
POLITECNICO DI TORINO

Master’s Degree in
COMPUTER ENGINEERING

Master Thesis

ISA extensions in the Snitch
Processor for Signal Processing

Developed at

SUPERVISORS

Prof. Luca Benini
Prof. Alberto Macii

ADVISORS

Samuel Riedel
Matheus Cavalcante

CANDIDATE

Sergio Mazzola

Academic Year 2020/2021

Abstract

To tackle the large computational loads of multimedia applications, specialized plat-
forms called image signal processor (ISP) have been developed to meet the demanding
requirements of power- and timing-constrained platforms thanks to their highly-parallel
architectures and domain-specific instructions. MemPool is a novel 32-bit many-core sys-
tem with 256 Snitch cores sharing a L1 scratchpad memory pool through a low-latency
interconnect. Snitch is a tiny RV32IMA core based on the RISC-V open instruction
set architecture (ISA), paired with an application-tunable accelerator. In this work we
present Xpulpimg, an extension of the RISC-V instruction set including domain-specific
instructions for digital signal processing (DSP) carefully selected from the Xpulp custom
extension to exploit the potentialities of the MemPool system as an ISP. In particular, the
Xpulpimg extension introduces in Snitch new addressing modes for load and store in-
structions, single-instruction-multiple-data (SIMD) operations and additional arithmetic
utilities for DSP. With the aim to fully support the Xpulpimg extension and make it
compliant with the open, modular and extensible nature of the standard RISC-V ISA, we
also propose a complete framework for opcode space management, ISA modeling and
simulation, verification and compilation support. To evaluate the proposed extension
we benchmarked the MemPool cluster in several configurations with DSP algorithms
optimized for Xpulpimg, measuring a speed-up of up to 4.6× with respect to the initial
baseline design. Post-synthesis figures, very much taken into account for the micro-
architectural design exploration, have been obtained from the modern GlobalFoundries’
22FDX Fully-Depleted Silicon-Over-Insulator (FD-SOI) technology, and demonstrated
an energy efficiency increased of 3.8× at the tile level.

i

Acknowledgments

Throughout the whole development of this project I have received significant support
and assistance from my supervisors and the community of the Integrated Systems
Laboratory at ETH Zürich.

I would first like to thank my supervisor, Professor Luca Benini, who guided my focus
with his precious advice and very much encouraged my integration in the research
group. I truly appreciate the experience to work at ETH Zürich that you made possible
for me; I felt, as a student, very much valued and taken into consideration.

I would also like to thank my advisors, Samuel Riedel and Matheus Cavalcante, for
their relentless support and meticulousness. I greatly enjoyed learning everything from
you, from the small details of our project to the big picture of the research process.

Furthermore, I thank my supervisor Professor Alberto Macii, for his helpful support
on the side of Politecnico di Torino.

Finally, I would like to thank all the brilliant and enthusiastic members of the PULP
research group, who always made me feel involved in the group activities and part of a
community. I would particularly like to single out Davide Schiavone and Florian Zaruba.
Your support as gurus of the two processor cores I have mainly dealt with have been
crucial for a deeper understanding of the whole project.

In addition, I would like to acknowledge the immeasurable support of my family
and friends in my achievements and throughout the whole academic career that led me
here. In particular, I thank my parents for unconditionally believing in me, constantly
supporting and encouraging my choices. I also thank my lifelong friends Ignazio,
Gianvito, Luca, Gianluca and Nicoló for sharing the highs and lows of this road, always
with the same intensity, no matter the kilometres apart. Lastly, I thank Linda for being
there with her heart and soul, enriching these last steps of mine with even greater
meaning and purpose.

ii

Contents

1. Introduction 1

2. Background and Related Work 4
2.1. RISC-V open ISA . 4

2.1.1. Instructions encoding management 5
2.1.2. GNU compiler toolchain . 6
2.1.3. Spike simulator . 6
2.1.4. Unit tests suite . 6

2.2. Open-source DSP extensions . 7
2.2.1. RISC-V P draft extension . 7
2.2.2. Xpulp custom DSP extension . 7

2.3. Snitch processor core . 8
2.4. ISPs and MemPool . 9
2.5. Image processing algorithms . 11

3. Design Methodology 13
3.1. Selection of suitable instructions . 14
3.2. Instruction encoding generation . 16
3.3. GNU toolchain custom subset . 17
3.4. Spike simulator extension . 17
3.5. Unit tests verification . 18
3.6. Snitch RTL implementation . 20
3.7. Synthesis . 21

4. Hardware Architecture 22
4.1. Snitch architecture extension . 24

4.1.1. Post-increment and register-register loads and stores 24
4.1.2. Immediate branching . 28
4.1.3. Instructions offloaded to the IPU 29

4.2. Snitch IPU architecture . 30
4.2.1. Shared comparator . 32

iii

Contents

4.2.2. Arithmetic operations . 32
4.2.3. Clip unit . 34
4.2.4. Extension unit . 36
4.2.5. MAC unit . 37
4.2.6. SIMD unit . 38

5. Results 43
5.1. Evaluation setup . 43

5.1.1. Benchmarking methodology . 43
5.1.2. Synthesis methodology . 44

5.2. Design iterations evaluation . 45
5.2.1. Incremental analysis of design iterations 46
5.2.2. Convolution benchmark analysis 52

5.3. Additional benchmarks . 54
5.3.1. 32-bit matrix multiplication . 54
5.3.2. 8-bit matrix multiplication . 55

5.4. Tile-level synthesis results . 59
5.5. Power analysis . 60

6. Conclusion and Future Work 62

A. Xpulpimg Instruction Set 64
A.1. Generic arithmetic operations . 65
A.2. Extended L/S addressing modes . 67
A.3. MAC operations . 69
A.4. Packed-SIMD extension . 70

B. 2D Convolution Algorithm 74

C. Matrix Multiplication Algorithm 77

List of Acronyms 85

List of Figures 87

List of Tables 89

Bibliography 91

iv

Chapter 1
Introduction

The last decades have seen a growing interest for data processing in power-constrained
environments with strict timing requirements. The leading example of such a trend is
represented by mobile devices, particularly striving for high performance in multimedia
applications [1], with their main drivers being fields such as computer vision, augmented
reality, computational photography.

Smartphones cameras feature image sensors with tens of millions of pixels, imposing
huge image and video processing loads to be handled with tight power budgets, often
with real-time requirements. However, the nature of such loads and their inherent degree
of data parallelism can be leveraged to meet power and timing constraints. To this end,
specialized platforms called image signal processors (ISPs) have increasingly gained
attention, with their highly parallel architectures, often organized with domain-specific
processing models, and domain-specific instructions.

A primarily important point of highly parallel architectures is the memory sharing
among the processing units, usually done at L1-cache level for better performance,
power efficiency and programmability [2]. Several architectures for L1-shared clusters
have been developed. However, they either do not scale beyond tens of cores [3] or solve
memory sharing with a deep memory hierarchy [4], leading to a significant degradation
in power consumption and a difficult programming model. Specialized architectures that
achieve both are dedicated to a specific family of algorithms due to their over-restrictive
interconnect, like systolic arrays [5][6].

MemPool is a 32-bit many-core system that scales up to 256 cores [7]. The cores in the
cluster share a large pool of scratchpad memory (SPM) as L1 cache through a low-latency,
hierarchical interconnect. Despite its general-purpose architecture and the high core
count, the MemPool cluster reaches very competitive performance and efficiency with
respect to state of the art designs. Its smallest unit of repetition is the MemPool core
complex (CC), featuring a fast RV32IMA Snitch core. Snitch is a in-order, single-issue
processor core based on the RISC-V open instruction set architecture (ISA), optimized
for area, efficiency and flexibility [8]. It is paired with an application-tunable accelerator,
whose pipeline is fully decoupled from the core, making the system very modular and

1

1. Introduction

extensible. It supports outstanding transactions and out-of-order write-back with very
little control area overhead, inexpensively reaching high instruction per cycle (IPC)
ratios.

In this work we present Xpulpimg, an extension of the RISC-V instruction set including
domain-specific instructions for digital signal processing (DSP). Many DSP instructions
are particularly useful for image processing: by combining signal processing function-
alities with Snitch, with its high performance and extreme replication capabilities due
to its small control area overhead, the potential of the MemPool system as an ISP can
be exploited, leveraging its already high level of parallelism. We carefully selected the
introduced DSP instructions from the Xpulp custom RISC-V instruction set extension for
DSP [9], based on their impact on software of interest, particularly concerned with image
processing. We also kept MemPool CC post-synthesis figures into consideration during
the register-transfer level (RTL) implementation, as feedback from the technology for
the micro-architectural design exploration.

In particular, the Xpulpimg extension introduces in Snitch new addressing modes for
load and store memory accesses, single-instruction-multiple-data (SIMD) operations for
16-bit and 8-bit sub-words and additional arithmetical instructions generally useful for
DSP purposes, such as multiply-accumulate, clips, comparisons.

Due to the open and modular nature of the standard RISC-V ISA [10], a main concern
of our project has been to keep the whole environment as modular and extensible as
possible, also granting full support for the new extension. In doing so, we propose a
framework for opcode space management, ISA modeling and simulation, verification
and compilation support.

To evaluate the proposed extension we benchmarked the MemPool cluster in sev-
eral configurations with DSP algorithms that we specifically optimized for Xpulpimg,
measuring a speed-up of up to 4.6× with respect to the initial design. We synthesized
the MemPool CC for the modern GlobalFoundries’ 22FDX Fully-Depleted Silicon-Over-
Insulator (FD-SOI) technology, aiming to obtain a Pareto-optimal design in terms of area
and frequency. In typical conditions, we measured a maximum operating frequency
degradation of 3.6%. At the MemPool target frequency of 500 MHz, the extended core
complex synthesized in the worst-case corner accounts for 59.7 kGE, for an area increase
of 18 kGE. The Xpulpimg implementation is able to reach an energy efficiency 3.8×
higher than the baseline.

To sum up, the main contributions of this project are:

• the definition of a new DSP-oriented instruction set extension, Xpulpimg, with
particular focus on image processing, originated from the study and analysis of
the Xpulp specification and reference implementation, CV32E40P;

• the development of a full support for the Xpulpimg extension starting from basic
tools of the standard RISC-V ecosystem, including verification, implementation
and compilation tools;

• the implementation of the Xpulpimg extension in the Snitch processor, extending
its philosophy for small control area overhead and high performance to the field

2

1. Introduction

of signal processing, to exploit MemPool’s general-purpose parallelism in the ISP
domain;

• the evaluation of the post-synthesis results in terms of performance, area and
power for the new design with respect to the initial baseline in the context of
MemPool in an advanced GlobalFoundries 22FDX FD-SOI technology.

The remainder of this report is organized as in the following. Chapter 2 poses the
foundation of the whole project, illustrating the state of the art of ISP and the already
existing tools on which we based Xpulpimg and its environment. Chapter 3 goes in
depth in the description of the Xpulpimg framework we developed, highlighting our
contribution with respect the state of the art; this chapter can also be considered as a
reference guide for further extension of the Xpulpimg extension. Chapter 4 is dedicated
to the hardware design step of the workflow we established and describes, item by
item, the architecture the implemented Snitch extensions. Finally, Chapter 5 details
the evaluation methodology we employed, in terms of both software benchmarking
and synthesis results collection, along with the results that we obtained. Chapter 6
draws the final conclusions of the project paving the way for further work. Additionally,
Appendix A documents the whole Xpulpimg ISA extension, listing all of its instructions
along with their behaviors.

3

Chapter 2
Background and Related Work

The architectures, the tools and the design methodology developed in this project have
a strong foundation in the state of the art, which we extended with our contribution.

This chapter gives an overview of the background of our project, consisting of the
tools and the platforms that we employed as baseline for our contributions. Related
works about DSP and ISP are also pointed out, to put our work in perspective and
evaluate it.

2.1. RISC-V open ISA

Up until few years ago, all popular commercial ISAs were proprietary. This tendency still
persists in the mostly dominating commercial domains of electronics, such as personal
computer, mobile devices, workstations. However, an increasing number of companies,
organizations and research groups have been embracing the philosophy of an open ISA,
particularly in the form of the RISC-V ISA.

ISAs embody the very core of hardware-software interface, certainly the most impor-
tant interface in a computer system. There are no actual technical reason to keep such an
interface proprietary [11]: innovation is obstructed, proprietary ISAs are complex and
difficult to implement, simpler ISA subsets are not encouraged, microprocessors cost
increases [12].

RISC-V ISA is a completely free and open instruction set architecture born in 2010 as
an educational project at the University of California, Berkeley. In the following years, it
has been developed to overcome all the formal and technical limitations of commercially
available proprietary ISAs, to obtain an open and modular ISA, fully customizable in
terms of extensions and implementation. With these characteristics, RISC-V is thought
not only to be suitable for nearly any computing device, but also to revolutionize the
market and the research [12].

The RISC-V ISA standard describes a reduced instruction set computer (RISC) load-
store architecture. There are three base ISAs: RV32I, RV32E and RV64I [10]. The RV32I is
the base 32-bit integer ISA: it has 31 general-purpose integer registers, named x1-x31

4

2. Background and Related Work

(x0 is used to specify the constant zero), and 47 instructions among system instructions,
computational operations, control flow and memory accesses. The RV32E is a variant of
RV32I with fewer registers, thought for embedded devices, while the RV64I ISA is its
64-bit variation.

The basic RISC-V ISA includes the following six types of instructions, different in the
kind of encoding and inputs:

• R-type – register-register;

• I-type – short immediates and loads;

• S-type – stores;

• B-type – conditional branches, a variation of S-type;

• U-type – long immediates;

• J-type – unconditional jumps, a variation of U-type.

In order to make the ISA suitable for both low-end and high-performance devices,
the RISC-V provides flexibility in the form of extensions. Several extensions are already
ratified, while others are just drafted or in development. Examples of common standard
extensions are: M, for integer multiplication and division, A, for atomic instructions, F
and D, respectively for single-precision and double-precision floating-point operations.

A standard specification has also been defined for privileged execution modes, in
particular describing a machine level (with the highest privileges) and a supervisor level
[13].

A main concern of the RISC-V project has also been to provide support for the de-
signed ISA and all of its extensions, to encourage the free and open development of
implementations and customizations. The following sections describe the main tools of
the RISC-V ecosystem.

2.1.1. Instructions encoding management

The RISC-V ISA has many extensions and can also feature custom instructions. The
tool riscv-opcodes is useful to enumerate all of them in a human-readable form, listing
the operands that they use and the encoding of their opcodes. Additionally, standard
control and status registers (CSRs) are enumerated [14].

The tool is also used to convert the high-level description of the instructions encoding
into several formats (e.g. C header, SystemVerilog package, LaTeX documentation).
As a matter of fact, riscv-opcodes is not meant to stand alone; rather than that, it is
integrated with other tools in the RISC-V ecosystem and is able to provide them with
the encoding of all the implemented instructions in the format that they need. While
doing this, the tool also checks for the consistency of the employed instructions opcode
space looking for encoding overlapping.

The output files generated by the tool mainly contain the description of RISC-V CSRs
and the information to recognize instructions, namely the masks of their opcodes and the

5

2. Background and Related Work

related values to be matched. As an example, Spike, the RISC-V ISA simulator described
in Section 2.1.3, needs a description of the encoding for the implemented instructions
as a C header, to be able to read a binary file, match its instructions and execute the
related C++ behavioral model. The riscv-opcodes tool automatically installs its C
header output in Spike, providing it with such a description.

2.1.2. GNU compiler toolchain

To offer full support for the defined standard ISA, RISC-V also provides its user with a
C and C++ cross-compiler [15]. The components of the toolchain, including the GCC
compiler and the GDB assembler and disassembler, can be finely instructed to decide
which ones of the RISC-V extensions to enable to generate the target binary. In this way,
the flexibility of the ISA is reflected on the software, which can be easily adapted to any
platform.

2.1.3. Spike simulator

Spike is the RISC-V ISA simulator. It implements the functional model of one or more
RISC-V cores [16] and provides a C++ golden reference for software simulation. It
supports multiple ISAs extensions and the user, supervisor and machine privilege levels.

Spike serves as a starting point for running software on a RISC-V target, but it is
also useful for the development and test of new custom instructions, due to its high
extensibility.

2.1.4. Unit tests suite

A suite of ISA-level unit tests for RISC-V ISA is made available with the riscv-tests

tool [17]. The tool defines an environment to automatically compile the tests for a RISC-V
target with the RISC-V GNU toolchain and simulate them with Spike.

The test suite is composed of functional tests comparing the output of the tested
instructions at given inputs with a known gold standard. With the aim to maximize the
reuse of each test, the test programs of the riscv-tests suite are constrained to only use
features of a given test virtual machine (TVM); TVMs hide differences among different
test implementations and easily allow the same test program to be compiled and run on
different target environments.

Each test program for the RISC-V ISA is written within a single assembly language file,
which is passed through the C preprocessor. To start and end the execution of the test, to
determine its success or failure and to define the data section, the macros provided by
the TVM are used. The definition of the TVM macros is given within the environment
selected for the compilation.

In addition to the set-up of the TVM, each unit test contains a series of test cases for
the instruction under test. The riscv-tests tool also includes a set of macros, based
on the type of the instruction, to easily generate test cases by only providing the input

6

2. Background and Related Work

data and the expected output. The test cases macros in riscv-opcodes contain self-
checking assembly code to test the instructions under test; self-checks rely on the correct
functioning of the processor instructions used to implement the self checks themselves
(e.g. branches), so a complete verification of those is needed in the first place.

2.2. Open-source DSP extensions

Due to the increasingly widespread employment of the RISC-V ISA also in embedded
and Internet of things (IoT) contexts, there has been a large interest for further extension
oriented towards DSP. This section sums up the main contribution in this direction.

2.2.1. RISC-V P draft extension

During the last RISC-V workshops, an interest developed for packed-SIMD fixed-point
operations for use in the integer registers of small RISC-V implementations [10].

Packed-SIMD, also known as sub-word parallelism, is an approach to sub-word
computation (i.e. data smaller than the size of a word, such as 8-bit bytes or 16-bit
half-words). It allows to perform vectorial operations in a scalar environment with
specific datapath extensions, considering scalar registers as arrays of sub-words [18].

At date, the official RISC-V packed-SIMD extension is only a draft [19], with its
definition being still in a preliminary state and with an incomplete support.

2.2.2. Xpulp custom DSP extension

Along with the official extensions, the RISC-V standard offers some encoding space for
custom extension of the ISA. The Xpulp instruction set is a DSP-oriented RISC-V ISA
extension [20]. It has been developed with the aim to achieve similar performance and
code density to the state-of-the-art microcontroller units (MCUs) based on a proprietary
ISA, specifically targeting the field of IoT applications, with sensors data processing and
near-threshold (NT) parallel operation [9].

Its most recent version, the Xpulp instruction set includes the following extensions:

• extended addressing modes for post-increment load and store instructions, in-
cluding register offset and post-increment of the base address (the base address is
always contained in a register);

• hardware loops;

• bit manipulation operations;

• general arithmetic logic unit (ALU) operations;

• multiply-accumulate (MAC) operations;

• fixed-point instructions for addition, subtraction, multiplication, MAC;

7

2. Background and Related Work

• 8-bit and 16-bit packed-SIMD extension, with three addressing modes: vector-
vector with registers, vector-scalar with registers and vector-scalar with an im-
medaite (generic arithmetic operations, dot-product, comparisons, manipulation
operations and complex numbers operations).

The Xpulp extension is complete of C and C++ cross-compiler support [21]. The
PULP GCC compiler has been derived from the original GCC RISC-V version, while the
binutils have been extended to support the additional instruction set [9].

Xpulp also comes with a reference implementation in the CV32E40P core, previously
known as RI5CY [9][20][22]. CV32E40P is a small and efficient 32-bit RISC-V processor.
Its 4-stage pipeline implements the RV32IMC instruction set architecture, along with the
optional Xpulp and single-precision floating-point extensions.

The CV32E40P core has been designed for ultra-low-power signal processing appli-
cations, targeting NT operation to achieve higher power efficiency while recovering
performance through parallelism. In particular, CV32E40P is employed in tightly cou-
pled multi-core clusters but also in single-core microcontrollers such as PULPissimo
[23].

