracted analysing
network traffic and the tools that can be used to perform such analysis. In general,
network traffic measurement and monitoring is a methodology aimed at under-
standing packet traffic on the Internet. It serves as the basis for a wide range of IP
network operations and engineering tasks such as trouble shooting, accounting and
usage profiling, routing weight configuration, load balancing, capacity planning,
and more. Two approaches are possible: active or passive [1]. The active approach
aims at interfering with the network to induce a measurable effect. An example
of such interference could be the alteration of network state by the enforcement of
artificial packet loss. On the other hand, the passive approach does not interfere
with the network: a pure observation is performed by means of dedicated tools,
commonly named “sniffers”.

There are several tools widely available that can capture packets at various levels
of the OSI model1, performing a passive analysis. The most common probably are
Tcpdump2 or Wireshark3, while other tools like Tcptrace4 are able to accept already
captured packets as input, in various formats.
The following sections describe some of the candidate tools to be used for this
work, while the last section contains a comparison between these tools and the
explanation for the final choice.

2.1 Wireshark

Wireshark is a network packet analyser. Its functionalities can be used, for example,
to troubleshoot network problems, examine security problems or debug protocol
implementations. It is available for both UNIX and Windows systems and it can
capture live packet data from a network interface, import packets from text files

1https://www.iso.org/standard/20269.html

2https://www.tcpdump.org/

3https://www.wireshark.org/

4https://linux.die.net/man/1/tcptrace
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containing hex dumps of packet data, save packet data captured, filter packets on
many criteria and create various statistics. Since the scope of this chapter concerns
network traffic statistics, a detailed overview of the ones produced by Wireshark is
provided.

The statistics section5 of Wireshark is split into general ones, containing in-
formation about the capture files, or into protocol-specific statistics. The general
section can be further split into:

Capture File Properties various properties of the capture file;

Protocol Hierarchy details about the protocol hierarchy of the captured packets;

Conversations statistics about traffic between specific IP addresses;

Endpoints statistics about traffic to and from an IP addresses;

I/O Graphs various graphs to visualise packets statistics over time.

The “Capture File Properties” section contains information about a specific
capture file, like the name, the length, the duration and the hardware used to
perform the capture. Moreover, it provides some general statistics like the number
of captured packets, the average number of packets per second, the average packet
size, the total number of bytes and the average number of bytes per second.

Instead, the “Protocol Hierarchy” section provides the hierarchy structure of the
protocols found in the analysed packets, together with some additional statistics.
The hierarchy stars from the outermost layer, a frame of the data link layer, and
proceeds with the inner protocols of the packet. A typical example of a hierarchy,
starting from a frame, could be the Ethernet protocol, then IPv4, TCP and HTTP.
For each one of the protocols in the hierarchy, Wireshark lists the percentage of
packets with respect to other protocols at the same level (e.g. 60% IPv4, 40% IPv6),
the absolute number of packets, the number of bytes and the average number of
bits per second.

Then, the “Conversations” section contains statistics about traffic between pairs
of IP addresses, while the “Endpoints” section contains statistics about traffic to
and from a specific endpoint. The statistics provided for both sections are very sim-
ilar and include the total number of packets to and from the selected addresses, the
number of bytes the average number of bits per second and, only for the “Conver-
sations”, the duration of the flow between the two addresses. Wireshark supports
many types of endpoints, like Bluetooth, Ethernet, WiFi, IPv4, IPv6, TCP, UDP,
Token Ring and others.

Finally, the “I/O Graphs” section allows to plot packet and protocol data in a
variety of ways. It contains a chart drawing area along with a customizable list of
graphs, divided into time intervals. Moreover, clicking on the graph takes the user
to the associated packet in the packet list.

5https://www.wireshark.org/docs/wsug_html/#ChStatistics
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2.2 Tstat

TCP Statistics and Analysis Tool6 (Tstat) is an automated tool for passive mon-
itoring. It has been developed by the networking research group at Politecnico di
Torino since 2000 and it offers live and scalable traffic monitoring up to gigabits
per second. Tstat started as an evolution of Tcptrace, by automating the collection
of TCP statistics adding real-time traffic monitoring features, but it evolved over
the years, offering more statistics and functionalities. Since it is a passive tool,
its typical usage scenario is the monitoring of Internet links, in which all flowing
packets can be observed. An example of this setup is shown in Figure 2.1: Tstat
monitors a link that connects the network of interest with the rest of the Internet,
to see all the passing packets.

Internet Internal
LAN

Edge
Router

PC with
Tstat

Incoming tra�c

Outgoing tra�c

Figure 2.1: An example of Tstat setup.

The basic objects monitored by Tstat are IP packets transmitted on the mon-
itored link. Flows are defined according to some rules: all packets identified by
the same “flowID” that have been observed in a given time interval are grouped
together. A common choice for the “flowID” is the tuple (ipProtoType, ipSrcAddr,
srcPort, ipDstAddr, dstPort) so that TCP and UDP flows are considered [1]. For
example, in the case of TCP, the start of a new flow is commonly identified when
the TCP three-way handshake is observed; similarly, its end is triggered when ei-
ther a proper TCP connection teardown is seen, or no packets have been observed
for some time. While for UDP, a new flow is identified when the first packet is
observed, and it is ended after an idle time. Moreover, opposite symmetric uni-
directional flows are typically grouped together to compute separate statistics for
“client-to-server” and “server-to-client” flows.

Furthermore, Tstat supports both real-time and non real-time analysis of pack-
ets. Real-time monitoring is obtained with the usage of libpcap, a library created
by the same developers of the Tcpdump tool that is widely used to capture packets
from Ethernet links under several operating systems. Aside from libpcap sniffing,
Tstat supports common hardware solutions like Endace DAG7 cards. Instead, non
real-time monitoring is performed by analysing packets previously captured with
other tools. The trace formats currently supported by Tstat are:

tcpdump public domain program from LBL;

6http://tstat.polito.it/

7https://www.endace.com/dag-10x2-s-datasheet.pdf
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snoop distributed with Solaris;

etherpeek Mac sniffer program;

netmetrix commercial program from HP;

ns network simulator from LBL;

netscout NetScout Manager format;

erf Endace Extensible Record Format;

DPMI Distributed Passive Measurement Interface (DPMI) format;

tcpdump live Live capture using pcap/tcpdump library.

Moreover, also the produced output is customizable. Statistics are available
at different granularities: per-packet, per-flow or aggregated. At the lowest level,
packet traces can be dumped into trace files for further processing and packets from
different applications can be dumped in different files. At an intermediate level,
flow-level logs are generated and provide detailed information for each monitored
flow. These logs file are organized as tables, where each column is associated with
specific information and each row reports the two unidirectional flows of a connec-
tion. Several flow-level logs are available and their content and structure is better
described in Section 2.2.1.
Finally, at the highest level of granularity, two formats are available: histograms
and Round Robin Databases8 (RRD). Histograms are frequency distributions of
collected statistics over a set of flows: for example the distribution of the VoIP
calls duration is computed by considering the VoIP flows observed during a cer-
tain interval. Instead, RRD allows to build a database that spans several years,
by limiting the used disk space. RRD handles older data differently from newer
samples. Newest data is stored at higher frequencies, while older data are averaged
in coarser timescales. Moreover, the RRD tool allows for a graphical inspection of
collected results.

Finally, a brief overview of the mechanisms behind Tstat functionalities are
shown in Figure 2.2, which represents a block diagram of the trace analyser: these
are the steps through which the program moves for each analysed packet [2].

Each packet is first analysed by the IP module, which takes care of all the
statistics at the packet layer. Then, the next module distinguishes between TCP
and UDP segments to compute per-segment statistics and the flow continues with
the respective analyser. The TCP module decides if the segment belongs to an
already identified flow, using the tuple described above. If not, then a new flow
is identified only if the SYN flag is set, as Tstat processes only complete flows.
Then, the flow statistics are updated with the new segment and in case the segment
correctly closes a flow, the flow-layer output is produced and the flow data structure
is released.

8https://oss.oetiker.ch/rrdtool/
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Start

New packet? End

IP packet stat

Is TCP? Is UDP?

TCP segment stat UDP segment statOld �ow?

New �ow?
Add new
�ow

Closed �ow?

TCP �ow
stat

Remove �ow

No

No

No

No

No

No

YesYes

Yes

YesYes

Yes

Figure 2.2: A schematic block diagram of Tstat trace analyser. Only the TCP
analyser is detailed.

2.2.1 Extracted statistics

Tstat creates a set of TXT files where each row corresponds to a different flow and
each column is associated to a specific measure. When it is useful, the columns are
grouped according to “Client-to-Server” (C2S) and “Server-to-Client” (S2C) traffic
directions. For most logs, the first row contains a summary with the description
of all columns. The generated logs are “log tcp complete”, “log tcp nocomplete”,
“log udp complete”, “log video complete”, “log http complete”, “log mm complete”,
“log skype complete”, “log chat complete” and “log chat messages”.

The first two, log tcp complete and log tcp nocomplete, report every TCP con-
nection that has been tracked by Tstat. A TCP connection is identified when the
first SYN segment is observed and is ended when FIN/ACK or RST segments are
observed or no data packet has been observed, from both sides, for a default time-
out of 10s after the opening SYN segment, or 5min after the last data packet. Both
timeout values can be customised. Tstat discards all the connections for which the
three way handshake is not properly seen.
Both files have similar format with values separated by spaces. Each log is made
by the composition of different measurements sets, which order is hard-coded as
follows:

� Core TCP set;
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� TCP End to End set (Optional);

� TCP P2P set (Optional);

� TCP Options set (Optional);

� TCP Layer7 set (Optional);

� TCP Advanced set (Optional).

However, the log tcp nocomplete file always contains only the Core TCP set.
This set contains the basic information for all TCP flows and its content is described
in Table 2.1. The first two columns represent the position inside the log of the
client-to-server and server-to-client information respectively.

The other sets include specific measures, which usefulness is more situational.
For example the TCP End to End set includes measures about round-trip-time
(RTT) and time-to-live (TTL) for TCP connections. The complete list can be
found in the Tstat website9. Finally, the detailed description of the steps to use
Tstat can be found in Appendix B.

2.3 CICFlowMeter

CICFlowMeter10 is a network traffic flow generator and analyser. It can be used
to generate bidirectional flows, where the first packet determines the forward and
backward directions. Moreover, it can compute more than 80 network traffic fea-
tures, such as flow duration, number of packets, number of bytes and average length
of packets. The complete list of extracted features can be found on the website of
one of the datasets created with this tool, the CSE-CIC-IDS201811 dataset. Fur-
thermore, this tool allows the addition of more features or the reduction of the
existing ones. The output is produced in the CSV format. Finally, the tool is
publicly available in a Git repository12 and it is written in Java.

2.4 Tools comparison

The tool chosen for this work’s experiments should have some specific characteris-
tics: it should be able to produce a high number of network features that will be
used to create the machine learning models, it should be able to provide statistics
in real-time and its architecture should allow for an integration with an IDS, which
is one of the objectives of this work.
Wireshark has been excluded because it does not satisfy any of these pre-requisites.

9http://tstat.polito.it/measure.shtml

10https://www.unb.ca/cic/research/applications.html#CICFlowMeter

11https://www.unb.ca/cic/datasets/ids-2018.html

12https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter
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As explained in Section 2.1, it can produce a very limited amount of statistics for
bi-directional flows; moreover, it does not provide any API to retrieve statistics in
real-time and the only way to obtain a CSV file of the produced ones is through
the GUI or through the terminal-based version of Wireshark, Tshark13.
Instead, the other two candidate tools, Tstat and CICFlowMeter, produce a consid-
erable amount of network traffic statistics. The highest number of features is pro-
vided by the CICFlowMeter, that can compute around 80 features for bi-directional
flows, while Tstat can produce almost 40 features for TCP flows. Moreover, the
CICFlowMeter tool is the same tool that has been used to create the dataset cho-
sen for this works’s experiments, as explained in Chapter 7, and the authors of
the dataset already provides the CSV files with the extracted statistics. On the
other hand, the usage of Tstat would require the extraction ex-novo of the traffic
statistics, starting from the provided packets captures.
However, the final choice has been the usage of Tstat, due to the last requirement
of the list explained above: the integration with an IDS. The fact that Tstat is
written in C, the same programming language used by the IDS chosen for this
work, as explained in Section 6.2, allows for a seamless integration of the required
functionalities inside the IDS.

13https://www.wireshark.org/docs/man-pages/tshark.html
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C2S S2C Unit Description

1 15 - IP addresses of the client/server

2 16 - TCP port addresses for the client/server

3 17 - total number of packets observed form the client/server

4 18 0/1 0 = no RST segment has been sent by the client/server

5 19 - number of segments with the ACK field set to 1

6 20 - number of segments with ACK field set to 1 and no data

7 21 bytes number of bytes sent in the payload

8 22 - number of segments with payload

9 23 bytes number of bytes transmitted in the payload, including rtx

10 24 - number of retransmitted segments

11 25 bytes number of retransmitted bytes

12 26 - number of segments observed out of sequence

13 27 - number of SYN segments observed, including rtx

14 28 - number of FIN segments observed, including rtx

29 ms flow first packet absolute time (epoch)

30 ms flow last segment absolute time (epoch)

31 ms flow duration since first packet to last packet

32 ms
client first segment with payload since the first flow seg-
ment

33 ms
server first segment with payload since the first flow seg-
ment

34 ms
client last segment with payload since the first flow seg-
ment

35 ms
server last segment with payload since the first flow seg-
ment

36 ms client first ACK segment since the first flow segment

37 ms server first ACK segment since the first flow segment

38 0/1 1 = client has internal IP, 0 = client has external IP

39 0/1 1 = server has internal IP, 0 = server has external IP

40 0/1 1 = client IP is CryptoPAn anonymized

41 0/1 1 = server IP is CryptoPAn anonymized

42 -
Bitmap stating the connection type, as identified by
TCPL7 inspection engine

43 - Type of P2P protocol, as identified by the IPP2P engine

44 - For HTTP flows, the identified Web2.0 content

Table 2.1: Tstat Core TCP set.
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Chapter 3

Network attacks

This chapter focuses on some of the most popular network attacks, with a particular
emphasis on the typologies encountered during this work’s experiments and further
described in Section 7.1. It also presents a sum of the main tools used to perform
such attacks.

3.1 Bruteforce attack

The bruteforce attack is one of the oldest and simplest attacks. It consists in
multiple login attempts to a server, trying to find the correct credentials. Usually
the username is already known or found through other methods.

3.1.1 Attack description

There are different techniques to execute this type of attack: the exhaustive attack
is the simplest one, but other popular techniques are dictionary attacks and rainbow
tables.
Exhaustive attack is quite straightforward: given a set of characters and a length
range, it tries all the possible combinations until the right one is found. The set
of characters can include lowercase and/or uppercase letters, digits and special
symbols. A possible variation of this method consists in trying only specific words
or variations of such words, starting from commonly used terms and names: for
this reason, this technique is called dictionary attack.
NordPass, a password manager software, shows the most common passwords of
20201 and they are easily cracked in less than a second with this simple type of
attack: the most used one seems to be “123456”, followed by the way more secure
“123456789”, probably used for forms that require longer passwords. On the fourth
place there is the evergreen “password”, but scrolling down the list it is possible
to find many popular names like “qwerty”, “iloveyou”, “unknown”, “pokemon” or
“michael”.

1https://nordpass.com/most-common-passwords-list/
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A smarter variation to bruteforce attacks, still used to guess credentials, starts from
the hash of the password: given a known hash algorithm, the hash of each word
in a set is pre-computed and stored with the hash as searching index. The set can
be an exhaustive one or composed by a subset of common passwords, like above.
Once an hashed password is captured on the network, a lookup function searches for
that hash inside the dictionary and obtains the corresponding password associated.
This type of attack is not properly bruteforce, since it does not try all the possible
combinations, it simply stores them for a later use.

Given the same set of characters for both methods, the number of combinations
is the same, of course. However, the bruteforce one has to compute and try during
the attack the whole set of combinations, in the worst case. The second type is
much faster at attack time, because it has only to lookup a data structure, given the
index. The downside is that this pre-computed table has to be stored in memory.
The rainbow table method [3] is a trade-off between time and memory requirements:
a chain of hashes is computed for a subset of the possible combinations. Starting
from an element of this subset, the hash function is computed, followed by the
computation of a reduction function, that brings the result back into the password
domain (e.g. into fixed length alphanumeric words). This reduction function is not
the reverse of the hash. The chain continues computing the hash over the reduction
and so on, for a fixed amount of times. Only the beginning and the end of each
chain are stored: in this way the table is much smaller.
The lookup of an hash is done in the following way: the reduction function is
computed over the hash and then the hash is computed again over the reduction,
similarly to the creation of the table process. This is repeated for a maximum
number of times equal to the length of chains: if at any time during the process
a match is found with an end of a chain in the table, the beginning of the chain
is taken and the chain is reconstructed to find the hash and the corresponding
password.
A simple example is shown in Figure 3.1 to better clarify this algorithm. The
starting set is composed by three words: “123456”, “password” and “security”.
The hash and reduction functions are computed and only the beginning and the
ending of the chains are stored. Once the hash “67d23ry” is sniffed from the
network, the reduction and hash functions are alternated until the end of a chain
is found, the word “linux”. The beginning of the corresponding chain, “security”,
is used to reconstruct the chain and the sniffed hash is found: the password that
originated it is on the previous step, “paperino”.

Actually, using the same reduction function at each step, causes the collision
and fusion of multiple chains, in case at different steps both chains produce the
same output. To overcome this limitation and allow even longer chains, a different
reduction function is used for each link in a chain, but keeping the same order for
different chains. In this way, to have a complete chain fusion, the collision should
happen at the exact same number of link in two different chains. If it happens, one
of the colliding chains is pruned off.
Often, pre-computed rainbow tables for different hash functions and different sets
of characters are sold on the black market, making this type of attack much easier.

However, in case of an offline attack, the attacker has all the time needed to
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123456

Hash HashReduct
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password
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linux
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Hash HashReduct

43gwe paperino 67d23ry

Figure 3.1: An example of rainbow table with singular reduction function.

bruteforce the credentials; instead, in an online attack, there are some basic coun-
termeasures that can be taken. Against both techniques, it is possible to limit
the number of attempts to login over a certain time, to increase the complexity
of login or to introduce a timed two factor authentication (2FA). A typical exam-
ple of a timed 2FA is the Timed One Time Password [4] (TOTP): in this case,
after the insertion of the correct credentials, the server requires the insertion of a
pseudo-random password, generated by an ad-hoc system. Possible examples of
such generators are OTPs received by SMS or specific dedicated applications like
Google Authenticator.
Furthermore, against the techniques based on hash tables, it is possible to add a
salt to the password in order to force the re-computation of the hash. This simple
technique can make impossible the usage of rainbow tables: the salt is a large sized
word, possibly not the same for all the passwords of a server, that is added after the
user’s password. The hash is computed on the concatenation of the password and
the salt, forcing the attacker to create a table for each possible salt. While with a
12 bit salt it would still be possible to compute and store 4096 different tables, a
128 bit salt would require too many years to compute all the possible tables (2128).

3.1.2 Attack tools

Patator2 is one of the many tools available to perform brute force attacks. It is not
among the most common3 and it is written in Python. It is able, to brute force
SSH, FTP, SMTP, HTTP, POP3, DNS and various SQL servers.

2https://tools.kali.org/password-attacks/patator

3https://resources.infosecinstitute.com/topic/10-popular-password-cracking-tools/
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For instance, Listing 3.2 shows a possible output of the execution of this tool, to
find a FTP password for the user “root”. In this case, a file containing a list of
passwords is passed to the tool, that attempts to perform the login into the target
FTP server by trying the provided passwords: the correct one is “ftp”.

$ ftp_login host=10.0.0.1 user=root 0=logins.txt password=FILE0

-x ignore:mesg=’Login incorrect.’ -x

ignore,reset,retry:code=500

19:36:06 patator INFO - Starting Patator v0.9

19:36:06 patator INFO -

19:36:06 patator INFO - code size time | candidate | num | mesg

19:36:06 patator INFO - ----------------------------------------

19:36:07 patator INFO - 530 18 0.002 | anonymous | 7 |

Permission denied.

19:36:07 patator INFO - 230 17 0.001 | ftp | 10 | Login

successful.

19:36:08 patator INFO - 530 18 1.000 | root | 1 | Permission

denied.

19:36:17 patator INFO - 530 18 1.000 | michael | 50 | Permission

denied.

19:36:36 patator INFO - 530 18 1.000 | robert | 93 | Permission

denied.

Figure 3.2: An example of patator output.

Other more common similar tools are THC Hydra, NCrack, John the Ripper,
Rainbow Crack and many others. Rainbow Crack4 is a software able to both create
and lookup rainbow tables. It is available for both Windows and Linux and includes
hardware acceleration capabilities, for both NVIDIA and AMD GPUs. Moreover,
for less than 1000$, it is possible to buy the full set of MD5 rainbow tables from
its website, shipped within a 2TB hard drive. The table containing alphanumeric
characters from the set [a-z], [0-9] with plaintext long from 1 to 9 characters needs
65GB, while it increases to 690GB for the alphanumeric set [a-z], [A-Z], [0-9].

3.2 Denial of Service

The Denial of Service attack (DoS) is maybe one of the most known attacks. Its
aim, rather than being that of accessing information, is to disrupt its availability.
The underlying concept is to saturate the server’s resources with packets, to negate
the connection to legitimate users.

4https://project-rainbowcrack.com/
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3.2.1 Attack description

First of all, Denial of Service attacks exist in two variations: standard DoS attacks
or Distributed DoS attacks (DDoS). In this last case, the attacker infrastructure
is distributed across several machines, that can be intentional attackers or not. In
case this infrastructure is composed by a multitude of infected computers, this is
called a botnet: it can execute commands received from the attacker, even at a
delayed time, in order to attack the victim in different ways, as better explained in
Section 3.4.
However, DoS attacks can fall under two groups: direct and reflection attacks [5].
Direct ones involve traffic sent to the victim directly from the attacker infrastruc-
ture. This can be a single machine or a set of servers. To avoid the attribution
of the attack, usually the attackers employ random spoofing, a technique used to
fake the IP address of packets. Instead, in reflection attacks, third party servers
are used to reflect the traffic towards the victim. Moreover, many protocols that
allow for reflection, also add amplification, causing the generated traffic volume to
become several times bigger. These two groups of attacks are also referred to as
volumetric, since are based on the volume of the requests to exhaust resources of
the victim. Another possible type of DoS are semantic attack, that must be crafted
ad hoc, because they exploit specific flaws in the victim infrastructure, for example
to crash a server.

