
POLITECNICO DI TORINO

Corso di Laurea Magistrale in
Ingegneria Informatica (LM-32)

Tesi di Laurea Magistrale

Deep Learning and Augmented Reality application
for minimally invasive urologic surgery support

Relatore: Candidata:
Prof. Pietro Piazzolla Giorgia Marullo

258131
Correlatore:
Prof. Andrea Sanna

Anno Accademico 2020-2021

Abstract

Artificial intelligence and deep learning are becoming increasingly popular in the
medical field. In recent years, neural networks are consolidating as a support tool
for doctors in the phases of diagnosis, prognosis, and in the operating room during
delicate surgery.

This thesis aims to implement an Augmented Reality application for improv-
ing the surgeon’s spatial perception during Robot-Assisted Radical Prostatectomy
(RARP) stages. RARP is a minimally invasive urologic operation performed with
Da Vinci surgical console support. This technology improves surgical precision,
reducing post-operative complications and hospital stays. The focus is on finding
a technique for real-time automatic registration. The proposed system trains a
neural network to estimate the position, rotation, and scale of the object captured
by the endoscope and intends to obtain an optimal overlap between the 3D virtual
prostate model and its physical counterpart.

This work includes an introduction about thesis aim and context, theoretical
notes on deep learning, a literature review of methods for 6D object pose estimation
from images, a description of the proposed method and achievements.

Contents

1 Introduction 3

2 Theoretical background on deep learning 6
2.1 Introduction . 6
2.2 Machine Learning . 7
2.3 Deep Learning . 8

2.3.1 Basic concepts . 8
Perceptrons . 8
Sigmoid Neurons . 11

2.3.2 Neural Networks . 12
Learning process . 14

2.3.3 Convolutional Neural Network 20
2.3.4 Neural Networks in practice 23

2.4 Deep Learning and Computer Vision 24
2.4.1 Semantic Segmentation . 25

Convolutional neural networks for segmentation 26

3 Literature analysis 31
3.1 Introduction . 31
3.2 Template-based methods . 33
3.3 Feature-based methods . 37
3.4 Direct prediction or learning-based methods 42

3.4.1 Bounding box prediction and PnP algorithm-based methods 44
3.4.2 Classification-based methods 48
3.4.3 Regression-based methods 50

3.5 Conclusions . 57

4 Proposed Methodology 58
4.1 Deep Learning and Augmented Reality Solutions for Urologic Surgery

Support . 58
4.2 The Robot-Assisted Radical Prostatectomy (RARP) Procedure . . 59

1

4.3 Existing Augmented Reality Solutions for the RARP Procedure . . 60
4.3.1 Starting point . 61

4.4 Implementation of the proposed approach 62
4.4.1 Datasets Creation . 63

Semantic Segmentation Dataset 63
Rotation Dataset . 66

4.4.2 Segmentation Neural Network 67
4.4.3 Rotation Neural Network . 69

5 Testing Results 72
5.1 Segmentation Neural Network . 72
5.2 Rotation Neural Network . 76
5.3 Conclusions and Future Works . 84

2

Chapter 1

Introduction

In recent years, Artificial intelligence and Deep Learning are becoming increasingly
common in clinical health care. This expanding interest is due to a growth in the
volume of data available in digital form and the accelerating computational power,
which allow to analyze and extract helpful information from data. In particular,
the development of Convolutional Neural Networks has allowed the machines to
learn useful tasks from images, such as detecting and characterizing suspicious
patterns from radiographs or provide diagnosis and prognosis in different medical
fields [1].

Urology was one of the first adopters of Artificial Intelligence for object detec-
tion, image classification, segmentation, skills assessment, and outcome prediction
for complex urologic procedures [1]. Figure 1.1 shows an overview of the emerging
AI applications in this medical field.

Figure 1.1. Artificial Intelligence in urology. (Image from [1])

3

Chapter 1 - Introduction

Recently, minimally invasive laparoscopic and robotic-assisted approaches have
replaced many traditional open urologic surgeries [1]. These technologies assist the
surgeon in performing more complex and precise tasks improving the precision of
the procedure, with consequent benefits for the patient during the post-operative
period [2]. This change of paradigm led the surgeon to see the operatory scene
through a console and a visor experience, reducing his spatial perception of the
surgical environment [2]. This drawback can be mitigate exploiting Augmented
Reality. Augmented Reality allows a real-time overlapping between computer-
generated images or 3D models and the real environment. In the medical field
this technology allows, for example, data visualization on diagnostic or treatment
procedures. The main challenge for an Augmented Reality application is the reg-
istration process. Registration is the accurate alignment of the virtual model with
its physical counterpart [3]. There are different strategies to achieve precise align-
ment. The first way is to use endoscopic markers placed on the surface of specific
structures as points of reference during the surgery. Another option to determine
the organ position in real-time is a marker-less approach, which is technically more
challenging and time-consuming, and exploits machine learning techniques [3, 4].
The main advantages of Augmented Reality for doctors are [3]:

• The opportunity to view reconstructions directly on the body of the patient,
reducing the number of distraction caused when the surgeon has to look away
from the surgical site;

• The reduction of surgery time, exploiting AR during pre-operative planning
for tailoring incisions and cutting plans;

• It improves the surgeon’s spatial perception of the surgical field, avoiding
unnecessary manipulations or accidental injuries to inner organs.

This thesis proposes to implement an Augmented Reality application for im-
proving the spatial perception of the surgeon during Robot-Assisted Radical Prosta-
tectomy (RARP) stages. RARP is a minimally invasive urologic operation per-
formed with Da Vinci surgical console support. The RARP procedure comprises
five stages [5]:

1. Defatting and incision of the endopelvic fascia;
2. Management of the bladder neck;
3. Vase clamping and nerve-sparing;
4. Surgery by the prostatic apex;
5. Targeted Biopsy.

Some of procedure’s stages benefit from AR. The augmented video stream can be
accessed directly into the Tile-Pro visualization system of the Da Vinci surgical

4

Chapter 1 - Introduction

console [2], which allows the overlapping of the virtual model onto the endoscopic
view [6]. Up to now, three distinct strategies exist for registration, applied in
different stages of the procedure [2]:

• Feature-based, useful for rapid localization of the prostatic apex;

• Human-assisted, to improve precision during nerve-sparing, preserving nerves’
functionality;

• Marker-based, helpful to locate tissue sampling for post-operatory biopsies.

The focus of this work is finding a new technique for real-time automatic reg-
istration. The proposed approach tries to solve the registration problem by using
neural networks. The system trains two neural networks to estimate the position,
rotation, and scale of the object captured by the endoscope to obtain an optimal
overlap between the 3D virtual prostate model and its physical counterpart. The
task is challenging for the prostate because it has a simple roundish shape, and its
texture is easily confused with the surrounding tissues. The proposed approach
employs two different networks: the former implements semantic segmentation to
detect the region of interest, and the latter addresses the rotation issue. Either Seg-
mentation Neural Network or Rotation Neural Network exploit a specific dataset
for training, each manually created with different strategies. We trained the Seg-
mentation Neural Network through images obtained from surgical videos, while for
the Rotation Neural Network, we involved a synthetic dataset. We tested both the
networks achieving valid results. In particular, for the segmentation network, we
tried nine combinations of neural networks models and semantic segmentation ar-
chitectures, choosing the best one according to the Intersection over Union metric.
We tested the Rotation Neural Network on both synthetic and real images. We
tried different combination for X-Axis, Y-Axis, and Z-Axis rotation estimations.
The results for this network reached a satisfactory accuracy considering the high
complexity of the task.
The following part of the thesis contains four Chapters:

• Chapter 2 introduces basic concepts about Deep Learning and its applications;

• Chapter 3 proposes a literature analysis and classification of 6D pose estima-
tion methods from monocular images;

• Chapter 4 describes the proposed system in detail;

• Chapter 5 focuses on achievements and conclusions.

5

Chapter 2

Theoretical background on
deep learning

2.1 Introduction

In this chapter, we will give theoretical notes on basic concepts about deep learning.
The aim is introducing the methods used in this work. As we know, deep learning
is a subset of machine learning, which in turn is a subset of artificial intelligence.
The term Artificial Intelligence was born at the end of the 1950s. It was related to
how modelling the process of the human mind through a calculator. Alan Turing
introduced the idea that machines can simulate human being and have the ability
to do intelligence things [1]. But the learning theory and the computing machine
capacity could not allow the development of effective systems. This situation led to
a period of disillusion because exciting ideas did not bring tangible results. In the
1980s, there was again a growing interest in machine learning systems thanks to the
increasing capacity of recent computing machines and the consequent realization
of first applications. Deep learning became popular after 2010, but it has a very
long history. Despite neural networks were born before ten years ago, they have
become useful only recently as the amount of available training data has increased,
and computer infrastructure (both hardware and software) for deep learning has
improved. These two phenomenons are directly proportional to the accuracy of
systems, gradually improved over time [7]. In recent years, deep learning has
become popular in the computer vision field for solving problems such as image
classification, object detection, and face recognition accurately [8]. We involve
intelligent software in many applications: understanding speech or images, giving
support to scientific research such as to make diagnosis in medicine, or automate
specific routines [9].

6

Chapter 2 - Theoretical background on deep learning

2.2 Machine Learning
As we said before, deep learning is a specific type of machine learning, so before
analyzing it deeply, it is useful to introduce this discipline and the different kinds
of learning to make the concepts described in next sections more clear. Machine
learning studies algorithms for the detection and the extraction of patterns from
raw data, involving knowledge of the real world and making choices that appear
personal. These algorithms improve their abilities automatically through expe-
rience [9]. To define this artificial intelligence branch, we need three elements:
Experience, Task, and Performance Measure. A machine learns when its perfor-
mance in doing a specific task improves with experience. This process does not
need any rules specification by the programmer. It can evaluate all the possible
actions and choose the best one. To do so, we should change the philosophy used
to define the task. The idea is to simplify the problem by providing some data
and the expected output to the computer. In this way, the machine can learn
and find the steps between input and output [7]. There are three basic machine
learning paradigms: supervised learning, unsupervised learning and reinforcement
learning.

Supervised Learning. In supervised learning, the machine receives as inputs
some data each one correlated with a specific label. Two examples are classification
and regression. For the former, the aim is to learn a function able to predict the tag
of unknown data. Inputs can be mono-dimensional or multi-dimensional, where
each dimension corresponds to an attribute. The result obtained as output is a
discrete category chosen among two or more classes [7]. For example, classification
can determine whether or not it will snow tomorrow (binary classification); or if
the fruit is an apple, a pear, a cherry, a watermelon (multi-class classification).
Regression differs because it predicts a real continuous value. For example, we can
use a regression algorithm to predict the amount of snowfall.

Unsupervised Learning. In unsupervised learning, the computer does not re-
ceive an explicit label, but the expected output is a group or organization of the
data. In this situation, the machine should give a program able to detect patterns
in data [7]. An example of unsupervised learning is clustering, which aims to find
the best way of grouping data. This paradigm is useful in marketing, for example,
to subdivide all the possible targets into clusters and choose the best strategy for
each of them.

Reinforcement Learning. In reinforcement learning, an autonomous agent
must learn to perform a task by trial and error interactions with a dynamic envi-
ronment. It uses positive or negative rewards but does not specify how to achieve

7

Chapter 2 - Theoretical background on deep learning

the goal. A first strategy finds among the possible behaviours the best performing.
A second strategy estimates the possible actions according to the situation [9, 10].
For example, robotics applies this kind of learning.

2.3 Deep Learning

2.3.1 Basic concepts

Deep learning is a technique of machine learning able to solve intricate problems,
subdividing complex concepts into simpler ones and representing them with a
nested hierarchy of tasks with different levels of abstractions the computer can
efficiently perform. This philosophy makes these systems able to operate in com-
plicated real-world environments. Deep learning exploits artificial neural networks
with multiple layers between the input and the output layer for learning called
deep neural networks [9].

Perceptrons

To get started with neural networks, we introduce a kind of artificial neuron, called
a perceptron. This concept was introduced in the 1950s by the scientist Frank
Rosenblatt, who referred to Warren McCulloch and Walter Pitts. Understanding
how perceptrons work is essential, so we describe them before proceeding with
more complex definitions. A perceptron takes several binary inputs, each one
correlated with a specific weight, which expresses the importance of that input to
the output. It processes this information and produces a single binary output, 0
or 1 [11]. For example, in Figure 2.1, the perceptron receives three inputs x1, x2,
and x3 with their weights w1, w2, and w3 and produces the output y.

Figure 2.1. Perceptron Model by Minsky and Papert.

Rosenblatt introduces a simple rule to compute this output, comparing a thresh-
old value, represented by a real number, with a weighted sum result. To clarify

8

Chapter 2 - Theoretical background on deep learning

this concept, we express it in algebraic terms, as shown in (2.1):

output =

0, if ∑j wjxj ≤ threshold

1, if ∑j wjxj > threshold
(2.1)

A practical example may help us to understand the relationship between in-
puts and weights. During summer, we could decide whether to go to the beach
considering three circumstances as inputs of the perceptron:

1. Does anyone want to come with you? (x1)

2. Is the weather windy? (x2)

3. Is there much traffic? (x3)

x1 is equal to 1 if the answer is yes, and 0 if not, while x2 and x3 are equal to 1
if the answer is no, and 0 if it is yes. Each one of the previous factors could have
different importance. We can model this importance by specifying a weight to each
input to obtain different outputs. Suppose you love the sea, enough for you to go
there also alone. Despite this, you hate wind, so this parameter is fundamental
to make your choice. Moreover, the traffic information is more or less significant
depending on the distance and the vehicle used to reach the beach. The perceptron
used to model this kind of decision-making could have a weight w2 = 6 for the
weather, w1 = 2 for the company, and w3 = 1 for the traffic if we suppose you
go to the sea by bike. Finally, assume we choose a threshold equal to 5 for the
perceptron. With our weights, the perceptron outputs 1 when the weather is good
and 0 vice-versa. It makes no difference to the output whether anyone wants to go
or the traffic information. By varying the weights and the threshold value, we can
get different models of decision-making. For example, assume we instead keep the
threshold equal to 2. The perceptron would decide you should go to the sea on a
windy day if anyone comes with you and there is no traffic. In fact, the weighted
sum will be 2x1 +6x2 +1x3 = 2×1+6×0+1×1 = 3 > 2. In other words, a lower
value means a greater desire to go to the beach. We can weight our parameters
according to our needs to obtain different results.

To increase the complexity of the model, we could add more layers of percep-
trons, obtaining a structure called multilayers perceptron, shown in Figure 2.2.
In this network, we have the first column of perceptrons called the first layer of
perceptrons. It can make simple decisions by weighting the inputs. Each percep-
tron in the first layer has a single output, which is, in turn, an input for all the
perceptrons in the next layer. The perceptrons of the second layer work in a more
complex and abstract level than the previous one. They weight up the results
from the first layer of the network and produce the outputs. Even more complex

9

Chapter 2 - Theoretical background on deep learning

Figure 2.2. Multilayers Perceptron. (Image from [11])

decisions can be made by the perceptron in a third layer and so on. In this way,
we obtain a sophisticated structure for decision making.

We could also simplify the previous equation describing perceptron through two
notational changes. First of all, we can write the weighted sum ∑

j wjxj as a dot
product, w · x, where w and x are vectors whose components are the weights and
inputs, respectively. The second change is to move the threshold to the other side of
the inequality and to replace it by the perceptron’s bias b, where b ≡ −threshold.
With these two changes, we can rewrite the perceptron rule as:

output =

0 if w · x+ b ≤ 0
1 if w · x+ b > 0

(2.2)

We can think the bias as a measure of how simple it is to get the perceptron
to output a 1. Or in more biological terms, it is a measure of how effortless it is
to get the perceptron to fire. If this value is high, the perceptron will output a
1 very easily. But if the bias is a very negative value, then it is difficult for the
perceptron to output a 1.

With this new notation, we could rewrite the preceding example in the following
form:

• x is a vector containing the inputs, x =

x1 = 1
x2 = 0
x3 = 1

;

• w is a vector containing the weights, w =

w1 = 2
w2 = 6
w3 = 1

;
• b is equal to -5.

The output will be 2x1 + 6x2 + 1x3 − 5 = 2× 1 + 6× 0 + 1× 1− 5 = −2 < 0. So
the perceptron does not fire and outputs 0.

10

Chapter 2 - Theoretical background on deep learning

Sigmoid Neurons

In many modern works on neural networks, the sigmoid neuron is the most used
neuron model. A neural network learns from parameters and gradually improves
itself by varying weights. The learning process works if a small change in some
weight or bias causes only a little corresponding change in the network output.
We can describe this behaviour with the following scheme (Figure 2.3):

Figure 2.3. The key concept of the learning process. (Image from [11])

The perceptron, having only a binary value as output, does not work well
enough in this situation because a little change in weights could change radically
from 0 to 1 and vice-versa the result. This flip may change, in turn, the behaviour
of the rest of the network in a very complicated and uncontrollable way. This
problem belongs to the absence of an intermediate value for the perceptron output
and stops a gradual improvement. This reason leads to the introduction of a new
kind of artificial neuron called sigmoid neuron. Sigmoid neurons are comparable
to perceptrons, but a network of sigmoid neurons can learn because a little change
in their weights causes only a small change in their output. To describe a sigmoid
neuron, we can refer to the same scheme of the perceptron, shown in Figure 2.1.

As a perceptron, the sigmoid neuron has n inputs, x1, x2, ..., xn, but they are
not binary and can also assume any value between 0 and 1. Each data in input
has its weight wi, and there is an overall bias b. Also, the output is not binary,
but it is σ(z), where z = w · x+ b and σ is the sigmoid function, defined by:

σ(z) = 1
1 + e−z

. (2.3)

So, given the inputs, x1, x2, ..., xn, their weights, w1, w2, ..., wn and the bias b,
we obtain:

output = σ(z) = σ(w · x+ b) = 1
1 + exp

(
−∑j wjxj − b

) . (2.4)

11

Chapter 2 - Theoretical background on deep learning

If we suppose z ≡ w ·x+b is a large positive number, then e−z ≈ 0 and σ(z) ≈ 1.
In other words, when z = w · x + b is a large and positive number, the output of
the sigmoid neuron is approximately 1. On the other hand, if z = w · x + b is a
very negative number, e−z → ∞, and σ(z) ≈ 0. So the behaviour of a sigmoid
neuron closely approximates a perceptron. The two models of artificial neurons
differ a lot only when w is an intermediate value.

Graphically, we can represent sigmoid neuron and perceptron behaviour with
the Sigmoid Function and the Step Function, when the former is a smoothed out
version of the latter (Figure 2.4):

Figure 2.4. Sigmoid Function and Step Function. (Image from [11])

Observing these functions, the output response to small changes in inputs and
bias for sigmoid neuron and perceptron may be more explicit. The smoothness of
the Sigmoid Functions means that the output allows values between 0 and 1. The
Step function, given an input, can instead provide only two values, 0 or 1, as the
perceptron.

Sigmoid and Step functions are part of the so-called activation functions. Their
role is to define the output of a node given a single or a set of inputs.

2.3.2 Neural Networks
To build a real application, we cannot use the described neurons singularly. We
need to connect them, creating a collection of linked neurons called neural network.
A neural network architecture contains three kinds of layers of neurons [11]: input
layer, output layer, and hidden layer.

Input Layer. It is the leftmost layer in the network and includes the input
neurons.

12

Chapter 2 - Theoretical background on deep learning

Output Layer. It is the rightmost layer in the network made by output neurons.

Hidden Layer/Layers. It is a middle layer of the network. Despite the term
"hidden" sounds a little mysterious, it simply means that the neurons belonging to
this layer are neither inputs nor outputs. In a neural network, we could have one
or multiple hidden layers. For example, in the figure below (Figure 2.5), we have
two hidden layers.

Figure 2.5. Neural network architecture. (Image from [11])

The design of the input and output layers of a neural network is straightfor-
ward. But we cannot say the same thing for the hidden layers because we cannot
describe their design process with a few simple rules. For this reason, in recent
years, researchers have defined many design heuristics for helping people. These
heuristics avoid trying all the possible combination of hidden layers each time, but
they provide an idea of a potentially correct network configuration for a particu-
lar problem. For example, heuristics can suggest how to trade off the number of
hidden layers against the time required to train the network and so on.

We can divide neural networks into two main classes: feedforward or recurrent
described briefly below.

Recurrent Neural Network. This first model of neural networks processes
sequential data. A recurrent neural network makes possible feedback loops between
neurons. These loops represent the influence of the present value of a variable on
its value at a future time step. A neuron output only affects its input in the future,
not instantaneously, so loops here do not cause problems [9, 11].

Feedforward Neural Network. These networks have no loops because they
always feed forward the information. So, the output of a layer becomes the input

13

Chapter 2 - Theoretical background on deep learning

to the next one. The presence of loops could allow situations in which the input
of the σ function depends on the output. For this reason, feedforward neural net-
works do not allow loops [11].

Recurrent neural networks have been less influential than feedforward networks,
maybe because their learning algorithms are generally less powerful. But they
are interesting because they are much closer than feedforward networks to the
behaviour of our brains.