2.3. Snitch processor core

The main object of our research is the Snitch core [8][24], which implements the RISC-V
concepts described so far but lacks the domain-specific DSP capabilities we long for.
Snitch is a general-purpose, single-stage, single-issue, in-order RISC-V core tuned for
simplicity, energy efficiency and minimal area footprint. Snitch is highly configurable
and can be paired, as a tiny control core, with an application-tunable accelerator to
off-load RISC-V instructions, which makes the system very modular and extensible.

With its coprocessor, Snitch supports the RV32G (i.e. RV32IMAFD) ISA, with the
possibility of fine-tuning the proposed extensions. The Snitch core itself mandatorily
implements the basic RV32I instruction set, or its RV32E smaller variation.

Snitch has a dedicated instruction fetch port, a data port with a valid-then-ready
decoupled request and response path and a generic accelerator offloading interface.
The accelerator interface, supporting an AXI-like handshake, has two independent
decouple channels: one for offloading an operation with up to three operands and a
response channel for the write-back of the result. The interface can offload an entire 32-
bit instruction, with the accelerator supporting the same RISC-V instructions encoding.
The block diagram of the described Snitch baseline is depicted in Fig. 2.1.

Snitch supports outstanding loads, which are useful in the context of shared-memory
many-core systems, and the offloading of multi-cycle instructions to the coprocessor.
The results of load operations and multi-cycle instructions can possibly be retired out-of-
order. Such functionalities are supported by a simple scoreboarding mechanism which
keeps track of each one of the 31 integer registers with a single busy bit. Snitch is thus
able to reach high IPC ratios with only a small control area overhead, avoiding expensive
hardware for queuing, reordering or register renaming.

8

2. Background and Related Work

Snitch

ALU

LSU

Coprocessor

Accelerator
Interface

Instruction
Fetch

Memory
Interface

D
e
co

d
e
r

Write-backRegister File

Figure 2.1.: Block diagram of the Snitch baseline; thinner arrows stand for individual
data transfers, while thicker arrows also include the flow of control signals.

2.4. ISPs and MemPool

MemPool is a 32-bit many-core system with 256 cores [7]. Each processing element,
named MemPool core complex (CC), contains an RV32IMA Snitch core paired with an
accelerator customized to perform integer multiplications and divisions. The tiny 21
kGE area of this Snitch implementation allows for massive replication within MemPool,
while obtaining anyway high performance due to its architecture.

A common architectural pattern for building highly parallel systems suitable for
multimedia applications is having a cluster of simple cores sharing a L1 memory through
a low-latency interconnect [2]. It is generally thought that the core count of a L1-shared
cluster is limited within the low-tens of units, as in the streaming multiprocessors of
Nvidia Ampere GPUs, with 32 floating-point cores sharing 192 KiB of L1 memory [3].
To achieve a core count above the hundreds, memory sharing is usually achieved with
deep memory hierarchy, for example sharing the main memory among clusters with
a private address space, as it is the case for Kalray’s MPPA-256 many-core system [4].
This generally compromises not only efficiency, but also programmability of the system.

Many-core architectures achieving high-core count, efficiency and good programma-
bility usually result limited in terms of applicability, being extremely optimized for a
family of algorithms by their over-restrictive interconnect. As an example, Google’s
Pixel Visual Core [6] is an ISP featuring specialized cores connected into a ring network;
within each core, an array of 256 lanes communicate through a rigid read-neighbour
network, which is highly efficient for systolic algorithms but reduces the architecture
applicability to them.

MemPool overcomes these problems scaling up its core count into the hundreds,
with its cluster sharing a common view of a large multi-banked pool of SPM through a
low-latency, hierarchical interconnect.

The MemPool cluster is composed of four local groups, as in Fig. 2.2; local groups
communicate with each other by means of 16 × 16 radix-4 butterfly networks. Each local

9

2. Background and Related Work

Figure 2.2.: On the left, the MemPool cluster, divided in 4 groups; on the right, a de-
tailed view of the first local group, from [7]. Dashed lines represent register
boundaries.

Figure 2.3.: Architecture of a MemPool tile with K request ports and K response ports,
from [7].

group is composed of 16 tiles, communicating within their group with an additional
16 × 16 radix-4 butterfly network.

As in Fig. 2.3, each tile features four MemPool CCs, 16 banks of L1 tightly-coupled-
data-memory (TCDM) and a 4-way L1 instruction cache. Each core has a dedicated port
to access the TCDM banks within its tile in one cycle. An address decoder statically
decides where to route the memory requests of the cores. Each tile has K master ports
to access remote tiles and K slave request ports receiving memory request from remote
cores. A register boundary cuts the master request and response paths.

With such an interconnect, cores can access any remote memory bank in the same
local group with a zero-load access latency of 3 cycles. On the other hand, the latency
for memory accesses to banks in remote groups is 5 cycles due to the register boundary
on local groups’ master interface.

In addition to the interconnect architecture, MemPool also employs an hybrid ad-
dressing scheme able to exploit the sequentially interleaved memory mapping across
all memory banks to minimize banking conflicts, but also adding sequential regions in

10

2. Background and Related Work

which contiguous address target a single tile, not to waste the locality of private data.
The MemPool interconnect architecture, along with its hybrid addressing scheme for

memory accesses, gives the system high efficiency and performance with respect to
the state of the art while enabling an extremely high level of parallelism, without any
degradation of its general-purpose capabilities and high programmability.

2.5. Image processing algorithms

Image signal processors are gaining increasing focus mainly to address the problem
of huge timing-constrained computational loads in low-power mobile devices, as it
is the case for multimedia applications such as image processing, video processing,
augmented reality, artificial vision [1].

A main field of interest whose presence is dominant in today’s digital world is compu-
tational photography [25]. Computational photography refers to the techniques used to
enhance and extend the capabilities of digital photography; it is thus naturally coupled
with the increasingly powerful sensors of modern mobile devices. In this context, a very
common algorithm implemented in every smartphone is high dynamic range (HDR) [26].
HDR imaging is used to increase the dynamic range of an image, collecting an higher
quantity of details from several different exposures of the same scene [27].

Several implementations of the HDR pipeline area available in the literature [27][28][29],
but most of them usually encompass the same steps:

• alignment – align the images with the different exposures such that the scenes cor-
rectly overlap: this step is needed to avoid artifacts in the merge of the exposures,
such as blurring and ghosting due to motion;

• camera response function (CRF) computation – before processing the pixels of the
different exposures in order to merge them, an estimation of the CRF is needed;
indeed, the response of the camera sensor to the brightness of the scene is not
linear, thus pixels values must be first adjusted by estimating the CRF;

• merging – knowing the exposure time of all the input exposures and the CRF, the
pixels of each exposure can be merged in a single image filtering out too bright or
too dark pixels, obtaining an output with an higher dynamic range featuring details
from all the exposures; for higher precision and wider ranges, often floating-point
or fixed-point arithmetic are employed;

• tone mapping – merge algorithms work with data types bigger than the usual 24-bit
RGB format to collect the most out of the set of input images; hence, their output
has to be mapped back to an 8-bit range for each channel to view it on usual
displays.

An example implementation of the HDR pipeline is given in the OpenCV library [30].
In particular, OpenCV implements two algorithms for HDR imaging with exposures

11

2. Background and Related Work

(a) Input images with corresponding weight maps (b) Fused result

Figure 2.4.: Example of exposure fusion from [32]; the weight maps of each input expo-
sure is computed by means of the quality figures and employed to fuse them
in the final result.

sequences (Debevec merge [27] and Robertson merge [31]), and another lighter approach
called exposure fusion [32][33].

This last approach blends multiple exposures, without any need of CRF estimation
or tone mapping, by using simple quality measures such as saturation and contrast
to determine the goodness of the pixels of each exposure, and thus their weight in
the merge. An example is given in Fig. 2.4. This method actually circumvents the
computation of the HDR image, obtaining an output which can be directly displayed
in the common 8-bit format. The exposure fusion implementation heavily relies on the
convolution of input images with given kernels: to extract one of the quality indexes
employed by the algorithm, a Laplacian filter is applied on the exposures, corresponding
to a convolution with a 3 × 3 kernel; Gaussian pyramids are also very much employed
for the fusion step, hence resulting in a large number of convolutions with 5× 5 kernels.

12

Chapter 3
Design Methodology

This chapter presents the design methodology which guided the development of the
whole project; we established a series of precise steps, which we followed throughout
every iteration of the design in order to grant the desired characteristics to the final
implementation: compliance with RISC-V standards and tools, modularity, flexibility,
quality of support and documentation.

Such properties are not limited to the standardization of the hardware design phase;
on the contrary, they mainly concern the whole environment in which the project has
been designed, developed, tested and simulated. We established such an environment
and extended every one of its components, while simultaneously introducing new ISA
extensions in Xpulpimg. In doing this, we also provided full support for our newly
defined Xpulpimg extension, in terms of opcode space management, ISA modeling and
simulation, verification and software compilation.

At every iteration, consisting of a new set of instructions selected to be added to our
custom extension, we complied to the following steps, also sketched in Fig. 3.1:

1. selection of new instructions based on the speed-up of relevant kernels;

2. generation of the encoding of the selected instructions, dependency of all the other
tools [14];

3. extension of the custom Xpulpimg ISA subset in the PULP RISC-V GNU toolchain
[21] with the new instructions;

4. behavioral implementation of the instructions in the Spike RISC-V ISA simulator [16];

5. extension of the RISC-V test suite for verification [17] with the unit tests for the new
instructions;

6. verification of the Spike behavioral implementation with unit tests;

7. refinement of the behavioral implementation to a RTL implementation in Snitch;

13

3. Design Methodology

8. verification of the Snitch RTL implementation with unit tests;

9. synthesis of the design with the current extension and area-timing (AT) figures
feedback to RTL implementation.

Selection of
new instructions

riscv-opcodes

riscv-tests pulp-riscv-gnu-toolchain riscv-isa-sim

RTL implementation

Post-synthesis
area and timing

COMPILE

SYNTHESIZE

TECHNOLOGY
FEEDBACK

VERIFICATION REFINE

Figure 3.1.: Flow of the design methodology that we established through the customiza-
tion of the RISC-V environment; the labels in a monospaced font represent
the actual tools from RISC-V that we extended with Xpulpimg.

Each individual step is detailed in the following sections.
Note that the purpose of this chapter goes beyond the description of the employed

design methodology. As a matter of fact, it can be considered a step-by-step guide
to extending the framework established for the scope of this project for any further
development of the Xpulpimg instruction set extension.

3.1. Selection of suitable instructions

To allow the highest degree of modularity, extensibility and compatibility with other
extensions, we defined a stand-alone new instruction set extension, named Xpulpimg.
We then used the defined instruction set extension to gather the instructions of interest
for our purpose of extending the MemPool system with DSP functionalities, mainly
focusing on image processing.

The starting point for selecting instructions to add to the Xpulpimg set has been
the Xpulp custom instruction set extension, in particular its Xpulpv2 version [20][9].

14

3. Design Methodology

However, the Xpulpimg set is not to be considered a strict subset of Xpulpv2; even if, in
its current version, it only encompasses Xpulp instructions, it is rather meant to be a
custom DSP image-processing-oriented instruction set: the instructions of interest taken
from Xpulp are a starting point of general usefulness for DSP, which will be extended in
the future with additional custom instructions suitable for its purpose, most likely also
outside the scope of Xpulp.

At each iteration of the design phase, we selected new useful instructions to introduce
in Xpulpimg by inspecting the Xpulpv2 documentation. Then we determined candidate
instructions based on a preliminary analysis of their impact on relevant kernels of
interest for DSP and image processing, introducing in Xpulpimg the ones promising
the largest improvements in terms of throughput and code density. Other factors taken
into account also encompassed the general usefulness of the candidate instructions for
signal processing, including the reduction of registers utilization and of control flow
instructions.

Practical examples of this design step are given in Chapter 4, when the instructions of
Xpulpimg are presented along with their hardware architecture in the MemPool CC.

Overall, Xpulpimg accounts for 173 new instructions, mainly grouped in the following
sections.

Generic arithmetic operations

Instructions of general usefulness for DSP to reduce control flow instructions
and increase code density; they include comparisons, absolute value, clip
operations for partial fixed-point support and immediate branching.

Extended L/S addressing modes

Extended addressing modes for load and store instructions, including
register-register mode (offset coming from a register) and post-increment
mode (auto-increment of the base address after the memory access).

MAC operations

Multiply-accumulate operations able to multiply the content of two regis-
ters and perform either an accumulation on the destination register or a
subtraction from it.

Packed-SIMD extension

Packed-SIMD instructions for 16-bit and 8-bit sub-words, with vectorial
mode and scalar replication mode, both with immediate and register
operand; this extension includes dot-product operations, addition, sub-
traction, comparison, shifts, logicals and support instructions for packing
and unpacking SIMD data.

The listed instruction sets also define the granularity and the order with which the
extensions have been introduced in Xpulpimg and implemented in the Snitch core, with
their architecture described in Chapter 4 and their implementation cost and performance

15

3. Design Methodology

gain analyzed in Chapter 5. A complete list of the Xpulpimg instructions and their
specification is given in Appendix A.

3.2. Instruction encoding generation

The first step to port the selected instructions to the Xpulpimg environment is to include
a human-readable description of their encoding in the riscv-opcodes tool [14]. Its
purpose is to establish a single source of truth for the instruction mnemonics and
opcodes, generating the instructions encoding files needed by all the other dependencies
in the framework in such a way that they are always aligned.

We developed a custom extension of the baseline riscv-opcodes tool which adheres to
the way the official RISC-V tool manages the automatic instructions encoding generation
and their integration in all the tools employed for the design and development phases.
While a trial was already been made to integrate the tool in the Parallel Ultra-Low Power
(PULP) environment, it results to be outdated and not very much maintained.

Several tools in our environment are dependent on riscv-opcodes outputs; the gener-
ated output types and the dependent tools are listed in the following:

• C format – C header containing the macros declaring the mask of each instruction
opcode and its actual value, associated with the instruction mnemonic; such
declarations are employed by:

– the Spike simulator, to read compiled binaries and simulate the behavior of
the corresponding instruction, and its disassembler;

– the riscv-tests unit tests suite, in particular to access CSRs;

– the software compilation framework for the MemPool system, in particular
to access CSRs;

– the assembler of the RISC-V GNU toolchain, in a manually-modified version,
adapted to the specific features of the Xpulp extension;

• SystemVerilog format – SystemVerilog package containing the parameters defining
the mask and the matching value of each instruction opcode, used in the hardware
description of MemPool CC’s decoders.

When new encodings are generated, all the mentioned dependencies are automatically
updated.

For further flexibility, we also extended the tool with the possibility to select which
extensions have to be considered for the generation of the encodings, and which ones
have instead to be excluded. This functionality can be used to manage opcode spaces
overlapping problems of custom extensions. Another way to address such an issue, at a
much finer grain, is to make the overlapping instructions pseudo-instructions, making
them aliases of the instructions with the same opcode.

Our main contribution to this tools consists, apart from its adaptation to our envi-
ronment, in its extension to include several Xpulp instructions under the Xpulpimg

16

3. Design Methodology

instruction set. To add new instructions to riscv-opcodes, their mnemonics have to
be added to the textual file related to the extension of belonging. Then, a list of the
instruction operands has to be associated to the mnemonic, along with the list of values
of its opcode bit-fields. An example is given below.

p.clip rd rs1 imm5 31..25=10 14..12=1 6..2=0x0C 1..0=3

Several of the instructions introduced in Xpulpimg from Xpulp are not compliant with
standard RISC-V instruction types. For this reason, we extended the parser script, in
particular to introduce three new possible operands:

• prs3 – alongside rs1 and rs2, it represent a third source operands (the p in prs3

stands for PULP); it actually has the same encoding of rd, but we gave it a differ-
ent name due to its different semantical meaning of source register rather than
destination;

• imm5 – 5-bit immediate of Xpulp instructions;

• imm6 – 6-bit immediate, particularly employed by Xpulp SIMD instructions.

Note that the operand fields considered by the parser script have no actual numerical
value; they are instead only relevant for their bit positions in the instruction encoding.
For this reason, the signedness of the immediate fields is irrelevant at this step of the
design.

3.3. GNU toolchain custom subset

The Xpulpimg instruction set is supported by the GNU toolchain, in terms of both
compiler and assembler. As Xpulpimg started out as a subset of Xpulp, the PULP GNU
toolchain has been used as a baseline for our custom extension.

We integrated Xpulpimg in the toolchain as an additional Xpulp version, due to it
including many of the Xpulp instructions. This means that, when it is enabled, no other
Xpulp versions can be enabled for compilation or assembly.

As far as the GCC compiler is concerned, we extended intrinsics and code generation
support from Xpulp to the Xpulpimg instruction set. From the GNU assembler side,
we defined the complete list of instructions to include in Xpulpimg, with their opcode
masks and values to match, whose definitions get generated by the riscv-opcodes tool.

3.4. Spike simulator extension

With the environment aware of the encoding of the new instructions, the following step
is to study their behavior and obtain a first, high-level implementation. With that, we
aimed to study and correctly understand the instructions, their edge cases and finally
verify their functional correctness. The official RISC-V tool riscv-isa-sim [16], Spike,
has been employed to implement this phase.

17

3. Design Methodology

Being based on C++, Spike empowered us to model instructions behavior at the
highest possible level. Not only is this the best way to first approach and start to
understand the behavior of an instruction and its interaction with the other components
of the processor, but it also exposes most of the edge cases of its functionalities, hiding
details unnecessary at this step. Spike also allowed us to perform simulations of new
instructions from the very first stages of their design, which is optimal for verification
purposes as it allowed to grant the functional correctness of the defined behaviors and a
certain degree of edge cases covering directly from the beginning.

Apart from the C++ behavioral description of Xpulpimg instructions, Spike required
additional modifications to support Xpulpimg:

• the decoding logic of the simulator has been extended to include the new fields of
the Xpulpimg instructions encoding:

– the third input register index rs3;

– the 5-bit signed and unsigned immediates;

– the 6-bit signed and unsigned immediates;

• several macros reflecting the original Spike implementation have been added to
ease the description of Xpulpimg instructions behavior:

– sign-extension and zero-extension of 8-bit and 16-bit data to the full data
width of the architecture, for the extension instructions and SIMD extension;

– read access to the new rs3 source register, for the register-register stores;

– write access to the rs1 register, for the post-increment memory instructions;

– subword-level (half-word and byte) read and write accesses for register
operands, for the SIMD extension;

• the Spike disassembler, useful for debug purposes, has been extended to support
and correctly interpret the new instructions;

• some instructions of the vector extension have been disabled both in the simulator
and in the disassembler due to their overlapping with the Xpulpv2 SIMD extension:
the vector extension is deeply integrated in Spike, so that a quick and modular
deactivation was not possible; as a result, such a custom Spike version cannot be
correctly used for the simulation of a core extended with the official RISC-V vector
instruction set.

The behaviors of the implemented instructions are presented in Appendix A.

3.5. Unit tests verification

Verification has been a main concern in the design methodology that we adopted,
which enabled us to grant a high quality for both the behavioral modeling of Xpulpimg
instructions and the RTL code implementing them in the processor core.

18

3. Design Methodology

The unit test suite extension is tightly coupled to the previous step of behavioral Spike
implementation: not only Spike extensions undergo a row of functional verification
with the developed tests, but both steps support each other in the understanding of the
correct behavior of the instructions and the study of their edge cases.

In an effort to be compliant with RISC-V verification framework and to keep the
environment as flexible and modular as possible, we employed the already existing
riscv-tests [17] as a verification tool extending it for our purposes, which were mainly:

• extend the unit tests suite with the tests for the instructions introduced in Xpulpimg;

• adapt the test framework to automatically run the unit tests on the Spike behavioral
model and on the MemPool RTL implementation.

To integrate Xpulpimg unit tests in the test suite, a new TVM has been defined for the
32-bit user-level Xpulpimg instruction set. As the other unit tests in the test suite, each
instruction has its own assembly file containing the individual test cases and the macros
for the startup and the conclusion of the test, along with its data section.

