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Abstract

The rise of 5G networks has been fundamental in these last decades making it possible
to handle users demand in a sustainable way. The concept of a flexible and standard
architecture brought by the 5G-TRANSFORMER project and later by the 5Growth project
has revolutionized the approach in 5G networks. The network slicing approach is the key
factor of this thesis, it enables a logical and physical separation of network and computation
resources, with the possibility of sharing and scaling them. Further improvements can be
done in terms of optimization of resources which is a challenging task when handling a
wide range of services with different requirements.

Our work is focused on automating the resources optimization using a machine learning
model which returns to the system the best configuration parameters for the analyzed
context, enabling a proper resource utilization. In order to achieve this goal, we need to
define and create a dataset containing information relative to different network contexts
which are created through extensive simulations of service instantiation requests. Each
simulation considers several set of configuration parameters decided in advance.

Once the dataset is obtained, a machine learning model can be trained to classify
correctly most contexts. The model is then given to the system through a new architectural
layer defined by 5Growth, the AI/ML platform, responsible for handling model request and
creation with respect to the data monitored and the vertical requirements. The final step
of our work is to implement the model in the 5Growth architecture with different services
as the context requires, simulating instantiation requests using the correct parameters.
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Chapter 1

Introduction

In recent years the network industry went through major development. Wireless service
providers have deployed both the Third Generation Partnership Project (3GPP) Long
Term Evolution (LTE) and 4G LTE with the objectives of increasing peak data rates both
in download and upload and providing a scalable and flexible infrastructure. Nevertheless,
the user demand is increasing massively, generating an even greater amount of mobile
data traffic, challenging the sustainability of the existent network. According to a study
conducted by the International Telecommunication Union (ITU), the global mobile traffic
per month is estimated to grow from the actual 57 EB per month to 5 ZB in 2030 [1].

Several projects have been made in the past few years to face this challenge, such as the
5G-TRANSFORMER, an European project focused on the creation of a virtualized layered
infrastructure which enables custom service implementation, aggregating and federalizing
network and transport functions. It allowed a simpler implementation of various use cases,
hiding the complexity to the verticals leveraging different paradigms, such as:

• Network Function Virtualization (NFV), which allows to detach network functions
from the hardware, splitting the development time between software and hardware;

• Network Slicing, which enables the isolation of different network functions in order
to save resources;

• Multi-access Edge Computing (MEC), which brings the network environment closer
to the user reducing latency.

Further innovations have been implemented on this new framework. Thanks to the
5Growth project, prosecution of the 5G-TRANSFORMER one, several architectural en-
hancements have been done in order to increase performance and security. In this thesis we
will focus on the AI/ML platform, a new module introduced in this project which can run
several machine learning algorithms using data collected by a monitoring platform, another
innovation brought by 5Growth. This workflow can be useful to automate decision-making
processes when instantiating vertical slices. Our goal is to create a machine learning model
capable of autonomous decision about vertical slices instantiation and reuse, optimizing
resources utilization.
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Introduction

1.1 Core elements for 5G networks
5G networks are focused on optimizing the current mobile network in terms of reliability,
power consumption, latency, throughput and coverage. Optimized performances allow the
deployment of a wide range of vertical services with highly diverse requirements. The
crucial technologies are presented in this section.

1.1.1 Network slicing
Network slices are defined by the Next Generation Mobile Network Alliance (NGMN)
as a set of network functions that can be logically and/or physically isolated from other
slice instances, providing isolation and increased statistical multiplexing. In this way,
each network slice represents an independent and virtualized end-to-end network allowing
different type of deployment flavors. Moreover, its policies and configuration can be defined
in specific descriptors.

Services are deployed as sets of Virtual Network Functions (VNF) which are logically
connected as described in the VNF Forwarding Graph (VNFFG). Such decomposition of
services in function blocks could enable the sharing of same functions among different
slices. In this way the VNF enables different features as migration from one hardware to
another, the possibility of scale the computation power to adapt to different situation, high
optimization and reliability.

1.1.2 NFV Management and Orchestration
NFV introduces new capabilities to the communications network, requiring a set of func-
tions in order to manage and orchestrate operations, administration, maintenance and
provisioning. The decoupling of software and hardware adds new set of relationship and
objects which require different management and orchestration functions with respect to
the legacy system. The Network Functions Virtualization Management and Orchestration
(NFV-MANO) architectural framework has the role to orchestrate the NFV Infrastructure
and to manage resources for Network Services and VNFs. It lends itself to different pos-
sibilities such as full automation, scaling and distribution of resources, implementations
without single points of failures and standard interfaces.

1.1.3 Multi-access Edge Computing
MEC provides cloud-computing capabilities in proximity to mobile subscribers, at the
edge of the mobile network. The environment of MEC allows low latency, proximity, high
bandwidth and real-time insight into radio network information and location awareness. It
enables an efficient and seamless integration of application, through acquirement of contex-
tual information and real-time awareness of the environment using new standardized APIs.
The above characteristics are shared with 5G networks based on 3GPP 5G specifications
which define enablers for edge computing, allowing interaction between the aforementioned
5G networks with MEC systems in terms of traffic routing and policy control.

In short, deploying service at the edge of the networks brings more efficiency, easing
the traffic load of mobile core networks, despite posing some challenges such as resource
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1.2 – 5Growth architectural innovations

management, security and privacy.

1.2 5Growth architectural innovations
The goal of the 5Growth project is to enhance usability, flexibility, automation, performance
and security of the pre-existent platform. This is done through a series of architecture,
algorithm and framework innovations. The combination of the architectural ones relative
to vertical service monitoring and AI/ML support is the key factor of our work.

1.2.1 Vertical service monitoring
The implementation of a monitoring platform enables features as scaling, self-healing and
can trigger other tasks. It collects, store and process information provided by deployed
services. Such monitoring metrics may be useful for other data processing modules, e.g.,
AIML modules which can build models around this data. Moreover, it adds more agile
metric collection, based on dynamic alerts triggered by verticals without any downtime
using messaging interaction capability between the submodules of the monitoring platform.

1.2.2 AI/ML support
Machine Learning can be quite useful when it is necessary to take decisions in real time in
an highly dynamic environment such as 5G networks. Vertical applications should rely on
a robust orchestration and arbitration system that is able to react properly to unexpected
events that may occur.

AI/ML algorithms can adapt easily to different patterns or events that may occur within
network slices, predicting future situations and problems, guaranteeing the compliance with
SLA requirements imposed by verticals. This is possible due to the data made available by
the monitoring platform which offers proper train and test datasets available for machine
learning algorithms to use.

1.3 Outline of the thesis
The thesis is organized as follows:

Chapter 2 focuses on the 5Growth architecture, the platform on which our model
will be deployed. A detailed view of the layers is presented in this chapter as well as the
innovations useful for our work which were brought into the platform.

Chapter 3 introduces the concept of network slice reuse automation, the core of our
work, and how it can affect the instantiation of VNFs in the system. The definition of the
algorithm is presented in this section and refined for our implementation.

Chapter 4 is focused on the service instance requests simulator used to generate data
suitable for the dataset which will be used to train the model. A detailed view of its
workflow and the considered dataset parameters is discussed in this section. The results
are reported at the end of the chapter.
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Introduction

Chapter 5 is centered on the Machine Learning paradigm, introducing the different
method of classification and selecting the best one based on accuracy results. Results will
be shown at the end of this chapter.
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Chapter 2

The 5Growth architecture

The 5G networks are envisioned to deploy a wide range of different services, each one with
its requirements in terms of latency and resources, spanning from Industry 4.0 to Trans-
portation and Energy. It is necessary to build a new infrastructure which can cope with
the aforementioned requirements in order to meet them in a flexible way. To this aim, the
5Growth project [8] provides an infrastructure that supports the current connectivity needs
and facilitates the implementation of new innovative digital use cases. The infrastructure
is built on the baseline platform, 5G-TRANSFORMER [5], which focuses on designing and
building a system fit for purpose which exploits the previously mentioned key pillars for
5G: network slicing and MEC. The former impacts the cost reduction side, introducing
sharing among different actors, while the latter enables low-latency services reducing the
traffic pushed into the core networks.