Learning process

Defined a specific architecture for our network, we need a data set to learn from,
called training dataset, and a method to train the network for executing a precise
task. For understanding how the learning process works, we have to describe three
fundamental concepts:

• Cost Function;
• Gradient Descent;
• Backpropagation.

Cost Function. As already said, we need an algorithm able to find weights
and biases such as the network output approximates the desired one, y(x), for all
training inputs x. We define a cost function to quantify how well our network is
achieving this goal:

C(w, b) ≡ 1
2n

∑
x

(y(x)− a)2. (2.5)

In the equation (2.5): w indicates the set of all weights, b all the biases, n is the
total number of training inputs, and a represents the vector of network predicted
outputs and depends on x, w and b. We call C the quadratic cost function,
also known as the mean squared error or just MSE. Observing our quadratic cost
function, we see that C(w, b) is non-negative since every term in the sum is non-
negative. Moreover, the cost C(w, b) becomes small, C(w, b) ≈ 0, when the desired
output y(x) is approximately equal to the predicted one, a, for all training inputs,
x. In other words, our training algorithm works well if it can find weights and
biases so that C(w, b) ≈ 0. On the other hand, a high cost means that the
predicted output is not close to the correct one for many inputs [11]. In practice,
the cost function represents the difference between the predicted output and the
actual one. The quadratic cost function works perfectly well for understanding
the basics of learning in neural networks, thanks to its smoothness. We could also
choose other functions for computing the cost. Our training algorithm should find
a set of weight and biases minimizing as much as possible this cost. To understand

14

Chapter 2 - Theoretical background on deep learning

how we can reduce the difference between the predicted and the expected output,
we need to introduce the gradient descent algorithm.

Gradient Descent. Gradient descent is the process which allows us to move
towards the cost function minimum [11]. In a simple case, we could be able to
locate the minimum just observing the function graph. But in a complicated
function of many variables, we cannot have a visual representation, so we need to
find another solution. One possible option is calculating the minimum analytically
using derivatives. This solution might work when C is a function of just one or
two variables, but it could become a big issue when we have many more variables.
When we work with neural networks, the cost functions depend on billions of
weights and biases in a very complicated way. So for neural networks, also the
calculus does not work. At the moment, we do not consider neural networks,
and for understanding the algorithm, we imagine C as a function of just two
variable, v1 and v2. Our aim is finding the global minimum of C(v1, v2). Let’s
start imaging our function as a simple valley, and a ball rolling down the valley
slope. We could randomly choose a starting point for the imaginary ball, and then
simulate its motion as it rolled down to the bottom. We could do this simulation
by computing derivatives of C. To do so, we assume it is possible to choose how
the ball should roll. If we suppose to move the ball a small amount ∆v1 in the v1
direction, and a small amount ∆v2 in the v2 directions, C changes as follows:

∆C ≈ ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2. (2.6)

To ensure the ball rolling down into the valley, we have to make ∆C negative,
choosing ∆v1 and ∆v2 opportunely. For understanding how to make this choice,
we define a vector of changes in v, ∆v ≡ (∆v1,∆v2)T , and denote the gradient of
C as the vector of partial derivatives:

∇C ≡
(
∂C

∂v1
,
∂C

∂v2

)T

. (2.7)

With these definitions, we can rewrite the expression (2.6) for ∆C as:

∆C ≈ ∇C ·∆v. (2.8)

We call ∇C the gradient vector because it relates changes in v to changes in C.
Moreover, the equation lets us see how to choose ∆v to make ∆C negative. In
particular, we suppose to choose

∆v = −η∇C, (2.9)

15

Chapter 2 - Theoretical background on deep learning

where η is a small, positive parameter known as the learning rate. Replacing ∆v
with this new definition in (2.8) we obtain: ∆C ≈ −η∇C · ∇C = −η‖∇C‖2.
Because ‖∇C‖2 ≥ 0, this guarantees that ∆C ≤ 0. So if we change v according
to (2.9), C will always decrease, never increase, as we wanted. In this way, we
can use (2.9) to define the "law of motion" for the ball in our gradient descent
algorithm, by computing ∆v and then move the ball’s position v by that amount:

v → v′ = v − η∇C. (2.10)

To make another move, we should use this update rule again. Doing so, over and
over, we will decrease C until we reach the global minimum. In summary, the
gradient descent algorithm works repeatedly computing the gradient, and gradu-
ally moving towards the global minimum of the function. To make the process
described easier to understand, in Figure 2.6, we propose a visual representation
of the algorithm:

Figure 2.6. Visual representation of the gradient descent algorithm.
(Image from [12])

The gradient descent algorithm works well only if we correctly choose the learn-
ing rate η, such that (2.8) remains a good approximation. The learning rate should
be neither too big nor too small because in the former case we would obtain
∆C > 0,while in the latter case the gradient descent algorithm would work very
slowly since the changes in ∆v would be tiny.

Up to now, we explained the gradient descent algorithm for a function of just two
variable, but we could easily extend the process in cases of many more variables.

Applying gradient descent to neural networks means to find the weights wk and
biases bl which minimize the cost equation (2.5). In other words, our "position"
now has components wk and bl, and the gradient vector ∇C has corresponding
components ∂C

∂wk
and ∂C

∂bl
. Rewriting the gradient descent update rule in terms of

16

Chapter 2 - Theoretical background on deep learning

components, we obtain:

wk → w′k = wk − η
∂C

∂wk

, (2.11)

bl → b′l = bl − η
∂C

∂bl

. (2.12)

We can use this rule to learn in a neural network by repeatedly applying it to
find the minimum of the cost function. The problem here is the computational
cost because to estimate the gradient ∇C we should compute the gradients ∆Cx

separately for each training input x and then average them. But when the number
of training inputs is very high, this can take a long time, and the network learns
very slowly. To speed up learning, we can use another process called stochastic
gradient descent. The idea is estimating the gradient ∇C by computing ∇Cx for
a small sample of randomly chosen training inputs. By averaging over this small
sample, we can estimate the actual gradient ∇C. In this way, we could exploit
this estimation to speed up the gradient descent and the learning process. More
precisely, stochastic gradient descent randomly picks out a small set m of random
training inputs, X1, X2, ..., Xm, called mini-batch. The mini-batch size, m, should
be large enough, allowing us to estimate the overall gradient ∇C by computing
gradients just for the randomly chosen mini-batch and then averaging them, as
shown below:

∇C ≈ 1
m

m∑
j=1
∇CXj

, (2.13)

For the specific case of neural networks, given the weights wk and the biases bl,
we can write the stochastic gradient descent learning process as follows:

wk → w′k = wk −
η

m

∑
j

∂CXj

∂wk

, (2.14)

bl → b′l = bl −
η

m

∑
j

∂CXj

∂bl

, (2.15)

where the sums refer to all the training samplesXj in the current mini-batch. Then
we choose another random mini-batch and train the network again. We repeat this
process until there are no more training inputs, which is said to complete an epoch
of training. At that point, we start over with a new training epoch. Of course,
through a statistical process, we cannot obtain a perfect result. But it does not
matter, because the focus is moving in a general direction for decreasing the cost
function C, we do not need an exact computation of the gradient. In practice,
stochastic gradient descent is a commonly employed powerful method for learning
in neural networks.

17

Chapter 2 - Theoretical background on deep learning

Backpropagation. Backpropagation is a fast algorithm for computing the gra-
dient of the cost function. It was introduced in 1986 by David Rumelhart, Geoffrey
Hinton, and Ronald Williams, and today represents a basic concept of learning
in neural networks. According to [13], backpropagation "repeatedly adjusts the
weights of the connections in the network to minimize a measure of the differ-
ence between the actual output vector of the net and the desired output vector".
In other words, backpropagation aims to minimize the cost function by adjust-
ing weights and biases. In this way, the backpropagation algorithm remodels the
overall behaviour of the network.

Useful notations. Before discussing backpropagation, we start with some
useful notations [11]. We will use:

• wl
jk, the weight from the connection from the kth neuron in the (l− 1)th layer

to the jth neuron in the lth layer;

• bl
j, for the bias of the jth neuron in the lth layer;

• al
j, for the activation of the jth neuron in the lth layer.

For clarity, in the following diagram, we show an example of the described nota-
tions:

With these notations, we can write the activation equation as:

al
j = σ

(∑
k

wl
jka

l−1
k + bl

j

)
, (2.16)

where the sum is over all neurons k in the (l − 1)th layer. Often we will use the
compact form al

j = σ(zl
j), where zl

j = ∑
k w

l
jka

l−1
k + bl

j is called the weighted input
to the activation function for neuron j in layer l. So, the activation in the current
layer is related to the activations in the previous layer.

18

Chapter 2 - Theoretical background on deep learning

Preliminary assumptions about the cost function. For backpropagation
to work, we need to make two main assumptions about the form of the cost function
[11]. To do so, we use as an example again the quadratic cost function, defined
in (2.5). With the new notation described, the equation becomes:

C(w, b) ≡ 1
2n

∑
x

(y(x)− aL(x))2, (2.17)

where L denotes the number of layers in the network; and aL = aL(x)) is the
vector of activations output when x is input.

For applying backpropagation, we need to assume as follows:

1. We can write the cost function as an average C = 1
n

∑
x Cx over cost functions

Cx for individual training examples, x. We need this assumption because for
simplicity the algorithm computes the partial derivatives ∂Cx

∂w
and ∂Cx

∂b
for a

single training example and then recover ∂C
∂w

and ∂C
∂b

by averaging over training
examples;

2. We can write the cost as a function of the outputs from the neural network:
C = C(aL)

The quadratic cost function satisfies both the assumptions.

The backpropagation algorithm. Backpropagation aims to understand
how changing the weights and the biases to modify the cost function [11]. To
do so, we need to introduce an intermediate quantity, δl

j called the error in the jth

neuron in the lth layer, defined as follows:

δl
j ≡

∂C

∂zl
j

. (2.18)

We denote δl the vector of errors connected with layer l. Backpropagation allows
us to compute first δl for each layer, and then relate those errors to the partial
derivatives, ∂C

∂wl
jk

and ∂C
∂bl

j
.

For simplicity, we first describe the algorithm considering a single training ex-
ample, C = Cx [11]:

1. Input x: set the corresponding activation a1 for the input layer.

2. Feedforward: for each layer, l = 2, 3, ..., L, compute zl and al = σ(zl).

3. Output error: compute the output error vector δL.

4. Backpropagate the error: for each layer, l = L − 1, L − 2, ..., 2, compute
δl, which is a function of the error in layer l + 1.

19

Chapter 2 - Theoretical background on deep learning

5. Output: the gradient of the cost function is given by ∂C
∂wl

jk

= al−1
k δl

j and
∂C
∂bl

j
= δl

j.

The algorithm shows why we call the process backpropagation. We compute the
error vectors backwards, starting from the final layer. We can combine the al-
gorithm with the stochastic gradient descent. To do so, we have to subdivide
the input data in mini-batch of m training examples and, for everyone, apply the
following steps for each epoch of training [11]:

1. Input a set of training examples

2. For each training example x: set the corresponding input activation ax,1,
and performs the following steps:

• Feedforward: for each layer, l = 2, 3, ..., L, compute zx,l and ax,l =
σ(zx,l).

• Output error: compute the vector δx,L.
• Backpropagate the error: for each layer, l = L−1, L−2, ..., 2, compute
δx,l.

3. Gradient descent for each layer, l = 2, 3, ..., L, updating the weights and
the biases according to the corresponding rules, (2.14) and (2.15).

2.3.3 Convolutional Neural Network
LeCun et al. introduced Convolutional neural networks in 1998 [14]. Convolutional
neural networks have a singular architecture which makes them particularly able
to work with images, exploiting their spatial structures, and fast to train. This
fastness allows us training deep and many-layer networks. Consequently, this
kind of networks reaches remarkable results for image classification and image
recognition. Convolutional neural networks employ three basic concepts: local
receptive fields, shared weights, and pooling.

Local receptive field. In a fully-connected network, where every neuron links
to every neuron in adjacent layers, we depict the inputs as a vertical line of neu-
rons. Instead, we can imagine a convolutional neural network input as a matrix
of neurons, having the same number of rows and columns of the number of pixels
corresponding to the image width and height. The neurons values correspond to
the intensities of the pixels of the image. For example, considering a 28 x 28 pixels
image as in [11], we have:

20

Chapter 2 - Theoretical background on deep learning

As in a classic neural network, we connect the inputs to a layer of hidden
neurons. In this case, we will not connect every input pixel to a hidden neuron,
but we will group pixels in small regions of the input image. We link all the input
neurons belonging to an input layer region to a neuron in the first hidden layer.
We call the chosen region the local receptive field for a specific hidden neuron.
We assign a weight for each connection between an input neuron and the hidden
one, and an overall bias for each hidden neuron. In other words, a specific hidden
layer learns about its local receptive field. The local receptive field is a window
which slides, by one neuron at a time, across the entire input image, and each
step associates a new region to a hidden neuron in the first hidden layer. We will
proceed in this way until we cover all the input neurons. It is possible to set a
different stride length, moving the local receptive field n pixels to the right (or
down). If we suppose to start from the top-left corner and to move by one neuron
at a time, the first two steps are the following:

21

Chapter 2 - Theoretical background on deep learning

Shared weights and biases. We said that a hidden neuron has a unique bias
and a weight for each input connection. In an algebraic form, for the j, kth hidden
neuron the output is:

σ

(
b+

n∑
l=0

n∑
m=0

wl,maj+k,k+m

)
, (2.19)

where σ is the neural activation function; b is the bias shared by all the previous
layer neurons; wl,m is an (n+ 1)× (n+ 1) matrix of weights; and ax,y is the input
activation at position x, y. The operation in (2.19) is also known as a convolution,
from which the name convolutional neural networks. We can write the equation
as a1 = σ(b+w ∗ a0), where ∗ represents the convolution operation; a0 and a1 are
the sets of input and output activations from one feature map, respectively. Since
weights and bias are the same for every first layer hidden neurons, the previous
expression means that all these neurons detect precisely the same feature, for
example, an edge or a specific shape, but at different locations in the input image.
For this reason, we call the feature map the one from the input layer to the hidden
layer, defined by the so-called shared weights and the shared bias [11]. In other
words, we can say that these elements represent a kernel or filter. The simple
network described can detect only a single feature, but working with images, we
need many more feature map to consider a convolutional layer complete.

Pooling layers. We have just described convolutional layers, but convolutional
neural networks can also include pooling layers. They usually follow convolutional
layers for simplifying their information. A pooling layer takes the convolutional
layer output and generates a condensed feature map, which is a feature map with a
lower dimension. A known procedure is max-pooling which outputs the maximum
activation of the n× n input region [11]. As an example, if n = 2, we have:

If there are many features, we have to apply max-pooling to each feature map
separately. Another approach is L2 pooling, which outputs the square root of the

22

Chapter 2 - Theoretical background on deep learning

sum of the squares of the activations in the n× n region. Both the methods aim
to compress information from the convolutional layer.

Summing up, convolutional neural network exploits convolutional layers to ex-
tract features from the input image. Then, we can compress the information
through pooling layers and generate the desired output. As we have just explained,
the convolutional networks architecture is different from the fully connected one de-
scribed in the previous sections. However, we can adapt all the concept introduced
until now, such as gradient descent and backpropagation, to this architecture.

2.3.4 Neural Networks in practice
After understanding how neural networks work, we give some notes on how we
can treat them in practice. Enabling the network to execute a specific task, for
example, the classification of fruits from an image, we need to create a big dataset
of fruit images. Then, we have to split the original dataset into three different
groups, useful for making our network able to learn. We use almost all the data
to create a training set and divide the residual part, in turn, into the so-called
validation set and test set. The next step is defining the details, as the number
of hidden layers for the architecture, and the hyper-parameters. These are the
parameters that do not change during the process, such as learning rate, batch
size, and the number of entire iterations on the training set, called epochs. Now,
our network is ready to learn. To do so, we need an iterative process: we first set
weights and biases randomly and feed our network with the training set images;
it predicts an output and compute a cost function to understand how this output
is close to the correct one. Then, through gradient descent and backpropagation
processes, the network adjusts weights and biases to minimize the cost function.
This process should proceeds until the model reaches a specific level of accuracy,
that is when the difference between the predicted output and the actual one is
low enough. In practice, the network repeats the process n times, where n is the
number of epochs set at the beginning. It means that we should try different values
for hyper-parameters until we reach a good result. We can run the model at the
end of each epoch of training on the validation set, to evaluate it. Finally, when
we think the network has learned enough, we can test its behaviour. We examine
the model using images which it has never seen before, belonging to the test set.
In this way, we can understand if he is properly working, and it can generalize
what it has learned on never seen images.

Training a neural network is a complex process, and some problems can occur
before finding the optimal combination of parameters. The most frequent issue and
the most troublesome to avoid in neural networks is overfitting or overtraining.
It happens when our model works well for the training data but fails to generalize
to new situations. This problem is maybe due to the lack of training data which

23

Chapter 2 - Theoretical background on deep learning

leads the model to work only in that specific situation [11].
There are different examples of overfitting situations. For example, if we run our

model for many epochs, after n epochs the validation accuracy may saturate to a
definite value even if the validation loss keeps decreasing. So it seems the network
is still learning, but it is only an illusion. Another overfitting situation occurs
when the classification accuracy on the training data grows to 100% while the test
accuracy presents a lower value. It means the network is learning singularities
of the training set, but it cannot generalize the main ones [11]. There are many
techniques to prevent overfitting, such as:

• Increasing the amount of training data, adding new items or using data
augmentation: it increases the size of the training set by applying random
transformations on the images, such as changing colour properties, rotation,
scale, and flipping [15];

• Early Stopping: we employ the validation set to evaluate the validation
accuracy after each epoch and when it saturates we stop the process [11];

• Regularization: it is a process to reduce overfitting keeping the size of
the network and the training set fixed, by adding an extra term to the cost
function called the regularization term [11];

• Dropout: it is a particular technique for regularization, because it does not
modify the cost function, but the network itself, by deleting a set of hidden
neurons randomly and temporarily for each mini-batch [11].

• Batch Normalization: this technique normalizes the input layer by ad-
justing and scaling the activations to have a mean output activation of zero
and standard deviation of one [16]. Batch normalization helps to speed up
the learning process, and it has a slight regularization effect, so it reduces
overfitting.

2.4 Deep Learning and Computer Vision
Computer Vision aims to build autonomous systems able to perform some of the
human visual system tasks [17]. The development of CNNs has influenced the
Computer Vision field and has led to a paradigm change for some tasks. Since neu-
ral networks are trained rather than programmed, applications require less expert
analysis and exploit the enormous amount of data available [18]. Moreover, CNN
models are more flexible because they can be re-trained using a custom dataset for
another use case, while Computer Vision algorithms are domain-specific [18]. Deep
Learning improves many computer vision problems, such as object detection, mo-
tion tracking, action recognition, human pose estimation, image classification, and

24

Chapter 2 - Theoretical background on deep learning

semantic segmentation [19, 18]. These progressions are due to improvements in
computing power, memory capacity, power consumption, image sensor resolution,
optics, and data availability, which allow Computer Vision engineers to achieve
greater accuracy with Deep Learning techniques [18].

Our system, detailed in Chapter 4, leverages on semantic segmentation result-
ing from a specifically trained Convolutional Neural Network. This approach has
proven more performative, in terms of accuracy and generalization, when imple-
mented through a neural network instead of traditional Computer Vision algo-
rithms.

2.4.1 Semantic Segmentation
Semantic segmentation is a significant task in computer vision and employs convo-
lutional neural networks, allowing deep learning to surpass other approaches. To
get started, we propose an introduction of the topic referring to [20]. Semantic
segmentation is a technique for associating a label or a class with every pixel in an
image, based on what it represents. It is also known as pixel-wise semantic segmen-
tation since it works pixel by pixel. This algorithm aims to recognise a set of pixels
relating to a specific object, dividing an image in two or many category groups.
For example, in a bedroom image, we can segment the bed, nightstands, wardrobe,
carpet, lamps, and so on. Semantic segmentation can be a beneficial alternative to
object detection because it allows the object of interest to occupy multiple areas
in the image at the pixel level. This technique identifies with precision irregularly
shaped objects, in contrast to object detection, where targets must fit within a
bounding box. Due to its characteristics, semantic segmentation is more precise
than object detection and, consequently, helpful for many applications which need
high accuracy, such as:

• Autonomous driving: for separating the road from obstacles like sidewalks,
pedestrians, poles, and other cars;

• Industrial inspection: for detecting defects in materials;

• Satellite imagery: for identifying different types of land, such as mountains,
rivers, lakes, deserts;

• Medical imaging: for analyzing and performing diagnostic tests, automat-
ing the process and reducing the time required;

• Robotic vision: for identifying and navigating objects and paths.

