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Summary

In the last two decades the cloud has gained a lot of importance, indeed the current
trend is to engineer the new web applications to be cloud native, thus to be split
up in loosely-coupled micro-services, each one containerized and deployed as a part
of a bigger application. The use of containers allows to cut oneself off the hosting
physical hardware and operating system, letting to focus on the main purposes of a
web application: to be widespread and high-available. The cloud allows to achieve
this goal, by gathering the infrastructure control under the cloud provider tenants
and implementing the IaaS (Infrastructure as a Service) and PaaS (Platform as
a Service) paradigms: the computational, networking and storage resources are
provided on demand to the cloud provider’s customers as if they were services. A
technology that broke through the cloud market is Kubernetes, a project kicked off
by Google in 2014 that allows to automate deployment, scaling, and management
of containerized applications. Beside the cloud, in recent years the edge computing
has gained a lot of importance: it is a distributed computing paradigm that brings
the computational and storage resources close to the final user, in order to improve
the QoS standards in terms of latency and bandwidth.

The goal of the project behind this thesis is to create a federation of Kubernetes
clusters that cooperate at the edge of the network: many different tenants are con-
nected together to cooperate in creating a federation of clusters with computational,
storage and networking resources shared between them. In this scenario every
tenant can make its own resource cluster available to the federation by sharing or
leasing them out in a federated environment.

This solution needs a way to make possible that the cluster that will form this
federation can discover, authenticate and join them each other in a liquid and
dynamic way. This work proposes a solution to allow clusters, both in Local Area
Networks (as a set of IoT or edge devices) and in Wide Area Networks (as between
data-centers or between IoT devices and the central cloud), to have an automatic
discover and to peer each other in a transparent and secure way in a multi-tenant
scenario.
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Chapter 1

Introduction

In the last years, container orchestration is becoming more and more important
and Kubernetes, one of the main actors in this field, is used by most of the big
companies to orchestrate their jobs in their data-centres in a clustered environment.
Now, this trend is also becoming popular in small and medium companies that
need to execute their jobs in smaller clusters or even in tiny ones at the edge or in
IoT devices.

Technologies like the 5G or the edge computing are leading to a multitude of
small clusters geographically distributed that can serve the applications near the
end-user. On the one hand, these clusters allow the companies to use the same
APIs and the same applications both in the core of the cloud and at the edge, on
the other is very difficult to have enough resources to deal with peaks of traffic.
Here is where multi-cloud solutions like Liqo come.

Liqo, the project behind this thesis, enables the creation of a multi-cluster
environment with liquid resource sharing between different clusters. This is what is
required in a large ecosystem of small clusters, with a relatively low medium load
but with a lot of load peaks, where each one can use, for a short amount of time,
the resources available in other places, both in the core of the cloud or in other
edge/IoT sides.

1.1 The need of Multiple Clusters
Organizations may need a multi-cluster environment for many different reasons.
We can distinguish between two main categories of environments:

• In a Cloud Environment: where the company can have many large data-
centres, both on-premise (in private infrastructure and on proprietary hard-
ware) and on managed solutions (in a public cloud provider, like Amazon Web
Services, Google Cloud Platform, Microsoft Azure, and many others).

1
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An organization may need multiple clusters in a cloud environment to have a
high resource availability, distributed in multiple zones, and may need that
these clusters are hosted by different cloud providers to contain costs or to
not be strictly linked to a specific one of them.
The usage of multiple clusters can also reduce some scalability problems on
very big clusters.

• In an Edge or IoT Environment: where the company can have a lot of
small clusters, even single-node ones. They can be geographically distributed
to be closer to the end-user.
In this scenario, the main needs are the availability of the same API (for the
software) and the re-utilization of the same skills (for the humans) already
achieved for the cloud world to manage small devices too. With the inter-
operability of the API, a new and closer integration becomes possible with
the movement of the applications between different devices.

1.2 Service Discovery
According to the previous scenario, when a new IoT/edge device is turned on, it
has to discover the environment around it, to know who its neighbors are, and
it can need to connect to the cloud infrastructure of the producer and/or of the
owner company in the simplest and transparent way possible. This new scenario is
very different from the core of the cloud, built of private and/or public data-centres
with a static and well-known infrastructure, this can be very dynamic, and the
available clusters and devices can change rapidly over time.

The only way to achieve this flexibility is to implement an automatic service
discovery.

1.3 The Goal of the thesis
The goal of this thesis is to design and implement a strategy and a mechanism
to allow Kubernetes clusters to discover and to join them together, keeping the
knowledge of the neighborhood updated over time.

Many federation solutions like Kubefed (the multi-cloud solution by the Ku-
bernetes community) do not have the required elasticity, do not provide a cluster
discovery solution, require a master-slave architecture in clusters (no peer-to-peer
connections), and only support manual join and unjoin from the federation. Kubefed
can be a nice solution when applied in a static cloud infrastructure (even if it is
not a perfect solution for many reasons), but it is totally not a viable solution in a
dynamic environment like the IoT world.

2
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The first step is to achieve the possibility to dynamically update the knowledge
of the clusters, that in this scenario can be intended as composed by a single edge
device, in our proximity and to be able to know where (the address and the port)
and how (with which identity) to connect with them.

This work answers to the where question using already existent technologies
like the DNS/mDNS Service Discovery, which allows generic devices (a printer for
example) to be discovered in a Local Area Network (LAN), and bring them in a
cloud-based ecosystem. This technology is enough flexible to be used for Wide Area
Networks (WAN) too, using a DNS server instead of mDNS one, allowing us not to
have to duplicate our discovery stack when we have a new different scenario where
the IoT/edge devices need to connect to the cloud, or even in a cloud-to-cloud
scenario.

In a second step a new service, the Authentication Service, has been created to
answer to the how question and handle the cluster authentication and to provide a
new identity with the least required permissions to the remote clients that want to
establish a new peering.

With this new identity the two clusters are able to share and to negotiate the
parameters required to establish both the peer-to-peer network connection between
them and to create the Liqo “virtual big node” where the jobs are effectively
scheduled, and the liquid resource sharing happens.

We will analyse this work with the following structure:

• Chapter 2 provides an extensive presentation of Kubernetes, its architecture
and concepts.

• Chapter 3 describes the Service Discovery technologies, with particular
attention to the pros and cons of the main ones.

• Chapter 4 provides an extensive presentation of Liqo, its architecture and
concepts.

• Chapter 5 provides a general overview on the Discovery and Peering process.

• Chapter 6 presents in depth the functionality of the Discovery Component,
like the different discovery methods.

• Chapter 7 presents in depth the cluster authentication mechanism and the
component that handle it.

• Chapter 8 analyses the achieved results in terms of platform supports and
in terms of time needed for the discovery and the peering of two clusters.

3



Chapter 2

Kubernetes

In this chapter we analyse Kubernetes architecture, showing also its history and
evolution through time, in order to lay the foundations for all the work which will
be exposed later on. Kubernetes (often shortened as K8s) is a huge framework
and a deep examination of it would require much more time and discussion, hence
we only provide here a description of its main concepts and components. Further
details can be found in the official documentation [1].

The chapter continues with an introduction to other technologies and tools used
to develop the solution, in particular Virtual-Kubelet [2], a project which allows
to create virtual nodes with a particular behaviour, and Kubebuilder [3], a tool
to build custom resources.

2.1 Kubernetes: a bit of history
Around 2004, Google created the Borg [4] system, a small project with less than
5 people initially working on it. The project was developed as a collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [4].

In 2013 Google announced Omega [5], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability”.

In the middle of 2014, Google presented Kubernetes as on open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, and Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg and many of its initial contributors previously used to work on it. The
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original Borg project was written in C++, whereas for Kubernetes the Go language
was chosen.

In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [6]. Since then, Kubernetes has significantly grown, achieving
the CNCF graduated status and being adopted by nearly every big company.
Nowadays it has become the de-facto standard for container orchestration [7, 8].

2.2 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running and coordi-
nating containerized applications across a cluster of machines. It is designed to
completely manage the life cycle of applications and services using methods that
provide consistency, scalability, and high availability.

What does “containerized applications” means? In the last decades, the deploy-
ment of applications has seen significant changes, which are illustrated in figure
2.1.

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on
a different physical server, but clearly it is not feasible: the solution could not
scale, would lead to resources under-utilization and would be very expensive for
organizations to maintain many physical servers.