The architecture [6] is conceived to support multiple combinations of stakeholders. In
order to achieve this purpose, through the new standardized set of Application Program-
ming Interfaces (APIs), the system hides the complexity from the verticals, which are
allowed to define their services and the required Service Level Agreements (SLAs).

The system consists in three different components:

• Vertical Slicer (5Gr-VS), inherited from 5G-TRANSFORMERVertical Slicer (5GT-
VS), is the entry point for service requests from the verticals, it manages their asso-
ciation of the services to slices as well as network slice management. In the 5Growth
model it is expanded to support monitoring, security, and performance assurance for
each network slice enabled by machine-learning and analytics. It provides further
control and additional support towards multi-domain services.

• Service Orchestrator (5Gr-SO), inherited from 5G-TRANSFORMER Service Or-
chestrator (5GT-SO), is responsible for orchestration of services across different do-
mains, organizing resources to expose to the 5GT-VS. It is enhanced by recent algo-
rithms and frameworks which enable smart orchestration and lifecycle control over
slices, optimizing resources for Radio Access Networks (RANs), Transport, Core and
cloud/edge computing.

• Resource Layer (5Gr-RL), inherited from 5G-TRANSFORMER Mobile Transport
and Computing Platform (5G-MTP), provides physical and virtual network resources
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The 5Growth architecture

Figure 2.1. 5Growth architecture

for service deployment and network slice execution. It is responsible for the level of
abstraction of the 5GT-SO, improved with re-programmable mechanism in order to
enhance security, management and control over individual resources.

These three main components are further described below along with a machine learning
related component added by the 5Growth project, a crucial factor for the work done in
this thesis.

2.0.1 Vertical Slicer
The 5GT-VS is the entry point for verticals into the 5G-TRANSFORMER system. Ver-
tical services are offered through a high-level interface, allowing providers to focus on the
requirements and logic side of their services. The layer offers a catalogue of virtual service
blueprints (VSB) which are complaint with the SLA requirements and are used by the
verticals to generate their service requests. The final specification of a service is expressed
through a Vertical Service Descriptor (VSD) which is made of both the correspondent VSB
and the user-defined parameters used to fill the VSB. The 5GT-VS identifies what kind of
network slice is required for the vertical service deployment and manages their lifetimes.

The identification of a proper network slice is done by the Vertical Service Management
Function (VSMF), which is also responsible for multiple service arbitration. It consists in
deciding if multiple service could be mapped on the same network slice, following vertical’s
SLA in terms of isolation and sharing, taking into account the computational resources
needed when sharing the slice.
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The 5Growth architecture

The management and configuration of the Vertical Slicer system allows to configure ten-
ants, their SLAs and the associated policies. Moreover, VS blueprint can be on-boarded in
the internal catalogue. These functionalities are implemented through the Tenant manage-
ment, the SLA & policy management and the VS Blueprint catalog modules and exposed
to the system administrator through management REST APIs.

Lifecycle management of one or multiple network slices, arranged in a hierarchy man-
ner, is handled by the Network Slice Management Function (NSMF) and the Network Slice
Subnet Management Function (NSSMF). These components are responsible for the cre-
ation, modification and termination of network slices, following the vertical management
logic.

Figure 2.2. 5G-TRANSFORMER Vertical Slicer architecture

The VSI/NSI Coordinator and LC Manager is the core component of the Vertical Slicer.
It maps the requests into an existing or a new NFV Network Service (NFV-NS) implement-
ing a network slice which can be shared among different vertical services. It can be made
up of network slice subnets that may offer partial required functionality reducing the to-
tal load. The NFV-NS will be updated or created through a Network Service Descriptor
(NSD), a graph composed by the set of VNF necessary for the proper functioning of the
service, along with several instantiation parameters that are sent to the 5GT-SO.

The Vertical Slicer algorithm and decision logic are handled by the VSD/NSD Trans-
lator and the Arbitrator. The VSD/NSD Translator maps the vertical services and the
network slices using the descriptor of the associated NFV network services. Descriptors en-
able the identification of several service requirements, such as the number of VNFs required,
the amount of requested resources or the bandwidth between virtual links. The Arbitrator,
on the other hand, manages contention among concurrent services and it is responsible for

15



The 5Growth architecture

the creation, sharing and destruction of network slices with respect to parameters such as
sharing requirements and placement.

2.0.2 Service Orchestrator
The 5GT-SO is responsible of providing end-to-end orchestration of the NFV-NS across
multiple domains by interacting with the local MTP and peer SOs. It handles the allocation
of resources which can be offered by other administrative domains, hiding it to the vertical
domain which access to the system through a single 5GT-VS.

This layer has two main components, the network service orchestrator (NFVO-NSO)
and the resource orchestrator (NFVO-RO). The NFVO-NSO is responsible of the lifecycle
management of the network services, it handles the hierarchy of different NFVO-NSOs if
the service is deployed across different domains. The NFVO-RO assign virtual resources
which are offered by the local and underlying 5GT-MTP and from peer SOs. The resources
information is contained in the Network Functions Virtualization Infrastructure (NFVI)
resources repository and the NFV-NS instances repository. Resources will have a higher
or lower abstraction level depending on the policies of the MTP and the peer SOs. Ulti-
mately, the 5GT-SO include Virtual Network Function Managers (VNFM) which manage
the lifecycle of the VNFs composing the NFV-NS.

In the end, the 5GT-SO main functionalities are the following:

• decides the optimal (de)composition for the whole NFV-NS subject to resources avail-
ability offered by the local 5GT-MTP and other domains;

• manages the lifecycle for the NFV-NS and the composing VNFs;

• decides the optimal placement for the VNFs and the deployment of the virtual links
between VNFs through optimized mapping;

• requests to other federated 5GT-SOs required network services in order to execute
parts of the NFV-NS in other administrative domains;

• performs monitoring tasks and handles fluctuations in the system, triggering self-
adapting actions in order to maintain an optimal performance.

The main components of the 5GT-SO are the following:

• NBI Exposure Layer: it offers an API towards the 5GT-VS to support requests
for service scaling, instantiation, modification and termination;

• NFV-NS/VNF/VA Catalogue DB/Manager: repository of all NFV Network
Service (NFV-NS), Virtual Network Function (VNF) and Vertical Application (VA)
descriptors, used by the 5GT-SO in order to obtain relevant information about needed
resources and service lifecycle;

• Multi-Domain NFV Orchestrator (NFVO): it orchestrates virtual resources
across different domains, executing NFVO-RO functions as well as coordinating the
NFVO-NSO functions;
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The 5Growth architecture

Figure 2.3. 5G-TRANSFORMER Service Orchestrator architecture

• VNF Manager (VNFM): it handles the VNFs lifecycles, provides reconfiguration
based on information received from the local NFVO;

• SO-SO Resource Management & Advertisement: it is in charge of creating
abstract views of the resources with other administrative domains;

• NFVI Resource Repository: consolidates the abstract view of the resources re-
ceived by the underlying 5GT-MTP;

• NS/VNF/VA Instance Repository: it contains all the NFV-NS, VNFs and VAs
instantiated over time;

• SO Monitoring Manager: it is responsible to translating the service requirements
into low-level jobs in order to retrieve the necessary information from the virtual
infrastructure elements;

• SLA Manager: it ensures that the SLA requirements imposed by the verticals are
satisified through on-line SLA verification, triggering adapting reactions if a constraint
is not respected.

2.0.3 Resource Layer
The 5Growth Resource Layer (5GR-RL) inherits its functions from 5G-TRANSFORMER
Mobile Transport and computing Platform (5GT-MTP). It handles the mobile transport
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network, computing and storage infrastructure. It offers different levels of resource abstrac-
tion to the 5GT-SO and it provides solutions to integrate MEC resources from multiple
domains in terms of computing and storage resources. Therefore, when receiving a re-
source allocation request, it generates requests for the relative entities providing part of
the virtual resources needed for the VNFs, it interconnects them and configures additional
parameters. The requests may be mapped in order to hide the complexity of the underlying
mobile network while maintaining flexibility inside the mobile domain.