According to [20], the training process of a semantic segmentation network to
classify images applies the following steps:

25

Chapter 2 - Theoretical background on deep learning

1. Create and analyse a collection of pixel-labelled images;

2. Create a semantic segmentation network;

3. Train the network to classify images into pixel categories;

4. Assess the network accuracy through a standard loss function called cross-
entropy, comparing each pixel of the output with the corresponding pixel in
the actual segmentation image.

To describe the task more in detail, we follow the discussion of [15]. In partic-
ular, semantic segmentation aims to take a W x H x 3 RGB image or a grayscale
image of size W x H x 1 and output a W x H matrix containing the predicted
class identifiers corresponding to all the pixels. As an example, we show an image
(Figure 2.7), where, for clearness, the segmentation map as a lower number of
items than the image pixels:

Figure 2.7. Input image (left) with its semantic labels matrix (right).
(Image from [21])

Convolutional neural networks for segmentation

We can use a convolutional neural network for semantic segmentation, both the
input and the output will be images. We need to build a model with several con-
volutional layers, non-linear activations, pooling layers and batch normalization,
a technique speeding up the learning process adapting the previous layer output
distribution so that the subsequent one could process it efficiently. The initial lay-
ers learn low-level concepts, such as edges and colours, while the deep level layers
learn higher-level concepts, such as different items. Thus, the lower level neurons
contain information about a small region on the image, while at a higher layer,
they hold data for a large image area. For semantic segmentation, we need to
preserve the spatial information hence no fully connected layers are used. Usually,
an encoder-decoder structure [15] is used, shown in Figure 2.8. First, the encoder
downsamples the input using convolutional and pooling layers. The convolutional

26

Chapter 2 - Theoretical background on deep learning

Figure 2.8. Encoder-Decoder Architecture. (Image from [22])

layers exploit batch normalization to improve the process and the Rectified Linear
Unit (ReLU) activation function. The ReLU is null for negative values and has a
linear trend for positive ones. This activation function is the most commonly used
in deep learning models because it has two important properties: it does not reach
saturation thanks to its linear trend and avoids a phenomenon called vanishing
gradient, that is, where there are many layers, after some error backpropagations,
the derivative could have no more relevant values [23]. The encoding procedure
outputs a low-resolution tensor (a multidimensional array) with high-level infor-
mation. Then the decoder performs the opposite process through deconvolutional
and upsampling layers: increase the resolution again and obtain low-level data.
When we train this architecture for semantic segmentation, the encoder outputs
a tensor containing information about the objects and their shape and size. The
decoder takes this information and produces the segmentation maps. Before com-
puting the result, the decoder uses a final layer with a Softmax activation function.
This Softmax layer normalizes the output to a probability function so that all the
values sum to 1 [11].

Skip connections. If we use simply the encoder-decoder structure, we could
loss low-level information, producing inaccurate boundaries in segmentation maps.
To solve this problem, we could add skip connections, which allow the decoder
to access directly to the necessary information generated by the encoder layers.
In this way, we concatenate the intermediate encoder outputs and the decoder
intermediate layers inputs at appropriate positions [15], as shown in Figure 2.9.

Transfer learning. Transfer learning is a method which allows us to exploit the
convolution layers of pre-trained models in the encoder layers of the segmentation
model. It is a popular choice in computer vision because these models contain
meaningful information and avoid a custom model, which could be full of error
and less performant [15].

27

Chapter 2 - Theoretical background on deep learning

Figure 2.9. Encoder-Decoder with skip connections. (Image from [24])

Models and Architectures. There are several models available for semantic
segmentation. We should choose the model architecture depending on the use
case. In this paragraph, we give an overview of semantic segmentation models and
architectures mentioned in Chapter 4.

• ResNet: This model proposed by Microsoft has several applications as a
pre-trained model. ResNet has a large number of layers along with residual
connections which make its training possible [15].

• VGG-16: Before ResNet, VGG was the standard pre-trained model in for
a large number of applications. This model proposed by Oxford has fewer
layers than ResNet, so it is much faster to train but less accurate [15].

• MobileNet: Google proposed this method and optimised it for having a
small model size and faster inference time, that is the required time to predict
a result using a trained algorithm. In can run on mobile phones but due to
the small size, it could have low accuracy [15].

After selecting the base network, we have to choose the architecture for segmen-
tation. We consider three popular segmentation models:

• PSPNet: The Pyramid Scene Parsing Network learns better global context
representation of a scene. First, the image is passed to the base network to
get a feature map. Then the feature map is downsampled to different scales.
Then, the pooled feature maps are then convoluted, upsampled to a specific
scale and concatenated together. Finally, another convolution layer produces
the final segmentation outputs [25]. Here, the smaller objects are captured
well by the features pooled to a high resolution, whereas the features pooled
to a smaller size detect the large ones (Figure 2.10). It requires a large model
input size, around 500x500.

28

Chapter 2 - Theoretical background on deep learning

Figure 2.10. PSPNet Architecture. (Image from [25])

• UNet: The UNet architecture adopts an encoder-decoder framework with
skip connections (Figure 2.11). The encoder and decoder layers are symmet-
rical to each other [26].

Figure 2.11. UNet Architecture. (Image from [26])

• SegNet: The SegNet architecture adopts an encoder-decoder framework
without any skip connections (Figure 2.12). The encoder and decoder layers
are symmetrical to each other. The upsampling operation of the decoder lay-
ers exploits the max-pooling indices of the corresponding encoder layers [27].

29

Chapter 2 - Theoretical background on deep learning

Figure 2.12. SegNet Architecture. (Image from [27])

For images containing indoor and outdoor scenes, PSPNet is the best choice, as
the objects are often present in different sizes. For medical images, UNet works
better because skip connections allow this model to capture also tiny details. UNet
could also be useful for indoor/outdoor scenes with small size objects. For simple
datasets, with large size and a small number of items, UNet and PSPNet could be
too slow. Here simple models such as SegNet could be sufficient [15].

30

Chapter 3

Literature analysis

3.1 Introduction

Estimating the 6D position of an object from an image is a central problem in
Computer Vision. It concerns many domains such as robotics, autonomous driv-
ing, medicine, industrial inspection, and virtual/augmented reality applications,
extensively used in the entertainment and medical care industry [28, 29, 30]. The
problem itself is simple and consists of determining the 3D rotation and translation
of an object whose shape is known relative to the camera, using details observable
from the reference image. However, achieving a solution to this problem is diffi-
cult [28]. Due to auto-occlusions or symmetries, the objects cannot be clearly and
unequivocally identifiable, assuming an ambiguous position. Moreover, the im-
age conditions are not always optimal in term of lighting and occlusions between
the objects represented in the picture [30, 31, 32]. In these situations, it is often
necessary to add an earlier stage of semantic segmentation or object detection for
identifying the area of the image which contains the object, before estimating its
position.

Although the researchers have studied this problem for many years, it expe-
rienced a kind of rebirth with the advent of deep learning. Old pose estimation
methods were based on geometrical approaches, trying to establish correspon-
dences between 3D models and the corresponding 2D images of objects using local
features annotated manually. With texture-less or geometrically complex objects,
it is not easy to select local features. In these cases, despite matching takes much
time, it may fail and providing a result that is not always accurate [33].

In opposition to these methods, the researchers introduced other strategies, re-
lying on 2D object representations from different points of view, and comparing
them with the original image to establish the position and orientation. These
methods are very susceptible to variations in lighting and occlusions even if they

31

Chapter 3 - Literature analysis

can manage texture-less objects, and require many comparisons to reach a cer-
tain accuracy level, increasing the execution time [29]. With the diffusion of Deep
Learning, researchers have introduced new strategies for achieving the goal, im-
proving traditional methods, making them more efficient and performing. The
basic idea of systems involving convolutional neural networks is to learn a map-
ping function between the image, and the object 6D position, from images having
three-dimensional position annotations. These methods can reach very high levels
of precision but need many data to train the network accurately and to be able
to work well in real cases. Alternatively, we can use neural networks to execute
the most critical steps of traditional methods. Combining them, we can join the
advantages of the various strategies in the final solution [33].

Referring to the methods mentioned above this literature review focuses on
the classification of 6D position estimation methods from a single RGB image
into three categories, described in detail in the following sections: template-based
methods (Section 3.2), feature-based methods (Section 3.3), and direct prediction
or learning-based methods (Section 3.4).

The methodology used for selecting the articles involves different strategies to
establish among the hundreds of existing papers about the topic the ones suitable
for the review. In general, we selected the most recent only papers, from 2016
on. A second discard criterion concerns input data. We decided to consider only
those systems having a single RGB image as input and optionally a 3D model of
the object. Multiple or RGBD cameras are hard to use, they are expensive, the
calibration process becomes very complicated, and the equipment may become too
heavy. As a result, we decided to ignore articles including stereo images, RGB-D
images or data from sensors, such as LIDAR sensors since they supplement the
input with depth information reducing the problem complexity.

Specifically, we searched on Google Scholar, IEEE, ACMDigital Library, Springer
and Science Direct using keywords such as "6D pose estimation from RGB images",
"Viewpoint prediction", "Position and Orientation estimation", "3D point anchor-
ing", "Automatic Registration". From this first research, we selected 27 articles.
Then, starting from the papers bibliography and their citations, we obtained 29
new references. To further improve the set of studies to investigate, we considered
a literature review published in January 2020 [34], reaching a total of 70 articles.
This review differs from the one in issue for two main reasons:

1. It is more wide-ranging, as it considers as input depth information, both Mono
and Stereo RGB images, RGB-D images, data from LIDAR sensors;

2. It classifies the articles, according to the mathematical model used, in five
categories: classification-based methods; regression-based methods; methods
combining classification and regression; template-matching based methods;
point-pair feature matching based methods.

32

Chapter 3 - Literature analysis

Finally, although all the articles examined satisfied all the requirements, we
decided to make a further screening. To do so, we based on the number of citations
of each paper, referring to the number reported by Google Scholar. In general, we
considered articles with less than 5 citations not relevant or probably related to a
narrower research field.

3.2 Template-based methods
These methods include a first stage, executed off-line, which build a template
database from a 3D model of the object. This database consists of a set of synthetic
renderings, obtained by varying position and orientation. A result is a group of
patches from different points of view. We could imagine them as distributed over
a virtual sphere surrounding the 3D model of the object. The second stage is a
test phase, executed on-line to establish the 6D position. So the current image is
compared with all the patches belonging to the database generated in the previous
step employing a sliding window algorithm. These systems use a similarity value
to compute the best match, chosen by the method itself [33, 31, 35, 34]. We show
an example of how these methods work in Figure 3.1.

Figure 3.1. Schematic representation of template matching methods: the
dashed-line represents a step not employed by all the systems. (Image from [34])

Advantages:

1. They work well in case of texture-less objects [29, 33];
2. If the database is exhaustive, they can achieve high accuracy [36].

33

Chapter 3 - Literature analysis

Disadvantages:

1. They are very sensitive to variations in lighting and occlusions between
items, as these circumstances affect the rate of similarity, which is very
low when the lighting is low or when the object is occluded [29, 33, 37];

2. The execution speed is inversely proportional to the number of elements
belonging to the template. However, this number is directly proportional
to the accuracy of the method. We need a rich set of images to cover as
many positions of the object as possible and to have a high probability of
obtaining the correct pose. Therefore, a trade-off between performance
degradation and desired accuracy is required. Many approaches imple-
ment changes to the cost functions by adding ad-hoc terms to solve these
problems [38, 36].

In [39] Ulrich et al. compare the test images with the template set basing on
edge features. This method estimates first the discrete position. Then it is re-
fined using the 2D match and the corresponding 3D camera position using the
Levenberg-Marquardt algorithm (LMA). The system receives a 3D CAD model of
the object as input from which it automatically generates a hierarchical model.
The user can specify a range of possible object positions in front of the camera.
The generation of the hierarchical model includes only important geometric infor-
mation for the recognition process. The main task is to detect a hierarchy of 2D
views, for finding the object in the image in an efficient way. During the recogni-
tion process, the system evaluates each candidate and calculates the best position
employing a geometric distance measurement. The authors tested the model on
metal components with unrepresentative textures and shiny materials. Although
exhaustive research ensures to find the 2D view with the best match, the process
is too slow for real-time applications.

To reduce the execution time problem, typical of template-based methods, Kon-
ishi et al. [40] introduce a new feature and efficient Hierarchical Pose Trees (HPT)
search algorithm. The proposed feature called Perspectively Cumulated Orien-
tation Feature (PCOF) uses orientation histograms extracted from images with
randomly generated 2D projections from 3D CAD data; the template applies this
feature to handle a specific range of 3D object positions. Hierarchical pose trees
(HPT) are constructed by clustering the 3D object poses and reducing templates
resolution. They accelerate position estimation by using a coarse-to-fine strategy
with a pyramid structure. The method is robust to position changes; it decreases
the number of templates without loss of accuracy and reduces execution time.
However, it requires a position refinement step, done using a Perspective-n-Point
(PnP) algorithm, which calculates the 6D position from matches between 2D fea-
tures on the test image and 3D points on the CAD model.

34

Chapter 3 - Literature analysis

In [41] the authors propose a method for estimating the 3D position of texture-
less objects given coarse position information by a detector. The definite position is
then estimated using edge matches, and the similarity measurement is encoded us-
ing a previously calculated linear regression matrix, learned from examples rather
than being calculated analytically. The template database is constructed by sam-
pling the various viewpoints from the object’s viewing sphere, as shown in Fig-
ure 3.2. For each position, a specific linear predictor is trained, which reduces

Figure 3.2. Templates generation. (Image from [41])

the distance function between the object’s edge-map and the selected pose. For
the distance between edges, the authors introduced the Real-time Attitude and
Position Determination (RAPID) algorithm, in a basic version, RAPID-LR, and
in an improved one, RAPID-HOG.

6D position estimation strategies are fundamental for tracking. We use pose
estimation for tracking initialization and pose recovery when the algorithm loses
the object due to occlusions or when it comes out of the camera’s point of view.
For this purpose, in [42], a new approach is proposed using a segmentation strat-
egy based on a consistent local colour histogram. These descriptors can be trained
on-line in a few seconds by moving the object in front of the camera. This method
has good performance with cluttered backgrounds, heterogeneous objects and oc-
clusions; it uses both real and synthetic data for training and does not require any
refinement stage.

As mentioned above, older methods apply geometric approaches. In this con-
text, the method proposed in [43] from an image and a 3D model, generates patches
at various scales and renders for different rotation values respectively. It applies
colour transformation and vectorization to images for obtaining a more compact
representation for the best match calculation.

In [28] Muñoz et al. use a new approach employing the Cascade Forest Tem-
plate (CFT), which combines the advantages of template-based and part-based
methods. The 3D model presented as a set of viewpoint-dependent templates, but
the template’s similarity function, as in [41], is trained from examples rather than
being calculated analytically. They use regression forests for each template to learn
the misalignment between the initial layout and the current one. This method is

35

Chapter 3 - Literature analysis

suitable for complex texture-less objects when the distribution of brightness over
the surface makes points of interest or appearance-based descriptors calculation
complex. Figure 3.3 shows an overview of the method.

Figure 3.3. Pose estimation using CFT. (Image from [28])

Unlike most methods that try to recover the position of a known instance,
called instance-based methods, in [44] the authors follow a different approach, as
it is a category-based method. It works at the level of object categories trying to
estimate the position of unknown instances. The procedure involves two steps: it
first learns the template of an object category, assuming the training images have
the bounding boxes of the objects annotated. Then the position of the camera
is estimated using a Structure from Motion (SfM) method. For each viewpoint,
they derive a template from the contours detected inside the bounding box for
that point of view. The bounding boxes are normalized, assuming the same size
as the template, the edges are copied to the template and averaged: for each pixel
of the template, the average frequency of falling on an edge is computed to obtain
a shape map. In the second step, the system performs shape matching between all
the edges in a given image and the template. For matching, the authors introduce
features called Bags Of Boundaries (BOB), which look for matching on a summary
of edges, rather than on each of them. The goal is to find the best match between
edges set and the template under an arbitrary projection (rotation, translation,
3D scale). The parameters of this projection are involved in the estimation of the
final pose.

One of the problems to face in applications requiring the exact position of an
object is the management of symmetrical objects. Identical views could generate
ambiguities in the estimation process. In [45] Corona et al. attempted to address
this problem through appropriate strategies. The inputs are an object, unseen
in the training phase and its CAD model, and the objective is to calculate its
position in the image by looking for a match between it and a rendered view

36

Chapter 3 - Literature analysis

of the CAD model itself. Instead of simple RGB renderings, the system uses
renderings of depth maps to overcome discrepancies between the real image and
the texture-less CAD model. As mentioned earlier, the most recent methods use
neural networks to make the algorithms adopted more efficient and performing.
In this case, the neural network receives an RGB image and a depth map for
each viewpoint, corresponding to the model renderings. Two branches are then
involved: one for the object pose estimation, and one for the CAD model symmetry
orders computation. The authors introduce a particular loss function to manage
the complexity of item having rotational symmetry.

In [46] Massa et al. divide the process into an off-line and an on-line stage for
which the same neural network, CaffeNet, is used. The former obtains features
from CAD model rendering, consisting of images of the object from multiple views.
The latter extracts additional features from the image and then compares them
with those calculated off-line to obtain the matching one. Figure 3.4 shows a
system overview.

Figure 3.4. CaffeNet system overview. (Image from [46])

3.3 Feature-based methods
Methods in this category take advantage of local features (keypoints, grey values,
edges or intersections of straight lines) extracted from the regions of interest or
all pixels in the image and then compared with the features found on a 3D model
of the object to establish 2D-3D matches [29, 36, 39]. Therefore, the pipeline
includes two stages: the first stage extracts local features and compares them
with 3D keypoints. The second stage involves 2D-3D correspondences to solve a
geometric problem, e.g. via the PnP algorithm, to obtain the 6D position [33].
These techniques combine traditional Computer Vision approaches with Neural
Networks. Neural Networks are employed in different stages of the pipeline to
improve the overall performance of the system. Figure 3.5 presents a schematic
illustration of these methods.

37

Chapter 3 - Literature analysis

Figure 3.5. Schematic representation of feature matching methods. (Image from [34])

Advantages:

1. They are fast and robust to the occlusions between objects and cluttered
scenes [29].

Disadvantages:

1. Objects should have rich, well-defined and distinctive textures for com-
putation of local features [29];

2. They do not work well with symmetrical objects [29];
3. The quality of extracted keypoints directly affect the accuracy of position

estimation [29];
4. Usually, these methods require a multi-state pipeline which takes much

time to perform the task because 2D-3D matches generate a coarse 6D
position, so they generally need a supplementary stage to obtain the final
pose [29, 37].

In [47, 48] the authors use neural networks to improve the first stage of the
pipeline, i.e. the calculation of features, and use a shape fitting algorithm for de-
termining the final position. In particular, the system in [47] proposes a pipeline
including object detection, keypoint location, and pose refinement. Object de-
tection is considered a solved problem, so each object is assumed to be already
surrounded by its bounding box, obtained through a well-known algorithm, such
as Faster-RCNN. The convolutional network architecture used to locate keypoints
has a stacked hourglass architecture, shown in Figure 3.6. It employs two consec-
utive hourglass structures, the first receives the RGB image as input and provides
an intermediate version of a heatmap set as output, one for each keypoint, whose

38

Chapter 3 - Literature analysis

Figure 3.6. Overview of the stacked hourglass architecture. (Image from [47])

intensity is directly proportional to the probability of the respective keypoint to
be in that position. The second hourglass structure receives the result as input for
refinement. If a 3D model of the object is not available, the algorithm generates a
deformable shape model for each category, using 3D CAD models with annotated
keypoints.

In [48] Peng et al. introduce a neural network called Pixel-wise Voting Network
(PVNet), shown in Figure 3.7, to predict the 2D-3D correspondences by regression
of pixel-wise vectors to keypoints, representing the directions from each pixel of
the object to the keypoints and voting for keypoint locations via RANSAC. The
output is a spatial probability distribution for each keypoint, then fed to a PnP
algorithm to obtain the final result. This work is robust to occlusion while running
at a real-time frame rate.

Figure 3.7. Overview of PVNet keypoint localization. (Image from [48])

39

Chapter 3 - Literature analysis

In [49] Chen et al. calculate features, such as class semantic, instance semantic,
shape, context, location, assuming that objects are on a plane perpendicular to
the image plane and at a certain distance from the camera known from calibration.
The system relates to autonomous driving, and Figure 3.8 shows an overview. The
3D candidates receive a score based on these features, and an algorithm sorts them
according to this score. Finally, a CNN evaluates again only the most promising
ones to provide the final proposals in output.

Figure 3.8. 3D object detection for autonomous driving. (Image from [49])

In [50] Zhao et al. plan to locate the target object using YOLOv3, select a
set of keypoints on the target object as points on the surface, and then train
a ResNet101-based keypoint detector (KPD) to locate them. The 6D pose is
then retrieved using a PnP algorithm fed with the 3D keypoints correspondences.
Figure 3.9 shows the process.