The first real solution has been virtualization. Virtualization allows to run

5
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multiple Virtual Machines on a single physical server. It grants isolation of the
applications between VMs providing a high level of security, as the information of
one application cannot be freely accessed by another application. Virtualization
enables better utilization of resources in a physical server, improves scalability,
because an application can be added or updated very easily, reduces hardware
costs, and much more. With virtualization it is possible to group together a set
of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its own operating
system, on top of the virtualized hardware.

A second solution which has been proposed recently is containerization. Con-
tainers are similar to VMs, but they share the operating system with the host
machine, relaxing isolation properties. Therefore, containers are considered a
lightweight form of virtualization. Similarly to a VM, a container has its own
filesystem, CPU, memory, process space etc. One of the key features of containers
is that they are portable: as they are decoupled from the underlying infrastructure,
they are totally portable across clouds and OS distributions. This property is
particularly relevant nowadays with cloud computing: a container can be easily
moved across different machines. Moreover, being “lightweight”, containers are
much faster than virtual machines: they can be booted, started, run and stopped
with little effort and in a short time.

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to manage
them becomes essential; container orchestrators serve this purpose. A container
orchestrator is a system designed to easily manage complex containerization de-
ployments across multiple machines from one central location. As depicted in
figure 2.2, Kubernetes is by far the most used container orchestrator. We provide
a description of such system in the following.

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed using
the DNS name or using its own IP address. If traffic to a container is high, a
load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the
desired state at a controlled rate. For example, it is possible to automate the
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Figure 2.2: Container orchestrators use [9].

creation of new containers of a deployment, remove existing containers and
adopt all their resources to the new container.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and man-
age sensitive information in Kubernetes, such as passwords, OAuth tokens,
and SSH keys. It is possible to deploy and update secrets and application
configuration without rebuilding the container images, and without exposing
secrets in the stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists of
a set of machines, called nodes, that run containerized applications. At least one
of the nodes hosts the control plane and is called master. Its role is to manage the
cluster and expose an interface to the user. The worker node(s) host the pods
that are the components of the application. The master manages the worker nodes
and the pods in the cluster. In production environments, the control plane usually
runs across multiple machines and a cluster runs on multiple nodes, providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.
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Figure 2.3: Kubernetes architecture

2.4.1 Control plane components
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
for simplicity, they are typically executed all together on the same machine, which
does not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes the
Kubernetes REST API, and constitites the front end for the Kubernetes control
plane. Its function is to intercept REST request, validate and process them. The
main implementation of a Kubernetes API server is kube-apiserver. It is designed
to scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

etcd

etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm [10], which allows different machines to work as a coherent group and
survive to the breakdown of one of its members. etcd can be stacked in the master
node or external, installed on dedicated host. Only the API server can communicate
with it.
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Scheduler

The scheduler is the control plane component responsible of assigning the pods to
the nodes. The one provided by Kubernetes is called kube-scheduler, but it can
be customized by adding new schedulers and indicating in the pods to use them.
kube-scheduler watches for newly created pods not assigned to a node yet, and
selects one for them to run on. To make its decisions, it considers singular and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.
These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links Services
and Pods).

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.
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• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of
the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection with
the container runtime is established through the Container Runtime Interface
and is based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes, but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web gui),
monitoring and logging.
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Figure 2.4: Kubernetes master and worker nodes [11].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields [12]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,
and the results can be restricted to resources matching a selector query;

– Watch: stream results for an object(s) as it is updated.
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• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server.

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Label & Selector
Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-plane
agents;

• default: it contains objects and resources created by users and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.

2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc.
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Figure 2.5: Kubernetes pods [11]

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.

2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod. The listing is an example of deployment.

1 ap iVers ion : a pp s / v1
2 kind : D ep l oymen t
3 metadata :
4 name: n g i nx −d e p l o ymen t
5 l a b e l s :
6 app: n g i n x
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app: n g i n x
12 template :
13 metadata :
14 l a b e l s :
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15 app: n g i n x
16 spec :
17 con ta in e r s :
18 - name: n g i n x
19 image : n g i n x : 1 . 7 . 9
20 port s :
21 - conta inerPort : 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labelled as app:nginx. The template
field shows the information of the created pods: they are labelled app:nginx and
launch one container which runs the nginx DockerHub image at version 1.7.9 on
port 80.

2.5.6 Service
A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

1 ap iVers ion : v1
2 kind : S e r v i c e
3 metadata :
4 name: my− s e r v i c e
5 spec :
6 s e l e c t o r :
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Pod

Node

Figure 2.6: Kubernetes Services [11]

7 app: myApp
8 port s :
9 - pro toco l : TCP

10 port : 80
11 ta rgetPort : 9 3 7 6

2.6 RBAC
Kubernetes defines several APIs for the management of accesses. The Role-based
access control (RBAC) is a method of regulating access to compute or network
resources based on the roles of individual users.

The API group rbac.authorization.k8s.io defines four object types to define
these permissions:

• Role: define rules valid for a specific namespace

• ClusterRole: define rules valid for all namespaces

• RoleBinding: link an identity to a set of rules in a specific namespace

• ClusterRoleBinding: link an identity to a set of roles in all namespaces
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2.6.1 ServiceAccount
The ServiceAccount is a Kubernetes object in the core/v1 API group that provides
an identity for processes. When a new object of this kind is created, the API
Server provide to it a new client certificate that will be used in all the future
authentications.

2.6.2 Role and ClusterRole
The Role and the ClusterRole contains rules that represent a set of permissions. In
these permissions there cannot be "deny" rules.

The only difference between of them is that the first sets the permissions within
a particular namespace (the one which contains the resource), while the second is
a non-namespaced resource and can be used in all the namespaces.

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : R o l e
3 metadata :
4 namespace : d e f a u l t
5 name: pod− r e a d e r
6 r u l e s :
7 − apiGroups : [ " " ] # "" i n d i c a t e s the core API group
8 r e s ou r c e s : [ " pods " ]
9 verbs : [ " get " , " watch " , " list " ]

In this example [11] we are creating a set of permissions in the default namespace
that will grant access to get, watch, and list pod resources. We can have a similar
example, but cluster-wide scoped, with the following ClusterRole.

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : C l u s t e r R o l e
3 metadata :
4 # " namespace " omitted since ClusterRoles are not

namespaced
5 name: s e c r e t − r e a d e r
6 r u l e s :
7 − apiGroups : [ " " ]
8 r e s ou r c e s : [ " pods " ]
9 verbs : [ " get " , " watch " , " list " ]
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2.6.3 RoleBinding and ClusterRoleBinding
The RoleBinding and the ClusterRoleBinding resources [11] grant the permissions
defined in a Role or a ClusterRole to a given user, set of users or to a ServiceAc-
count. A RoleBinding grants permissions within a specific namespace whereas a
ClusterRoleBinding grants that access cluster-wide.

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 # This role binding allows " jane " to read pods in

the " default " namespace .
3 # You need to already have a Role named " pod - reader

" in that namespace .
4 kind : R o l e B i n d i n g
5 metadata :
6 name: r e ad −pod s
7 namespace : d e f a u l t
8 s ub j e c t s :
9 # You can specify more than one " subject "

10 − kind : U s e r
11 name: j a n e # " name " is case s e n s i t i v e
12 apiGroup : r b a c . a u t h o r i z a t i o n . k 8 s . i o
13 ro l eRe f :
14 # " roleRef " specifies the binding to a Role /

ClusterRole
15 kind : R o l e # this must be Role or C l u s t e r R o l e
16 name: pod− r e a d e r # this must match the name of the

Role or C l u s t e r R o l e you wish to bind to
17 apiGroup : r b a c . a u t h o r i z a t i o n . k 8 s . i o

2.7 Virtual-Kubelet
Two Kubernetes-based tools which have been used during the development of this
project are Virtual-Kubelet and Kubebuilder. Virtual Kubelet is an open source
Kubernetes kubelet implementation that masquerades a cluster as a kubelet for the
purposes of connecting Kubernetes to other APIs [2]. Virtual Kubelet is a Cloud
Native Computing Foundation sandbox project.

The project offers a provider interface that developers need to implement in
order to use it. The official documentation [2] says that “providers must provide
the following functionality to be considered a supported integration with Virtual
Kubelet:
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1. Provides the back-end plumbing necessary to support the lifecycle management
of pods, containers and supporting resources in the context of Kubernetes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps”.

Figure 2.7: Virtual-Kubelet concept [2]

2.8 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [3].