Xpulpimg contains instructions of different types, in terms of operands use, with
respect to the ones in the standard RISC-V ISA. For the sake of standardization, we
developed new test case macros for each new type of instruction introduced in our
custom set, as it was done in the standard tool; in particular, the new types of test cases
we introduced are for:

• instructions with rs1 and unsigned 5-bit immediate inputs, rd output – generic
arithmetic instructions with immediate;

• instructions with rs1 and unsigned 6-bit immediate inputs, rd output – generic
arithmetic SIMD instructions with immediate;

• instructions with rs1 and signed 6-bit immediate inputs, rd output – generic
arithmetic SIMD instructions with immediate;

• instructions with only rs1 input and rd output – scalar and SIMD absolute value,
subword extract instructions;

• instruction with rs1, rs2 and rd inputs, rd output – MAC, SIMD dot-product with
accumulation, SIMD shuffle instructions;

• instruction with rs1 and unsigned 6-bit immediate inputs, rd output – immediate
SIMD instructions;

• instruction with rs1 and signed 6-bit immediate inputs, rd output – immediate
SIMD instructions;

• loads and stores with register offset;

• post-increment loads and stores with immediate offset;

• post-increment loads and stores with register offset;

19

3. Design Methodology

• immediate branching instructions.

With the test case’s structures defined, we then instantiated the actual test cases for each
instruction by providing each macro with some input values, a corresponding expected
value and a test ID, to return in the end-of-computation (EOC) register in case of test
failure. The test cases’ data has been mainly obtained from the already existing test cases
developed for the PULPissimo platform [34], consisting of random input values whose
corresponding output has been computed by a golden model written in Python. In
addition to those, several other tests have been carefully developed for each instruction
to cover the edge cases of their functional behaviors. Overall, 68 functional tests have
been developed to test all of the Xpulpimg instructions, each targeting a specific one. In
particular, they account for a total of 1428 individual test cases.

Due to the unit tests employing startup and EOC macros, the test cases of an instruc-
tion are independent from the platform running it, which is instead described by the
definition of those macros. Thanks to this feature of the riscv-tests environment, we
have been able to neatly integrate such a tool in an automatic framework to compile and
run the tests on the Spike behavioral model and on the MemPool RTL implementation,
with the aim to perform the verification of the design at these two different phases of
the development. Note that, for the RTL simulation, only a single core of the system is
active and runs the unit test, which is enough to grant the functional correctness of the
Snitch implementation.

For the compilation of the tests, we used the custom PULP GCC toolchain extended
with our Xpulpimg instruction set. For their RTL simulation on the 16-core MemPool,
we employed Mentor Questa Sim 2019.3.

3.6. Snitch RTL implementation

The central phase of each design iteration is the implementation of the new set of
candidate instructions in the RTL model of the MemPool CC, comprising a Snitch core
and its integer processing unit (IPU). At this point, all the tools in the environment
are aware of the new instructions mnemonics and encoding, and the new instruction
set extension is fully implemented in the compiler; additionally, we also have a deep
understanding of the instructions behaviors and of their corner cases, due to the prior
development of the functional test suite and the implementation of the instructions in
Spike.

The knowledge developed up to this point is thus employed to refine the Spike
behavioral model of the instructions to an RTL implementation. SystemVerilog hardware
description language (HDL) is used for this purpose. In particular, the SystemVerilog
package containing the encodings of the instructions generated by riscv-opcodes is
employed for the extension of the decoding logic of the processor.

The hardware architecture of the Xpulpimg instructions implemented in MemPool
CC is presented in Chapter 4.

As a final step of the RTL implementation, the design undergoes a further row of
verification, consisting of the RTL simulation of the unit tests from riscv-tests com-

20

3. Design Methodology

piled with the extended PULP RISC-V GNU toolchain. At each design iteration, every
instruction of the ISA implemented in Snitch is tested, to check for the correctness of the
new extension and whether it perturbed the implementation of other instructions.

3.7. Synthesis

Synthesis has been a step of main relevance for the finalization of each design iteration.
In this phase, we estimated the cost, in terms of area increase and maximum operating
frequency decrease, of the speed-up promised for the analyzed kernels by the new
instructions.

To this end, after the refinement of the MemPool CC RTL model from the Spike
behavioral model and its verification with the developed unit tests, we synthesized it
as an individual module fully enclosed in a register boundary. In doing so, our aim
has been to collect precise area estimates with their increment only due to each new
ISA extension, without the noise from caches and TCDM interconnect synthesis. We
synthesized our designs for the GlobalFoundries’ 22FDX FD-SOI technology using
Synopsys Design Compiler 2019.12.

We also employed the post-synthesis results as a feedback from the employed GF22
technology, in a tight loop with the RTL design step, with the aim to explore the design
space and achieve the architecture for the most efficient implementation in terms of area
and timing, fine-tuning parallelism and hardware sharing.

Further details about the synthesis methodology are given in Section 5.1.2.

21

Chapter 4
Hardware Architecture

The central contribution of our work is the implementation of the Xpulpimg instruction
set, gathering the main image processing functionalities from the Xpulp DSP extension,
in the MemPool system. The processing element object of our work is the MemPool
core complex (CC), multiply-instantiated and hierarchically-interconnected to form the
MemPool system. Each MemPool CC is composed of:

• a Snitch integer core;

• a coprocessor for the Snitch core, the Snitch integer processing unit (IPU);

• spill registers to cut the request and the response paths between the core and the
IPU.

Snitch is a tiny integer core able to achieve high IPC performance, thanks to its
support for outstanding transactions, out-of-order write-back and interface to a generic
application-tunable accelerator, with a small control area overhead, determined by
the simple scoreboarding mechanism that it implements For these reasons, Snitch is
extremely suitable for massive replication inside an highly-parallel cluster like MemPool.
Our implementation of the Xpulpimg ISA extension in the Snitch processor aims to
extend its philosophy for small control area overhead and high performance to the
field of signal processing, to exploit MemPool’s general-purpose parallelism in the ISP
domain.

In this chapter, we describe the hardware architecture of our ISA extension in the
MemPool CC, determined by the implementation of Xpulpimg. The chapter is organized
hierarchically reflecting the organization of MemPool CC modules and sub-modules.
For each module implementing a given extension, the instruction set of the extension
is also described, pointing out the reasons bringing to its introduction and assembly
examples of how it affects the DSP kernels of interest for our analysis.

Starting from the baseline Snitch architecture implementing the RV32IMA ISA, de-
picted in Fig. 2.1, we extended the core in the decoding, in the integer register file
and in some functionalities of the control path to support the Xpulpimg extension. A

22

4. Hardware Architecture

detailed analysis of how the implementation of each extension affected the cost of the
implementation and the achievable performance is available in Chapter 5.

Snitch

ALU

LSU

Accelerator
Interface

Snitch IPU

Instruction
Fetch

Memory
Interface

D
e
co

d
e
r

Write-backRegister File

Figure 4.1.: Block diagram of the MemPool CC extended with Xpulpimg, focused on
the differences with respect to the baseline of Fig. 2.1; the register boundary
around the IPU is also highlighted, even if already present in the MemPool
CC baseline.

Snitch IPU

Offloaded
Operation

D
e
co

d
e
r

Serial Divider

DSP Unit S
tr

e
a
m

 A
rb

it
e
r

Figure 4.2.: Block diagram of the Snitch IPU coprocessor extended with Xpulpimg func-
tionalities.

As far as the Snitch IPU is concerned, it has been inspired by the coprocessor used in
the baseline Snitch CC implementing the RV32IMA ISA, previously employed to exclu-
sively accelerate integer multiplications and divisions. With Xpulpimg, we instantiated
a new sub-module in the Snitch IPU, a DSP unit, handling all the extensions introduced
from Xpulp.

The block diagram of the MemPool CC architecture extended with Xpulpimg is shown
in Fig. 4.1; the architecture of the IPU is detailed in Fig. 4.2.

23

4. Hardware Architecture

4.1. Snitch architecture extension

The extension of the Snitch integer core to support Xpulpimg did not substantially
modify its overall architecture, whose main characteristics remained the ones discussed
in Section 2.3. For the sake of modularity and extensibility, we parameterized every
modification related to the Xpulpimg extension, so that the original RV32IMA version
of the core can be obtained by changing the related parameter in the core instantiation.
With the Xpulpimg extension disabled, any issued Xpulpimg instruction causes an illegal
instruction exception to be raised.

The architectural features which have been impacted the most by our modifications to
the core are:

• the extension of the decoding logic to support Xpulpimg instructions (either
executed inside Snitch or offloaded to the IPU);

• the modification of the input operands port on the accelerator interface;

• the number of read ports of the integer register file, brought from 2 to 3;

• the extension of the scoreboarding and stall control logic to additionally consider
rd as a source register;

• the extension of the load/store mechanism to introduce the possibility of post-
incrementing the base address with a register or an immediate;

• the extension of the scoreboarding, stall and write-back control logic to additionally
consider rs1 as a destination register;

• the decoding and sign-extension of a new immediate field for immediate branching
instruction;

• the extension of the branching mechanism to also include immediate branching.

For the implementation of the Xpulpimg functionalities, we complied with the main
idea behind Snitch: Snitch is a fast and small core, meant to efficiently carry out control
operations with its single-stage, single-issue, in-order design. For this reason, we actually
implemented most of the new instructions inside its coprocessor, the Snitch IPU, with the
modifications introduced in the core only having a minor impact in terms of employed
resources.

The instructions actually implemented inside the Snitch core are the plain and post-
increment loads and stores, both with register and immediate offsets, and the immediate
branching instructions. Their architecture is described in the following.

4.1.1. Post-increment and register-register loads and stores

The standard RISC-V instruction set only supports one addressing mode for memory
access instructions, where the actual address is computed by adding an offset coming
from the sign-extension of an immediate to a base address stored in a register [10].

24

4. Hardware Architecture

Extended load and store instructions

p.l{b[u],h[u],w} rd, {iimm12s,rs2}(rs1) Load a value from address (rs1 +
{iimm12s,rs2}) into rd

p.l{b[u],h[u],w} rd, {iimm12s,rs2}(rs1!) Load a value from address rs1

into rd, then increment rs1 by
{iimm12s,rs2}

p.s{b,h,w} rs2, {simm12s,rd}(rs1) Store the value from rs2 at address
(rs1 + {simm12s,rd})

p.s{b,h,w} rs2, {simm12s,rd}(rs1!) Store the value from rs2 at ad-
dress rs1, then increment rs1 by
{simm12s,rd}

Table 4.1.: All the extended load and stores instructions introduced in Xpulpimg with
Extended L/S addressing modes. Note that b, h and w represent the data
length of the memory access, standing respectively for byte, half-word and
word. Load operations of sub-words can either be signed or unsigned. The im-
mediates employed are iimm12s, the standard 12-bit signed I-type immediate,
and simm12s, the standard 12-bit signed S-type immediate.

Load and store instructions introduced in Xpulpimg from Xpulpv2 have two additional
addressing modes with which:

• the actual memory address is obtained from the sum of an offset and a base address,
both stored in registers;

• the actual memory address corresponds to the base address stored in a register;
after the access, it is incremented with an offset stored in a register or sign-extended
from an immediate (post-increment mode).

All the mentioned memory access instructions are available for word (32 bits), half-word
(16 bits) and byte (8 bit) data lengths. The extended load and store instructions are
summed up in Table 4.1; note that standard RISC-V loads and stores with immediate
offset are also aliased by Xpulpimg for the sake of completeness.

The extended loads and stores are useful for every kind of data processing algorithm,
in particular when regular memory access patterns occur, with a speed-up of up to
20% [9]. An example of how these extension is useful and why it has been selected is
presented in Listing 4.1 and Listing 4.2: post-increment instructions can perform the
increment of array pointers along with the memory access, not only reducing the code
size, but also actually issuing two operations in the same cycle; in this way, less cycles
are needed per useful computation, increasing the throughput of the operation. Note
that thanks to the register-register addressing mode, the post-increment is possible even
when the array elements have an offset which is unknown at compile time.

The architectural modifications to implement the extended load and store instructions
are shown in Fig. 4.3; specifically, we describe them in the following.

25

4. Hardware Architecture

Listing 4.1: Example of kernel with an element-wise multiplication operation on two
arrays; the hot-loop is 8-instruction long and performs one multiplication
per iteration, with a throughput of 0.125 multiplications/instruction.

<loop>:
lw a6, 0(a5) ; load element from A
lw t3, 0(a7) ; load element from B
addi a5, a5, 4 ; increment A pointer
mul a6, a6, t3 ; compute C = A * B
add a7, a7, t5 ; increment B pointer
sw a6, 0(a4) ; store result in C
addi a4, a4, 4 ; increment C pointer
bne t4, a5, <loop>

Listing 4.2: Kernel of Listing 4.1 optimized with the extended loads and stores; saving
the increments of the load and store addresses (3 instructions less), the
throughput rises to 0.2 multiplications/instruction.

<loop>:
p.lw a6, 4(a5!) ; load element from A, increment pointer
p.lw t3, t5(a7!) ; load element from B, increment pointer
mul a6, a6, t3 ; compute C = A * B
p.sw a6, 4(a4!) ; store result in C, increment pointer
bne t4, a5, <loop>

Instruction encoding

Register File

07152024 19 11

rd/rs3rs1rs2

31

ALU
rs1

rs2

rd/rs3

A

B

to LSU
address

to LSU
data

from LSU

result

Write-back

post-increment?op B selection

1

0

L/S Immediate

Figure 4.3.: Block diagram of the modifications we introduced to manage the third
operand for the extended load and store operations and the post-increment
mechanism.

26

4. Hardware Architecture

Post-increment destination register

When post-increment loads and stores are performed, either with register or immediate
offset, rs1 is employed both as a source register, containing the base address, and as an
additional destination register storing the incremented base address.

Due to this additional behavior, we extended the scoreboarding logic to flag the entry
corresponding to rs1 as busy each time a post-increment instruction is issued. In this
way, read-after-write (RAW) hazards which might be generated by following instructions
employing the same register as a source can be detected.

We also extended the write-back logic of Snitch to consider rs1 as a possible destina-
tion. The write-back of rs1 by means of a post-increment instruction always happens in
the same clock cycle during which the instruction itself has been issued (unless a stall
occurs), differently from what happens with load memory accesses. For this reason,
the retirement of a post-increment on rs1 and the retirement of a basic RISC-V integer
operation executed inside the core are mutually exclusive: thanks to this, the write-back
port dedicated to retirement of I instructions on rd can be muxed to also retire post-
increments on rs1. With this approach, we managed to keep just two write ports for the
register file.

Third source operand

The introduced register-register store operations need three input sources:

• rs1 for the base address;

• rs2 for the data to store in memory;

• rs3, which has the same encoding of rd, for the register offset.

Due to this need, we extended the integer register file to have three read ports; the first
two read ports are dedicated to the instruction fields rs1 and rs2, while the third one is
indexed by the rd field, which semantically corresponds to rs3. The size of register files
is proportional to the number of read and write ports, which makes this modification the
most impacting in terms of area and critical path within the Snitch core, as we outline in
Chapter 5.

When rd is used as a source register, its potential RAW hazards have to be considered
before accessing it, so that we also extended the scoreboarding logic to tackle such issue.

In Snitch internals, the content of rs2 is usually assigned to operand B of the ALU;
when a register-register store is decoded, a crossing of signals is performed to assign rd

to operand B instead, and use rs2 as data source for the store. Due to this crossing, an
additional extension of the control logic for rs2 hazard detection has been needed.

Post-increment mechanism

For standard load and store instructions, the base address contained in the register rs1
is assigned to the operand A of the ALU, with operand B being the load immediate or

27

4. Hardware Architecture

the store immediate. The output of the ALU, which performs the addition of the two, is
then used as effective memory address.

With the register-register addressing mode, the operand B can also be assigned with
the content of rs2 (for register-register loads) or rd (for register-register stores), to be
summed up with the content of rs1.

As far as the post-increment mechanism is concerned, we extended the way the
address for the memory access fed to the load-store unit (LSU) is managed: instead of
hardwiring the address input to the output of the ALU, the actual address is muxed
between the ALU output and the content of rs1, direct output of the register file. In
this way, when post-increment instructions are issued, the base address can be directly
used for the memory access, while the output of the ALU is written back to rs1 as a
post-increment operation. When basic memory access operations are instead issued, the
output of the ALU, containing the sum of base address and offset, is selected as effective
address.

4.1.2. Immediate branching

RISC-V standard ISA only support branch instructions comparing two registers [10].
With Xpulpimg, we introduce immediate branching instructions, summarized in Table 4.2:
these operations compare the content of a register with an immediate to decide whether
to take the branch. The 12-bit B-type immediate encodes the signed PC-relative offset in
multiples of 2 bytes, with a branch range of ±4 KiB.

Immediate branching instructions

p.beqimm rs1, pimm5s, bimm12s If rs1 is equal to pbimm5s, branch to PC +
(bimm12s << 1)

p.bneimm rs1, pimm5s, bimm12s If rs1 is not equal to pbimm5s, branch to PC +
(bimm12s << 1)

Table 4.2.: Branching instruction with immediate comparison introduced in Xpulpimg
with Generic arithmetic operations. The register rs1 is compared against
pimm5s, the 5-bit sign-extended immediate introduced from Xpulp; the pro-
gram counter (PC) offset is instead given by bimm12s, the standard 12-bit
signed B-type immediate.

Immediate branching instructions are useful when the value of the second operand in
the comparison is already known at compile time, thus can be directly encoded into an
immediate. This might be the case when the number of iterations of a loop is known
and fixed (e.g., a convolution with a kernel of fixed size), or when the final value of a
counter in a loop is already known, or also when we have an if statement with a constant
comparison.

In the mentioned scenarios, immediate branches may help reducing the pressure on
the integer register file since one register less is used: in case of functionalities with an
intensive registers use, stack accesses might result reduced.

28

4. Hardware Architecture

The architectural modifications needed to implement immediate branching instruc-
tions in Snitch impacted the core very lightly. The standard branching mechanism
already present for standard RISC-V I branches is actually the same of Xpulp immediate
branches; the only step affected by the new instructions is the comparison part.

As a matter of fact, we introduced the decoding of a new immediate field, the Xpulp
5-bit immediate. Its encoding is the same of rs2, and it gets sign-extended before being
fed to the Snitch ALU, which compares it with the content of rs1. The output of the
ALU, which is 1 or 0 based on the outcome of the comparison, is then used to decide
whether to use the branch target or (PC + 4) as next program counter.

4.1.3. Instructions offloaded to the IPU

The implementation of the instructions on the control path is fully contained inside
the Snitch core. On the contrary, data processing instructions, which are the remaining
instructions in the Xpulpimg extension, are executed by the IPU coprocessor, with Snitch
only dealing with their offloading to the accelerator interface.

Decoding logic

The decoding logic of data processing Xpulpimg instructions is divided into four parts,
each one fine-tuning the set-up of the scoreboarding logic, based on the kind of register
operands of the instructions:

• instructions with only a source register (rs1) and a destination register (rd);

• instructions with two source registers (rs1 and rs2) and a destination register (rd);

• instructions with two source register (rs1 and rd) and a destination register (rd);

• instructions with three source register (rs1, rs2 and rd) and a destination register
(rd).

Apart from the scoreboarding control logic, in the decoding phase the accelerator
interface is also prepared for the AXI-like handshake: the accelerator is checked to
be ready, the valid signal is raised when the instruction is valid and not stalling, the
operands are fetched and fed to the operands ports, along with the whole encoding of
the instruction.

Third source operand

Many Xpulpimg instructions (namely MAC operations, insert operations, SIMD sum
dot-product instructions and SIMD shuffles) need to read the content of rd along with
the other input registers or immediates.

For this reason, those instructions benefit from a third read port indexed by rd for
the integer register file in the Snitch core, already added for memory accesses with
register-register addressing mode. We extended the scoreboarding logic accordingly

29

4. Hardware Architecture

instruction ID

operand A

operand B

operand C

instruction encoding

request valid

request ready

result

instruction ID

error

response valid

response ready

Snitch
Snitch

IPU

Register
Boundary

32

5

32

32

32

32

5

Figure 4.4.: Interface between the Snitch core and its IPU coprocessor.

to consider rd as a proper third source register, for RAW hazards detection. Note that
rd may be used by the same instruction as both input and output register, without any
problem from an architectural point of view.

