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Abstract

This thesis has been developed during a six months internship in Virtual

Open Systems SAS company located in Grenoble, France.

The company is specialized in design and implementation of high-performance

mixed-critical virtualization solutions on low-power multi-core & heteroge-

neous platforms for automotive, IoT edge, cloud computing solutions.

Embedded systems are widely used in many fields nowadays, often in mixed-

criticality environments i.e., systems that need a real-time component with

a certain time and safety constraints alongside a rich operating system.

VOSySmonitor is the Virtual Open Systems SAS (company) proprietary so-

lution for mixed-criticality embedded systems on Arm architecture based

on Arm TrustZone. The thesis work consists in the participation in the

evaluation and extension of this solution on a 64bit RISC-V Linux-capable

platform, VOSySmonitoRV, which remains company proprietary. RISC-V is

an innovative and open instruction-set architecture that was originally de-

signed at Berkeley to support education and research. The importance of

RISC-V ISA is in its open-source licence and open standard, thanks to its

frozen ISA everyone can invest in writing software that will run forever on

RISC-V-like processors. RISC-V is extensible, the privileged architecture,

approved and also frozen, allows many possible software stacks that define

different execution environments thanks to the privileged levels.

VOSySmonitoRV has the advantages of virtualization to allow the secure

co-execution of two, or more, OSes in an isolated manner, but it does not

exploit the virtualization support for security reasons.

VOSySmonitoRV executes in M-mode, the higher privileged level. The first

result is a prototype, starting from a company one, that is done on the SiFive

HiFive Unleashed platform. The co-execution of the two OSes is on separate
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harts (cores), allocating three harts for Linux and one for the real-time OS.

In this way there is a really strong isolation thanks to the PMP unit that

gives memory and peripheral isolation. However, RTOS workload can be

characterized for a long time by scheduled idle tasks. In order to efficiently

use the RTOS hart and to give Linux almost native performance, the most

challenging feature of VOSySmonitoRV is the co-execution of a safety-critical

OS with a non-critical OS on a single hart.

The feasibility of this feature depends on the latency of the context switch

between OSes because it must be under a reasonable threshold otherwise

both operating systems would have unacceptable performance losses, espe-

cially for the real-time OS. Furthermore the application of VOSySmonitoRV

in mixed-criticality systems is evaluated. The evaluation is done through

a custom benchmark that measures the interrupt latency and the context

switch overhead of a simple ECALL. Results are very promising for the use

of VOSySmonitoRV in mixed criticality systems and for the realization of

the shared core, ensuring that it is a further optimization rather than a loss.

A second prototype with the shared core is developed but it is not fully

operational yet.
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Chapter 1

Introduction

1.1 Premise and work introduction

In the new era of Industry 4.0 [20], the importance of solutions to allow the

co-execution of activities with different levels of criticality in common hard-

ware platforms has become crucial. It is now a sought-after that there is the

need to have at the same time, in recent embedded systems, features typ-

ical of generic operating systems and a component of real-time constraints

dealing with safety issues. Usually, this feature is possible thanks to vir-

tualization techniques through the virtualization support on the machine.

Virtualization is the ability to abstract a server into a virtual machine [14]

and it needs a hypervisor, a software monitor below the virtual machine and

above the hardware, to manages resources. The idea is to be independent of

the hardware implementation in order to have several operating systems on

the same machine, to have more efficient use of resources while keeping them

functionally isolated.

On the other hand, it is well known that the complexity of a hypervisor solu-

tion increases security problems and vulnerabilities have already been found

[16]. The malicious use of virtualization technologies can consist of the ca-

pability of using virtualization support to execute malicious code at a higher

privileged level to control the lower privileged ones.

For these reasons Virtual Open System as a company proposed VOSyS-

monitor product, running in Secure Monitor mode on ARM architecture for

mixed-criticality systems, compliant with the ISO 26262 standard. This so-
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CHAPTER 1. INTRODUCTION 2

lution is based on ARM TrustZone technology to allow and enforce isolation

of a co-execution of multiple operating systems creating two separate worlds

without virtualization extension: the secure world and the non-secure world.

This idea is very valid in embedded contexts where we need a rich operating

system along with a real-time operating system whose safety constraints must

be respected. VOSySmonitor is also capable in multicore systems of sharing

the cores of the real-time operating system (RTOS) with the general-purpose

operating system (GPOS) during periods of only idle tasks scheduled to ef-

ficient use of resources.

In recent years RISC-V is actually gaining ground as a new architecture in

embedded systems and is now also capable of running complex operating

systems such as Linux. So the company decided to port the VOSySmonitor

solution to RISC-V architecture, calling it VOSySmonitoRV.

They implemented a prototype from which the thesis work is started with the

purpose of enhancing it. The company’s initial prototype was compiled with

Yocto and it included a Trusted execution environment underlying the Linux

operating system as GPOS, responsible to boot FreeRTOS as not-yet-working

RTOS, on an unused hart. To improve this prototype, FreeRTOS must work

on RISC-V in S-mode properly and must be boot with the PMP config-

ured before Linux was booted (again with the PMP configured). Another

improvement is the feature of the shared core between RTOS and GPOS.

This feature implies that a context-switching between two different operat-

ing systems must be done while keeping them strictly isolated. Furthermore,

the thesis includes the evaluation of the feasibility of VOSySmonitoRV in

criticality systems. To evaluate this, a custom benchmark to measure the

interrupt latency and the context switch overhead of a simple ECALL was

done.

1.2 Thesis outline

This section is dedicated to having an overview of the thesis report:

• Background contains all the background necessary to fully under-

stand the thesis work including the RISC-V architecture, the detail on

the SiFive HiFive Unleashed platform used for testing and supporting
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the development of VOSySmonitoRV, some notions about Linux de-

vice drivers used in the custom performance benchmark, background

on Linux Device Tree that is modified to isolate some peripherals at

exclusive use of the RTOS, how it works a real-time operating system

and what are the linker scripts. Finally, the state-of-the-art of existent

solutions on RISC-V architecture is shown.

• VOSySmonitoRV describes what is VOSySmonitoRV, showing all

the prototypes and their features starting from the company one.

• Custom Performance Benchmark includes the implementation de-

tails of a custom benchmark that evaluate interrupt latency e context

switch overhead of VOSySmonitoRV running on the SiFive Hifive Un-

leashed board. The results with the same considerations are done.

• Conclusions describes the conclusions of the thesis work done and

proposes possible future work

• Appendix with the performance benchmark code.



Chapter 2

Background

2.1 RISC-V architecture

This Section is focused on the features used to support the development

of VOSySmonitoRV. The RISC-V architecture [22] is quickly gaining rele-

vance in the industry and opens up new challenges regarding the security

of new processors, especially Linux-capable ones. RISC-V is an extensible

instruction-set architecture that was originally designed to support educa-

tion and research [22]. The privileged architecture [21] allows many possible

software stacks that define different execution environments. Every layer has

an interface with the higher layer as shown in Fig.2.1 [21]. In RISC-V there

is the concept of hardware thread, or hart, that executes the RISC-V code

in a specific execution environment with a privileged level and its behav-

ior depends on it in the processing of legal or illegal instructions, interrupt

handling, and environment calls. There are three privileged levels: User (U-

mode), Supervisor (S-mode), and Machine (M-mode). The M-mode is the

highest privilege, the U-mode the lowest. They have a set of private con-

trol and status registers and privileged ISA extensions and they are used to

protect the execution environments. So in the lower levels, it is possible to ac-

cess the privileged registers only by environmental calls which are defined as

ECALL. This environment call triggers an environmental-call-from-X-mode

exception to the more privileged execution environment to do some privileged

operation. There exist three types of registers in RISC-V: general-purpose

registers, Control and Status Registers (CSRs), and memory-mapped regis-
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CHAPTER 2. BACKGROUND 5

ters. RISC-V architecture has 32 general purpose registers x0-x31 per hart,

by default. In the next Section we will see the CSRs.

Figure 2.1: Trusted execution environments overview [21]

2.1.1 Control and status registers (CSR) and inter-

rupts

CSRs are SYSTEM instruction, so privileged instructions, that are defined

as atomically read-modify-write control and status registers. There exist

a set of CSRs for each privileged level, the higher privileged CSR often is

composed in part of the lower privileged levels CSRs of the same type.

Figure 2.2: Machine mode MSTATUS CSR register [21]

For example, the mstatus (Machine Status Register) CSR in Fig.2.2,

which has the tracks of the hart’s operating state and is accessible only by

M-mode, has its restricted view in sstatus (Supervisor Status Register)

CSR accessible by M-mode and S-mode and in ustatus (User Status Reg-

ister) register (accessible by all privileged levels). For interrupts handling,

there are a set of registers for every privileged level. Now a brief explanation

of how the interrupt mechanism works focusing on the M-mode registers,

considering that the structure and the behavior are the same for the other

privileged level. So, the mie (Machine Interrupt Enable) bit is at 1 when the
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interrupts are enabled. Two-level of the stack of interrupt bits are supported,

in the mpp there is the previous privileged mode (in M-mode two bits wide,

spp has one bit) and the mpie is the interrupt bit before the trap. When

there is a trap taken from a privileged level, let’s say x-mode, the mpie

register is set to mie, the mie is set to 0 and the mpp to x-mode encoding.

Furthermore, the mpec (Machine Exception Program Counter ) register con-

tains the address where the interrupt occurs, the pc (Program Counter) is

set to the mtvec (Machine Trap-Vector Base-Address Register) value that

is the base address of the interrupt handling. After that, the context switch

must be saved, so all the general-purpose registers. In the mcause (Machine

Cause Register) register, there is encoded the interrupt that causing the trap.