CustomResourceDefinition is an API resource offered by Kubernetes which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is created, the Kubernetes API
server creates a new RESTful resource path; the CRD can be either namespaced or
cluster-scoped. The name of a CRD object must be a valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own
API server to handle them [11]. On their own, custom resources simply let you
store and retrieve structured data. In order to have a more powerful management,
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you also need to provide a custom controller which executes a control loop over the
custom resource it watches: this behaviour is called Operator pattern [13].

Kubebuilder helps a developer in defining his Custom Resource, taking auto-
matically basic decisions and writing a lot of boilerplate code. These are the main
actions operated by Kubebuilder [3]:

1. Create a new project directory.

2. Create one or more resource APIs as CRDs and then add fields to the resources.

3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests to test new fields and business logic.

6. Build and publish a container from the provided Dockerfile.
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Service Discovery

In this chapter we analyze how service discovery can be implemented over an IP
network, analyzing the chosen DNS-SD (DNS service discovery) protocol that we
aim to integrate with our solution.

3.1 DNS Service Discovery

DNS Service Discovery is a way of using standard DNS programming interfaces,
servers, and packet formats to browse the network for services. [14]

The DNS-SD protocol has been created to operate in a zero-configuration
environment in substitution of old non IP-based discovery protocols like AppleTalk
Name Binding Protocol. [15] [16]

Figure 3.1: Service Discovery [17]
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3.1.1 How does it work
Service Instance Enumeration (Browsing)

Traditional DNS SRV records are useful for locating instances of a particular type
of service when all the instances are effectively indistinguishable and provide the
same service to the client.

This specification adds a level of indirection over the DNS SRV records. Instead
of requesting records of type "SRV" with the name "_ipp._tcp.example.com.", the
client requests records of type "PTR".

The result of this PTR lookup for the name "<Service>.<Domain>" is a set
of zero or more PTR records giving Service Instance Names of the form: Service
Instance Name = <Instance> . <Service> . <Domain> [16]

Service Instance Resolution

When a client needs to contact a particular service, identified by a Service Instance
Name, previously discovered via Service Instance Enumeration (browsing), it queries
for the SRV and TXT records of that name. The SRV record for a service gives
the port number and target hostname where the service may be found. The TXT
record gives additional information about the service. [16]

Figure 3.2: DNS Service Discovery
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3.1.2 DNS for WANs
In a Wide Area Network, the DNS-SD protocol is able to successfully handle a
Service Discovery. The only required configuration is the address of a DNS server
serving the appropriate DNS records. On some networks, the administrator might
manually enter these records into the name server’s configuration file.

Another option, that can automatically manage the configuration, could be a
network monitoring tool that could output a standard zone file to be read into
a conventional DNS server. Alternatively, IP devices could use Dynamic DNS
Update to automatically register their own PTR, SRV, and TXT records with the
DNS server. [16]

3.1.3 mDNS for LANs
Multicast DNS is a way of using familiar DNS programming interfaces, packet
formats, and operating semantics, in a small network where no conventional DNS
server has been installed. [18]

In a Local Area Network, a Multicast DNS client may simply send standard
DNS queries blindly to 224.0.0.251:5353, without necessarily even being aware
of what a multicast address is. If a name being queried falls within one of the
reserved Multicast DNS domains, then, rather than using the configured Unicast
DNS server address, the query is instead sent to 224.0.0.251:5353. [19] If a host can
offer the service that the remote host is looking for, it will answer with its local
DNS records.

The mDNS service discovery is one of the pillars of Zero Configuration Network-
ing, "that means making it possible to take two laptop computers, and connect
them with a crossover Ethernet cable, and have them communicate usefully using
IP, without needing a man in a white lab coat to set it all up for you". [20]
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Liqo

In this chapter, we analyze Liqo architecture, showing the idea behind it. We will
describe the overall picture of the open-source project where this work is involved
in, how it is integrated, and its importance.

4.1 Liqo Idea
Liqo aims to create an opportunistic interconnection of multiple Kubernetes clusters
allowing seamless resource and service sharing among them, creating an "endless
Kubernetes ocean" where the user applications can be scheduled.

We can have a multiple cluster environment in a lot of different scenarios, both
owned by the same entity or owned by different entities, These cluster may have
underutilized resources because all these clusters have to have enough resources to
deal with a peak of load by their own, but during the day they have moments of
low load. In these moments they are wasting a part of their resources that can be
available to be shared.

Liqo aims to extend the resources present in an already existent cluster using
the ones currently non-occupied in neighbor clusters in an opportunistic way, so
no peering and no sharing are definitive or not reversible, and it’s always possible
unpeer the two clusters in a simple way and return to the original state. When we
extend a cluster with Liqo there is no change in the standard Kubernetes APIs,
the ones described in Chapter 2 are still valid in the new environment, and the
user applications have not to be changed in order to wirk with Liqo.

Liqo extends the cluster by adding a new virtual node for each remote peered
cluster, creating in that way a "virtual big node" where the pods can be scheduled
by the default Kubernetes scheduler with no change. The Kubernetes Pods that
will be scheduled on this virtual node will be took by the Virtual Kubelet and
offloaded to the remote cluster.
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Figure 4.1: No Change in Kubernetes API

4.2 Cluster Management
Liqo is able to manage multiple Kubernetes clusters, allowing the user to use external
resources, in a transparent way. We can describe the Liqo cluster management
functionality with five pillars:

1. Discovery: Discover available clusters.

2. Peering: Establish an administrative interconnection between the clusters
and negotiate the parameters.

3. Network Interconnection: Establish a network interconnection between
the clusters.

4. Resource Management: Create the virtual node and make the external
resources available.

5. Usage: Offload your pods.

4.2.1 Discovery
Liqo can dynamically discover and add new clusters to the "Big Cluster" abstraction.
These clusters can be discovered in a lot of different ways, such as manually (for
testing or not-yet-configured domains), or by an automatic configuration with DNS
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(on selected domains) or with mDNS (only on local area network). The discovery
process will take the information from different data sources and will create a new
ForeignCluster CR in the local cluster.

The discovery functionality is the main argument that we will deal with in this
work, we will analyze it deeper in the next chapters.

Figure 4.2: Discovery

4.2.2 Peering
Liqo can dynamically peer different and administratively separate clusters with
a policy-driven, voluntary, and direct relationship. This connection has to be
established before sharing any resources. It has a peer-to-peer architecture, so no
master cluster is involved.

The Liqo peering uses the information collected during the discovery phase to
contact the remote cluster and checks that both clusters that will be part of the
peering are available and have accepted the interconnection.

The peering process will be deeper analyzed in Chapter 5.
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Figure 4.3: Peering

4.2.3 Network Interconnection

Liqo can extend the cluster network to the remote cluster, basing on the peering
information. The network parameters, required to establish the VPN tunnel, are
dynamically negotiated with dedicated CRD to allow Liqo to support overlapping
pod CIDR in the two clusters. This let Liqo not take any assumption on the IP
address space and on the networking in the peered clusters.

Liqo defines a gateway pod (possibly replicated) that works as a VPN terminator
and allow the traffic to flow between the peered clusters. If required, it performs
a double natting to allow them to communicate even if they have overlapping IP
address sapaces.
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Figure 4.4: Network Interconnection

4.2.4 Resource Management
When a cluster accepted the peering with another one, it can advertise to the
second the amount of resources that it can share. If the remote cluster accepts the
offer, it will create a new "Big Node" with these resources (i.e. CPU and memory).
The "Big Nodes" are equivalent to physical nodes, hence can be controlled by the
vanilla Kubernetes scheduler and controller-manager.

When the peering and the network interconnection is completed, the Virtual
Kubelet will enable the new node setting it to ready.

4.2.5 Usage
When in the local cluster the new virtual node is set up and marked as ready,
and the vanilla Kubernetes scheduler can schedule new pods on this node, these
new pods will no see differences when accessing a service being deployed locally or
remotely.

The VirtualKubelet is in charge to take the Pods scheduled on the virtual node,
to offload them reflecting them in the remote cluster, and to keep the local shadow
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Pod Status aligned to the remote one. These Pods will be reachable from the local
cluster and they can reach the services in the local cluster. Services and Endpoints
are consistent on both the clusters, because of the VirtualKubelet reflection of
EndpointSlices and them IP translation.

Figure 4.5: Use
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Discovery and Peering
Process

In an environment where we can have multiple clusters, the first problem that
we can find is: how can we make sure they know each other of their existence?
And then, how can we share resources between them and make it possible to
communicate? In this scenario, the Discovery and Peering Process comes in our
help.