Figure 3.9. Visualization of Zhao et al. pipeline. (Image from [50])

Following the pipeline categorisation of the previous methods, also in [33, 51]
Zhao et al. use geometrical algorithms to refine the final output. For the first
part, instead, they use neural networks able to implement both object detection
and keypoint estimation, as Figure 3.10 displays. In [33] they introduce an end-to-
end framework with a ResNet architecture trained with viewpoint transformation
information and salient regions. The goal is to learn geometrically and semanti-
cally consistent viewpoints. In [51] the same authors propose OK-POSE (Object
Keypoint-based pose estimation) network, which learns 3D keypoints from rela-
tive transformations between pairs of images rather than from explicit 3D labelling
information and 3D CAD models.

40

Chapter 3 - Literature analysis

Figure 3.10. Overview of Zhao et al. systems. (Image from [33])

In some cases, to remedy the lack of training data, systems employ synthetic
images to train the network. In this context, Nath Kundu et al. in [52] introduce a
pipeline divided into two parts: a convolutional network learns the local descriptors
position invariant to obtain the corresponding keypoints; a second convolutional
network by joining the information coming from multiple correspondence maps,
provides in the output the final pose estimation (azimuth, elevation, tilt). The
algorithm couples input image with synthetic images obtained from rendering a
3D model, with annotated 3D keypoints, used as a template for that specific object
class. They train a keypoint descriptor by tracing the positions of the annotated
3D keypoints on the synthetic images. Then, for each pair, the system generates
keypoint matching maps to feed the second network. It uses the correlation be-
tween the rendered image keypoints and the spatial descriptors obtained from the
real one. This model has been tested only on indoor objects such as a chair, sofa,
table, bed, so there is no certainty that it can work well in a more general context.

The approach proposed by Chen et al. in [53] focuses on metallic targets,
texture-less and with shiny materials, so complex to treat. The process of pose
estimation, shown in Figure 3.11, includes three stages: object detection, feature

Figure 3.11. Pose estimation for texture-less shiny objects. (Image from [53])

detection, and pose estimation. They train a neural network, Mask-RCNN, al-
ready known and with good performance for object detection. The network has

41

Chapter 3 - Literature analysis

synthetic images obtained through Blender, and their respective masks, automat-
ically labelled by a new method introduced, as inputs. The keypoint estimation
method uses a "stacked hourglass" convolutional network, trained with synthetic
images and corresponding keypoints, automatically labelled. In the third stage,
the system uses keypoints for the segmentation and 6D pose estimation. The
method employs PnP with RANSAC to remove the outliers, and additionally a
CAD model of the object comparing its projected keypoints with those predicted
to optimise the output.

3.4 Direct prediction or learning-based methods
These methods predict 6D pose using CNNs [33, 37]. They need a training phase
which requires large amounts of labelled data. The employment of CNNs for the
3D position and rotation estimation produces significant improvements. Deep-
learning based methods can be of two types: one-stage and two-stage, depending
on the use of a further step to refine pose parameters throw Perspective-n-Point
(PnP) algorithm (Figure 3.12) [31]. PnP could provide worse results when corre-
spondences are degenerated because of occlusions [29]. In general, two-stage CNNs
are more accurate than single-shot ones, particularly on small objects and multi-
ple objects. Computing the cell size and the number of items occupying the same
cell is challenging in single-shot object detectors. Moreover, where there are many
objects, occlusions between them affect the precision of some single-shot methods,
which employ correspondences between an object’s 3D bounding box corner and
its 2D projection [29].

Figure 3.12. One-stage and two-stage methods. (Image from [31])

Advantages:

1. They are powerful and can provide excellent results [35];
2. They have high performance even if the object is partially occluded or in

case of cluttered backgrounds [36].

42

Chapter 3 - Literature analysis

Disadvantages:

1. They require a time-consuming training process [36];

2. They are not very robust to severe occlusions because covering the space
of all possible occlusions with real images is unmanageable [54];

3. Their ability to generalize is still a problem in some cases [31].

The introduction of specific strategies tries to solve the lack of training data
problem. These strategies involve synthetic images for training or particular pro-
cesses such as data augmentation, known as Domain Randomization in the context
of 6DoF pose estimation. As described by [54], this requires complement data with
semi-realistic synthetic images. To do so, they render a 3D model of the object
on a real background and then apply different augmentation techniques, such as
varying lighting conditions, contrast, blur, and occlusion by removing small image
blocks and replacing them with monochrome patches. While Domain Randomiza-
tion improves the pose estimation accuracy, its benefits on real test images remain
limited, mostly because existing Domain Randomization strategies do not tackle
the severe occlusions problem, which is one of the main challenges in pose esti-
mation. The following figure (Figure 3.13) shows a schematic overview of these
methods.

Figure 3.13. Schematic representation of learning-based methods: the dashed–
line represents an optional step. (Image from [34])

We can classify learning-based methods into three categories [33]:
• Bounding box prediction and PnP algorithm-based methods (Section 3.4.1);
• Classification-based methods (Section 3.4.2);
• Regression-based methods (Section 3.4.3).

43

Chapter 3 - Literature analysis

3.4.1 Bounding box prediction and PnP algorithm-based
methods

These methods use a pipeline for estimating the 6D pose consisting of a CNN archi-
tecture for detecting the object category and obtaining the position of the object
projected bounding box vertices [33]. The methods belonging to this category are
two-stage, i.e. in a first stage, they regress the projection of the corresponding 3D
keypoints of the target object in the 2D image and then calculate the actual 6D
pose using PnP [31]. All the methods described have the last stage in common,
so they differ only on how they prepare data, i.e. the 2D-3D correspondences fed
as input to the PnP algorithm for obtaining the final estimate. These methods
require expensive manual annotations on bounding boxes [33].

In [55], Rad and Lepetit propose BB8, a cascade of multiple CNNs for object
pose estimation task. First of all, the pipeline localizes the object within the image
through a CNN that performs the semantic segmentation. A second CNN receives
the segmentation result as input and predicts the eight corners of the 3D Bounding
Box projections. Finally, after PnP, a third CNN per object is trained to refine
the pose. The method handles symmetric items by narrowing the rotation range
around the training samples axis of symmetry from 0 to the symmetry angle. Since
it employs multiple separated CNNs, BB8 is not end-to-end and is time-consuming
for the inference.

The authors of BB8, together with Oberweger, worked on [56], trying to manage
position estimation in case of severe occlusions. Since calculating 2D projections
using a traditional CNN would be very sensitive to occlusions, the proposed so-
lution calculates heatmaps from small patches independently and then combines
them to obtain robust predictions. Similar patches may belong to different posi-
tions of the object and thus correspond to different heatmaps, so they also propose
a solution to deal with such ambiguities. The training of the network employs both
real and synthetic images with annotated positions and their masks. Figure 3.14
shows an overview of the method.

Figure 3.14. Oberweger et al. method to manage severe occlusions. (Image from [56])

44

Chapter 3 - Literature analysis

In [57, 58], Liu and He exploit the advantages of BB8 for regression. They try
to avoid the use of PnP for reducing errors and implementation consumption. The
former introduces a novel layer, called the Collinear Equation layer, which follows
the region layer to provide a 2D projection of 3D bounding box angles and a new
representation of the 3D rotation. The latter exploits a new algorithm, called
Bounding Box Equation, introduced to achieve accurate and efficient translation.

Most techniques treating the object as a global entity and calculating a unique
pose estimate are potentially vulnerable to occlusion. In contrast, in [59], Hu
et al. introduce a segmentation based 6D pose estimation framework in which
each visible part of objects contributes to the 2D keypoints estimation performed
by a local pose predictor. The candidate should be a rigid object, and its 3D
model should be available. A CNN regresses 2D projections of predefined 3D
points, as the eight vertices of the bounding boxes. The architecture has two
streams, shown in Figure 3.15, one for segmentation and the other for regressing
2D keypoints positions, which employs the same encoder and separate decoders.
Finally, according to a confidence measure, the system finds the set of 3D-2D
correspondences, fed into a RANSAC based PnP strategy to obtain the final pose.
Figure 3.15 shows an overview of the method.

Figure 3.15. Segmentation-driven 6D object pose estimation. (Image from [59])

In [60], Li et al. introduce CDPN. This method treats separately the predic-
tion of rotation and translation to obtain a more robust and accurate result, able
to handle occluded or texture-less objects. It resolves rotation from coordinates
through PnP, using a two-stage object-level coordinate estimation and a Masked
Coordinate-Confidence Loss (MCC loss); translation is estimated directly from
the image using a Scale-Invariant Translation Estimation (SITE). The approach
is very accurate, fast and scalable.

Pix2Pose introduced by Park et al. in [61] predicts the 3D coordinates of each
object pixel without using textured training models. The method estimates 3D

45

Chapter 3 - Literature analysis

coordinates and errors per pixel using an auto-encoder architecture. These pixel-
wise predictions are then used in multiple stages to calculate 2D-3D matches and
obtain the final pose, using PnP with RANSAC iterations. The method uses
appropriate strategies for managing occlusions and symmetries, such as a novel
loss function called transformer loss.

In [35], Zakharov et al. introduce DPOD: Dense Pose Object Detector, shown
in Figure 3.16. Given an RGB image, an encoder-decoder network regresses the
mask and 2D-3D matches. The training phase works with both real and synthetic
data. A finishing step, implemented via a CNN, from a coarse proposal predicts the
refined one. The real image and rendering are the inputs of two parallel branches.
To estimate the final position system employs the difference between the calculated
feature tensors.

Figure 3.16. DPOD pipeline. (Image from [35])

In [54] Li et al. introduce a robust 6-DoF position estimation approach to man-
age the problem of occlusions and the lack of labelled real images using a Domain
Randomization (DR) strategy, which implements changes so that the model works
well in the real world even under complex conditions. The method receives an
image as input and uses a network to locate the pixels of the object. Next, a
Self-supervised Siamese Pose Network (SSPN) outputs the coordinates and seg-
mentation information.

The methods proposed in [62, 63] can work in real-time. The former is an
end-to-end framework, uses CNNs to obtain 2D-3D matches and works both with
texture-less objects and in case of occlusions between objects. The latter exploits
a client-server architecture for robots, shown in Figure 3.17, which uses YOLOv3
for object detection, keypoint detector and pose estimation.

46

Chapter 3 - Literature analysis

Figure 3.17. Kästner et al. mobile robots application workflow. (Image from [63])

Finally, in [64], Liu et al. introduce a new network called TQ-Net. The authors
propose a process divided into three stages, displayed in Figure 3.18: in the first

Figure 3.18. TQ-Net method pipeline. (Image from [64])

one an object detection algorithm locates the target and obtains its bounding box,
resized and, together with its position information, fed into TQ-Net to predict the
translation vector T and the quaternion Q. Finally, Q is converted into a rotation
matrix R and, through a projection algorithm, the eight points surrounding the
object are projected onto the image and connected to form a 3D bounding box to
mark the 3D position. TQ-Net is easily implemented, runs in real-time efficiently
and accurately and works with all previous CNN-based object detection methods.

47

Chapter 3 - Literature analysis

3.4.2 Classification-based methods

They convert the 6D position estimation into a classification problem by discretis-
ing the pose space. These approaches use CNNs to obtain a probability distribution
in the pose space and associate it with the 3D model information to regress the
3D position and rotation [33].

In SSD-6D [65] the authors extend SSD detection framework [66] to 3D detec-
tion and 3D rotation estimation based on a discrete viewpoint classification rather
than direct regression of rotations. This method uses a neural network to obtain
object recognition from the image with its 2D bounding box, and a set of the
most frequent 6D poses for that instance is provided for each. It decomposes a
3D rotation space into discrete viewpoints and in-plane rotations, so the rotation
estimation is treated as a classification problem. However, to get good results, it is
required to find an appropriate sampling for the rotation space. Furthermore, the
approach SSD-6D does not directly output the translation. To estimate the trans-
lation needs an offline stage for each object to precomputes bounding boxes for all
possible sampled rotations. This precomputed information is used together with
the estimated bounding box and rotation to estimate the 3D translation. The
system selects the best alternative comparing the score for a certain viewpoint
obtained by the network and the 6D assumptions. The approach is slow and pre-
dicted poses are inaccurate since they are only a rough discrete approximation of
the real poses. The output parameters, trained on synthetic renderings, are moved
to the 6D space, employing an ICP-based refinement along with the utilization of
the intrinsic camera to produce better results.

In [67], Su et al. introduce a neural network trained by rendering synthetic 3D
objects superimposed on real images. The trained neural network can then esti-
mate the viewpoints of items in real situations. The following figure (Figure 3.19)
shows an overview of the system.

Figure 3.19. Su et al. system overview. (Image from [67])

48

Chapter 3 - Literature analysis

The method proposed in [68] combines the robustness of CNNs with high-
resolution instance-based 3D pose estimation. The model is trained with synthetic
training data, automatically generated from 3D models of objects and environment
images, then combined to create specific training sets for object detection and view-
point estimation. The model uses a modular architecture, consisting of a detector
and viewpoint estimator, which can easily replace with a different implementation.
The output of the architecture does not directly provide a 6DoF pose. We need a
method to combine the intrinsic parameters of the camera and the 3D model. To
do so, we can use PnP, for example.

In [69], the authors introduce GS3D. This system, shown in Figure 3.20, receives
an RGB image as input and consists of the following steps: a modified Faster R-

Figure 3.20. Overview of GS3D. (Image from [69])

CNN detector, based on a CNN called 2D+O, classifies the rotation from RGB
images and the 2D Bounding Box parameters. Then, the 2D bounding box and the
orientation obtained are used together with a knowledge of the guidance scenario to
generate a basic cuboid called guidance, then projected onto the image plane. The
approach involves features extracted from the bounding box and visible surfaces
to eliminate ambiguities. Another CNN called 3D Subnet then receives these
features to refine the guidance. 3D detection is considered a classification problem
and takes advantage of a classification loss to train CNN classifiers and features.

The method proposed in [70] makes an accurate estimate of a vehicle’s 3D pose
from an image, but it works in a narrow and non-interesting area of research.

Finally, in [71], He et al. use an improved VGG16 network consisting of three
stages, which, given an RGB image as input can output a representation of the
object and its position even in the case of very cluttered scenes. In the first stage,
VGG16 is the backbone network. The second stage extracts feature, and outputs
a feature vector, containing a large number of descriptors. This stage converts the
original problem into a classification problem. In this way, it is possible to obtain
the label and position of the object. Since acquiring large quantities of images
for training is very tedious, the authors introduce a data synthesis approach to
quickly generate a lot of labelled data with accurate pose parameters.

49

Chapter 3 - Literature analysis

3.4.3 Regression-based methods
They consider 6D pose as a regression problem and use CNNs to estimate the
position [33]. They directly regress the 6D pose parameters of the target object
from the input image [31]. Usually, there is a preliminary stage of object detection,
and then this information is used to simplify the position estimation process [72].
These methods belong to the category of one-stage methods, i.e. they design a
neural network which receives an input image for training and solves the posed
problem by learning the rotation and 3D translation of the object represented in
it [31].

PoseCNN [73] is one of the current top performers for this task in RGB im-
ages. Xiang et al. designed a fully convolutional neural network composed of two
stages to jointly segment objects, estimate the rotation, and their distance from
the camera, as displayed in Figure 3.21. The first stage extracts feature maps with

Figure 3.21. Schematic representation of PoseCNN method. (Image from [73])

different resolutions from the input image. All the tasks performed by the network
will share these feature maps. The second stage integrates the features generated
in the previous step with more specific ones. The network outputs semantic labels,
3D translation, and 3D rotation, at the same time. This method estimates the 3D
translation using hough voting, which returns the centre of the object and the dis-
tance of the target from the camera, while calculates the 3D rotation by returning
the quaternion. PoseCNN is trained on real data and proposes a new loss function,
called ShapeMatchLoss, useful for pose estimation of rotationally symmetric ob-
jects. The authors also proposed a new dataset: YCB-Video dataset. However, by
relying on a semantic segmentation approach to localize items, PoseCNN cannot
address input images containing multiple instances of the same object and may
require further refinement steps to improve the accuracy.

In [74] Tekin et al., based on YOLO [75] and BB8 [55] ideas, introduce YOLO6D,
a neural network with fully convolutional architecture capable of efficient and pre-
cise object detection and pose estimation without refinement. It receives an RGB
image as input, then divided into a regular 2D grid containing fixed-size cells.

50

Chapter 3 - Literature analysis

Each cell predicts the 2D positions of the 3D bounding box corners projected on
the image. The output consists of a 3D tensor which reports a vector for each
cell containing 2D corner positions, class probabilities, and a confidence value as-
sociated with the prediction. As for BB8, the key feature here is to perform the
regression of reprojected bounding box corners in the image. The advantages of
this parametrization are compactness and that it does not introduce a pose am-
biguity as happens for a direct regression of the rotation. Moreover, in contrast
to SSD6D [65], it does not suffer from pose discretization resulting in much more
accurate pose estimates without refinement.

Most approaches separate the object detection phase from the pose estimation
one, by making them run on two separate networks, as shown in the following
figure (Figure 3.22). These methods require resampling the image at least three

Figure 3.22. Two-stage approaches scheme. (Image from [76])

times: 1. to find region proposals; 2. for detection; 3. for pose estimation. The
method proposed by Poirson et al. in [76] does not require resampling of the image
and uses convolutions to detect the object and its position in a single forward
step. It provides acceleration in execution time because it does not require image
resampling, and the computation for detection and pose estimation is shared. The
scheme employs a Single Shot Detector, as displayed in Figure 3.23.

Figure 3.23. Single shot detection and pose estimation. (Image from [76])

The method proposed in [77] focuses only on rotation between the object and
the camera using a modified version of the VGG-M network. The pipeline contains
a featured network and a pose network: the former receives the image and outputs

51

Chapter 3 - Literature analysis

the image feature descriptor; the latter computes the rotation employing the result
of the previous stage and the object category label.

In [78], Mousavian et al. estimate the position and size of an object 3D bound-
ing box from its 2D bounding box and surrounding pixels. This method uses a
detector extended to regress the orientation and size of the item by training a CNN.
These predictions are combined with geometric constraints to produce the final 3D
pose, estimating the translation and 3D bounding box. It, therefore, differs from
other methods, which try to regress the pose directly. For orientation regression,
the authors propose a new discrete-continuous formulation called MultiBin, which
requires the discretization of the orientation angle in n overlapping bin. For each
of them, the CNN estimates the probability that the output angle belongs to the
current box and calculates the rotation correction, applied to the orientation of
the bin’s central radius to obtain the output angle. The method does not require
any pre-processing stage or 3D models of the object.

The methods described below, although less important than the previous ones,
has relevance in research. In [29], Liu et al. estimate the position of an object from
an indoor image. It proposes a combination of networks in a sequence: ResNet101,
RPN (Region Proposal Network), FCN (Fully Convolutional Network) and allows
to obtain as output: classification, bounding box, translation and rotation of the
object (Figure 3.24).

Figure 3.24. 6D object pose from indoor images. (Image from [29])

In [37], Do et al. introduce Deep-6DPose to detect, segment and estimate
the 6D poses of objects in the input image. Deep-6DPose is an end-to-end deep
learning pipeline, consisting of an RPN to derive the Regions Of Interest and a
Mask-RCN. It decouples pose parameters into translation and rotation, regressing
the latter through a Lie algebra representation. This method predicts the z com-
ponent and requires post-processing to recover the full translation. However, the
CNN architecture consists of six fully connected layers, so needs excessive memory.
Moreover, the multi-task loss function has four terms, which have to be balanced
carefully.

In [30, 79], the authors use a particular neural network called denoising au-
toencoder for 6D laying estimation, trying to learn representations from rendered
3D model views. AAE (Augmented Autoencoders) [79] concentrates on pose esti-
mation and training from synthetic models to implicitly learn from rendered 3D

52

Chapter 3 - Literature analysis

model views while using already computed SSD [66] detection bounding boxes as
input.

In [80], Hara et al. consider object seen approximately sideways, is in the centre
of an image, with an orientation represented by a value between 0° and 360°. The
network processes the image by applying a series of transformations, followed by
a unit which estimates the orientation and produces the final predictions. The
authors propose three approaches for estimating the rotation: the first two rep-
resent angles as points on a unitary circle and trains a regression function, these
differ only in the loss function used; the third approach employs the discretization
process. The following figure (Figure 3.25) represents a schematic representation
of the third approach.

Figure 3.25. The network architecture for the discretization based
approach. (Image from [80])

In [81], Rambach et al. train a CNN to directly regress the object 6D pose
using only single-channel synthetic images with improved edges, obtained from
rendering the 3D object. It uses a modified version of the PoseNet architecture
[82], introducing a new loss feature to facilitate the training process.

The network used by Xu et al. in [83] consists of two parts: one for the gener-
ation of the 2D region proposal using an RPN and the other for the simultaneous
prediction of position, orientation, dimensions of 2D objects and 3D poses. Thanks
to a stand-alone module for disparity estimation and 3D point cloud calculation,
the approach introduces the multi-level fusion scheme. First, the disparity infor-
mation is encoded with a front view feature representation and merged with the
RGB image to improve input. Then, features extracted from the original input
and the point cloud are combined to refine object detection. For the 3D location,
an extra stream predicts position information directly from the point cloud. The
algorithm can directly output 2D and 3D object detection results from the RGB
image.