After the handling the trap-return instruction is necessary to restore the con-

text and return from the trap handling with mret trap-return instruction.

When it is executed the mie value is set to mpie value, that now is set to

1, the privileged mode is set to mpp, which is now set to U-mode encoding

or M-mode, if U-mode is not supported [21]. Finally pc is set to mepc to

return back where the interrupt occurs. Interrupts can be delegated through

the mideleg (Machine Interrupt Delegation Register) and medeleg (Ma-

chine Exception Delegation Register) registers setting. The mie (Machine

Interrupt Enable) and mip (Machine Interrupt Pending) registers contain

the information about the enabled and pending interrupts.

2.1.2 Physical Memory Protection

Figure 2.3: PMP configuration CSR register [21]

Figure 2.4: PMP address CSR register [21]

To provide also physical protection RISC-V provides a Physical Memory



CHAPTER 2. BACKGROUND 7

Protection (PMP) for each hart to allow or not memory access to a specific

memory area configuring PMP regions. Only M-mode can program the PMP

of a hart and can decide the limit addresses and the permitted operations

(Read/Write/eXecute) through configuration registers. By default, M-mode

can access every memory area, but it is possible to limit it by locking (setting

the L bit 3.3). S-mode and U-mode have no privilege, the PMP must be set

to allow memory access. The Address Matching of the PMP is the encoding

used to specify the range of addresses for the PMP that can be naturally

aligned power-of-2 regions (NAPOT) or naturally aligned four-byte regions

(NA4) or top of range (TOR). PMP regions are statically prioritized: a region

with an index lower than another has major priority when access occurs. The

PMP registers are CSRs and are packed to reduce context switch time. For

RV64 there are pmpcfg0 and pmpcfg2 to allow the configuration of 16

PMP entries. The pmpcfg register format is showed in Fig.3.3 where is

clear how to set the Read/Write/eXecute operations, A encodes the address

matching, L is the locking bit that if set, indicates that the operations are

enforced on M-mode and writing the register is ignored. The L bit is cleared

only with a system reset. To set the encoded address of a PMPX region, the

pmpaddrX must be set according to the encoding in A.

2.1.3 Platform-Level Interrupt Controller

The Platform-Level Interrupt Controller (PLIC) is a hardware unit in RISC-

V systems that handling global interrupts. A PLIC is composed of multi-

ple interrupt gateways (one for interrupt source, platform-dependent) and a

PLIC core that prioritizes and distributes global interrupts. Each interrupt

has an Interrupt Identifier (ID) and a priority to set, the maximum value is

platform-specific. Furthermore to enable an interrupt it is necessary to set a

threshold. The PLIC mechanism has an interrupt flow that assures correct

interrupt handling, other interrupts are ignored until a sort of handshake

between the PLIC core and the target hart is complete. This mechanism is

well shown in Fig.2.5 from the official documentation [21]. To handle an ex-

ternal interrupt it is necessary to do an interrupt claim, handle the interrupt

according to the interrupt source and finally do an interrupt completion.
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Figure 2.5: Flow of the PLIC external interrupts handling [21]
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2.1.4 Performance Counters

In M-mode, the mcycle read-only Control and Status Register (CSR) is a

privileged RISC-V register with 64-bit precision which holds a count of the

number of clock cycles executed by the hart. The cycle register is a read-

only shadow of mcycle and it can be read with the dedicated rdcycle

instruction from every level of privilege. Technically ”the rdcycle pseudo

instruction reads the low XLEN bits of the cycle CSR which holds a count

of the number of clock cycles executed by the processor core on which the

hart is running from an arbitrary start time in the past” [22]. Along with

this, other registers for instructions and events counters. The time register

is similar to the cycle CSR, but counts wall-clock real-time and can be read

from others then M-mode through the rdtime pseudoinstruction.

2.2 SiFive HiFive Unleashed

The SiFive HiFive Unleashed is used for testing the VOSySmonitoRV pro-

totypes. It is the development platform for the SiFive FU540-C000 SoC

[17], the first world multi-core Linux capable RISC-V System on Chip. It

is composed of four cores SiFive U54 processor, compliant to RISC-V ISA

RV64IMAFDC specification [18], and one monitor core SiFive U51 processor.

Furthermore, it is composed of typical processor peripherals such as General

Purpose Input Output (GPIO), Universal Asynchronous Receiver/Transmit-

ter (UART), Inter-Integrated Circuit Communication (I2C), Serial Peripheral

Interface (SPI) and Pulse Width Modulator (PWM). The coreclk is 1.0

GHz. The L2 cache and peripherals operate at tlclk, so at coreclk/2

[17].

2.2.1 Interrupts overview

The SiFive FU540-C000 SoC includes both local and global interrupts as can

be summarized in Fig.2.7 from the official manual [17]. The platform includes

a RISC-V standard PLIC controller described before, that can handle 53

external interrupts with 7 different priority levels. It also has a Core-Local

Interruptor (CLINT) that without arbitration triggers a hart with its local
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Figure 2.6: SiFive HiFive Unleashed platform

dedicated interrupt.

The interrupt priority depends on the privileged level of the interrupt,

internally to the same privileged level we have external, then software, and

finally timer interrupts. The priorities are summarized as follow:

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

• Supervisor external interrupts

• Supervisor software interrupts

• Supervisor timer interrupts

Core-Local Interruptor (CLINT)

The CLINT block provides M-mode software and timer interrupt to the hart,

as we can see in Fig.2.7, and it holds memory-mapped control and status reg-

isters related to these interrupt. Timer interrupts are pending if the value of

mtime, which holds the number of cycles counted from the real-time clock
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Figure 2.7: Interrupts overview [17]

(RTC), is greater or equal to the mtimecmp value, which can be set only

in M-mode. To set it by lower privileged levels an ECALL must be done.

By default, all interrupt trap to M-mode but it is possible to delegate these

interrupts to lower privileged levels via the CLINT block. In this hardware

implementation, delegate interrupts allow to manage them from both the

M-mode and S-mode in this way: the M-mode interrupt is trap, so it is

possible to do something in M-mode and then it is necessary to trigger the

S-mode pending interrupt register. The CLINT provides only a timer per

hart. For example, for timer interrupts, in the M-mode timer handler the

STIP (Supervisor Timer Interrupt pending) in the sip (Supervisor Inter-

rupt Pending) register can be set at 1 to trigger a S-mode timer interrupt.

Software interrupts are triggered by writing the MISP (Machine Software

Interrupt Pending) bit in the mip (Machine Interrupt Pending) register and

they are used for inter-processor communication on multi-hart systems.
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2.2.2 SoC-related peripherals

The following platform-specific features depend on the hardware implementa-

tion of the 64-bit U54 RISC-V processor core used in the FU540-C000 SoC in

the SiFive HiFive Unleashed platform. Besides, the SoC-related peripherals

used in the prototypes of VOSySmonitoRV are considered.

Universal Asynchronous Receiver/Transmitter (UART)

It is a peripheral for serial communication and FU540-C000 provides two

instances of UART: UART0 and UART1. Those are configured as 8-N-1

format through UART configuration registers: 8 bits of data, no parity bit,

1 start bit, and 1 stop bit. The baud rate is 115200 (so the baud rate divisor

register has a value of 4340).

Pulse Width Modulator (PWM)

There are two instances of PWM: PWM0 and PWM1. Every PWM has

four comparators and it can generate different types of waveforms on the

output pin. In the second VOSySmonitoRV prototype we need the PWM

to be programmed through its configuration registers as an extra timer that

can provide periodic interrupts. The comparator results are latched by the

PWM interrupt pending register and routed to PLIC as potential interrupt

sources.

2.3 Linux device drivers

The custom benchmark needs a char device driver, so a basic knowledge of

Linux device drivers is needed. One method to write a Linux device driver

is to build a kernel module so it won’t need to recompile the kernel. It is

necessary to register the device in the Linux kernel through the register -

chrdev function with the major and minor numbers, that are identifying the

group of devices and a specific device among the group. Then the pointers

of the device itself and the file operations structure associated with

this character device driver. Moreover, to use the device driver methods in

userspace, open and release methods must be implemented, along with other
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operations. Device file operations that are possible to use from user space are

in the file operations structure and the focus is on the ioctl function

that is a system call that ”offers a way to issue device-specific commands”

[4]. To use them all, they must be register in the device driver methods in

the file operations structure, otherwise, it returns an error.

The result of the compilation of the kernel module is a .ko extension file. To

test the driver it must be loaded and used by a user program. To load the

driver in Linux at run time it is therefore required to copy the .ko file on

the board and type on the shell the insmod command followed by the .ko

file. The copy from user and copy to user functions can be used in

the ioctl method to copy the data from the user space to the kernel space,

and vice versa.

2.4 Linux Device Tree

During the boot phase, the bootloader is loading the kernel image into mem-

ory and the execution switches to the kernel from its entry point. The kernel,

at this stage, like any other bare-metal application, needs to perform some

hardware initialization and configuration tasks, such as virtual memory con-

figuration, processor configuration, and console configuration. All these are

hardware-dependent operations: the kernel must therefore know which regis-

ter addresses to write, depending on the hardware on which it is run. To do

this, a description of the hardware is needed, and it must be easy to change

and recompile, hence the idea of using a Device Tree. The Device Tree is

a Hardware Description Language that is used to describe the hardware of

the system in a tree-like data structure. In this structure, each node in the

tree describes a device. The source code of the Device Tree is compiled by

the Device Tree Compiler (DTC) to produce the Device Tree Blob (DTB),

which can be read by the kernel at boot time. The .dts file is the description

of the hardware at the board level.
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Figure 2.8: FreeRTOS execution overview
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2.5 Real-time operating system

Understand how a real-time OS is working was very important to make

FreeRTOS working and to correctly porting from M-mode to S-mode. FreeR-

TOS is a free and supported OS under MIT open source license [1]. It has to

be small to be used on microcontrollers in embedded systems applications.