Figure 5.1: Multi-device environment example

Let us imagine having an environment with multiple servers and devices (both
traditional devices as PCs or Laptops, and IoT devices) in our building that have
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to be joined dynamically when the devices are turned on and to start sharing
resources. These devices can need, not only need to discover among them, but also
discover external enterprise services that can be outside of the building, either in
another building or in the cloud.

5.1 Involved Components
We have to have some components to manage the discovery and peering process:

• Discovery: it performs the discovery process, both in LANs and in WANs,
it has a mDNS server to make the cluster visible in the local area networks,
a DNS and mDNS client to discover other clusters respectively in wide area
networks and in local area networks. It also provides a garbage collection
mechanism to delete those clusters no more available or reachable.

• Authentication Service: it provides an identity to the remote clusters that
require it, and it links the required roles, basing on the peering status. This is
the only component that is exposed to the external of the cluster.

• ForeignCluster Operator: it manages the reconciliation of the ForeignClus-
ter CRs. It takes care of monitoring the peering status, making effective the
user specification. It also checks the status of the other Liqo resources and
takes the ForeignCluster CR status aligned with the system status.

• PeeringRequest Operator: it manages the reconciliation of the PeeringRe-
quest CRs. If a request is accepted it creates the resources required to establish
the peering (i.e. the Broadcaster).

• Broadcaster[21]: it collects the local cluster resource availability and sends
the information to the remote cluster required for the virtual node creation.
It is in charge to refresh periodically this information.

• Advertisement Operator[21]: it manages the reconciliation of the Adver-
tisement CRs. When an advertisement is accepted it creates a VirtualKubelet1

deployment that will manage the virtual node pointing to the foreign cluster.

1The Liqo VirtualKubelet is an implementation of the VirtualKubelet project, see it on GitHub
at https://github.com/virtual-kubelet/virtual-kubelet
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5.2 Communications
The Liqo components communicate each other in different ways. In Figure 5.2
we can see how the components interact. We can see in blue the components
and the resources that are executed or stored in the remote cluster, and in green
the ones that are in the home cluster. The boxes with squared border are logical
Liqo components while the rounded ones are the requests between of them or the
resources created.

In Liqo there are three ways that the components use to share information:

• DNS or mDNS

• HTTP(s)

• Kubernetes CRDs

DNS or mDNS This method is mainly used in the very early discovery stages
when the two clusters are not aware reciprocally of their existence. The steps that
are using these protocols implement the service discovery for the HTTP endpoint
of the Authentication Service.

The DNS protocol has the key feature to be external to the Liqo installation
and to be a well-known and always-available solution. While the mDNS protocol
let us be discovered and to discover on LANs with zero configuration.

The information shared with these protocols can change over time and it needs
to be periodically refreshed.

HTTP The HTTP protocol is used in the authentication step when the cluster
is aware of the existence of another one, it is able to reach it, but it needs more
information (for example a name to display to a human user), or it needs an identity
with the required permissions to contact the API Server to complete the peering.

It is used when is required to have a custom response to a specific request (for
example the request of a new identity), or when it is not possible to be authenticated
from the remote API Server.

Kubernetes CRDs This is the most widely used method to share and store
information in Liqo, in this way we can store some information that we collected
in the previous steps and let that a Kubernetes Operator will reconcile the spec
inserted in these resources with the observed status.

It allows us to persist some information and make all the components stateless,
an important condition to run them in a distributed environment (as described in
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the "from pet to cattle" paradigm [22]), and to promptly react to system status
changes.

Figure 5.2: Liqo components inter-communication schema
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5.3 Discovery and Peering Main Steps
We can summarize the entire workflow described in the Figure 5.2 in 4 main steps:
2

Discovery The goal of this step is to allow a cluster to
be aware of the existence of another reachable cluster that
is available to start a peering. This can be done in several
different ways (mDNS, DNS, Manually, ...) and ends with
the creation of a new ForeingCluster CR.

Authentication When a cluster is aware of the existence
of another one, it needs to get its information (for example
the ClusterName and the ClusterId), and it needs an identity
to use to authenticate to its API Server. In this step, all
this information is shared and the foreign cluster will create
an identity uniquely associated with the home cluster.

Peering This step can be enabled either automatically or
manually by the user. The home cluster asks the foreign
cluster to start a peering, the remote cluster will reply with
an offer that the home cluster can accept or deny. If the
request is accepted, the connection will be established and
the peering completed.

Resource Sharing This is the last step when the peering
was established and Liqo is ready to share the computing
resources between the clusters.

2Illustrations by Vecteezy.com
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5.4 CRDs involved in the Discovery and Peering
Process

The CRD (Custom Resource Definition) abstraction allow us to map the observed
state of some external3 concept or knowledge to a real resource that can be managed
natively by a Kubernetes Operator with an interaction with the API Server. This
is exactly what we want to do with information retrieved during the discovery
process.

In this section we will analyze in detail all the CRDs defined to make the process
work.

5.4.1 ForeignCluster
A ForeignCluster CR maps the knowledge of the existence of another cluster to a
Kubernetes resource.

Integrating Service Discovery with CRDs

With a DNS/mDNS service discovery, we can find the information required to
contact a remote service. In particular, given service to discover we can find all the
clusters that subscribed themselves as a provider for that service. This subscription
can be to a DNS domain or to an mDNS group, but in both cases the retrieved
information is very similar:

"DNS example"
1 example . com . PTR l iqo−c l u s t e r . example . com .
2

3 l i q o−c l u s t e r . example . com . SRV 0 0 443 auth . s e r v e r . example . com .
4

5 auth . s e r v e r . example . com . A 1 . 2 . 3 . 4

"mDNS example"
1 _liqo_auth . _tcp . l o c a l PTR ClusterID . _liqo_auth .

_tcp . l o c a l
2

3 ClusterID . _liqo_auth . _tcp . l o c a l . l o c a l SRV 0 0 31200 nodename .
l o c a l

4

5 nodename . l o c a l A 172 . 1 8 . 0 . 2

3External to the core Kubernetes resources, like Pod scheduling and managing
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In both cases we have:

• Well-Known Group or Domain: example.com. and _liqo_auth._tcp.local
This is an endpoint that we know is existing and where we will add our clusters,
it can be a company domain (i.e. in WANs), or an mDNS domain (i.e. in
LANs).

• A cluster registered for that service: liqo-cluster.example.com. and
ClusterID._liqo_auth._tcp.local
In the PTR record can be added how many clusters serving a Liqo service we
want, each of them can be contacted to establish a peering.

• The hostname where the Auth Service is exposed:
auth.server.example.com. and nodename.local
For each cluster present in the PTR record we will have an SRV record telling
us the hostname and the port to contact.

This information will be collected in an URL, that will be contacted in the
future steps, and inserted in the new ForeignCluster CR. We can have a minimal
(but working) example with the data taken from the "DNS example". All the other
Cluster information will be retrieved from this URL, as described in Chapter 6.

"Minimal ForeignCluster example"
1 ap iVers ion : d i s c o v e r y . l i q o . i o / v 1 a l p h a 1
2 kind : F o r e i g n C l u s t e r
3 metadata :
4 name: my− c l u s t e r
5 spec :
6 authUrl : " https :// auth . server . exa mpl e . com .:443 "

ForeignCluster list as Cluster Database

In a multi-cluster environment, we can see the list of the ForeignCluster resource
as a Database of the clusters discovered and currently reachable from the home
cluster. The discovery component constantly updates this list and manages also
the peering status that can be in different phases: Not Peered when the cluster
was discovered but no peering is active, Outgoing when we can schedule our pods
in the remote cluster, Incoming when the remote cluster can schedule its pods in
the home cluster, and Bidirectional when both the Incoming and the Outgoing has
been activated.
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Figure 5.3: Environment with multiple Clusters

In the example in Figure 5.3, where we have five clusters, four of them discovered
and three peered, we will have a ForeignCluster list like that (note that the Cluster
3 is not in the list):

Control Room for the Peering

The ForeignCluster CRD can be a control room for the peering with a remote
cluster. We can act on this resource as an external user to ask the Liqo control
plane to establish a peering or to tear down a previously established peering, simply
setting the join flag inside the ForeignCluster specs.

The ForeignCluster Operator will react to the system events, as the creation of
a new Advertisement or the successful setting of the VPN tunnel between the two

36



Discovery and Peering Process

Name Outgoing Peering Incoming Peering
Cluster1 Enabled Disabled
Cluster2 Disabled Enabled
Cluster4 Disabled Disabled
Cluster5 Enabled Enabled

Table 5.1: Examples of ForeignCluster list

clusters, and updates the respective flags in the CR status.