In contrast to other CNN-based approaches for pose estimation, which require
many data to be trained, in [84] training is done only with synthetic position data
and then it can work well with real data. The process consists of two cascad-
ing components, shown in Figure 3.26: a segmentation network (DRN: Dilated

53

Chapter 3 - Literature analysis

Figure 3.26. Object pose estimation with Pose Interpreter Networks.
(Image from [84])

Residual Network) which, given an input image, generates the object segmen-
tation masks. The image and the segmentation result are the inputs of a pose
interpreter network, a CNN consisting of a Res-Net-18 extractor feature followed
by a multilayer perceptron. This network estimates the position of each object.
The approach is sensitive to segmentation errors and occlusions, especially for ori-
entation prediction, but is more robust when trained with data containing not
severe occlusions. The model works in real-time (20 Hz) on live RGB data; it does
not require depth information or ICP refinement.

Finally, in [85], Ku et al. introduce MonoPSR, a method for 3D Object Detec-
tion that uses suggestions and shapes reconstruction. First, using the fundamental
relationships of a pinhole model camera, 2D detections made by a reliable detector
are used to generate 3D proposals for each object in the scene. The 3D position of
these proposals is pretty accurate and reduces the final 3D bounding box regression
difficulty. Simultaneously, the system predicts a point cloud in a coordinate system
centred on the object to learn the local scale, shape information, and reinforce the
2D-3D consistency.

In this last part, we describe the most recent methods and, for this reason,
less known. The method proposed by Montserrat et al. in [86] consists of several
stages. Given the input image, the system first uses Mask R-CNN to detect and
segment objects of interest. The Multi-View Matching Network (MV-Net) esti-
mates the 6D pose: it receives six rendered images containing the detected object
in six different poses and the zoomed target image to estimate the initial pose.
This network consists of 6 branches, and their results are combined to provide
translation and rotation. Finally, the Single-View Matching (SV-Net) network re-
fines the estimated position: it receives in input the target with its mask and the
rendered image (obtained from rendering the object in the previous estimate) with
its label.

In [87] Hu et al. assume the objects are rigid and their 3D model is available.

54

Chapter 3 - Literature analysis

The proposed network directly regresses the position from groups of 2D-3D cor-
respondences associated with each keypoint. In detail, after having established
the 2D-3D matches, through a segmentation-based CNN, the system uses three
main modules to infer the pose: a local feature extractor; a feature aggregation
module and a global inference module. The output is the final pose estimated as
a quaternion and a translation.

The CNN proposed in [88] compute both the mask and the 6D pose. The system
is divided into two distinct networks to overcome the effects caused by the lack
of training data: segmentation network and pose estimation network, displayed in
Figure 3.27.

Figure 3.27. Pose estimation model by Wang et al. (Image from [88])

The model proposed in [89] is automotive related. A DCNN estimates vehicle
position starting from images of the vehicle and patches obtained from 3D models
renderings. The system maintains a speed compatible with real-time (≥30 frames
per second). The network used is a ResNet-18 without the last layer, used to
encode images of cars of varying sizes.

The goal of [90] is to build a system able to understand the point of view of
an object never seen before using small available information. Rather than using
a predefined coordinate frame or semantic similarity, it starts from a single image
with a specific viewpoint used as a reference. Given the input, the goal is to
estimate the relative rotation of a second image. During training, the system
needs pairs of images with annotated viewpoints. The approach consists of two
stages of learning and one stage of inference. It learns first how to predict the
shape of an object from two views and their relative positions. Then it trains a
Shape Network to estimate the object shape from another point of view. Using
the trained Shape Network, a discriminator predicts the degree of misalignment
between the two images. During inference, it finds the relative position that best
aligns the two inputs. The algorithm removes the input image backgrounds for
clarity.

In [38], Liu et al. directly regress the 3D pose of the candidates using a neural

55

Chapter 3 - Literature analysis

network. Figure 3.28 shows an example of how the system works. Rendered
binary images are used in the training phase to generate triplets. The triplets are
fed to a triplet network to capture the features, while the positions are reference
information. During the testing phase, the candidate object is extracted from
the scene represented in the image and then passed through the two previously
trained networks. The regression network provides the final position. The use
of binary images allows the management of objects without textures, making the
network more sensitive to contours and robust to lighting variations. The method
also manages symmetrical objects and occlusions implementing ad-hoc strategies.
However, edges can be inaccurate and cause errors; runtime is high due to manually
obtained object patches.

Figure 3.28. Pose estimation for texture-less objects. (Image from [38])

In [32] Capellen et al. introduce ConvPoseCNN, an architecture derived from
PoseCNN [73], described above. Initially, a VGG16 convolutional backbone ex-
tracts the features. The system performs first pixel-wise semantic segmentation
through a fully convolutional branch. Then a fully convolutional vertex branch
estimates central direction and depth. The results of these two branches find the
centre of the objects via a Hough transform layer, which also predicts the bound-
ing boxes of detected objects. A fully convolutional architecture, similar to the
other two branches, replaces PoseCNN quaternion estimation branch to estimates
quaternions for each pixel, which are regressed directly using a linear output layer.
The following figure (Figure 3.29) shows an overview of the system.

56

Chapter 3 - Literature analysis

Figure 3.29. Overview of ConvPoseCNN system. (Image from [32])

3.5 Conclusions
We proposed methods belonging to different fields, such as robotics, autonomous
driving, and entertainment. All of the methods described estimate the 6D position
of an object from an image, reaching, in some cases, high levels of accuracy. But
the object considered had distinctive shapes or textures in most cases. These
characteristics make the process less complex to address than the one this thesis
focuses on.

We worked in the medical field, and the object of interest is a little organ, the
prostate, having a simple roundish shape and a texture which is easily confused
with the surrounding tissues. Moreover, during surgery, the illumination condi-
tions are not optimal, and there could be occlusions caused by surgical tools, which
complicate the problem even more. For this reason, the task results complex for a
machine and for a human without medical knowledge too.

The proposed method follows a specific process involving two different neural
networks to handle the reported problems. The former performs the semantic
segmentation to detect the region of interest, and the latter addresses the rotation
issue as a classification problem, following a method similar to [67, 68]. We will
explain the details of the process in the following chapter.

57

Chapter 4

Proposed Methodology

4.1 Deep Learning and Augmented Reality So-
lutions for Urologic Surgery Support

Urology was one of the first adopters of Artificial Intelligence for object detec-
tion, image classification, segmentation, skills assessment, and outcome prediction
for complex urologic procedures [1]. Recently, minimally invasive laparoscopic and
robotic-assisted approaches have replaced many traditional open urologic surgeries
[1]. These technologies assist the surgeon in performing more complex and precise
tasks improving the precision of the procedure, with consequent benefits for the pa-
tient during the post-operative period [2]. This change of paradigm led the surgeon
to see the operatory scene through a console and a visor experience, reducing his
spatial perception of the surgical environment [2]. This drawback can be mitigate
exploiting Augmented Reality. Augmented Reality allows a real-time overlapping
between computer-generated images or 3D models and the real environment. In
the medical field, doctors can apply AR technology in the pre-operative phase for
the operative setting, for data visualization on diagnostic to make diagnosis and
prognosis, and for treatment procedures during in-vivo surgeries [1]. We will focus
on Augmented Reality applied during an in-vivo urologic surgery. In this delicate
phase, the main challenge for an Augmented Reality application is the registration
process. Registration is the accurate alignment of the virtual model with its phys-
ical counterpart [3]. There are different strategies to achieve precise alignment.
The first way is to use endoscopic markers placed on the surface of specific struc-
tures as points of reference during the surgery. Another option to determine the
organ position in real-time is a marker-less approach, which is technically more
challenging and time-consuming, and exploits machine learning techniques [3, 4].
The main advantages of Augmented Reality for doctors during in-vivo surgeries
are [3]:

58

Chapter 4 - Proposed Methodology

• The opportunity to view reconstructions directly on the body of the patient,
reducing the number of distraction caused when the surgeon has to look away
from the surgical site;

• The reduction of surgery time, exploiting AR during pre-operative planning
for tailoring incisions and cutting plans;

• It improves the surgeon’s spatial perception of the surgical field, avoiding
unnecessary manipulations or accidental injuries to inner organs.

In this work, we involved Augmented Reality to improve the surgeon’s spatial
perception during an urologic surgery called Robot-Assisted Radical Prostatec-
tomy (RARP), described in the following section.

4.2 The Robot-Assisted Radical Prostatectomy
(RARP) Procedure

Radical prostatectomy removes the prostate gland and tissues surrounding it in
case of prostate cancer. The precision of this procedure is fundamental for patient
well-being to avoid short and long-term complications. The adoption of robotic
surgery tries to reduce these risks minimizing the invasiveness of the intervention
[5]. To improve the spatial perception of the surgeon, the RARP can exploit the
Augmented Reality technology. AR allows the registration of the 3D virtual model
of the patient’s organ over its image captured by the endoscope, using different
real-time tracking techniques. We can subdivide the procedure into five subsequent
standardized stages [5]. According to [2], a stage is a set of surgical tasks performed
by the surgeon during an interval with similar visual conditions and with the same
level of benefit from a specific type of visual augmentation. The procedure stages
are:

1. Defatting and incision of the endopelvic fascia. During this stage, identify-
ing and locating the prostate neck could be a difficult task for the surgeon.
Therefore, a correct overlay of the 3D model can enhance intra-operatory
perception and potentially lead to fast and more precise surgery [2];

2. Management of the bladder neck. In this phase, the surgeon rarely requests
the 3D overlay [2];

3. Vase clamping and nerve-sparing. Preserving the functionality of the nerves
after the procedure is necessary for the patient’s well-being. A 3D model cor-
rectly representing organ boundaries can improve the precision of this stage.
Moreover, deforming the 3D mesh accordingly to tissue stretching and blend-
ing further increase the accuracy of organ border detection [2];

59

Chapter 4 - Proposed Methodology

4. Surgery by the prostatic apex. In this step, 3D augmentation is not useful
because reconstruction from Magnetic Resonance Imaging (MRI) does not
accurately portray the organ apex [2];

5. Targeted Biopsy. After the organ’s removal, the 3D overlay is fundamental to
locate tissue samples for post-operatory biopsies. In this stage, the possibility
to insert a catheter in the pelvis cave offers an artificial visual element easy
to be detected and used to guide the registration process [2].

4.3 Existing Augmented Reality Solutions for the
RARP Procedure

The RARP procedure can benefit from Augmented Reality mainly in three stages:
the defatting and incision of the endopelvic fascia, during vase clamping and nerve-
sparing, and for targeted biopsies. A modular approach exists, which is currently
used during in vivo surgery, for extensive testing, by the Urology unity of the San
Luigi Hospital, in Orbassano (TO) [2]. This system adopts a specific augmenta-
tion strategy for each stage of the surgical procedure exploiting different visual el-
ements, such as anatomical features or surgery tools, to guide the virtual-over-real
overlap. The system receives two input data, the endoscopic camera video stream
images and the 3D patient-specific organ’s mesh, and when it completes the aug-
mentation process, it generates the output. During the augmentation process, the
system mixes colours from the two sources to avoid unwanted chromatic effects.
The Tile-Pro visualization system of the Da Vinci surgical console directly displays
the final augmented video stream. In this way, the surgeon can visualize the out-
put on the remote monitor where he or she is operating. The framework needs an
accurate virtual reconstruction obtained from high-resolution pre-operatory med-
ical imaging techniques, such as MRI. This virtual model reproduces the prostate
of the patient undergoing surgery and its surrounding structures, and it is mod-
elled by bio-engineers using the HA3DT M trademarked technique. Moreover, the
surgeon can modify in real-time the transparency value of each element to visual-
ize only a specific subset of structures and maximize his or her perception of the
intra-operatory environment [2].

According to the surgeons’ needs, three distinct strategies exist for registration,
applied in different procedure stages [2]:

• Feature-based, useful for rapid localization of the prostatic apex;

• Human-assisted, to improve precision during nerve-sparing, preserving nerves’
functionality;

• Marker-based, helpful to locate tissue sampling for post-operatory biopsies.

60

Chapter 4 - Proposed Methodology

4.3.1 Starting point
The starting point of this work is the registration strategy adopted for the Targeted
Biopsy stage. In the last stage of the RARP procedure, the surgeon can introduce
a catheter in the operative environment after the prostate removal. The framework
employs this element as a reference point for a marker-based registration strategy,
which is computationally less costly. In this phase, augmentation is fundamental
as it helps the localization of the tumoral lesions allowing the surgeon to collect
tissue samples for biopsies [2]. This application involves three stages, shown in
Figure 4.1:

Figure 4.1. Application steps. (Image from [2])

a. Since the catheter’s colour is a distinguishable feature, the system applies bi-
nary thresholding to the frame image for excluding those pixels not belonging
to the colour range defined for the catheter. The application highlights in
green the portion of the image recognized as the catheter [2].

b. After the feature detection, the system computes the bounding box and the
contour of the catheter. The software considers as vertices of the bounding
polygon four points of the contour that are closer to the four corners of the
bounding box, filtering wrong results. The following figure (Figure 4.2) shows

Figure 4.2. The bounding polygon of the catheter. (Image from [2])

61

Chapter 4 - Proposed Methodology

the bounding polygon of the catheter where the centre point of the upper edge
(in yellow) of the bounding polygon is the anchorage point of the 3D mesh,
corresponding to the prostate apex. The bounding box helps the system to
compute scale and rotation values. It sizes the upper edge of the bounding
box according to the real diameter dimension of the catheter. The estimation
of the rotation values involves different approaches according to the axis:

• Z-axis rotation: uses the vector from the centre point of the upper edge
to the bounding box centre of mass [2];

• Y-axis rotation: not considered as rarely involved [2];
• X-axis rotation: handled comparing dimensions of the upper and the

lower edges of the bounding polygon. When the lower border is greater
than the upper, the software rotates the mesh toward the camera and
vice-versa [2].

c. The final result shows the virtual prostate in the position of the removed one.
The figure displays, in dark green, the cancer mass to guide the surgeon in
sampling tissues for the biopsy [2].

This thesis tries to extend the approach implemented for the targeted biopsy
stage to the first and the third phases: the defatting and incision of the endopelvic
fascia and vase clamping and nerve-sparing. This task is more complex to address
for these stages because we cannot consider a visible element as the catheter as
a reference point, but we have to work directly on the prostate. The proposed
approach, described in the following sections, tries to solve the registration problem
involving neural networks.

4.4 Implementation of the proposed approach
As we said before, the focus for this work is finding a new technique for real-time
automatic registration of a 3D virtual prostate model and its physical counterpart
during a Robot-Assisted Radical Prostatectomy. The roundish shape of this little
organ and its texture, similar to the surrounding tissues, make the task challeng-
ing. Moreover, non-optimal illumination condition and occlusions with surgical
tools further complicate the situation. To address these problems, we propose a
learning-based approach, described in detail in the following sections. This ap-
proach, applied to the catheter, achieves satisfactory results. Therefore, this work
tries to extend the method to the prostate. The system involves two convolutional
neural networks:

• Segmentation Neural Network: it acquires an image as input and outputs
a segmentation mask, which distinguishes prostate, surgical tools and back-
ground. This network provides the position and the scale of the organ;

62

Chapter 4 - Proposed Methodology

• Rotation Neural Network: it receives a synthetic image and its rotation tag
and outputs X-axis and Y-axis rotation values.

We manually created both the datasets following two different strategies described
in Section 4.4.1. By combining the results of both the network, we know all the
essential parameters for the overlay. Figure 4.3 shows an overview of the proposed
methodology:

Figure 4.3. General overview of the proposed approach.

4.4.1 Datasets Creation
The datasets creation was the first step for the implementation of our method.
The dataset creation strategy was different according to the specific network to
address the semantic segmentation and the rotation estimation tasks. We explain
both the approach in detail below.

Semantic Segmentation Dataset

To train the segmentation network, we needed the RGB images and the corre-
sponding segmentation masks. We obtained 388 RGB images by extracting frames
from three different surgical videos provided by the San Luigi Hospital of Orbas-
sano (TO). As described in Section 2.4.1, the segmentation mask is a matrix that
has the same dimensions of the image and contains the predicted class identi-
fiers corresponding to all the pixels. For our model, we needed to distinguish

63

Chapter 4 - Proposed Methodology

background, surgical tools and the prostate. Therefore, our segmentation masks
should contain three different classes, each marked with a unique ID: “background”,
“tool”, and “prostate”. We manually generated the ground truth segmentation
masks through a graphical image annotation tool called labelme [91]. This tool,
given an image, allows creating polygons, as shown in Figure 4.4, and assigning
each of them the corresponding segmentation class.

Figure 4.4. Manual Tagging with Labelme.

Labelme provides a JSON file for each image as output, which contains the ver-
tices coordinates for each created polygon and the corresponding group_id. As an
example, the following code fragment displays the JSON file provided in output
by labelme:
{

. . .
" shapes " : [

{
" l a b e l " : " p ro s t a t e " ,
" po in t s " : [

[
761.4457831325301 ,
537.1325301204819

] ,
[

706.0240963855421 ,
631.1084337349397

64

Chapter 4 - Proposed Methodology

] ,
[

798.7951807228915 ,
678.0963855421686

]
] ,
" group_id " : nu l l ,
" shape_type " : " polygon " ,
" f l a g s " : {}

} ,
{

" l a b e l " : " t o o l " ,
" po in t s " : [

[
574.6987951807229 ,
353.99999999999994

] ,
[

633.7349397590361 ,
308.2168674698795

] ,
[

674.6987951807229 ,
375.6867469879518

]
] ,
" group_id " : nu l l ,
" shape_type " : " polygon " ,
" f l a g s " : {}

}
] ,
. . .

}

In the segmentation images, each pixel value should denote the class ID [15].
Therefore, before feeding this output to the segmentation network for training, we
needed a preprocessing step to convert the JSON file into a segmentation mask.
In this way, we obtained the final segmentation mask, in which the pixel values
were 0 for those pixels representing the background, 1 for surgical tools, and 2 for
prostate, as Figure 4.5 displays.

65

Chapter 4 - Proposed Methodology

Figure 4.5. Input image (left) with its semantic labels matrix (right).

Rotation Dataset

The rotation estimation task was complex to address because it is troublesome to
determine the prostate rotation values from an image, as they are minimal. For
this reason, we created a synthetic dataset through Blender to make the rotation
estimation easier by using 3D models of the prostate, three surgical tools and 2.688
real backgrounds as inputs. The core for this dataset creation is a Python script,
which manipulates the data, and generates 20.0000 images for our dataset.
According to real rotation values of the prostate during surgeries, we considered
the following ranges in degrees for the three rotation axes:

• X-Axis: [−35,−15];
• Y-Axis: [−25, 25];
• Z-Axis: [−10, 10].

Figure 4.6 displays the 3D virtual prostate with the Cartesian Axes.

Figure 4.6. 3D prostate with Cartesian Axes.

66

Chapter 4 - Proposed Methodology

The script generates a rendering for each combination of the previous prostate
virtual model rotation values, randomly rotating its texture once every 100 ren-
derings and randomly changing lighting conditions, surgical tools positions, the
background of the scene, the view scaling, and the camera position. Completed
all the iterations, we obtained a synthetic dataset of 20.000 images to train our
Rotation Neural Network and a file containing the rotation values for every image.
Figure 4.7 shows the Rotation Dataset creation pipeline.

Figure 4.7. Rotation Dataset creation.

4.4.2 Segmentation Neural Network

After the dataset creation, we randomly split the 388 images and their correspond-
ing labels into three classes: 310 for training, 39 for testing, and 39 for validation.
To do so, we employed Scikit-learn, an open-source machine learning library for
the Python programming language [92]. We used a random split because consecu-
tive frames had a high correlation as they belonged to the same video. Therefore,
the model would have been not very efficient and generalized. Once splitting the
dataset, we prepared the data for the training phase of our Segmentation Neural
Network. We needed to create two folders for every group of images [93]: an images

67

Chapter 4 - Proposed Methodology

folder for all the training images, and an annotations folder for the correspond-
ing ground truth segmentation images. The labels filenames had to be the same
as the RGB images ones, and both the elements had to have the same size [93].
To implement our model, we involved several open-source APIs: OpenCV [94], a
library for computer vision; Tensorflow [95] and Keras [96], libraries for machine
learning and neural networks. In particular, for the semantic segmentation task,
we exploited the Keras-segmentation module [93]. The task the neural network
had to learn was the semantic segmentation of the photogram into three classes:
prostate, surgical tools, and background. During the training phase, the neural
network was fed with every RGB images and the corresponding label and, at the
end of the training process, outputs the trained model, able to distinguish the
three classes. Figure 4.8 shows an example of the training process:

Figure 4.8. Segmentation Neural Network Training.