Some common direct DoS types are UDP and TCP flooding attacks. The UDP
one is based on the fact that a host replies with an “ICMP Destination Unreachable”
message in case it receives an UDP message towards a port where no service is
listening. Sending a large amount of such UDP packets forces the host to keep
replying with ICMP packets, thus depleting resources. This type of attack is quite
easy to counter, by limiting the rate at which ICMP replies are sent.
Another simple, but effective, direct attack is SYN flooding [6]: it exploits a flaw in
the three way handshake protocol for TCP connections. This protocol is composed
by three simple steps:

1. the client sends a SYN message to the server;

2. the server answers with a SYN-ACK message;

3. the client answers with an ACK message, followed by data.

If the client does not answer with the last ACK message, the server awaits some
time before freeing the resources held for that possible connection. So, if the server
receives too many SYN messages without the last ACK, maybe from fake IP sources
through IP spoofing, it runs out of resources, slowing down or crashing directly.
The most basic method to fight this type of DoS attacks is to shorten the timeout
for the half-opened connections or to dynamically dimension the queue for new
connections.

On the other hand, reflection with amplification attacks are easier to perform
since they require less resources from the attacker. Typical examples of protocols
that allow amplification are NTP, IGMP and also newer ones like DNSSEC.
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Network Time Protocol [7] (NTP) is a protocol widely used to synchronize computer
clocks in the Internet: NTP amplification is based on the existence of a specific
command “monlist” that answers a UDP message with the list of the last 600 hosts
that connected to the queried server. By spoofing the IP address and sending
repeated monlist requests, the victim is flooded with UDP packets. IGMP DoS
is based on a bad-configured network: usually IGMP messages are limited to the
local network; however some routers reply to the “AskNeighbors2” query from
arbitrary Internet hosts with a unicast “Neigbors2” response. The normal and
legitimate use of these queries is to obtain a list of the local neighbours inside a
network: a unicast “AskNeighbors2” query has to be sent to a router, that should
answer with a unicast “Neigbors2” response. However, with a moderate botnet of
2000 bots, it is possible to flood a 10Gbps link, with an amplification of almost
20 times [8], by exploiting the existence of this bad-configured routers, used to
amplify the attack. For DNSSEC amplification, the starting point is the same as
for IGMP: a misconfiguration. Recursive DNS servers should accept DNS queries
only from authorized clients, but sometimes this does not happen. Through IP
spoofing, the victim can be flooded with UDP packets. The implementation of
DNSSEC, a security extension of DNS, increased the amplification rate from 4.5
times to 45 times the size of the request5.
Another possible method is called Smurfing: in this case it is exploited the “ICMP
Echo Request” and a bad-configured network gateway. Sending such request to
the broadcast address of this network and spoofing the source IP as the victim
IP address, the victim will be flooded by the “ICMP Echo Reply” messages. A
correctly configured gateway would simply not answer to ICMP requests sent to its
broadcast address.

Furthermore, there are DoS attacks that do not involve layer 4 protocols, but
use layer 7 protocols to damage the victim [9]. In this case HTTP requests with
GET, POST or HEAD methods are used. The underlying concept is the same for
all three methods: an incomplete request is sent to the server, sending subsequent
headers at regular interval to keep the connection alive. The full header is never
sent and the attack keeps going until the server resources are depleted.

Interestingly, a 2017 study shows that more than 30.000 DoS attacks per day
are performed [10]. Moreover, TCP is the preferred protocol, accounting for around
80% of the total direct attacks, with UDP and ICMP following at 16% and 4.5%.
Instead, reflection and amplification attacks are mostly performed with NTP, with
40% of the total, followed by DNS and CharGen at 26% and 22% respectively.
Finally, an other interesting statistic about DoS attacks is that in TCP floods the
preferred target ports are HTTP and HTTPS ones, with 50% and 20% of the total,
while for UDP floods the victim ports are mostly associated with various on-line
multiplayer games.

5https://blog.nexusguard.com/dnssec-fuels-new-wave-of-dns-amplification
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3.2.2 Attack tools

HTTP Unbearable Load King (HULK6) is a popular DoS tool. It is designed to
generate volumes of unique and obfuscated traffic, bypassing caching mechanism.
The principle behind HULK is that a unique pattern is generated at each new
request, thus evading intrusion detection and prevention systems. For instance,
HULK will rotate both User-Agent and Referer fields of the requests.
Originally it was written in Python, but has been recently ported to Go. The main
difference from the Python version lays in the concurrency architecture of Go lan-
guage. The “goroutines” allow for a better usage of resources and consequently a
much higher connection pool on the same hardware: a goroutine can be described
as a lightweight thread, handled by the Go runtime and its scheduler; moreover,
a goroutine is created with a very small amount of memory, that is expanded if
needed. Once installed, the usage of HULK is quite simple:
$ hulk -site http://example.com/test/ 2>/dev/null is enough to start a DoS
attack.

Goldeneye7 is an HTTP DoS test tool, written in Python and created to test if
a site is susceptible to DoS attacks. It exploits the “HTTP Keep Alive + NoCache”
attack vector. This type of attack vector . Similarly to HULK, it changes User-
Agent and Referer fields. Its usage is still simple: $ ./goldeneye.py <url>

[OPTIONS] is the command to launch it; possible options include the usage of a
custom file of User-Agents or the possibility to choose between GET or POST
requests. This tool has not been updated since 2018.

Slowloris8 is another HTTP DoS tool, still written in Python. It differentiates
itself from previous tools using a different exploit. Its mechanism is based on keep-
ing the connections alive sending header periodically (every 15 seconds). If the
server closes a connection, the tool opens a new one. Also this tool can be eas-
ily launched, once installed, with $ slowloris example.com [OPTIONS]. Some
options include the destination port selection, the usage of HTTPS or the possi-
bility to set a different sleep timer between each header sent. Moreover, it can be
used through Slowhttptest9, a configurable tool that implements the most common
Application Layer DoS attacks. Some of the modes supported by this other tool
are Slowloris, RUDY, Apache range attack and Slow Read attack. Slowhttptest is
written in C++.

Low Orbit Ion Cannon10 (LOIC) and High Orbit Ion Cannon (HOIC) are two
DoS application. The oldest one, LOIC, can flood the target server with TCP,
UDP or HTTP packets. In order to generate enough traffic to damage the target,
thousands of user need to coordinate the attack. Low-scale attacks can be easily
mitigated with well written firewall rules. Since it needs a high number of coordi-
nated users to perform a successful attack, the tool includes a so-called “Hivemind”

6https://github.com/grafov/hulk

7https://github.com/jseidl/GoldenEye

8https://github.com/gkbrk/slowloris

9https://github.com/shekyan/slowhttptest

10https://github.com/NewEraCracker/LOIC
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mode to allow the remote control of the client: a sort of voluntary botnet. It is
written in C#, but a JavaScript and a web-based versions have been released too.
Interestingly, LOIC has been used in some high profile DDoS attacks, like “Project
Chanology”11 in 2008, when the Anonymous group used it to protest against the
actions of the Church of Scientology, in the United States.
Its successor, HOIC, operates slightly differently and has been developed by the
Anonymous group. It floods the victim with HTTP POST or GET requests and
can target as many as 256 sites simultaneously. In this case, fewer people are
needed to perform a low-scale attack, as few as 50. It also contains some additional
features with respect to LOIC, like some scripts that let the attackers hide their
geolocation. A famous attack perpetrated by the same Anonymous group hap-
pened in 2012 with “Operation Megaupload”, one of the largest DDoS attacks at
that time. It was launched to protest against the shutting down of Megaupload12,
a filesharing website, by the United States Department of Justice. In this case
the targeted websites belonged to the U.S. Department of Justice, the Recording
Industry Association of America, the Motion Picture Association of America and
Broadcast Music, Inc.

3.3 Web attack

This type of attack is quite common. It consists in a set of methods that ex-
ploit vulnerabilities in dynamic web sites. The two main typologies are Cross Site
Scripting (XSS) and SQL injection. In both cases, the objective is to grab private
information from the victim who is visiting the web site.

3.3.1 Attack description

XSS attacks consist, typically, in a JavaScript code injection that allows the exe-
cution of this code in the victim’s web browser. This can happen in different ways,
leading to the definition of three main groups of XSS attacks [11]: server side ones
are called Persistent and Non-Persistent, while on the client side there are DOM
based XSS attacks. Moreover, there is also another client side attack; it exploits
plug-ins to inject the malicious code.

Persistent attacks are maybe the most dangerous, because any legitimate user
that will visit the infected website will be potentially affected by the XSS attack.
Instead, to carry out a Non-Persistent attack, each single victim must be tricked
into performing specific actions, as described later. Once a vulnerable website is
found, the steps of the attack are the following:

1. one of the web application forms is used to inject the script, that is stored
into the website repository;

11https://en.wikipedia.org/wiki/Project_Chanology

12https://en.wikipedia.org/wiki/Megaupload
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2. the victim browses the vulnerable website and requests a web page;

3. the HTTP response of the server now contains the requested HTML web page
incorporated with the stored script;

4. the malicious code is executed on the victim’s web browser, transferring, for
example, private credentials to the attacker.

The injected script can contain many different commands. Listing 3.3 shows a
very trivial example of a script that sends the cookie of the victim to the attacker’s
website. Normally, the code does not contain only the script: for example if the
vulnerable form is in a comment section on a website, the script is injected with a
benign text, but only the text is shown when the page is loaded, while the script is
executed.

<script>

window.location = "http://attacker/?cookie=" +

document.cookie

</script>

Figure 3.3: A trivial example of a script injected into a form.

Non-Persistent attacks work in a similar way, but in this case the script is not
saved into the server repository. An ad hoc URL is crafted by the attacker and it
contains the malicious code inside. When the victim uses such URL, the script is
executed, with the same results as before. A possible example of a malicious URL
is shown in Listing 3.4.

http://vulnerable.com/search?keyword=<script>...</script>

Figure 3.4: An example of a script injected into an URL.

In this case, a big difference with respect to the previous attack is that the victim
must be induced to click on such URL, because simply visiting the vulnerable web
site as usual, will not trigger any script. A common way to trick people to use these
URLs are emails that try to mimic a real website email, but contain malicious links.

The third and last type of XSS described is the DOM based attack. The first
steps are exactly the same as in Non-Persistent attack, the difference is purely
about the type of HTTP response of the vulnerable website. While in the case of
Non-Persistent attack, the server incorporates the malicious script directly inside
the response message, in DOM based attacks the response contains a benign script
that, using the same example of Listing 3.4, prints the requested keyword on the
webpage. The difference is subtle, but in this second case the malicious script is
executed on the victim’s client once a benign script makes it possible. Still using
the same example, the benign script of the client expects to print a keyword on
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the HTML page; instead, since it does not perform any validation mechanism, it
executes an unexpected script on the client’s browser.

However, XSS is not the only way to attack vulnerable web sites. SQL injection
attacks often have the same aim, i.e. obtaining private credentials of the victim, but
can perform more dangerous operation and instead of working through JavaScript
injection, they use SQL. In this case too, there are different possibilities: Piggy
Backed and Union queries are the most simple and popular, but more advanced
ones do exist [12].

Piggy Backed injections consist in the execution of additional queries that were
not intended by the developer of the website. The most common example is made
with a vulnerable login form, where username and password must be inserted. Let’s
assume that the server executes the query shown in Listing 3.5, once credentials
have been retrieved from the client. The parameters usr and psw are the retrieved
credentials. A Piggy Backed attack consists in the addition of another query after
this one.

SELECT * FROM Users WHERE username = usr AND password = psw;

Figure 3.5: An example of a query vulnerable to SQL injection.

For example, if the attacker inserts in the password field a malicious input, the
query becomes as shown in Listing 3.6, causing the deletion of the Users table.

usr = "Paperino"

psw = "0000; DROP TABLE Users"

SELECT * FROM Users WHERE username = "Paperino" AND password =

"0000"; DROP TABLE Users;

Figure 3.6: An example of a Piggy Backed SQL injection attack.

Instead, the Union query method exploits the UNION keyword in SQL. The way
to perform this injection is through a vulnerable form, as usual, and the resulting
query could be the one shown in Listing 3.7. In this case the -- at the end of the
malicious username starts a comment in the SQL query, so the password field is
not considered during the execution. In a real case there would be some differences
from this example, since the attacker needs to be sure that the number and type
of columns in the results of both queries are compatible, in order to use the UNION
keyword.

Finally, there are more advanced strategies that combine SQL injection with
other attacks. For instance, SQL + DDoS attack is a possibility. Exploiting specific
SQL commands that allow to encode and decode strings plus forms vulnerable to
previous attacks like UNION queries, it is possible to create SQL queries that take
a lot of time to be executed. Encoding and decoding many times a set of columns
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usr = "Paperino" UNION SELECT * FROM Credit_card WHERE username

= "admin"; --

psw = "0000"

SELECT * FROM Users WHERE username = "Paperino" UNION SELECT *

FROM Credit_card WHERE username = "admin"; -- AND password =

"0000";

Figure 3.7: An example of a UNION SQL injection attack.

or a whole table can drain all the server resources, causing it to crash or to not be
able to answer to further requests.

However, there are some good practices that can strongly mitigate the effects of
these types of attacks and combined with more sophisticated techniques can detect
them. A general advice is to always add validation steps to all the input fields,
removing or escaping unwanted characters that can be used to perform XSS or
SQL attacks. Character escaping can be split into several different categories13:
the main ones are output escaping, JavaScript and Event Handler escaping and
various specific tags escaping.
Output escaping is about HTML text that is directly printed on the page; in this
case the five XML significant characters that need to be escaped are &, <, >, ",

’ and they respectively becomes &amp;, &lt;, &gt;, &quot;, &#x27;. Other
non-alphanumerical characters with ASCII code lesser than 256 should be escaped
with the format &#xHH;, where HH is the hexadecimal ASCII code. Also HTML
attributes like attr are subject to these escaping rules. JavaScript and Event Han-
dlers (e.g. onmouseover) sensible characters are ’, ", \, /, <, > (and others)
and are escaped following the format \xHH, where HH is the ASCII hexadecimal
code. Specific tags like CSS <style> require the escaping format \HH, while others
like URL href require %HH format. Fortunately, each language usually offers library
functions to automatically perform this kind of transformations.
Moreover, specifically for SQL injection, it is possible to use, beside specific char-
acter escaping, prepared statements or stored procedures to automatically parse
the query variables14. The difference between prepared statements and stored pro-
cedures is that the SQL code for a stored procedure is defined and stored in the
database itself, and then called from the application, while prepared statements are
written directly inside the application. An example of a Java prepared statement
is shown in Listing 3.8. All these techniques can counter a large amount of basic
attacks, but are not enough for more advanced ones, so specific countermeasures
have to be taken.

13https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_

Prevention_Cheat_Sheet.html

14https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_

Cheat_Sheet.html
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String custname = request.getParameter("customerName");

String query = "SELECT account_balance FROM user_data WHERE

user_name = ? ";

PreparedStatement pstmt = connection.prepareStatement( query );

pstmt.setString( 1, custname);

ResultSet results = pstmt.executeQuery( );

Figure 3.8: An example of a Java prepared statement.

3.3.2 Attack tools

Heartleech15 is a tool that looks for a specific vulnerability inside the system. The
OpenSSL library introduced a bug called Heartbleed (hence the name of the tool)
between 2012 and 2014, due to an erroneous validation of inputs. The Heartbleed
bug allows anyone on the Internet to read the memory of the systems protected
by the vulnerable versions of the OpenSSL software. This compromises the secret
keys used to identify the service providers and to encrypt the traffic, the names and
passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate
services and users. This bug affected Operating Systems, websites and common
software. Some popular websites that were affected are Yahoo!, Stack Overflow,
GitHub, Reddit and Wikipedia. Its official record number inside the Common
Vulnerabilities and Exposure (CVE) list is CVE-2014-016016, while the name comes
from the TLS/DTLS extension’s implementation which contained the bug, named
Heartbeat.

Among other functionalities, the Heartleech tool is capable of obtaining private
keys directly from a vulnerable website. The way it works, on a high level, is to look
through the Hearthbleed memory buffer, which is accessible due to the vulnerability,
one byte at a time and it constructs a BIGNUM variable. Then it obtains the public
key of the server and tries to divide it with the constructed variable, if it is a prime
number. If the result has no remainder, the other prime number needed to build
the private key has been found. Moreover, it has been specifically designed to avoid
being detected by IDS like Suricata17, since their signatures trigger when the TCP
payload starts with a specific pattern similar to 18 03 02 00 03 01 40 00.

3.4 Botnet

Botnets are not properly cyber-attacks, but can be defined as the tools used to per-
petrate specific attacks. Specifically, botnets are distributed computing platforms

15https://github.com/robertdavidgraham/heartleech

16https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

17https://blog.inliniac.net/2014/04/08/detecting-openssl-heartbleed-with-suricata/
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used for illegal activities like launching DDoS attacks or sending spam, trojan and
phishing emails [13].

3.4.1 Attack description

The first thing needed by an attacker to build a botnet is a vulnerability to exploit
in the target systems. Typically, a single vulnerability is not enough to compromise
a system, so the attacker has to combine several vulnerabilities to gain control of a
computer [14]. An example of this kind of vulnerability is the buffer overflow, an
exploit aimed at accessing a portion of memory not allocated to the process. For
example, an old vulnerability present in the RPC protocol for Microsoft18 allowed
remote attackers to execute arbitrary code via a malformed message.
Moreover, attackers typically select specific networks to use as botnets: for ex-
ample, some “always-on” broadband connections can provide a high bandwidth
capacity to the attacker, speeding up the process. An example of such networks is
the educational address space (.edu), that is often poorly secured and offers large
storage capacities and a fast network connection [14].

However, the peculiar characteristic of a botnet with respect to other types
of tool is the presence of a Command and Control (CNC) channel that allows to
update and direct the systems that compose the botnet. The CNC architecture can
vary between botnets: some examples of such architectures are IRC-based, HTTP-
based, DNS-based or P2P-based [15]. The difference between these architectures
mostly lays in the way the “botnet master” communicates with the bots and which
network protocols are used. The most prevalent type of botnets are the one based
on the Internet Relay Chat [16] (IRC) protocol, which was originally designed for
large social chat rooms to allow for several forms of communication among large
number of hosts. Instead, Peer-to-Peer (P2P) based botnets are not centralised like
the other types, leading to an harder detection or monitoring [13].

Furthermore, some specific steps can be identified in the life-cycle of a botnet.
First of all, the attacker scans a network for known vulnerabilities and infects the
victim machines through the related exploits. At this point, the infected hosts exe-
cute ad-hoc scripts that download and install the bot binary file, typically through
FTP, HTTP or P2P protocols. The next step to actually become part of the botnet
is the connection of the infected machines to the CNC server: in this way the bots
are ready to receive commands from the “botnet master”, to perform the various
types of attacks towards other victims. The final steps that compose the life-cycle
of a botnet are the maintenance and update of the bots: the bots can download
more binary files in the infected machines to update themselves. The possible rea-
sons for this update are to avoid the detection of monitoring systems or to add new
functionalities [13]. Finally, the “botnet master” can decide to move its control
server towards another location (e.g. to avoid detection) and communicate to the
bots the new location of the CNC server.

18https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0352
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3.4.2 Attack tools

Ares19 is a remote access tool written in Python, composed by two main parts: a
Command and Control (CNC) server to administrate agents, and the agent pro-
gram, which runs on infected hosts and communicates with the CNC. Common
usages of this tool are keylogging and file download, but its full capabilities include
the execution of any shell command, the upload of a file to the server and the
ability to take screenshots. A quite recent case involving this tool is from 2019,
when it has been discovered that many Android set-top boxes and some smart TVs
were vulnerable, due to a configuration service that has been left enabled on these
devices. These IoT botnets have been used to trigger crypto-mining and dictionary
attacks.

Nmap20 is an open source software for network discovery. It is not a proper
attack tool, but it is able to determine what hosts are available on the network,
what services they are offering, the Operating Systems they are using and also what
type of filters/firewalls are active on the network. These functionalities are useful
to prepare actual attacks.

19https://github.com/sweetsoftware/Ares

20https://nmap.org/
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Chapter 4

Intrusion Detection Systems

Intrusion detection is the process of monitoring the events occurring in a computer
system or network, and analysing them for signs of intrusions [17]. With this defini-
tion, an Intrusion Detection System (IDS) is simply the tool, software or hardware,
that allows the automated detection of intrusions. Moreover, it is also possible to
automate countermeasures against these intrusions: in this case, the tool is called
Intrusion Prevention System (IPS), or Intrusion Detection and Prevention System
(IDPS), since it performs both functionalities.
This chapter describes the different typologies of IDS, that are classified based on
the method, the approach and the technology they use. There are many other
fine-grained differences between various IDSes, but the ones listed in the follow-
ing sections are the main ones. Then, an overview of the main IDS solutions is
presented, both commercial and open-source. At last, the Suricata IDS functional-
ities are described, since it is the IDS chosen for the integration with the Machine
Learning classifiers, as better detailed in Section 6.2.

4.1 Detection methodologies

The two major categories of methodologies are Signature-based Detection (SD) and
Anomaly-based Detection (AD) [17]. Each one of them has some advantages and
disadvantages, as explained in the following sections. A hybrid approach can be
taken, typically leading to an overall better result.

4.1.1 Signature-based Detection

A signature is a pattern that corresponds to a specific intrusion or threat. A
database of signatures is kept and captured events are compared with them to find
a match. Since previous knowledge is required in order to create such database,
this method is also called knowledge-based.
The main advantage of this method is its simplicity; moreover, it is usually effective
against known attacks. However, it has some major drawbacks: it is ineffective in
detecting unknown attacks or even variants of known attacks. Moreover, it is quite
difficult and time-consuming to keep the database up to date with new threats.
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Finally, it has no understandings of network state or protocols: for a signature,
there is no difference between a specific protocol or another, it simply looks for a
match with the packet it is examining.

For example, a signature may try to match against Teardrop attacks, a type of
DoS attack that involves sending fragmented packets to the victim and exploits an
old bug present in the TCP fragmentation reassembly1. In this case, the signature
has the objective of matching all the packets with an overlapping fragment offset.
Another possible DoS signature is the one against the “ping of death”2 DoS attack,
presented in Section 3.2. In this case, the aim of the signature is to match all
the ICMP packets with header and fragment offset that results in greater than
65535 bytes [18, chapter 10]. Instead, a signature that tries to match a possible
TCP exploit is the one against the TCP NULL scan: this is a particular port
scan technique that exploits the fact that a host that receives a TCP packet with
all the flags set to 0 has to answer with a packet with the RST flag enabled in
case of closed port and has to ignore the packet in case of active port, as defined
in RFC-793 [19]. In this case, the signature would try to match all the packets
without any flag set. Finally, another example of a signature against a TCP attack
is the one for the Local Area Network Denial (LAND) attack3, a type of DoS that
exploits IP spoofing, as explained in Section 3.2, and sends a TCP packet with
source and destination addresses and ports with the same value, causing the victim
to continuously try to reply to itself. The signature simply looks for a match for
this type of port/address pair.
Moreover, the signatures used in a signature-based IDS are typically obtained from
publicly available sources4, but the more advanced sets of pre-made rules must be
bought.