The most important thing to know is that a real-time operating system sched-

uler’s purpose is to be deterministic to respond to an event within a deadline

and to respect real-time requirements. The scheduler uses the user set prior-

ity of the thread execution (task) to know which one can be run next. The

main building block is the RTOS tick. Every time there is a timer inter-

rupt the tick counter must be incremented. Therefore the RTOS kernel must

check if is the case to unblock or wake up a task. Preemption is allowed to

higher privileged tasks. So idle task is always running unless a more priv-

ileged task needs to be executed. FreeRTOS execution scheme is shown in

Fig.2.8, Task YIELD() function in red is used to reschedule and switch task,

that means the CPU has release the CPU.

2.6 Linker script

This notion is useful for the integration of the RTOS in the basic firmware

file. The linker is what combines input files to make a single output file. Each

input or output file is an object file with several ”sections”. Every section

has a block of data that can be loadable, so a physical address is needed

to specify where the data section must be copied from ROM to RAM when

the program starts up. Linker scripts are written in linker script command

language. The ’SECTIONS’ command is used to define the memory layout

of the outcoming file. The ’.’ symbol is a special one that is the location

counter. The linker script is basically written as a series of commands, a

keyword with arguments or an assignment to a symbol.

2.7 Related work

Nowadays, there are several solutions with the purpose to offer a Trusted Ex-

ecution Environment (TEE) exploiting the powerful primitives of the RISC-
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V Privileged architecture. The following solutions have been designed on

RISC-V for trusted computing and not for critical applications as VOSyS-

monitoRV.

Keystone [9] is an open-source framework for building customized TEEs

exploiting the so-called enclaves. VOSySmonitoRV adopts the same secure

monitor memory isolation: it configures the first PMP region for its code,

accessible only in M-mode. On the other hand, Keystone uses a Linux ker-

nel driver to manage the enclaves via SBI and it has to handle the enclave

allocation dynamically configuring every time the PMP set of every core. In

VOSySmonitoRV the dynamic PMP configuration is done only on the shared

core, which is less costly in terms of latency and performance.

Sanctum [5] is a minimal hardware extension, provides secure monitor soft-

ware Sanctorum [8], and also relies on the untrusted OS to enclave handling,

that is executed in U-mode.

MI6 is an out-of-order processor [3] which extends RISC-V with the same

hardware modifications with a greater focus on protection from known at-

tacks. It is basically focused on the creation of enclaves. It also uses a trusted

security monitor that executes in M-mode.

Donky [15] is a hardware-software co-design for memory isolation of user

processes. It has a secure monitor called Donky Monitor, part of the soft-

ware design, that handles in-process access policies in userspace. Donky is

used basically for memory isolation of protection keys and it has no kernel

interaction, using the RISC-V ’N’ extension (the user-level interrupts exten-

sion).

On the other hand, solutions for a mixed-criticality environment exist. A

similar approach to VOSySmonitoRV is seen in the MultiZone solution [6]

that creates different ”Zones”, running in U-mode, with a defined memory

portion and peripherals to allocate to each zone through a configuration file.

The execution of the Zones is scheduled by the MultiZone nanoKernel with a

round-robin or cooperative scheme. The main difference is that Linux cores

are not shared with the Zones cores.

Bao [12] is a security bare-metal hypervisor that focuses on mixed-criticality

systems. It provides minimal monitor virtualization support for the static

partitioning architecture. It is mainly developed for ARMv8 architecture

platforms, the RISC-V port depends on the hypervisor extension and for
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now, is only deployed on the QEMU emulator. Bao is used to managing

VMs, interrupts are mapped to physical ones and also virtual to physical

CPU. VOSySmonitoRV embraces the same philosophy, the aim is to safely

manage resources, with no performance overhead, fault-containment, and

real-time constraints, except for the choice to use the hypervisor extension

and the static partitioning of the CPUs. Efficient allocation of resources is

one of the focuses of VOSySmonitoRV.

SiFive WorldGuard [19] is a security hardware model that offers World

ID markers to every hart and every process to protect and isolate different

domain execution (data and code). VOSySmonitoRV can easily integrate

this SiFive hardware feature as future work.



Chapter 3

VOSySmonitoRV

VOSySmonitoRV is a mixed-criticality solution that provides spatial and

temporal isolation between co-executing operating systems (OSes) on a multi-

core RISC-V processor. It is a software layer that handles the memory area

partitioning and isolation in terms of memory, permissions, peripherals, in-

terrupts, and harts, but also software execution. VOSySmonitoRV makes

sure that the safety-critical and trusted OSes are booted before un-trusted

OSes, guaranteeing for the former best boot time and certifiability. Secure

boot is fundamental to the reliability of the real-time operating system and

to enforce a chain of trust. Besides, VOSySmonitoRV can provide additional

services to the operating systems running on the platform, e.g., power man-

agement, trusted execution environment, custom vendor-specific functions,

etc. VOSySmonitoRV features include platform initialization, secure inter-

rupt handling, secure boot, and all operations not accessible to lower privilege

levels. To achieve these operations, operating systems must execute ECALLs

that can be trapped in M-mode and managed by the monitor.

Moreover, another important feature is isolation between operating systems.

As a matter of fact, VOSySmonitoRV can easily detect and isolate attacks

from an un-trusted OS that may propagate and lead during the execution of

safety-critical OS. Therefore is very important to meet the stringent real-time

constraints of it to hold a high level of reliability in a mixed-criticality sys-

tem. To achieve this, VOSySmonitoRV exploits standard features of RISC-

V’s privileged architecture [21], which aims for greater security between the

different privilege levels by providing dedicated registers for each of them.

18
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Furthermore thanks to the Physical Memory Protection (PMP) unit, which

is explained in detail in Section 2.1.2, it is also possible to define at boot time

and run-time, for each hart, different memory partitions with certain permis-

sions, always and only from the highest privilege level i.e., VOSySmonitoRV.

For architectural choice, VOSySmonitoRV is not developed at the hypervi-

sor level to not rely on third-party code for firmware and operating systems

booting. Although the hypervisor extension provides more flexibility and

performance, the security of a monitor with a limited attack surface, acting

at the highest level of privilege is more reliable. In fact, VOSySmonitoRV is

working at Supervisor Binary Interface (SBI) level, as we can see in Fig.2.1.

One of the features of VOSySmonitoRV is the co-execution of the OSes on a

single hart. This need comes from the fact that real-time operating system

(RTOS) workload can be characterized for a long time by scheduled idle tasks

and it is a waste of resources. That will be further discussed in Section 3.4

where the second prototype is described.

Figure 3.1: VOSYSmonitoRV Architecture Overview

ECALLs are managed in VOSySmonitoRV in such a way that they are

recognized by an extension ID and a function ID, they may include some

arguments. As mentioned before, to test the features and support the de-
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velopment of the prototypes of VOSySmonitoRV it was used HiFive SiFive

Unleashed, as a secure real-time operating system FreeRTOS and finally

Linux as a generic and rich operating system. FreeRTOS starting version

was in M-mode, but we need it to be in S-mode. The Linux version used is

v5.8, which already works on 64-bit RISC-V in S-mode.

This chapter is briefly described the design specification of such a system and

then the prototypes realized before and during the thesis work.

3.1 VOSySmonitoRV design specification

The purpose of VOSySmonitoRV is to create a trusted execution environment

(TEE) for one or more RTOS. TEE is a protected part in which it is supposed

to have only trusted software. TEEs are often designed to be alongside a rich

execution environment that runs a conventional OS.

The target applications of VOSySmonitoRV are secure embedded devices

in mixed-criticality environments. Such as system has the following design

goals:

• High-security and isolation: the monitor has to strongly and effec-

tively isolate the execution environments leveraging the PMP technol-

ogy and the RISC-V privileged levels;

• Real-time features: having a real-time OS in which the mission-

critical tasks must have the full priority;

• High-performance and small footprint: the firmware must have

a small footprint with limited attack surface and be performing and

efficient during crucial operations such as context switches and PMP

configurations (so to be implemented in assembly);

3.2 Starting prototype

The starting company prototype of VOSySmonitoRV is a basic firmware that

executes in M-mode on the machine. It boots U-boot, which boots Linux on

three harts over four. To make this happen it is necessary to change the kernel

parameter (CONFIG CMDLINE) in the Linux configuration file (.config)
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adding to the existent command line maxcpus = 3. In this prototype,

FreeRTOS is booted from VOSySmonitoRV on the unused hart, triggered

by an ECALL from a custom Linux driver. To do so it is necessary to copy

the FreeRTOS binary on the board. To better understand how FreeRTOS

is boot is important to know that in VOSySmonitoRV every hart, at reset,

starts to execute the cold boot, and at a certain point, all the harts are in

wait for interrupt (WFI), except for the cold boot hart. The cold boot hart

executes platform initialization code and finally writes in mpec CSR the

next instruction address to execute (in this prototype the address of U-boot

first instruction). It also writes in the mpp the next mode in which execute

after the Trap-Return instruction, so S-mode, (see Section. 2.1.1) and in

the mpie writes 0. In the very end, it executes the MRET instruction, to

start executing U-boot in S-mode. When Linux is operational, the driver

is loaded and the application is executed. Through an ioctl function (see

Section.2.3) the driver is triggered to copy the binary from user space to

a specific physical address in the physical memory. In this way, it can be

booted from VOSySmonitoRV in response to the ECALL from the driver (in

M-mode are used only physical addresses). So one of the Linux harts when

executing VOSySmonitoRV triggers a software interrupt to the unused hart.