We trained the model with all the three segmentation models described in Sec-
tion 2.4.1, SegNet, UNet, and PSPNet, with ResNet, VGG-16, and MobileNet
architectures. By combining architectures and models, we obtained nine different
models. The Keras-segmentation module allowed us to import the models already
compiled and ready for training. We ran every model for 50 epochs using a batch
size of 8, except for UNet-ResNet and Segnet-ResNet models, which used a batch
size of 4, and an Adam optimizer with a learning rate of 0.0001. We saved the
model for each epoch to allow choosing a previous version in case of overfitting.

68

Chapter 4 - Proposed Methodology

Then, we tested all the trained model to choose the best one. During testing, the
trained neural network received the RGB test images and produced the segmented
image. For better visualization, we then overlapped the result over the input image
with a certain level of transparency, as Figure 4.9 displays. Among the different
combinations between architecture and methods, as usual for medical images, the
UNet architecture with ResNet gave the best test accuracy.

Figure 4.9. Segmentation Neural Network Testing.

4.4.3 Rotation Neural Network
For the Rotation Neural Network, we used a ResNet50 model, shown in Fig-
ure 4.10:

Figure 4.10. The architecture of ResNet50. (Image from [97])

69

Chapter 4 - Proposed Methodology

Starting from this base model, we deleted the fully connected top-layer creating
two different branches for X-Axis and Y-Axis rotation, respectively (Figure 4.6).
We did not consider Z-Axis rotation since it can assume only minimal and not
relevant rotation values. We chose this configuration as it was the best performing
after several attempts. Every branch has the same structure, which contains:

• A Dense Layer, which is a regular densely-connected Neural Network layer,
with 4096 neurons and a ReLU activation function [98]. We introduced this
layer because it experimentally improved the performance;

• A Batch Normalization Layer, which normalizes its inputs by applying a
transformation that maintains the mean output close to 0 and the output
standard deviation close to 1 [16];

• A Dropout Layer, which applies dropout to the input, by randomly setting
input unit to 0 with a frequency of 0.5 at each step during training time to
prevent overfitting [99];

• Another Dense Layer, with several neurons equal in number to the current
axis classes [98];

• An Activation Layer, which applies the Softmax activation function to the
output [100].

We solved the estimation of the X-Axis and Y-Axis rotation value as a classifi-
cation problem. We subdivided the set of possible rotation values along an axis
according to the range used for the dataset creation. We considered 20 classes for
X-Axis Rotation (from −15 to −35) and 50 for Y-Axis Rotation (from −25 to 25).
Therefore, the neuron with the highest probability according to the Softmax acti-
vation function will fire and produce the corresponding rotation value as output.
Figure 4.11 displays an overall scheme of the Rotation Neural Network:

Figure 4.11. Pipeline of the Rotation Neural Network.

70

Chapter 4 - Proposed Methodology

We randomly split the 20.000 synthetic images and their corresponding rotation
labels into three groups: a training set of 18.050 images, a test set of 1.000 images,
and a validation set of 950 images. We resized the original images to 224 × 224
pixels, as it is the standard size for ResNet50 input. We ran our model for 13
epochs, using a batch size of 32 and an Adam optimizer with a learning rate of
0.00001. We also implemented three callbacks:

• EarlyStopping, which stops training when the monitored metric has stopped
improving since five epochs (patience value) [101];

• ModelCheckpoint, which allows saving the Keras model or model weights at
some frequency according to a monitored quantity. We decided to maintain
the model at the end of every epoch regardless of performance [102];

• TensorBoard, a visualization tool provided with TensorFlow that allows plot-
ting graphs related to accuracy and loss [103, 104].

To calculate the loss, we used Categorical Crossentropy because we had more than
two label classes, provided with a one-hot representation [105]. During the training
phase, we fed the model with the training images and the corresponding rotation
values, as shown in Figure 4.12. Moreover, we validated the network after each
epoch on the validation set. We tested the model both on the synthetic test set
and real images, considering a prediction wrong when the deviation between the
predicted and the actual values was greater than 5 degrees.

Figure 4.12. Rotation Neural Network Training.

71

Chapter 5

Testing Results

We ran both the Semantic Segmentation and the Rotation neural networks using
an NVIDIA Quadro P4000 as GPU. We involved different strategies and metrics
to test the two neural networks and produce the testing results.

5.1 Segmentation Neural Network
As already said in the previous Chapter, we ran 9 different models obtained by
combining three Semantic Segmentation architectures (UNet, SegNet and PSP-
Net) and three neural network models (MobileNet, Vgg, and ResNet). The train-
ing phase of these models was fast enough. Although we trained our models for 50
epochs, the GPU required an average of 23 minutes for each configuration. For a
first evaluation, during the training phase, we monitored if the model was starting
to overfit by testing the validation accuracy on the validation set after each epoch.
Completed the training phase, we plotted the accuracy progression for both the
training and the validation sets for a first comparison between the different mod-
els. As Figure 5.1 displays, almost all the models reached a satisfactory level of
accuracy.
The training accuracy progression presents an increasing trend in the first 20
epochs and a more flat one in the following part. This behaviour means that,
in general, our semantic segmentation models learn rapidly for about 20 itera-
tions, then they continue to learn, but the learning rate becomes much slower.
The validation accuracy progression has a slightly more irregular trend, probably
due to the small validation set of 39 images. Despite this, the validation accuracy
presents minimal oscillations between really high values, 0.8 and 0.9, for almost
all the networks except for PSPNetMobilenet and SegnetMobilenet architectures,
which present peaks at low levels of accuracy in the first phase. This behaviour is
probably due to the Mobilenet neural network architecture, which, having a small

72

Chapter 5 - Testing Results

Figure 5.1. Training and Validation Accuracy.

model size and faster inference time, could have low accuracy, as already said in
Section 2.4.1. Graphically, all the trained models present accuracy values close to
each other at the end of the training phase.
To choose the best segmentation model, we tested the trained architectures on
the test set, made of 39 images, by analyzing the models’ performances analyt-
ically. Therefore, to evaluate the testing accuracy, we exploited a diffuse metric
for semantic segmentation, known as Intersection-over-Union (IoU) or Jaccard In-
dex. This method quantifies the percent overlap between the target mask and the
prediction input. To evaluate our models through IoU metric, we first calculated
true positives, false positives, true negatives, and false negatives, and then, we
computed the IoU, which is defined as [106]:

IOU = true_positive
(true_positive+ false_positive+ false_negative) (5.1)

In other words, the IoU measures the number of pixels common between the target
and prediction masks divided by the total number of pixels present across both
the segmentation masks [107, 108]. We determined the IoU score for each category
separately (background, tool, and prostate), then averaged over the three classes
to provide a global mean IoU score for every semantic segmentation model [107].
According to the definition, the IoU score is a value between 0 and 1. If the pre-
diction is perfectly correct, IoU = 1. The closer the IoU is to 0, the worse will be
the prediction result [108].
Table 5.1 contains the IoU scores for background, tool and prostate classes and
the mean IoU for every last epoch of the semantic segmentation architectures we
trained.

73

Chapter 5 - Testing Results

Architecture Background
IoU Score

Tool
IoU Score

Prostate
IoU Score

Mean
IoU Score

UNet-MobileNet 0.9286 0.7182 0.6969 0.7812
UNet-Vgg16 0.9356 0.7434 0.7119 0.7970
UNet-ResNet 0.9427 0.7479 0.7296 0.8067

SegNet-MobileNet 0.9274 0.6948 0.6856 0.7693
SegNet-Vgg16 0.9378 0.7449 0.7109 0.7979
SegNet-ResNet 0.9392 0.7441 0.7062 0.7965

PSPNet-MobileNet 0.8862 0.6337 0.6073 0.7091
PSPNet-Vgg 0.9357 0.7120 0.6965 0.7814

PSPNet-ResNet 0.9285 0.7133 0.6853 0.7757

Table 5.1. IoU Scores for Semantic Segmentation Architectures.

As we had already foreseen from the accuracy trend in Figure 5.1, the mean IoU
values demonstrate that all the architectures have an adequate test accuracy, which
is always higher than 0.7 for the mean. Tool and prostate classes seem to assume
lower values, between 0.6 and 0.7. These values are due to the IoU metric, which
works pixel by pixel, but the visual results are optimum for almost all the archi-
tectures. Figure 5.2 shows examples of outputs obtained by testing our trained
models on a specific video frame:

Figure 5.2. Segmentation Neural Networks testing outputs for every com-
bination between semantic segmentation architectures (rows) and neural
network models (columns).

74

Chapter 5 - Testing Results

Among the nine combinations between semantic segmentation and neural networks
architectures, we considered the UNetResnet architecture as the best semantic seg-
mentation model, according to its IoU score. It had the highest IOU score for the
prostate class, which is the most relevant class to correctly identify for our re-
search. This result was one of the most presumable because, as already said in
Section 2.4.1, the UNet architecture often works better for medical images. The
UNet architecture presents, indeed, skip connections which allow this model to
capture also tiny details.
Figure 5.3 shows a comparison between UNetResnet training and validation accu-
racy progressions:

Figure 5.3. UnetResnet Training and Validation Accuracy.

Both the training and the validation accuracy assume optimal results. The former
is always greater than 0.95 except for the first epochs, while the latter oscillates
between 0.87 and 0.94.
As already said in the previous Chapter, to check if an epoch different from the last
could give a better result, we saved all the 50 iterations. To further improve the
model performance, we searched if a precedent epoch could provide better accu-
racy. To do so, we selected the epochs which have the highest validation accuracy,
with a value greater than 0.93, and we tested the corresponding models.
Table 5.2 shows the validation accuracy and the IoU scores for the iterations ex-
amined, compared with the last one. As we can see from Table 5.2, the best IoU
score for the prostate class is given by epoch number 47, so we assumed that with
a lower number of iterations, the model could not learn enough, with a higher
number of iteration, it probably starts to overfit. Therefore, basing on the results

75

Chapter 5 - Testing Results

obtained from our testing images, we chose the 47th epoch for our final Semantic
Segmentation model.

Epoch Background
IoU Score

Tool
IoU Score

Prostate
IoU Score

Mean
IoU Score

10 0.9393 0.7455 0.7132 0.7993
23 0.9433 0.7525 0.7258 0.8072
34 0.9385 0.7594 0.7164 0.8048
42 0.9424 0.7530 0.7339 0.8097
43 0.9413 0.7503 0.7274 0.8064
45 0.9434 0.7531 0.7331 0.8098
47 0.9437 0.7623 0.7344 0.8135
49 0.9429 0.7554 0.7327 0.8103
50 0.9427 0.7479 0.7296 0.8067

Table 5.2. IoU Scores for the best UNet-MobileNet training epochs.

5.2 Rotation Neural Network
To address the rotation estimation task, we tried different configurations before
reaching a satisfactory accuracy level. This task was troublesome because the
prostate has a roundish shape, and detecting the exact rotation is complex also
for a human. For this reason, to make the task easier to understand for the ma-
chine, we decided to first train a model with a manually created synthetic dataset,
described in Section 4.4.1. This custom dataset allowed obtaining images where
the organ had a more discernible shape and orientation than the video frames
available. Furthermore, the Blender script also provided the actual rotation of the
object, arduous to tag manually. In the pictures extracted from real videos, the
organ has almost the same texture as the surrounding tissues, so determining the
rotation would have become troublesome. We generated the synthetic renderings
through Blender, which allowed us to change parameters and obtain the rotation
values directly. As already said in the previous Chapter, we choose a classification-
based model to address the rotation problem. We ran different combinations of
branches to determine the final architecture described in Section 4.4.3. We main-
tained the ResNet50 base model (Figure 4.10) in the first part of the network for
all the configurations, and we modified only the last part of the network. The
training phases of the Rotation Neural Network models were slower than the Seg-
mentation Neural Network ones. It required 6 minutes for each epoch on average.
For a first evaluation, we trained for 15 iterations a model with three branches

76

Chapter 5 - Testing Results

that addressed the rotation issues for the three axes (Figure 4.6). The training
and validation accuracy exposed different behaviour according to the rotation axis:

• X-Axis branch achieved an optimal level of accuracy, around 0.9 both on
training and validation set;

• Y-Axis and Z-Axis reached an accuracy close to 1 during the training phase,
but the validation accuracy grew slowly, and, at the end of the training pro-
cess, it was less than 0.2 and 0.1, respectively.

This first neural network configuration demonstrated that the model learned much
more slowly for the Y and Z-Axis. For this reason, we decided to train three
different models for the three axes to check if the performance improved. The
following figures (Figure 5.4, Figure 5.5, Figure 5.6) present a branches comparison
between the XYZ_Classification model and the models trained only for a single
axis classification:

Figure 5.4. X Branch with 15 epochs: Training and Validation Accuracy.

Figure 5.5. Y Branch with 15 epochs: Training and Validation Accuracy.

77

Chapter 5 - Testing Results

Figure 5.6. Z Branch with 15 epochs: Training and Validation Accuracy.

With this new configuration of the network, nothing changed about the accu-
racy. Therefore, we tried to improve the number of epochs to 30. The X-Axis
model ran for all the 30 iterations, but the accuracy saturated after the first 15,
as Figure 5.7 displays.

Figure 5.7. X Branch with 30 epochs: Training and Validation Accuracy.

The simulation of the Y and Z axis early stopped after 24 epochs because of over-
fitting. The training accuracies for both the models grew and were close to 1.
The validation accuracy progressions remained almost flat with a higher number
of epochs, too, as shown in Figure 5.8.

78

Chapter 5 - Testing Results

Figure 5.8. Y and Z Branches with 30 epochs: Training and Validation Accuracy.

At this point, since the Z-Axis was the worst performance and its rotation esti-
mation was not relevant, we tried to train a model only with X-Axis and Y-Axis
branches. Moreover, from the accuracy progression showed in Figure 5.4 and Fig-
ure 5.5, we noticed that the accuracy progression saturated around 0.9 between
epoch 10 and epoch 15 for both the axes, so we decided to train this new model
for 13 epochs. Figure 5.9 shows the training accuracy progressions of X-Axis and
Y-Axis for the XY_Classification model.

Figure 5.9. XY_Classification model: Training and Validation Accuracy.

The graphics comparison did not show an effective improvement for this model
because the graphs are generated according to the exact rotation value. The im-
provement is visible, instead, from the testing results. To evaluate all the models
with the same conditions, we tested each model on 13 iterations. We performed

79

Chapter 5 - Testing Results

this first evaluation by testing 1000 synthetic images. As already said, we consid-
ered a prediction wrong when the deviation between the predicted and the actual
values was greater than 5 degrees. Table 5.3 displays, for each model, the predic-
tion errors for the three branches:

Model
X-Axis

Prediction
Errors

Y-Axis
Prediction
Errors

Z-Axis
Prediction
Errors

XYZ_Classification 18 142 229
XY_Classification 11 100
X_Classification 11
Y_Classification 144
Z_Classification 251

Table 5.3. Rotation models testing results on synthetic images.

The testing results showed that the XY_Classification configuration was effec-
tively the best compromise. Once chosen the best performing configuration, we
tested the XY_Classification model on different epochs to check if a previous one
performed better. Table 5.4 shows the testing errors on 1000 synthetic images,
separately for each branch, from epoch 9 to epoch 13:

Epoch X-Axis
Predictions Errors

Y-Axis
Predictions Errors

9 9 104
10 10 108
11 12 104
12 12 95
13 11 100

Table 5.4. Rotation Neural Network testing results on synthetic images
from epoch 9 to epoch 13.

As we can observe from the table, epoch 12 achieved the best testing results, so
we chose this iteration as the final model for the Rotation Neural network.

At this point, despite our model was trained on synthetic images, we decided
to examine its behaviour on surgical pictures. To do so, we created a testing set
of 36 items by extracting frames from the available surgical videos. The first step
was to assign the rotation values to the prostate depicted on the testing frames,

80

Chapter 5 - Testing Results

to have a criterion of comparison with the network output. We manually tagged
the images through an ad-hoc graphical tool, shown in Figure 5.10.

Figure 5.10. Rotation Tagger.

The tool interface displayed a 3D virtual prostate model over its physical counter-
part. It has several functionalities: we could translate the model, rotate it around
the three axes, modify the opacity of its components (such as cancer masses,
catheter, and the prostate itself) according to our needs. Once tagged all the
images, the tool produced a file containing axes rotation as output. We involved
these values to compare the predicted value and the actual one. As for the syn-
thetic images, we repeated the test on the same epochs, from 9 to 13. Table 5.5
displays the testing results on a total of 36 images:

Epoch X-Axis
Predictions Errors

Y-Axis
Predictions Errors

9 15 24
10 14 28
11 11 28
12 11 23
13 15 25

Table 5.5. Rotation Neural Network testing results on real images from
epoch 9 to epoch 13.

In this second test situation, epoch 12 was the best performing too. Therefore, we

81

Chapter 5 - Testing Results

obtained a second proof to elect this epoch as the final model.
Observing Table 5.4 and Table 5.5, we remark a higher percentage of errors for

the test on surgical images. This result is due to the Rotation Neural Network was
trained with synthetic images. Moreover, the test set made of video frames was
too close, and not all the items clearly showed the organ because of occlusions by
the surgical tools and the blood, which made the prostate less identifiable. Despite
this, the results are acceptable, and the error is lower than 10 degrees for almost all
cases. This rotation angle is troublesome to detect for a human, too. Furthermore,
the network failed with a cluttered scene or non-optimal lighting condition; when
the prostate was occluded or its texture was easily confused with the surrounding
tissues. This result was relevant for our research because the goal is to detect
and perform the automatic registration on a frame in which the organ is visible
and recognizable. The following figure (Figure 5.11) shows the Rotation Neural
Network results for three different situations:

Figure 5.11. Perfect Rotation Detection (left); the prediction failed one axis
(centre); the prediction failed both the axes (right).

Table 5.6 displays the epoch 12 testing results for each image.

82

Chapter 5 - Testing Results

Test
Image

X-Axis
Actual
Value

X-Axis
Predicted
Value

X-Axis
Prediction
Result

Y-Axis
Actual
Value

YAxis
Predicted
Value

Y-Axis
Prediction
Result

0 -15 -17 3 -3 13 7
1 -15 -17 3 12 13 3
2 -15 -17 3 7 13 7
3 -15 -33 7 7 19 7
4 -15 -32 7 8 13 3
5 -15 -18 3 8 14 7
6 -15 -19 3 2 14 7
7 -19 -18 3 -8 13 7
8 -10 -17 7 4 2 3
9 -13 -17 3 7 14 7
10 -15 -17 3 5 19 7
11 -25 -16 7 5 13 7
12 -20 -19 3 8 13 3
13 -17 -16 3 21 13 7
14 -15 -18 3 2 13 7
15 -18 -18 3 2 13 7
16 -18 -17 3 5 13 7
17 -15 -16 3 -1 2 3
18 -18 -19 3 12 13 3
19 -10 -17 7 -1 13 7
20 -13 -17 3 -1 13 7
21 -10 -16 7 2 13 7
22 -12 -17 3 16 13 3
23 -10 -18 7 2 13 7
24 -16 -16 3 13 13 3
25 -15 -17 3 13 16 3
26 -12 -35 7 4 14 7
27 -17 -17 3 3 19 7
28 -18 -17 3 11 14 3
29 -18 -32 7 11 19 7
30 -10 -18 7 3 13 7
31 -17 -19 3 10 13 3
32 -10 -19 7 0 13 7
33 -12 -17 3 -11 -12 3
34 -12 -17 3 -15 19 7
35 -17 -17 3 15 19 3

Table 5.6. Rotation Neural Network testing results on real images.

83

Chapter 5 - Testing Results

With this work, we tried to extend the previous similar model focused on the
catheter to the defatting and incision of the endopelvic fascia and vase clamping
and nerve-sparing stages. Doctors have already tested the model applied to the
targeted biopsy stage, and it gave support during the operations. This new model
has not been tested by doctors yet. The task was more arduous to address because
we had to work directly on the prostate without any visual element as a reference
point. However, we hope this new model may improve the existing augmentation
strategies used during the other two RARP procedure steps.

5.3 Conclusions and Future Works
Recently, Augmented Reality and Deep Learning have been actively used in the
medical environment. These technologies help doctors in diagnosis and progno-
sis, during pre-operative and post-operative phases, and in-vivo surgery. In the
urologic field, these technologies are used together with the robotic-assisted and
minimally invasive procedure to help doctors in operations planning and during
delicate surgeries. In this work, we focused on the Robot-Assisted Radical Prosta-
tectomy, and the goal was to introduce a new registration strategy that involved
neural networks. The first step was to analyze the existing methods for real-time
6D pose estimation from monocular images. We reviewed techniques belonging
to different fields of research. Then we classified them into three main categories:
Template-based methods, Feature-based methods, and Learning-Based methods.
Our proposed method divided the problem into two phases. We first involved
a Semantic Segmentation Network to detect the region of interest, which allows
understanding the position and the scale the 3D virtual model should have for a
correct superimposition. The second step was finding the solution for the rota-
tion issue. We involved a Rotation Neural Network, which solved a classification
problem to detect the X-Axis and the Y-Axis rotation. The former neural network
achieved optimal results. The latter worked well with synthetic images, but it had
some limits to generalize on real ones due to the complexity of the problem and the
lack of clearly visible input data. However, this is just the beginning: to achieve
optimal performance and overcome the limits of this approach, as, for example, the
limited number of images, future works could train the Rotation Neural Network
directly with surgical data, with greater availability of surgical videos provided by
doctors. This improvement could exploit the new visualization tool to manually
tag the input data and create a custom dataset of surgical images to train the
network. Hopefully, these changes will improve the performance of our work. In
this way, we could obtain an increasingly efficient tool to help doctors during the
different phases of the Robot-Assisted Radical Prostatectomy procedure.