Figure 2.4. 5G-TRANSFORMER MTP architecture

The MTP is structured as follows:

• Abstraction Engine: it generates the abstract view of the available resources to
provide to the Service Orchestrator;

• Database (DB): it contains all the information relative to the domain resources. It
can be updated through an external SQL server which handles all the queries;

• Dispatcher: it manages the communication between the 5GT-MTP components;

• Local Placement Algorithm (PA): it handles the placement of the VNF, selecting
the optimal placement and achieving the ideal resource utilization;

• Monitoring Driver: it manages communications between the MTP and the Moni-
toring Platform, creating performance monitoring jobs.

2.1 AI/ML integration
5G networks has opened the doors to a great amount of different use cases with their
quite diverse requirements in terms of resources and latency. It is therefore acknowledged
how important is the automation of network and service management. This led to the
introduction of new features in the 3GPP specifications as the Network Data Analysis

18



2.1 – AI/ML integration

Function (NWDAF) which enables data collection and analysis in network functions, and in
the Open Radio Access Network (O-RAN) specifications with regard to radio and network
performance improvement through AI/ML.

The 5Growth project [8] is focused on building the 5Gr-AIML platform [7] to achieve
such automation, creating a centralized and optimized environment to train, store and
serve AI/ML models in the 5Growth infrastructure, which can be integrated in the 5G-
TRANSFORMER architecture. Two entities interact together with the platform: the
5Growth Vertical-Oriented Monitoring System (5Gr-VoMS) and a generic entity requir-
ing a trained model (one of the components of the 5G-TRANSFORMER system in our
case). The 5Gr-VoMS provides raw data to the 5Gr-AIML platform which collects them
as training datasets to be used to train different models. The 5Gr-entity interacts with the
platform through the Interface Manager in order to request fresh trained AI/ML models.

The Interface Manager handles the traffic inside the platform. 5Gr entities interact
with it making their requests for trained models satisfying the requirements. The request
is sent to the computing cluster, based on Apache Hadoop, which returns the trained
model requested when it is ready. The Hadoop cluster leverages the Hadoop Distributed
File System (HDFS) as dataset and training model storage and YARN for computing
resources management. There are several other components as BigDL, used for Deep
Neural Networks, and Ray, needed to leverage Reinforcement Learning models, however
the crucial component for our objective is Spark, used to train classic supervised and
unsupervised model, useful in presence of a label dataset such as the one created in our
work.

Figure 2.5. 5Gr-AIML Platform Architecture

The workflow is depicted in figure 2.5 and it is as follows:

0. training data are collected from the 5Gr-VoMS and elaborated to build or update a
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The 5Growth architecture

training dataset saved in the HDFS Dataset Storage;

1. a 5Gr-entity requests to the 5Gr-AIMLP for a model needed to fulfill the optimization
requirements (e.g., scaling, deployment, path recalculation) in order to guarantee a
correct service lifecycle or to react on some detected irregularity. Therefore, the
platform exposes the model catalog containing the suitable ones fit for purpose;

2. the 5Gr-entity select the model and the dataset, specifying also some other require-
ments such as accuracy and training time. The training periodicity could be optimized
by the ML Lifecycle Manager that keeps the model fit using the last data available;

3. if the model has never been trained, its validity has expired or a preliminary training
is required, a training job is sent to the computing cluster, otherwise it is directly
fetched from the Model Storage;

4. the Hadoop cluster performs a training job using the proper block (Spark, BigDL,
Ray) on the appropriate dataset present in the Dataset Storage. Once the training is
complete, a training model is created or updated in the Model Storage, consequen-
tially updating the Model Register;

5. the trained model is retrieved from the Model Storage and returned to the requesting
5Gr-entity which will use the model to finalize the initially requested optimization
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Chapter 3

ML-driven network slice reuse

The implementation of an AI/ML powered module in the architecture brings several advan-
tages in the 5Growth system. This innovation can simplify the development of algorithms
safer and more robust than conventional ones. In fact, AI-based algorithms adapt better
to the dynamic behavior of network slices and react in real time to unexpected events.

Our work is focused on the automation of network slice instantiation, done by the
Arbitrator inside the Vertical Slicer. This component computes the latency class for each
VNF to instantiate, considering its complexity and the number of users handled. In the
light of data, it decides whether a new virtual machine must be instantiated for that VNF
or if an existent instance of the same VNF could be used to serve the new incoming request.

The goal is to create a ML model which can lighten the Arbitrator code. As a matter of
fact, the Arbitrator will only ask to the model which is the best bin configuration instead
of calculating it by itself.

The workflow is presented in figure 3.1:

Figure 3.1. ML-driven Network Slice Reuse workflow
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ML-driven network slice reuse

1. a dataset is created using information from both the monitoring platform (i.e., the
amount of CPU currently used) and the VSD catalog (current number of service
instances);

2. the ML model is fit with the training dataset created in the first step;

3. the ML model is validated with the preferred method (i.e., k-fold cross validation)
and tested;

4. the Arbitrator requests the trained model to the AI/ML platform to use for VNFs
instantiation;

5. a vertical service requests arrives to the Vertical Slicer front-end;

6. after being processed by the VSI/NSI Coordinator, the request is passed to the Ar-
bitrator in order to decide how to instantiate the service and its VNFs;

7. the Arbitrator requests the number of instances from the instance database to give
to the trained model for the inference;

8. the trained model predicts the best latency class configuration and returns it to the
Arbitrator;

9. the results is sent back to the VSI/NSI coordinator which carries on the service
instantiation process, contacting the Service Orchestrator.

In our case the model is trained on data obtained through simulations of service requests
without considering the direct contribution of the involved platforms. We leveraged the
algorithm 1 used by the Arbitrator to determine the conditions which are to be respected
in order to share network slices.

3.1 Slice reuse algorithm
Assuming we have a list of service instantiation requests, the algorithm requires as input:

• the maximum computing capability associated with a single VM (µ̄);

• the per-VNF complexity factor θv, indicating the amount of vCPU required to process
a traffic unit by the VNF v;

• the network latency between the service area and the service layer l on which the new
service is going to run (dl,r);

• the request r for the new service

The request r includes:

• the set Vs of the VNFs composing the requested service;

• the service target latency threshold Ds
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3.1 – Slice reuse algorithm

• the service lifetime Ls

• the maximum number of users that the service instance can handle λr

• the service level l∗, which affects the network latency;

• the tenant of the service T

The output of the algorithm is a tuple composed of three elements:

• a service instance;

• a VNF v;

• a VM capability µ∗b needed for the VNF v

For each VNF of the requested service, their minimum processing delay, (Line 7), target
latency (Line 9) and, according to the latter, latency class (Line 11) are computed. In order
to look for VMs already instantiated that can be reused for the request r, in Line 14 all
the service instances ρ of each running service σ are scanned. Therefore, in Line 16, each
VNF v̂ composing the current service instance ρ is parsed. If a given v̂ is one of the VNFs
requested in r, and both their service level, latency class and tenant match, v̂ can be shared
(Line 17).

If a VNF is shared among services, it is needed to adjust the capability of the VM on
which it runs. Since the VMs have a maximum capability µ̄, in Line 19 we check if the VM
b∗ (on which v̂ runs) can be empowered. If so, Line 20 computes the new capability µb∗ .
Then, Line 21 adds the tuple “service instance - VNF - capability” (ρ, v̂, µb∗ ) to the set
O (the output of the algorithm). Finally, Line 22 removes v̂ from the set Vr of the VNFs
that has to be instantiated and, Line , checks if Vr is empty. If so, this means that we
found for every VNF composing the new service a VM already running that can be reused.
Consequently, the algorithm ends and returns the set O.

Finally, if at least one VNF of r has not been instantiated yet (Line 32), for each v̂
still present in Vr: (i) the VM capability µb∗ on which v̂ will run is computed, and (ii) the
output set O is updated (respectively Line 35 and 36).