4.1.2 Anomaly-based Detection

Instead, AD methods leverage the concept of anomaly, i.e. a deviation from normal
behaviour. The core of this type of systems consists of two modules: the first one
is in charge of defining a model of the normal behaviour, and can be also called
Training module; the second one uses the model to perform the actual detection,
measuring the deviation of an event in relation to the model [20].
The creation of the model can happen in different ways, but the training data used
to define such model must be the most complete possible. Moreover, this model has
to evolve with time, as the system behaviour evolves. Figure 4.1 shows a generic
architecture of an anomaly-based IDS: the “sensor subsystem” has the role of mon-
itoring the network activity and capture traffic. The “activity monitors” capture
the traffic from the network in different ways, as explained in Section 4.3. Then,
the pre-processing sub-module has the objective of converting the captured traffic
into specific objects (e.g. C struct or Java object) using internal representations.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0015

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0128

3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0016

4https://rules.emergingthreats.net/
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Depending on the network layers and protocols monitored by the IDS, there could
be an internal IP packet representation, a generic flow representation or others.
These internal objects are then used by the detection subsystem to find anomalies
and report them or take the chosen countermeasures.
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Figure 4.1: The generic architecture of an AD IDS.

It is possible to classify AD methods following three aspects of the workflow:
the network features analysed, the type of behavioural model or the scale of the
analysis [21]. Considering network features, it is possible to analyse different types
of network traffic; for example, the detection could be focused on flow analysis (e.g.
TCP flows) or involve a broader set of protocols, like FTP, TLS or ICMP. Typical
examples of measures in a TCP/IP environment are:

� the number of bytes sent/received during a fixed time interval by a given final
system;

� the number of IP/TCP/UDP/ICMP packets sent/received by a given final
system during a fixed time interval;

� the number of TCP/UDP connections initiated during a fixed time interval;

On the other hand, also a distinction about the considered protocols can be
done, classifying AD methods according to the network layers modelled (i.e. Data
Link, Network, Transport or Application).
However, the core choice concerns the creation of the model, which is performed
by the “modelling subsystem”. In this case, there are two possible approaches:
learnt models and specification-based models. Learnt models are based on various
learning techniques, such as rule-based systems, statistical algorithms or various
machine learning algorithms. The common aspect of all these approaches is the fact
that the model is not manually specified by a human, but each learning technique
uses some algorithm to extract knowledge from the data provided: more details on
this type of approach is given in Section 4.2. On the other hand, in specification-
based detectors, the model is constructed by an expert human. Such model is
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composed of a set of specifications that capture legitimate system behaviour. These
specifications can be provided by using any kind of formal tool, such as finite state
machines. Also these approaches are further described in Section 4.2.

Finally, the scale of the analysis is often implicit in every detection method. A
typical example of a scale is the time dimension: it is well known that traffic related
measures exhibit, under normal conditions, periodic patterns that can be easily
visualized [21]. These patterns can be identified over hours, days or even weeks of
analysis. For example, counting the number of packets received by a service during
intervals of one hour and plotting the results, it is possible to identify diurnal or
nocturnal regimes or even weekly or seasonal characteristics. It is important to
consider different scales because certain anomalies are only observable at specific
scales: for example DDoS attacks usually need some sort of correlation among
connections, since the inspection of individual packets may not reveal any sign of
anomaly.

The principal advantage with respect to SD is the ability to detect new and
unknown vulnerabilities. On the other hand, their response time to trigger alerts
is generally slower and the models can be not very accurate due to the constant
mutation of observed behaviours and events [20].

4.2 Detection approaches

Regarding the detection approaches, IDSes can be grouped into five subfamilies,
each one containing algorithms and implementations with some common aspects.
These groups are statistic-based, pattern-based, rule-based, state-based and heuristic-
based.

Statistics-based IDSes mostly belong to AD methods and use predefined thresh-
olds, statistical measures (e.g. mean, standard deviation) and probabilities to iden-
tify possible intrusions. A typical threshold approach consists of the count of events
that occur over a period of time, raising the alarm if this count is lesser or greater
than the specified threshold. The difficulty of this approach is determining the
correct thresholds. The usage of statistical measures instead of fixed thresholds
improves the effectiveness of these methods. Measures like mean or standard de-
viation can be used to determine if an event is anomalous or not, with a certain
confidence. Moreover, this kind of approach allows for the usage of multivariate
models, that consider the correlation between two or more metrics. Finally, a prob-
ability model consists of keeping track of the state of the system at fixed intervals,
having a probability for each state at a given time interval. Once the state changes,
if the probability of occurrence of that state is low, the alarm is triggered.
Pattern-based techniques all come from the signature-based group. These methods
are simple and do not have great flexibility: they compare strings of bytes with a
database based on known attacks in order to find intrusions.
Rule-based approaches belong mainly to the knowledge-based family of IDSes, but
also some AD methods are possible. This type of detection uses rule-based lan-
guages to model the knowledge that experts have collected about attacks. This
approach allows a systematic browsing of the network activity in search of evidence
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of attempts to exploit known vulnerabilities. Sometimes they are also used to verify
the proper application of the security policy of an organization [22].
State-based methodologies adopt the finite state machine concept: the model be-
haviour is captured in states, transitions and actions. Like other AD methods, a
deviation from the expected behaviour, i.e. a transition to an unexpected state,
will trigger the alarm.
Finally, heuristic-based IDS mostly belong to the AD family and include various
techniques: some machine learning algorithms like Neural Networks or techniques
like Genetic algorithms [23]. Genetic algorithms are a search technique used to find
approximate solutions to optimization problems. The major advantage of genetic
algorithms is their flexibility and robustness and are based on probabilistic rules
instead of deterministic ones. They can be used to directly derive classification
rules or as a feature selection tool, followed by other data mining algorithms to
acquire the rules.

4.3 Technology types

The technology classification is based on the position inside the network where the
IDS is deployed. It can be Host-based (HIDS), Network-based (NIDS) or Wireless-
based (WIDS).

4.3.1 Host-based IDS

Host-based IDSes monitor the events occurring within a single host for suspicious
activity. Examples of monitored activities are wired and wireless network traffic,
system logs, running processes, file access and modification and system configura-
tion changes. The detection software running on a host is also known as agent and it
may also perform prevention actions. HIDS are typically deployed to critical hosts,
such as servers containing sensitive information, although they can be installed also
on other hosts. They are used primarily to analyse activity that can not be moni-
tored in other ways. For example, since they are installed on end-points, they can
analyse data that is normally encrypted for network-based IDS, but it is decrypted
once it reaches the end-point.
Moreover, HIDS offer several specific techniques to monitor the host activity: code
analysis, network traffic analysis and filtering, filesystem monitoring and log anal-
ysis [24]. Code analysis consists in monitoring attempts to execute malicious code
on the host: one technique is to execute code in a virtual environment to com-
pare its behaviour with known good or bad behaviour; another technique consists
in checking signs of typical stack and heap overflow exploits aimed at accessing a
portion of memory not allocated to the process [25].
Agents also perform network traffic analysis and sometimes can also monitor wire-
less communications. An agent can extract files sent by an application (e.g. email o
peer-to-peer file sharing) to check for the presence of malware. The filtering action
can restrict incoming and outgoing traffic for each application.
Instead, filesystem monitoring can be performed using different techniques, like file
integrity checking or file attribute checking. File integrity checking consists of the
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periodical generation of checksums (e.g. with MD5) of critical files, then compar-
ing them to reference values. File attribute checking is used for less vital files and
monitors files attributes like dimension, last modified date and write permissions.
Both techniques are reactive, i.e. they detect attacks only after they happened,
but some agents have more proactive abilities, such as monitoring file access at-
tempts and preventing malicious ones. Finally, some agents can monitor system
and application logs to identify malicious activity.

Moreover, HIDS usually require considerable customization: for example, they
may rely on observing host activity to develop profiles of expected behaviour, but
some need to be configured with detailed policies that define how each application
should behave. Without this configuration, an agent could not distinguish, for
example, if the installation of a new application is due to malicious activity or it
is done as part of normal host operations. A big limitation of host-based IDSes is
the considerable resource consumption on the host machine. For this reason, most
of the techniques described above can be applied only periodically, such as every
hour, leading to delays in detecting intrusions and consequent actions.

4.3.2 Network-based IDS

Differently from HIDS, NIDS are positioned over the network, with one or more sen-
sors, and monitor and analyse network traffic for particular segments or devices,
to identify suspicious activities. The NIDS network interface card is placed in
promiscuous mode5, to analyse all the packets they see, regardless of their destina-
tion [24]. Typically, they perform the analysis at the application layer, for example
with HTTP, SMTP or DNS protocols. However, they also monitor the activity at
the transport layer (e.g. TCP/UDP) and network layer (e.g. IP). Sometimes, they
also perform limited analysis of the hardware layer protocols, like ARP.

Network sensors can be deployed in two ways: in-line or passive. In-line sensors
are placed so that the traffic it has to monitor passes through it. For this reason,
it may happen that in-line sensors are used as hybrid firewall/IDPS devices. The
primary reason to deploy an in-line sensor is to stop attacks by blocking traffic.
On the other hand, passive sensors monitor a copy of the actual traffic: no traffic
passes through it. Passive sensors can analyse traffic with various methods: with
port mirroring, to send a copy of the traffic passing through one or more switch
ports towards another port monitored by the sensor; with a network tap, i.e. a
direct connection between the sensor and the physical network medium itself; or
with an IDS load balancer6, which is a device that aggregates and directs mirrored
traffic towards the correct IDS, in case there are multiple IDS devices deployed in
the network since all the packets of a flow must go to the same IDS to allow a
correct analysis. Typically, passive sensors do not provide a reliable way to block
the traffic, differently from in-line ones, but in some cases can try to do so: for
example, by sending specific packets to interrupt a TCP connection towards both

5With promiscuous mode, the network interface controller accepts all the passing traffic, rather
than accepting only the traffic that is destined to it.

6https://lwn.net/Articles/145406/
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end-points.
Furthermore, IP addresses are normally not assigned to the network interface used
to monitor traffic, except for interfaces used to manage the IDS. A sensor with no
IP address on its monitoring interfaces is known as “stealth mode” and it provides
some security benefits such as concealing it and preventing other hosts to initialise
a connection with it. However, an attacker could be able to determine the existence
of a sensor and its characteristics by analysing its prevention actions triggered in
response to specific attack patterns.

Finally, the main limitation of NIDSes is the inability to analyse encrypted
traffic (e.g. HTTPS, SSH or VPN connections). Moreover, NIDSes may be unable
to perform full analysis under high loads: the delays in processing packets could
cause unacceptable latency. To avoid this, some IDS sensors can recognize high
load conditions and skip certain types of traffic without performing a full analysis;
in other cases, it may be necessary to perform manual adjustments to the IDS con-
figurations. For example, Suricata, a popular open source IDS, automatically skips
some packets if it can not handle all the traffic, but it also provides some guidelines
to solve this issue, if possible7. Furthermore, the presence of a firewall must also be
considered to decide the best layout, since it can change the characteristics of the
traffic. NIDS sensors are susceptible to some network attacks: the most popular are
DDoS attacks, that can exhaust a sensor’s resources, as described in Section 3.2.
The most popular open source NIDS available are: Snort8, Suricata9 and Zeek10,
which are described in Section 4.4.

4.3.3 Wireless-based IDS

WIDSes are very similar to NIDSes, but their focus is wireless protocols and activi-
ties: they are most often used for monitoring wireless local area networks (WLANs).
The typical components of a WIDS are the same as a NIDS, but their sensors are
very different. Unlike a network-based IDS, which can see all the packets on the
network it monitors, a wireless-based IDS works by sampling traffic from the two
frequencies bands used by the IEEE 802.11 family of protocols [26], 2.4GHz and
5GHz; moreover, each band is split into several channels. Usually, a WIDS sensor
is passive, i.e. it does not pass the traffic from source to destination, and its de-
ployment can be in a fixed position or mobile [24].
Moreover, wireless IDS typically do not examine communications at higher net-
work layers, like IP addresses or application payloads. Besides being able to detect
DoS attacks, misconfigurations and policy violations, WIDSes can detect physical
attacks, like the emission of electromagnetic energy on the WLAN frequency to
make it unusable. Also, most wireless sensors can identify the position of a wireless
device by using triangulation, if multiple sensors are available. Similarly to NIDSes
passive sensors, the only countermeasure to an ongoing attack is the termination of

7https://suricata.readthedocs.io/en/latest/performance/analysis.html

8https://www.snort.org/

9https://suricata-ids.org/

10https://zeek.org/
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connections, in this case through the air: this happens by sending messages to the
interested end-points, telling them to de-associate the current session and refusing
new connections to be established.
However, also WIDSes have some limitations: for example, they are subject to some
evasion techniques: an attacker could launch the attack on more channels at the
same time since a sensor can not monitor them all at once [24]. Moreover, they are
also subject to some attacks like DoS or specific WLAN attacks like jamming. The
only way for a sensor to avoid the disruption of its radio transmissions by jamming
is to establish a physical perimeter so that attackers can not get close enough to
perform it. Finally, some types of attack can not be detected at all by WIDSes: for
example, an attacker can passively monitor wireless traffic without being detected,
to process it off-line at a later time.

4.4 Popular IDSes

On the market, there are various IDSes available, both free or paid. Some of them
are only available for specific operating systems, while others are compatible with
all the main ones. Moreover, a great part of them is specialized in either HIDS or
NIDS functionalities, while some can perform both activities. It is common that
IDS products are integrated with firewall functionalities. Starting from paid ones,
the most popular are described. Unfortunately, paid IDSes vendors typically do
not publish too many technical details about their product.

SolarWinds Security Event Manager11 is a log manager that provides various
features. For this reason, it can be classified as a host-based IDS. It provides a
centralized log collection and normalization and an automated threat detection
and response. It monitors user activity and file integrity, but it can also detect
DDoS attacks. Finally, it can analyse and manage firewall logs. Some of the active
responses it can trigger include: SNMP alerts, screen messages and emails; USB
device isolation; account suspension or user expulsion; IP address blocking; process
killing and system shutdown or restart. An annual subscription for 30 nodes costs
2000$.
CrowdStrike Falcon12 is a host-based IDS that offers end-point protection. Also in
this case there are no technical details available, but it offers proactive threat hunt-
ing with continuous raw events capture. It also offers typical antivirus capabilities
and firewall management. The price starts from 16$/month per end-point, for a
minimum of five end-points and a maximum of 250.
ManageEngine EventLog Analyzer13 is a HIDS focused on analysing log files. The
website offers a detailed list of features logged14, including event, system, server
and application logging. Moreover, it can analyse logs of Microsoft SQL Server and
Oracle. Apart from the paid plans, it offers a free tier that includes monitoring of

11https://www.solarwinds.com/security-event-manager

12https://www.crowdstrike.com/

13https://www.manageengine.com/products/eventlog/

14https://www.manageengine.com/products/eventlog/features.html
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up to five sources.
TrendMicro Tipping Point15 is a stand-alone IDPS, designed to identify and block
malicious traffic. It can be deployed into the network with no IP address or MAC
address to immediately filter out malicious and unwanted traffic. Its filters lever-
age machine learning and statistical data modelling. TippingPoint can also detect
domain name system (DNS) requests from malware-infected hosts attempting to
contact their command and control (CnC) hosts. Moreover, it supports IPv4 and
IPv6 payload inspection, also with VPN or MPLS tags and GRE traffic [27]. It is
suited for large and very large enterprises, including banking, telecom, healthcare
and transportation. The base model price starts at 6000$.
Hillstone IDPS16 is a network-based IDPS that offers intrusion prevention, anti-
virus, application control, advanced threat detection, abnormal behaviour detec-
tion, a cloud sandbox and a cloud-based security management and analytics plat-
form. It operates in-line, performing deep packet inspection, and assembling inspec-
tion of all network traffic. It also applies protocol anomaly analysis and signature
analysis to block threats. It is suited for enterprise customers who need a standalone
IDPS solution. The price starts from 18000$.

4.4.1 Suricata

Developed in C language by the Open Information Security Foundation17 (OISF),
Suricata is a multi-platform network threat detection engine. It is capable of both
detection and prevention functionalities, so it can be classified as an IDPS. It is
one of the most widely used open source IDSes and it supports a powerful rule
and signature language, plus the ability to use Lua18 scripting to detect complex
threats. Some examples of other features are:

� offline analysis of PCAP files;

� traffic recording using PCAP logger (i.e. the ability to export the captured
traffic into PCAP files);

� YAML19 configuration file, which is easier to read for humans with respect to
other formats, like XML;

� full IPv6 support;

� TCP stream engine, capable of tracking and reassembling sessions;

� support for decoding of IPv4, IPv6, TCP, UDP, SCTP, ICMPv4, ICMPv6,
GRE, Ethernet, PPP and VLAN packets;

15https://www.trendmicro.com/it_it/business/products/network/

intrusion-prevention/tipping-point-threat-protection-system.html

16https://www.hillstonenet.com/products/network-intrusion-prevention-system-s-series/

17https://oisf.net/

18https://suricata.readthedocs.io/en/latest/lua/index.html

19https://suricata.readthedocs.io/en/latest/configuration/suricata-yaml.html
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� support for decoding of HTTP, SSL, TLS, SMTP, FTP, SSH, DNS and DHCP
app layer protocols;

� FTP, HTTP and SMTP engine20 capable of transaction logging and file iden-
tification, extraction and logging; the file extraction works on top of other
protocol parsers and it is capable of storing on disk the re-assembled file
extracted from the request/response data;

� live rule reloading, without restarting Suricata;

� EVE and JSON logging, plus the ability to generate personal output formats
with Lua scripts;

� event filtering, based on rules or thresholds;

� multi threading support;

� IP reputation21 mechanism, integrated into the rules language.

The purpose of the IP reputation component is the ranking of IP Addresses
within the Suricata Engine. This separate module most often runs on a central
database that all sensors of the IDS already have communication with. This module
is able to subscribe to one or more external feeds: each one regarding a vast number
of IP addresses and containing positive or negative intelligence classified into a
number of categories.

Listing 4.2 presents an example of a packet signature, with the parts that com-
pose it in different colours. The signature syntax used for the example belongs to
Suricata22, but it is almost fully compatible with other popular IDSes, like Snort.

drop tcp $HOME_NET any -> $EXTERNAL_NET any

(msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";

flow:established,to_server;

flowbits:isset,is_proto_irc;

content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i";

reference:url,doc.emergingthreats.net/2008124;

classtype:trojan-activity; sid:2008124; rev:2;)

Figure 4.2: An example of a Suricata signature

The keywords tcp, $HOME_NET, $EXTERNAL_NET, any and -> are part of the
header of the signature, while the remaining part consists of options. Instead,
the drop keyword is the action: it determines what happens when the signature
matches. Possible actions are:

20https://suricata.readthedocs.io/en/latest/file-extraction/file-extraction.

html

21https://suricata.readthedocs.io/en/latest/reputation/ipreputation/

ip-reputation.html

22https://suricata.readthedocs.io/en/latest/rules/intro.html
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� alert - generate an alert;

� pass - stop further inspection of the packet;

� drop - drop packet and generate alert;

� reject - send RST/ICMP unreach error to the sender of the matching packet;

� rejectsrc - same as just reject;

� rejectdst - send RST/ICMP error packet to receiver of the matching packet;

� rejectboth - send RST/ICMP error packets to both sides of the conversation.

tcp is the protocol. In this case, the list of supported protocols is much longer,
but a few examples are TCP, UDP, ICMP, HTTP, FTP, TLS, DNS, SSH, SMTP,
DHCP.
$HOME_NET, $EXTERNAL_NET represent source and destination of the traffic. Both
IPv4 and IPv6 addresses are supported and can be combined with some operators.
A couple of examples could be the ones presented in Table 4.1.

Example Meaning

!1.1.1.1 Every IP address but 1.1.1.1

![1.1.1.1, 1.1.1.2] Every IP address but 1.1.1.1 and 1.1.1.2

$HOME NET HOME NET setting in configuration file

[$EXTERNAL NET, !$HOME NET] EXTERNAL NET and not HOME NET

[10.0.0.0/24, !10.0.0.5] 10.0.0.0/24 except for 10.0.0.5

Table 4.1: Examples of syntax of possible IP addresses.

The two any keywords indicate the source and destination ports. Port numbers
can be combined in a way similar to addresses.
Finally, the -> symbol tells in which way the signature has to match. Nearly every
signature has an arrow to the right. This means that only packets with the same
direction can match. However, it is also possible to have a rule match both ways,
with the <> symbol. The <- direction does not exist.

The remaining part of the signature consists of options. There are lots of
possible options for each signature: these are enclosed by parenthesis and sepa-
rated by semicolons. Some options have settings (such as msg), which are specified
by the keyword of the option, followed by a colon, followed by the settings (e.g.
flow:established,to_server;). Others have no settings and are composed sim-
ply by the keyword. Rule options have a specific ordering and changing their order
would change the meaning of the rule.

A high level overview of the Suricata IDS pipeline can be seen in Figure 4.3,
which begins with the capture of packets from the network and ends with the
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Packet Capture

Packet Decoding

Detection

Output

Rules

Decoder 1

Decoder 2

Detection 1 Detection 2

Figure 4.3: The high-level Suricata workflow.

creation of log outputs. The IPS workflow is slightly different since it also includes
eventual countermeasures to take after a signature match.

Captured packets pass through the Decoding module first. The decoding pipeline
starts from the lower layers of the stack and proceeds with the higher ones. It is
also possible to create a custom decoding functionality and to place it into the
pipeline. Decoded data is stored as an internal representation that is then used by
the following modules.

The Detection module is the core one. Differently from the Decoding one, it
operates in a parallel way. Each Detection function checks one rule against each
packet, and in case a rule is triggered, the action specified in the rule itself is
taken. Rules can be composed of one or more patterns or signatures, as explained
in Section 4.1.1. Moreover, Suricata provides a pre-filter engine: since there are too
many rules to be checked individually, it is possible to check only a specific pattern
for each rule before checking the whole rule. The most common example is the
Multi Pattern Matcher (MPM), where only the rules that have at least one match
in the MPM stage are completely checked. This algorithm works in a simple way:
of each signature, one pattern is used by the MPM. That way Suricata can exclude
many signatures from being examined because a signature can only match when
all its patterns match. Finally, it is also possible to add custom detection functions
to the module or to use Lua scripts to achieve more complex tasks.