84

Bibliography

[1] T. C. Chang, C. Seufert, O. Eminaga, E. Shkolyar, J. C. Hu, and J. C.
Liao, “Current trends in artificial intelligence application for endourology
and robotic surgery,” Urologic Clinics, vol. 48, no. 1, pp. 151–160, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/
S0094014320300690.

[2] M. Gribaudo, P. Piazzolla, F. Porpiglia, E. Vezzetti, and M. G. Violante, “3d
augmentation of the surgical video stream: Toward a modular approach,”
Computer methods and programs in biomedicine, vol. 191, p. 105505, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/
S0169260719322801.

[3] P. Vávra, J. Roman, P. Zonča, P. Ihnát, M. Němec, J. Kumar, N. Habib,
and A. El-Gendi, “Recent development of augmented reality in surgery:
a review,” Journal of healthcare engineering, vol. 2017, 2017. [Online].
Available: https://www.hindawi.com/journals/jhe/2017/4574172/.

[4] E. Checcucci, D. Amparore, C. Fiori, M. Manfredi, M. Ivano, M. Di Dio,
G. Niculescu, F. Piramide, G. Cattaneo, P. Piazzolla et al., “3d imaging
applications for robotic urologic surgery: an esut yauwp review,” World
journal of urology, vol. 38, no. 4, pp. 869–881, 2020. [Online]. Available:
https://link.springer.com/article/10.1007/s00345-019-02922-4/.

[5] L. M. Huynh and T. E. Ahlering, “Robot-assisted radical prostatectomy:
a step-by-step guide,” Journal of endourology, vol. 32, no. S1, pp. S–
28, 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6071518/.

[6] F. Porpiglia, E. Checcucci, D. Amparore, M. Manfredi, F. Massa,
P. Piazzolla, D. Manfrin, A. Piana, D. Tota, E. Bollito et al., “Three-
dimensional elastic augmented-reality robot-assisted radical prostatectomy
using hyperaccuracy three-dimensional reconstruction technology: a
step further in the identification of capsular involvement,” European

85

https://www.sciencedirect.com/science/article/abs/pii/S0094014320300690.
https://www.sciencedirect.com/science/article/abs/pii/S0094014320300690.
https://www.sciencedirect.com/science/article/abs/pii/S0169260719322801.
https://www.sciencedirect.com/science/article/abs/pii/S0169260719322801.
https://www.hindawi.com/journals/jhe/2017/4574172/.
https://link.springer.com/article/10.1007/s00345-019-02922-4/.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071518/.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071518/.

Bibliography

urology, vol. 76, no. 4, pp. 505–514, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/abs/pii/S0302283819302702.

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
[Online]. Available: http://aima.cs.berkeley.edu/index.html

[8] S. S. Islam, S. Rahman, M. M. Rahman, E. K. Dey, and M. Shoyaib,
“Application of deep learning to computer vision: A comprehensive
study,” in 2016 5th international conference on informatics, electronics
and vision (ICIEV). IEEE, 2016, pp. 592–597. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7760071.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4, pp.
237–285, 1996. [Online]. Available: https://www.jair.org/index.php/jair/
article/view/10166/.

[11] M. Nielsen, Neural Networks and Deep Learning, 2015. [Online]. Available:
http://neuralnetworksanddeeplearning.com/.

[12] A. Amini, A. Soleimany, S. Karaman, and D. Rus, “Spatial uncertainty
sampling for end-to-end control,” arXiv preprint arXiv:1805.04829, 2018.
[Online]. Available: https://arxiv.org/abs/1805.04829/.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” nature, vol. 323, no. 6088,
pp. 533–536, 1986. [Online]. Available: https://www.nature.com/articles/
323533a0

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/726791

[15] D. Gupta. A beginner’s guide to deep learn-
ing based semantic segmentation using keras. [Online].
Available: https://divamgupta.com/image-segmentation/2019/06/06/
deep-learning-semantic-segmentation-keras.html

[16] Keras. Batch normalization layer. [Online]. Available: https://keras.io/api/
layers/normalization_layers/batch_normalization/.

86

https://www.sciencedirect.com/science/article/abs/pii/S0302283819302702.
https://www.sciencedirect.com/science/article/abs/pii/S0302283819302702.
http://aima.cs.berkeley.edu/index.html
https://ieeexplore.ieee.org/abstract/document/7760071.
http://www.deeplearningbook.org
https://www.jair.org/index.php/jair/article/view/10166/.
https://www.jair.org/index.php/jair/article/view/10166/.
http://neuralnetworksanddeeplearning.com/.
https://arxiv.org/abs/1805.04829/.
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://ieeexplore.ieee.org/abstract/document/726791
https://ieeexplore.ieee.org/abstract/document/726791
https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html
https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html
https://keras.io/api/layers/normalization_layers/batch_normalization/.
https://keras.io/api/layers/normalization_layers/batch_normalization/.

Bibliography

[17] T. Huang, “Computer vision: Evolution and promise,” 1996. [Online].
Available: https://cds.cern.ch/record/400313/files/p21.pdf

[18] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez,
L. Krpalkova, D. Riordan, and J. Walsh, “Deep learning vs. traditional
computer vision,” in Science and Information Conference. Springer, 2019,
pp. 128–144. [Online]. Available: https://arxiv.org/abs/1910.13796/.

[19] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018. [Online]. Available:
https://www.hindawi.com/journals/cin/2018/7068349/.

[20] Mathworks. Semantic segmentation. [Online]. Avail-
able: https://ch.mathworks.com/solutions/image-video-processing/
semantic-segmentation.html

[21] J. Jordan. An overview of semantic image segmentation. [Online]. Available:
https://www.jeremyjordan.me/semantic-segmentation/.

[22] A. Syed and B. T. Morris, “Sseg-lstm: semantic scene segmentation for
trajectory prediction,” in 2019 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2019, pp. 2504–2509. [Online]. Available: https://ieeexplore.ieee.org/
document/8813801.

[23] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” arXiv preprint arXiv:1811.03378, 2018. [Online]. Available:
https://arxiv.org/abs/1811.03378/.

[24] J. Lieman-Sifry, M. Le, F. Lau, S. Sall, and D. Golden, “Fastventricle:
cardiac segmentation with enet,” in International Conference on Functional
Imaging and Modeling of the Heart. Springer, 2017, pp. 127–138. [Online].
Available: https://arxiv.org/abs/1704.04296v1/.

[25] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene
parsing network,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 2881–2890. [Online]. Available:
https://arxiv.org/abs/1612.01105/.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medical
image computing and computer-assisted intervention. Springer, 2015, pp.
234–241. [Online]. Available: https://arxiv.org/abs/1505.04597/.

87

https://cds.cern.ch/record/400313/files/p21.pdf
https://arxiv.org/abs/1910.13796/.
https://www.hindawi.com/journals/cin/2018/7068349/.
https://ch.mathworks.com/solutions/image-video-processing/semantic-segmentation.html
https://ch.mathworks.com/solutions/image-video-processing/semantic-segmentation.html
https://www.jeremyjordan.me/semantic-segmentation/.
https://ieeexplore.ieee.org/document/8813801.
https://ieeexplore.ieee.org/document/8813801.
https://arxiv.org/abs/1811.03378/.
https://arxiv.org/abs/1704.04296v1/.
https://arxiv.org/abs/1612.01105/.
https://arxiv.org/abs/1505.04597/.

Bibliography

[27] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp.
2481–2495, 2017. [Online]. Available: https://ieeexplore.ieee.org/document/
7803544.

[28] E. Muñoz, Y. Konishi, C. Beltran, V. Murino, and A. Del Bue, “Fast
6d pose from a single rgb image using cascaded forests templates,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 4062–4069. [Online]. Available:
https://ieeexplore.ieee.org/document/7759598.

[29] F. Liu, P. Fang, Z. Yao, R. Fan, Z. Pan, W. Sheng, and H. Yang,
“Recovering 6d object pose from rgb indoor image based on two-stage
detection network with multi-task loss,” Neurocomputing, vol. 337, pp.
15–23, 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/abs/pii/S0925231218315236.

[30] X. Li, Y. Cai, S. Wang, and T. Lu, “Learning category-level
implicit 3d rotation representations for 6d pose estimation from rgb
images,” in 2019 IEEE International Conference on Robotics and
Biomimetics (ROBIO). IEEE, 2019, pp. 2310–2315. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8961408.

[31] G. Zuo, C. Zhang, H. Liu, and D. Gong, “Low-quality rendering-driven 6d
object pose estimation from single rgb image,” in 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9207286.

[32] C. Capellen, M. Schwarz, and S. Behnke, “Convposecnn: Dense
convolutional 6d object pose estimation,” arXiv preprint arXiv:1912.07333,
2019. [Online]. Available: https://arxiv.org/abs/1912.07333/.

[33] W. Zhao, S. Zhang, Z. Guan, H. Luo, L. Tang, J. Peng, and J. Fan, “6d
object pose estimation via viewpoint relation reasoning,” Neurocomputing,
2020. [Online]. Available: https://www.sciencedirect.com/science/article/
abs/pii/S0925231220300333.

[34] C. Sahin, G. Garcia-Hernando, J. Sock, and T.-K. Kim, “A review on
object pose recovery: from 3d bounding box detectors to full 6d pose
estimators,” Image and Vision Computing, p. 103898, 2020. [Online].
Available: https://arxiv.org/abs/2001.10609/.

88

https://ieeexplore.ieee.org/document/7803544.
https://ieeexplore.ieee.org/document/7803544.
https://ieeexplore.ieee.org/document/7759598.
https://www.sciencedirect.com/science/article/abs/pii/S0925231218315236.
https://www.sciencedirect.com/science/article/abs/pii/S0925231218315236.
https://ieeexplore.ieee.org/abstract/document/8961408.
https://ieeexplore.ieee.org/abstract/document/9207286.
https://arxiv.org/abs/1912.07333/.
https://www.sciencedirect.com/science/article/abs/pii/S0925231220300333.
https://www.sciencedirect.com/science/article/abs/pii/S0925231220300333.
https://arxiv.org/abs/2001.10609/.

Bibliography

[35] S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector
and refiner,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 1941–1950. [Online]. Available: https:
//ieeexplore.ieee.org/document/9010850.

[36] R. Habib, M. Saii et al., “Object pose estimation in monocular image
using modified fdcm,” Computer Science, vol. 21, no. 1, 2020. [Online].
Available: https://www.researchgate.net/publication/338846350_Object_
Pose_Estimation_in_Monocular_Image_Using_Modified_FDCM/.

[37] T.-T. Do, M. Cai, T. Pham, and I. Reid, “Deep-6dpose: Recovering 6d
object pose from a single rgb image,” arXiv preprint arXiv:1802.10367,
2018. [Online]. Available: https://arxiv.org/abs/1802.10367/.

[38] Y. Liu, L. Zhou, H. Zong, X. Gong, Q. Wu, Q. Liang, and
J. Wang, “Regression-based three-dimensional pose estimation for texture-
less objects,” IEEE Transactions on Multimedia, vol. 21, no. 11, pp.
2776–2789, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/8698890.

[39] M. Ulrich, C. Wiedemann, and C. Steger, “Combining scale-space
and similarity-based aspect graphs for fast 3d object recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol. 34, no. 10, pp.
1902–1914, 2011. [Online]. Available: https://ieeexplore.ieee.org/document/
6112769.

[40] Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto, “Fast 6d
pose estimation from a monocular image using hierarchical pose trees,”
in European Conference on Computer Vision. Springer, 2016, pp.
398–413. [Online]. Available: https://link.springer.com/chapter/10.1007%
2F978-3-319-46448-0_24/.

[41] E. Muñoz, Y. Konishi, V. Murino, and A. Del Bue, “Fast 6d pose estimation
for texture-less objects from a single rgb image,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp. 5623–
5630. [Online]. Available: https://ieeexplore.ieee.org/document/7487781.

[42] H. Tjaden, U. Schwanecke, and E. Schomer, “Real-time monocular
pose estimation of 3d objects using temporally consistent local color
histograms,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 124–132. [Online]. Available: https:
//ieeexplore.ieee.org/document/8237285.

89

https://ieeexplore.ieee.org/document/9010850.
https://ieeexplore.ieee.org/document/9010850.
https://www.researchgate.net/publication/338846350_Object_Pose_Estimation_in_Monocular_Image_Using_Modified_FDCM/.
https://www.researchgate.net/publication/338846350_Object_Pose_Estimation_in_Monocular_Image_Using_Modified_FDCM/.
https://arxiv.org/abs/1802.10367/.
https://ieeexplore.ieee.org/abstract/document/8698890.
https://ieeexplore.ieee.org/abstract/document/8698890.
https://ieeexplore.ieee.org/document/6112769.
https://ieeexplore.ieee.org/document/6112769.
https://link.springer.com/chapter/10.1007%2F978-3-319-46448-0_24/.
https://link.springer.com/chapter/10.1007%2F978-3-319-46448-0_24/.
https://ieeexplore.ieee.org/document/7487781.
https://ieeexplore.ieee.org/document/8237285.
https://ieeexplore.ieee.org/document/8237285.

Bibliography

[43] Z. Cao, Y. Sheikh, and N. K. Banerjee, “Real-time scalable 6dof pose
estimation for textureless objects,” in 2016 IEEE International conference
on Robotics and Automation (ICRA). IEEE, 2016, pp. 2441–2448. [Online].
Available: https://ieeexplore.ieee.org/document/7487396.

[44] N. Payet and S. Todorovic, “From contours to 3d object detection and
pose estimation,” in 2011 International Conference on Computer Vision.
IEEE, 2011, pp. 983–990. [Online]. Available: https://ieeexplore.ieee.org/
document/6126342.

[45] E. Corona, K. Kundu, and S. Fidler, “Pose estimation for objects
with rotational symmetry,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7215–7222.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8594282.

[46] F. Massa, B. C. Russell, and M. Aubry, “Deep exemplar 2d-3d detection
by adapting from real to rendered views,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
6024–6033. [Online]. Available: https://arxiv.org/abs/1512.02497/.

[47] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-dof
object pose from semantic keypoints,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 2011–2018. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/7989233.

[48] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise voting
network for 6dof pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4561–4570. [Online].
Available: https://ieeexplore.ieee.org/document/8954204.

[49] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, “Monocular
3d object detection for autonomous driving,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 2147–
2156. [Online]. Available: https://ieeexplore.ieee.org/document/7780605.

[50] Z. Zhao, G. Peng, H. Wang, H.-S. Fang, C. Li, and C. Lu,
“Estimating 6d pose from localizing designated surface keypoints,”
arXiv preprint arXiv:1812.01387, 2018. [Online]. Available: https:
//arxiv.org/abs/1812.01387/.

[51] W. Zhao, S. Zhang, Z. Guan, W. Zhao, J. Peng, and J. Fan,
“Learning deep network for detecting 3d object keypoints and 6d
poses,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 14 134–14 142. [Online]. Available:
https://ieeexplore.ieee.org/document/9157824.

90

https://ieeexplore.ieee.org/document/7487396.
https://ieeexplore.ieee.org/document/6126342.
https://ieeexplore.ieee.org/document/6126342.
https://ieeexplore.ieee.org/abstract/document/8594282.
https://arxiv.org/abs/1512.02497/.
https://ieeexplore.ieee.org/abstract/document/7989233.
https://ieeexplore.ieee.org/document/8954204.
https://ieeexplore.ieee.org/document/7780605.
https://arxiv.org/abs/1812.01387/.
https://arxiv.org/abs/1812.01387/.
https://ieeexplore.ieee.org/document/9157824.

Bibliography

[52] J. Nath Kundu, A. Ganeshan, and R. Venkatesh Babu, “Object
pose estimation from monocular image using multi-view keypoint
correspondence,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 0–0. [Online]. Available: https://arxiv.org/abs/
1809.00553/.

[53] C. Chen, X. Jiang, W. Zhou, and Y.-H. Liu, “Pose estimation
for texture-less shiny objects in a single rgb image using synthetic
training data,” arXiv preprint arXiv:1909.10270, 2019. [Online]. Available:
https://arxiv.org/abs/1909.10270/.

[54] Z. Li, Y. Hu, M. Salzmann, and X. Ji, “Robust rgb-based 6-dof pose
estimation without real pose annotations,” arXiv preprint arXiv:2008.08391,
2020. [Online]. Available: https://arxiv.org/abs/2008.08391/.

[55] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to
partial occlusion method for predicting the 3d poses of challenging
objects without using depth,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 3828–3836. [Online]. Available:
https://ieeexplore.ieee.org/document/8237675.

[56] M. Oberweger, M. Rad, and V. Lepetit, “Making deep heatmaps robust
to partial occlusions for 3d object pose estimation,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 119–134.
[Online]. Available: https://arxiv.org/abs/1804.03959/.

[57] J. Liu and S. He, “6d object pose estimation without pnp,” arXiv preprint
arXiv:1902.01728, 2019. [Online]. Available: https://arxiv.org/abs/1902.
01728/.

[58] ——, “6d object pose estimation based on 2d bounding box,”
arXiv preprint arXiv:1901.09366, 2019. [Online]. Available: https:
//arxiv.org/abs/1901.09366/.

[59] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven
6d object pose estimation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 3385–3394. [Online].
Available: https://ieeexplore.ieee.org/document/8953567.

[60] Z. Li, G. Wang, and X. Ji, “Cdpn: Coordinates-based disentangled pose
network for real-time rgb-based 6-dof object pose estimation,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp. 7678–
7687. [Online]. Available: https://ieeexplore.ieee.org/document/9009519.

91

https://arxiv.org/abs/1809.00553/.
https://arxiv.org/abs/1809.00553/.
https://arxiv.org/abs/1909.10270/.
https://arxiv.org/abs/2008.08391/.
https://ieeexplore.ieee.org/document/8237675.
https://arxiv.org/abs/1804.03959/.
https://arxiv.org/abs/1902.01728/.
https://arxiv.org/abs/1902.01728/.
https://arxiv.org/abs/1901.09366/.
https://arxiv.org/abs/1901.09366/.
https://ieeexplore.ieee.org/document/8953567.
https://ieeexplore.ieee.org/document/9009519.

Bibliography

[61] K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate
regression of objects for 6d pose estimation,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 7668–7677.
[Online]. Available: https://ieeexplore.ieee.org/document/9008819.

[62] X. Zhang, Z. Jiang, and H. Zhang, “Real-time 6d pose estimation from
a single rgb image,” Image and Vision Computing, vol. 89, pp. 1 – 11,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0262885619300964.

[63] L. Kästner, D. Dimitrov, and J. Lambrecht, “A markerless deep learning-
based 6 degrees of freedom poseestimation for with mobile robots using
rgb data,” arXiv preprint arXiv:2001.05703, 2020. [Online]. Available:
https://arxiv.org/abs/2001.05703/.

[64] J. Liu, S. He, Y. Tao, and D. Liu, “Realtime rgb-based 3d object pose
detection using convolutional neural networks,” IEEE Sensors Journal,
2019. [Online]. Available: https://ieeexplore.ieee.org/document/8868108.

[65] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d: Making
rgb-based 3d detection and 6d pose estimation great again,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp. 1521–
1529. [Online]. Available: https://ieeexplore.ieee.org/document/8237431.

[66] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in European conference
on computer vision. Springer, 2016, pp. 21–37. [Online]. Available:
https://arxiv.org/abs/1512.02325/.

[67] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views,” in
Proceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 2686–2694. [Online]. Available: https://arxiv.org/abs/1505.05641/.

[68] J. Josifovski, M. Kerzel, C. Pregizer, L. Posniak, and S. Wermter, “Object
detection and pose estimation based on convolutional neural networks
trained with synthetic data,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 6269–6276.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8594379.

[69] B. Li, W. Ouyang, L. Sheng, X. Zeng, and X. Wang, “Gs3d:
An efficient 3d object detection framework for autonomous driving,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 1019–1028. [Online]. Available: https:
//ieeexplore.ieee.org/document/8954005.

92

https://ieeexplore.ieee.org/document/9008819.
http://www.sciencedirect.com/science/article/pii/S0262885619300964.
http://www.sciencedirect.com/science/article/pii/S0262885619300964.
https://arxiv.org/abs/2001.05703/.
https://ieeexplore.ieee.org/document/8868108.
https://ieeexplore.ieee.org/document/8237431.
https://arxiv.org/abs/1512.02325/.
https://arxiv.org/abs/1505.05641/.
https://ieeexplore.ieee.org/abstract/document/8594379.
https://ieeexplore.ieee.org/document/8954005.
https://ieeexplore.ieee.org/document/8954005.