Figure 5.4: Peering Control Room (Join)

The ForeignCluster operator acts in a very similar way in the unjoin process.
When the join flag is set to false, it reacts by deleting the PeeringRequest in the
remote cluster. This action will trigger several actions in the Liqo components and
the global status will be reported in the ForeingCluster status.

37



Discovery and Peering Process

Figure 5.5: Peering Control Room (Unjoin)

This continuous update means that, at every moment, we can check the peering
status reading the ForeignCluster CR. For each related resource, there is a field
indicating the presence of that resource and where it is stored (i.e. the name and
the namespace).

1 s t a tu s :
2 incoming :
3 peered : true
4 peer ingRequest :
5 name: <NAME>
6 namespace : <NAMESPACE>
7 network :
8 loca lNetworkConf ig :
9 a v a i l a b l e : true

10 r e f e r en c e :
11 name: <NAME>
12 namespace : <NAMESPACE>
13 remoteNetworkConfig :
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14 a v a i l a b l e : f a l s e
15 tunnelEndpoint :
16 a v a i l a b l e : f a l s e
17 outgoing :
18 peered : f a l s e

5.4.2 PeeringRequest
The PeeringRequest CR represents a request that the home cluster sends to a
foreign cluster to start a peering. The existence of that resource means that a
cluster is available for the peering, if the other cluster is also available to establish
a connection, the request is accepted and the peering established.

Enabler for the Resource Sharing

When the remote cluster creates a new PeeringRequest on the local one, the home
cluster has to accept this request to start the resource sharing. This can be done
in two ways:

• Automatically

This is the default option, when the home cluster receives a new request this is
automatically accepted, this is not a security issue because the remote cluster
was previously authenticated.

• Manually

Every coming request will be in pending status until a manual action (or an
action external to the Liqo control plane) accepts it changing its status to
accepted.

Broadcaster Creation

When the PeeringRequest is accepted the PeeringRequest Operator will create a
new Kubernetes Deployment containing the Advertisement Broadcaster that will
manage the resources shared with the remote cluster.

On the new deployment is set an owner reference, in that way when the remote
cluster needs to finish the peering, it is simple as deleting the PeeringRequest, its
deletion will trigger the Broadcaster deployment deletion.
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Figure 5.6: Broadcaster Creation

5.4.3 SearchDomain
The SearchDomain resource is required for the discovery on Wide Area Networks.
With this resource, we provide a domain where to find a list of clusters available
for the peering.

DNS Registry for Clusters in an organization

Figure 5.7: Search Domain Registry

In a company, we can have multiple clusters in multiple buildings distributed over
different geographic regions. With the SearchDomain CR, this company can have
a DNS PTR record containing all these clusters. When the company adds a new
cluster, it can automatically discover all the other clusters.
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Automatic Discovery and Deletion watching the DNS records

The DNS registry is periodically contacted to look for changes, both for new clusters
that have been added and for clusters no more available.

For example, we can have a SearchDomain CR containing the company domain
(in the following example liqo.mycompany.com.), when the list inside that PTR
record changes, the list of created ForeignCluster CRs will change accordingly.

1 ap iVers ion : d i s c o v e r y . l i q o . i o / v 1 a l p h a 1
2 kind : S e a r c hDoma i n
3 metadata :
4 name: mycompany
5 spec :
6 domain: " liqo . m y c o m p a n y . com . "
7 au to j o in : f a l s e

In the example in Figure 5.7 when the cluster in the Building 4 is added, a new
entry in the DNS record will appear and in each cluster, a new ForeignCluster CR
will appear too.

By default, the newly discovered foreign cluster will be peered according to the
settings specified in the ClusterConfig CR4, but settings the autojoin flag in this
resource we can override the default behavior for our company’s clusters.

4This is a Liqo CRD where are stored all the settings related to the local Liqo installation.
They can be changed at runtime by the user and all the Liqo components will accept the new
settings.
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Liqo Discovery Component

The Liqo Discovery Component has several goals, the main ones are:

• Remote Clusters Discovery: is there clusters available for peering?

• Remote Clusters Garbage Collection: are some of them no more avail-
able?

• Starting the Peering Process: ask to a remote cluster to share a part of
its resources

• Starting the Unpeering Process: tell to a remote cluster that its resources
are no more needed

6.1 Discovery Methods

The discovery process is in charge to take information from different sources,
combining them, and creating a new ForeignCluster CR. Depending on the source
of information, it can periodically check that the collected information is up to
date, if not it can update the previously created ForeignCluster CR. In both cases
we have to update the lastUpdate time, that will be used by the garbage collector.

The schema in Figure 6.1 can have many different implementations following it,
with different data sources, with different technologies, and for different scenarios.
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Figure 6.1: Generic Discovery Process

6.1.1 LAN

The first scenario is the discovery of clusters reachable in a LAN. This scenario
can be achieved with a Multicast DNS Service Discovery over a specific service.

In this scenario, when a new Liqo instance starts (when the Discovery Component
starts) creates three different execution threads (Figure 6.2):

• an mDNS server that registers itself to that multicast domain (configurable in
the ClusterConfig CR to have multiple groups over the same LAN) and will
answer to a discovery request from other clusters.

• an mDNS client that at a bootstrap time sends a discovery request and then
starts listening for the answers.

• a thread that periodically sends a multicast message to inform other clusters
to be still alive and running.
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Figure 6.2: LAN Discovery Threads

The Discovery Component leverage on the mDNS service discovery to find the
remote Authentication Service, and retrieves the information about the foreign
clusters (see Chapter 7), this information is stored inside the new ForeignCluster CR
(one for each discovered cluster). In addition, the label discovery.liqo.io/discovery-
type is set to LAN over the CR to allow us to know its origin. In this way the list
of discovered clusters is filterable by discovery type.
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How is the Pod reachable?

The mDNS multicast packets have to be sent to the 224.0.0.251 multicast address
at the port 5353. Note that routers will not forward these packets outside the
original LAN, hence the process that is sending and receiving them has to be in
the main network namespace of the host.

To do that, in Kubernetes, we have to set in the Pod the hostNetwork flag
to true. The process in this container will be isolated as usual in every Linux
namespace except for the network namespace. In Figure 6.3 we can see in green the
LANs where the multicast packets can be forwarded, only in the second scenario
we are able to forward the packets between the hosts.

Figure 6.3: Pod Host Network

6.1.2 WAN

In a second scenario we can have multiple clusters, geographically distributes, that
need to connect each other, or a separate pool of clusters that need to connect to
another one.

For example, we can take a university that has multiple clusters distributed
on multiple campuses and over different LANs. They need a simple way to
interconnect their clusters. At the same time, there can be some students that need
more resources and to connect to the university’s clusters at their home. (Figure
6.4)
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Figure 6.4: WAN Scenario Example

In this example, we can have a DNS server that is serving us a DNS registry for
our clusters with a set of records like this:

1 example . com . PTR campus−1. example . com .
2 campus−2. example . com .
3 campus−3. example . com .
4 campus−4. example . com .
5

6 campus−1. example . com . SRV 0 0 443 auth . campus−1. example . com .
7 campus−2. example . com . SRV 0 0 443 auth . campus−2. example . com .
8 campus−3. example . com . SRV 0 0 443 auth . campus−3. example . com .
9 campus−4. example . com . SRV 0 0 443 auth . campus−4. example . com .

10

11 auth . campus−1. example . com . A 1 . 2 . 3 . 4
12 auth . campus−2. example . com . A 2 . 3 . 4 . 1
13 auth . campus−3. example . com . A 3 . 4 . 1 . 2
14 auth . campus−4. example . com . A 4 . 3 . 2 . 1

Applying a SearchDomain CR in each cluster, both campus ones and students
ones, (as described in the Chapter 5 in the paragraph SearchDomain) we are able
to discover them in a very easy way.

1 ap iVers ion : d i s c o v e r y . l i q o . i o / v 1 a l p h a 1
2 kind : S e a r c hDoma i n
3 metadata :
4 name: m y u n i v e r s i t y
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5 spec :
6 domain: " exa mpl e . com . "
7 au to j o in : f a l s e

This discovery kind is simpler than the LAN discovery because the Liqo Control
Plane has not to care about the DNS server, it only has a DNS client to resolve PTR
and SRV records. After a configurable amount of time, the Discovery Component
sends a new query for these DNS records to check that the information is still valid.