The unused hart is waked from the WFI, it finishes to execute the platform

initialization and boots FreeRTOS with the same procedure as for U-boot.

The FreeRTOS version, at this stage, was not working properly yet.

3.2.1 Simulation on Quick EMUlator (QEMU)

One interesting thing to do, when it is developed software like VOSySmoni-

toRV, is to use a QEMU emulator. The advantage to use QEMU in a com-

pany consists of being cheap and easy than buying a board and very powerful

for development because of the debug environment and quick prototyping.

VOSySmonitoRV starting prototype was simulated on QEMU virt machine

and the emulated SiFive board.

In order to correctly emulate, first of all, it is necessary to compile QEMU

with architecture target RISC-V on 64 bits by running in the folder ./con-

figure --target-list=riscv64-softmmu. Then compiling a rootfs

is needed, we choose busybox that generates an image rootfs.img.gz
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to be used during QEMU emulation. This is important also because efficient

use of QEMU is fundamental for development or testing so managing the

transfer of files between the guest and the host is a must. Other solutions

are possible by using an emulated network.

The following command is used to emulate VOSySmonitoRV firmware on

virt machine:

qemu−system−r i s c v 6 4 −M v i r t −smp 4 −m 2G −nographic

−b io s vosysmonitorv / p la t /gen/ f irmware /fw . bin

−ke rne l l i nux / arch / r i s c v / boot /Image

−dr iv e f i l e=busybox/ r o o t f s . img , format=raw , id=hd0

−dev i ce v i r t i o −blk−device , d r i v e=hd0

−append ” conso l e=ttyS0 ro root=/dev/vda ear lycon=s b i ”

− s e r i a l mon : s t d i o

To emulate the SiFive, the target machine is not virt anymore but

sifive u. To emulate this machine we use another method because unfor-

tunately now we don’t have support for the -hda option. This alternative

leverages the initrd method that creates a ramdev block device, it is ram

based instead of using physical disks. Then we create a gzipped cpio archive

from busybox, which is extracted and mounted as a root file system. The

other difference is that the console is the ttySIFO uart0 of the SiFive. The

resulting command to run is the following:

qemu−system−r i s c v 6 4 −M s i f i v e u −smp 2 −m 1G −nographic

−b io s vosysmonitor / p l a t / s i f i v e / f irmware /fw . bin

− i n i t r d r o o t f s . img . gz

−ke rne l l i nux / arch / r i s c v / boot /Image

−append ” conso l e=ttySIF0 root=/dev/ram0 r d i n i t=/sb in / i n i t

ea r lycon=s b i ”

To know all the options please refer to official QEMU documentation.

3.3 First prototype

The most important feature of the first VOSySmonitoRV prototype is to boot

FreeRTOS before U-boot and Linux, with the PMP configured in both cases.
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This is also done for security reasons, booting first the critical OS avoids that

the non-critical OS can do some manipulation or causing the RTOS not to

boot because of a crash or a fault. At reset, VOSySmonitoRV is initialized

and immediately takes care of properly configure the PMP device in order

to guarantee absolute isolation between operating systems. In all the harts

it isolates its own code with no operations allowed at the lowest privilege

levels.

3.3.1 PMP configurations

Each operating system has its own PMP configuration. A good strategy to

program the PMP is to identify the forbidden parts of memory for that hart

when executes one of the OSes and remove permissions. So then configure

the last PMP, with the lowest priority, with all the memory and all permis-

sions. In this way sort of ”holes” are created in memory where the hart

cannot access. When the hart executes Linux cannot access the FreeRTOS

memory area, the UART1, which is reserved for RTOS output. Vice versa,

FreeRTOS cannot access Linux and UART0. In order to prevent Linux from

initializing the UART1 and generating an exception from the PMP for trying

to access a prohibited memory area, the UART1 has been removed from the

Linux DTS and therefore also from the Linux DTB (see 2.4). As for the

UART peripheral, it is possible to isolate any other peripheral mapped on

the System-on-Chip (SoC).

More specifically PMP regions when the hart executes FreeRTOS are:

• PMP0: VOSySmonitoRV code, access allowed only in M-mode

• PMP1: Linux code, no permissions

• PMP2: UART0, no permissions

• PMP3: all memory, all permissions

When the hart executes Linux:

• PMP0: VOSySmonitoRV code, access allowed only in M-mode

• PMP1: FreeRTOS code, no permissions
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• PMP2: UART1, no permissions

• PMP3: all memory, all permissions

Figure 3.2: Memory overview in the first prototype of VOSySmonitoRV

These configurations are more clear looking at the memory map in Fig.3.2.

VOSySmonitoRV is executed in M-mode in all hart when privileged opera-

tions must be done and can access by default to all memory regions.

It is important to specify that PMP configuration is done before the hart

actually executes the operating system, so it is done at boot time.

Figure 3.3: pmpcfg0 register, 8 PMP regions possible [21]

Configuring the PMP is explained in detail in Section 2.1.2. The U54 pro-

cessor [18] supports 8 PMP entries of a minimum of 4 bytes region, whereas

there is only one pmpcfg0 register implemented that is not hardwired at

zero. So as shown in Fig.3.3 to configure, for example, PMP2 region for the

Linux harts, the pmp0cfg byte must be set with the permissions in the first

three bits, so all zeros and how the address is encoded, in this case, NAPOT.

In order to avoid that the Linux harts can access in any way, the UART1 is

necessary to lock the region by setting the locking bit. Then pmpaddr2 must
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be set with the NAPOT encoded address of the UART1, which start address

is 0x10011000 and its memory map registers are wide 4 kbytes. In the U54

processor reference manual we can find how to correctly program the PMP

of this processor. It is written: ”A = 0x3: Naturally aligned power-of-two

region (NAPOT), 8 bytes. When this setting is programmed, the low bits

of the pmpaddrX register encode the size, while the upper bits encode the

base address right-shifted by two. There is a zero bit in between, which we

will refer to as the least significant zero bit (LSZB)” [18].

3.3.2 FreeRTOS porting and VOSySmonitoRV timer

handling

FreeRTOS is an open real-time operating system 2.5. A FreeRTOS porting

to RISC-V architecture already exists [2] but it is developed to be run in

M-mode. Since it has to be co-executed with another operating system, the

RTOS must be executed at a lower privilege level i.e., S-mode, like Linux

kernel. Therefore FreeRTOS was ported from M-mode to S-mode. The port-

ing consists of modifying the registers accessible to M-mode in S-mode ones,

setting and modifying the interrupt handling related registers, and the Super-

visor Cause Register (scause) values to be checked after the trap. Finally,

the timer setting through an ECALL. The timer setting is fundamental for

the RTOS task scheduling, it cannot be done in an S-mode environment but

only in M-mode. So VOSySmonitoRV when receiving this particular sys-

tem call with the related extension ID, it knows how to set the timer of the

FreeRTOS hart (from which is received the ECALL) according to the wanted

frequency. In this prototype, FreeRTOS runs alone on a specific hart where

VOSySmonitoRV boots it after platform initialization. Handling the timer

interrupt was critical because the CLINT (see Section.2.2.1) can trigger only

M-mode timer interrupt, as said, so it is first reached by M-mode. This is

right for our purposes because we want to handle it in both M-mode and

S-mode. So even if the timer interrupt is delegated, it is first handled by

M-mode in VOSySmonitoRV, the timer interrupt is trapped and processed,

then the related bit in the sip register is set to trigger a timer S-mode

interrupt to be handled in FreeRTOS.
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3.3.3 FreeRTOS boot

The first thing to do is to add the FreeRTOS binary to the firmware on the

flash, to avoid booting first Linux for the only purpose to copy the binary

on the board. In this way it is also well known FreeRTOS first instruction

physical address, that is useful to boot the OS. To do so it is necessary to

change the linker script (see Section 2.6) adding this memory partition:

/∗ Copyright (C) 2020 − Vir tua l Open Systems SAS

∗ Author Flav ia Cafor io <f . c a f o r i o@v i r tua lopensys t ems . com> ∗/

SECTIONS{
. . .

. = FW TEXT START + 0X30000 ;

. f r e e r t o s :

{
PROVIDE( f r e e r t o s s t a r t = . ) ;

∗ ( . f r e e r t o s )

. = ALIGN( 8 ) ;

PROVIDE( f r e e r t o s e n d = . ) ;

}
. . .

Then through modifying the fw.S file we add the .freertos section

where is possible to include the binary through the .incbin directive. To

pass the binary is better to pass directly the path of it, so the Makefile is

modified in order to include it in the VOSySmonitoRV compilation. The

final firmware fw.bin is then copied on the flash through the dd Linux

utility. So, FreeRTOS boot is done during VOSySmonitoRV cold boot with

the same technique as the starting prototype i.e., by writing in mpec CSR

the address of the first instruction of FreeRTOS, change mpp to S-mode (1),

mpie to 0 and finally mret instruction, so the hart can start to execute the

real-time OS.
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3.3.4 Isolation tests

After the realization of the first prototype some isolation tests are done on

the SiFive HiFive Unleashed board:

• The simpler test to do is to try to access one of the forbidden PMP

regions from the non-critical OS. In this test, there is an attempt to

write a character on the UART1 with a Linux application (U-mode).