Bibliography

[70] Y. Lu, S. Kourian, C. Salvaggio, C. Xu, and G. Lu, “Single image 3d vehicle
pose estimation for augmented reality,” in 2019 IEEE Global Conference
on Signal and Information Processing (GlobalSIP). IEEE, 2019, pp. 1–5.
[Online]. Available: https://ieeexplore.ieee.org/document/8969201.

[71] S. He, G. Liang, F. Chen, X. Wu, and W. Feng, “Object recognition and
3d pose estimation using improved vgg16 deep neural network in cluttered
scenes,” in Proceedings of the International Conference on Information
Technology and Electrical Engineering 2018, 2018, pp. 1–7. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/3148453.3306266/.

[72] A. V. Patil and P. Rabha, “A survey on joint object detection and pose
estimation using monocular vision,” arXiv preprint arXiv:1811.10216, 2018.
[Online]. Available: https://arxiv.org/abs/1811.10216/.

[73] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” arXiv preprint arXiv:1711.00199, 2017. [Online]. Available:
https://arxiv.org/abs/1711.00199/.

[74] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot 6d object
pose prediction,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 292–301. [Online]. Available:
https://arxiv.org/abs/1711.08848/.

[75] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 779–788. [Online].
Available: https://ieeexplore.ieee.org/document/7780460.

[76] P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Kosecka, and A. C.
Berg, “Fast single shot detection and pose estimation,” in 2016 Fourth
International Conference on 3D Vision (3DV). IEEE, 2016, pp. 676–684.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/7785144.

[77] S. Mahendran, H. Ali, and R. Vidal, “3d pose regression using convolutional
neural networks,” in Proceedings of the IEEE International Conference
on Computer Vision Workshops, 2017, pp. 2174–2182. [Online]. Available:
https://arxiv.org/abs/1708.05628/.

[78] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding box
estimation using deep learning and geometry,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 7074–
7082. [Online]. Available: https://ieeexplore.ieee.org/document/8100080.

93

https://ieeexplore.ieee.org/document/8969201.
https://dl.acm.org/doi/abs/10.1145/3148453.3306266/.
https://arxiv.org/abs/1811.10216/.
https://arxiv.org/abs/1711.00199/.
https://arxiv.org/abs/1711.08848/.
https://ieeexplore.ieee.org/document/7780460.
https://ieeexplore.ieee.org/abstract/document/7785144.
https://arxiv.org/abs/1708.05628/.
https://ieeexplore.ieee.org/document/8100080.

Bibliography

[79] M. Sundermeyer, Z.-C. Marton, M. Durner, and R. Triebel, “Augmented
autoencoders: Implicit 3d orientation learning for 6d object detection,”
International Journal of Computer Vision, vol. 128, no. 3, pp. 714–
729, 2020. [Online]. Available: https://link.springer.com/article/10.1007/
s11263-019-01243-8/.

[80] K. Hara, R. Vemulapalli, and R. Chellappa, “Designing deep convolutional
neural networks for continuous object orientation estimation,” arXiv
preprint arXiv:1702.01499, 2017. [Online]. Available: https://arxiv.org/abs/
1702.01499/.

[81] J. Rambach, C. Deng, A. Pagani, and D. Stricker, “Learning 6dof
object poses from synthetic single channel images,” in 2018 IEEE
International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct). IEEE, 2018, pp. 164–169. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8699254.

[82] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network
for real-time 6-dof camera relocalization,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2938–2946. [Online].
Available: https://arxiv.org/abs/1505.07427/.

[83] B. Xu and Z. Chen, “Multi-level fusion based 3d object detection from
monocular images,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 2345–2353. [Online]. Available:
https://ieeexplore.ieee.org/document/8578347.

[84] J. Wu, B. Zhou, R. Russell, V. Kee, S. Wagner, M. Hebert, A. Torralba,
and D. M. Johnson, “Real-time object pose estimation with pose interpreter
networks,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 6798–6805. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8593662.

[85] J. Ku, A. D. Pon, and S. L. Waslander, “Monocular 3d object
detection leveraging accurate proposals and shape reconstruction,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11 867–11 876. [Online]. Available: https:
//ieeexplore.ieee.org/document/8954143.

[86] D. M. Montserrat, J. Chen, Q. Lin, J. P. Allebach, and E. J. Delp,
“Multi-view matching network for 6d pose estimation,” arXiv preprint
arXiv:1911.12330, 2019. [Online]. Available: https://arxiv.org/abs/1911.
12330/.

94

https://link.springer.com/article/10.1007/s11263-019-01243-8/.
https://link.springer.com/article/10.1007/s11263-019-01243-8/.
https://arxiv.org/abs/1702.01499/.
https://arxiv.org/abs/1702.01499/.
https://ieeexplore.ieee.org/abstract/document/8699254.
https://ieeexplore.ieee.org/abstract/document/8699254.
https://arxiv.org/abs/1505.07427/.
https://ieeexplore.ieee.org/document/8578347.
https://ieeexplore.ieee.org/abstract/document/8593662.
https://ieeexplore.ieee.org/document/8954143.
https://ieeexplore.ieee.org/document/8954143.
https://arxiv.org/abs/1911.12330/.
https://arxiv.org/abs/1911.12330/.

Bibliography

[87] Y. Hu, P. Fua, W. Wang, and M. Salzmann, “Single-stage 6d object pose
estimation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 2930–2939. [Online]. Available:
https://ieeexplore.ieee.org/document/9156435.

[88] Y. Wang, S. Jin, and Y. Ou, “A multi-task learning convolutional neural
network for object pose estimation,” in 2019 IEEE International Conference
on Robotics and Biomimetics (ROBIO). IEEE, 2019, pp. 284–289. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8961594.

[89] C. Koetsier, T. Peters, and M. Sester, “Learning the 3d pose
of vehicles from 2d vehicle patches,” The International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, vol. 43, pp. 683–688, 2020. [Online]. Available: https:
//www.researchgate.net/publication/343623538_LEARNING_THE_3D_
POSE_OF_VEHICLES_FROM_2D_VEHICLE_PATCHES/.

[90] M. E. Banani, J. J. Corso, and D. F. Fouhey, “Novel object viewpoint
estimation through reconstruction alignment,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 3113–3122. [Online]. Available: https://arxiv.org/abs/2006.03586/.

[91] K. Wada. [Online]. Available: https://github.com/wkentaro/labelme

[92] Scikit-learn. [Online]. Available: https://scikit-learn.org/stable/.

[93] D. Gupta. Keras-segmentation. [Online]. Available: https://github.com/
divamgupta/image-segmentation-keras/.

[94] OpenCV. [Online]. Available: https://opencv.org/.

[95] TensorFlow. [Online]. Available: https://www.tensorflow.org/.

[96] Keras. [Online]. Available: https://keras.io/.

[97] J. Peng, S. Kang, Z. Ning, H. Deng, J. Shen, Y. Xu, J. Zhang,
W. Zhao, X. Li, W. Gong et al., “Residual convolutional neural
network for predicting response of transarterial chemoembolization
in hepatocellular carcinoma from ct imaging,” European radiology,
vol. 30, no. 1, pp. 413–424, 2020. [Online]. Available: https:
//link.springer.com/article/10.1007/s00330-019-06318-1/.

[98] Keras. Dense layer. [Online]. Available: https://keras.io/api/layers/core_
layers/dense/.

95

https://ieeexplore.ieee.org/document/9156435.
https://ieeexplore.ieee.org/abstract/document/8961594.
https://www.researchgate.net/publication/343623538_LEARNING_THE_3D_POSE_OF_VEHICLES_FROM_2D_VEHICLE_PATCHES/.
https://www.researchgate.net/publication/343623538_LEARNING_THE_3D_POSE_OF_VEHICLES_FROM_2D_VEHICLE_PATCHES/.
https://www.researchgate.net/publication/343623538_LEARNING_THE_3D_POSE_OF_VEHICLES_FROM_2D_VEHICLE_PATCHES/.
https://arxiv.org/abs/2006.03586/.
https://github.com/wkentaro/labelme
https://scikit-learn.org/stable/.
https://github.com/divamgupta/image-segmentation-keras/.
https://github.com/divamgupta/image-segmentation-keras/.
https://opencv.org/.
https://www.tensorflow.org/.
https://keras.io/.
https://link.springer.com/article/10.1007/s00330-019-06318-1/.
https://link.springer.com/article/10.1007/s00330-019-06318-1/.
https://keras.io/api/layers/core_layers/dense/.
https://keras.io/api/layers/core_layers/dense/.

Bibliography

[99] ——. Dropout layer. [Online]. Available: https://keras.io/api/layers/
regularization_layers/dropout/.

[100] ——. Activation layer. [Online]. Available: https://keras.io/api/layers/
core_layers/activation/.

[101] ——. Earlystopping callback. [Online]. Available: https://keras.io/api/
callbacks/early_stopping/.

[102] ——. Modelcheckpoint callback. [Online]. Available: https://keras.io/api/
callbacks/model_checkpoint/.

[103] ——. Tensorboard callback. [Online]. Available: https://keras.io/api/
callbacks/tensorboard/.

[104] TensorFlow. Tensorboard. [Online]. Available: https://www.tensorflow.org/
tensorboard/.

[105] Keras. Categorical crossentropy. [Online]. Available: https://keras.io/api/
losses/probabilistic_losses/#categoricalcrossentropy-class

[106] ——. Intersection-over-union. [Online]. Available: https://keras.io/api/
metrics/segmentation_metrics/.

[107] J. Jordan. Evaluating image segmentation models. [Online]. Available:
https://www.jeremyjordan.me/evaluating-image-segmentation-models/.

[108] T. data science. Intersection over union (iou) calculation for
evaluating an image segmentation model. [Online]. Available:
https://towardsdatascience.com/intersection-over-union-iou-calculation-\
for-evaluating-an-image-segmentation-model-8b22e2e84686/.

[109] H.-C. Chen, W. Jia, Z. Li, Y.-N. Sun, and M. Sun, “3d/2d model-to-image
registration for quantitative dietary assessment,” in 2012 38th Annual
Northeast Bioengineering Conference (NEBEC). IEEE, 2012, pp. 95–96.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/6206979.

[110] F. Casado, D. P. Losada, A. Santana-Alonso et al., “Pose estimation and
object tracking using 2d images,” Procedia Manufacturing, vol. 11, pp.
63–71, 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2351978917303384.

[111] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold et al.,
“Uncertainty-driven 6d pose estimation of objects and scenes from a
single rgb image,” in Proceedings of the IEEE conference on computer

96

https://keras.io/api/layers/regularization_layers/dropout/.
https://keras.io/api/layers/regularization_layers/dropout/.
https://keras.io/api/layers/core_layers/activation/.
https://keras.io/api/layers/core_layers/activation/.
https://keras.io/api/callbacks/early_stopping/.
https://keras.io/api/callbacks/early_stopping/.
https://keras.io/api/callbacks/model_checkpoint/.
https://keras.io/api/callbacks/model_checkpoint/.
https://keras.io/api/callbacks/tensorboard/.
https://keras.io/api/callbacks/tensorboard/.
https://www.tensorflow.org/tensorboard/.
https://www.tensorflow.org/tensorboard/.
https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://keras.io/api/metrics/segmentation_metrics/.
https://keras.io/api/metrics/segmentation_metrics/.
https://www.jeremyjordan.me/evaluating-image-segmentation-models/.
https://towardsdatascience.com/intersection-over-union-iou-calculation-\for-evaluating-an-image-segmentation-model-8b22e2e84686/.
https://towardsdatascience.com/intersection-over-union-iou-calculation-\for-evaluating-an-image-segmentation-model-8b22e2e84686/.
https://ieeexplore.ieee.org/abstract/document/6206979.
https://www.sciencedirect.com/science/article/pii/S2351978917303384.
https://www.sciencedirect.com/science/article/pii/S2351978917303384.

Bibliography

vision and pattern recognition, 2016, pp. 3364–3372. [Online]. Available:
https://ieeexplore.ieee.org/document/7780735.

[112] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and T. Chateau,
“Accurate 3d car pose estimation,” in 2016 IEEE International Conference
on Image Processing (ICIP). IEEE, 2016, pp. 3807–3811. [Online].
Available: https://ieeexplore.ieee.org/document/7533072.

[113] Y. Zhang, C. Zhang, M. Rosenberger, and G. Notni, “6d object pose
estimation algorithm using preprocessing of segmentation and keypoint
extraction,” in 2020 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC). IEEE, 2020, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/9128980.

[114] S. Joung, S. Kim, H. Kim, M. Kim, I.-J. Kim, J. Cho, and K. Sohn,
“Cylindrical convolutional networks for joint object detection and viewpoint
estimation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 14 163–14 172. [Online]. Available:
https://ieeexplore.ieee.org/document/9156810.

[115] L. Zhang, C. Gu, C. Gu, K. Wu, and X. Guan, “Semantic translation
with convolutional encoder-decoder networks for viewpoint estimation,” in
2017 11th Asian Control Conference (ASCC). IEEE, 2017, pp. 1660–1665.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8287423.

[116] J. Wang and W. Yan, “Fast pose estimation for texture-less objects
based on b-rep model,” EURASIP Journal on Image and Video
Processing, vol. 2018, no. 1, p. 117, 2018. [Online]. Available:
https://link.springer.com/article/10.1186/s13640-018-0359-6/.

[117] J. Yang, S. Wang, and G. Liu, “Viewpoint estimation in images by
a key-point based deep neural network,” in 2019 IEEE International
Conference on Image Processing (ICIP). IEEE, 2019, pp. 2551–2555.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8803273.

[118] X. Yang and X. Jia, “6d pose estimation with two-stream net,” in
ACM SIGGRAPH 2020 Posters, 2020, pp. 1–2. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3388770.3407423/.

[119] D. Rodriguez, F. Huber, and S. Behnke, “Category-level 3d non-rigid
registration from single-view rgb images,” arXiv preprint arXiv:2008.07203,
2020. [Online]. Available: https://arxiv.org/abs/2008.07203/.

97

https://ieeexplore.ieee.org/document/7780735.
https://ieeexplore.ieee.org/document/7533072.
https://ieeexplore.ieee.org/document/9128980.
https://ieeexplore.ieee.org/document/9156810.
https://ieeexplore.ieee.org/abstract/document/8287423.
https://link.springer.com/article/10.1186/s13640-018-0359-6/.
https://ieeexplore.ieee.org/abstract/document/8803273.
https://dl.acm.org/doi/abs/10.1145/3388770.3407423/.
https://arxiv.org/abs/2008.07203/.

Bibliography

[120] R. P. Singh, I. Kumagai, A. Gabas, M. Benallegue, Y. Yoshiyasu,
and F. Kanehiro, “Instance-specific 6-dof object pose estimation from
minimal annotations,” in 2020 IEEE/SICE International Symposium on
System Integration (SII). IEEE, 2020, pp. 109–114. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9026239.

[121] A. A. Novikov, D. Lenis, D. Major, J. Hladůvka, M. Wimmer, and
K. Bühler, “Fully convolutional architectures for multiclass segmentation in
chest radiographs,” IEEE transactions on medical imaging, vol. 37, no. 8, pp.
1865–1876, 2018. [Online]. Available: https://arxiv.org/abs/1701.08816/.

[122] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
[Online]. Available: https://dl.acm.org/doi/abs/10.1145/358669.358692/.

98

https://ieeexplore.ieee.org/abstract/document/9026239.
https://arxiv.org/abs/1701.08816/.
https://dl.acm.org/doi/abs/10.1145/358669.358692/.

Acknowledgements

Alla fine di questo percorso il minimo che io possa fare è dedicare delle parole a
tutte le persone che mi hanno supportata e sopportata durante questi anni.

In primo luogo, ringrazio di cuore il prof. Pietro Piazzolla e Leonardo per la
loro gentilezza e disponibilità, per avermi messa sin dall’inizio a mio agio e avermi
permesso di dare il mio piccolo contributo al loro interessante lavoro di ricerca.
Non avrei mai immaginato di dedicarmi a qualcosa che riguardasse l’ambito medico
ma, come sempre accade, ogni cosa che a prima vista mi spaventa finisce per in-
trigarmi e affascinarmi incredibilmente e così è stato anche in questo caso!

Grazie a mamma e papà, che mi hanno insegnato l’impegno e il sacrifico e mi
hanno messa nelle condizioni di fare la scelta giusta dandomi sempre la possibilità
di farlo da sola. Questo traguardo è il minimo che potessi fare per ripagare i loro
sacrifici, grazie ai quali ho avuto la possibilità di studiare così tanto lontano da
casa. La distanza non è semplice da gestire e sappiamo che una parte del mio cuore
rimane sempre lì e una parte del loro parte con me. Grazie per aver sopportato
con tanta pazienza i momenti di sconforto ed aver assecondato tutte le mie pazzie,
compreso un salto nel vuoto da 4000 metri.

Grazie a mio fratello, nonostante i nostri due caratteri forti facciano spesso
scintille, noi sappiamo benissimo che ci siamo sempre l’una per l’altro e che tutti
i litigi sono solo particolari dimostrazioni d’affetto.

Grazie ai miei nonni, quelli che ho la fortuna di avere con me e quelli che non ci
sono più, perchè ovunque si trovino so benissimo che mi sono stati sempre accanto.
Grazie ai miei zii, cugini e a quella pazza comitiva di amici che, conoscendomi da
sempre, ormai sono la mia seconda famiglia, anche se confessano che avrebbero
preferito conoscermi dopo i primi tre anni di vita.

Grazie alle mie amiche di sempre, a Fosca, Gabriella, Greta e Martina, nonos-
tante come in tutti i legami più forti ci siano alti e bassi, sappiamo sempre come
ritrovarci e volerci bene. Grazie per esserci state nei periodi più impegnativi e per
aver compreso tutti i miei "no, devo studiare".

100

Acknowledgements

Grazie a Dario, per la sua capacità di trovarsi al posto giusto nel momento
giusto anche a più di mille chilometri di distanza, grazie per avermi regalato un
sorriso anche quando non ne avevo voglia e per le foto del mare quando ne sentivo
la mancanza.

Grazie al Collegio Einaudi e ovviamente al Quarto Piano, la mia grande famiglia
di Torino. Sono arrivata in collegio con due valigie piene di insicurezze e tanta
voglia di tornare a casa, ma grazie al gruppo che si è formato ho realizzato che
vivere a Torino non era poi così male. Grazie soprattutto a coloro che non si sono
limitati ad essere dei semplici coinquilini, ma sono diventati un pezzo di cuore e
sono parte dei miei amici più cari; grazie a chi si è dimostrata la sorella che non
ho mai avuto, a chi mi ha ascoltata e dato consigli di ogni tipo, alle "passeggiate"
in terrazza, agli allenamenti di gruppo, ai concerti in cucina, a chi ha condiviso
con me i giorni e le notti per i lavori di gruppo e a chi mi ha fatto scoprire ed
apprezzare la cucina etnica in piena pandemia!

Grazie davvero a tutti voi, per aver creduto in me anche quando non ci credevo
nemmeno io! E grazie anche alle grandi delusioni, perchè mi hanno resa più forte!

All’inizio di questo percorso, il primo approccio con questa disciplina era stato
talmente burrascoso da spingermi quasi a mollare tutto. Eppure, qualcuno mi
aveva detto che sarebbe stata proprio questa la mia strada. Dopo cinque anni,
grazie a questa strana "maledizione" che puntualmente mi fa inesorabilmente ap-
prezzare ciò che a prima vista odio, posso dire che aveva ragione! Ecco, spero che
il mio "non so cosa voglio, ma voglio arrivarci", il mio non accontentarmi mai, il
non essere mai soddisfatta di me stessa e tentare di andare oltre i miei limiti con-
tinuino ad accompagnarmi sempre, dandomi la possibilità di continuare imparare
e migliorarmi. Sono consapevole che questo non è un traguardo, ma un punto di
partenza per nuove sfide che spero di essere all’altezza di affrontare!

101

	Introduction
	Theoretical background on deep learning
	Introduction
	Machine Learning
	Deep Learning
	Basic concepts
	Perceptrons
	Sigmoid Neurons

	Neural Networks
	Learning process

	Convolutional Neural Network
	Neural Networks in practice

	Deep Learning and Computer Vision
	Semantic Segmentation
	Convolutional neural networks for segmentation

	Literature analysis
	Introduction
	Template-based methods
	Feature-based methods
	Direct prediction or learning-based methods
	Bounding box prediction and PnP algorithm-based methods
	Classification-based methods
	Regression-based methods

	Conclusions

	Proposed Methodology
	Deep Learning and Augmented Reality Solutions for Urologic Surgery Support
	The Robot-Assisted Radical Prostatectomy (RARP) Procedure
	Existing Augmented Reality Solutions for the RARP Procedure
	Starting point

	Implementation of the proposed approach
	Datasets Creation
	Semantic Segmentation Dataset
	Rotation Dataset

	Segmentation Neural Network
	Rotation Neural Network

	Testing Results
	Segmentation Neural Network
	Rotation Neural Network
	Conclusions and Future Works