The Discovery Component retrieves the information about the foreign cluster
form the remote Authentication Service endpoint (see Chapter 7), and stores this
information inside the new ForeignCluster CR. The label discovery.liqo.io/discovery-
type is set to WAN over the CR to allow us to know its origin. In addition, it sets
an owner reference over it pointing to the SearchDomain CR to allow the garbage
collection by the default garbage collector of Kubernetes when the parent CR will
be deleted.

6.1.3 Manual
The Manual discovery method is useful for testing purposes, or small installations,
because we have the least possible requirements: we don’t need a single LAN, we
don’t need a DNS server or an own domain where to register our clusters.

The discovery of a remote cluster is simple as the creation of a ForeignCluster
CR containing its authentication URL. The Discovery Component will contact this
URL to get the cluster information that will be stored in the ForeignCluster CR.
Due to the nature of the data source, there is no data periodic check over time.

1 ap iVers ion : d i s c o v e r y . l i q o . i o / v 1 a l p h a 1
2 kind : F o r e i g n C l u s t e r
3 metadata :
4 name: my− c l u s t e r
5 spec :
6 authUrl : " https :// auth . server . exa mpl e . com .:443 "

6.1.4 IncomingPeering
The last available discovery method is the IncomingPeering. This method allows
us to discover the clusters that are sending us a PeeringRequest.

We have a special field in each incoming PeeringRequest that indicates the
authentication URL for the origin cluster. We can use that information to retrieve
its cluster ID and compare it with the list of already known clusters. If it does not
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exist we can create a new ForeignCluster CR for it. This resource will have a label
discovery.liqo.io/discovery-type set to IncomingPeering.

Figure 6.5: IncomingPeering Scenario

If a cluster discovered in this way has no more active peering (neither incoming
nor outgoing), the ForeignCluster CR will be deleted. The idea is that this cluster
was in our database only because of the peering, and, when this source of data is
gone, we can no more check the validity of these data.

For this reason, the IncomingPeering discovery method is a weak method, and
it is overwritable when we will discover the same cluster with a stronger method. We
will change the discoveryMethod field inside the CR and the discovery.liqo.io/discovery-
type label with the new value.

6.2 Garbage Collection
The Garbage Collection is another functionality of the Liqo Discovery Component.
It is in charge to delete the ForeignCluster CRs that were not successfully updated
before the time set in their Time To Live (TTL) field.

6.2.1 ForeignCluster Time to Live
With some kind of data sources (i.e. mDNS and DNS) we can have a TTL provided
by the protocol chosen: in both the DNS packets have this field that is normally
used to express the amount of time that the response will be valid. So we will
use the information obtained from this packet (the ForeignCluster specifications)
for this amount of time. If the discovery will not be refreshed the data will be
considered no more valid and the ForeignCluster CR deleted.
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Figure 6.6: Garbage Collection

The Garbage Collector schedules a cycle every a configurable amount of time,
in each cycle it follows the steps:

1. Get the list of clusters discovered through the LAN or the WAN method.

2. For each of them:

(a) Get the lastUpdateTime, this is an annotation that the discovery module
has to update each time it retrieves the information from its data source.

(b) Check if the TTL is expired, if so delete this ForeignCluster CR.

3. Wait for the next Garbage Collection cycle.

6.3 Peering
The Discovery Component is in charge to start and monitor the peering process.
When a user sets the join flag in a ForeignCluster CR, the related Operator reacts
to this change starting the peering process.

It creates a PeeringRequest CR in the remote cluster if it is not existing yet,
this resource has to contain the local Authentication URL required to create a new
ForeignCluster in the remote cluster with the IncomingPeering discovery method.

In the remote cluster, other components will process this request, and a new
Advertisement CR will be created in our home cluster containing the amount of
resources that the remote cluster can share to the home cluster. This new Custom
Resource will have an ownerReference1 on it that will trigger the reconciliation in

1The ownerReference is a Kubernetes functionality that allows us to set an owner for a
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the ForeignCluster Operator, it will check the new CR and set the joined flag in
the ForeignCluster Status notifying the successful peering.

Figure 6.7: Peering Process

6.4 Unpeering
Specularly to the Peering process we have the Unpeering process. This can be
triggered by the user setting the join flag to false, or by the foreign cluster scheduling
the Advertisement for the deletion. When this flag is set to false, it triggers the
deletion of the foreign PeeringRequest.

In addition, the Discovery Component adds a Finalizer2 over each ForeignCluster
resource with an active outgoing peering, in this way we are able to trigger the
unpeering with that cluster when the resource has been deleted for any reason (by
the user, for an expired TTL, ...).

particular resource. When the owner will be deleted also the child one will be. When child one is
updated, the owner can be notified and triggers a reconciliation cycle.

2The Finalizer is a Kubernetes functionality that allows us to be notified when a resource will
be deleted and to implement asynchronous pre-delete hooks.
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Figure 6.8: Unpeering Process
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Chapter 7

Liqo Auth Component

When a process, both in a Pod or external to the cluster, has to contact the
Kubernetes API Server, it needs an Identity (i.e. a ServiceAccount) with the
associated Permissions (i.e. Role, ClusterRole).

The Auth Component is in charge to provide an Identity for the remote clusters
that need to contact the home API Server for the first time. This component design
is focused on four key points:

1. Check that who is asking us a new Identity is allowed to do that.

2. The new Identity has to have the least possible permissions.

3. Create one and only one Identity for each clusterID.

4. Keep the Identity confidential.

7.1 Authentication Methods
The first step is to authenticate who is asking us for a new Identity. We can have
different scenarios with different Authentication Methods. The current design
supports two of them:

• Empty Token: everyone knows the Auth Service URL can have an Identity,
this is a no-authentication method.

• Token Matching: everyone knows the Auth Service URL and a secret token
can have an Identity.

But other methods, like a private/public key authentication, can be added easily
in a future work.
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7.1.1 Empty Token

The Empty Token modality is with no-authentication and it is useful for testing
purposes or if we have to expose a public resource sharing service where everyone
can access and ask for resources.

Figure 7.1: Empty Token

With this configuration, the Auth Service will always create a new Identity and
a new kubeconfig will be returned to the cluster that is asking for it.

7.1.2 Token Matching

The Liqo Auth Component supports a basic authentication mechanism that consists
of a secret token comparison, if the token provided by the remote client is equal
to the one stored in a local Secret, it means that it can ask for an Identity. Note
that this secret token has to be kept confidential and it has to be distributed
out-of-band.

This can be useful to restrict access to the resources to a limited set of trusted
clusters. We will not be able to revoke the access for a specific cluster, because the
token is universal, if we change the token we have to share again the new one with
all the clusters that need it.

This implements two levels of authentication: the first with the token is required
to get the real identity that will be used in the second to contact the API Server.
While the first is not authenticating uniquely a cluster, but a set of clusters, the
second one is cluster-specific.
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Figure 7.2: Token Authentication

Token Management

At the bootstrap time, the Auth Component checks for the existence of a Secret
auth-token, if it does not exist or if it is empty, it creates a new random token and
stores it in that Secret. At any time the user can modify it, this change will take
effect for all the future requests since that moment.

A cluster Admin can get the token from this Secret with a simple command:

1 token=$ ( kubect l get s e c r e t −n l i q o auth−token −o jsonpath=" { . data .
token} " | base64 −d)

2 echo −e "Token : \ t$token "

On the remote cluster we have to create a new Secret containing the token:

1 kubect l c r e a t e s e c r e t g en e r i c " token−f o r−remote−c l u s t e r " \
2 −n l i q o \
3 −−from− l i t e r a l=token=" $token "

Then, we have to label it, to tell to Liqo that it is an Auth Token and the
clusterID of the cluster that it is referencing:
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1 kubect l l a b e l s e c r e t " token−f o r−remote−c l u s t e r " \
2 −n l i q o \
3 d i s cove ry . l i q o . i o / c l u s t e r −id=" $ c l u s t e r I d " \
4 d i s cove ry . l i q o . i o /auth−token=" "

7.2 Service Account Management
The main goal of the Authentication Service is to provide an Identity to the remote
cluster, to do so it has to manage the Service Account life cycle.

7.2.1 Creation

Figure 7.3: ServiceAccount Creation
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After that the Authentication Service knows that the client can get an Identity, it
has to create a ServiceAccount related to its ClusterID. The new resource will be
created with the name equals to the remote ID, in that way it’s simpler to check
and refuse any future attempts to recreate the same Identity.

Figure 7.3 shows that when the ServiceAccount is available, we have to create
several other Kubernetes resources to assign to this new identity the minimal
permissions required to establish a new peering. In particular, we need to create a
new Role to grant the permissions on namespaced resources and a ClusterRole
to grant the permissions on cluster scoped resources, then we need to connect them
with the ServiceAccount creating a RoleBinding and a ClusterRoleBinding
respectively.