Table 3.1. Notation

Value Description
µ̄ Maximum computing capability associated with a single VM
θv VNF complexity factor, equivalent to the amount of vCPU

required to process a traffic unit by the VNF v
dl,r Network latency between the service area and the service

layer l where the service is instantiated
Ds Target latency for service s
λr Expected traffic load of the service instance

The complexity factor of each VNF is redefined in a more comprehensible way in order
to calculate the processing time of each one and check if the total latency respects the
requirements of the service.
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Algorithm 1 Sub-slice reuse
Require: Service instance request r = éVs, Ds, λr, l∗ê, µ̄, θv, dl∗,r

1: B Given request r, initialize Vr to the set of VNFs composing the corresponding service
2: Vr ← Vs

3: B Define O output as empty set
4: O ← ∅
5: for all v ∈ Vr do
6: B Compute the min processing delay for VNF v of request r
7: Ms,v = 1

µ̄−θvλr

8: Compute the target latency for each v composing the service requested
9: Dv

r (l∗)← Ms,vq
u∈V r

s
Ms,u

(Ds − dl∗,r)
10: B Determine VNF latency class, given the per-VNF target latency
11: j∗v ← log(1+Ô)D

v
r (l∗)

12: end for
13: B For each service instance ρ of service σ among the running instances R̂
14: for all ρ ∈ R̂ do
15: B For each VNF v̂ composing the current service instance ρ
16: for all v̂ ∈ Vσ do
17: if v̂ ∈ Vr and lρ = l∗ and j∗v = jρ

v then
18: B Adjust capability of the VM hosting the VNF v̂ (b∗ denotes the VM and r̂ is

the generic service instance running and using b∗)
19: if θv[Λ(b∗) + λ(r)] + 1

minr̂Dr̂
v(l∗) ≤ µ̄ then

20: µb∗ ← θv[Λ(b∗) + λ(r)] + 1
minr̂Dr̂

v(l∗)
21: O ← O ∪ (ρ, v̂, µ∗b)
22: Remove v from Vr

23: end if
24: B Check if all the VNFs composing the new service are instantiated
25: if Vr = ∅ then
26: break
27: end if
28: end if
29: end for
30: end for
31: B If at least one VNF v has not been instantiated yet
32: if Vr /= then
33: for all v ∈ Vr do
34: B Create a VM with the correct capability
35: µb∗ ← θvλ(r) + 1

Dr
v(l∗)

36: O ← O ∪ (ρ, v, µ∗b)
37: end for
38: end if

For each VNF we define a complexity formula using the evolution of the processing time
tp with respect to the number of active users N and considering one virtual core for each

24



3.1 – Slice reuse algorithm

VNF. We modeled it on a 2nd grade equation:

tp = a ∗N2 + b ∗N + c, (3.1)

where a, b, c are coefficient determined either by simulating the considered VNFs with tests
or determined a priori.

The target delay of each service (Ds) is determined in the following way:

Ds = dl∗,r +
NØ

i=0
tpi. (3.2)

The network delay depends on the placement of the service in the network, while the
processing time is intended as the processing time of vi and it is computing according to
its formula.

When the Ds is not respected, we scale up the VNF by one virtual core, diminishing
the processing time of a factor proportional to the number of cores currently used. When
the maximum computation µ̄ is reached, that VNF is no longer considered and the system
will scale out instead of scaling up.

Furthermore, the latency class computation for each VNF corresponds to the end-to-
end delay of the service to which they belong. In fact, the bin in which they fall is directly
dependent on this and it helps to distinguish the possible bin configurations to use in the
simulations.
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Chapter 4

Dataset creation

The benefits of sharing network slices discussed in the previous chapter are significant in
terms of saving resources. In order to achieve the optimal and automated use of resources,
a machine learning approach is a viable solution. In fact, the slice reuse issue can be
summed up as a supervised classification problem. Bearing this in mind, what is missing is
a labelled dataset to be used to train a machine learning model.

Extensive service requests simulations are required to get a proper dataset, extracting
for each single context the simulation with the best bin configuration which will be taken in
account by the machine learning model to determine the best one when assigning it to future
data. Each simulation will be redone a number of times equals to the number of different bin
configuration in order to identify correctly which one is the best for that specific situation.
The parameters are presented in table 4.1 and contains context-relative parameters, i.e.,
the number of instances per service, and bin configuration-related parameters, values which
depends on the latency classes considered for that specific context, such as the amount of
vCPU consumed.

The initial phase of this simulator project, consisted in defining a list of services with
different requirements, each one including its set of VNFs, some of which are potentially
shareable among different services.

The dataset has to contain useful information regarding the context, a fixed represen-
tation when running simulations. As a matter of fact, the same simulation must be redone
as much as the number of different bin configurations in order to identify correctly which
one is the best for that specific situation. In this way we identify and calculate all the pa-
rameters we need. The bin configuration-related parameters are required in order to assign
the best bin configuration to a specific context.

4.1 Services
The vertical services considered are all related to the automotive use cases, field of ap-
plication convenient for its variety of different latency and resources requirements. The
main trends in this application field are autonomous driving and road safety, infotainment
and traffic efficiency services [9]. Both safety and non-safety applications are deployed in a
demanding and dynamic network topology. This domain, in fact, poses different challenges:
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Table 4.1. Dataset Parameters

Dataset parameters
Value Description

nr number of requests over the simulation
nrt number of requests of each single service type
ni mean number of instances in the simulation
nit mean number of instances per service type (one for each type)

nV M Total number of instantiated VMs
nV NF Total number of requested VNF instantiation
µtot Total computational power used
Bset Bin configuration for latency classes

• Highly changing topology: the vehicles are considered as node in the network.
Therefore, the topology is constantly changing due to their high speed and movement
variety.

• High number of connected nodes, each one with its characteristics

• Interaction with on-board nodes, such as automotive sensors and devices brought
into the car by the users.

• Interaction with on-street sensors, used to provide a better knowledge about the
street topology and conditions, raising the vehicle context awareness.

• Constant reliable connectivity: must be always available for safety services, es-
pecially when not under cellular coverage.

• Standardization: it is necessary to leverage a common language to exchange infor-
mation among different vehicles.

In our work, we are considering three different automotive services:

• Intersection Collision Avoidance (ICA), a safety application with a stringent
latency requirement due to its purpose, namely that of preventing accidents in real-
time.

• See-Through (ST), another safety service, but with less tight latency requirement,
it provides a front view of the vehicle ahead the one requesting the service.

• Video Streaming (VS), the least demanding service in terms of latency among the
others, a service which provides broadcast videos.

We considered these three services for our first simulation due to their diverse requirements
in order which could lead to a fair amount of context variety. The details on each service
and its set of VNFs are discussed below.
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4.1.1 Intersection Collision Avoidance service
The ICA [13] is a crucial safety service, it calculates the probability of imminent collision in
real time thanks to the communication among vehicles which exchange valuable information
about their position and speed contained in Cooperative Awareness Messages (CAM) and
take decisions on these data.

The most relevant Key Performance Indicator (KPI) for this service are the following:

• high reliability and availability (99%);

• extremely low latency (<20ms);

• high security and priority;

• enhanced data rate;

Figure 4.1. ICA service VNFs interaction

The set of VNFs are defined in and they are depicted in figure 4.1. In details, the VNFs
are structured as following:

• Collision Detection Algorithm , the core of the ICA application, it calculates the
speed and the trajectories of the interested vehicles from the respective CAMs.

• Cooperative Information Manager (CIM), a third-party entity that acts as a
collector of CAMs gathered in the monitored area and it makes them available to the
algorithm for its computation.

• Decentralized Environmental Notification Messages (DENMs), it is respon-
sible of sending unicast alert messages in case of imminent collision, it is the least
demanding VNF in terms of resource utilization.
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A user requesting for this service triggers the collision algorithm which queries the CIM
in the interested area for the latest CAMs and checks if there are risks of collisions for the
requester. If there are, the VNF implementing DENMs is triggered and sends the alert
message.

4.1.2 See Through service
The ST service falls in an intermediate category, being a safety service with a slacker latency
requirement (<200ms). On the other side we consider it as a more complex service in terms
of computing, due to the power needed for encoding and transmitting video frames. We
based the set of VNFs on a simplified version of [11], brought in a MEC perception.