Finally, since three potential registers are now in need to be sent to the coprocessor,
we modified the operands fed to the accelerator interface by also offloading the content
of rd.

The interface between Snitch and the Snitch IPU is depicted in Fig. 4.4.

4.2. Snitch IPU architecture

The architecture of the Snitch IPU stems from the previous version of the accelerator
paired with Snitch in the MemPool CC. All the modifications to the coprocessor are
parameterized in the same way of the core: if Xpulpimg is disabled, the baseline RV32M
accelerator will be instantiated, instead of our custom IPU.

The coprocessor interface with the Snitch core, shown in Fig. 4.4, employs an AXI-like
handshake. When an offloading request happens, the three operands are fed to the
accelerator interface, along with the full 32-bit instruction, useful to decode opcodes
and immediate operands. The ID of the instruction, corresponding to its destination
register index, is also sent to the coprocessor: this is useful for the retiring of offloaded
instructions. On the response port, the data result and the ID of the instruction are sent
back to the core.

As in Fig. 4.2, the IPU is mainly composed of a decoder, two execution units and
a stream arbiter. The decoder receives all the instructions offloaded to the IPU and
exclusively decide to which one of the two execution units to offload them.

The execution units are a serial divider, which was already present in the original
accelerator, and the newly developed digital signal processing unit (DSPU), executing the
Xpulpimg instructions. The previously present integer multiplier has been embedded in
the DSPU for higher hardware sharing.

30

4. Hardware Architecture

DSP Unit

D
e
co

d
e
rOffloaded

Operation

Clip UnitComparator

MAC Unit

Arithmetical
Unit

SIMD Unit

Extension
Unit

Control
signals

Figure 4.5.: Block diagram of the DSPU.

The DSPU is a single-stage execution unit containing a datapath organized as follows:
a decoder reads the opcode of the offloaded instruction and generates an intermedi-
ate representation of the instruction to drive the internal units of the DSPU. Such an
approach has been employed to obtain a better hardware sharing and a more flexible
and extensible architecture in our custom unit, also allowing for some degree of power
gating of the unused resources. The block diagram of the DSPU is shown in Fig. 4.5.

The main execution units of the DSPU are:

• a shared comparator, used by arithmetic instructions and clip operations;

• an arithmetic unit, performing some basic arithmetic operations such as absolute
value and comparisons, based on the shared comparator;

• a clip unit, performing all the clip operations;

• an extension unit, which deals with sign- and zero-extensions;

• a multiplier, which computes all the M instruction set multiplications and, addi-
tionally, Xpulpimg MAC operations;

• a SIMD unit, which handles all the SIMD operations.

We describe the architecture of each unit and the datapath flow for the execution of
their related instructions in the following sections.

31

4. Hardware Architecture

33-bit LTE comparator

<
operand A

32'h0x0

operand B

clip operand

32

32

32

32

32

comp op B sel signed comp

comp result

Figure 4.6.: Block diagram of the shared comparator in the DSPU.

4.2.1. Shared comparator

The DSPU is provided with a 33-bit comparator able to perform both signed and un-
signed operations. The comparator is explicitly instantiated and shared among the
functionalities of the arithmetic unit and the clip operations.

As in the block diagram of Fig. 4.6, the first operand of the comparator is always
operand A of the IPU (i.e. the content of rs1 from Snitch), while the second operand can
be, based on the control signals generated by the decoder:

• zero, for the absolute value operation;

• operand B of the IPU (i.e. the content of rs2 from Snitch), for the remaining
arithmetic operations;

• an operand generated by the clip unit, used by clip operations.

The comparator is hardwired to perform a less than or equal operation between its two
operands; for greater than comparisons, its negated output can be used. The comparator
can perform both signed and unsigned comparisons on 32-bit data; the additional bit
in the most significant position is needed to decide the signedness of the operation at
runtime, by means of a control signal.

Generic arithmetic instructions

p.abs rd, rs1 Compute the absolute value of rs1
p.slet[u] rd, rs1, rs2 If rs1 is less or equal than rs2 set rd to 1, otherwise to 0
p.min[u] rd, rs1, rs2 Store in rd the minimum between rs1 and rs2

p.max[u] rd, rs1, rs2 Store in rd the maximum between rs1 and rs2

Table 4.3.: Generic 32-bit arithmetic operations introduced in Xpulpimg with Generic
arithmetic operations.

4.2.2. Arithmetic operations

Xpulpimg introduces some arithmetic operations generally useful for DSP. The ones
discussed in this section are mainly based on the use of the shared comparator and are

32

4. Hardware Architecture

operand A

comp result

operand B
32

32

Unsigned
extension

32-bit subtractor

32'h0x0
32

32

32

32

32

32

Abs

Sle

Min

Max

Figure 4.7.: Block diagram of the arithmetic unit of the DSPU.

listed in Table 4.3.
Such instructions are useful to reduce the amount of instructions needed to perform

frequent operations employed in DSP, thus reducing the code size and the number
of runtime cycles. In addition to this, minimum and maximum computations require
control flow instructions: with Xpulpimg, the same result can be achieved without
any alteration of the program flow, thus obtaining higher IPC values. An example of
improvement due to this extension is given in Listing 4.3 and Listing 4.4.

The architecture of this unit, sketched in Fig. 4.7, is very simple and written in compli-
ance with Synopsys Design Compiler guidelines to maximize hardware sharing: all the
operations are described in the same case statement and depend on the same signals (i.e.
the result from the comparator and the IPU input operands A and B).

Listing 4.3: Example assembly code, compiled for the baseline RV32IMA instruction set,
to compute the absolute value of a variable and the minimum between two
variables.

<start>:
; compute a0 = abs(a5)
srai a0, a5, 0x1f
xor a5, a0, a5
sub a0, a5, a0
; compute a1 = min(a2, a1)
ble a2, a1, <skip>
mv a1, a2

<skip>:
...

33

4. Hardware Architecture

Listing 4.4: Algorithms of Listing 4.3 for absolute value and minimum computation
compiled with Xpulpimg extension; note that only one instruction is now
needed for the absolute value, while program flow alterations are now absent
for the minimum computation.

<start>:
; compute a0 = abs(a5)
p.abs a0, a5
; compute a1 = min(a2, a1)
p.min a1, a1, a2

4.2.3. Clip unit

The current version of Xpulpimg does not contain any dedicated fixed-point extension.
Complete fixed-point functionalities can be anyway obtained with a combination of any
instruction able to perform the following steps: integer arithmetic operation between the
inputs, rounding, normalization (i.e. a shift to adjust the result to the correct Q format),
saturation.

Fixed-point arithmetic has many applications in advanced image processing func-
tionalities, as mentioned in Section 2.5. Since fixed-point numbers usually represent
real quantities, it is often useful to check if a fixed-point result falls in a given range
and saturate it to a minimum or a maximum bound otherwise. This operation is quite
expensive in terms of clock cycles and program flow alteration; for this reason, we
implemented clip operations in our Xpulpimg extension to, at least partially, support
fixed-point functionalities. The clip operations from Xpulp support any Q-number
format and allows to round and normalize the value before saturating, which provides
higher precision [9].

The list of introduced clip operations is presented in Table 4.4. An example of how
clips improve the code performance and the program flow is given in Listing 4.5 and
Listing 4.6.

Clip instructions

p.clip rd, rs1, pimm5u Clamp rs1 between −2pimm5u-1 and 2pimm5u-1 − 1
p.clipu rd, rs1, pimm5u Clamp rs1 between 0 and 2pimm5u-1 − 1
p.clipr rd, rs1, rs2 Clamp rs1 between −rs2− 1 and rs2

p.clipur rd, rs1, rs2 Clamp rs1 between 0 and rs2

Table 4.4.: Immediate and register-register 32-bit clip operations from Generic arithmetic
operations; the immediate employed by immediate clips is pimm5u, the 5-bit
zero-extended Xpulp immediate.

34

4. Hardware Architecture

Listing 4.5: Example of compiler-generated code from [9] where two arrays containing n
Q1.11 signed elements are added together; the results if normalized between
−1 and 1 and returned in the same Q1.11 format.

<start>:
addi t5, x0, 0x800 ; load lower bound
addi t4, x0, 0x7ff ; load upper bound
addi a3, x0, n ; load elements number

<loop>:
p.lh a4, 2(s0!)
p.lh a5, 2(s1!)
add a4, a4, a5 ; Q1.11 sum
blt a4, t5, <lower_bound> ; check for lower bound
blt t4, a4, <upper_bound> ; check for upper bound
j <endL>

<lower_bound>:
mv a4, t5 ; saturate to lower bound
j <endL>

<upper_bound>:
mv a4, t4 ; saturate to upper bound

<endL>:
addi a3, a3, -1 ; update counter
sw a4, 2(s2!)
bne a3, x0, <loop>

Listing 4.6: Code from Listing 4.5 optimized with the support for clips; note that not
only is the size of the hot-loop smaller, which increases the throughput, but
also control flow instructions are not present anymore, achieving better IPC.

<start>:
addi a3, x0, n ; load elements number

<loop>:
p.lh a4, 2(s0!)
p.lh a5, 2(s1!)
add a4, a4, a5 ; Q1.11 sum
p.clip a4, a4, 12 ; clamp between -1 and 1 in Q1.11
addi a3, a3, -1 ; update counter
sw a4, 2(s2!)
bne a3, x0, <loop>

We developed a clip unit to maximize the hardware sharing among the possible four
clip operations. To generate the two bounds for the clamp range of immediate clips, we
instantiated a small barrel shifter using the 5-bit Xpulp immediate as shift amount. For
non-unsigned clips, the two bounds are the bitwise not of each other; for unsigned clips,
the upper bound does not change, while the lower bound is zero.

From a behavioral point of view, the functionality of a clip needs two comparisons to
clamp operand A between the two bounds: the input must be compared once against the
lower bound and once against the upper bound. However, one comparison is enough
if we select its second operand basing on the sign of the clip inputs: if at least one
between the operand A of the clip and the maximum bound of the range is negative,
then the lower bound is used as second operand for the comparison; otherwise, operand

35

4. Hardware Architecture

operand A

comp result

operand B
32

32'h0x1FFFFFFF

33 Barrel
Shifter

<<

5-bit
immediate

5

33
>> 1

32

32

32

32'h0x0

32

32

clip comp

operand

clip register?

32

32

32

s
i
g
n

sign sign

1

0

1

0

1

0

clip unsigned?

1

0

1

0

1

0

1

0

32

32

Figure 4.8.: Block diagram of the clip unit in the DSPU.

A is compared against the upper bound of the clip. To implement such behavior we
employed a series of multiplexers, as in Fig. 4.8. The shared comparator is used to
perform the comparison.

The comparison result, i.e. the relative magnitude of the operand A with respect to
one of the clip bounds, is then used, in combination with the sign of operand A, for the
selection of the final result, which can be one among: the lower bound, operand A and
the upper bound.

4.2.4. Extension unit

Some other generally useful instructions, more involved with the management of differ-
ent data widths as it is the case for SIMD operations, are represented by the extension
operations. Xpulpimg introduces four instructions to extend the least significant sub-
word contained in a register to the full 32-bit width of the destination register; the
sub-word can have the size of either a byte or an half-word and the extension can be
signed or unsigned. The instructions are listed in Table 4.5.

Extension instructions

p.exth{s,z} rd, rs1 Sign- or zero-extend the lowest half-word of rs1 to 32 bits
p.extb{s,z} rd, rs1 Sign- or zero-extend the least significant byte of rs1 to 32

bits

Table 4.5.: 32-bit extension instructions for byte and half-word data introduced with
Generic arithmetic operations.

36

4. Hardware Architecture

This unit is implemented with a simple case statement containing the four possible
extension operations described in a behavioral way, exploiting SystemVerilog signed
and unsigned type casting functions and slicing of the input operand A. This maximizes
the possibilities of optimization from the synthesizer side.

4.2.5. MAC unit

As already mentioned, the MAC unit of the Xpulpimg DSPU also implements the RISC-V
multiplication instructions of the standard M extension. The multiplier is paired with an
accumulator to also perform the MAC operations from Xpulp, listed in Table 4.6.

Multiply-accumulate instructions

p.mac rd, rs1, rs2 Compute rd+ rs1 · rs2 and store the result back in rd

p.msu rd, rs1, rs2 Compute rd− rs1 · rs2 and store the result back in rd

Table 4.6.: MAC operation for the multiplication of two 32-bit operands with 32-bit
multiplication or subtraction, introduced in Xpulpimg with MAC operations.
The lowest 32-bit of rs1 · rs2 are used for the accumulation operation.

Listing 4.7: Example assembly code of the inner loop for a naive 2D convolution algo-
rithm implementation for 32-bit elements; the throughput of this algorithm
is of 0.14 MACs/instruction.

<loop>:
lw a5,0(a2) ; load input element
lw t4, 0(a4) ; load coefficient
addi a4, a4, 4
mul a5, a5, t4 ; multiply the element and the coefficient
add a1, a5, a1 ; accumulate the multiplication output on a1
addi a2, a2, 4
bne a0, a4, <loop>

Listing 4.8: Code from Listing 4.7 with MAC instructions support; the throughput of the
algorithm is now 0.167 MACs/instruction, with an improvement of 17%.

<loop>:
lw a5,0(a2) ; load input element
lw t4, 0(a4) ; load coefficient
addi a4, a4, 4
p.mac a1, a5, t4 ; multiply and accumulate on a1
addi a2, a2, 4
bne a0, a4, <loop>

MAC operations are very common in DSP, especially in image processing; for example,
they are largely used in digital filters, which boil down to convolution operations, and
dot-product algorithms, also used to implement matrix multiplication. An intuitive
example of the improvements determined by the MAC extension is given in Listing 4.7

37

4. Hardware Architecture

operand A

operand B

32'h0x0
32

operand C

32-bit adder

33×33→64-bit
multiplier

32-bit subtractor

32

32

32

64

multiply & subtract? multiplication operatorsigned mul

1

0

bits [31:0]

bits [63:32]b
i
t
s

[
3
1
:
0
]

32

32

32

32

32

Figure 4.9.: Block diagram of the MAC unit in the DSPU.

and Listing 4.8; much higher benefit in terms of performance and power efficiency can
be obtained with more sophisticated algorithms, as shown in Chapter 5.

With the help of the technology feedback, we found the best way to implement
MACs being to remove the initial integer multiplier from the coprocessor and include
its functionalities inside the new MAC unit in the DSPU. This allowed us to save some
area cost, while paying in terms of hardware sharing. Anyway, this did not represent
any issue due to the MAC unit not being timing-critical at all. The architecture of the
MAC unit is depicted in Fig. 4.9.

The instructions from the standard M extension also performed by the MAC unit are
mul, mulh, mulhu and mulhsu, a set of 32 × 32 multiplications with different signedness
taking either the lower or the upper 32 bits of the result.

Since the signedness of the operation must be decided at runtime by the decoder
control signals, the actually employed multiplier has two 33-bit inputs. One of them can
be inverted in sign, so that multiply-subtract (MSU) instructions can be performed too.

A 32-bit adder is instantiated in series with the multiplier: when a MAC or a MSU
are issued, the lowest 32 bits of the multiplier output are summed up to operand C of
the IPU. On the other hand, when standard M multiplications are executed, the output
of the multiplier unit can be chosen to be either the upper or the lower 32 bits of the
multiplier output.

4.2.6. SIMD unit

When the full width of 32-bit operations is not needed, the environment of a scalar
processor can be used, with few datapath extensions, to perform vectorial operations
on sub-words in parallel. Xpulpimg introduces packed-SIMD instructions for generic
arithmetic operations (Table 4.7), dot-product operations (Table 4.8) and sub-words
management (Table 4.9). As in Xpulpv2, the instructions are implemented for 16-bit
(half-word) and 8-bit (byte) operations in three addressing variations:

38

4. Hardware Architecture

SIMD arithmetic instructions

pv.add[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD addition
pv.sub[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD subtraction
pv.avg[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD average
pv.avgu[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} SIMD unsigned average
pv.min[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD minimum
pv.minu[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} SIMD unsigned minimum
pv.max[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD maximum
pv.maxu[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} SIMD unsigned maximum
pv.srl[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD logical right-shift
pv.sra[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD arithmetic right-shift
pv.sll[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD logical left-shift
pv.or[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD logical or
pv.xor[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD logical xor
pv.and[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD logical and
pv.abs.{h,b} rd, rs1 SIMD absolute value

Table 4.7.: Generic packed-SIMD arithmetic instructions, from Packed-SIMD extension;
the employed immediate is the 6-bit Xpulp immediate, which is sign- or
zero-extended based on the executed instruction. Note that shift operations
use only the least significant 4 bits of the second operand for half-word-level
parallelism, and the least significant 3 bits for byte-level parallelism.

Listing 4.9: Example assembly code of the inner loop for a naive 2D convolution algo-
rithm implementation for 8-bit elements, compiled for the RV32IMA instruc-
tion set; its throughput is of 0.14 MACs/instruction.

<loop>:
lb a5,0(a2) ; load input element
lb t4, 0(a4) ; load coefficient
addi a4, a4, 1
mul a5, a5, t4 ; multiply the element and the coefficient
add a1, a5, a1 ; accumulate the multiplication output on a1
addi a2, a2, 1
bne a0, a4, <loop>

39

4. Hardware Architecture

SIMD dot-product instructions

pv.dotup[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} SIMD unsigned dot-
product with reduction on
rd

pv.dotusp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD signed-unsigned dot-
product with reduction on
rd

pv.dotsp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD signed dot-product
with reduction on rd

pv.sdotup[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} SIMD unsigned dot-
product with reduction and
accumulation on rd

pv.sdotusp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD signed-unsigned dot-
product with reduction and
accumulation on rd

pv.sdotsp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} SIMD signed dot-product
with reduction and accumu-
lation on rd

Table 4.8.: Packed-SIMD dot-product instructions, from Packed-SIMD extension; the
employed immediate is the sign- or zero-extended 6-bit Xpulp immediate. All
the dot-product instructions multiply the elements of the first operand with
the second operand, basing on the addressing mode, and sum them up into a
32-bit destination.

Listing 4.10: Code from Listing 4.9 with packed-SIMD extension support; note that
not only did the size of the hot-loop decrease, but also 4 elements are
processed per iteration, instead of only one. lw is used instead of lb to
load 4 sequential elements at a time, and 4 MACs are performed for each
dot-product instruction. The throughput of the algorithm is now 0.67
MACs/instruction, with a speed-up of 3.7×.

<loop>:
lw a5,0(a2) ; load 4 input elements
lw t4, 0(a4) ; load 4 coefficients
addi a4, a4, 4
p.sdotsp a1, a5, t4 ; compute 4 multiplications and accumulate on a1
addi a2, a2, 4
bne a0, a4, <loop>

40

4. Hardware Architecture

SIMD support instructions

pv.extract.{h,b} rd, rs1, pimm6s Extract from rs1 the half-word indexed
by pimm6s[0] or the byte indexed by
pimm6s[1:0], sign-extend it and store in rd

pv.extractu.{h,b} rd, rs1, pimm6u Extract from rs1 the half-word indexed
by pimm6u[0] or the byte indexed by
pimm6u[1:0], zero-extend it and store in rd

pv.insert.{h,b} rd, rs1, pimm6s Substitute in rd the half-word indexed
by pimm6s[0] or the byte indexed by
pimm6s[1:0] with the least significant half-
word or byte from rs1; the remaining bits
of rd are untouched

pv.shuffle2.{h,b} rd, rs1, rs2 Each sub-word of rs2 is used to index the
source register sub-word which should be
copied in the respective sub-word of rd;
the source register for each sub-word is se-
lected with rs2 sub-words and can be either
rs1 or rd.

Table 4.9.: Support instructions for packed-SIMD operations from Packed-SIMD exten-
sion; they represent a basic extension for the packing and unpacking of SIMD
data.

1. vectorial – the two input registers rs1 and rs2 are considered vectors of two 16-bit
or four 8-bit elements, and an element-wise operation is performed;

2. scalar replication – the lowest half-word or byte of rs2 is considered a scalar and
used for the operation with the array of half-words or bytes in rs1;

3. immediate scalar replication – this variation has the same behavior of the scalar repli-
cation mode but uses the 6-bit signed or unsigned immediate as scalar operand.