The result is an exception to the Linux hart that tried to access a PMP

region with no permissions. In the meanwhile, the RTOS operates as

usual.

• Another test is to push the Linux harts to work at a maximum rate

through a stress test (stress-ng). FreeRTOS has a task that has to make

a print every 1000 ms. This test demonstrates that FreeRTOS can

meet the deadline of its periodic task even if the Linux harts are used

at 100%. This test is shown in Fig. 3.4 where we can see in the HTOP

console that the Linux harts are under stress and that FreeRTOS keeps

working regularly.

• An other isolation test is to trigger a kernel panic in Linux with the

following command on the Linux shell:

echo c > /proc/sysrq-trigger

This is done while FreeRTOS has the same task as before, in which it

has to meet a deadline regularly. In Fig. 3.5 we can see that the kernel

panic does not affect the FreeRTOS operations.

The last two tests on VOSySmonitoRV’s first prototype are shown in a

demonstration video that has been realized during the thesis work [7].

3.4 Second prototype

The second prototype of VOSySmonitoRV main feature is the shared hart.

As mentioned, the RTOS workload is often characterized by only idle tasks.
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Figure 3.4: Stress test on Linux harts

Figure 3.5: A triggered kernel panic in Linux
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As a further performance improvement, use this time in which the hart re-

source is wasted executing Linux code on the RTOS hart. This feature al-

ready exists on ARM architecture with VOSySmonitor product, so it is inter-

esting to port it on RISC-V architecture. To do so, a context switch between

operating systems is necessary. This second prototype doesn’t work properly

but, the company is now working on the development of this prototype to

make it works correctly. So the implementation, that will be discussed in

this Section, is on the last modification done during the thesis. Sharing hart

brings two critical issues: the context switch between the operating systems

and the timer. The context switch issues are due to the fact that both operat-

ing systems use the same M-mode handler even during normal operations, so

a clean context switch between privilege modes must always be guaranteed.

Figure 3.6: Context switch from the RTOS to the General Purpose OS when
is required by the RTOS

3.4.1 Main modifications to VOSySmonitoRV firmware

Context switching between operating systems requires saving all useful reg-

isters every time there is an interrupt of whatever kind. There is a global

variable, WORLD, in which is saved a flag that indicates if the hart is exe-

cuting Linux or FreeRTOS. This variable is checked so the registers can be
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Figure 3.7: Context switch from the GPOS to the RTOS when is required

saved correctly. This operation consists of the saving from the stack of the 32

general-purpose registers and the main CSRs that support the correct exe-

cution of the operating system, such as mstatus, sstatus, stvec, spec,

sie and sip. The idea is to save the registers of each operating system in

a dedicated memory area. In case it is necessary to make a context switch,

based on the target operating system, the corresponding registers, the same

ones that were saved, are restored. This mechanism can be more clear look-

ing at Fig.3.6 and Fig.3.7 .

The timer issue depends on the CLINT which provides only one timer per

hart and shares the same timer is not possible and not useful (the interrupt

can be lost or not correctly handled during the OS context switch). The

solution is to use a separate timer e.g., the on-chip PWM peripheral as a

timer for the RTOS. The PWM generates machine external interrupts that

have the maximum priority [17] over software and timer interrupts. In ARM

architecture this was not a problem because the ARM solution leverages

ARM TrustZone technology, so both the OS has one timer each. Every time

there is an OS context switch, the PMP is reconfigured on the shared hart

according to the destination OS. The PMP configurations are the same as

the first prototype except for the Linux one that now has also the PWM0
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Figure 3.8: Memory overview in the second prototype of VOSySmonitoRV

as a third PMP region. The resulting memory overview is in figure 3.8. To

ensure that the RTOS can always be available, every time that its timer is

elapsed, VOSySmonitoRV gives back the hart to FreeRTOS execution, so it

can check if has an important task to do or not. This is done in the PWM0

handler, where there is also the pwmcmpXip bit cleaning. The PWM0 han-

dler is in the external interrupt handler, added from scratch with this purpose

since before it was not implemented. In fact, it is added also the enabling

of the global external interrupt in M-mode either in S-mode in the mie and

sie registers. To receive the interrupt is necessary to configure properly the

PLIC. The PLIC has a register map with configurable interrupts enable and

priority threshold for every global interrupt source (53) to be configured for

each hart. So it is necessary to configure the registers corresponding to the

FreeRTOS hart, enabling the interrupt source PWM0 and setting the maxi-

mum threshold (7). The external interrupt handling process with the PLIC is

composed of the claim process and interrupt completion. When an external

interrupt is a trap on a specific hart, to know from which interrupt sources

are coming, it is necessary to read the claim/complete register in the

PLIC register map. Then the interrupt can be handled correctly knowing

the interrupt source ID. Finally, the same ID must be written in the same

claim/complete register to signal to the PLIC that the interrupt has been

handled. This is the process described in Section 2.1.3, here explained more
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specifically for the SiFive HiFive Unleashed board. So an ECALL to be used

by FreeRTOS to set the PWM0 and the PLIC is added. The PWM0 setting

is done following the official documentation [17]. The bits in the pwmcfg

register to be set are:

• pwmzerocmp resets to zero the counter of the PWM when it reaches

the compare register. Usually is done to make a regular timer

• pwmenalways means that the counter never stops.

• pwmsticky ensures that pwmcmpXip is not cleared to be trapped as

interrupt in the external interrupt handler

• pwmdeglitch latch the pwmcmpXip value within the same cycle

The PWM has a counter scale, the counter is compared with the pwmcmpX

value, where X is the index of the compare registers (there are four). Being

able to share the hart might question the total isolation and availability

of the RTOS, VOSySmonitoRV ensures the highest priority to the critical

operating system for safety reason using the PWM0 as a timer with the

maximum priority, while giving Linux performance very close to the native

one.

3.4.2 FreeRTOS modifications

To achieve this feature it is necessary to modify FreeRTOS in such a way

that it can ask VOSySmonitoRV to change OS on the hart because it releases

the CPU. This is done, in the version that works with ARM architecture,

through the SVC instruction, which is a system call. In the same way in

RISC-V, when in FreeRTOS a task YIELD() (see Section. 2.5) function is

called, an ECALL is done and so VOSySmonitoRV can switch the context.

As said before, the timer is now the PWM0. To let the FreeRTOS structure

as the same as before, the ECALL to set the timer is substituted by the new

ECALL to set the PWM0 and the PLIC.
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Custom Performance

Benchmark

The initial company VOSySmonitoRV prototype performance has been mea-

sured to assess its overhead and responsiveness in mixed critical applications.

More, in particular, the interrupt latency and the context switch overhead

between Linux and M-mode has been measured to assess the time needed

by an operating system to request one of the services provided by VOSyS-

monitoRV or to trigger a context switch (when multiple OSes share a hart).

As said, this is done also to further optimize the performance of the GPOS,

the hart on which the critical OS is running can be used by the non-critical

OS during scheduled idle tasks in the workload of the real-time operating

systems. Furthermore, to check the feasibility of a shared hart, it is neces-

sary to see if a context switch between operating systems is too costly thus

compromising the RTOS safety. The benchmark purpose is to compute the

duration in clock cycles of the interrupt latency and interrupt context switch

of a simple ECALL from kernel space (S-mode) to M-mode, using one of

the performance counters in the FU540-C000 SoC. The performance counter

used in this benchmark is described in Section 2.1.4. The custom bench-

mark will be presented in the following, the description of the environment

in which the benchmark was done, then the implementation, and finally the

results.

33
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Figure 4.1: Benchmark program flow diagram
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4.1 Environment and implementation details

For the implementation of this benchmark, there were developed an ap-

plication (U-mode), a dedicated Extension in VOSySmonitoRV (M-mode),

and a Linux driver that would operate in S-mode to make VOSySmonitoRV

ECALLs. VOSySmonitoRV as previously mentioned is working at the SBI

level, these S-mode ECALLs are trapped in the main trap handler but then

processed in a specific handler that is defined as ECALL VOSySmonitoRV

handler. In the following will be references to the red number on the arrows

(Fig.4.1).

Measurements were done in mainly two variants:

• ECALL interrupt:

– Interrupt latency: from the driver to the ECALL VOSySmon-

itoRV handler function, or in other words, the delay between the

ECALL occurring and the first instruction in the handler of that

interrupt. This is the path from (1) to (4) (Fig.4.1).

– Interrupt response: from the ECALL VOSySmonitoRV handler

back to the driver, basically the interrupt response latency of an

ECALL. In Fig.4.1 is the path from (6) to (9).

– Interrupt handling overhead: from the driver to the ECALL

VOSySmonitoRV handler function and back. This is the path

from (1) to (9) (Fig.4.1). It represents a full timing overhead

to handle a very simple ECALL.

• Interrupt context switch:

– Save context: from the driver to the VOSySmonitoRV main trap

handler. It mainly consider the hardware latency and the saving

of the context (32 registers). This is the transition (1) (Fig.4.1).

– Restore context: from the VOSySmonitoRV handler to the

driver. It consider the restore of the context (32 registers) and

the hardware latency. This is the transition (9) (Fig.4.1).

To compute the context switch basically, it is necessary to read the cycle

counter register through the rdcycle instruction (see Section.2.1.4) first in
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the starting point and then in the final point and compute the difference.