Figure 4.2. See-through service VNFs interaction

The VNFs are the following:

• See Through Algorithm (ST_Algo), it determines the relative position between
the request sender and the vehicle ahead, as well as camera information to determine
the resolution quality of the video.

• CIM, the same of the ICA service, queried by the ST_Algo to achieve its purpose.

• Video Server (VS), it provides for the encoding and decoding of the video sent from
the ahead vehicle.

The vehicle (0) requests the ST_Algo VNF if it can determine if the vehicle in front of
it is equipped with a camera analyzing the CAM stored in the CIM (1) previously fetched
from the interested vehicles. If the camera is present, the ST_Algo VNF triggers the Video
Server VNF (2) which will acquire the captured video from the preceding vehicle (3) and
send it to the requester (4).
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4.1.3 Video Streaming service
The Video Streaming service is a simple service which can broadcast multiple video streams
in broadcast. It is composed with two VNFs:

• Video Server (VS), keeps in storage the media files provided to the users.

• Video Controller (VC), it can change the quality of the streaming during the trans-
mission to avoid traffic congestion.

The flow of this service is rather simple. The user requests the Video Server for a video
and during the transmission the Video Controller asks periodically the Radio Network
Information Service (RNIS) information about the Channel Quality Indicator (CQI) which
is monitored by the RNIS itself. On the basis of the CQI, the Video Controller chooses
the best quality for the video transmitted. In our simulations the complexity of the VC is
considered equal to the DENM function of the ICA service.

Figure 4.3. Video Streaming service VNFs interaction

4.2 Service structure in the simulator
Each service is presented as a JSON document. This form of standardization simplifies the
addition of new different services to the simulator in order to obtain the right context for
the specific case. The fields of each service are organized as follows:

• service ID, identifying the service in a unique way;

• maximum number of users, manageable from the service instance;

• maximum End-to-End (e2e) delay, for the service to work properly (in millisec-
onds);

• lifetime of the service instance in the system (in seconds);

• placement of the service, either in cloud or in edge;

• tenant that provides this configuration(?).

• set of VNFs, which are composed, in their turn, by their fields:

– VNF ID to identify the VNF in the system;
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– vCPU, the number of virtual core used by the VNF;
– vRAM, the amount of virtual RAM needed by the VNF;
– vStorage, the disk space necessary for the correct deployment of the VNF;
– placement, reflecting the service one;
– maximum number of users, which value is the same of its service, but it can

be modified when sharing the VNF among other instances.

{
"serviceId": "CA",
"maxNumberUsers": 100,
"maxE2e": 20,
"lifetime": 120,
"placement": "EDGE",
"tenant": "POLITO",
"VNFs": [{

"vnfId": "vCIM",
"vCPU": 1,
"vRAM": 8,
"vStorage": 10,
"placement": "EDGE",
"maxNumberUsers": 100

}, {
"vnfId": "vDENMg",
"vCPU": 1,
"vRAM": 2,
"vStorage": 10,
"placement": "EDGE",
"maxNumberUsers": 100

}, {
"vnfId": "EVS",
"vCPU": 1,
"vRAM": 2,
"vStorage": 10,
"placement": "EDGE",
"maxNumberUsers": 100

}]
}

Figure 4.4. Sample descriptor of ICA service

4.3 Simulator structure and workflow
The service requests simulator is written in Python 3.8 [10]. It can easily handle different
types of service according to the earlier decided structure, generating coherent results with
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respect to the number and characterization of the services considered in each simulation.
The output of each simulation is a dataset containing several lines for each context which
number depends on the bin configurations considered. This file is processed later in order
to obtain a refined one to give to the model as training set.

There are several parameters considered in the simulation which can be modified freely
by the user:

• rates λs, they define for each service what is the arrival rate, modeled on a Poisson
distribution. The permutations of each rate are considered in order to increase the
variety of the results;

• bin configuration B, a list of delimiters of latency classes, they can be added and
deleted accordingly to the number and the requirements of the services;

• number of simulations ns, it defines how many different simulations are considered
for each permutation of the rates;

• time of the simulation ts, chosen by the user, depending on how much time is needed
to reach a stable situation;

• number of max core µ̂ for each VNF, kept the same for every VNF;

• network latency dl, it depends on the service level. Due to the fact that our service
are all deployed in the edge network, it is the same for every service.

The workflow of the simulation goes as follows:

1. a list of service instantiation requests is generated according to the chosen rates;

2. for each request, determine if there are some viable instances of the same service not
full yet;

3. if there are, the simulator tries to add the user to the selected instance , checking
if the end-to-end delay is respected for each service instance using the VNFs of the
updated instance;

(a) if for some services the end-to-end delay is not respected, the selected instance
is blocked along with the not shareable VNFs;

4. if there are not, the algorithm defined in the previous chapter is applied, sharing
VNFs according to the requirements and instantiating new ones when sharing is not
possible;

5. as long as the instantiation is complete, a check on the current running services
lifetime is performed;

(a) if a service has finished its lifetime, it is deleted from the list along with its VNF;
(b) if some of its VNFs are shared among other services, the number of users handled

by those VNFs are updated and eventually it is scaled down by the number of
virtual CPU cores needed.
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4.4 Parameters chosen and simulations results
We considered a set of parameters based on a mobility study conducted in a area of 11
km2. We simulated service instantiation requests distributed as a Poisson point process
for 1200 seconds in order to obtain a stable context operatively. The chosen latency bin
configurations are based on the end-to-end delay of the different services considered:

• 1-bin configuration: all VNFs will be shared;

• 2-bin configuration:

– [0,20ms], [20ms,∞]: isolates ICA service VNFs;
– [0,200ms], [200ms,∞]: isolates Video Streaming service VNFs;

• 3-bin configuration [0,20ms], [20ms,200ms], [200ms,∞]: isolates all VNFs.

All the services are considered deployed in the edge network, implying the a low network
latency (10ms). The maximum number of available cores for each CPU is set to 8.

Once the parameters are set, the simulation can start and it produces a csv file con-
taining a first version of the dataset containing a group of rows for each rate combination.
The number of rows considered can vary depending on the number of bin configurations
considered. In our case, for each rate combination we obtain 4 rows.

This dataset is then filtered in order to obtain the best distribution of latency classes
for those service rates. We can consider different best configuration with respect to the
requirements (i.e., low storage consumption or low CPU consumption). We decided to
consider the amount of virtual CPU used by the VNFs as the discriminant factor. The
best bin configuration will be the one that waste less CPU than the others.

As shown in figure 4.5, the number of instances becomes stable after a certain amount
of time depending on the rate of the service considered and its lifetime, respecting the
Little’s Law whose formula is:

L = λW, (4.1)

where L is the number of instances in the system, λ is the Poisson rate and W is the
lifetime of the instance.

The evolution of the service instances is as we expected, the number of instances reaches
a stable number which oscillates since it is highly probable that a new instance is needed
immediately after releasing the resources of the leaving one.

We simulated a wide range of different rate combination to increase the variety of our
data. As stated before, the rates considered are referred to a mobility study conducted
in a central area of Turin, considering different hour slots. The resulting parameters were
expanded considering percentage of the rates obtained and completely different ones in
order to create a larger number of contexts.

In the end, the obtained dataset contains a row for each context assigned to the best
latency class distribution. We obtained more than 20000 different contexts with an irregular
distribution of best latency class bins presented in table 4.2. We can affirm that this is due
to the nature of the services and their VNFs: the Video Server VNF is quite demanding in
terms of computation and it does not worth it sharing it with both the Video Streaming
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Figure 4.5. Example of number of service instances in a simulation

Table 4.2. Distribution of bin configurations in the dataset

Dataset composition
Total: 26098

Class distribution Percentage
[0ms,∞] 8.72%

[0ms,20ms],[20ms,∞] 4.40%
[0,200ms], [200ms,∞] 53.96%

[0,20ms], [20ms,200ms], [200ms,∞] 32.91%

service and the See-through service in most cases. It is worth noting that choosing a
different parameter for the best configuration could lead to different results.