SIMD has a large utilization in DSP due to the trade-off that it enables between
precision and performance, in terms of speed-up and energy efficiency. Sub-word
parallelism, especially at byte-level, is one of the extensions with the highest impact on
image processing: with pixels represented by 8-bit values, the speed-up theoretically
determined by packed-SIMD is 4×. An example is given in Listing 4.9 and Listing 4.10.

On the other hand, SIMD operations need to have the data packed in a single register,
thus some overhead to prepare input operands and to unpack outputs is needed; this is
particularly the case when the elements are not stored sequentially in memory. However,
such operations can be accelerated by several SIMD support instructions, listed in
Table 4.9.

We developed the SIMD unit of the DSPU keeping all the operations within the same
case statement, to give to Synopsys Design Compiler the highest potential of optimization.

41

4. Hardware Architecture

32

8-bit domain

Operands
generation

byte 3 byte 2 byte 1 byte 0

half-word 1 half-word 0

operand A

operand B

operand C

6-bit immediate

byte 3 byte 2 byte 1 byte 0

half-word 1 half-word 0

byte 3 byte 2 byte 1 byte 0

half-word 1 half-word 0

SIMD operand A

SIMD operand B

SIMD operand C

16-bit domain

32

32

32

32 32

32

signed SIMD

SIMD size

SIMD mode

SIMD operator

Add/sub Min/max

Abs Shifter

Logicals Dotp

Extract/insert Shuffle

Add/sub Min/max

Abs Shifter

Logicals Dotp

Extract/insert Shuffle

Figure 4.10.: Block diagram of the SIMD unit in the DSPU.

Before the execution, the three input operands A, B and C of the unit are adjusted into
vectorial structures basing on the granularity of the issued SIMD operation. In particular,
the second operand is generated basing on the employed addressing variation starting
from the operand B of the IPU or the 6-bit immediate, after its sign- or zero-extension.

As in Fig. 4.10, the vectorized datapath of the SIMD unit is divided into two domains:
one is segmented in two parts to perform half-word operations, the other is segmented in
four parts and deals with byte sub-words. Such an organization maximizes the possible
optimizations from the synthesizer side in terms of hardware sharing and timing inside
the same domain, i.e. among operations with the same width, which results in more
efficient implementations.

42

Chapter 5
Results

We implemented the Xpulpimg ISA extension in the Snitch processor core with the
aim to exploit its desirable features of flexibility, efficiency and area to provide the
MemPool system with an highly parallelizable processing element with DSP capabilities.
This paved the way for MemPool to approach more efficiently the domain of image
processing. In this chapter we show the results that we collected in terms of performance,
area and power in comparison with the baseline system implementing the RV32IMA
instruction set only, demonstrating the validity of our approach.

In particular, we firstly illustrate our evaluation methodology in terms of benchmark-
ing and synthesis procedure. Then, we analyze in depth the implementation cost of each
one of the extensions that we incrementally implemented in the MemPool CC, going
through our design iterations and looking at the related code improvements of a kernel
of interest. Subsequently, we analyze the benchmark results of the kernel and study the
overall speed-up determined by Xpulpimg. We also illustrate the results obtained from
the benchmark of other, more generic DSP kernels.

Finally, to characterize the impact of the Xpulpimg implementation from the broader
perspective of the MemPool cluster, we analyze its implementation cost in a MemPool
tile; to the same end, we also consider a power analysis to quantify the energy efficiency
improvements.

5.1. Evaluation setup

This section details our evaluation setup in terms of benchmarking methodology and
synthesis process.

5.1.1. Benchmarking methodology

For performance evaluation, we carried out cycle-accurate RTL simulations in Verilator
4.024 2019-12-08, recording traces for the processor cores with a SystemVerilog behavioral

43

5. Results

tracer. The traces were parsed to a human-readable format by means of a Python script,
exploiting Snitch CSR counters to keep track of the number of elapsed cycles.

We benchmarked MemPool with two algorithms of interest for DSP and image pro-
cessing applications:

• conv2d – a 2D integer convolution of a 32 × 32 matrix with a 3 × 3 kernel;

• matmul – a matrix multiplication between two 64 × 64 matrices.

For simulation performance reasons, we benchmarked MemPool in a 16-core configu-
ration with 64 memory banks, accounting for a total of 64 KiB for the shared L1 TCDM.
We used such a cache to store the input and output matrices, hence avoiding long stalls
due to potential L2 accesses while focusing on the performance of our extensions.

Basing on the size of the hot-loops of the employed kernels, we also optimized the
MemPool configuration to the benchmark algorithm in terms of instruction cache size.
With four cores per tile, each tile has an L1 instruction cache of 2 KiB. To avoid memory
access stalls due to an hot-loop not entirely fitting in the private L0 cache of each core,
we halved L1 associativity (moving to a two-way set-associativity) doubling cache line
size (from 128 bits to 256 bits), to obtain twice the size for the L0 cache [35]. With this
configuration, the L0 cache has four 256-bit lines, able to hold up to 32 instructions.

We developed the benchmark algorithms in C language and compiled them with
the PULP RISC-V GCC toolchain extended with the Xpulpimg instruction set. In their
compilation we took care of aligning all loops to the instruction cache line boundary
of 32 bytes, to grant the hiding of potential instructions pre-fetcher accesses to L1.
To harvest the most out of the new instruction set extensions, we optimized the 2D
convolution and the matrix multiplication employing compiler intrinsics and manual
assembly-level optimizations specifically suited for Xpulpimg. Optimized algorithms, in
terms of parallelization and loop unrolling, have also been employed for the RV32IMA
benchmarks simulated on the baseline system.

The 2D convolution algorithm with 8-bit data types, which can be thought as pixels of
a grayscale image, has been run in a single-thread mode, to better study the speed-up
of an individual MemPool CC processing element among the several design iterations,
comparing it with the area and timing costs.

The matrix multiplication kernel has instead been simulated with different data widths
and parallelized over multiple cores, with the aim to characterize the performance of the
whole system in a more general way.

5.1.2. Synthesis methodology

We synthesized our system for GlobalFoundries 22FDX FD-SOI technology using Synop-
sys Design Compiler 2019.12. The synthesis aim has been twofold. As already mentioned
in Section 3.7, we used post-synthesis AT figures as feedback for the RTL design ex-
ploration of Snitch extensions; to this end, we synthesized MemPool CC in typical
conditions (TT, 0.80 V, 25 °C) at each incremental development iteration of Xpulpimg.

44

5. Results

Note that the MemPool CC exclusively includes a Snitch core, its Snitch IPU coproces-
sor and the spill registers in between them, as shown in Fig. 4.1. Such a system has been
synthesized as if enclosed in a register boundary. This approach allowed us to collect the
exact incremental post-synthesis figures of each design iteration, without the synthesis
noise coming from cache memories or the TCDM interconnect.

In this process, at each design iteration, we measured the maximum reachable oper-
ating frequency of the system and computed the set of Pareto-optimal points in terms
of clock period and area, in a sweep from 2 ns (500 MHz) to 0.5 ns (2 GHz). The set of
design points obtained with this approach is optimal in terms of area for each given
operating frequency, in compliance with the need of Snitch to be massively replicated
within MemPool.

On the other hand, we also synthesized the whole MemPool tile, including four
MemPool CCs, targeting 500 MHz at worst-case conditions (SS, 0.72 V, 125 °C) and a
16-core configuration, to compare the final post-synthesis area, timing and power results
between the baseline and our extended version from the perspective of the whole
MemPool cluster. The tile has been synthesized with 2 KiB of instruction cache and 16
KiB of SPM.

For the power analysis, we extracted the switching activity by simulating a bench-
mark on the post-synthesis netlist of a tile with back-annotated post-synthesis delay
information for the typical corner (TT, 0.80 V, 25 °C) in Questa Sim 2019.3; we performed
the power estimation in Synopsys PrimeTime 2019.12 at typical conditions.

5.2. Design iterations evaluation

In this section we carry out an analysis of the incremental versions of the MemPool
CC that we developed throughout its design iterations. Initially, we go through the
individual design iterations, each consisting of a newly implemented subset of Xpulpimg
with respect to the previous version. For each incremental extension, we analyze the
improvement in the hot-loop size of a benchmark kernel and the related cost in terms
of MemPool CC area and timing, highlighting the main criticalities. The legend of the
analyzed design iterations is described in the following, and refers to the Xpulpimg
extension sections already mentioned in Section 3.1:

• Baseline – the system implementing the starting RV32IMA instruction set;

• Generic ALU – generic arithmetic instructions;

• Post-increment L/S – extended load and store addressing modes;

• MAC – multiply-accumulate operations;

• SIMD – packed-SIMD extension.

Subsequently, we analyze the overall speed-up of a benchmark of interest compar-
ing the baseline version and the final version including all the instructions from our
Xpulpimg instruction set.

45

5. Results

Note that, when the full Xpulpimg extension is referenced, it corresponds to the last
version of the above mentioned design iterations, SIMD. Hence, in the following, we
will refer to it with the label Xpulpimg .

For the benchmark simulation and the assembly code analysis of the next sections,
we employed a single-core 3 × 3 2D convolution benchmark for 32 × 32 8-bit matrices,
due to its relevance in the field of image processing as outlined in Section 2.5. Its hot-
loop compiled from C language with the PULP RISC-V GNU toolchain, in its different
variations based on the Xpulpimg version, is listed in Table 5.1. Listing B.1 shows the C
function from which the Baseline, Generic ALU, Post-increment L/S and MAC versions of
the kernel have been compiled; Listing B.2 shows the C convolution version optimized
for Xpulpimg, exploiting the compiler intrinsics for the SIMD extension.

5.2.1. Incremental analysis of design iterations

In the following, an analysis of the incremental versions of the MemPool CC is carried
out. Table 5.1 shows the hot-loop of the convolution kernel for each one of the detailed
design iterations, highlighting the changes among them. Additionally, Fig. 5.1, Fig. 5.2
and Fig. 5.3 show the post-synthesis AT plots obtained from the sweep of the clock period
for the final version of each design iteration; note that only design points which met
the timing constraints have been plotted. As already mentioned, an area optimization
has been performed at each given clock period; hence, from the resulting design points
the Pareto-optimal curve in terms of area and timing can be extracted for the MemPool
CC. Additionally, Table 5.2 shows the percentage increment of MemPool CC area and its
sub-modules with respect to the baseline version, for each design iteration. Table 5.3
details how the maximum reachable operating frequencies of the MemPool CC has been
affected by each extension.

Baseline

The baseline version of the MemPool system, implementing only the RV32IMA ISA,
has been the starting point for the development of our extension. The hot-loop of the
convolution binary generated with such an instruction set has a size of 47 instructions.

The highest operating frequency reached by this initial version is 1.85 GHz (clock
period of 0.54 ns), with the most critical paths traversing the register file inside the core
through its read port and going across the write-back path.

With the coprocessor positioned in between two spill registers, its execution units have
one full clock cycle for their combinational logic. For this reason, most of the hardware
in the IPU is not timing-critical at all, and is instead optimized mainly for area, even at
higher frequencies.

46

5. Results

Baseline Generic ALU Post-increment L/S MAC SIMD

lbu a4,0(a3)
lbu a6,1(a3)
lbu a0,2(a3)
mul a5,a5,a6
mul a2,a2,a4
lbu a4,3(a3)
mul s1,s1,a0
lbu a6,4(a3)
add a2,a2,a5
lbu a0,5(a3)
mul a4,t6,a4
add a5,s1,a2
add s1,a4,a5
lbu a2,6(a3)
mul a6,t4,a6
lbu a4,7(a3)
mul a0,t0,a0
add a6,a6,s1
lbu a5,8(a3)
mul a2,t3,a2
add s1,a0,a6
add a0,a2,s1
mul a4,t5,a4
mul a6,t2,a5
add a5,a4,a0
add a2,a6,a5
divu s1,a2,s2
lbu a6,-1(a7)
lbu a0,0(a7)
lbu a4,1(a7)
mv a2,t6
sw s1,0(t1)
mv a5,t4
mv s1,t0
mv t6,t3
mv t4,t5
mv t0,t2
slli t3,a6,0x18
slli t5,a0,0x18
slli t2,a4,0x18
addi s0,s0,1
add a7,a7,a1
add t1,t1,s4
srai t3,t3,0x18
srai t5,t5,0x18
srai t2,t2,0x18
bne s0,s3,loop

lbu a4,0(a3)
lbu a6,1(a3)
lbu a0,2(a3)
mul a5,a5,a6
mul a2,a2,a4
lbu a4,3(a3)
mul s1,s1,a0
lbu a6,4(a3)
add a2,a2,a5
lbu a0,5(a3)
mul a4,t6,a4
add a5,s1,a2
add s1,a4,a5
lbu a2,6(a3)
mul a6,t4,a6
lbu a4,7(a3)
mul a0,t0,a0
add a6,a6,s1
lbu a5,8(a3)
mul a2,t3,a2
add s1,a0,a6
add a0,a2,s1
mul a4,t5,a4
mul a6,t2,a5
add a5,a4,a0
add a2,a6,a5
divu s1,a2,s2
lbu a6,-1(a7)
lbu a0,0(a7)
lbu a4,1(a7)
mv a2,t6
sw s1,0(t1)
mv a5,t4
mv s1,t0
mv t6,t3
mv t4,t5
mv t0,t2
slli t3,a6,0x18
slli t5,a0,0x18
slli t2,a4,0x18
addi s0,s0,1
add a7,a7,a1
add t1,t1,s4
srai t3,t3,0x18
srai t5,t5,0x18
srai t2,t2,0x18
bne s0,s3,loop

lbu a4,0(a3)
lbu a6,1(a3)
lbu a0,2(a3)
mul a5,a5,a6
mul a2,a2,a4
lbu a4,3(a3)
mul s1,s1,a0
lbu a6,4(a3)
add a2,a2,a5
lbu a0,5(a3)
mul a4,t4,a4
add a5,s1,a2
add s1,a4,a5
lbu a2,6(a3)
mul a6,t0,a6
lbu a4,7(a3)
mul a0,t5,a0
add a6,a6,s1
lbu a5,8(a3)
add s1,a0,a6
mul a2,t1,a2
add a0,a2,s1
mul a4,t3,a4
mul a6,t6,a5
add a5,a4,a0
mv a2,a7
addi s1,a7,-1
add a0,a6,a5
lbu a4,0(s1)
divu a5,a0,s2
p.lb a0,1(a2!)
mv s1,t5
lbu a6,0(a2)
mv t5,t6
p.sw a5,s10(s0!)
mv a2,t4
slli t6,a6,0x18
mv t4,t1
addi t2,t2,1
slli t1,a4,0x18
mv a5,t0
add a7,a7,a1
mv t0,t3
srai t1,t1,0x18
mv t3,a0
srai t6,t6,0x18
bne t2,s3,loop

lbu s11,0(a3)
lbu t2,1(a3)
lbu s0,2(a3)
mul a5,a5,t2
p.mac a5,t6,s11
lbu t2,3(a3)
p.mac a5,t0,s0
lbu t6,4(a3)
p.mac a5,a6,t2
lbu t0,5(a3)
p.mac a5,t3,t6
lbu s11,6(a3)
p.mac a5,a7,t0
lbu s0,7(a3)
p.mac a5,a2,s11
lbu t0,8(a3)
mv t6,a4
p.mac a5,a0,s0
addi t2,a4,-1
lbu t2,0(t2)
p.mac a5,t1,t0
p.lb s0,1(t6!)
divu a5,a5,s1
lbu s11,0(t6)
mv t0,a7
p.sw a5,s9(t5!)
mv t6,a6
mv a7,t1
mv a6,a2
slli t1,s11,0x18
slli a2,t2,0x18
addi t4,t4,1
mv a5,t3
add a4,a4,a1
mv t3,a0
srai a2,a2,0x18
mv a0,s0
srai t1,t1,0x18
bne t4,s2,loop

pv.dotsp.b a5,a5,t5
pv.sdotsp.b a5,a7,t4
pv.sdotsp.b a5,a4,t3
divu a5,a5,t6
mv s7,t1
p.sw a5,s4(s6!)
addi a5,t1,-1
lbu a6,0(a5)
p.lb s8,1(s7!)
andi a6,a6,255
lbu a5,0(s7)
pv.insert.b a6,s8,1
pv.insert.b a6,a5,2
addi s5,s5,1
mv a5,a7
mv a7,a4
mv a4,a6
add t1,t1,a2
pv.insert.b a4,zero,3
bne s5,t0,loop

Table 5.1.: Assembly code improvement of the 2D convolution hot-loop among
Xpulpimg design iterations; the instructions highlighted in blue are the new
ones with respect to the previous extension.

47

5. Results

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Clock period [ns]

36

40

44

48

52

56

60

Ar
ea

 [k
GE

]

MemPool CC area
Baseline
Generic ALU
Post-increment L/S
MAC
SIMD

0.54 0.56 0.58
Clock period [ns]

MemPool CC area

Figure 5.1.: Area figures of MemPool CC as a function of the clock period; the right plot
focuses on the most critical frequencies.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Clock period [ns]

22

24

26

28

30

Ar
ea

 [k
GE

]

Snitch core area
Baseline
Generic ALU
Post-increment L/S
MAC
SIMD

0.54 0.56 0.58
Clock period [ns]

Snitch core area

Figure 5.2.: Area figures of the Snitch core from MemPool CC synthesis as a function of
the clock period; the right plot focuses on the most critical frequencies.

48

5. Results

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Clock period [ns]

12

15

18

21

24

27

30

Ar
ea

 [k
GE

]

Snitch IPU area
Baseline
Generic ALU
Post-increment L/S
MAC
SIMD

0.54 0.56 0.58
Clock period [ns]

Snitch IPU area

Figure 5.3.: Area figures of the Snitch IPU coprocessor from MemPool CC synthesis as
a function of the clock period; the right plot focuses on the most critical
frequencies.

Generic ALU Post-increment L/S MAC SIMD

MemPool CC 3.64% 8.74% 10.87% 40.40%
Snitch core 1.02% 10.22% 7.14% 7.25%
Snitch IPU 8.27% 7.23% 12.80% 103.92%

Table 5.2.: MemPool CC average post-synthesis area increase with respect to the baseline
version; the average refers to the clock period sweep between 2 ns and 0.5 ns.

Baseline Generic ALU Post-increment L/S MAC SIMD

1.85 GHz
(0.54 ns)

1.85 GHz
(0.54 ns)

1.82 GHz
(0.55 ns)

1.82 GHz
(0.55 ns)

1.75 GHz
(0.57 ns)

Table 5.3.: MemPool CC maximum operating frequency for each design.

49

5. Results

Generic ALU

The instructions implemented in this design step are listed in Table 4.3, Table 4.4, Table 4.5
and Table 4.2; they include generic arithmetic operations for comparisons and absolute
value, clip operations, signed and unsigned extensions and immediate branches.

Despite their general usefulness in the DSP domain, they are not of much help for
convolution, which heavily relies on a sequence of additions and multiplications with a
linear program flow. For this reason, the compiled convolution hot-loop for this design
iteration does not show any change, with such extension being mostly useful for other
families of algorithms.

The area of the Snitch core, which implements the extended branch instructions
described in Section 4.1.2 and the decoding logic for the new instructions offloaded
to the coprocessor, is not significantly affected by this extension, which determines
an increase of just 100 to 600 GE. The remaining instructions, whose datapath is fully
implemented in the IPU coprocessor, determine an average area increase of 8.3% (about
1 kGE), mainly consisting in: a 33-bit barrel shifter with 5-bit shift amount, employed
by the clip unit described in Section 4.2.3; the shared 33-bit less-than-equal comparator
of Section 4.2.1; a 32-bit subtractor used by the arithmetic unit for the absolute value
computation, as in Section 4.2.2.

Such a small increase, despite the new sub-module in the Snitch IPU and the several
different functionalities introduced, has been possible thanks to the feedback from the
GF22 technology which brought us to implement the decoding architecture described in
Section 4.2, the shared comparator and the optimized clip unit.

The highest operating frequency reached by this version is still 1.85 GHz (clock period
of 0.54 ns), without any need of pipelining the coprocessor.