In this example we can see how they are linked together:

1 ap iVers ion : v1
2 kind : S e r v i c e A c c o u n t
3 metadata :
4 name: r emo t e − c l u s t e r I D
5 namespace : l i q o
6 s e c r e t s :
7 − name: r emo t e − c l u s t e r I D −t o k en −h j w j 7

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : R o l e
3 metadata :
4 name: r emo t e − c l u s t e r I D
5 namespace : l i q o
6 r u l e s :
7 . . .

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : R o l e B i n d i n g
3 metadata :
4 name: r emo t e − c l u s t e r I D
5 namespace : l i q o
6 ro l eRe f :
7 apiGroup : r b a c . a u t h o r i z a t i o n . k 8 s . i o
8 kind : R o l e
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9 name: r emo t e − c l u s t e r I D
10 s ub j e c t s :
11 − kind : S e r v i c e A c c o u n t
12 name: r emo t e − c l u s t e r I D
13 namespace : l i q o

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : C l u s t e r R o l e
3 metadata :
4 name: r emo t e − c l u s t e r I D
5 r u l e s :
6 . . .

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : C l u s t e r R o l e B i n d i n g
3 metadata :
4 name: r emo t e − c l u s t e r I D
5 ro l eRe f :
6 apiGroup : r b a c . a u t h o r i z a t i o n . k 8 s . i o
7 kind : C l u s t e r R o l e
8 name: r emo t e − c l u s t e r I D
9 s ub j e c t s :

10 − kind : S e r v i c e A c c o u n t
11 name: r emo t e − c l u s t e r I D
12 namespace : l i q o

When all these resources are ready, the Authentication Service will create a new
kubeconfig containing the ServiceAccount token (the credentials to be authenticated
by the API Server) and the API Server URL. This file is returned as the answer to
successful identity requests, it will not be returned in any other case allowing us to
keep its content confidential.

7.2.2 Permissions

Now, we have to understand which are these "minimal permissions" required to
start the Liqo peering process.
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Kubelet TLS Bootstrapping

In Kubernetes there is a quite similar scenario where an external device (a new node)
wants to join an already existent cluster, this is the Kubelet TLS Bootstrapping.

In the bootstrap initialization process, the following occurs: [23]

1. kubelet begins

2. kubelet sees that it does not have a kubeconfig file

3. kubelet searches for and finds a bootstrap-kubeconfig file

4. kubelet reads its bootstrap file, retrieving the URL of the API server and a
limited usage "token"

5. kubelet connects to the API server, authenticates using the token

6. kubelet now has limited credentials to create and retrieve a certificate
signing request (CSR)

7. kubelet creates a CSR for itself with the signerName set to kubernetes.io/kube-
apiserver-client-kubelet

8. CSR is approved in one of two ways:

• If configured, kube-controller-manager automatically approves the CSR

• If configured, an outside process, possibly a person, approves the CSR
using the Kubernetes API or via kubectl

9. Certificate is created for the kubelet

10. Certificate is issued to the kubelet

11. kubelet retrieves the certificate

12. kubelet creates a proper kubeconfig with the key and signed certificate

13. kubelet begins normal operation

The key idea in this process is to give small privileges to someone external
to the cluster, with these privileges it is able to ask for a new identity with full
permissions.
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Liqo Bootstrapping

With the Liqo Bootstrapping process, a remote cluster needs to have limited
credentials too, but with a different goal: it does not have to authenticate as a
node of the cluster, but as a service in order to manage the Liqo control plane.

Figure 7.4: Permission Escalation During the Peering Process

In the Liqo bootstrapping process, the following occurs:

1. a new cluster is discovered

2. the home cluster sees that it does not have a kubeconfig file to contact this
remote cluster

3. the home cluster contacts the remote AuthUrl

59



Liqo Auth Component

4. the home cluster authenticates to the remote cluster as described in Authenti-
cation Methods

5. the home cluster now has limited credentials to create and manage
PeeringRequests

6. the remote cluster creates a new ServiceAccount for the home cluster

7. the home cluster retrieves the certificate

8. the home cluster has permissions to establish the peering

We can see very similar key points, starting from completely untrusted devices
and arriving to trusted devices able to operate. At this point, the cluster is able to
start the peering process. When the peering will be required and accepted by both
sides, new permission will be granted to extends the previous one and to make the
virtual node work.

But which are these required limited permissions?
First of all, we need the permissions to manage our (and only our) PeeringRe-

quest, a cluster scoped resource, so in the ClusterRole, we will have the following
rules:

1 . . .
2 r u l e s :
3 − apiGroups :
4 - d i s covery . l i q o . i o
5 resourceNames :
6 - c lu s t e r ID
7 r e s ou r c e s :
8 - pee r i ng r eque s t s
9 verbs :

10 - get
11 - c r ea t e
12 - de l e t e
13 - update

Setting the resourceNames field, we can enforce the name of the resources that
a remote cluster can manage to be equal to the remote cluster ID, this allows us
to have multi-tenant complete support and isolation during the peering process
(Figure 7.5).
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Figure 7.5: Multi-Tenant Peering

Alongside the PeeringRequest we also need to create a Secret containing the
credentials required to the remote cluster to contact us back (if it accepts our
peering offer) and to create a new Advertisement in the home cluster, then we need
a similar mechanism for the Secrets too.

1 . . .
2 r u l e s :
3 − apiGroups :
4 - " "
5 resourceNames :
6 - c lu s t e r ID
7 r e s ou r c e s :
8 - s e c r e t s
9 verbs :

10 - get
11 - c r ea t e
12 - de l e t e

7.3 Observability
At every moment, we can check if our local cluster is authenticated with a remote one
looking at the value contained in the status of the related ForeignCluster resource.
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In fact, in the ForeignCluster status, we have a AuthStatus field containing the
observed authentication state.

Figure 7.6: AuthStatus Flow Chart

When a new ForeignCluster is created in the local cluster, the ForeignCluster
Operator will try to get an identity to contact this specific remote cluster. There
can be four different possible values:

• Pending: the local cluster has not contacted the remote cluster yet. This is
the default value.

• Accepted: the local cluster successfully contacted the remote cluster and
there is an available identity.

• EmptyRefused: the local cluster sent a request with an empty token, but it
was refused.

• Refused: the local cluster sent a request with the provided token, but it was
refused.

If in the local cluster there is no secret containing a token for the cluster that
we need to authenticate with, it assumes that the remote cluster is allowing us to
have an identity with no previous authentication (empty token). If this request is
refused, it will wait for an available token to send a new authenticated request.

7.4 How to Access it
The Liqo Authentication Service, because of its purpose, has to be exposed to the
external of the cluster, to be reachable from other clusters.

The most used approach to expose an API in Liqo is to use CRDs. In this case
is not a viable solution, because to use CRDs we need to authenticate with the API
Server but we need the credentials that we will have at the end of the Authentication
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process only. Note that even if Kubernetes offers us the feature1 to assign to a
particular user with username system:anonymous and group system:unauthenticated
every request that comes with no authentication, this solution cannot give us the
required isolation between different tenants. In fact, if we imagine a CRD that
handles the Identity Request in this way, we are not able to keep these requests
and the related responses confidential.

A viable solution is to expose it as a standalone HTTP service, in this way
we can implement a service reachable without a previous authentication and that
can implement the request/response mechanism required to have the multi-tenant
isolation and to keep these identities confidential.

This service will create and return a kubeconfig, when the authentication is
confirmed. An example request can be like this:

1 {
2 " clusterID ": "<ClusterID >",
3 "token": "<TOKEN >"
4 }

7.4.1 Secured with TLS

This HTTP service needs to be protected against Man In The Middle or Network
Sniffing attacks, where an attacker can stole the token in the request and use it
again to have another Identity, or stole the kubeconfig in the response and then
impersonate the victim. For that reason, it has to be exposed with HTTPS to
satisfy the confidentiality requirement.

1The Anonymous Request feature needs to be enabled in some Kubernetes distribution (as in
K3s), and is not available at all on many managed Kubernetes solution (as GKE, AKS, EKS).
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Figure 7.7: Authentication Attacks

7.4.2 NodePort

The simplest and widely usable way to expose a service with Kubernetes is to use a
NodePort Service. With this configuration, it chooses a random port on each host
in the cluster that will be mapped to a Service port and then to a set of Pods that
is serving the HTTPS server, in this way the traffic is encrypted from the client to
the Pod.