The output produced is one or more log files, where the content can be highly
customized in order to show specific alerts or warnings in different formats. The
most common way of logging in Suricata is through the Extensible Event Format,
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nicknamed as EVE23. EVE is a specific configuration file format, used to select the
alerts, anomalies, metadata and files info that will be stored in the actual log file.
An example of an EVE configuration file is shown in Listing 4.4: in this specific
example, the logging is enabled and will produce a file called “eve-ids.json”. This
file will contain details about the alert and the drop actions caused by signature
matches.

outputs:

- eve-log:

enabled: yes

type: file

filename: eve-ids.json

types:

- alert

- drop

Figure 4.4: An example of EVE configuration file.

However, the characteristics of the produced output can be deeply customised:
for example, the possible types of alert can be specified. In this case, the user
can choose to log only alerts produced by some specific options of the rule, in-
stead of logging all the triggered alerts. Some examples of sub-sets of alerts are
http, tls, ssh, smtp, dnp3, flow, vars; moreover a dns type can be used,
with options for DNS queries and answers. Instead, the produced log file uses the
JSON format: an example of output is shown in Listing 4.5 and contains informa-
tion about a single alert. In this example, the source and destination IP addresses
are shown ("src_ip": "192.168.2.7" and "dest_ip": "x.x.250.50") and the
specific signature that raised the alert is also listed, using a signature id among
the other fields ("signature_id" :2001999), used to uniquely identify a signature
inside the used database.

Finally, a more in-depth description of some of the Suricata modules is provided.
Due to the complexity of the tool, only some of the logical blocks are shown in
Figure 4.6, mostly the ones of interest for this work, as detailed in Section 6.2.
Since Suricata is a multi-thread software that performs in parallel many different
operations, the logical blocks have been divided across the different modules that
have been already described in Figure 4.3.

The initialisation block is run at the beginning, as soon as Suricata is launched.
The first major step is the reading of the “suricata.yaml” configuration file, to
obtain details about the user choices (e.g. output folder, signatures to use, en-
able/disable specific modules). Then, the command line arguments are parsed to
eventually override some configurations or add different ones. The next major log-
ical step is the parsing of the signatures provided by the user. In fact, to manage
Suricata rules it is possible to proceed in two ways: automatically download from

23https://suricata.readthedocs.io/en/latest/output/eve/index.html
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{

"timestamp": "2009-11-24T21:27:09.534255",

"event_type": "alert",

"src_ip": "192.168.2.7",

"src_port": 1041,

"dest_ip": "x.x.250.50",

"dest_port": 80,

"proto": "TCP",

"alert": {

"action": "allowed",

"gid": 1,

"signature_id" :2001999,

"rev": 9,

"signature": "ET MALWARE BTGrab.com Spyware

Downloading Ads",

"category": "A Network Trojan was detected",

"severity": 1

}

}

Figure 4.5: An example of Suricata JSON output.

the web pre-made signatures for different types of attack or manually write and add
signatures to Suricata. All the provided rules are parsed and a syntactic check is
performed; then the rules are loaded into internal structures to be used from other
modules. Once all the initialisation has been completed, the threads deputed to
perform decoding or detection are created and started.

A single thread of the decoding module works in the following way: it extracts
a packet from the packets pool, a sort of list structure where packets are inserted
after being captured on the network interface. Then, each protocol that composes
the packet is decoded, calling the appropriate function. Each protocol information
is parsed and used to update internal structures and statistics. The inner protocol
information is then passed to the next decoding function until all the supported
parts of the packet have been analysed.

Finally, the detection module has the objective of finding matches between
decoded packets and signatures. Each detection thread extracts a “packet” from
an internal structure. As explained above, this is no more a network packet, but
a C struct containing all the details about a specific packet, the related flow and
eventual other higher layer protocols. At this point a first pre-filtering is performed:
for example, using the MPM algorithm described above. Then, each remaining
signature is checked individually. Furthermore, to reduce the time needed to check
all the signatures, its header is checked first (i.e. the protocol, the source and
destination IP addresses and ports and the direction of the packet). If the header
part of a specific signature matches, then the remaining options are checked. If also
all the rest of the signature matches, the related action is performed.
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Figure 4.6: The logical blocks of a part of the Suricata workflow.

4.4.2 Snort

Snort24 is an IDPS that performs packet inspection using pattern matching. This
matching is implemented in the form of rules, which syntax is almost totally com-
patible with the one of Suricata rules, that has been described in Section 4.4.1.
Some minor differences exists, but are mostly about advanced features introduced
by the two IDSes to add more functionalities to each tool25. The Snort architec-
ture contains some modules called pre-processors, that read the captured packets

24https://www.snort.org/

25https://suricata.readthedocs.io/en/latest/rules/differences-from-snort.html
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before rule evaluation, serially in the order specified by Snort’s configuration. Pre-
processors allow the implementation of functionalities more complicated than pat-
tern matching, such as anomaly detection. A few examples of pre-processors [28,
chapter 6] included in Snort are the fragmentation, the stream and the reputation
pre-processors.
The fragmentation pre-processor has the objective of managing the re-assembling
of packets that it is analysing. This pre-processor is of fundamental importance
because different hosts with different operating systems re-assemble packets in dif-
ferent orders. This means that if the Snort pre-processor would re-assemble frag-
mented packets in an order specific to a single OS, it may not detect exploits based
on fragmentation for another OS. For this reason, the fragmentation pre-processor
uses seven different policies to re-assemble packets and keeps track of a high number
of fragments (8192 by default). The seven policies are based on the conventions
used by most of the operating systems like BSD26, Linux, Windows and Solaris27.
The stream pre-processor is a target-based TCP reassembly module for Snort. It
is capable of tracking sessions for both TCP and UDP. TCP protocol anomalies,
such as data on SYN packets or data received outside the TCP window, are con-
figured via the detect_anomalies option in the TCP configuration. Some of these
anomalies are detected on a per-target basis. For example, a few operating systems
allow data in TCP SYN packets, while others do not.
Instead, the reputation pre-processor provides basic IP blacklist/whitelist capabil-
ities, to block/drop/pass traffic from IP addresses listed. In the past, the standard
Snort rules were used to implement reputation-based IP blocking, but this pre-
processor will address the performance issue and make the IP reputation manage-
ment easier. This pre-processor runs before other pre-processors. The IP lists are
loaded from external files and multiple blacklists or whitelists are supported. One
of the biggest limitations of Snort is that it is a single-threaded application, even if
it is possible to obtain multithreading by splitting the flow into multiple parts and
letting a different instance of Snort analyse each part.

4.4.3 Zeek

Zeek28 is primarily not rule-driven, differently from Snort, but it implements its own
scripting environment, with its own programming language. It is an interpreted,
typed language and what makes it interesting is the existence of domain-specific
types. For example, the “addr” type holds an IP address. Two types of collections
are present: sets and tables. The loops are available in the form of iteration through
collections.
The Zeek scripting language29 is event-driven: an example of an event is the ex-
traction of a file from the network traffic. In this case, the Zeek scripting language

26https://www.freebsd.org/

27https://www.oracle.com/it/solaris/solaris11/

28https://zeek.org/

29https://docs.zeek.org/en/current/examples/scripting/
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allows to create a function that handles this specific event to perform certain anal-
ysis. For example, Listing 4.7 shows an event handler that is triggered when the
“Files framework” of Zeek, deputed to extracting and hashing files, extracts a file
from a flow. The file_hash event allows scripts to access the information associ-
ated with a file: in this example the script checks that the hash function is SHA1
and then performs a lookup of the hashed file in a database containing hashed mal-
ware. In case of match, the “Notice framework” will create the corresponding log.
The events handled by Zeek are contained in an “Event Queue” and are processed
on a first-come-first-serve basis.

event file_hash(f: fa_file, kind: string, hash: string)

{

if ( kind == "sha1" && f?$info && f$info?$mime_type &&

match_file_types in f$info$mime_type )

do_mhr_lookup(hash, Notice::create_file_info(f));

}

Figure 4.7: An example of Zeek event.

Differently from Snort, Zeek acts only as an IDS, rather than an IDPS: it moni-
tors the traffic and produces log files with alerts, to be checked manually or through
other systems. Some of the items monitored by Zeek are bidirectional flows, DNS
queries and responses, HTTP requests, port scans, email headers from SMTP traf-
fic, successful and unsuccessful SSH connections, SSL certificates and traffic tunnels.
The pre-installed scripts usually expose an API that can be used by users to extend
the default functionalities. Finally, the scripts are organised in modules, that can
be broken in several files. A module can define types, variables, functions, and
event handlers. These entities can be either local to the module or globally acces-
sible from other modules. Zeek can be run both as a single-threaded application
and as a multithreaded application.
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Chapter 5

Machine Learning and
classification techniques

This chapter contains an introduction to Machine Learning (ML) and a technical
explanation of the classification techniques used in this work’s experiments. The
machine learning section presents the typical workflow of ML models, from the
analysis of the dataset until the evaluation of the model, detailing some of the
most common issues. Then, in the second section, algorithms of decision trees,
random forests and support vector machines are described, followed by an overview
of neural networks.

5.1 Machine Learning

Machine learning is a sub-category of Artificial Intelligence (AI), which is the study
of “intelligent agents” or “rational agents”, i.e. something that perceives its environ-
ment and takes actions that maximize its chance of successfully achieving its goals.
From the broad field of AI, machine learning can be defined as the sub-category
focused on improving the agent’s chance of reaching its goal through experience.
More precisely:

Definition A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E [29].

For example, a computer program that learns to play checkers might improve
its performance as measured by its ability to win (P) at the class of tasks involving
playing checkers games (T), through experience obtained by playing games against
itself (E).

Moreover, machine learning techniques can be split into several groups, the
main ones being “supervised” and “unsupervised” families. Supervised learning in-
cludes all methods that assume the presence of labelled data, i.e. usually a human
decided value that indicates the expected output, the target. On the other hand,
other approaches that do not require labelled data and do not have a target are
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called unsupervised, e.g. clustering or dimensionality reduction algorithms.
Furthermore, supervised models can be further split into two groups: classification
and regression. While regression models have as output a continuous value, classi-
fication ones have a discrete value (a class). Due to the nature of the data used in
this work’s experiments, as discussed in Section 7.1, only classification algorithms
have been utilised. The description of the used algorithms can be found in Sec-
tion 5.2.
Finally, the learning process of every ML model goes through some common steps,
that include some best practices to avoid possible issues.

5.1.1 Dataset analysis and features selection

First of all, the source dataset must be analysed. The number of features and
the nature of each of them has to be inspected, to eventually perform some mod-
ifications. It is common to use graphs of different types to better visualise the
distribution of each class, for example, histograms, scatter diagrams or box-plots.
A possible problem that may be detected visualising the dataset is to have a high
unbalance between the classes: for example, in a binary classification problem, one
of the two classes may have a number of samples that is 10000 times higher with
respect to the other class. The next steps will have to act accordingly to this infor-
mation, for example with a specific sampling technique or by completely ignoring
that class.
Then, the first selection of features is performed. Sometimes the source dataset
contains features that are not useful for that particular work, maybe because the
data has been collected for other purposes, or because different experiments have
to be performed with the same dataset. In this case, the useless features are simply
discarded, as they would add noise to the model learning. Once these preliminary
steps are performed, the preprocessing of the dataset can start.

5.1.2 Dataset preprocessing

Dataset preprocessing is a set of techniques that aim to prepare the dataset to
the actual training. Most of the times the dataset is not ready “as-is”, but must
be modified in various ways. Some of the most common techniques involve the
cleaning of the dataset, the transformation of certain features and the scaling of
values.

Dataset cleaning techniques are needed when some samples have missing or
invalid values or, for any reason, are duplicate inside the dataset. Usually, the
algorithms do not tolerate missing values: in this case, the possible choices are the
removal of the sample from the dataset or the insertion of an ad-hoc value in the
missing spot. The removal of the defective sample is a straightforward way to avoid
the problem, but may not be possible in all cases: for example if the dataset is really
small, removing samples is not a good idea. In this case, there are methods to find
a value to assign; regression algorithms can be used to predict the missing value,
but a faster way is to replace it with the average of the existing values. Finally,
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duplicate samples are usually removed from the dataset, since they do not carry
any useful information.

Feature transformation techniques are used to change the type of specific fea-
tures. For example, some algorithms like Neural Networks only accept numerical
attributes, but sometimes datasets contain categorical values. In this case, it is
necessary to transform the feature values domain with a process called “encoding”.
The opposite process, “decoding”, must be performed at the end of the learning
phase, to bring back the values to the original domain.
A specific encoding technique, called “one-hot encoding”, consists in the creation of
a column for each category of the original domain, as shown in Figure 5.1, assigning
the value one when the category is the same as the original, zero otherwise.
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Figure 5.1: An example of feature encoding.

Finally, scaling the values of features is fundamental, since some algorithms
are highly influenced by the absolute value of features and by their variances, like
Support Vector Machines. It may happen that a feature completely dominates
over the other, making also difficult a visual comparison between distributions:
for example, a feature may have very small values in the range 0-1, while another
feature (e.g. a time measure or a distance) may have values in the range 0-100000.
A common way to perform this scaling is known as “standardisation”, its objective
is to scale each feature so that its distribution has zero mean and unit variance.
The formula to perform such scaling is:

xnorm =
x− µ

σ

where µ and σ are respectively the mean and the variance of a feature. Once these
operations have been performed, the model to train must be selected.

5.1.3 Model selection

Choosing the right model for a specific problem can make the difference between
good and bad results. There are lots of different ML algorithms and each one of
them is based on different assumptions and can be used with more or less good
results depending on the context. It must be kept in mind that, as stated by the
popular no-free-lunch theorem [30, 31], none of these methods has proven to be
successful to all type of problems, so the space of solutions has to be explored to
find the most suitable one to the specific situation.
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For example, one of the simplest classification algorithms is K-Nearest-Neighbours
(K-NN): it is based on the concept that samples that belong to the same class are
positioned one near the other inside the features space; to perform a classification
of a point, the K nearest samples are considered and a majority voting assigns the
class. This simple algorithm has some advantages like the absence of hypothesis
about the data or the presence of a single parameter to optimise (K), but has the
disadvantage of requiring a lot of time at inference phase and it needs to store
all the training samples to work. Moreover, as all the algorithms that involve the
computation of a distance, it is subject to the curse of dimensionality, which is
explained slightly below. On the other hand, an algorithm like decision trees has
different advantages, like the ability to work with categorical data and the easier
interpretability of the results with respect to other models. However, as explained
below, it is often subject to the phenomenon of “overfitting”. For these reasons,
if possible, different models are used to solve a problem and the results are then
compared to pick the best one.

Curse of dimensionality is the name given to a phenomenon that happens when
a dataset has too many features, with respect to the number of samples. As an
example, imagine a fixed number of samples within a hyper-cube of increasing
dimensions. For simplicity 1D, 2D and 3D examples are shown in Figure 5.2. As
the number of dimensions increases, there are fewer samples for each region of the
hyper-cube: the density decreases. For algorithms based on the computation of
distances between samples to determine similarities and perform the classification,
a low density of the samples leads to a situation where the points identified as most
similar by the algorithm are not truly similar since they may be far from each other.
As the number of dimensions increases, the number of samples needed to keep a
high density increases exponentially, leading to a prohibitive number of samples:
the only way to avoid the explosion of the number of needed samples to still have
good performances is to limit the number of features.

1D 2D 3D

Figure 5.2: An example of samples distribution inside an increasing dimensional
hyper-cube. 64 samples in each hyper-cube have decreasing density.
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5.1.4 Training, validation and testing

The actual learning phase is typically split in training, validation and testing. These
three phases consist in the usage of different sub-sets of the dataset to create a
machine learning model that is able to predict the class (in case of classification
algorithms) of a generic sample, being it new or previously seen by the model. The
training phase is the core one inside this step: it contains the actual execution of
the algorithm chosen to create the model. Instead, the validation phase has the
objective to choose among different trained models the best one to use for the final
test phase: in fact, multiple training phases are typically performed during a ma-
chine learning pipeline, leading to the creation of multiple models. This is caused
by the fact that each ML algorithm can be executed using different configurations
of the base model: a trivial example is the number of estimators used by a random
forest algorithm (i.e. the number of trees inside the forest), as explained in Sec-
tion 5.2.2. Since there is not a fixed number that works well for all the datasets,
the training phase must be repeated with different combinations of these numbers,
called “hyper-parameters”. Finally, the test phase evaluates the performance of the
best model chosen by the validation with a set of unseen samples, i.e. samples not
used to train the model.

There are multiple reasons for the choice of splitting the creation of a model
in three phases, the main one being the presence of “hyper-parameters” inside the
model, that have to be tuned to obtain the best results. To take a shortcut, one
may think to remove the validation set and perform this tuning evaluating the
results of the different trainings on the test set: this is always a bad idea. In fact,
the test set must be used only at the end of the process, to evaluate the goodness
of the final model, once all the hyper-parameters have been fixed. Using the test
set instead of the validation set would introduce a form of bias that typically leads
to overfitting.

Overfitting, and its opposite underfitting, are two phenomena that involve the
way a model adapts to the training data. Using a regression problem as an example,
as shown in Figure 5.3, it is possible to imagine the underfitting phenomenon with
a model that is unable to adapt to the training data, leading to low accuracy.
This may be caused by a too simple model. On the other hand, overfitting is the
opposite: the model is too much precise in fitting the training dataset, leaving
no space for samples coming from a different distribution. Even if the training
accuracy is quite high, overfitting usually leads to a lower accuracy at test time.

Hence, for these reasons, it is recommended to split the dataset into training,
validation and test sets. However, this split can happen in many different ways,
from more straightforward ones to more elaborated. Starting from the proportions
of the split, there is not a standard percentage for each set. Typically, the training
set is the bigger of the three, but the proportions may vary and can depend on
the size of the dataset. For example, a smaller one may need a higher cut for the
training, to have enough training samples, while a bigger dataset may allow for a
bigger test set. Also, the validation set dimension can vary greatly, reaching as few
as one element in case of a very small dataset, as explained later with the different
validation techniques.
However, the main choices to split the dataset are the following: simple random
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Under�tting Good �tting Over�tting

Figure 5.3: Examples of underfitting and overfitting in a regression problem.

sampling, stratified sampling and downsampling [32]. Simple random sampling
does exactly what the name says: each sample is picked with the same probability,
independently of its class. However, this may lead to situations where a class is not
represented at all in the training set: for example, Caltech 2561 is a computer vision
dataset with 30607 images belonging to 256 different classes; performing a random
sampling has a small chance of creating a training dataset that does not contain
any image of a particular class, or maybe very few. This would lead to a model
unable to correctly classify that class. To avoid this problem, usually stratified
sampling is performed: the dataset is partitioned in several splits, e.g. one for each
of the 256 Caltech classes, and then the selected percentage is sampled from each
split. This leads to a training set where each class has the same proportion with
respect to the other classes that it had in the original dataset. This is usually not a
problem, but if the classes distribution is highly unbalanced, the model could incur
in a phenomenon called classification bias. Take as an example a two class dataset
with 100000 elements, of which 99000 belonging to the first class and 1000 to the
second class. Most of the algorithms will be biased to assign the first class label
at evaluation time, simply because it appeared many more times during training.
A way to overcome this issue consists in performing downsampling: instead of
picking samples with the same proportion from both classes, the sampling favours
the smaller class. However, another possible solution is to use different weights for
samples belonging to different classes: some algorithms allow to specify a weight
for each class, in this way it is possible to give more importance to the class that
contains less samples. Finally, another technique that is used not very often is
resampling: each time an element is sampled from the dataset, it is put back again
and it is possible to sample it another time; this voluntarily introduces duplicates.

Then, once the three sets have been created, the training phase can start. At
this point, depending on the type of validation that has been chosen, different things
can happen. A possibility is to simply use the validation set to evaluate each one of
the training sessions and pick the best one: this process is known as grid-search2,
due to the creation of a sort of grid to compare all the possible combinations of
hyper-parameters chosen. However, it is also possible to perform validation with

1http://www.vision.caltech.edu/Image_Datasets/Caltech256/

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html
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a different technique: “K-Fold Cross Validation” [33] (KCV). This method helps
to reduce overfitting, at the cost of a much higher computational time. Longer
algorithms or huge datasets typically do not use it, since the training time would be
incredibly high. This validation technique works as follows: instead of using a single
validation set, the split between training and validation are performed multiple
times, creating “K folds”, one for each different split. Then, the training and
validation is performed separately on each fold, using the respective training and
validation set. Finally, the results of all the folds are averaged and compared with
the other training sessions. This means that, if the standard validation optimized
20 combinations of hyper-parameters, a K-Fold Cross Validation with 4 folds has to
perform 20 ·4 = 80 separate training sessions. However, this technique is especially
useful for small or very small datasets, since it allows to perform a meaningful
validation even with few samples. Moreover, there is a variant of this algorithm,
called “Leave-One-Out Cross Validation”: it still follows the general rule of the
KCV algorithm, but in this case the validation set has size equal to one; a single
element is picked each time and used to perform the validation. This allows to
assign more samples to the other two sub-sets, the training and test ones: this can
be helpful for very small datasets.

5.1.5 Evaluation metrics

Finally, once the validation phase has ended, the best model is typically re-trained
over the whole training and validation sets together. Then, after the test has been
performed, the results must be collected and analysed. There are a lot of possible
measures to collect from a machine learning algorithm and some depend on the
specific model that has been used. However, some of the most popular and used
ones are the accuracy, the precision and the recall, which are derived from other
measures [34].
At first, the confusion matrix is created, which is a plot that contains for each class
the number of correctly assigned samples or wrongly predicted ones. An example
of such matrix can be seen in Figure 5.4: each element of the matrix has a specific
name, using a binary classification problem as example.