In the next chapter we will consider only the average number of instances obtained
in the simulations as input of the machine learning algorithms considered, while the bin
configuration will act as the row label. However, the dataset is quite unbalanced and
can bias different machine learning algorithms, requiring some transformations in order to
obtain higher prediction accuracy.
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Chapter 5

Machine Learning approach

The dataset we have created within our simulation is the first step in creating a machine
learning model which will be able to classify each context to the best bin configuration.
As a matter of fact, our issue is a supervised learning problem, the machine learning task
given to a machine which consists in learning a function that maps an input value to a
certain label, based on a set of labelled training data (our dataset). The infered function
can be used to map new potential inputs to the correct label.

The steps to resolve a supervised learning problem are as follows:
1. Determine the type of training samples. In our case the data considered is all numeric.

2. Gather a training set. A set of input objects and the relative labels are gathered
according to measurements and experiments.

3. Determine the representative input features of the learned function. The input is
usually transformed in a feature vector, containing the essential parameters which
describes the context. It is necessary to pay attention to the number of features
considered in order to avoid the curse of dimensionality.

4. Determine the structure of the learning functions and the correspondent algorithm.
This is the part of the process which will be described further below.

5. Adjust the model. Some algorithms require a certain parameter combination in or-
der to achieve the best accuracy. They can be optimized via cross-validation using
different types of parameter search.

6. Evaluate the accuracy of the function. After the adjustment and learning, the result-
ing function is evaluated by measuring its performance on a test set, different from
the training one.

The supervised learning brings different tasks depending on the output type of our
function. We are considering it a regression task when the output is quantitative (i.e.,
temperature prediction) or a classification task when the output is quantitative such as
our case.

The first three steps of the standard procedure have been discussed in detail in the
previous chapters. The focus in this next one will be on the different machine learning
algorithm used to train our model.
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5.1 Notation
We will give different meanings to a group of symbols to describe the formulas used by
each different algorithm. The input variable will be typically a vector X which components
are denoted as Xj . Our quantitative output is given by the letter Y . Observed values are
written in lower case (i.e., observed values of X are written as xi). Matrices are represented
with bold capital letters such asX. Vectors will be bold only when they have N components.
The prediction of the output Y given an input vector X is denoted by Ŷ .

5.2 Classifiers
Several machine learning models are available for a supervised classification problem. Con-
sidering the nature of our dataset, it is convenient to focus on algorithms which work on
numerical data, such as Support Vector or Decision Tree classifiers, emphasizing on the
power of ensemble classifiers with random forests. All the models used for classification
are drawn from scikit-learn [14], a Python module dedicated to machine learning methods,
built on SciPy, an open-source library for scientific computing and technical computing.

Figure 5.1. Algorithm cheat sheet from scikit-learn

5.2.1 Nearest-Neighbor classifier
Nearest-neighbor methods use the observations in the training set closest in input space
to x to form Ŷ . The k-nearest neighbor fit for Ŷ is defined as follows:

Ŷ (x) = 1
k

Ø
xi∈Nk(x)

yi (5.1)
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where Nk(x) defines the neighborhood of x defined by the k closest points xi in the
training samples. (Add some other information here)

The classifier based on this equation is memory-based, a non-parametric algorithm that
compares new test data with training data in order to understand which label is correct
depending on what it learned from the dataset. One of its main features is the storage of
the entire dataset, a quite costly computation if it is a large one. On the other hand, it
does less assumptions than parametric models which make generalization about training
data.

Given a query point x0 we can find the k training points x(r), r = 1, ..., k closest in
distance to x0 and classify it with the label most present among the k neighbors.

Due to the real-valued nature of our results, we use Euclidean distance in the feature
space:

d(i) = ||x(i) − x0|| (5.2)

.
Though it is very simple, k-nearest-neighbors is used in a wide range of classifica-

tion problems, successful where each class has many different prototypes and the decision
boundary is very irregular.

5.2.2 Tree classifiers

Tree classifiers are based on partitioning the feature space in a set of rectangles, fitting a
simple model in each one. We first describe one of the most popular methods, applied to
a regression problem and then applied to our classification.

When growing a tree, we focus our attention to recursive binary partitions, splitting
the space into two region and modelling the response by the mean of Y in each region. A
variable is chosen to achieve the best split point in order to achieve the best fit. The split
is recursive and it ends when a stop condition is met.

One of the tuning parameters of tree classifiers is the tree size. It can be controlled
with different approaches, such as stop the splitting when the decrease in sum-of-squares
due to the split exceeds a threshold. However, this is not optimal because it can prevent
the possibility of choosing a worthless split which leads to an optimal one. The solution
to this is growing a large tree and then prune it using cost-complexity pruning.

In a node m, representing a region Rm with Nm observation, let

p̂mk = 1
Nm

Ø
xi∈Rm

I(yi = k), (5.3)

the proportion of class k observations in node m. The majority class in node m is defined
as k(m) = arg maxkp̂mk. The impurity of each node is determined in order to define a
termination condition of the growth of the tree. There are different ways to calculate
it, such as the Gini index or the cross-entropy, which are more amenable to numerical
optimization due to their differentiability. Moreover, they are more sensitive to changes in
the node probabilities.
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Random forest

Random Forests is a variant of a technique called bagging, or bootstrap aggregation, which
reduces the variance of an estimated prediction function, working really well with high-
variance and low-bias procedures such as trees. Before diving into the random forest
technique, we describe what the bagging method is.

The bootstrap methods are useful for assessing statistical accuracy, used to estimate
further sample prediction errors, reducing the variance by observing a set of observations
on a single training set.

We consider the training set as Z = (z1, z2, ..., zN ) where zi = (xi, yi). The basic idea
behind this technique is draw random datasets with replacement from the training data,
each one the same size as the training set. This procedure is repeated a number of times
B producing B bootstrap datasets. The model is then refit to each of the bootstrap dataset
and we take the average of all predictions in a regression problem, obtaining

f̂bag(x) = 1
B

BØ
b=1

f̂∗b(x) (5.4)

. In case of classification trees, the class predicted is the one occurring in most of the B
predictions, taking a majority vote.

Random forests provides a further modification in the bagging process by decorrelating
the trees in order to further reduce the variance when averaging the trees. The procedure
of this technique is described as follows:

1. For b = 1 to B

• Draw a bootstrap sample Z∗ of size N from the training data
• Grow a random-forest tree Tb to the bootstrapped data, recursively repeating

the following steps for each terminal node of the tree until a minimum size for
each node is reached:
– Select m predictors at random from the p predictors
– Pick the best variable to split among the m

– Split the node into two daughter nodes

2. Output of the ensemble of trees Tb
B
1

Regarding classification we can summarize the problem with ĈB
rf (x) = majority voteĈb(x)B

1 ,
where Ĉb(x) os the class prediction of the bth random-forest tree.

5.2.3 Support Vector classifier
Support Vector Classifier are based on a technique consisting in constructing an optimal
hyperplane which separate optimally samples from different classes.