For example in the Interrupt context switch (Save context) measurement,

the performance counter is read in the driver before the ECALL and then

again after the context saving. The choice to use rdcycle is because using

rdtime would generate an exception that needs to be handled to read the

RTC value, as it is outside the core. This is an architectural choice on SiFive’s

part. Instead the mcycle register is a ”Fixed-Function Cycle Counter” [18]

that is hardware wired, only counts that specific event and it is on 64 bit.

Since it is difficult to isolate the number of clock cycles per hart, according

to the official documentation [22], Linux is forced to run with one processor

core by changing the boot arguments with maxcpus = 1. This can be done

at run time, by changing it through U-boot through the command:

$ setenv bootargs "root=/dev/mmcblk* rw console=ttySIF0

earlycon=sbi maxcpus = 1"

Or can be done through changing the related kernel parameter (CONFIG -

CMDLINE) in the Linux configuration file (.config).

So the application executes in userspace that makes an ioctl call (see

Section.2.3) to trigger the driver to do an ECALL, that will be trapped in

VOSySmonitoRV. This operation in the application is done 500 times to

collect enough results to do statistical consideration about the duration of

the interrupt latency and context switch overhead that is better presented in

the results Section 4.2.

4.1.1 VOSySmonitoRV application

Looking at Fig.4.1 starting from the left we can see the user application

running in U-mode. In this file there are two functions ECALL test() and

context test() that are called in the main.

• ECALL test(): in this function there is a simple ioctl system call

(see Section.2.3) with arguments VOSYSMONITORV IOC ECALL IN-

TERRUPT and cycles value. This variable is set to 0 if the com-

putation has to be from the driver to the SBI function (interrupt

latency). It is set to 1 if the computation target is from the SBI func-

tion to the driver (interrupt response). After the ioctl function
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in the same cycles value variable there will be the value of the

interrupt latency (or response) in clock cycles.

• context test(): also in this function there is a simple ioctl func-

tion, the arguments are VOSYSMONITORV IOC CONTEXT and cy-

cles value. cycles value variable is set to 0 if the computation

has to be from the driver to the first reached SBI function (the trap

handler in the trap.S file), basically the save context phase of an in-

terrupt context switch considering hardware latency. It is set to 1

if the computation target is from the first SBI function reached back to

the driver (restore context and hardware latency). After the ioctl

function the cycles value will be the value of the interrupt context

switch time in one case, the restore phase overhead in the other case,

both as always in clock cycles.

ECALL test() function is invoked 500 times with cycles value 0, then

the cycles value variable which is returned is saved in a file on the board.

Then again 500 times with cycles value at 1, also here we save the vari-

able value in a different file. The same operation is done with the con-

text test() function. We call these test functions 500 times to have a

good number of samples and do considerations about them. All the code is

provided in Appendix A.

4.1.2 VOSySmonitoRV driver

As said, in the user application we use the ioctl system call to send a

command to the driver. Taking always as a reference the Fig.4.1 we can see

that the VOSySmonitoRV driver runs in S-mode. The ioctl functions the

vosysmonitorv-driver are:

• VOSYSMONITORV IOC ECALL INTERRUPT: From the user space we

have the cycles value variable thanks to the copy from user

function (see Section.2.3) that according with the desired computation,

the corresponding function invocation is done. This variable is checked

in the sbi ecall vosysmonitor ecall interrupt() function

in the header file. This function gets back the context switch dura-

tion between the driver and the ECALL VOSySmonitoRV handler in
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VOSySmonitoRV, basically the Interrupt latency in one case and the

Interrupt response in the other. The cycles value variable can

be read and saved in the user application thanks to the copy to user

function (see Section.2.3).

• VOSYSMONITORV IOC CONTEXT: Here we have the same situation

of VOSYSMONITORV IOC ECALL INTERRUPT but the purpose is to

compute the interrupt context switch overhead of an interrupt triggered

from the driver and trapped in the first reached function in VOSySmon-

itoRV, actually in the trap handler in the trap.S file (Fig.4.1)). The

function that is invoked here is sbi ecall vosysmonitor con-

text() in vosysmonitorv.h file. This function gets back the context

switch duration, so according to cycles value value we can measure

both the save context phase and the restore context phase.

The SBI ECALL functions in the vosysmonitorv.h file are:

• SBI ECALL: This is basically an asm volatile function in which is done

the ecall, the RISC-V privileged instruction [21]. As parameters,

we can pass arguments in the registers from a0 to a5. The a6 and

a7 registers are reserved because they are the registers dedicated to

special macros useful to be recognized in VOSySmonitoRV as a type

of extension (a6 function ID, a7 the extension ID). According to these

parameters the ECALL will be handled and processed. To be more

clear, in the following there is the C-code of the SBI ECALL function,

an open-source example is in the official Linux repository [10].

#define SBI_ECALL(__num, __a0, __a1, __a2, __num1)

({

register unsigned long a0 asm("a0") =

(unsigned long)(__a0);

register unsigned long a1 asm("a1") =

(unsigned long)(__a1);

register unsigned long a2 asm("a2") =

(unsigned long)(__a2);

register unsigned long a6 asm("a6") =

(unsigned long)(__num1);

register unsigned long a7 asm("a7") =

(unsigned long)(__num);
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asm volatile("ecall"

: "+r"(a0)

: "r"(a1), "r"(a2), "r"(a6), "r"(a7)

: "memory");

a0;

})

• sbi ecall vosysmonitor ecall interrupt(): If the value vari-

able is 0 we said that the computation is done let’s say ”forward” which

practically means that the performance counter (in the cycle register) is

read two times, one here in the driver and then in the ECALL VOSyS-

monitoRV handler in VOSySmonitoRV. Then the difference is done

there and gives back the actual duration of the interrupt latency in

clock cycles. On the opposite case if the value is 1 is ”backward”, the

rdcycle instruction is done in the VOSySmonitoRV ECALL handler

and we have the value of the performance counter in that position. So

in the driver after the ECALL the rdcycle instruction is done again.

The difference is returned to the application as the interrupt latency

duration from VOSySmonitoRV to the driver in clock cycles. In both

cases, we do an SBI ECALL with parameter SBI EXT VOSYSMONI-

TORV ECALL INTERRUPT that is the function ID in the switch case

statement in the ECALL VOSySmonitoRV handler (that will be bet-

ter explained in the next Section). In both cases a variable is passed

through the arguments registers to VOSySmonitoRV, in the first case

is containing the just taken cycles value, in the second is equal to 1.

This variable is also checked in the ECALL VOSySmonitoRV handler.

• sbi ecall vosysmonitor context(): Also here we have the same

behaviour. If the variable value is 0 is ”forward” (SBI EXT VOSYS-

MONITORV CONTEXT) otherwise is ”backward” (SBI EXT VOSYSMON-

ITORV CONTEXT BK) with the same meaning as before. Here we want

to measure the context switch duration. To do so it is necessary to

read the cycle register in the assembly file trap.S in both ”directions”.

It is important to notice that here we have two different function IDs

to be checked in VOSySmonitoRV.

– SBI EXT VOSYSMONITORV CONTEXT when the computation is



CHAPTER 4. CUSTOM PERFORMANCE BENCHMARK 40

”forward” and it is also passed the cycles variable so the difference

can be done in VOSySmonitoRV.

– SBI EXT VOSYSMONITORV CONTEXT BK when the computation

is ”backward” we don’t pass anything else, we want that the return

value is the value of the cycle register just before the ECALL

interrupt is ended and returns to the lower privileged mode (so in

the trap.S assembly file).

The driver code is shown in Appendix B.

4.1.3 VOSySmonitoRV benchmark extension

Starting from the existent prototype of VOSySmonitoRV some modifications

to support the benchmark was done. We are now talking about the right part

of the Fig.4.1, VOSySmonitoRV running in M-mode.

Let’s start first with the measurements of the ECALL interrupt la-

tency. The ECALL was done in the driver, so we can follow the path from

(1) to (4) to be recognized as a custom ECALL to be handled in the ECALL

VOSySmonitoRV handler (sbi ecall vosysmonitorv.c file). Here, as already

said, we have the function ID SBI EXT VOSYSMONITORV ECALL IN-

TERRUPT used as a parameter (in a7 register) in the ECALL from the

driver. In this switch case statement, we check if in the register a0, which

is the flag from the driver, there is a 1 so we have to do the ”backward”

computation (the Interrupt response duration from VOSySmonitoRV to

the driver). Otherwise, in the variable there is the value of the performance

counter before the ECALL, the computation of the Interrupt latency can

be done here. In this case, we simply do the rdcycle instruction, and then

we compute the difference that is returned. The counter reading is done

immediately, just before checking the variable, for optimization reasons.

For the ECALL interrupt response measurement we are in the ”back-

ward” case, path from (6) to (9). The ECALL has the function ID value

of SBI EXT VOSYSMONITORV ECALL INTERRUPT. After the check of

the flag from the driver that is 1 in this case, the rdcycle instruction is done

again, to avoid counting also the clock cycles of the ”if” statement, and its

value is saved in the a5 register. The return value is set to SBI EXT VOSYS-
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MONITORV value to be recognized in the ecall handler function. There, the

return value is set in the a0 register. This ”backward” computation must be

managed because the return value of the handler functions are integers and

are too small to contain the value of the cycle register read in the ECALL

handler, and we need it to be returned to the driver to compute the differ-

ence. So we have placed this value in the a5 register, which is unsigned long,

and in the ecall handler function, we can save this value in the a0 register

(to return it by the ECALL as explained before).