The class containing the samples of interest (e.g. malicious traffic, cancer im-
ages, ...) is called “positive” class, while the other is called “negative”. The cell
of the confusion matrix containing the number of positive samples that are cor-
rectly predicted as positive represents the “True Positive” measure, while the cell
containing the negative samples that are correctly classified as negative represents
the “True Negative”. The other two cells contain the “False Positive” and “False
Negative” measures, that represent respectively the samples that are erroneously
labelled as positive and the samples erroneously labelled as negative. At this point,
the accuracy can be defined as:

acc =
TP + TN

TP + TN + FP + FN

where TP , TN , FP and FN are respectively the true positive, true negative, false
positive and false negative. The accuracy simply represents the number of correctly
labelled samples, both positive and negative ones. However, this measure alone
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Figure 5.4: The confusion matrix for binary classification.

could not be enough: for example, a test set contains 10000 elements, of which
100 in the positive class and 9900 in the negative one; after the test phase, the
obtained accuracy is equal to 99%, which is pretty high. Using only the accuracy,
this would be considered an almost perfect model, but the truth may be that the
model is assigning the negative class to all the samples; in fact 9900/10000 = 0.99.
The other two measures that are typically used to find these problems are precision
and recall. Precision is computed as:

p =
TP

TP + FP

and it represents the correctly classified positive samples among the samples that
have been labelled as positive. It can be computed also for negative samples, if
necessary. High precision means that when the model says that a sample is positive,
it is quite probable that it is truly positive. Instead, recall is computed as:

r =
TP

TP + FN

and it represents the number of positive samples that have been labelled as positive.
A high recall means that the model is good at finding the positive samples. Using
the example explained above, the precision would have been p = 0

0+0
and the recall

would have been r = 0
0+100

and an alarm would have triggered.

Furthermore, many more measures exists to evaluate the performances of a clas-
sifier: other examples are the balanced accuracy and the F-score. Both measures
aim to solve the problem of the simple accuracy explained above. The balanced
accuracy is computed as the average of the accuracies obtained by each class indi-
vidually:

accbalanced =
TP

TP+FN
+ TN

TN+FP

2

where the two terms in the numerator represent the number of positive samples
correctly classified as positive and the number of negative samples correctly clas-
sified as negative. Still using the same example explained above, the balanced
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accuracy would have been accbalanced =
0

0+100
+ 9900

9900+0

2
= 0.5. Instead, the F-score can

be computed directly from the precision and recall measures as:

F − score = 2 ∗ p ∗ r
p+ r

where p and r are respectively the precision and the recall. The main difference with
respect to the balanced accuracy is the fact that the F-score gives more importance
to the correct classification of the positive samples because its equation does not
contain any information about the True Negative samples. Instead, the balanced
accuracy treats both classes in the same way: in a context where both classes
have equal importance, this behaviour is preferred, while the F-score is more suited
for problems where a class has more importance than the other (e.g. in intrusion
detection the correct classification of malicious traffic is more important than the
correct classification of legitimate traffic).

5.2 Classification techniques

As explained in Section 5.1, classification algorithms are mostly part of the super-
vised family of machine learning techniques and their objective is to predict a label,
rather than a continuous number like in regression problems. Moreover, these algo-
rithms can belong to the “shallow learning” or to the “deep learning” family. The
difference between these two families mainly lies in the way the model learns its
parameters. Shallow models learn the parameters of their statistical model directly
from the features of the dataset. Such features are hand-crafted relying on previous
knowledge of the domain.
Differently from shallow models, deep learning algorithms learn the values of their
statistical model’s parameters both from the input features and from the multiple
layers of their architecture. This means that while the input features may be given
or not, the model learns by itself what are the important characteristics of the
dataset to perform the classification [35]. The typical example of input without
hand-crafted features is images because the input is simply the tensor created with
the pixels values.
The shallow models presented in this work are Decision Trees, Random Forests and
Support Vector Machines. Instead, the deep learning models described are neural
networks.

5.2.1 Decision tree

A decision tree [36] model is based on a tree structure, where each internal node is
labelled with an input feature. Starting from the root, the source set is split into
subsets following specific splitting rules. Then children of an internal node can be
other internal nodes or all the possible values of the target class. Also, in this case,
the simplest form is a binary classifier, as seen in the example of Figure 5.5.

Some examples of splitting measures are the Gini index and Information gain.
Generally speaking, the split algorithm works top-down: at each step it chooses the
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feature that best splits the set, relying on the mentioned measures. For example,
the Gini index for a given node t is computed as:

GINI(t) = 1−
∑︂
j

[p(j|t)]2

where j is the class index and p(j|t) is the frequency of class j at node t. This index
measures the “purity” of the split, reaching its maximum value when the number
of samples is equally distributed among all classes (1 − 1

nc
with nc the number of

classes) and the minimum value when all the samples belong to the same class after
the split (1 − 1 = 0). A lower value of the index means that the split can better
distinguish between the target classes.

Feature 3

Feature 1 Feature 2

Feature 1Feature 2Class 1 Class 2

Class 2 Class 1 Class 1 Class 2

F3 < X F3 > X

F1 < Y F1 > Y

F2 < Z F2 > Z F1 < Y F1 > Y

F2 < Z F2 > Z

Figure 5.5: An example of a binary decision tree classifier.

Among the main advantages, there is the simplicity of interpretation of the
model: differently from other ones, it is clear why each decision has been taken.
Moreover, this model can perform well on big datasets and does not require partic-
ular preparation of the data. Unfortunately, there are some limitations: decision
trees are not very robust to changes in the training dataset, plus the learning of
an optimal decision tree is NP-complete; for this reason, the attribute order to
perform the split at each step is chosen in a “greedy” way, choosing the attribute
that leads to the best impurity index at each step, rather than finding the optimal
order of attributes. Finally, the solution given by a decision tree can easily produce
overfitting, needing further mechanisms to overcome it, such as pruning techniques.
Pruning can be performed both as “pre-pruning” or “post-pruning”, the common
idea is to remove nodes that lead to a too precise split between classes and this can
be done at training time (pre) or after the creation of the tree (post).

5.2.2 Random forest

Random forest [37] is a typical example of model ensemble, which consists in the
usage of multiple models to increase performances. Random forests are composed
by multiple decision trees and have as output the mode (i.e. the most recurring
one) of the classes predicted by individual trees. The standard algorithm comes
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from the union of two concepts: feature bagging and bootstrap aggregation.
The first one means that at each split during the training, a subset of random
features is selected (typically the square root of their number). The second one
consists of a random subsampling with replacement as input for each tree of the
forest. So the algorithm can be summed up as follows: T random subsamples with
replacement are created from the dataset, for T decision trees to be trained. Each
tree is created separately and at each split a random subset of the features is taken
into account, rather than the whole pool.

This process leads to some advantages; first of all the decorrelation between the
trees. Also, the features that are chosen the most times in the higher splits are
naturally identified as the most relevant ones. Finally, the accuracy is generally
higher than simple decision trees, at the cost of a more complex model and less
easy to interpret results and of course higher training times.

5.2.3 Support Vector Machines

The aim of Support Vector Machines (SVM) is to find the best dividing hyper-plane
among the samples [38]. In their standard version SVM try to find the hyper-plane
that has the highest distance from the samples so that all the samples belonging to
the same class are contained in the same side of the plane: this is called the large
margin problem. An example of a boundary created by a linear SVM is shown in
Figure 5.6.

Figure 5.6: An example of a trivial SVM binary classification.

Usually, in real-world applications, samples are hardly exactly separable with a
hyper-plane: the presence of outliers is quite common in every dataset. Differently
from other algorithms, SVM can integrate a regularization technique directly in
their mathematical formulation. It is possible to add a so-called “slack variable” to
the optimization problem that allows some errors in the classification to take into
account the presence of outliers. This is called the soft margin problem.
Furthermore, one of the main advantages of an SVM model is the fact that it only
needs to store support vectors to perform classification. Support vectors are the
only points that actually determine the position of the separating hyper-plane since
they are the nearest ones to such plane.
To classify a new sample, in case of a linear SVM, the equation is the following:

y = ⟨w, x⟩+ b
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where x is the sample and b is the so-called bias term, while the ⟨w, x⟩ term rep-
resents the scalar product between the two vectors. The sample is assigned to the
positive class if y > 0 and negative otherwise. The w term is calculated as:

w =
∑︂
i

αixiyi

with x and y being the samples with their corresponding class, while α is a term
that is equal to 0 for all the points, except for the support vectors.

Finally, it is possible to apply kernel functions to separate classes that are not
linearly separable. Using Figure 5.7 as a reference, imagine a binary classification
problem with two features and samples distributed as shown: a linear SVM clearly
can not find a separating hyper-plane to correctly classify the samples. A possi-
ble solution is the introduction of kernels, that allow the mapping of points in a
higher-dimensional space: keeping the same example of Figure 5.7, the points can
be mapped with the new dimension z = (x2 + y2) (which is the equation of a cir-
cumference); now the points are linearly separable in the new space. Unfortunately,
mapping all the points of a dataset in a higher-dimensional space is computationally
too expensive. The so-called “kernel trick” [39] is a method that allows introducing
the kernel function inside the scalar product of the linear SVM, that now becomes:

y = ⟨w, ϕ(x)⟩+ b

where ϕ(x) is the kernel function. Many possible kernel functions can be used. The
most common ones are the linear kernel, the polynomial kernel, the radial basis
function (RBF) kernel and many others.

z = x  + y2 2
x

y

x

z

y

Figure 5.7: An example of a kernel mapping, from 2D to 3D.

5.2.4 Neural Networks

The basic architecture of a Neural Network [40] (NN) is a multilayer stack of simple
modules, also called neurons: in this case, they are also called fully connected NN
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Figure 5.8: An example of a Neural Network, with the detail of a single neuron.

or feed-forward NN. What happens inside a neuron is a weighted sum of the inputs
of that neuron, followed by an activation function, as better explained in Figure 5.8.

The activation function carries out an essential role inside the network: in fact
it introduces the non-linearities that are fundamental to distinguish the network
from a shallow model. Actually, several types of activation functions exist, with
the most common being:

Sigmoid f(x) = 1
1+e−x

historically famous, but with many disadvantages. It saturates (i.e. has un
upper or lower limit for the output of the function), the output is not zero-
centred and contains the exponential, which is expensive to compute;

tanh f(x) = tanh(x)
zero-centred, but still saturates;

ReLU f(x) = max(0, x)
Rectified Linear Unit does not saturate in the positive region, it is very ef-
ficient to compute. Unfortunately the output is still not zero-centred and a
negative input produces an output equal to zero;

PReLU f(x) = max(αx, x)
Parametric ReLU. All the advantages of the ReLU, but will not be killed by
negative inputs.

The issue with non-zero-centred activation functions is due to the peculiar way
a NN is trained: an always-positive (or negative) output of an activation function
will slow the process of convergence of the network [41], as better explained below.
Usually, ReLU or PReLU are the chosen ones. Finally, Figure 5.9 shows these
functions, to better visualize what already explained.
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Figure 5.9: Examples of activation functions. From left to right, on the top: sigmoid
and tanh; on the bottom: ReLU and PReLU.

At the end of all the fully connected layers, a softmax function compresses the
outputs to have a sum equal to one, to be interpreted as a probability. The equation
of the softmax function is:

σ(z) =
ezi∑︁
j e

zj

where zi is the current element for which the softmax is computed.

The training of a neural network happens differently from the shallow algorithms
explained above: it is composed of two phases, the forward propagation and the
back-propagation. Given a single sample, each of its features is typically used as
input for a different neuron of the input layer and the output of each neuron is then
forwarded to the next neurons, until the end is reached: this is the simplest part
and it is called forward propagation.
At this point, the error between the predicted output and the actual label must
be computed with a “loss” function (or cost function). There are different possible
choices for the loss function, but the most popular one is indeed the logistic loss [42],
which is defined as:

L(y, p) = −(y log(p) + (1− y) log(1− p))

where y ∈ {0, 1} is the true label and p = P (y = 1) is the probability estimate.
The loss measure is used to perform the second step of the training, the back-
propagation. This step consists in the computation of gradients to update the
weights of the nodes. More in detail, by using a component of the NN called
“optimizer”, it is possible to choose among different algorithms: the most common
ones are Stochastic Gradient Descent [43] (SGD) and Adam. The objective of these
algorithms is to minimise the loss function, proceeding iteratively. After each batch
of forwarded input data, the computed loss is used to update the weights and then,
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once all the training set has been forwarded through the network, the epoch ends.
The number of epochs, i.e. the number of times the whole training set is forwarded
through the network, can be a fixed number or the interruption of the training
can be triggered dynamically. For example, a common method is to interrupt the
training if the loss is not decreasing by a fixed percentage since a certain interval
of epochs.

Finally, another type of neural networks exists: Convolutional Neural Net-
works [44] (CNN). They are designed to process data that come in the form of
multiple arrays. Besides images, many other datasets are composed by such form,
e.g. sequences and text, audio spectrograms and videos. CNN try to exploit some
intrinsic characteristics in this form of data with some additions to the fully con-
nected NN architecture: convolutional layers and pooling layers are added to the
architecture. A convolutional layer can be seen as a filter that moves over the input:
each time this filter moves, it performs the scalar product between the weights of
the filter and the values of the part of the input it is passing over. Like in standard
NNs, the output produced by a layer is used as input for the next one. These filters
are helpful to grasp local features typical of images and other similar inputs like
audio or video tracks. Instead, pooling layers are needed to reduce dimensionality
and make the representations more manageable. An example of pooling filter that
chooses the max value of an area of the input is shown in Figure 5.10. Some popular
CNN architectures are ResNet [45] or Inception [46].

1 3 0 2

8 4 4 5

1 3 2 0

2 1 0 4

8 5

3 4

Figure 5.10: An example of a pooling mechanism.
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Chapter 6

Solution design

This chapter’s objective is to explain the workflow followed during this work’s
experiments and to describe in detail the different phases that compose it.
The two main steps of the experiments are the creation of the machine learning
models that allow to classify network traffic as benign or malign and the integration
and deployment of these models inside a working IDS, Suricata. The technical
details on IDSes can be found in Chapter 4, while the overview of machine learning
techniques is in Chapter 5. Finally, Figure 6.1 shows an high level diagram with
the whole workflow of the experiments.

Flows statistics creation
with Tstat

Selection of
useful features

Training and validation
of the models

Initialisation of
Suricata

Update Tstat internal
structures with packets

Classi�cation with
new Suricata rules

ML
model

Model Creation and Selection Suricata Integration

Test and choice of
the �nal models

Figure 6.1: The high-level workflow of the proposed solution.

6.1 Creation and selection of classifiers

This phase of the experiments starts from the download of the two chosen datasets,
which characteristics have been deeply analysed in Chapter 7, and ends with the
creation of several different trained classifiers, that will be later employed in the
integration phase. The design followed to obtain this result is the one described in
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Section 5.1, composed by a first phase of pre-processing of the dataset, followed by
the visualisation of the dataset characteristics and another phase of pre-processing,
with different aims from the previous one.
Using the results and the observations of these first steps, the algorithms that bet-
ter suit the characteristics of the dataset have been chosen. Finally, the training,
validation and testing pipelines have been created, in order to produce and store
different classifiers, ready for a later use. In this regard, for each of the chosen algo-
rithms have been stored several trained models, depending on the specific training
set used to create it. The technical steps to reproduce this workflow are described
in Appendix B, while the explanation of the usage of the final tools from a user
perspective can be found in Appendix A.

6.1.1 Extraction of statistics

After the download of the network traffic captures in the form of “pcap” files,
explained in Section 7.1, the Tstat tool has been used to extract the network
statistics in the form of several CSV file. Since the original dataset, counting both
the CSE-CIC-IDS2018 and the Torsec one, is composed by around 4400 pcap files,
an ad-hoc Python script has been written to perform the Tstat analysis on each one
of them. Each type of network attack has been analysed separately, producing one
or two CSV files for each attack, depending on the number of days during which
the attack has been performed. Each CSV file contains the core TCP statistics
that have been described in Section 2.2.1.
Then, each file is used as input of another Python script, which objective is to
append the label of each flow: using the information regarding the IP addresses of
the attackers machines provided by the CSE-CIC-IDS2018 website (and considering
that no IP spoofing technique has been used), each flow is labelled as “Benign”
or “Malign”. Instead, the flows originated from the Torsec dataset have been
all labelled as malign since only attack captures have been used among the ones
contained in the Torsec dataset, as explained in Section 7.1.2.

6.1.2 Features selection

The various CSV files that compose the final dataset have been analysed, grouping
them by the network attack contained. First of all, the distribution of malign and
legitimate traffic among the different attacks has been analysed, as better described
in Section 7.2, leading to the removal of one of the attacks, due to lack of positive
samples. Then, the set of features of the resulting dataset has been reduced with
respect to the original one.

The whole set of features created by Tstat has been presented in Section 2.2.1.
Starting from these, only a subset has been chosen to perform the experiments.
First of all, from all the different logs available, the richest one has been used:
“log tcp complete”. The “log udp complete” log has been excluded due to the lack
of statistics created by Tstat: for this type of traffic only 6 useful statistics (3 per
direction) are available, way less than the TCP ones.
Then, from the 44 columns of the core TCP statistics, a further selection has been
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performed. The IP and port information of both source and destination has been
removed from the set because they typically do not carry useful information about
the presence of an ongoing attack: this is due to IP address and port spoofing, a
technique explained in Section 3.2. Moreover, another couple of columns that have
no use in the intrusion detection are the absolute time of the first and last packet
observed per flow, for both directions. Instead, the total flow duration has been
kept. Finally, some qualitative information about the flow has been discarded, like
the presence of CryptoPAn [47] IP addresses or the position of the client/server
inside the network (e.g. internal/external). The final selection of features is shown
in Table 6.1 and will be used as reference for all the following experiments.

# Description

0 # of packets sent by client

1 RST sent by client

2 # of ACK sent by client

3
# of ACK sent by client with-
out data

4
# of bytes sent by client in the
payload

5
# of segments with payload
sent by client

6
# of bytes sent by client
in the payload, including re-
transmissions

7
# of re-transmitted segments
by client

8
# of re-transmitted bytes by
client

9
# of client segments out of se-
quence

10 # of SYN sent by client

11 # of FIN sent by client

12 # of packets sent by server

13 RST sent by server

14 # of ACK sent by server

15
# of ACK sent by server with-
out data

# Description

16
# of bytes sent by server in the
payload

17
# of segments with payload
sent by server

18
# of bytes sent by server
in the payload, including re-
transmissions

19
# of re-transmitted segments
by server

20
# of re-transmitted bytes by
server

21
# of server segments out of se-
quence

22 # of SYN sent by server

23 # of FIN sent by server

24 Flow duration (in ms)

25
Client first payload since start
(in ms)

26
Server first payload since start
(in ms)

27
Client last payload since start
(in ms)

28
Server last payload since start
(in ms)

29
Client first ACK without SYN
(in ms)

30
Server first ACK without SYN
(in ms)

Table 6.1: The chosen Tstat features.
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6.1.3 Training and Validation

Due to the huge size of the dataset, the choice of the classification algorithms
is naturally narrowed. Algorithms like K-Nearest-Neighbours that do not scale
well with big datasets have been directly excluded and the chosen ones have been
the ones described in Section 5.2: Random Forest, Support Vector Machines and
Neural Networks. SVM have been included, but their “kernel trick” explained in
Section 5.2.3 typically takes too much time to converge with big datasets: for this
reason a linear SVM has been used.

Then, among the many frameworks available for machine learning, the chosen
one has been Scikit-learn1. It is a popular Python framework that offers many ML
algorithms, pre-processing techniques and evaluation methods. Moreover, one of
its points of strength is the ease of use: it allows the creation of a Machine Learning
classifier with a single line of code and the training of such model with another line
of code.

The training phase has been designed with the aim of making possible to run
it many times, over many days, with different inputs and algorithms and with the
ability to store the output of each training to analyse it at a later time. With these
requirements fixed, the logical blocks that compose the training phase are shown
in Figure 6.2.

De�nition of
the arguments

Loading of
the dataset

Are there other
algorithms to use?

Is there another set
of hyperparameters?

Normalisation of
the dataset

Creation of
the classi�er

Training of
the classi�er

Evaluation of
the classi�er

Export of the
trained model

END

Yes

Yes

No

No

START

Figure 6.2: The logical sequence of actions that are part of the training phase.

First of all, the configuration file relative to the training phase is read and
used to setup some internal variables. As better explained in Appendix B.3.2,
the configuration file contains information about the path to the dataset or to the
subsets of attacks of interest for the specific training, the path to the output folder

1https://scikit-learn.org/stable/
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for the storage of the created models and the list of features that will be used for
the training phase.

Then, the appropriate dataset is loaded from its folder. At first, the set of chosen
flows is split between the positive and negative class, i.e. malign and benign flows;
then, the two sub-sets are further split into training, validation and test sets and
then merged. The reason for this choice has been explained in Section 5.1.4. Once
the datasets have been created, the standardisation is performed by fitting a Scikit-
learn “StandardScaler”2 on the training set and then transforming the training and
validation sets with the fitted scaler. The standardisation is performed in this way,
because the validation set, used as evaluation set for the training, must not be used
to fit the scaler to avoid the introduction of bias.

After the creation and standardisation of the training and validation sets, for
each of the selected algorithms, a cycle over the combinations of hyper-parameters
is performed. For each iteration, the appropriate classifier is instantiated and then
trained with the training set. The obtained classifier is evaluated with the valida-
tion set and stored in the chosen output folder.
This process of storing the model happens as follows: first, a Python object is cre-
ated, containing the set of hyper-parameters used for the current iteration; instead,
another Python object contains the evaluation measures obtained on both training
and validation sets, which are described below. Then, the two Python objects are
encapsulated inside another Python object, that contains these two objects together
with a list of the names of the network attacks used for the specific experiment (or
eventually a single name, in case only one dataset is used to train the classifier)
and with the trained model itself. This final Python object, which structure is
summed up in Listing 6.3, is then serialised using the joblib3 library and stored in
an external file. The set of stored statistics, inside the “stats” object, includes the
accuracy, balanced accuracy and F-score obtained on both training and validation
sets, together with the time needed for the training. The technical description of
these statistics can be found in Section 5.1.5.

Once several models have been created, the validation step has been performed.
The process to choose among the different trained classifiers has been automated
by cycling over the stored Python objects, now de-serialised, and selecting the one
with the highest F-score: this process of selecting the best set of hyper-parameters
by cycling over all the possible combinations is known as grid-search, as detailed in
Section 5.1.4. As explained in Section 5.1.5, the F-score for a binary classification
problem can be interpreted as the ability of correctly classifying positive samples: its
value increases with a higher number of True Positive samples and decreases with a
higher number of False Positive or False Negative samples. The correct classification
of legitimate traffic is not considered by this measure (the True Negative value),
differently from other measures like the balanced accuracy. Since the objective
of a model to be integrated into an IDS is to correctly classify malicious traffic
with a low rate of False Positive or False Negative samples, this measure has been

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html

3https://joblib.readthedocs.io/en/latest/
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{

’params’ : {

’hp1’ : hyper-param 1,

’hp2’ : hyper-param 2,

...

’hpN’ : hyper-param N,

},

’stats’ : {

’stat1’ : statistic 1,

’stat2’ : statistic 2,

’stat3’ : statistic 3,

...