Post-increment L/S

The implementation of the extended load and store instructions, listed in Table 4.1, does
not have a large impact on the considered hot-loop: the main memory accesses in this
loop are needed to load the coefficients of the 3 × 3 filter, which have a fixed memory
address, hence basic load-byte instructions are enough. Very few post-increment instruc-
tions are instead generated only to load the new row of the kernel window and to store
the result in the output matrix.

The small influence of the extended memory operations on the 2D convolution kernel
is mainly due to the specific optimization that we employed for this algorithm: since
during each iteration only 3 elements are loaded to perform 9 MACs, the hot-loop is not
very much dependent on the memory accesses optimizations.

While the new addressing modes for loads and stores do not represent a turning
point for the 2D convolution hot-loop, they are anyway of very high interest for every
other image processing and DSP algorithm. Additionally, load operations which can be
optimized with the post-increment addressing mode are very much present in the outer
loop of our convolution algorithm, which loads a new full 3 × 3 window of the input
matrix.

50

5. Results

In terms of cost, while the implementation of the extended memory operations does
not affect the IPU at all, it determines an average increase of about 10% (2.4 kGE) in the
area of the core. This is mainly due to the introduction of a third read port in the integer
register file, pointed out in Section 4.1.1, accounting for an increase between 1.4 kGE and
1.7 kGE.

The introduction of a new port in the register file also increases the criticality of the
timing path across it, decreasing the maximum operating frequency of MemPool CC to
1.8 GHz (clock period of 0.55 ns).

MAC

The MAC extension includes the instructions listed in Table 4.6. Due to its nature, they
are of main relevance for the convolution hot-loop: many MACs instructions are indeed
compiled to substitute the series of element-wise multiplications with accumulation
between the window of the input image and the filter, reducing the size of the hot-loop
to 39 instructions.

After the design exploration performed with the GF22 technology feedback, we found
that the most efficient way to implement MACs in the Snitch IPU is to share their
multiplier with the integer multiplications from the standard RISC-V M extension.

A 64-bit signed/unsigned integer multiplier was already present in the Snitch IPU
to implement the M extension. By including it in the DSP unit, paired to a 32-bit adder
and a 32-bit subtractor, we managed to save between 8 kGE and 9.5 kGE, avoiding the
instantiation of a multiplier exclusively dedicated to MACs as discussed in Section 4.2.5.

With such an architecture, this extension determines an average area increase of
12.8% with respect to the baseline. Such an increases just consists of the hardware
for the sharing of the multiplier, the subtraction for MSU operand inversion and the
accumulation. The maximum operating frequency does not result worsened by the
introduction of MACs operations.

SIMD

The packed-SIMD extension is composed of the instructions included in Table 4.7,
Table 4.8 and Table 4.9. The main contribution to the convolution kernel is brought
by the dot-product instructions, which are able to perform up to four 8-bit MACs per
instructions, computing the output of a 3 × 3 window with just three instructions. Also,
thanks to the better register occupation determined by the use of packed data, the
coefficients of the filter do not need to be re-loaded at each iteration, causing a strong
reductions in the number of loads. Thanks to SIMD, the hot-loop size results reduced to
20 instructions.

While being the extension with the most relevant contribution to performance im-
provement, SIMD also causes a significant increase in the area of the Snitch IPU, which
almost doubled in the number of equivalent gates. As a matter of fact, we measured
an area between 11 kGE and 14 kGE for the introduced SIMD unit, accounting for an
average 40% increase in the MemPool CC area.

51

5. Results

In particular, the SIMD unit introduces in the DSP unit several 8-bit and 16-bit adders,
comparators, shifters and multipliers, as pointed out in Section 4.2.6. The most critical
resources in the unit are the sub-word multipliers and adders for dot-product operations,
which are optimized for both area and speed. The SIMD unit has indeed a detectable
impact, even if negligible, on the critical path of the system, whose maximum operating
frequency decreases to 1.79 GHz.

Nevertheless, post-synthesis timing reports identify the path through the register
file in the Snitch core as one of the most critical ones. In a real environment, with the
MemPool CC interfacing with the cache memory and the TCDM interconnect, the critical
path through Snitch would be the actually timing-critical one, due to the Snitch IPU
being enclosed in a register boundary, and thus not affected by external modules.

5.2.2. Convolution benchmark analysis

To compare our Xpulpimg implementation with the baseline RV32IMA MemPool CC,
we characterized the speed-up of the baseline and extended system with three version
of the 2D convolution benchmark:

• Baseline conv2d – the baseline version compiled from the code in Listing B.1 for the
RV32IMA instruction set, simulated on the RV32IMA MemPool CC;

• Xpulpimg conv2d – the version compiled from the code in Listing B.2 for the
RV32IMAXpulpimg instruction set, simulated on the MemPool CC extended with
the full Xpulpimg extension;

• Unrolled Xpulpimg conv2d – the version compiled from the code in Listing B.2 for
the RV32IMAXpulpimg instruction set with loop unrolling enabled, simulated on
the MemPool CC extended with the full Xpulpimg extension.

Note that we did not benchmark an unrolled version of Baseline conv2d due to it being
already saturated in terms of unrolling.

Table 5.4 shows the absolute figures resulting from the benchmarks simulation on the
baseline MemPool CC and on the final version implementing the whole Xpulpimg ex-
tension, while Table 5.5 shows the performance figures with respect to MAC operations.
Fig. 5.4 sums up the performance comparison among the three benchmarks in terms of
MACs/cycle.

The Xpulpimg conv2d benchmark, whose compiler-generated hot-loop is under the
SIMD column in Table 5.1, is only 1.6× faster, in terms of MACs/cycle, than the base-
line version, displayed under the Baseline column. The speed-up is due to the smaller
size of the hot-loop, which increased the throughput: with SIMD, only 3 dot-product
instructions are needed to perform 9 MACs, even if some overhead due to insert in-
structions is present to pack the loaded bytes into SIMD data structures. The number of
load operations also results greatly decreased (of a factor of 3.7×) due to the decreased
register occupation determined by the use of SIMD: with the baseline version, 9 registers
are needed to hold all the coefficient of the 3 × 3 convolution filter; since Xpulpimg

52

5. Results

1.6×

2.7×

Figure 5.4.: Performance of the MemPool CC in terms of MACs/cycle measured simu-
lating the 8-bit 3 × 3 2D convolution kernel.

Benchmark IPC Cycles Issues Loads Stores Stalls

Baseline conv2d 0.83 52561 43807 11121 913 3268
Xpulpimg conv2d 0.58 32794 19108 2998 910 8446

Unrolled Xpulpimg conv2d 0.90 20232 18256 3135 964 467

Table 5.4.: Absolute benchmark figures for single-core 2D convolution of 32 × 32 8-bit
matrices.

Benchmark Hot-loop size MACs/iteration MACs/cycle

Baseline conv2d 47 9 0.159
Xpulpimg conv2d 20 9 0.261

Unrolled Xpulpimg conv2d 75 36 0.432

Table 5.5.: Benchmark results with respect to MAC operations for single-core 2D convo-
lution of 32 × 32 8-bit matrices.

only needs 3 registers to pack all the coefficients, they can be kept in the same registers
without being reloaded at every iteration.

However, the size of the hot-loop reduced of a factor of 2.35× results in a very much
reduced amount of independent instructions. With less scheduling flexibility for the
compiler, a larger number of stalls due to data hazards occurs, with the IPC dropping
from 0.83 to 0.58.

In other words, Xpulpimg exposes further possibility of optimization in terms of loop
unrolling for the 8-bit conv2d; to understand the real performance improvement due to
our extension, we also benchmarked Unrolled Xpulpimg conv2d, corresponding to the
same algorithm of Listing B.2 but unrolled to process 4 3 × 3 windows during each

53

5. Results

hot-loop iteration, instead of only one. The unrolled Xpulpimg algorithm hides most
of the data dependencies and is 2.7× faster than the baseline in terms of MACs/cycle,
getting closer to the 4× theoretical limit determined by the use of 8-bit SIMD.

However, the algorithm employed for the described convolution benchmark has an
actual theoretical limit for the speed-up determined by SIMD of just 3×: as a matter of
fact, the SIMD dot-product instructions can perform 4 MACs as a single operation, but
with 9 MACs needed for each 3 × 3 window, only 9 of the 12 available MAC slots are
employed during each iteration of the hot-loop. To have an actual theoretical limit of
4× for the SIMD convolution speed-up, a different algorithm would be needed, able
to interleave the computation of different windows. It would then exploit the full 12
MACs slots of each iteration, but at the cost of additional complexity and overhead.

This means that with the 2.7× speed-up of Unrolled Xpulpimg conv2d, determined for
the MemPool CC by the Xpulpimg extension implementation, we nearly reached the
speed-up upper bound for the 2D 3 × 3 convolution algorithm. A certain overhead is
still present due to the processing needed to re-arrange the bytes in packed arrays for
SIMD operations; also, load-word instructions cannot be used to load four elements at a
time due to the kernel-based nature of the convolution algorithm, which might result
in unaligned memory accesses (Snitch does not currently support unaligned memory
accesses).

5.3. Additional benchmarks

For the sake of a more generic benchmarking, we also measured the performance of the
matrix multiplication algorithm, in particular with 32-bit and 8-bit integer data types,
comparing its performance between the baseline and the final version of the Xpulpimg
extension. Their results are summed up in Fig. 5.5; we give a detailed analysis in the
following. The baseline kernels and the versions that we optimized for the Xpulpimg-
extended ISA are available in Appendix C.

5.3.1. 32-bit matrix multiplication

We benchmarked the multiplication between two 32-bit matrices with 64 × 32 and
32 × 64 dimensions, resulting in a 32-bit 64 × 64 matrix. The comparison between the
two compiler-generated hot-loops, the baseline and the Xpulpimg versions, is shown in
Table 5.6. The baseline version has been compiled from the C code in Listing C.1, while
the Xpulpimg version has been compiled for the RV32IMAXpulpimg architecture from
the C code in Listing C.2.

Both versions are equally parallelized over the 16 simulated cores and unrolled in the
following way: the outer loop is unrolled to compute a 2 × 2 chunk of the output matrix
for each iteration (i.e. for each complete run of the hot-loop); the inner loop (i.e. the
hot-loop) is, in turn, unrolled to compute 2 MACs for each element of the 2 × 2 output
chunk during each iteration. Thus, every iteration of the hot-loop loads 8 elements
from the input matrices (4 elements from matrix A and 4 elements from matrix B) and

54

5. Results

1.3×

4.6×

Figure 5.5.: Performance of the MemPool CC in terms of MACs/cycle measured simu-
lating the matrix multiplication kernels.

performs 8 MACs. Additionally, for the Xpulpimg matrix multiplication, we performed
specific optimizations at assembly level explicitly defining the post-increment load and
store operations, to obtain an optimal register utilization for base addresses and offsets.

The results of the kernel benchmark averaged on the 16 cores are reported in Table 5.7;
Table 5.8 reports the relative performance measured in terms of MAC operations. The
kernel compiled for the RV32IMA version has a size of 30 instructions and its benchmark
returned a performance of 0.259 MACs/cycle; in particular, 8 loads are needed to
collect all the elements to multiply from the two matrices, along with their address
incrementing operations. The kernel compiled with Xpulpimg not only is able to collapse
all the additions and multiplications under single MACs, but it also cancels the need of
incrementing the addresses thanks to the post-increment loads. With such improvements,
the hot-loop reaches a size of 22 instructions and a MACs/cycle ratio of 0.335, with
speed-up of 1.3× with respect to the baseline, as shown in Fig. 5.5.

5.3.2. 8-bit matrix multiplication

Finally, we benchmarked an 8-bit matrix multiplication between two 64 × 64 matrices,
returning a 64 × 64 32-bit output matrix. The comparison between the two compiler-
generated hot-loops, the baseline and the Xpulpimg versions, is shown in Table 5.9. The
baseline version has been compiled from the C code in Listing C.3, while the Xpulpimg
version has been compiled for the RV32IMAXpulpimg architecture from the C code in
Listing C.4.

The C algorithms for the 8-bit matmul kernel have the same structure of the 32-
bit version, described in Section 5.3.1. However, we developed several additional
optimizations for the Xpulpimg version:

• as in the 32-bit kernel, we manually defined the sequence of load and store opera-
tions at the assembly level, for an optimal register utilization;

55

5. Results

Baseline Xpulpimg

lw a1,0(t2)
lw t0,0(s0)
lw a3,0(s1)
lw a5,4(s1)
lw t3,4(t2)
lw a2,4(s0)
lw a0,0(s2)
lw a7,4(s2)
mul t6,a1,a3
mul a1,a1,a5
mul a3,t0,a3
mul a5,t0,a5
add t4,t6,t4
add t5,a1,t5
mul t6,t3,a0
add t1,a3,t1
mul a0,a2,a0
mul t3,t3,a7
add a6,a5,a6
mul a2,a2,a7
addi s3,s3,2
add t4,t6,t4
add t5,t3,t5
add t1,a0,t1
add a6,a2,a6
addi t2,t2,8
addi s0,s0,8
add s1,s1,s4
add s2,s2,s4
bltu s3,a4,loop

mv a5,t6
mv a3,t0
p.lw t4,4(a5!)
p.lw s2,t1(a5!)
p.lw s4,4(a5!)
lw s0,0(a5)
p.lw t3,4(a3!)
p.lw s3,a6(a3!)
p.lw s1,4(a3!)
lw t2,0(a3)
p.mac a2,t4,t3
p.mac a1,t4,s3
p.mac a0,s4,t3
p.mac a7,s4,s3
addi t5,t5,2
p.mac a2,s2,s1
p.mac a1,s2,t2
p.mac a0,s0,s1
p.mac a7,s0,t2
addi t6,t6,8
add t0,t0,s5
bltu t5,a4,loop

Table 5.6.: Assembly code improvement of the 32-bit matrix multiplication hot-loop
from the baseline to the Xpulpimg version; the instructions introduced by
Xpulpimg are highlighted in blue.

Benchmark IPC Cycles Issues Loads Stores Stalls

Baseline matmul 0.97 33788 32790 8446 326 204
Xpulpimg matmul 0.92 26300 23979 8333 291 350

Table 5.7.: Absolute benchmark figures averaged on the 16 simulated cores for the 32-bit
matrix multiplication kernel.

Benchmark Hot-loop size MACs/iteration MACs/cycle

Baseline matmul 30 8 0.259
Xpulpimg matmul 22 8 0.335

Table 5.8.: Benchmark results with respect to MAC operations for the 32-bit matrix
multiplication kernel.

56

5. Results

• we exploited compiler intrinsics for 8-bit SIMD operations, for which code gen-
eration is not supported; note that we also had to use some shuffle operations to
transpose the chunk of the input matrix B to correctly organize the SIMD packed
registers for the dot-products with the input chunk of matrix A;

• since we employed 8-bit SIMD, a further possible level of unrolling was exposed,
computing a 2× 4 chunk of the output matrix for each complete run of the hot-loop
and 4 MACs for each output element during each hot-loop iteration;

• the further level of unrolling increased the registers occupation, which we reduced
by switching from array indexing to pointer incrementing to avoid a massive
increase in stack accesses.

With the described optimizations made possible by Xpulpimg, the Xpulpimg version
of the matmul hot-loop loads 24 elements (a 2 × 4 chunk from matrix A and a 4 × 4
chunk from matrix B) with 6 load-word operations (since 4 sequential byte elements can
be loaded with a single load-word), transpose the chunk of matrix B and performs 32
MACs with 8 dot-product instructions.

The results of the kernel benchmark averaged on the 16 cores are reported in Table 5.10;
Table 5.11 reports the relative performance measured in terms of MAC operations.

With SIMD, four 8-bit elements can be loaded with a single load-word instruction,
greatly reducing the number of memory accesses per useful operation; post-increment
also reduces the number of instructions needed for pointers management. An additional
overhead due to the shuffle operations is present for the need of transposing at runtime
the chunk extracted from the second matrix operand. Still, 18 instructions (6 loads, 4
moves, 8 shuffles) are issued to load 24 elements, with respect to the 13 instructions
needed to load 8 elements in the baseline kernel. Finally, dot-product operations perform
4 MACs per instruction, accounting for a total of 32 MACs per iteration. With the
described improvements, the 8-bit matmul proved to be 4.6× faster on the Xpulpimg
version of the MemPool CC with respect to the RV32IMA baseline, as shown in Fig. 5.5.

The speed-up determined by Xpulpimg is far above the 8-bit SIMD 4× speed-up
theoretical limit; this is caused by the better unrolling that the use of SIMD itself made
possible. The reduction of the hot-loop size due to the absence of the explicit address
increments also contributes to such a speed-up. A significant improvement of 5× can be
also observed in the number of load memory accesses, mainly due to the possibility of
loading multiple elements with a single instructions; this means that SIMD also relieves
the memory hierarchy from some of the pressure caused by DSP algorithms, allowing
better timing performance thanks to reduced congestions and memory stalls, but also
better power consumption.

57

5. Results

Baseline Xpulpimg

lb a0,-1(s1)
lb a3,0(s3)
lb t2,1(s3)
lb a5,0(s0)
lb t4,0(s1)
lb a6,0(s2)
lb a2,1(s2)
lb t1,1(s0)
mul t0,a0,a3
mul a3,a3,a5
mul a0,a0,t2
mul a5,t2,a5
add t5,t0,t5
add t6,a0,t6
mul t0,t4,a6
add t3,a3,t3
mul t4,t4,a2
mul a6,a6,t1
add a7,a5,a7
mul a2,a2,t1
addi s4,s4,2
add t5,t0,t5
add t6,t4,t6
add t3,a6,t3
add a7,a2,a7
addi s0,s0,2
add s3,s3,s5
add s2,s2,s5
addi s1,s1,2
bltu s4,a4,loop

p.lw a3,a4(a1!)
p.lw a5,s11(a1!)
p.lw a2,s10(a0!)
p.lw t4,s10(a0!)
p.lw t3,s10(a0!)
p.lw t1,s10(a0!)
mv a6,a2
pv.shuffle2.b a6,t4,s7
mv a7,t3
pv.shuffle2.b a7,t1,s7
pv.shuffle2.b t3,t1,s6
pv.shuffle2.b a2,t4,s6
mv t1,a6
pv.shuffle2.b t1,a7,s5
pv.shuffle2.b a6,a7,s4
mv a7,a2
pv.shuffle2.b a7,t3,s5
pv.shuffle2.b a2,t3,s4
pv.sdotsp.b t5,a3,t1
pv.sdotsp.b t6,a3,a6
pv.sdotsp.b t0,a3,a7
pv.sdotsp.b t2,a3,a2
pv.sdotsp.b s0,a5,t1
pv.sdotsp.b s1,a5,a6
pv.sdotsp.b s2,a5,a7
pv.sdotsp.b s3,a5,a2
bltu a1,s8,loop

Table 5.9.: Assembly code improvement of the 8-bit matrix multiplication hot-loop
from the baseline to the Xpulpimg version; the instructions introduced by
Xpulpimg are highlighted in blue.

Benchmark IPC Cycles Issues Loads Stores Stalls

Baseline matmul 0.93 67988 63459 16639 325 269
Xpulpimg matmul 0.97 15594 15070 3320 281 226

Table 5.10.: Absolute benchmark figures averaged on the 16 simulated cores for the 8-bit
matrix multiplication kernel.

Benchmark Hot-loop size MACs/iteration MACs/cycle

Baseline matmul 30 8 0.248
Xpulpimg matmul 27 32 1.15

Table 5.11.: Benchmark results with respect to MAC operations for the 8-bit matrix
multiplication kernel.

58

5. Results

5.4. Tile-level synthesis results

To characterize the impact of the Xpulpimg implementation from the broader perspective
of the MemPool cluster, we analyzed its implementation cost in a MemPool tile. In this
section, we illustrate the post-synthesis area figures of the MemPool CCs collected from
the synthesis of a tile.