The measurements of the Interrupt context switch are done between

the driver and the trap.S file. In the trap.S file we have the trap handler entry

where the context is almost immediately saved. The rdcycle instruction

is done just after the saving of the context and saves the value of the perfor-

mance counter in the a5 register. Then there is the extension ID check, so

only and only if the type of the extension ECALL is of type EXT VOSYS-

MONITORV (by checking the a7 register) then the a5 register is pushed on

the stack to be used in the VOSySmonitoRV ECALL handler later. This

extension check is done after reading the cycle register as an optimization,

to avoid counting the overhead due to the branch instructions. After that,

there is the invocation of the trap handler function that is in the trap.c

file (Fig.4.1). Program execution continues until transition (4) where we

have the switch case statement for the function ID. For this measurement,

the ECALL was done with the function ID SBI EXT VOSYSMONITORV -

CONTEXT. Here we have to compute the Context switch (Save context),

so we have to take the value of the register in a5 and the value we had as an

argument of the function at kernel space level (in a0) and make the differ-

ence between the two. The result is returned back. To compute the Restore

context the ECALL from the driver has as function ID SBI EXT VOSYS-

MONITORV CONTEXT BK. The program execution goes from (1) to (4)

(Fig.4.1). Here doesn’t happen anything, this function ID is useful only to

the function ID check in the trap.S file. Indeed the program flow goes back to

the (8) transition. Here, as said, there is the check of the processed ECALL

extension to see if was an EXT VOSYSMONITORV, and also we check the

function ID, because we want to read here the cycle register if and only if was

a SBI EXT VOSYSMONITORV CONTEXT BK ECALL. Then we check again

this value to decide if we can pop or not this value from the stack (it is
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a ”backward” computation we don’t want to pop it because the register a5

would be overwritten). The Trap-Return instruction is done and we are back

in the driver. The extension code is in Appendix C.

4.2 Results

The results of the measurements are collected in ”txt” extension files. Those

files are processed in a python script (see Appendix D) to compute the mean

and the standard deviation of the results of the benchmark. The python

script also represents the results in two graphs. As can be seen in Fig.4.2

we have the measurements of the ECALL interrupt latency with an av-

erage of 0.46 µs, the ECALL interrupt response means the time elapsed

between the handling of the interrupt and the return to the ECALL caller,

the average value is of 0.2 µs. These values are strongly software-dependent,

due to the handler software structure and the software performance varia-

tions due to caches and interrupts. Therefore, we can compute an average

and a standard deviation. The interrupt handling overhead, that is the

sum of the interrupt latency and the interrupt response values, has the same

behavior with an average equal to 0.66 µs.

As expected, the context switch measurement in Fig.4.3 is hardware-dependent,

its average value is most of the time respected (0.071 µs) and it can be done

the same consideration on the restore context phase (0.048 µs). Results are

very promising for the realization of the shared core, ensuring that it is a fur-

ther optimization rather than a loss, and also to be in such a system where

these measurements are considered as an indicator of the time needed by

VOSySmonitoRV to switch operating system or to full fill a request coming

from an application (e.g., power management).

In the table 4.1, are summarized the interrupt and context switch mea-

surements on a RISC-V processor compared with measurements on an x86

processor [13]. The context switch latency on a RISC-V processor is very low

and suitable to support mixed-criticality applications concerning the already

positive results in the x86 processor.

Those results are, as said, related to the interrupt operation of a very sim-

ple ECALL, through which the RTOS can ask to switch to the OS because
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Figure 4.2: Interrupt latency measurements, µ is the average value and σ the
standard deviation

Figure 4.3: Context switch measurements, µ is the average value and σ the
standard deviation
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Table 4.1: The comparison of the benchmark results on the duration of the
context switch with a x86 processor.

Values in µS
Variants RISC-V Intel E3845

Interrupt latency 0.46 -
Interrupt handling overhead 0.66 272

Context switch (save context) 0.071 1.39
Restore context 0.12 12.73

has the only idle task to schedule. The feasibility of this VOSySmonitoRV

feature to co-execute a critical OS with a non-critical OS on a single hart de-

pends on the latency of a context switch between them, the current partition

registers shall be saved and the context of the other OS should be restored.

Both partitions must be able to resume their execution where they have been

preempted. Thanks to these measurements and the actual implementation

of the context switch (see Section 3.4) between OSes we can evaluate that

the latency is in the worst case (considering the hardware latency) near to

700 clock cycles (0.7 µS) that is still an acceptable latency for the purpose.

To achieve this approximation, the number of instructions to do the context

switch has been counted. These include the saving from the stack of the 32

general-purpose registers and the main CSRs that are required for the cor-

rect operation of the operating system. It is possible to compare these values

with previous measurements on VOSySmonitor done on ARM architectures

[11] in table 4.2.
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Table 4.2: The comparison of the latency of the context switch between
operating systems with different criticality

Values in µS
Processor and Platform context switch between OSes

RISC-V SiFive Freedom U540 0.7
A53 Juno 1.02
A57 Juno 1.4

A53 R-CarH3 0.6
A57 R-CarH3 0.96



Chapter 5

Conclusions

Nowadays mixed-criticality applications are used in some fields such as au-

tomotive and industry, usually, they reached different critical environments

through virtualization. A valid alternative is to use one firmware with high-

security features that run directly on the hardware, in such a way that it is

not necessary to have a virtualization extension to run securely two or more

operating systems on the same machine. This can be useful with a RISC-

V board, such as SiFive HiFive Unleashed. RISC-V has in its frozen ISA

the hypervisor extension for virtualization but it has not already a hardware

implementation. Anyway, VOSySmonitoRV is designed to not use it as an

architectural choice, acting at the higher privileged level. In this thesis work,

the starting prototype was enhanced with a first prototype realization that

includes the RTOS running on one hart that it is securely booted before the

GPOS. Moreover, PMP configurations of each hart are set before actually

booting the OSes, so a total and secure isolation is achieved. The RTOS is

now working and executing in S-mode. To further optimize the first proto-

type, a second prototype with a shared hart has been developed but it is not

fully working. The interrupt latency and context switch benchmark results

are very promising for VOSySmonitoRV applications in mixed-criticality en-

vironments with an ECALL interrupt latency value of 0.46 µS and a

Interrupt context switch equal to 0.071 µS . Interrupt latency and con-

text switch are considered key operations because these are response time

performance meters, very important in mixed-criticality systems. A paper

on VOSySmonitoRV was submitted to an IEEE embedded conference.
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5.1 Future work

This project is under development and improvement by the company, which

includes making the context switch between operating systems work correctly

and efficiently. Furthermore, porting these prototypes to other boards such

as the Andes AE350 and the new SiFive HiFive Unmatched have been con-

sidered as future work. As mentioned, integration with SiFive WorldGuard

technology would be very interesting as there is already the use of a variable

that determines the ”world” that is running on the hart.



Appendix A

VOSySmonitoRV benchmark

application code

This is the main of the VOSySmonitoRV application in the user app.c file

(Fig.4.1). This application has to be run on the board on Linux v5.8, after

the driver loading.

/* Copyright (C) 2020 - Virtual Open Systems SAS

* Author Flavia Caforio <f.caforio@virtualopensystems.com> */

int main()

{

char* devfilename = devname;

FILE *fp = fopen("benc-res-int-latency.txt","w+");

FILE *fp1 = fopen("benc-res-cont.txt","w+");

FILE *fp2 = fopen("benc-res-int-response.txt","w+");

FILE *fp3 = fopen("benc-res-cont-bk.txt","w+");

if(fp == NULL || fp1 == NULL || fp2 == NULL || fp3 == NULL)

{

printf("Error file at user app level\n");

exit(1);

}

int i = 0;

int ret = 0;

g_devFile = open(devfilename, O_RDWR | O_NONBLOCK);

/* We call these test functions a certain number of times

* to do statistical consideration about the duration

* of the context switch */

48
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/* Interrupt latency measurement */

for(i = 0; i < 500 ; i++)

{

cycles_value = 0;

ret = ECALL_test();

/* Values are written on a file on the board */

fprintf(fp,"%ld\n",cycles_value);

}

fclose(fp);

sleep(1);

/* Save context measurement */

for(i = 0; i < 500 ; i++)

{

cycles_value = 0;

ret = context_test();

/* Values are written on a file on the board */

fprintf(fp1,"%ld\n",cycles_value);

}

sleep(1);

fclose(fp1);

/* Interrupt response measurement */

for(i = 0; i < 500 ; i++)

{

cycles_value = 1;

ret = ECALL_test();

/* Values are written on a file on the board */

fprintf(fp2,"%ld\n",cycles_value);

}

fclose(fp2);

sleep(1);

/* Restore context measurement */

for(i = 0; i < 500 ; i++)

{

cycles_value = 1;

ret = context_test();

/* Values are written on a file on the board */

fprintf(fp3,"%ld\n",cycles_value);
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}

fclose(fp3);

sleep(1);

close(g_devFile);

return 0;

}

/* ECALL_test() function returns the interrupt latency and the

iterrupt response of an ECALL interrupt */

int ECALL_test()

{

long ret;

u_int64_t ret_value = 0;

ret = ioctl(g_devFile, VOSYSMONITORV_IOC_ECALL_INTERRUPT,

&cycles_value);

return ret;

}

/* context_test() function returns the context switch save and

restore phase duration of an ECALL

interrupt */

int context_test()

{

long ret;

u_int64_t ret_value = 0;

ret = ioctl(g_devFile, VOSYSMONITORV_IOC_CONTEXT,

&cycles_value);

return ret;

}
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VOSySmonitoRV benchmark

driver code

This is the implementation of the functions explained in the benchmark chap-

ter, in the driver description 4.1.2. Those functions are i the file vosysmon-

itorv.h (Fig.4.1). This driver has to be loaded on the Linux kernel v5.8 (so

compiled for this version) on the board.