’statN’ : statistic N,

},

’attacks’ : [

"Attack01",

"Attack02"

],

’model’ : trained model

}

Figure 6.3: The structure of the exported model, represented in JSON format.

preferred.
As a result of the validation phase, each one of the three algorithms (NN, RF and
SVM) has a single trained classifier for each one of the attacks in the dataset:
the next phase has the objective of evaluating these models and choosing the best
algorithm for each attack.

6.1.4 Testing

Finally, the test phase decides which models are most suited to be integrated in
the IDS. The optimal solution would be to select as much as possible of the best
performing models, but it must be kept in mind that each model would add an
overhead to the performance of the IDS and one of the objectives of this work is to
obtain a working IDS, by interfering as less as possible with its standard routine
and performance after the integration. For this reason, the resulting models have
been compared both under the aspect of classification results and the time required
to perform the predictions.

Hence, the best models selected after the previous phases have been trained
again, this time over a bigger training set, composed by the former training and
validation sets. Each classifier has been trained using the set of hyper-parameters
stored in the corresponding Python object, over the same set of attacks used for
its first training. To perform this step, a process similar to the one previously
described in Figure 6.2 has been followed, with two major differences: the set of
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hyper-parameters is fixed and the standardisation scaler is fit over the new training
set, composed by the old training and validation sets. The obtained models have
been exported in the same way as the previous ones, to perform more analysis.

Then, the results of the different models have been compared, as explained in
Section 5.1.4, using the same set of measures used during the validation phase,
together with the average time needed to perform a prediction. Additionally, to
better visualise the results, the confusion matrix has been created for each classifier.
All the results obtained from both validation and testing phases have been collected
and presented in Chapter 8.

6.2 IDS integration

Once the machine learning models are ready, a way to actually integrate their usage
into the Suricata IDS has been designed. Using the Suricata workflow described
in Section 4.4.1 as a reference, some of its modules have been modified. The
resulting workflow is shown in Figure 6.4, where the added functionalities have
been highlighted with respect to the original workflow. The initialisation phase
and the decoding and detection modules have been modified, as explained in the
following sections. Moreover, a Python script to perform the classification has been
created.

Through the whole integration process, the Tstat API functions provided by its
library (libtstat) have been used to communicate with Tstat and obtain the TCP
flows statistics. The five API functions provided by Tstat are:

1. int tstat init(char *config);

2. void tstat new logdir(char *file, struct timeval *pckt time);

3. int tstat next pckt (struct timeval *pckt time, void *ip hdr, void *last ip byte,
int tlen, ip direction);

4. tstat report *tstat close (tstat report *report);

5. void tstat print report (tstat report *report, FILE *file).

The first two functions, tstat_init and tstat_new_logdir, have to be called
during the initialisation of Suricata, because they are needed to setup Tstat internal
structures. Instead, tstat_next_pckt has to be called in a place where the IP
packet is available inside Suricata, since it needs a pointer to the IP header. Finally,
the tstat_close function is used to flush to file the collected statistics, while
tstat_print_report simply prints on screen a report of the flows analysed by
Tstat.
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Figure 6.4: The modified workflow of the Suricata modules.

6.2.1 Suricata initialisation

Inside the Suricata initialisation phase have been inserted two more sequences of
initialisation: the Tstat initialisation and the Python interpreter initialisation. The
Tstat initialisation is needed by the Tstat tool, integrated inside Suricata by using
two of the five API functions provided by libtstat, while the Python interpreter
initialisation is needed to be able to use the C/Python API4, as deeply explained
in Appendix B.

The best position to initialise Tstat is inside the main function of Suricata,
before the initialisation of the threads that will perform all the Suricata activities.
After all the basic checks and configurations of internal modules have been com-
pleted, the Tstat initialisation function has been inserted. In this way, it is possible
to take advantage of the Suricata internal logging system to produce informative
logs about the status of the integration mechanism.
This process performs many preparative actions before actually calling the Tstat

4https://docs.python.org/3.8/extending/embedding.html
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API tstat_init. Some of these actions are directly needed to obtain some configu-
ration parameters for Tstat, while other are useful to setup some internal variables
that will be used later by the decoding module. First of all, the configuration file
used for the integration is retrieved (called “integration.conf”): in case it is not
found, a critical error is emitted with the Suricata logging system and the execu-
tion is interrupted since this file is necessary to continue with the initialisation.
Then, the tstat_init and tstat_new_logdir API functions are called and the
Tstat initialisation sequence ends.

Once Tstat has been successfully initialised, the Python interpreter performs
some similar actions. It is initialised through some of its API functions and then
a configuration file containing information about the ML models is read, with the
result of storing the ML models inside an ad-hoc data structure, ready to be used at
a later stage. The reason for this choice is the fact that as much of preparative work
as possible has been moved inside the initialisation phase, to allow a faster execution
of the detection phase. For this same reason, the pointer to the Python function
contained inside the external Python script is stored: in this way the function is
ready to be called as soon as the needed arguments are ready, as explained later in
the classification phase.

6.2.2 Packet decoding

The remaining part of the integration concerns the creation of the Tstat flows
statistics and the subsequent detection of malicious flows. The optimal place to
perform this step of the integration has been located inside the detection module
of Suricata, where the packets are directly available and can be passed to Tstat, as
required by the tstat_next_pckt function. More in detail, the DecodeIPV4 Suri-
cata function is the exact place where the IP packet bytes are available. However,
the whole section of integration inside this function has been considered a critical
section, since multiple threads operate concurrently in Suricata: for this reason a
mutex lock has been required before the beginning of the actual integration section
and has been released after all the operations have been performed. However, this
integration step performs only a single action: the IP packet is passed to Tstat,
that automatically updates its internal structures with the packet data.

6.2.3 Packet classification

The final phase of the integration happens inside the Suricata detection module.
The ML-based detection has been placed after the normal Suricata process of sig-
nature matching: in this way, the ML classification is performed only if all the other
options of a rule provide a match, allowing to further reduce the added overhead.
The ML-based detection happens in different stages: first, the flags of the current
signature analysed by Suricata are read and the new machine learning flags are
retrieved; then, the statistics of the flow of the current packet are obtained from
Tstat; finally, the ML flags and the statistics are passed to the external Python
function, that performs the prediction and returns the outcome to Suricata.
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More in detail, the flags are obtained from a Suricata internal structure (a C
struct) that contains information about a specific signature. This structure has
been populated by Suricata during its initialisation phase and contains, among the
other data, the options of the specific signature (e.g. action, protocol, id). If the
ML options are found, the ML-based detection process starts, otherwise the normal
Suricata workflows continues. These special flags contain information about which
ML models have to be used during the detection phase of a specific signature.
Instead, the statistics related to the current packet’s TCP flow are obtained from
Tstat using a sixth API function: this function has been created ad-hoc to retrieve
statistics of a single flow because the other libtstat functions do not allow to do so.
A specific flow is identified inside the Tstat internal data structures by using the
IP address/port pair of both source and destination of the analysed packet, plus a
timestamp to not find eventual old flows.
Finally, the external Python function performs very few actions: given the already
loaded models, the statistics of a flow and the list of flags, it performs the prediction
with each one of the models selected by the flags and returns the outcome to
Suricata.
Since the ML-based detection happens at the end of the Suricata detection phase,
if the outcome is positive Suricata performs the action specified in the signature,
while it continues with the analysis of the next signature if the outcome is negative.
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Dataset analysis

This chapter contains an in-depth description of the datasets used for the experi-
ments described in Chapter 8. Then, it proceeds with an overview of the features se-
lected from the ones extracted by Tstat, among the ones described in Section 2.2.1.
Finally, Section 7.2 explores the statistical characteristics of the final dataset.

7.1 Dataset composition

The dataset used for this work’s experiments comes from two different sources. The
first source is a publicly available dataset, that contains several attack types, while
the second one has been collected by the Torsec group1 in Politecnico di Torino and
is focused on three families of network attacks. The availability of public datasets
containing network attacks is quite rare, since many are collected internally and can
not be shared due to privacy issues. Moreover, network behaviours and patterns
change with time, as well as intrusions. For these reasons, the most up-to-date
datasets have been chosen, containing a wide set of attack types.

7.1.1 CSE-CIC-IDS2018

This dataset2 is part of the collaboration between the Communications Security Es-
tablishment (CSE) and the Canadian Institute for Cybersecurity (CIC). Among the
different datasets available on their website, this is the most complete one and also
recent enough to contain novel attack methodologies. The main objective of this
dataset is to develop a systematic approach to generate a comprehensive benchmark
dataset for intrusion detection. The final dataset includes seven different attacks,
which technical description and the related tools can be found in Chapter 3. The
attacks are the following:

� Brute force, performed with Patator on both FTP and SSH;

1https://security.polito.it/

2https://www.unb.ca/cic/datasets/ids-2018.html
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� Heartbleed, performed with Heartleech tool;

� Botnet, performed with Ares tool;

� DoS, performed with Hulk, GoldenEye, Slowloris, Slowhttptest;

� DDoS, performed with LOIC and HOIC on UDP, TCP and HTTP;

� Web attack through SQL injection and XSS;

� Infiltration, exploiting an application vulnerability an malicious emails.

The attacking infrastructure includes 50 machines, while the victim organization
has 5 departments and includes 420 machines and 30 servers, with both Windows
and Linux machines. The generated traffic is split in two categories, benign and
malign, and a profile of network traffic usage is created for each one of them.
In particular, the benign profile is designed to extract the abstract behaviour of a
group of human users: it tries to encapsulate network events produced by users with
machine learning and statistical analysis techniques. The encapsulated features are
distributions of packet sizes of a protocol, number of packets per flow, certain
patterns in the payload, size of payload, and request time distribution of protocols.
Once the benign profiles have been created, the CIC-BenignGenerator tool has been
used to generate the benign background traffic for the attack scenarios [48].

The CSE-CIC-IDS2018 dataset can be downloaded with the Amazon AWS Com-
mand Line Interface3 (AWS CLI), which is available for Microsoft, Linux and Mac
systems. Then, after the statistics extraction with Tstat, as explained in Sec-
tion 6.1.1, the resulting CSV files have been used to perform the required experi-
ments.

7.1.2 Torsec dataset

The dataset provided by the Torsec group is not publicly available. This dataset is
much smaller with respect to the CSE-CIC-IDS2018 one and is composed by both
legitimate and malicious traffic captures. The legitimate traffic has been created
using Chrome, Firefox and Edge web browsers, while the malign one is split in
web scrapers, DoS attacks and vulnerability scanners. The reason for the presence
of this dataset inside this work is to have the possibility of comparing network
traffic coming from a different distribution, i.e. created and captured with different
techniques with respect to the CSE-CIC-IDS2018 one.
However, the only portion of traffic used to perform this work’s experiments is the
one containing DoS attacks. This choice has been done to increase the size of the
DoS dataset of CSE-CIC-IDS2018. Instead, the legitimate traffic contained inside
the Torsec dataset has been discarded since the CSE-CIC-IDS2018 already contains
a lot of legitimate traffic, as shown in Section 7.2. The statistical differences between
these two datasets can be found in Section 7.2, together with other measures and

3https://aws.amazon.com/it/cli/
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graphs. The DoS attacks of this dataset have been performed with some tools
already described in Chapter 3 and are: Goldeneye, Hulk, Rudy, Slowhttptest and
Slowloris.

7.2 Traffic analysis

The final dataset composed by merging CSE-CIC-IDS2018 and Torsec ones has
been analysed, to take better decisions for the design of the training phases. First
of all, the histogram of the two classes (malign and benign) distribution across the
attacks has been produced and it is shown in Figure 7.1.

Figure 7.1: The class distribution of TCP flows across the different datasets.

The DoS attack captures from the Torsec dataset have been called “DoS Extra”
to distinguish them from the other ones. Also, the count scale is logarithmic,
to allow a better visualisation of the global distribution. Each pair of columns
represents the amount of legitimate and malicious TCP flows contained in the
respective dataset: in fact, each set of traffic captures of the CSE-CIC-IDS2018
dataset contains both legitimate and malicious traffic.
The first thing to notice is the fact that malign flows are always less than the
benign ones, in each of the different attack types. This has to be expected, since
anomalous traffic is typically less frequent than the normal one. The ratio between
benign and malign traffic can be visually computed by looking at the logarithmic
scale and goes from 2:1 to around 20:1 for most of the attacks. The only attack
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that clearly have a different ratio is the web attack. To have a better idea of the
different ratios, the exact numeric distribution can be found in Table 7.1.

Attack Benign Malign Total

Botnet 3.413.095 142.925 3.556.020

DoS 4.570.259 1.834.752 6.405.011

DoS Extra 0 166.584 166.584

LOIC 5.504.503 1.371.621 6.876.124

Bruteforce 2.312.771 94.207 2.406.978

Web 5.893.766 438 5.894.204

TOTAL 21.694.394 3.610.527 25.304.921

Table 7.1: The numeric class distribution of TCP flows across the different datasets.

The highly unbalanced ratio of the web dataset could be easily solved by re-
moving samples of the most present class, the negative one in this case. However,
it has been chosen to not remove the samples and perform the training with the
unbalanced dataset, to see how well can the models adapt to this situation. The
final dataset is composed by more than 25 millions of TCP flows, of which the 15%
belong to the positive class.

The next type of analysis performed consists of a comparison between the av-
erage values of some features, differentiated between positive and negative flows.
The set of chosen features is composed by the average size in bytes of the client and
server payloads and by the average duration in milliseconds of a flow. The results
of this analysis are presented in Table 7.2.
The first thing to notice is the fact that the negative class (i.e. the legitimate traffic)
has almost the same distributions of values among each attack type: this means
that more or less the type of traffic modelled for the legitimate users has been
consistent among all the different experiments during the creation of the dataset.
Instead, the average values of the positive class are mostly different with respect to
the ones of the negative class.

Attack
Client payload Server payload Duration (ms)

Pos. Neg. Pos. Neg. Pos. Neg.

Botnet 324 986 129 10205 14 36683

DoS 346 950 931 13719 1120 38822

DoS Extra 752 n.a. 25434 n.a. 6382 n.a.

DDoS 240 929 941 14902 4991 36764

Bruteforce 1934 939 2664 12290 367 40131

Web 30615 956 69802 15764 33476 47274

Table 7.2: The average value of some features of the TCP flows, split by class and
attack type.
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Experimental results

This chapter describes the results obtained during the different phases of the ex-
periments performed in this work. Since one of the objectives of this work is the
creation of models capable of detecting malicious attacks without adding too much
overhead to the IDS where they have been integrated, the first section of this chap-
ter focuses on the classification ability, while the second one concerns the time
dimension. All the time performances have been measured on an Ubuntu PC with
an Intel i5-7200U 2.5GHz CPU and 12GB of available RAM.

8.1 Classification results

As explained in Section 5.1.5, there are many possible measures to evaluate the
goodness of a classifier. The ones chosen for this work’s experiments have been the
accuracy, the balanced accuracy and the F-score. The following sections contain
the result obtained with each one of the chosen algorithms and then a comparison
between the best models is performed.

8.1.1 Random Forest

The random forest classifier1 has been trained with different combinations of hyper-
parameters, changing the number of estimators and the maximum depth allowed
for each decision tree of the forest. The numbers of estimators that have been
tried are 20, 50, 100 and 150, while the possible maximum depth has been set
to 16, 24 or “unlimited”. The only parameter that has been changed among the
default ones is the “class weight” parameter, that has been set with the value
“balanced subsample”, to balance the weight of the two classes depending on the
number of samples of each one.

Moreover, Table 8.1 contains the accuracy, balanced accuracy and F-score ob-
tained by the best random forests for each attack, together with the set of hyper-
parameters chosen with the validation phase, as explained in Section 6.1.3. The

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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results can be considered really good, even compared with the ones that can be
found in literature and that have been described in Chapter 9. The “Web” attack
is the one with the lowest performance, but as explained in Section 7.2, it contained
very few positive samples.

Attack Accuracy %
Balanced
accuracy %

F-Score % Estimators
Max
depth

Botnet 100 100 100 20 16

Bruteforce 99.99 99.99 99.99 20 16

DoS 99.99 99.99 99.99 100 16

DDoS 99.99 99.99 99.99 20 16

Web 99.99 96.59 96.47 20 16

Table 8.1: The evaluation metrics for the best RF models.

Additional considerations can be made by looking at the hyper-parameters:
to obtain the best performance among the different models, the least amount of
estimators available has been enough, for exception of a single case, the DoS attack.
The max depth has also been limited to the least amount possible by the validation
phase: this means that the RF does not need all the available features to perform
well.
Additionally, since the random forest allows to extract the features that had more
weight during the training phase, these have been analysed and the top-5 for each
attack are shown in Table 8.2. The number of the features is the one presented in
Section 6.1.2. It is possible to notice that some features numbers are recurrent for
many attacks: for example, features number 5 (number of segments with payload
sent by client), 16 (number of bytes sent by server in the payload) or 17 (number
of segments with payload sent by server) are more frequent than others, even if
in different order of importance among the attacks. Moreover, it is possible to
notice that the other features in the top-5 list are mostly different between the
various attacks: this means that the RF is probably capable of finding specific
characteristics for each attack. Furthermore, it is possible to notice that almost all
the attacks include some time-related features in their top-5 list: features 24 (flow
duration), 26 (time of server first payload sent since start), 29 (time of client first
ACK without SYN) and 30 (time of server first ACK without SIN).

Attack #1 #2 #3 #4 #5

Botnet 17 24 29 16 4

Bruteforce 5 30 0 18 17

DoS 16 18 17 5 12

DDoS 29 16 0 5 26

Web 29 30 5 6 12

Table 8.2: The top-five most important features for each attack type.
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8.1.2 Support Vector Machine

The linear SVM classifier2 has been trained with a single hyper-parameter, that is
C, the regularization parameter. The set of used values is composed by 0.5, 1, 1.5
and 3. As explained in Section 5.2.3, this parameter is responsible of the amount of
error tolerated by the SVM in the soft-margin problem. The only parameter that
has been changed among the default ones is the “class weight” parameter, that
has been set with the value “balanced”, to balance the weight of the two classes
depending on the number of samples of each one.

Instead, Table 8.3 contains the accuracy, balanced accuracy and F-score ob-
tained by the best support vector machines for each attack, together with the value
of the relative hyper-parameter, C. The scores are not really high, specially if com-
pared with the random forest ones. The balanced accuracies are acceptable, but
the F-scores are definitely not. The only possible explanation for this result is a
high number of false positive classifications since the balanced accuracy is high and
knowing that the dataset is highly unbalanced towards the negative class: even a
small percentage of negative samples classified as positive has a high impact on the
F-score.

Attack Accuracy %
Balanced
accuracy %

F-Score %
Regularisation
parameter (C)

Botnet 82.45 90.86 31.42 3

Bruteforce 76.03 87.52 24.61 0.5

DoS 83.79 88.35 77.78 3

DDoS 81.48 88.43 68.30 3

Web 49.91 74.95 0.02 3

Table 8.3: The evaluation metrics for the best SVM models.

In this case, the most chosen value for the C hyper-parameter has been 3, while
only one model chose the value of 0.5. Since a higher value of C typically means
that the SVM allows for less misclassification and uses a smaller margin for its
separating hyper-plane, this result had to be expected. However, a smaller margin
leads to more error if eventual new samples come from a different distribution.

8.1.3 Neural Network

The neural network classifier3 has been trained with different combinations of hyper-
parameters, changing the value of the batch size, the number and size of the hidden
layers and the learning rate. The different sizes of the batches have been 128, 256
and 512, while the learning rate has been set to 0.01, 0.005 and 0.001; instead,

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

3https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.

MLPClassifier.html
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the architecture of the NN has been set with one hidden layer, with 16 or 24
nodes and with two hidden layers, with 20 nodes in the first and 10 in the second.
The only parameter that has been changed among the default ones is the “solver”
parameter, that has been set with the “adam” solver, considered the best choice
for big datasets.

Instead, Table 8.4 contains the accuracy, balanced accuracy and F-score ob-
tained by the best neural networks for each attack. Also in this case the results are
very good. The scores are overall very high, for exception of the “Web” attack that
performs in a worse way, like with all the other algorithms. On the other hand, the
hyper-parameters distributions are quite various. There is not a clear preference
of the models for a set of hyper-parameters. Each attack dataset used a different
combination of hyper-parameters: the only one that has never been chosen is the
single hidden layer architecture with 24 nodes.

Attack
Accuracy
%

Balanced
accu-
racy %

F-Score %
Batch
size

Hidden
layers

Learning
rate

Botnet 99.99 99.99 99.98 256 (16) 0.005

Bruteforce 99.99 99.99 99.99 128 (16) 0.01

DoS 99.99 99.99 99.99 256 (20, 10) 0.001

DDoS 99.99 99.98 99.98 512 (20, 10) 0.005

Web 99.99 96.21 96.06 512 (20, 10) 0.001

Table 8.4: The evaluation metrics for the best NN models.

8.1.4 Comparison between algorithms

This section contains a comparison between the results obtained by each algorithm
for each attack. The measure chosen to perform this comparison is the F-score since
it gives more weight to the correct classification of malicious traffic, as explained
in Section 5.1.5. Figure 8.1 shows in a single graphic the results already presented
in the previous sections, focusing on the F-score. As it is possible to see, both
the RF and NN algorithms outperform the SVM one. Moreover, the RF and NN
algorithms obtained very similar results across all the attack types.

8.2 Classification time

This section focuses on the results obtained by the best classifiers, concerning the
time dimension. The average time needed to perform the prediction of a single
sample by the best classifiers selected after the validation is presented in Table 8.5.
In this case, the algorithm that outperforms the others in clearly the SVM, with an
average time needed to classify a sample of 0.05 µs. The RF has consistent times
across all the attacks, for exception of the DoS. The reason for this difference can be
found by looking at Table 8.1 that has been previously described: the DoS attack
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Figure 8.1: The F-score obtained by each algorithm on each attack type.

is the only one with 100 estimators, while the other attacks uses 20 estimators, five
times less. In fact, also the classification times are five times smaller with respect to
the DoS one. On the other hand, the NN does not show a clear correlation between
the classification times, but they are mostly higher with respect to the RF ones.

Attack
Random
Forest

SVM
Neural
Network

Botnet 0.4 µs 0.05 µs 8.9 µs

Bruteforce 0.4 µs 0.04 µs 17.8 µs

DoS 2.4 µs 0.05 µs 3.8 µs

DDoS 0.5 µs 0.04 µs 14.7 µs

Web 0.5 µs 0.05 µs 1.2 µs

Table 8.5: The times used by each algorithm for each attack type.