Considering the training data as N pairs (x1, y1), (x2, y2), ..., (xN , yN ) with xi ∈ Rp and
yi ∈ −1,1, we define an hyperplane as follows:

x : f(x) = xT β + β0 = 0, (5.5)
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where β is a unit vector: ||β|| = 1. The classification rule imposed by f(x) is
G(x) = sign[xT β + β0] (5.6)

. Given the fact that the classes are separable, we can find the optimal hyperplane that
creates the largest margin M between the training points belonging to different classes.
The optimization problem

β0, β1, ...βp, Ô0, ...ÔnmaximizeMsubject to
pØ

j=1
β2

j = 1 (5.7)

is a suitable definition of this concept. However, finding the optimal hyperplane is a
tough task, due to the presence in the training set of outliers and noises. Therefore, we
define a slack variable ξ = (ξ1, ξ2, ..., ξN ) which allows a certain amount of errors in the
classification, changing the object of the optimization in a soft margin one. The constraint
is modified as follows:

yi(xT
i β + β0) ≥M(1− ξi), (5.8)

which measures the overlap in relative distance, thus yielding a convex problem. The
formula can be rearranged to discuss it with Lagrange multipliers. The equivalent form is

β, β0min1
2 ||β||

2 + C
NØ

i=1
ξisubject toξi ≥ 0, yi(xT

i β + β0) ≥ 1− ξi∀i, (5.9)

where the cost parameter "C" is the tuning parameter of the classifier.
The Lagrange primal function is

Lp = 1
1 ||β||

2 + c
NØ

i=1
ξi −

NØ
i=1

αi[yi(xT
i β + β0)− (1− ξi)]−

NØ
i=1

µiξi, (5.10)

which is minimized with respect to β, β0 and ξi. Setting the derivatives to zero we obtain

β =
NØ

i=1
αiyixi, (5.11)

0 =
NØ

i=1
αiyi, (5.12)

αi = C − µi,∀i. (5.13)
Substituting these values into the equation 5.10, we obtain the Lagrangian dual function

LD =
NØ

i=1
αi −

1
2

NØ
i=1

NØ
iÍ=1

αiαiÍyiyiÍxT
i xiÍ (5.14)

which defines a lower bound on the objective function, bound which is to maximize, subject
to 0 ≤ αi ≤ C and

qN
i=1 αiyi = 0 The solution for β has the form

β̂ =
NØ

i=1
α̂iyixi, (5.15)

with all α̂i /= 0 only for those i observations which meet the constraints. Those observations
are called support vectors, due to the fact that β̂ representation depends on them alone.

Maximizing the dual function 5.14 is a simpler convex quadratic problem than the
primal 5.10 and can be solved with less complex techniques.
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5.3 Balancing the dataset
We observed how the final dataset presents an imbalanced proportion of the classes, with
(write the proportions). This can lead to a bias in certain machine learning algorithms
which could ignore the minority class completely. In order to avoid this we can randomly
resample the trained dataset with two main approaches:

• Random Oversampling: randomly duplicate samples belonging to the minority
class, which could lead to overfitting for some models;

• Random Undersampling: randomly delete samples from the majority class which
can result in losing information invaluable to some models

Both methods are considered as "naive resampling" since no assumptions are made on
the data, thus resulting in a simple and fast resampling method, desired for large datasets.
They can be used both in binary classification and multi-class classification and. more
importantly, is it to apply only to the training dataset in order to influence the fit of the
models.

In our work we use the imbalanced-learn Python library [12] to apply these two resam-
pling procedures. We will choose the best method in terms of prediction accuracy.

5.4 Normalization
Feature manipulation or normalization is a set of transformations applied to the original
features. Some transformation can decrease the approximation of estimation errors and
increase the speed of the selected algorithm; however it is worth noting that each trans-
formation should be related to the learning algorithm that we are going to apply to the
feature vector as well as the prior conditions assumed.

Feature normalization can overcome the problem of having features on different scales
which brings suboptimal solution to machine learning algorithm. Moreover, it can also
speed up the runtime of some optimization algorithms.

There are several normalization techniques that we can consider for our machine learning
algorithm. We indicate f = (f1, ..., fm) ∈ Rm the value of the feature f over the m training
samples. Also, f̄ = 1

m

qm
i=1 fi is the empirical mean of the feature over the samples.

• Centering: it makes the feature have zero mean, by setting fi ← fi − f̄ .

• Unit Range: it makes the range of each feature be [0,1]. We set fi ←
fi−fmin

fmax−fmin
,

where fmax and fmin are the maximum and minimum value for the feature. The
range can also be [1,1] if the transformation is fi ← 2 fi−fmin

fmax−fmin
− 1.

• Standardization: it transforms all features in order to obtain zero mean and unit
variance. Let ν = 1

m

qm
i=1(fi − f̄)2 be the empirical mean of a feature. Then, we set

fi ← fi−f̄√
ν
.

• Clipping: it clips high or low values of the feature, i.e., fi ← sign(fi).
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• Sigmoidal Transformation: it applies a sigmoid function to the feature. For ex-
ample, fi ← 1

1+ebfi
, where b is a user-defined parameter. It can be seen as a lighter

clipping, with small effect on values close to zero and a significant one on values far
away from zero.

• Logarithmic Transformation: it makes fi ← log(b + fi), where b is a user-defined
parameter. It is useful when dealing with counting features, i.e., number of words.

The scikit-learn library offers several normalization methods. We explored different
approaches involving standardization leveraging classes such as StandardScaler, MinMaxS-
caler and RobustScaler.

• StandardScaler standardizes the feature by removing the mean and scaling to the unit
variance, useful for learning algorithm such as SVM with RBF kernel which works
with features centered in zero.

• MinMaxScaler scales the features between a minimum and a maximum value, typi-
cally between zero and one. It guarantees robustness when working with feature with
small standard deviation and preserves zero entries.

• RobustScaler removes the median and scales according to the Interquartile Range
(IQR) which is the range between the first quartile (25th quantile) and the 3rd quartile
(75th quartile)

5.5 Model validation
Each machine learning approach considered relies on a set of hyperparameters which have
to be chosen to obtain the best performances. There are several approaches in the hyper-
parameters search from the manual search via rules-of-thumb to the search on a predefined
grid. In our work we leverage the scikit-learn object GridSearchCV where CV stands for
"cross-validated". During the call to fit the estimator, it selects the parameters from a
specified grid, maximizing a specific score (i.e., accuracy).

The cross-validation is a model validation technique for assessing the robustness of
the trained model in order to avoid the generation of a machine learning model which is
very accurate on the training data but has poor performance on unseen data (overfitting).
Several cross-validation approaches can be applied, but we consider the basic approach,
the k-fold CV. Once the dataset is split into training set and test set, such as in figure 5.2,
the procedure goes as follows:

1. split the training set into k smaller sets;

2. train the model using k − 1 sets as training data;

3. validate the model on the remaining k set computing the desired score (i.e., accuracy);

4. repeat for every fold.
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Figure 5.2. Cross-Validation technique

Table 5.1. Hyperparameters grid

SVC parameters
C {1,10,100,1000}

Kernel type {linear, rbf}
gamma [1e− 3, 1e− 4]
Decision Tree parameters

split criterion {gini, entropy}
max depth [1,10]

minimum sample per split [2,10]
minimum samples per leaf [1,5]

Random Forests parameters
number of estimator {100,200,300}

max depth [1,10]
minimum sample per split [2,10]
minimum samples per leaf [1,5]

K-Neighbors parameters
neighbors [1,10]
weight {distance, uniform}

The performance measures obtained in each loop are then averaged and given as the
final result to the user. It can be computationally expensive but does not waste data.

The list of hyperparameters for each classifier is presented in figure 5.1. Each combina-
tion is validated with a k-fold validation with k = 10.

Each classifier relies on different parameter which are useful in different ways
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5.6 Results

We first analyze the obtained dataset. As we expected, it is convenient to share VNFs for
most arrival rates, especially the vCIM, used from both the ICA service and the ST service.
We can see in figure 5.3 an example of the average amount of virtual CPU cores consumed
when sharing and when not sharing, considering a simulation of 1200 seconds with different
arrival rates for each service and taking into account the limitation to the maximum number
of available vCPU cores we set in the simulations. The saving of computational resources
is clearly visible both in an off-peak scenario and during the rush hour.

In our case we have an high complexity VNF, the Video Server VNF, which brings
most of the latency in both the See-Through service and Video Streaming service, two
services with largely different latency requirements. It is undeniable that sharing this VNF
in presence of several service instances the CPU must scale up faster, thus wasting more
resources compared to a non-sharing scenario. Vice versa, the vCIM, shared between the
ICA service and the ST service, is less demanding compared the Video Server VNF. Its
complexity allows it to be shared between the two services creating an efficient resource
saving.

Figure 5.3. Benefit in VNF sharing with low service arrival rates on the left and with
medium-high service arrival rates on the right

It is worth noting that all the situations are referred to the combination of the specific
services considered. The results should differ when considering services with other require-
ments and the labels should be chosen accordingly to the nature of the services considered.
For example, if we consider services with similar requirements and using the same VNF it
is highly probable that the best bin configuration will be the one which enables sharing
that specific VNF.