The Pod can serve it with a self-signed certificate, protecting against the Network
Sniffing attacks, or with a provided trusted certificate that will protect against
both Network Sniffing and Man in the Middle attacks.
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Figure 7.8: Authentication Service with NodePort

7.4.3 Ingress
We have an alternative way to serve it using an Ingress. This solution is the best
one when it is available, the cluster needs an Ingress Controller, the cluster admin
needs to assign a domain to this service. With solutions as External DNS is possible
to automatically manage the DNS records to point to the IP address assigned to the
Ingress resource, and with solutions as CertManager is possible to automatically
manage trusted TLS certificates for these resources. This means that we are able
to have a fully automated management of our HTTP service.

With this scenario, the traffic will be encrypted from the client to the Ingress
Controller, but inside our cluster, it will be simple HTTP traffic. Normally it is not
a security problem if we trust our environment and infrastructure, but, when we
cannot, it is possible to have a second TLS connection from the Ingress Controller
to the Pod setting our controller to do that. This configuration is provider-specific.

Figure 7.9: Authentication Service with Ingress
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Chapter 8

Evaluation

The proposed work has to be validated in different ways. First of all, we need
to validate that this approach is viable in as many Kubernetes distributions as
possible, and to be able to join them each other, to demonstrate the possibility to
use Liqo in widely different scenarios.

The second kind of evaluation will check the time needed to discover other
clusters and to peer with them. We will evaluate if the time needed by Liqo is
compatible with a scenario where we want to dynamically enable the peering during
a workload.

8.1 Tested on various platforms
We tested the implementation validating that is general enough to be run in several
different Kubernetes distributions, both on-premise and managed, both designed
for the core and the edge. We see that we are able to peer clusters deployed with
each of these distributions with all the others. We tested that the discovery is
possible and we are able to authenticate to each of them and to create an identity
in the proper way, even in the public and managed cloud providers.

In particular, the validation was focused on the following Kubernetes distribu-
tions:

• K8s (kubeadm): the vanilla Kubernetes distribution.

• K3s: a Kubernetes distribution provided by Rancher, great for IoT and Edge
devices thanks to the low resources request.

• AKS: the Azure managed Kubernetes service.

• GKE: the Google Cloud managed Kubernetes service.
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8.2 Time Benchmarking
A second validation is the benchmarking of this solution, characterizing the time
required to discover a cluster, to authenticate, and to peer with it, showing how it
can be fast enough to allow us to make the peer on the fly when we need it even
when our applications are already running. Some instrumentations have been added
in the code to export additional metrics that can be collected by Prometheus.

Two different times have been analyzed:

1. The time needed from the discovery of a cluster (the time when a DNS or
mDNS packet reached our Pod) to the creation of the ForeignCluster CR.

2. The time between the activation of a new peering and the final creation of a
new node.

In the following tables and graphs, all the times are expressed in milliseconds.
In the graphs in Figure 8.1, 8.2 and 8.3 use a logarithmic scale on the y axes (the
time axes). We can see the maximum and the minimum value observed for each
metric, the filled area represents the range where the 60% of values is.

8.2.1 Foreign Cluster Discovery
First of all, we want to check the time required by the Liqo control plane from
the reception of an mDNS packet to the complete creation of a ForeignCluster
CR, with all the required information and with a valid identity to be used on the
remote cluster ready for the peering.

This process has been divided into four sub-steps:

• mDNS Parsing: the time required to parse and process the information
contained in the packet.

• Get Cluster Info: the time required to contact the remote cluster and to
retrieve its information.

• Create Foreign Cluster: the time required to create the new resource with
the collected information.

• Retrieve Identity: the time required to contact the remote cluster and to
get a new identity from it.

The metrics have been collected with two local KinD clusters (over the same
LAN), with the automatic discovery enabled. The entire Discovery process has
been repeated several times. Two different scenarios have been taken: the first is
the discovery of a cluster that never met before, leading to the creation and the
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sharing of a new Identity; the second is the discovery of a cluster that was already
discovered in the past and then forgotten, in that scenario the identity is already
present in the local cluster and we expect a shorter discovery time.

No Available Identity

Metric Time 1 Time 2 Time 3 Time 4 Time 5 AVG STD DEV STD DEV %
mDNS Parsing 3 3 0 3 6 3 2,121 70,710
Get Cluster Info 797 308 262 263 213 368,6 241,829 65,607

Create Foreign Cluster 1 2 1 1 1 1,2 0,447 37,267
Retrieve Identity 307 200 308 222 216 250,6 52,562 20,974

Total Time 1108 513 571 489 436 623,4 275,205 44,145

Table 8.1: The time is expressed in ms (milliseconds). Some statistics have been
collected on this data, like the average (AVG), the standard deviation (STD DEV),
and the standard deviation in relation to the average (STD DEV %).

Figure 8.1: No Available Identity (Logarithmic Scale)
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Already Available Identity

Metric Time 1 Time 2 Time 3 Time 4 Time 5 AVG STD DEV STD DEV %
mDNS Parsing 7 0 3 3 0 2,6 2,880 110,806
Get Cluster Info 546 267 274 289 221 319,4 129,190 40,448

Create Foreign Cluster 5 0 1 0 1 1,4 2,0736 148,117
Retrieve Identity 0 0 0 0 0 0 0 0

Total Time 558 267 278 292 222 323,4 133,741 41,354

Table 8.2: The time is expressed in ms (milliseconds). Some statistics have been
collected on this data, like the average (AVG), the standard deviation (STD DEV),
and the standard deviation in relation to the average (STD DEV %).

Figure 8.2: Available Identity (Logarithmic Scale)

As expected, in the two scenarios we have a comparable amount of time in all the
phases, except for the Identity retrieval, which in the second one is faster thanks
to the fact that it is already present in the local cluster.

8.2.2 Peering Process
The second interesting time is the one required by Liqo to establish a new Peering
when the user requires it. We are now tracking the time between the activation of
a peering and the moment when the new node pointing to the remote cluster will
be ready.

This process has been divided into five sub-steps:
• Start Peering: the time required to handle the change of the control flag

and to create a PeeringRequest in the remote cluster.
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• Process Peering Request: the time required by the remote cluster to react
to the creation of a new PeeringReqeust, to accept it, and to create the
Broadcaster Deployment.

• Advertisement Forging: the time required by the Broadcaster to forge a
new Advertisement.

• Advertisement Processing: the time required to process an incoming
Advertisement and to create a new VirtualKubelet.

• Create Virtual Node: the time required to set up the new node and to
make it ready for the Pod offloading.

Metric Time 1 Time 2 Time 3 Time 4 Time 5 AVG STD DEV STD DEV %
Start Peering 25 23 28 28 27 26,2 2,167 8,274

Process Peering Request 10 2 4 3 4 4,6 3,130 68,054
Advertisement Forging 402 718 480 801 607 601,6 164,290 27,308

Advertisement Processing 555 21 38 575 447 327,2 276,154 84,399
Create Virtual Node 22700 24200 24400 23200 2020 19304 9687,470 50,183

Total Time 23692 24964 24950 24607 3105 20263,6 9605,892 47,404

Table 8.3: The time is expressed in ms (milliseconds). Some statistics have been
collected on this data, like the average (AVG), the standard deviation (STD DEV),
and the standard deviation in relation to the average (STD DEV %).

Figure 8.3: Peering Process (Logarithmic Scale)
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8.3 Conclusions
This work proposed a mechanism for the automatic discovery of Kubernetes clusters.
It has been validated in very different environments, starting from the edge with
k3s to the core with managed Kubernetes solutions. It shows that it is possible to
use the same APIs in all of them achieving good overall performance that allows
us to enable the opportunistic peering that we was looking for.

Future Works

In future works, we aim to define further discovery methods and data sources
for the discovery, like already existent clusters, sets created with other solutions
(Rancher, JuJu, ...) and to import them into the Liqo environment in a simple way.
Other authentication methods have to be implemented, like an RSA private/public
key authentication, to have a stronger and per-user identity.

A certificates-driven authentication mechanism can allow us to not to have to
create ServiceAccounts in the remote cluster, but the home cluster will create its
own identity and a Certificate Signing Request (CSR) that the remote cluster will
issue with its Certification Authority granting it an identity to authenticate to the
API Server.

Another possible improvement can be the usage of different namespaces to store
the resource related to each peering, in this way in a multi-peering scenario the
debugging will be simpler. Also the management of permission will be simplified,
not requiring anymore access to resources with a specific name but on a specific
namespace.
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