8.3 Suricata integration

This section presents the measurements of the overhead added to the Suricata tool
with the usage of one or more of the provided classifiers. Moreover, it also shows
the difference between the detection ability of Suricata with and without the new
classifiers.
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Even if the Suricata integration involved many aspects of the original Suricata tool,
only the detection phase has been considered for the analysis of the overhead. The
reason for this choice is the fact that the initialisation time is not important for the
performance of an IDS: Suricata itself performs many CPU-expensive operations
during the setup of the internal structures and takes some seconds before being
completely operative. So, the operations performed by the integrated ML classifiers
have been moved as much as possible in the initialisation phase, that is performed
only once. In this way, the detection engine has almost everything it needs ready to
be used. The times considered for the comparison of the performances of Suricata
with or without the integrated ML models have been computed using the rule shown
in Listing 8.2, adding or removing ML keywords for different tests and averaging
the results over 20 tries for each test. This base rule is the same one used in
Appendix A, where its precise meaning can be found.

alert tcp 192.168.178.20 any -> any any (msg:"My custom rule

with machine learning!"; flow:established, <ML options>;

content:"facebook"; nocase; classtype:policy-violation;

sid:666; rev:1;)

Figure 8.2: The base rule used to perform tests.

The base rule has been expanded using different combinations of classifiers.
Since the overall best-performing models have been random forests for all the at-
tacks, both in terms of classification score and time performance, these classifiers
have been used for all the attack types for this specific test. Table 8.6 presents
the average time needed by the Suricata engine to complete the execution of the
detection phase of a single packet, including the normal Suricata workflow. In this
way it is possible to analyse how much does the ML engine impact on the Suricata
detection performance.

Number of ML
models used

ML detection
time

Total detec-
tion time

0 0 µs 5 µs

1 18232 µs 18257 µs

2 27735 µs 27766 µs

3 36070 µs 36093 µs

4 56186 µs 56208 µs

5 59932 µs 59960 µs

Table 8.6: The times used by each algorithm for each attack type.

The overhead added by the presence of the ML detection engine is noticeable.
A single ML model inside the rule takes 18ms on average to classify the flow.
However, increasing the number of models inside the same rule does not increase
linearly the amount of time needed. Furthermore, the difference between the total
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detection time spent by Suricata and the time used only by the ML engine is almost
constant and equal to 20-30 µs. Finally, a consideration about the obtained time
measures must be made: almost all the time needed by the ML engine is used by a
single function: the predict() function contained in the Python script provided.
However, this same time had been previously computed for the classification time
of the classifiers, as already shown in Table 8.5, and in that case the times are
considerably lower, around 0.5 µs. A possible reason for this high discrepancy
between the times taken by the same function can be found directly in the Scikit-
learn documentation4, which shows that the prediction time for a single sample
is higher in proportion than the average prediction time needed for a batch of
samples.

4https://scikit-learn.org/stable/auto_examples/applications/plot_prediction_

latency.html
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Chapter 9

Related works

This chapter presents an overview of the different approaches found in literature
about both the main topics encountered in this work: the detection of anomalies
in network traffic with Machine Learning algorithms and the integration of such
techniques within an IDS or IPS. Beside the description of the different works avail-
able, a direct comparison between this work and the literature ones is performed,
highlighting differences and common choices.
Section 9.1 contains works that are more similar to the general approach of this
work, i.e. they use some specific dataset to generate models that are then inte-
grated in some IDS tool. Instead, Section 9.2 works are slightly different and cover
a broader range of approaches that focus mainly on the Machine Learning net-
work traffic analysis aspect, without considering the presence of an IDS. Finally,
Table 9.1 presents the characteristics of the datasets that will be described in the
following sections, focusing on the size and the type of network attacks contained.

9.1 Machine Learning and IDS

The works present in literature about the integration of a Machine Learning pipeline
inside an IDS are not many and most of them focus on different aspects of the prob-
lem. For this reason, a direct comparison may sometimes be difficult.
For example, a 2020 work [59] implemented an IDS based on Docker containers1,
where each one of the three proposed containers works independently. The col-
lection of network traffic is performed in batches, storing the last three hours of
network activity and then performing the predictions. This IDS has been trained
using HTTP traffic, gathered from different datasets: the CSIC-20102 and the CIC-
IDS20173, which is a direct predecessor of the dataset described in Section 7.1.
Another major difference is the choice of the training algorithms: three different
types of Neural Networks have been chosen, fully-connected NNs, recurrent NNs
and convolutional NNs, with an average F-score of 80%. Finally, the implemented

1https://www.docker.com/

2https://www.isi.csic.es/dataset/

3https://www.unb.ca/cic/datasets/ids-2017.html
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Dataset Size Network attacks Related works

KDDCup 99 5 millions
DoS, probe, privilege
escalation

[49, 50, 51, 52, 53, 54]

NSL-KDD 1 million
DoS, probe, privilege
escalation

[50, 51, 55, 56, 57, 58]

CSIC-2010 60.000 Web attack [59]

ADFA-LD 5000
Bruteforce, privilege
escalation

[55]

UNSWNB15 2.5 millions
DoS, port scan, back-
door, probe, worms

[60]

CIDD-001 31 millions DoS, probe, bruteforce [57]

CIC-IDS2017 3 millions
DoS, DDoS, brute-
force, Web attack,
botnet

[57, 59, 61]

CSE-CIC-
IDS2018

28 millions
DoS, DDoS, brute-
force, Web attack,
botnet

This work

Table 9.1: The datasets used by the related works.

IDS, that has been called AI-IDS, has been designed to work in parallel with a stan-
dard IDS like Snort, rather than being strictly integrated inside it. The authors
suggest to use it as an “assistant system”, capable of detecting anomalies that may
bypass Snort rules and they propose to use the generated logs to manually improve
existing Snort rules.

Another work from 2020 [55] proposes a novel IDS framework, called AlarmNet-
IDS, that works both as a HIDS and as a NIDS, which theoretical explanation has
been presented in Section 4.3. This IDS has been deployed on a Linux machine that
collects and parses network traffic and system call traces to perform predictions. In
this case, two distinct dataset have been used for the training of the classifiers: one
for the NIDS and ore for the HIDS. The NIDS dataset is the NSL-KDD4, a popular
dataset created starting from an old standard dataset from 1999, the KDDCup 995.
The NSL-KDD has been created to solve some of the problems of the KDDCup
99, like the presence of redundant records [62]: in fact, from the almost 5 millions
of training samples and 300.000 test samples of the KDDCup 99 dataset, only an
average of 25% of the records is actually unique. This reduction leads to a total size
of the training set of around 1 million of samples: 80% of them represents legitimate
traffic, while the remaining 20% is split among the various attacks contained in the
dataset. On the other hand, the dataset used for the HIDS part is the ADFA-LD6,

4https://www.unb.ca/cic/datasets/nsl.html

5http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

6https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA-IDS-Datasets/
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which has been designed specifically for Linux threats and contains system call
traces of various Linux servers. There is another version of this dataset, designed
for Windows, the ADFA-WD.
Furthermore, the high-level architecture of the AlarmNet-IDS is shown in Figure 9.1
and follows the general scheme described in Section 4.1.2. The network packets are
captured using tcpdump and then parsed with Bro (today known as Zeek7), while
system call traces are captured with “auditd”, a Linux audit tool. The feature
extraction is performed with an unsupervised Neural Network called autoencoder,
which aim is to reconstruct the input data passing through a latent space. This
less-dimensional space is then used as input of a fully-connected NN, composed
by a single layer followed by the softmax layer to obtain predictions. Instead, for
the HIDS data, a CNN composed by a single convolutional layer has been used
to classify the input. The average F-score for NIDS data is 78% and 75% for the
HIDS one. Also in this case, the resulting IDS is designed as a stand-alone tool,
than can operate by itself and it is not connected to any existing IDS software.

Data collection
module

Data processing
module

Decision engine
module

Log module

O�ine training
module

Network
data

Host
data

Figure 9.1: The high level architecture of the AlarmNetIDS.

The next work presented has the objective of creating an almost real-time IDS
using Machine Learning techniques [49]. The authors designed an IDS workflow
starting from the capture of the packets and ending with the production of the
logs. Differently from previous works, this real-time IDS focuses on three different
network protocols: TCP, UDP and ICMP. In this case, the dataset used to train the
classifiers has been created by the authors themselves, performing 4 different types
of DoS attacks and 13 probe attacks performed with an nmap tool on Windows.
The normal traffic has been captured in the local department of a University. The
KDDCup 99 dataset has been also used for the test phase.
Then, the traffic is pre-processed using the Information Gain technique, which
has been explained in Section 5.2. Moreover, the algorithms used to perform the
classification are: Decision Trees; a rule-based algorithm called Ripper Rule; a
fully-connected NN and Näıve Bayes classifier. The Ripper Rule algorithm consists
of two stages: the first stage is to initialize the rule conditions, while the next stage
uses a rule optimization technique. This step re-prunes each rule of the rule set
to minimize the errors. Instead, the Näıve Bayes classifier is a simple technique

7https://zeek.org/
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for classification using a probabilistic model from Bayes’s theorem with the as-
sumptions of independent attributes. The prediction phase happens by collecting
the captured data in batches, and passing each batch to the chosen classification
techniques. The detection result is decided with a majority voting by the various
algorithms and it is stored in a log file. The F-score is not available for a direct
comparison, but the average True Positive rate is around 99%. Furthermore, some
resources usage measures are also available in this case: the developed system uses
around the 25% of the CPU (a 2.83GHz Intel Pentium Quad core) and 100MB of
memory, with a network rate of 100Mbps.

The following is a work with a slightly different approach: it focuses on a com-
plex IDS to monitor 5G networks [50]. The proposed architecture is split in three
layers: a forwarding layer, a management and control layer and a data and intelli-
gence layer. The forwarding layer is responsible for traffic monitoring and capturing.
It can collect and upload network flows to the control layer, and block malicious
flows according to the instructions of the controller. Management and control layer
identifies suspicious flows and detects anomalies preliminarily using uploaded flow
information. It also generates protection strategies according to decisions made by
the intelligent layer and instructs the forwarding layer. The data and intelligence
layer makes further analysis through feature selection and flow classification using
adaptive machine learning algorithms.
The training datasets used are a 10% sub-set of the KDDCup 99 and its improved
version, the NSL-KDD. The selected algorithms are: Random Forest; K-means (an
unsupervised clustering technique) and Adaptive Boosting, an ensemble classifier
composed of different classifiers, in a way similar to Random Forest. The aver-
age F-score is 90%. Differently from other works, in this one the authors only
provide a proposal of IDS design, without actually providing any implementation
information.

However, the approach that is most similar to the proposed one can be found
in a 2018 work [51]. In this case the authors performed a preliminary study on two
popular IDSes: Snort and Suricata (both presented in Section 4.4). Then, they
attempted to improve the accuracy of Snort with Machine Learning techniques,
by developing an ad-hoc plug-in for Snort. The chosen datasets are the DARPA
Intrusion Detection Evaluation8 dataset and the NSL-KDD one, while the chosen
algorithms are Support Vector Machines, Decision Tree, Fuzzy Logic and Näıve
Bayes classifier. The SVM has been selected as the best performing algorithm and
used in the subsequent integration.
The resulting architecture of Snort after the deployment of the plug-in is shown
in Figure 9.2, where the original architecture is highlighted and separated from
the plug-in. As explained by the authors, the plug-in operates in parallel with the
Snort detection engine. The pre-processor sends decoded packets to the plug-in,
which uses the Machine Learning algorithm to classify the legitimate and malicious
traffic.
Also in this case the F-score is not available, so a direct comparison is not possible.
However, the average False Positive rate obtained by SVM on the used dataset is

8https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
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around 2% and increases to 8.6% after the integration with Snort. In this case the
authors provide some performances measures: for example the CPU usage with a
100Mbps network traffic goes from 30% without the plug-in to 35% with the plug-in
and the respective memory usage goes from 1.5GB to 1.6GB. Instead, for a 10Gbps
traffic, the CPU usage increases from 65% to 73% and the memory from 3GB to
3.7GB.

Sni�er Pre-processor Snort detection
engine

Log moduleNetwork
data

Decode packets

Classify packets

Produce alerts

Snort

Plug-in

Rules

Figure 9.2: The resulting Snort architecture after the deployment of the detection
plug-in.

Finally, a brief overview of the differences and similarities between the proposed
work and the ones described in this section can be summed up with these points:
only one of the works found in literature proposes and develops an integration with
an already existing tool [51], while the others propose a stand-alone IDS solution [59,
55, 49, 50]; the datasets used are in most cases NSL-KDD or KDDCup 99 or
other old datasets, the only exceptions being CIC-IDS2017 [59] or the ADFA-LD
dataset specific for HIDS [55]. The analysed attacks are a direct consequence of the
chosen dataset, with exception of a work where the dataset has been created ad-hoc
with manually performed attacks [49]. The set of chosen algorithms contains some
different types of NNs, Decision Trees, Random Forest, Näıve Bayes classifier, SVM,
K-means clustering and Fuzzy Logic and Ripper Rule algorithms. The detailed
reasons for this work’s design choices can be found in Chapter 6, while the ones
concerning the dataset have been presented in Chapter 7.

9.2 Machine Learning and traffic analysis

Differently from the works presented in Section 9.1, the following ones approach
the problem of anomaly detection in network traffic mainly under the aspect of the
classification of the traffic, without considering the implementation of an actual IDS
solution or the integration inside an existing tool. For this reason, the comparison
with the proposed work will concern mostly the Machine Learning choices.
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Even if many works describe their results as a “Machine Learning based IDS”,
many of them only focus on the classification part of the problem. For example, a
2019 work [60] uses different feature selection techniques to optimise the training
and then performs the classification of the collected traffic. In this case, the UNSW-
NB159 dataset has been used, which contains around 100GB of packets captured
with tcpdump. The authors propose a feature selection step composed by an outlier
detection algorithm and a Genetic algorithm step to choose the best sub-set of
features to perform the training. This step is then performed using a Random
Forest. The average F-score obtained is 62%.

A completely different approach is adopted by the authors of a work focused on
detecting anomalies in mobile devices traffic [63]. In this case the authors decided to
create themselves a dataset with mobile network traffic, developing a tool to collect
iPhone data on a voluntary base (i.e. each user had to willingly install a client on
the iPhone). The data collected during these experiments contain telephone call
information, SMS and web browsing history. More specifically, the dataset consists
in 35 iPhone users, around 8300 phone calls, 11300 SMSs and 800 hyperlinks. The
chosen algorithms are an RBF Neural Network (a NN with a specific activation
function), the K-Nearest Neighbours algorithm, Random Forest and a Bayesian
Network. The best performing algorithms are the Random Forest and K-NN with
an average True Positive rate of 99.9%. However, this work was focused on the
creation of legitimate user behavioural profiles, rather than in the detection of
actual anomalies.

Instead, other works focus on the comparison of different classification algo-
rithms using consolidated datasets. In this case, the authors used the NSL-KDD
dataset to compare the results obtained by a recurrent NN with the benchmark
results of more common algorithms, such as SVM, K-NN and Random Forest [56].
Different RNNs have been tried for this work, performing the validation step on
the number of hidden nodes and the learning rate. The authors show that their
best RNN reaches an accuracy of 83%, with respect of the average of 80% obtained
in literature by other algorithms. However, the authors did not mention the True
Positive rate, which is in this case more significant than the accuracy and in this
case equals only 73%.

Another work that created its own dataset to perform its experiments concerns
the analysis of network anomalies in a Supervisory Control And Data Acquisition
(SCADA) system inside an industrial control system [64]. Due to the privacy issues
of industrial network traffic, the authors had to develop an real-world testbed that
resembles an actual industrial plant: more specifically, a system that supervises
the water level an turbidity of a water storage tank. The attacks performed to cre-
ate the dataset include backdoors, command injection and SQL injection. Instead,
the used algorithms include SVM, K-NN, Näıve Bayes classifier, Random Forest,
Decision Tree, logistic regression and Neural Networks. The library used for all of
them is scikit-learn, for exception of the NN, which has been created with Keras
library. In this case, the measure used to compare the results is the Matthews

9https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA-NB15-Datasets/

89

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/


Related works

Correlation Coefficient (MCC), a popular measure that shows the correlation be-
tween the observed and predicted values. The three best performing algorithms
are Random Forest, Decision Tree and K-NN with a MCC of 96.81%, 94.26% and
93.44% respectively.

A 2019 work [57] focuses on the optimization of a single Machine Learning
algorithm over multiple datasets. The chosen algorithm is a Neural Network, with
a varying number of hidden layers. The peculiar characteristic of this work is the
usage of a Genetic algorithm to choose the optimal number of hidden layers of
the NN. This step works as a sort of validation step, that searches in an iterative
way the best parameters for the NN. Once this parameters have been found, the
training works as usual. Three different datasets have been used for this work: the
CIC-IDS2017, the NSL-KDD and the CIDD-00110 dataset. The F-score obtained
separately on all three datasets is equal to 99%.

A possible different approach consists in the usage of a Big Data environment to
develop the classification algorithms. For example, the Apache Spark engine11 has
been used to create a workflow entirely based on Big Data tools [52]. In this case
the KDDCup 99 dataset has been loaded in a Spark Resilient Distributed Dataset
(RDD) and preprocessed. Then, the Spark Chi-SVM algorithm has been used to
train and evaluate the model. The difference between this method and a standard
SVM is the presence of a regularization term inside the SVM equation. The results
provided show an Area Under Precision-Recall Curve (AUPR) of 96.24% for the
Chi-SVM, with respect of the 94.36% of the standard SVM and 92.77% of a logistic
regression algorithm. Moreover, the authors give the total prediction time for the
three compared algorithms, that are equal to 1.21s, 1.37s and 1.58s respectively.

Some works are focalised on a single dataset and experiment different algorithms
to compare their performances. The CIC-IDS2017 dataset has been used to test
some Machine Learning algorithms using libraries available in the R language [61].
After a first pre-processing of the dataset, the authors performed a long feature
selection step with an unspecified algorithm, to reduce the dimensionality of the
dataset. From the original 80 features provided in the dataset CSV files, the top
15 ones have been picked to proceed with the training phase. The two algorithms
used have been a NN with 500 iterations and Random Forest with 10 epochs. The
obtained True Positive rate average is equal to 96% for the NN and 98% for the
Random Forest.

Another work used a single dataset to compare a different set of Machine Learn-
ing algorithms [53]. In this case the chosen dataset is the KDDCup 99 and the set
of algorithms is composed by: a Decision Tree, a NN with a single hidden layer
and a Näıve Bayes classifier. The KDDCup 99 records had to be pre-processed to
remove the duplicate records; then the different algorithms have been trained and
tested over the dataset. The average True Positive rate for the three classifiers is
equal to 92%.
The same dataset has been used similarly by another work [54]. The authors fol-
lowed the same approach, but with a different set of algorithms. The chosen ones

10http://groups.di.unipi.it/~hkholidy/projects/cidd/

11https://spark.apache.org/
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have been SVM and Random Forest, for which has been provided the test accuracy:
the SVM obtained a 92% of accuracy and the Random Forest a 91.4%. However,
the confusion matrix shows a 92.5% recall for the DoS attack and only an 84.5%
for less frequent attacks like probing, for the Random Forest. Instead, the SVM
recall is 96% for DoS, bu only 57% for probing attacks.

The last work presented used an unsupervised clustering technique to separate
the legitimate traffic from the malicious one [58]. The NSL-KDD dataset has been
used and the selected algorithm is the K-means clustering technique. The authors
tried different numbers of clusters to compare different results: 11, 22, 44, 66 and
88 clusters have been created to separate the 22 classes contained in the dataset.
The results are not very good, with a maximum detection rate of 28.8% for the
positive class and 22 clusters and a 52.8% for the negative class. Increasing the
number of clusters further reduces the obtained results.

Finally, the differences and similarities of the described works with the experi-
ments proposed in this work concern the following choices: the datasets used include
mostly outdated ones (KDDCup 99 or NSL-KDD), but the CIC-IDS2017 has been
used by some works with good results [57, 61]; the most adopted algorithms are
Random Forest, Neural Networks and SVM, with some usage of the Näıve Bayes
classifier [64, 53] and a single case of an unsupervised clustering technique [58].
Also, some different frameworks and languages have been used beside Python, like
Scala for the Spark environment [52] and R [61].

91



Chapter 10

Conclusions

The objective of this work has been the integration of machine learning classifiers
of network traffic attacks inside an IDS, Suricata. The statistics of the analysed
network traffic have been extracted with Tstat, an automated tool for passive net-
work monitoring. As explained in Chapter 2, Tstat has been chosen because it can
produce a good amount of TCP flows statistics and it provides some API functions
to interact with it from other external software.
Then, the statistics of the resulting dataset, a composition of the CSE-CIC-IDS2018
and the Torsec datasets, have been analysed, as explained in Chapter 7. As a result,
some of the Tstat core TCP features have been removed from the dataset because
they have not been considered useful for the experiments.

Once the preparation of the dataset has been completed, the machine learning
workflow to create and select the best models has been designed. The three different
classification algorithms, i.e. random forests, support vector machines and neural
networks, have been used to train different classifiers for each attack, using various
combinations of hyper-parameters, as explained in Chapter 6.
Therefore, a new set of classifiers has been trained using the best set of hyper-
parameters, producing a single model for each algorithm and for each attack type,
for a total of 15 models. The number of models has been further reduced by
choosing, for a single attack type, only the best performing algorithm: as a result
each one of the five attack types has its own ML classifier. As shown in Chapter 8,
the random forest algorithm has been chosen for all the network attacks analysed,
due to an F-score higher than the other two algorithms and a reasonably low average
classification time: around 0.5 µs per flow.

Finally, the obtained models have been integrated into the Suricata IDS. To
perform this action, the Suricata workflow has been modified in some specific points,
as detailed in Chapter 6. A new set of options has been created inside the Suricata
rules syntax, that allows to create signatures able to detect specific attacks using
the relative ML models. In this way it is possible to combine ML-based detection
together with the normal Suricata rules options. In order to obtain this result, the
modules that have been modified are the decoding and detection ones, beside the
Suricata initialisation phase. Moreover, the Tstat API has been expanded with a
new function, to obtain the statistics of a single specific flow.

Instead, Chapter 9 contains a comparison of other existing similar solutions, by
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describing them and highlighting differences and similarities.
Although the experimental results shown in Chapter 8 are encouraging, with an
average F-score higher than 99% and a classification time of 0.5 µs per flow, the
proposed solution has some limitations that could be improved in a future work:
first, the set of used networks attacks, even if wider than the ones typically used
in literature, should be further expanded with other types of threats, to cover
the highest number of cyber-attacks possible; then, the extracted statistics should
include protocols different from TCP, maybe using an extraction tool different from
Tstat or by extending its functionalities. Moreover, some technical improvements
could be developed for the integration of the models inside Suricata, by reducing
the overhead caused by the ML classification. An example of a possible solution
for this problem is to try different ML frameworks, more optimised to perform
predictions of single samples, rather than in batches.
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User manual

This appendix contains the manual for any user that would like to use the modified
version of the Suricata IDPS, which includes the ability of detecting malicious TCP
flows using pre-made machine learning classifiers. The details to create additional
custom ML models can be found in Appendix B. Instead, this manual describes
the technical steps to follow, starting from the installation of the required tools and
the setup of the environment.