Targeting 500 MHz, worst-case conditions (SS, 0.72 V, 125 °C) and a configuration of
16-core for the MemPool system, we measured a post-synthesis area of the MemPool
tile of 740.6 kGE after Xpulpimg implementation, with respect to the 673.1 kGE of the
baseline version, accounting for an increase of 67.5 kGE (10%). With the MemPool CC
replicated 4 times in each tile, the main drivers of such an increase are the Snitch core
and its coprocessor, with their averaged area figures summarized in Table 5.12 and
Fig. 5.6: while Snitch area increased of about 4 kGE on average (15.1%), the area of the
coprocessor approximately doubled, with an increase of 13 kGE, implementing most of
the Xpulpimg instruction set.

Baseline Xpulpimg
0

100
200
300
400
500
600
700

Ar
ea

 [k
GE

]

MemPool tile post-synthesis area

Tile remainder
CCs remainder
Snitch cores
Snitch IPUs

Figure 5.6.: Breakdown of MemPool tile post-synthesis area figures in its baseline and
Xpulpimg versions.

MemPool tile MemPool CC Snitch core Snitch IPU

Baseline 673.1 kGE 41.7 kGE 27.2 kGE 11.2 kGE
Xpulpimg 740.6 kGE 59.7 kGE 31.3 kGE 24.2 kGE

Table 5.12.: MemPool tile post-synthesis area figures at 500 MHz in the worst-case corner;
the areas regarding the MemPool CC and its sub-modules are averaged over
its 4 replicas.

59

5. Results

5.5. Power analysis

In this section, we analyze the power consumption of a 16-core MemPool cluster from the
point of view of a tile synthesized in the worst-case corner (SS, 0.72 V, 125 °C), comparing
its baseline and Xpulpimg implementations. We executed the power analysis running
the 8-bit matmul kernel described in Section 5.3.2 at 500 MHz, in typical conditions
(TT, 0.80 V, 25 °C).

Each tile consumes, on average, 20.9 mW, about 2.2 mW more than the baseline
(18.7 mW), with an increase of 11.8%. The power consumption of the four Snitch cores in
the tile does not suffer from the Xpulpimg introduction, staying around 6.8 mW (32.5%
of tile consumption), as well as their integer register files, consuming overall about
3.5 mW (51.5% of the cores consumption).

The four Snitch IPU coprocessors in the tile, on the other hand, consume 2.82 mW
(13.5% of tile consumption), 3× more than the baseline (0.93 mW), for which they only
accounted for the 5% of the consumption. In particular, the DSP units of the coprocessors
account for 2.52 mW in total, the 89.4% of the coprocessor power consumption.

The post-synthesis power figures at tile level are summed up in Table 5.13, with a
graphical power breakdown shown in Fig. 5.7.

In terms of energy efficiency measured with respect to the overall number of multipli-

Baseline Xpulpimg
0

5

10

15

20

Po
we

r [
m

W
]

MemPool tile 8-bit matmul power consumption breakdown

Tile remainder
CCs remainder
Snitch cores
Snitch IPUs

Figure 5.7.: Breakdown of MemPool tile post-synthesis power figures in its baseline and
Xpulpimg versions.

MemPool tile Snitch cores Snitch IPUs

Baseline 18.7 mW 6.86 mW (36.7%) 0.93 mW (5%)
Xpulpimg 20.9 mW 6.79 mW (32.5%) 2.82 mW (13.5%)

Table 5.13.: MemPool tile post-synthesis power analysis running matmul at 500 MHz in
the typical corner.

60

5. Results

3.8×

Figure 5.8.: Energy efficiency of the MemPool tile measured with respect the multiplica-
tions and additions operations performed in the 8-bit matmul kernel.

cation and addition operations (fused under single MACs in the Xpulpimg version) in
the matmul kernel, we estimated a figure of 193.3 GOPS/W for the Xpulpimg version,
with a baseline of 51.2 GOPS/W, as shown in Fig. 5.8. The overall effect of the Xpulpimg
extension is a substantial increase in the throughput of DSP algorithms. Hence, at the
cost of a slightly higher power consumption, the benchmarked matrix multiplication
resulted in a much shorter execution time. We can thus conclude an increase in the
energy efficiency of the MemPool tile of 3.8× with respect to the RV32IMA baseline.

61

Chapter 6
Conclusion and Future Work

We presented Xpulpimg, a custom subset of the RISC-V open ISA including domain-
specific DSP instructions selected for image processing purposes. We implemented
Xpulpimg in the MemPool CC, extending the Snitch processor core and its accelerator,
the Snitch IPU, with post-increment and register-register addressing modes for load and
store instructions, multiply-accumulate instructions, generic arithmetic operations for
DSP and packed-SIMD operations with 8 and 16 bits, particularly targeting dot-product
instructions.

We also established an open and modular environment for a full Xpulpimg support,
providing tools for instructions encoding management, instruction set simulation, soft-
ware compilation and unit test verification. With such tools, we also defined a framework
for a convenient and standardized approach for further extensions of Xpulpimg.

Snitch is a tiny integer core developed with the idea to optimize its area occupation
while targeting an high IPC by employing a simple scoreboarding mechanism for
outstanding transactions and out-of-order write-back; the MemPool system, which
massively replicates Snitch hundreds of times, benefits from such a small control area
overhead. We aimed to exploit this concept extending it to the DSP domain, to gather
the most out of MemPool in the domain of image processing. For the same reason, we
synthesized the MemPool CC extended with Xpulpimg for the modern GlobalFoundries’
22FDX FD-SOI technology, looking for the Pareto-optimal curve in terms of area and
timing.

We compared post-synthesis MemPool CC figures with a baseline version implement-
ing the RV32IMA ISA. With an average area increase of 40.4% for the MemPool CC
synthesized in typical conditions in a sweep from 500 MHz to 2 GHz, the maximum
achievable operating frequency of the design worsened of just 3.6%, decreasing from
1.85 GHz to 1.75 GHz. At the 500 MHz target frequency of MemPool, we measured an
area of 740.6 kGE for the tile synthesized in worst-case conditions, with an increase of
10% with respect to the baseline.

In terms of benchmarks, the cluster extended with Xpulpimg showed a 2.7× speed-
up for the 8-bit 2D convolution kernel, extremely common in the image processing

62

6. Conclusion and Future Work

domain, and a speed-up of up to 4.6× for the matrix multiplication. We also measured
a substantial increase of up to 3.8× in terms of energy efficiency with respect to the
baseline, with an overall increase in the power consumption of a tile of 2.2 mW running
at 500 MHz in typical conditions.

Xpulpimg only represent the basic instruction set to run image processing and DSP
algorithms with higher efficiency. Further work concerning Xpulpimg may include
the introduction of additional instructions useful for image processing, leveraging the
already developed framework. As a matter of fact, Xpulpimg currently includes only
instructions selected from the Xpulp custom extension. While several other Xpulp
instructions may be evaluated (hardware loops, fixed-point instructions, additional
SIMD support instructions), custom instructions may help to find even better trade-offs
between performance and implementation cost. Domain-specific image processing
algorithms, as well as other ISPs, may be taken as sources of inspiration for additional
extensions.

Further work in a more generic scope may also go towards further benchmarking
of the MemPool CC extended with Xpulpimg DSP functionalities, in comparison with
the CV32E40P core. Such an analysis may be useful to study the use of Snitch in PULP
architectures, along with its effects on area, timing performance and energy efficiency.

63

Appendix A
Xpulpimg Instruction Set

This appendix presents the full Xpulpimg instruction set extension. In the following,
the mnemonics of the instructions are reported, along with their behavior and the
specification of the employed operands fields from the instruction encoding.

This documentation is inspired from the CV32E40P core ISA specification [20] and
from its reference RTL implementation [22]; for further details about the instructions
and their encoding, refer to the mentioned sources.

The operands from the standard RISC-V ISA, used throughout the Xpulpimg exten-
sion, are specified in the following:

• rs1 – first source register operand, whose index is encoded in the bits 19:15;

• rs2 – second source register operand, whose index is encoded in the bits 24:20;

• rd – destination register operand, whose index is encoded in the bits 11:7;

• bimm12s – 12-bit branch offset, encoded in the bits 31, 7, 30:25, 11:8 and sign-
extended;

• iimm12s – 12-bit I-type immediate, encoded in the bits 31:20 and sign-extended;

• simm12s – 12-bit S-type immediate, encoded in the bits 31:25, 11:7 and sign-
extended;

64

A. Xpulpimg Instruction Set

A.1. Generic arithmetic operations

This extension includes advanced arithmetic and logic operations to increase the effi-
ciency of the ISA by reducing the number of instructions needed for generally useful
DSP computation, such as minimum, maximum, absolute value, sign- or zero-extension.
Such operations performed in one single instructions also reduce the need of employ-
ing control flow instructions, leading to higher IPC. A partial support for fixed-point
operations is also included by supporting clip operations. Immediate branching instruc-
tions, allowing a comparison between a register and an immediate operands, are also
supported.

General ALU instructions

p.abs rd, rs1 rd = abs(rs1)

p.slet rd, rs1, rs2 rd = rs1 ≤ rs2 ? 1 : 0
Comparison is signed

p.sletu rd, rs1, rs2 rd = rs1 ≤ rs2 ? 1 : 0
Comparison is unsigned

p.min rd, rs1, rs2 rd = rs1 ≤ rs2 ? rs1 : rs2
Comparison is signed

p.minu rd, rs1, rs2 rd = rs1 ≤ rs2 ? rs1 : rs2
Comparison is unsigned

p.max rd, rs1, rs2 rd = rs1 > rs2 ? rs1 : rs2
Comparison is signed

p.maxu rd, rs1, rs2 rd = rs1 > rs2 ? rs1 : rs2
Comparison is unsigned

p.exths rd, rs1 rd = Sext(rs1[15:0])

p.exthz rd, rs1 rd = Zext(rs1[15:0])

p.extbs rd, rs1 rd = Sext(rs1[7:0])

p.extbz rd, rs1 rd = Zext(rs1[7:0])

65

A. Xpulpimg Instruction Set

Clip instructions

New operand fields:

• pimm5u – Xpulp 5-bit immediate encoded in the bits 24:20 and zero-extended.

p.clip rd, rs1, pimm5u If rs1 ≤ −2pimm5u−1, rd = −2pimm5u−1

else if rs1 ≥ 2pimm5u-1 − 1, rd = 2pimm5u-1 − 1
else rd = rs1

If pimm5u == 0, consider −2pimm5u−1=−1, 2pimm5u-1 − 1=0

p.clipu rd, rs1, pimm5u If rs1 ≤ 0, rd = 0
else if rs1 ≥ 2pimm5u-1 − 1, rd = 2pimm5u-1 − 1
else rd = rs1

If pimm5u == 0, consider 2pimm5u-1 − 1=0

p.clipr rd, rs1, rs2 If rs1 ≤ −rs2− 1, rd = −rs2− 1
else if rs1 ≥ rs2, rd = rs2

else rd = rs1

p.clipur rd, rs1, rs2 If rs1 ≤ 0, rd = 0
else if rs1 ≥ rs2, rd = rs2

else rd = rs1

Immediate branching

New operand fields:

• pimm5s – Xpulp 5-bit immediate encoded in the bits 24:20 and sign-extended.

The addition between the program counter and the (bimm12s << 1) offset is always
signed.

p.beqimm rs1, pimm5s, bimm12s If rs1 == pbimm5s, PC = PC + (bimm12s << 1)

p.bneimm rs1, pimm5s, bimm12s If rs1 != pbimm5s, PC = PC + (bimm12s << 1)

66

A. Xpulpimg Instruction Set

A.2. Extended L/S addressing modes

This extension includes new addressing modes for the load and store operations of the
standard RISC-V RV32I ISA. In particular, two new addressing modes are introduced:

• post-increment – the memory access is performed at the address specified by the
base address only; the register containing the base address is then incremented of
the specified offset and written back to the register file;

• register-register – the offset for the memory address is sourced from a register
rather than an immediate; this addressing mode can be also coupled with the
post-increment mode.

Load and store instructions with these new addressing modes comes in all the widths
(byte, half-word, word) and signedness (signed and unsigned sub-word loads).

Load instructions

The addition between the rs1 base address and the immediate or register offset is always
signed.

p.lb rd, iimm12s(rs1!) rd = Sext(Mem8[rs1])
rs1 = rs1 + iimm12s

p.lbu rd, iimm12s(rs1!) rd = Zext(Mem8[rs1])
rs1 = rs1 + iimm12s

p.lh rd, iimm12s(rs1!) rd = Sext(Mem16[rs1])
rs1 = rs1 + iimm12s

p.lhu rd, iimm12s(rs1!) rd = Zext(Mem16[rs1])
rs1 = rs1 + iimm12s

p.lw rd, iimm12s(rs1!) rd = Mem32[rs1]
rs1 = rs1 + iimm12s

p.lb rd, rs2(rs1!) rd = Sext(Mem8[rs1])
rs1 = rs1 + rs2

p.lbu rd, rs2(rs1!) rd = Zext(Mem8[rs1])
rs1 = rs1 + rs2

p.lh rd, rs2(rs1!) rd = Sext(Mem16[rs1])
rs1 = rs1 + rs2

p.lhu rd, rs2(rs1!) rd = Zext(Mem16[rs1])
rs1 = rs1 + rs2

67

A. Xpulpimg Instruction Set

p.lw rd, rs2(rs1!) rd = Mem32[rs1]
rs1 = rs1 + rs2

p.lb rd, rs2(rs1) rd = Sext(Mem8[rs1 + rs2])

p.lbu rd, rs2(rs1) rd = Zext(Mem8[rs1 + rs2])

p.lh rd, rs2(rs1) rd = Sext(Mem16[rs1 + rs2])

p.lhu rd, rs2(rs1) rd = Zext(Mem16[rs1 + rs2])

p.lw rd, rs2(rs1) rd = Mem32[rs1 + rs2]

Store instructions

New operand fields:

• rs3 – third source register operand, whose index is encoded in the bits 11:7.

The addition between the rs1 base address and the immediate or register offset is always
signed.

p.sb rs2, simm12s(rs1!) Mem8[rs1] = rs2

rs1 = rs1 + simm12s

p.sh rs2, simm12s(rs1!) Mem16[rs1] = rs2

rs1 = rs1 + simm12s

p.sw rs2, simm12s(rs1!) Mem32[rs1] = rs2

rs1 = rs1 + simm12s

p.sb rs2, rs3(rs1!) Mem8[rs1] = rs2

rs1 = rs1 + rs3

p.sh rs2, rs3(rs1!) Mem16[rs1] = rs2

rs1 = rs1 + rs3

p.sw rs2, rs3(rs1!) Mem32[rs1] = rs2

rs1 = rs1 + rs3

p.sb rs2, rs3(rs1) Mem8[rs1 + rs3] = rs2

p.sh rs2, rs3(rs1) Mem16[rs1 + rs3] = rs2

p.sw rs2, rs3(rs1) Mem32[rs1 + rs3] = rs2

68

A. Xpulpimg Instruction Set

A.3. MAC operations

This extension includes 32-bit multiply-accumulate operations. Not only do these
instruction use the destination register to write-back the result, but they also use it
as a source operand to perform the accumulation operation. This operation can be
an addition of the multiplication result to the content of the destination register, or a
subtraction from it.

Multiply-accumulate instruction

p.mac rd, rs1, rs2 rd = rd+ rs1 · rs2
p.msu rd, rs1, rs2 rd = rd− rs1 · rs2

69

A. Xpulpimg Instruction Set

A.4. Packed-SIMD extension

This extension introduces packed-SIMD operations for sub-words of:

• 8 bits (.b mode) – to perform 4 operations on the 4 bytes of a 32-bit word at the
same time;

• 16 bits (.h mode) – to perform 2 operations on the 2 half-words of a 32-bit word at
the same time.

SIMD instructions comes with three execution modes affecting the second operand:

• vectorial (default mode) – the two input registers rs1 and rs2 are considered vectors
of two 16-bit or four 8-bit elements, and an element-wise operation is performed;

• scalar replication (.sc mode) – the lowest half-word or byte of rs2 is considered a
scalar and used for the operation with the array of half-words or bytes in rs1;

• immediate scalar replication (.sci mode) – this variation has the same behavior of
the scalar replication mode but uses the 6-bit signed or unsigned immediate as
scalar operand.

Note that SIMD is not supported by the compiler toolchain; the compiler only provides
SIMD intrinsics.

New operand fields:

• pimm6s – Xpulp 6-bit immediate encoded in the bits 25:20 and sign-extended to 8
or 16 bits;

• pimm6u – Xpulp 6-bit immediate encoded in the bits 25:20 and zero-extended to 8
or 16 bits.

In the following tables, the second operand is referred to as op2, and it varies based
on the mentioned execution modes. Also, the indices of the packed-SIMD arrays rd, rs1
and op2 range from 0 to 1 fro 16-bit operations and from 0 to 3 for 8-bit operations:

• index = 0 – stands for bits 15:0 for 16-bit operations, or bits 7:0 for 8-bit operations;

• index = 1 – stands for bits 31:16 for 16-bit operations, or bits 15:8 for 8-bit opera-
tions;

• index = 2 – stands for bits 23:16 for 8-bit operations;

• index = 3 – stands for bits 31:24 for 8-bit operations;

70

A. Xpulpimg Instruction Set

SIMD ALU instructions

pv.add[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i]+ op2[i]

pv.sub[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i]− op2[i]

pv.avg[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = (rs1[i]+ op2[i]) >> 1
Shift is arithmetic

pv.avgu[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} rd[i] = (rs1[i]+ op2[i]) >> 1
Shift is logical

pv.min[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] ≤ op2[i] ?
rs1[i] : op2[i]
Comparison is signed

pv.minu[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} rd[i] = rs1[i] ≤ op2[i] ?
rs1[i] : op2[i]
Comparison is unsigned

pv.max[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] > op2[i] ?
rs1[i] : op2[i]
Comparison is signed

pv.maxu[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} rd[i] = rs1[i] > op2[i] ?
rs1[i] : op2[i]
Comparison is unsigned

pv.srl[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] >> op2[i]

Shift is logical

pv.sra[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] >> op2[i]

Shift is arithmetic

pv.sll[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] << op2[i]

Shift is logical

pv.or[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] | op2[i]

pv.xor[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] ^op2[i]

pv.and[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd[i] = rs1[i] & op2[i]

pv.abs.{h,b} rd, rs1 rd[i] = rs1[i] ≤ 0 ? −rs1[i]

: rs1[i]
Comparison is signed

71

A. Xpulpimg Instruction Set

SIMD Dot-product instructions

pv.dotup[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} rd = ∑ i rs1[i] · op2[i]
All operations are unsigned

pv.dotusp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd = ∑ i rs1[i] · op2[i]
rs1[i] are treated as un-
signed, op2[i] are treated
as signed

pv.dotsp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd = ∑ i rs1[i] · op2[i]
All operations are signed

pv.sdotup[.sc[i]].{h,b} rd, rs1, {rs2,pimm6u} rd = rd + ∑ i rs1[i] ·
op2[i]

All operations are unsigned

pv.sdotusp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd = rd + ∑ i rs1[i] ·
op2[i]

rs1[i] are treated as un-
signed, op2[i] are treated
as signed

pv.sdotsp[.sc[i]].{h,b} rd, rs1, {rs2,pimm6s} rd = rd + ∑ i rs1[i] ·
op2[i]

All operations are signed

SIMD support instructions

pv.extract.h rd, rs1, pimm6s rd = Sext(rs1[i])
With i = pimm6u[0]

pv.extract.b rd, rs1, pimm6s rd = Sext(rs1[i])
With i = pimm6u[1:0]

pv.extractu.h rd, rs1, pimm6s rd = Zext(rs1[i])
With i = pimm6u[0]

pv.extractu.b rd, rs1, pimm6s rd = Zext(rs1[i])
With i = pimm6u[1:0]

pv.insert.h rd, rs1, pimm6s rd[i] = rs1[15:0]

With i = pimm6u[0]; the rest of the bits of
rd are untouched

72

A. Xpulpimg Instruction Set

pv.insert.b rd, rs1, pimm6s rd[i] = rs1[7:0]

With i = pimm6u[1:0]; the rest of the bits of
rd are untouched

pv.shuffle2.h rd, rs1, rs2 rd[i] = src[j]

Where src = rs2[i][1] == 1 ? rs1 : rd,
while j = rs2[i][0]

pv.shuffle2.b rd, rs1, rs2 rd[i] = src[j]

Where src = rs2[i][2] == 1 ? rs1 : rd,
while j = rs2[i][1:0]

73

Appendix B
2D Convolution Algorithm

In the following, the developed C algorithm for the 8-bit 3 × 3 2D convolution is pre-
sented in its two flavors: for the RV32IMA basic instruction set and optimized for
Xpulpimg.