We consider both the oversampling and the undersampling method as well as the dif-
ferent type of normalization described in the previous section when validating and testing
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our models. In the following tables, the best results are presented with the set of hyper-
parameters and the normalization method chosen to assess our results. The test accuracy
is obtained on another dataset created for purpose equivalent to the 10% of the training
dataset, using different arrival rate combinations for more data variety.

Table 5.2. Classification with oversampling applied

Random Forest
Hyperparameters StandardScaler MinMaxScaler RobustScaler
number of estimator 200 200 200

max depth 9 9 9
minimum sample per split 2 3 8
minimum samples per leaf 1 1 1

Validation accuracy 95.787% 95.762% 95.721%
Test accuracy 93.080% 93.540% 93.080%

Decision Tree
Hyperparameters StandardScaler MinMaxScaler RobustScaler

split criterion entropy entropy gini
max depth 5 5 4

minimum sample per split 2 2 2
minimum samples per leaf 1 1 1

Validation accuracy 95.434% 95.432% 95.787%
Test accuracy 95.066% 95.066% 95.066%

Support Vector Classifier
Hyperparameters StandardScaler MinMaxScaler RobustScaler

C 100 1000 1000
kernel type rbf rbf rbf
gamma 1e-3 1e-3 1e-3

Validation accuracy 96.574% 96.513% 96.513%
Test accuracy 95.487% 95.487% 95.487%

K-Nearest-Neighbors Classifier
Hyperparameters StandardScaler MinMaxScaler RobustScaler

n° of neighbors 3 3 3
weight distance uniform uniform

Validation accuracy 95.372% 95.513% 95.296%
Test accuracy 89.773% 91.357% 91.456%

The results show that the Support Vector Classifier is the best choice in terms of
accuracy when predicting new configurations. Moreover, the best class balancing method
turned out to be the random oversampling. As a matter of fact, using the undersampling
method, a great quantity of examples from the majority class are discarded in our dataset,
wasting potential critical information useful to fitting a robust decision boundary. The
results obtained using this method can be seen in table 5.3, where we can observe a decrease
in the test accuracy of 10%.
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Table 5.3. Classification with undersampling applied

Random Forest
Hyperparameters StandardScaler MinMaxScaler RobustScaler
number of estimator 100 100 100

max depth 5 5 5
minimum sample per split 2 2 2
minimum samples per leaf 1 1 1

Validation accuracy 96.878% 96.840% 96.848%
Test accuracy 87.605% 87.605% 87.605%

Decision Tree
Hyperparameters StandardScaler MinMaxScaler RobustScaler

split criterion entropy entropy gini
max depth 3 3 3

minimum sample per split 2 2 2
minimum samples per leaf 1 1 1

Validation accuracy 95.434% 95.432% 95.787%
Test accuracy 87.364% 87.364% 87.364%

Support Vector Classifier
Hyperparameters StandardScaler MinMaxScaler RobustScaler

C 100 1000 1000
kernel type rbf rbf rbf
gamma 1e-3 1e-3 1e-3

Validation accuracy 96.574% 96.513% 96.513%
Test accuracy 87.605% 87.605% 87.605%

K-Nearest-Neighbors Classifier
Hyperparameters StandardScaler MinMaxScaler RobustScaler

n° of neighbors 5 6 8
weight uniform uniform uniform

Validation accuracy 95.372% 95.513% 95.296%
Test accuracy 85.740% 86.522% 86.462%

The normalization methods are used in this case to evaluate better the performance of
the chosen models. The real model, in fact, is trained on non-normalized data, due to the
fact that the Arbitrator works with non-transformed information.

The model is saved and exported with joblib, a python library useful to store objects
containing large data in a transparent manner, linking the saved file to the context of the
original object. It is quite well-functioning with scikit-learn estimator since they often
contain large numpy arrays.

The saved model is passed to the Arbitrator, which uses it to select the bin configuration,
gathering information about the context from the VSD Catalog. The Arbitrator sends a
JSON request to the ML model, containing the number of instances for every service
divided by end-to-end latency.
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The JSON exchange represented in figure 5.4 is enabled by a Flask server which listens
to a specific port the incoming request. The request is parsed and given in input to the
model which predicts the correct bin configuration to return to the Arbitrator, along with
the boundaries of the classes in milliseconds.

Figure 5.4. Example of JSON exchange between Arbitrator and model

In our implementation we considered only the requests for the services considered when
creating the dataset. The request contains the list of the services currently handled by the
system, organized by latency requirement. The response contains the number of classes
predicted along with the boundaries which the Arbitrator will use in its algorithm to decide
which VNF is to be shared or not.
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The introduction of an AI/ML powered component inside the 5Growth architecture was a
crucial step forward in the automation of several operations involving the 5G networks, with
a special focus on behavior prediction and efficient response to abnormal events. Thanks
to this new platform, it is possible to train a machine learning model on a determined
topic and use it in the place of existing traditional algorithms which compute the same
tasks, obtaining better performances using data supplied by the other layers presented in
the architecture such as 5Gr-VS, 5Gr-SO and 5Gr-RL.

In this thesis we brought a simplification in the VNF arbitration process inside the
5Gr-VS by leveraging the AI/ML platform. We managed to lighten the Arbitrator compo-
nent, the element in charge of handling decision about VNFs instantiation with respect to
resource sharing between same VNFs belonging to different services. We succeed in lower-
ing its computational complexity and leveraging the non-ML decision-making algorithm to
build a service request simulator, customizable with different parameters depending on the
context the user would like to recreate, i.e., the maximum number of virtual cores available
for each VNF.

We simulated requests for three different automotive services, the Intersection Collision
Avoidance service, the See-Through service and the Video Streaming service. The choice
was dictated by the different and wide-ranged latency requirements (20ms for the ICA
service, 200ms for the See-Through service and 1000ms for the Video Streaming service)
and the VNFs composition. For example, we had the See-Through who shared the vCIM
with the ICA service and the Video Server with the Video Streaming service.

The resulting dataset represented various and heterogeneous contexts, taking into ac-
count various combinations of poisson arrival rates and the best latency bin configuration
for each one of them. We observed an evident preference for a partial VNF sharing, which
is related to the nature of the services considered and the VNFs complexity.

After obtaining the dataset, we focused on finding the most suitable and accurate ML
classification algorithm for our case. We considered several models, such as K-Nearest
Neighbors and ensemble classifier, Random Forest, for instance. The Support Vector Clas-
sifier turned out to be the best among the considered models, with a quite high accuracy
which can be improved with more simulations given diverse combinations of service requests
rates.

We expect different results with different use cases, i.e., services from the Industry 4.0,
such as robotic arm remote control, which has different latency requirements and different
VNFs in contrast with the automotive one. These different services can be brought into the
system and used to generate another dataset through extensive simulations, considering
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different bin configurations for the latency classes. The process could be iterated the same
as the automotive use case, which continues with the training process of another machine
learning model using the resulting dataset as input data. These results can be used to train
a new ML model to classify correctly different contexts taking into account the amount of
CPU used and the number of services currently handled by the 5Gr-VS.

The imminent future work could be the implementation of the Flask server used in
the communication between the Arbitrator and the model inside the 5Gr-VS. Moreover,
further improvements in the simulator precision can be obtained deriving more accurate
complexity formulas for the VNFs in appropriate testbeds, instead of using the empirical
ones we considered in our work. These formulas could also be obtained for other type of
services when building a new dataset. Some of the possible candidates for other simulations
are the Industry 4.0 services discussed above, which computational complexity could be
evaluated for each VNF, assessing the stability of the simulator in a diverse scenario using
different latency class bin configurations.

It is worth noting that implementing a recurrent training of the chosen ML model,
whether using Industry 4.0 services or automotive ones, could improve the performances in
terms of accuracy of the prediction. This could be useful to avoid the generation of another
machine learning model and save resources for other tasks, boosting its performances at the
same time. It could be efficient if the same classification algorithm performs at its best even
with new data, otherwise it is better to search for another ML model that could predict
the right bin configuration with a higher accuracy. It may be necessary to implement a
multiple training on multiple models in order to find the better solution while expanding
the dataset with new combinations of services and rates.
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