A.1 Requirements

The software needed by the modified version of Suricata is composed by the Tstat
tool, Suricata itself, the source code of the integrated functionalities and the ma-
chine learning models. All the described steps have been tested on Ubuntu 20.04.2
LTS and for this reason the example commands given below come from that OS;
however, the set of operating systems compatible with the final tool include all the
Linux and Mac systems. Windows is not supported because the Tstat tool is not
available for that OS.

The latest version of Tstat1 is available through its SVN repository2 and can
be downloaded with the command
svn checkout http://tstat.polito.it/svn/software/tstat/trunk tstat

while a specific version can be downloaded with the command
wget http://tstat.polito.it/download/tstat-3.x.y.tar.gz

where 3.x.y represents the specific version. The latest version available during the
execution of this work’s experiments is the 3.1.1, hence the compatibility with
later versions is not guaranteed. Moreover, Tstat requires some specific libraries
to work, like libpcap: in case they are missing from the user’s system, the Tstat
installation procedure will automatically show the list of needed libraries. The in-
stallation guide of the Tstat3 tool can be found on its website and it is not explained

1http://tstat.polito.it/

2http://tstat.polito.it/viewvc/software/tstat/trunk/

3http://tstat.polito.it/HOWTO.shtml
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in this manual. However, it has to be noted that during the installation of the Tstat
tool, the option to enable the library version provided by Tstat (libtstat) has to
be used, with the command
./configure --enable-libtstat

Suricata4 can be downloaded and installed in different ways. For example, on
Ubuntu it can be downloaded with the provided Personal Package Archive5 (PPA)
by executing the command
sudo add-apt-repository ppa:oisf/suricata-stable

However, the suggested way to download Suricata is by downloading the source
code, available on the Suricata website6. The latest Suricata version available
during the development of the integrated tool is the 6.0.1 and it is the suggested
version for any user that is not interested in manually managing the source code,
as explained in Appendix B. The complete list of available versions can be found
on a dedicated page on the Suricata website7.
Moreover, Suricata requires the installation of many dependencies on the user’s
system. The recommended list and the related command is shown in Listing A.1,
while the guide to successfully install and configure Suricata can be found on its
website8.

apt-get install libpcre3 libpcre3-dbg libpcre3-dev \

build-essential libpcap-dev libnet1-dev libyaml-0-2 \

libyaml-dev pkg-config zlib1g zlib1g-dev libcap-ng-dev \

libcap-ng0 make libmagic-dev libgeoip-dev liblua5.1-dev \

libhiredis-dev libevent-dev python-yaml rustc cargo

Figure A.1: The command to obtain the recommended Suricata dependencies.

Instead, the source code needed to install the modified version of Suricata, to-
gether with a set of pre-made machine learning classifiers, can be found in the repos-
itory associated with this work. The only additional dependencies needed to use this
code are the Python libraries used by the classification script and can be obtained
using the commands pip install joblib and pip install scikit-learn pro-
vided the fact that the Python 3 version is available on the user’s system.

4https://suricata.readthedocs.io/en/latest/quickstart.html

5https://help.launchpad.net/Packaging/PPA

6https://suricata-ids.org/download/

7https://www.openinfosecfoundation.org/downloads/

8https://suricata.readthedocs.io/en/latest/install.html
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A.2 Installation

Once all the previous steps have been performed, the user should be in a situation
where both Tstat and Suricata have been installed separately and are able to run
independently. The process to obtain the integrated tool used in this work is com-
posed by a few more steps.
First, the content of the “tstat modified” folder available inside this work’s reposi-
tory must be copied into the Tstat source folder. More in detail, the files
inireader.c options.c tcp.c tstat.c tstat.hmust be copied into the “tstat”
folder contained in the Tstat source code directory. Instead, the libtstat.h file
contained in the provided “include” folder must be copied into the “include” folder
contained in the Tstat source code directory. Now, the Tstat tool must be installed
again in the system, simply using the make and make install commands used to
install it the first time. Then, a similar process must be performed for the Suricata
source code folder. In this case, all the files contained inside the provided “suricata
modified” folder must be copied into the “src” folder contained in the Suricata
source code directory. Now, the Suricata installation pipeline must be informed of
the existence of the newly installed libtstat library, by adding the command
AC_CHECK_LIB([tstat], [tstat_next_pckt],, AC_MSG_ERROR([missing

’tstat’ library]))

inside the “configure.ac” file contained in the Suricata source code directory. More-
over, Suricata must be informed also about the location of the Python libraries:
this is done by adding a similar command to the same “configure.ac” file, which is
AC_CHECK_LIB([pyhton3.8], [PyArg_ParseTuple],, AC_MSG_ERROR([missing

’python3.8’ library]))

where python3.8 is the version of Python used for the integration and for this
reason is the suggested one. At this point, the Suricata tool can be installed again
using the make and make install commands used to install it the first time. Fi-
nally, the tool is ready to be used: the last missing steps are the configuration and
the usage of the tool.

A.3 Usage

This section contains the steps needed to correctly configure the installed tool,
followed by a complete example of usage and creation of new signatures.

A.3.1 Configuration

If the tool has been installed correctly, before trying to use it it is necessary to
setup some configurations. The file “integration.conf” contained in the “config”
folder provided in the repository is the main configuration file: Suricata searches
for this file in the current working directory at running time. The structure of
this file is explained in its first line and an example is shown in Listing A.2. The
remaining three lines of the file contain three absolute paths and are used by Suri-
cata to determine respectively the path to the Tstat configuration file (“tstat.conf”
in this case), the path of the folder containing the Python script for classification
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(with the fixed name of “ml detect.py”) and the path to the script configuration
file (“ml detect.conf” in this case). In this way, it is possible to place these files
in the preferred directory: the only constraints are the presence of the “integra-
tion.conf” in the current working directory and the existence of a “ml detect.py”
in the directory specified in the configuration.

# Format: line 0 = this line, line 1 = path to tstat.conf, line

2 = path to directory containing ml_detect.py, line 3 = path

to ml_detect.conf

/home/matteo/suricata-6.0.1/TSTAT/tstat.conf

/home/matteo/suricata-6.0.1/TSTAT/

/home/matteo/suricata-6.0.1/TSTAT/ml_detect.conf

Figure A.2: An example of the content of the integration.conf file.

The exact contents of the “tstat.conf” file are explained in the Tstat website9: it
contains some configuration information needed by Tstat, together with the paths
of other Tstat files. It is fundamental to correctly setup the Tstat configuration
to be able to use the new Suricata tool. Instead, the “ml detect.conf” file contains
the absolute paths to each of the classifiers available and the related scalers, in the
form of a dictionary: the key for each line is the value that must be used inside
the Suricata signatures to perform the classification of flows. Finally, the user has
to configure Suricata before running the tool. The complete guide to customise
Suricata can be found on its website10: the “suricata.yaml” configuration file must
be edited with the user’s information (e.g. the name of the network interface to
monitor) and the path to any additional file of signatures must be added.

Once all this steps have been completed, the user can run Suricata from the
command line with the command
sudo suricata -c <suricata.yaml path> -i <interface name> -l

<suricata log dir>

that starts Suricata. If the operation is successful, the user should see a message
similar to the one provided in Figure A.3.

Figure A.3: The output of a successful start of Suricata.

9http://tstat.polito.it/HOWTO.shtml

10https://suricata.readthedocs.io/en/latest/quickstart.html#basic-setup
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A.3.2 Creation of new signatures

With the new tool installed and ready to be used, the user can classify TCP flows
with the chosen machine learning classifiers. To do so, the user can modify any
already existing Suricata signature or can create a new one. The following example
will concern the creation of a new signature: the complete list of available keywords
and rules format can be found on the Suricata website11.

For this example, the file “custom.rules” provided in the repository has been
used, but the user can create any number of rule files, remembering to add their
path inside the “suricata.yaml” configuration file. First of all, it is necessary to
write a classic Suricata rule, like the one provided in Listing A.4.

alert tcp 192.168.178.20 any -> any any (msg:"My custom rule!";

flow:established; content:"facebook"; nocase;

classtype:policy-violation; sid:666; rev:1;)

Figure A.4: An example of a trivial Suricata rule.

This example rule is very simple: the action performed in case of match is an
alert and the protocol to look for is tcp. The source address has been set to a
local host (192.168.178.20), while the source port and the destination address and
port are set to match to any address and port number. The flow: established

option is used to match only flows where the TCP handshake has been completed,
the content: facebook option is used to match packets that contain the word
“facebook” inside the payload and the option nocase tells the engine that the
content value is not case-sensitive. The sid value can be freely chosen by the
user, paying attention to not use a value already used for other signatures since
Suricata would overwrite the previous rule in that case. An example of usage of this
very trivial rule is to check if the host 192.168.178.20 visits or searches for the
Facebook website, leading to a policy violation (classtype:policy-violation in
the example).

Then, to add the machine learning classification of the flow to look for specific
attacks, the user has to add one or more special keywords inside the option of the
rule. The keywords supported by the pre-made set of classifiers available in the
repository are:

ml detect bot to match with flows classified as botnet attacks;

ml detect brute to match with flows classified as bruteforce attacks;

ml detect dos to match with flows classified as DoS attacks;

ml detect loic to match with flows classified as DDoS attacks;

11https://suricata.readthedocs.io/en/latest/rules/index.html
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ml detect web to match with flows classified as web attacks;

ml detect all to match with flows classified as any of the previous attacks.

The description of the attacks used to train these classifiers can be found in
Section 7.1, while Chapter 3 contains the technical explanation of these attacks.
The user can choose a combination of any of the previous keywords to detect
multiple attacks with a single rule: if at least one of the chosen classifiers finds a
match, the whole machine learning detection engine considers the flow as matching.
Hence, the overall rule is considered as matching by Suricata if both the classic
options and the machine learning engine consider the flow as matching. The only
exception with the explained syntax is the ml_detect_all keyword: if this keyword
is used, none of the other machine learning keywords can be inserted in the rule
because it already includes all the classifiers automatically. In any case, the Suricata
initialiser performs a syntactic and semantic check of all the provided rules and
informs the user of any error. Finally, the previous example has been integrated
with some of these keywords in Listing A.5, to show a practical example of the
usage of the new keywords. In this case, the ml_detect_bot and ml_detect_web

keywords have been used: they must be inserted as values of the option flow.

alert tcp 192.168.178.20 any -> any any (msg:"My custom rule

with machine learning!"; flow:established, ml_detect_bot,

ml_detect_web; content:"facebook"; nocase;

classtype:policy-violation; sid:666; rev:1;)

Figure A.5: An example of Suricata rule with the new keywords.
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Developer manual

This appendix is focused on the technical details useful for developers that would
like to modify or to expand the provided work. While the installation and usage of
the tool can be found in Appendix A, the following sections contain the necessary
information to perform actions like the addition of more classifiers, modify the
training pipeline, use different datasets, use a different set of features from the
same dataset, add other keywords to the Suricata rules or improve the existing
work in any other way.

B.1 Requirements

The system requirements to modify the provided tool are the same needed to use it
as-is and can be found in Appendix A. The new Suricata tool, Tstat and the files
provided in this work’s repository can be all necessary, depending on the type of
action to perform. If the developer is interested in modifying the training pipeline
or add new models, as explained in Section B.3.2, it may be necessary to install
additional Python libraries to use the provided scripts. This can be done with the
command pip install matplotlib.

B.2 Installation

The manual to install the tools provided in this work has been already explained in
Appendix A. The additional files useful for a developer are only Python scripts and
therefore they do not require any installation. If the developer is interested in using
a dataset different from the one used in this work and presented in Chapter 7, the
Tstat tool may have to be used as a stand-alone software, instead of as a library. In
this case, it is suggested to perform the Tstat configuration as needed, as explained
in the Tstat website1.

1http://tstat.polito.it/HOWTO.shtml
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B.3 Code usage

This section contains the technical description of the files provided in this work’s
repository. This description has been split in different sections, depending on the
purpose of each file. First, the Python scripts used to parse the “pcap” files of
the dataset, extract flow features with Tstat and add the label to each flow are
presented. Then, The Python scripts to create the machine learning classifiers
starting from the dataset are described. Instead, the following section concerns the
C files and the Python script used to expand the functionalities of Suricata with
the ML classifiers. Finally, the last section analyses the Tstat C files that have been
modified to expand the libtstat API to produce the data needed by Suricata at
run-time.

B.3.1 Dataset scripts

The two Python scripts used to parse the pcap packets captures, extract the re-
lated Tstat statistics and label the flows are contained in the “dataset scripts”
directory of the provided repository. Each one of the two scripts comes with its
own configuration file, needed to customise the execution of the script itself.

The first script is “read pcap.py” and it is used to extract the Tstat flow statis-
tics from many pcap files at the same time. In fact, to analyse many pcap files
with Tstat it is necessary to pass the name of each file as a command line argument
or to call Tstat multiple times, one for each file. This script simply performs this
operation and collects the outputs in a single file. The configuration file contains
three different absolute paths: the path to the “runtime.conf” configuration file
used by Tstat, the path to the input folder containing the pcap files and the path
to the output folder, where the statistics will be produced.

Instead, the second script is used to add the label “Malign” or “Benign” to
each one of the flows produced by the previous script. The distinctions between
legitimate and malicious traffic has been performed using the IP addresses of the
attackers provided by the creators of the dataset, as explained in Chapter 6. The
produced output is split in a set of files with a maximum length of 500.000 lines.
The reason for this choice is to ease the management of the output, in case it is too
big to be processed at once by the machine learning pipeline. Also, in this way it
is possible to use only a sub-set of the data, in case it is needed.
Furthermore, the configuration file of this script contains more lines with respect
to the previous one. The first path contains the name of the input file, while
the second one is the output folder path. Instead, the third value is the prefix
of the output files produced by the script: for example, if the chosen prefix is
my_dataset, the files produced will be my_dataset_01 my_dataset_02 and so on,
until all the input file has been labelled. Finally, the last line contains the list of
IP address to consider as malign. It is a list of space-separated IPv4 addresses, like
18.219.211.138 18.217.165.70 18.217.151.44.
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B.3.2 Creation and selection of classifiers

The four Python scripts used to create ML classifiers are contained in the “ml
scripts” folder of the provided repository, with the relative configuration files. The
only script without a configuration file is “ml lib.py”, which is used as a library
module for the other scripts. It exposes four different functions and contains some
others used for internal computations. The four exposed functions are used to
create the sub-sets used for the training, validation and test phases starting from
the labelled CSV files, to scale the features of the dataset and to compute the
different types of statistics needed by the machine learning pipeline. The details
of these steps have been explained in Chapter 6, while the technical description of
the used algorithms can be found in Chapter 5.
However, the functions to create the datasets expects a specific directory structure
to work correctly: a root directory must contain many sub-directories, each one with
a specific dataset. An example of this structure is provided in Figure B.1, where
<root dir> contains two sub-folders <sub-dir 01> and <sub-dir 02>, each one
with two different CSV files inside. Ideally, each sub-directory contains the dataset
of a different network attack and passing to the script functions the list of sub-
directories it is possible to create different ad-hoc datasets as needed. Furthermore,
these functions receive the proportions to split the dataset. The function used
to create the sub-sets for training and validation receives the proportions of the
training, validation and test sub-sets (e.g. [0.5, 0.2, 0.3]), while the function
that creates the training and test sub-sets receives only two values (e.g. [0.7,

0.3]) that represents the proportions between the training and test sub-sets. It
is guaranteed that if the same values are passed in both functions for the test set
proportion, the test sets used will be the same.

Figure B.1: An example of the dataset directory structure.

Instead, there are two scripts used for the training and are “training.py” and
“final training.py”: the first one is used to train many models with different com-
binations of hyper-parameters, while the second one is used after the validation
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phase, to train only the best classifiers chosen by the validation phase. The two
configuration files have the same structure, so are described together. The first
path contained in each configuration file is the root directory for the dataset, i.e.
<root dir> using the example explained before. The next line contains the names
of the sub-directories, separated by a space: still using the same example, the line
would be <sub-dir 01> <sub-dir 02>. The subsequent line contains the path to
the folder containing the created ML models. For the “training.py” script this is
only an output folder, but the other script uses it as an input folder to obtain the
hyper-parameters of the best models and as an output folder for the final models
that will be used for the integrated Suricata tool. Finally, the last line contains
the list of space-separated columns of the dataset to use for the training phases.
The reference for the numbers in this line is the table of Tstat features explained in
Section 2.2.1, while the chosen ones for this work’s experiments have been described
in Section 6.1.2. If, for any reason, the developer decides to use a different set of
features to create the ML classifiers, it is necessary to change this list inside the
configuration file and to modify the Tstat API function that provides the list of
features to Suricata. This is a simple process and it is explained in Section B.3.4.

Finally, the last script provided contains the functionalities needed to extract
some statistics from the trained models. The script “statistics.py” mainly performs
two types of actions: it selects the best set of hyper-parameters for each algorithm
starting from the models created with the script “training.py” and then computes
some statistics with the final models created with the script “final training.py”.
The list of produced statistics, like the F-score or the balanced accuracy, have been
presented in Chapter 6, while a theoretical description of these measures can be
found in Section 5.1.5. The configuration file of this script has the same structure as
the other two, for exception of the last line: it has an additional line that contains
the number of neural networks, random forests and SVMs that have to be validated.

Hence, if a user is interested in creating new ML models, the steps to follow can
be summed up as:

1. parse the network traffic captures with the script “read pcap.py”;

2. label the obtained CSV files with the script “label dataset.py”;

3. train one or more classifiers with the preferred set of hyper-parameters using
the script “training.py”;

4. validate the trained models with the script “statistics.py”, that produces one
model for each algorithm;

5. use the best set of hyper-parameters to train the final models on the whole
training set, with the script “final training.py”;

6. optionally, use the script “statistics.py” again to compare multiple final mod-
els to perform a sub-selection of the best algorithms.
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B.3.3 Suricata integration code

The code provided to integrate the ML functionalities inside Suricata is composed
by two parts: a set of C files that has to overwrite the corresponding Suricata
source files, as explained in Appendix A, and the new classification scripts with the
related configuration files. The Suricata expansion takes place in different points of
its pipeline, as explained in Section 6.2: during the initialisation of the tool, during
the decoding phase and in the detection phase.

Furthermore, the initialisation has been split in two more steps: a first phase
used to setup internal variables and structures used by the ML models and a phase
of integration of the new keywords inside the Suricata rule syntax. The file “suri-
cata.c” contains the initialisation routine of Suricata. Here have been performed
two main actions: the Tstat libtstat has been initialised through its API func-
tions tstat_init() and tstat_new_logdir() and the content of the configuration
file “integration.conf” is parsed; then, the Python interpreter has been initialised
and the “ml detect.py” module with the related classify() function has been
loaded through the C/Python API. The complete manual to use these API can be
found inside the Python documentation2. Finally, inside the “suricata.c” file one
last action is performed: after the closure of all the Suricata secondary threads, at
the end of the process, the libtstat API function tstat_close() to close and
clean the Tstat internal structures is called: in this way the statistics of all the
flows processed by Tstat are produced and printed in the Tstat log directory.
Instead, the other file used during the initialisation phase is “detect-flow.c” (and
the related headers “detect-flow.h” and “detect.h”). In this case, this file contains
the details of the additional keywords presented in Appendix A that have been
integrated in the Suricata rule’s syntax. At initialisation time, Suricata parses all
the available rules and builds a corresponding internal representation for each one
of them, by using specific structures and flags. If one of the new keywords is found
inside a rule, Suricata adds the corresponding new flags inside the internal signature
structure (a C struct, specifically). In this same place, the check for a correct use
of the new keywords is performed: as explained in Appendix A, the same keyword
can not be used twice in the same rule and the keyword ml_detect_all excludes
the presence of the other ones.

Then, the next place of the Suricata pipeline that has been modified is the
decoding function for IPv4 packets. The file “decode-ipv4.c” contains the call to
the libtstat API function tstat_next_pckt() that is used to pass each packet
analysed by Suricata to Tstat: in this way, Tstat can produce its statistics when
needed. To avoid conflicts, race-conditions or segmentation errors due to the multi-
thread architecture of Suricata, the call to the Tstat API function is performed
inside a critical section entered through the possession of a mutex lock, that is
released after the completion of the call.

Finally, the detection action performed by the ML classifiers is managed inside
the “detect-engine.c” file. As explained in Section 6.2, the new detection process
starts only if one of the new flags is found inside the signature that is currently being

2https://docs.python.org/3.8/extending/embedding.html
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examined by Suricata and in any case only after all the other options of the signature
have provided a match, in this way the overhead is reduced to the least amount
possible. The statistics of the flow of the current packet are retrieved through a
new libtstat API function created ad-hoc for this purpose and better explained
in Section B.3.4. Then, the classify() function contained in the “ml detect.py”
script is called and it determines if the flow is considered positive for at least one of
the ML models required by the current signature. The response is returned to the
original Suricata pipeline that processes it as usual and performs eventual actions
accordingly to the specific rule.

Instead, the “ml detect.py” script operates in a different way: it contains two
functions that are used in different moments of the integration pipeline. The first
function is init() and receives as input the path of its configuration file. The
function is called by Suricata during the initialisation phase, when the Python
interpreter is created, as explained above. This function loads from the locations
contained in its configuration file the list of ML classifiers and the related scalers
to be used at prediction time and returns them to Suricata as PyObject references.
Instead, the other function is classify() and receives as input the statistics of a
single flow, created with the new Tstat API function, and the list of ML models
and scalers to use for the current classification. It iterates over this list and returns
the result of the classification to Suricata.

B.3.4 Selection of Tstat statistics

The “tstat.c” and “tcp.c” Tstat source files have been modified to add a new API
function to libtstat: the tstat_get_stats() function. Given two pairs of IPv4
addresses and ports and a timestamp, this function computes the statistics of the
related TCP flow (if existing) using the Tstat internal structures. Inside “tcp.c” the
reference to the flow of interest is obtained from a list of flows; then, the extracted
statistics are used to create an ad-hoc string similar to the ones produced by Tstat
inside its log files. This string of statistics is given back to Suricata that uses it
for the classification step. As explained above, if the developer is interested in
modifying the list of Tstat features used to create the dataset and perform the
predictions, this string of statistics has to be adapted with the ones of interest,
beside modifying the training configuration files.
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