The function implementation for the ECALL interrupt measurements:

/* Copyright (C) 2020 - Virtual Open Systems SAS

* Author Flavia Caforio <f.caforio@virtualopensystems.com> */

uint64_t sbi_ecall_vosysmonitor_ecall_interrupt(uint64_t value)

{

uint64_t ret = 0;

unsigned long cycles_back = 0;

uint64_t cycles = 0;

if(value ==1)

{

/* Here we read the cycle register with the *rdcycle*

* instruction just after the ecall.

* The *value* is 1 so the measurement is done

* from the ECALL VOSySmonitoRV handler

* to the driver. The *rdcycle* instruction is done in the

* VOSySmonitoRV handler and then the

* value is returned back in cycles_back.

* The final computation is done here. */

cycles_back = SBI_ECALL(SBI_EXT_VOSYSMONITORV,

SBI_EXT_VOSYSMONITORV_ECALL_INTERRUPT,
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value);

asm volatile ("rdcycle %0" : "=r" (ret));

ret = ret - cycles_back;

} else

{

/* Here we read the cycle register with the *rdcycle*

* instrunction just before the ecall.

* The *value* is 0 so the context switch duration is

* from the driver to VOSySmonitoRV.

* The *rdcycle* instruction is done in the

* VOSySmonitoRV handler and then the

* computation is done and returned back */

asm volatile ("rdcycle %0" : "=r" (cycles));

ret=SBI_ECALL(SBI_EXT_VOSYSMONITORV,

SBI_EXT_VOSYSMONITORV_ECALL_INTERRUPT,

cycles);

}

return ret;

}

The function implementation for the context switch measurements:

/* Copyright (C) 2020 - Virtual Open Systems SAS

* Author Flavia Caforio <f.caforio@virtualopensystems.com> */

uint64_t sbi_ecall_vosysmonitor_context(uint64_t value)

{

uint64_t ret = 0;

unsigned long cycles_back = 0;

uint64_t cycles = 0;

if(value == 1)

{

/* If value is 1 means that we want to measure the

* restore context overhead from

* VOSySmonitoRV to the driver. So we don’t pass

* anything, we want that the return value

* is the value of the *cycle* register just before

* return back from the ECALL.

* Then again here, and we compute the difference

* to have the actual duration. */

cycles_back = SBI_ECALL_1(SBI_EXT_VOSYSMONITORV,

SBI_EXT_VOSYSMONITORV_CONTEXT_BK);
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asm volatile ("rdcycle %0" : "=r" (ret));

ret = ret - cycles_back;

} else

{

/* Here we read the cycle register with the *rdcycle*

* instruction just before the ECALL

* and then in the first file reached in VOSySmonitoRV

* the *rdcycle* instruction is done.

* The difference is computed by the ECALL

* VOSySmonitoRV handler and returned back */

asm volatile ("rdcycle %0" : "=r" (cycles));

ret = SBI_ECALL(SBI_EXT_VOSYSMONITORV,

SBI_EXT_VOSYSMONITORV_CONTEXT, cycles);

}

return ret;

}
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VOSySmonitoRV benchmark

extension code

This is the VOSySmonitoRV ECALL handler in the ecall vosysmoitorv.c

(Fig.4.1).

/* Copyright (C) 2020 - Virtual Open Systems SAS

* Author Flavia Caforio <f.caforio@virtualopensystems.com> */

static int sbi_ecall_vosysmonitorv_handler(unsigned long

extensionid, unsigned long funcionid,

unsigned long *regs)

{

int ret = 0;

static unsigned long start_cycles = 0;

static unsigned long cycles = 0;

static uint64_t vosys_var=0;

switch (funcid) {

case SBI_EXT_VOSYSMONITORV_ECALL_INTERRUPT:

/* In the register a0 we have the flag from the

* driver, if

* is 1 the computation is backward (from

* VOSySmonitoRV to the driver)

* otherwise is 0 and means that the computation

* is from kernel space to m-mode. */

asm volatile ("rdcycle %0" : "=r" (cycles));

start_cycles = regs[0]; /* a0 register, the argument of

* the SBI_ECALL in the driver */

if (start_cycles == 1)
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{

/* We read again to avoid to count also the clock

* cycles of the if statement.

* The return value is set to SBI_EXT_VOSYSMONITORV

* because when the return

* value of the ecall is set in the sbi_handler

* function we want to check

* if it is from this specific function.

* We do that because the return value

* of the handlers are integers and are too small

* for the value of the *cycle*

* register read here. So we put this value in the

* regs[5] (a5 register) that is unsigned

* long and then in the sbi_handler function we put

* this value in a0 (to return it

* back after the ECALL). */

asm volatile ("rdcycle %0" : "=r" (cycles));

regs[5] = cycles;

ret = SBI_EXT_VOSYSMONITORV;

}else

{

/* The computation is returned back to the driver */

ret = cycles - start_cycles;

}

break;

case SBI_EXT_VOSYSMONITORV_CONTEXT:

/* The *rdcycle* instruction is done in trap.S

* before the calling of the sbi_handler function.

* the value is passed in the a5 register, and in a0 we

* have the value from the driver. We compute the

difference here

* and we return back the computation of the minimum

context switch */

cycles = (unsigned long) regs[5];

start_cycles = regs[0];

ret = cycles - start_cycles;

break;

case SBI_EXT_VOSYSMONITORV_CONTEXT_BK:

/* The *rdcycle* instruction is done in trap.S

* after the return of the sbi_handler function.

* There, if and only if this SBI function was

* invoked, the value
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* of the *cycle* register is returned to the driver */

ret = 0;

break;

default:

ret = SBI_ECALLNOTSUPP;

};

return ret;

}



Appendix D

Benchmark results elaboration

This is a python script that was created to elaborate the benchmark data

results.

import matplotlib.pyplot as plt

from matplotlib.patches import Rectangle

import numpy as np

x = np.linspace(1, 500, 500, endpoint = True)

y1 = np.loadtxt(’benc-res-int-latency.txt’, delimiter=’\n’,

unpack=True)

mu1 = np.mean(y1)

sigma1 = np.std(y1)

fig,(ay1, ay2,ay3) = plt.subplots(3,1)

ay1.bar(x,y1,width=1)

ay1.set(ylim=[400,600],ylabel=’Interrupt latency’,title=’ECALL

interrupt’)

ay1.axhline(mu1, ls=’--’, color=’r’)

extra = Rectangle((0,0),1, 1, fc="w", fill=False,

edgecolor=’none’, linewidth=0)

ay1.legend([extra,extra],["$\mu = 468$","$\sigma =

66$"],loc="upper right")

y2 = np.loadtxt(’benc-res-int-response.txt’, delimiter=’\n’,

unpack=True)
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mu2 = np.mean(y2)

sigma2 = np.std(y2)

ay2.bar(x,y2,width=1)

ay2.set(ylim=[100,300],ylabel=’Interrupt response’)

ay2.axhline(mu2, ls=’--’, color=’r’)

extra = Rectangle((0,0),1, 1, fc="w", fill=False,

edgecolor=’none’, linewidth=0)

ay2.legend([extra,extra],["$\mu = 198$","$\sigma =

14$"],loc="upper right")

y3 = np.loadtxt(’handling_overhead.txt’, delimiter=’\n’,

unpack=True)

mu3 = np.mean(y3)

sigma3 = np.std(y3)

ay3.bar(x,y3,width=1)

ay3.set(ylim=[450,770],ylabel=’Interrupt handling’,xlabel=’# of

test’)

ay3.axhline(mu3, ls=’--’, color=’r’)

extra = Rectangle((0,0),1, 1, fc="w", fill=False,

edgecolor=’none’, linewidth=0)

ay3.legend([extra,extra],["$\mu = 666$","$\sigma =

76$"],loc="upper right")

plt.show()

fig.savefig(’figures/ECALL_interrupt.png’,transparent=False,

dpi=80, bbox\_inches="tight")

y4 = np.loadtxt(’benc-res-cont.txt’, delimiter=’\n’,

unpack=True)

mu4 = np.mean(y4)

sigma4 = np.std(y4)

fig2, (ay4,ay5) = plt.subplots(2,1)

ay4.bar(x,y4,width=1)

ay4.set(ylim=[30,90],ylabel=’Save context’,title=’Context

switch + hardware latency’)

ay4.axhline(mu4, ls=’--’, color=’r’)
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extra = Rectangle((0,0),1, 1, fc="w", fill=False,

edgecolor=’none’, linewidth=0)

ay4.legend([extra,extra],["$\mu = 71$","$\sigma =

0.72$"],loc="upper right")

y5 = np.loadtxt(’benc-res-cont-bk.txt’, delimiter=’\n’,

unpack=True)

mu5 = np.mean(y5)

sigma5 = np.std(y5)

ay5.bar(x,y5,width=1)

ay5.set(ylim=[20,80],ylabel=’Restore context’)

ay5.axhline(mu5, ls=’--’, color=’r’)

extra = Rectangle((0,0),1, 1, fc="w", fill=False,

edgecolor=’none’, linewidth=0)

ay5.legend([extra,extra],["$\mu = 48$","$\sigma =

0.61$"],loc="upper right")

plt.show()

fig2.savefig(’figures/contextswitch.png’,transparent=False,

dpi=80, bbox_inches="tight")
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