The input image is in, an 8-bit signed in_y× in_x matrix. It gets convolved with an
input 3 × 3 kernel k of 8-bit unsigned elements, to give as output out, a 32-bit signed
in_y× in_x matrix.

Listing B.1: Single-core 2D convolution kernel optimized for the baseline version of
MemPool. This algorithm initially loads a full 3×3 window of the input
matrix; the inner loop convolves the current window with the kernel, subse-
quently loading the following 3-element row and shifting down the window.
The inner loop is iterated until the column is fully convolved, moving then
to the following 3-element column.

void conv2d_3x3_unrolled_i8_rv32ima(

int8_t const volatile *__restrict__ in,

uint32_t in_x, uint32_t in_y,

uint8_t const volatile *__restrict__ k,

int32_t volatile *__restrict__ out

) {

int32_t sum;

uint32_t weight = 0;

uint32_t i, j; // loop counters

for (int i = 0; i < 9; ++i)

weight += k[i];

// for every column but first and last

for (i = 1; i < in_x - 1; ++i) {

// first row of the window

74

B. 2D Convolution Algorithm

int8_t elem_00 = in[i - 1];

int8_t elem_01 = in[i + 0];

int8_t elem_02 = in[i + 1];

// second row of the window

int8_t elem_10 = in[in_x + (i - 1)];

int8_t elem_11 = in[in_x + (i + 0)];

int8_t elem_12 = in[in_x + (i + 1)];

// third row of the window

int8_t elem_20 = in[2 * in_x + (i - 1)];

int8_t elem_21 = in[2 * in_x + (i + 0)];

int8_t elem_22 = in[2 * in_x + (i + 1)];

// for every row but first and last

for (j = 1; j < in_y - 1; j++) {

// element-wise mul with acc between input window and kernel

sum = 0;

sum += elem_00*k[0]; sum += elem_01*k[1]; sum += elem_02*k[2];

sum += elem_10*k[3]; sum += elem_11*k[4]; sum += elem_12*k[5];

sum += elem_20 * k[6]; sum += elem_21*k[7]; sum += elem_22*k[8];

// move window down of one row

elem_00 = elem_10; elem_01 = elem_11; elem_02 = elem_12;

elem_10 = elem_20; elem_11 = elem_21; elem_12 = elem_22;

// load the new third row of the window

elem_20 = in[(j + 2) * in_x + (i - 1)];

elem_21 = in[(j + 2) * in_x + (i + 0)];

elem_22 = in[(j + 2) * in_x + (i + 1)];

out[j * in_x + i] = sum / weight; // store output

}

}

}

Listing B.2: Single-core 2D convolution kernel from Listing B.1 optimized for Xpulpimg
by means of SIMD data structures and compiler intrinsics. v4s and
v4u are the vectorized 32-bit data types to hold 4 independent signed
or unsigned bytes and perform 8-bit packed-SIMD operations by means
of SIMD compiler intrinsics, such as __builtin_pulp_dotusp4 and
__builtin_pulp_sdotusp4.

typedef signed char v4s __attribute__((vector_size (4)));

typedef unsigned char v4u __attribute__((vector_size (4)));

void conv2d_3x3_unrolled_i8_xpulpimg(

75

B. 2D Convolution Algorithm

int8_t const volatile *__restrict__ in,

int32_t volatile *__restrict__ out,

uint32_t in_y, uint32_t in_x,

uint8_t const volatile *__restrict__ k

){

int32_t sum;

uint32_t weight = 0;

uint32_t j, i, t;

for (int i = 0; i < 9; ++i)

weight += k[i];

v4u coeff_0 = (v4u){k[0], k[1], k[2], 0};

v4u coeff_1 = (v4u){k[3], k[4], k[5], 0};

v4u coeff_2 = (v4u){k[6], k[7], k[8], 0};

// for every column but first and last

for (i = 1; i < in_x - 1; i++) {

// load window

v4s elem_0 = (v4s){in[i-1], in[i], in[i+1], 0};

v4s elem_1 = (v4s){in[i-1+in_y], in[i+in_y], in[i+1+in_y], 0};

v4s elem_2 = (v4s){

in[i-1+in_y*2], in[i+in_y*2], in[i+1+in_y*2], 0

};

// for every row but first and last

for (j = 1; j < in_y - 1; j++) {

t = j * in_y + i; // output matrix index

// element-wise multiply with accumulation using intrinsics

sum = __builtin_pulp_dotusp4(coeff_0, elem_0);

sum = __builtin_pulp_sdotusp4(coeff_1, elem_1, sum);

sum = __builtin_pulp_sdotusp4(coeff_2, elem_2, sum);

out[t] = sum/weight; // store output

// load a new row

v4s new_data = (v4s){

in[(j+2)*in_y+i-1], in[(j+2)*in_y+i], in[(j+2)*in_y+i+1], 0

};

// move window down of one row

elem_0 = elem_1; elem_1 = elem_2; elem_2 = new_data;

}

}

}

76

Appendix C
Matrix Multiplication Algorithm

In the following, the developed C algorithms for the 32-bit and 8-bit flavors of the
matrix multiplication kernel are presented, both in the baseline RV32IMA versions and
optimized for Xpulpimg.

The algorithm performs the matrix multiplication between the two 32-bit or 8-bit input
matrices A, with dimensions M×N, and B, with dimensions N×P. The output is stored in
the 32-bit M×P matrix C. The core executing the function has an ID identified by the input
id, with the computation equally distributed on numThreads cores.

Listing C.1: Multi-core 32-bit matrix multiplication kernel optimized for the baseline
version of MemPool. The computation of the output matrix is equally
distributed over all the available cores, basing on their IDs. The outer loop
is unrolled to compute a 2 × 2 chunk of the C matrix at each iteration; each
element of C corresponds to the dot-product of a row from A and a column
from B: the inner loop is unrolled to compute and accumulate, at each
iteration, two terms of the dot-product sum for each element of the 2 × 2
chunk of C.

void matmul_unrolled_2x2_parallel_i32_rv32ima(

int32_t const *__restrict__ A,

int32_t const *__restrict__ B,

int32_t *__restrict__ C,

uint32_t M, uint32_t N, uint32_t P,

uint32_t id, uint32_t numThreads

) {

// parallelize by assigning each core one row

uint32_t const c = 8; // how many columns to split the matrix into

uint32_t const c_start = (P / c) * (id % c);

uint32_t const c_end = (P / c) * ((id % c) + 1);

// for every couple of rows assigned to this core

77

C. Matrix Multiplication Algorithm

for (uint32_t i = 2 * (id / c); i < M; i += 2 * (numThreads / c)) {

// for every couple of columns belonging to this chunk

for (uint32_t j = c_start; j < c_end; j += 2) {

// initialize accumulators

int32_t c00 = 0;

int32_t c01 = 0;

int32_t c10 = 0;

int32_t c11 = 0;

// traverse the full rows from A and columns from B

for (uint32_t k = 0; k < N; k += 2) {

// explicitly load the values first to help with scheduling

int32_t val_a00 = A[(i + 0) * N + k + 0];

int32_t val_a01 = A[(i + 0) * N + k + 1];

int32_t val_a10 = A[(i + 1) * N + k + 0];

int32_t val_a11 = A[(i + 1) * N + k + 1];

int32_t val_b00 = B[(k + 0) * P + j + 0];

int32_t val_b01 = B[(k + 0) * P + j + 1];

int32_t val_b10 = B[(k + 1) * P + j + 0];

int32_t val_b11 = B[(k + 1) * P + j + 1];

// perform 2 MACs for each element of the 2x2 output chunk

c00 += val_a00 * val_b00;

c00 += val_a01 * val_b10;

c01 += val_a00 * val_b01;

c01 += val_a01 * val_b11;

c10 += val_a10 * val_b00;

c10 += val_a11 * val_b10;

c11 += val_a10 * val_b01;

c11 += val_a11 * val_b11;

}

// store outputs of the computed 2x2 chunk

C[(i + 0) * P + j + 0] = c00;

C[(i + 0) * P + j + 1] = c01;

C[(i + 1) * P + j + 0] = c10;

C[(i + 1) * P + j + 1] = c11;

}

}

}

78

C. Matrix Multiplication Algorithm

Listing C.2: Multi-core 32-bit matrix multiplication kernel from Listing C.1 optimized
for the Xpulpimg-extended ISA. The level of unrolling is the same of the
baseline version, but the load and store memory accesses are manually
optimized at assembly-level for an optimal register allocation.

void matmul_unrolled_2x2_parallel_i32_xpulpimg(

int32_t const *__restrict__ A,

int32_t const *__restrict__ B,

int32_t *__restrict__ C,

uint32_t M, uint32_t N, uint32_t P,

uint32_t id, uint32_t numThreads

) {

// parallelize by assigning each core one row

uint32_t const c = 8; // how many columns to split the matrix into

uint32_t const c_start = (P / c) * (id % c);

uint32_t const c_end = (P / c) * ((id % c) + 1);

// A and B matrix memory addresses increments

uint32_t const A_incr = (N * sizeof(int32_t)) - sizeof(int32_t);

uint32_t const B_incr = (P * sizeof(int32_t)) - sizeof(int32_t);

// for every couple of rows assigned to this core

for (uint32_t i = 2 * (id / c); i < M; i += 2 * (numThreads / c)) {

// for every couple of columns belonging to this chunk

for (uint32_t j = c_start; j < c_end; j += 2) {

// initialize accumulators

int32_t c00 = 0;

int32_t c01 = 0;

int32_t c10 = 0;

int32_t c11 = 0;

// traverse the full rows from A and columns from B

for (uint32_t k = 0; k < N; k += 2) {

int32_t *idx_a = &A[i * N + k];

int32_t *idx_b = &B[k * P + j];

int32_t val_a00, val_a01, val_a10, val_a11

int32_t val_b00, val_b01, val_b10, val_b11;

// explicit asm loads of A and B elements

asm volatile(

"p.lw %[a00], 4(%[addr_a]!) \n\t"

"p.lw %[a01], %[a_incr](%[addr_a]!) \n\t"

"p.lw %[a10], 4(%[addr_a]!) \n\t"

"p.lw %[a11], 0(%[addr_a]) \n\t"

"p.lw %[b00], 4(%[addr_b]!) \n\t"

79

C. Matrix Multiplication Algorithm

"p.lw %[b01], %[b_incr](%[addr_b]!) \n\t"

"p.lw %[b10], 4(%[addr_b]!) \n\t"

"p.lw %[b11], 0(%[addr_b]) \n\t"

: [a00] "=&r"(val_a00), [a01] "=&r"(val_a01),

[a10] "=&r"(val_a10), [a11] "=&r"(val_a11),

[b00] "=&r"(val_b00), [b01] "=&r"(val_b01),

[b10] "=&r"(val_b10), [b11] "=&r"(val_b11),

[addr_a] "+&r"(idx_a), [addr_b] "+&r"(idx_b)

: [a_incr] "r"(A_incr), [b_incr] "r"(B_incr)

: "memory");

// perform 2 MACs for each element of the 2x2 output chunk

c00 += val_a00 * val_b00;

c00 += val_a01 * val_b10;

c01 += val_a00 * val_b01;

c01 += val_a01 * val_b11;

c10 += val_a10 * val_b00;

c10 += val_a11 * val_b10;

c11 += val_a10 * val_b01;

c11 += val_a11 * val_b11;

}

int32_t *idx_c = &C[i * P + j];

// explicit asm stores of C output

asm volatile(

"p.sw %[s00], 4(%[addr_c]!) \n\t"

"p.sw %[s01], %[c_incr](%[addr_c]!) \n\t"

"p.sw %[s10], 4(%[addr_c]!) \n\t"

"p.sw %[s11], 0(%[addr_c]) \n\t"

: [addr_c] "+&r"(idx_c)

: [s00] "r"(c00), [s01] "r"(c01),

[s10] "r"(c10), [s11] "r"(c11),

[c_incr] "r"(B_incr)

: "memory");

}

}

}

80

C. Matrix Multiplication Algorithm

Listing C.3: Multi-core 8-bit matrix multiplication kernel optimized for the baseline
version of MemPool. It has the same structure of Listing C.1, but accepts
8-bit input matrices.

void matmul_unrolled_2x2_parallel_i8_rv32ima(

int8_t const *__restrict__ A,

int8_t const *__restrict__ B,

int32_t *__restrict__ C,

uint32_t M, uint32_t N, uint32_t P,

uint32_t id, uint32_t numThreads

) {

// parallelize by assigning each core one row

uint32_t const c = 8; // how many columns to split the matrix into

uint32_t const c_start = (P / c) * (id % c);

uint32_t const c_end = (P / c) * ((id % c) + 1);

// for every couple of rows assigned to this core

for (uint32_t i = 2 * (id / c); i < M; i += 2 * (numThreads / c)) {

// for every couple of columns belonging to this chunk

for (uint32_t j = c_start; j < c_end; j += 2) {

// initialize accumulators

int32_t c00 = 0;

int32_t c01 = 0;

int32_t c10 = 0;

int32_t c11 = 0;

// traverse the full rows from A and columns from B

for (uint32_t k = 0; k < N; k += 2) {

// explicitly load the values first to help with scheduling

int8_t val_a00 = A[(i + 0) * N + k + 0];

int8_t val_a01 = A[(i + 0) * N + k + 1];

int8_t val_a10 = A[(i + 1) * N + k + 0];

int8_t val_a11 = A[(i + 1) * N + k + 1];

int8_t val_b00 = B[(k + 0) * P + j + 0];

int8_t val_b01 = B[(k + 0) * P + j + 1];

int8_t val_b10 = B[(k + 1) * P + j + 0];

int8_t val_b11 = B[(k + 1) * P + j + 1];

// perform 2 MACs for each element of the 2x2 output chunk

c00 += val_a00 * val_b00;

c00 += val_a01 * val_b10;

c01 += val_a00 * val_b01;

c01 += val_a01 * val_b11;

c10 += val_a10 * val_b00;

81

C. Matrix Multiplication Algorithm

c10 += val_a11 * val_b10;

c11 += val_a10 * val_b01;

c11 += val_a11 * val_b11;

}

// store outputs of the computed 2x2 chunk

C[(i + 0) * P + j + 0] = c00;

C[(i + 0) * P + j + 1] = c01;

C[(i + 1) * P + j + 0] = c10;

C[(i + 1) * P + j + 1] = c11;

}

}

}

Listing C.4: Multi-core 8-bit matrix multiplication kernel from Listing C.3 optimized for
the Xpulpimg-extended ISA. The main structure of the algorithm is inspired
from the matrix multiplication from the PULP DSP library [36]: compiler
intrinsics are used to perform 8-bit SIMD operations, which makes possible a
further level of unrolling. Hence, the outer loop now computes a 2× 4 chunk
of the output matrix. The inner loop firstly performs a runtime transposition
of the chunk from the B matrix, to correctly use the SIMD packed data, then
it computes and accumulates four terms of the dot-product for each one of
the element of the 2 × 4 output chunk. Additionally, we substituted array
indexing with pointer incrementing and explicitly listed the load and store
sequences in assembly, to obtain an optimal register utilization.

typedef signed char v4s __attribute__((vector_size (4)));

void matmul_unrolled_2x4_parallel_i8_xpulpimg(

int8_t const *__restrict__ A,

int8_t const *__restrict__ B,

int32_t *__restrict__ C,

uint32_t M, uint32_t N, uint32_t P,

uint32_t id, uint32_t numThreads

) {

// masks for shuffles

static v4s mask0 = {0, 1, 4, 5};

static v4s mask1 = {2, 3, 6, 7};

static v4s mask2 = {0, 2, 4, 6};

static v4s mask3 = {1, 3, 5, 7};

uint32_t k = 0; // loop counter for P

int32_t const N_decr = -N + 4; // row decrement for A matrix

uint32_t const P_incr = (P * 4) - 12; // row increment for C matrix

82

C. Matrix Multiplication Algorithm

// for every group of 4 columns assigned to this core

for (k = id; k < P / 4; k += numThreads) {

int8_t *idx_a = &A[0]; // start_a

int32_t *idx_c = &C[k * 4]; // start_c

int32_t const *end_c = &C[P * M]; // actually (P * M) + (k * 4)

// until the end of the 2x4 chunk assigned to this core is reached

while (idx_c < end_c) {

// initialize accumulators

int32_t c00 = 0;

int32_t c01 = 0;

int32_t c02 = 0;

int32_t c03 = 0;

int32_t c10 = 0;

int32_t c11 = 0;

int32_t c12 = 0;

int32_t c13 = 0;

int8_t const *end_a = idx_a + N;

int8_t *idx_b = &B[k * 4]; // start_b

// until all the terms of the output dot-products are computed

while (idx_a < end_a) {

v4s aVec0, aVec1;

v4s t0, t1, t2, t3;

// explicit asm loads of A and B elements

asm volatile(

"p.lw %[a0], %[a_incr](%[addr_a]!) \n\t" // go to next row, \

same column

"p.lw %[a1], %[a_decr](%[addr_a]!) \n\t" // go to previous \

row, one column forward

"p.lw %[t0], %[b_incr](%[addr_b]!) \n\t"

"p.lw %[t1], %[b_incr](%[addr_b]!) \n\t"

"p.lw %[t2], %[b_incr](%[addr_b]!) \n\t"

"p.lw %[t3], %[b_incr](%[addr_b]!) \n\t"

: [a0] "=&r"(aVec0), [a1] "=&r"(aVec1), [t0] "=&r"(t0),

[t1] "=&r"(t1), [t2] "=&r"(t2), [t3] "=&r"(t3),

[addr_a] "+&r"(idx_a), [addr_b] "+&r"(idx_b)

: [a_incr] "r"(N), [a_decr] "r"(N_decr), [b_incr] "r"(P\

)

: "memory");

// transpose B chunk before multiplying with A chunk

83

C. Matrix Multiplication Algorithm

v4s t4 = __builtin_shuffle(t0, t1, mask0); // 0,1,4,5

v4s t5 = __builtin_shuffle(t2, t3, mask0); // 8,9,12,13

v4s t6 = __builtin_shuffle(t0, t1, mask1); // 2,3,6,7

v4s t7 = __builtin_shuffle(t2, t3, mask1); // 3,7,11,15

v4s bVec0 = __builtin_shuffle(t4, t5, mask2); // 0,4,8,12

v4s bVec1 = __builtin_shuffle(t4, t5, mask3); // 1,5,9,13

v4s bVec2 = __builtin_shuffle(t6, t7, mask2); // 2,6,10,14

v4s bVec3 = __builtin_shuffle(t6, t7, mask3); // 3,7,11,15

// perform 4 MACs for each element of the 2x4 output chunk

c00 = __builtin_pulp_sdotsp4(aVec0, bVec0, c00);

c01 = __builtin_pulp_sdotsp4(aVec0, bVec1, c01);

c02 = __builtin_pulp_sdotsp4(aVec0, bVec2, c02);

c03 = __builtin_pulp_sdotsp4(aVec0, bVec3, c03);

c10 = __builtin_pulp_sdotsp4(aVec1, bVec0, c10);

c11 = __builtin_pulp_sdotsp4(aVec1, bVec1, c11);

c12 = __builtin_pulp_sdotsp4(aVec1, bVec2, c12);

c13 = __builtin_pulp_sdotsp4(aVec1, bVec3, c13);

}

// explicit asm stores of C output

asm volatile(

"p.sw %[s00], 4(%[addr_c]!) \n\t"

"p.sw %[s01], 4(%[addr_c]!) \n\t"

"p.sw %[s02], 4(%[addr_c]!) \n\t"

"p.sw %[s03], %[c_incr](%[addr_c]!) \n\t"

"p.sw %[s10], 4(%[addr_c]!) \n\t"

"p.sw %[s11], 4(%[addr_c]!) \n\t"

"p.sw %[s12], 4(%[addr_c]!) \n\t"

"p.sw %[s13], %[c_incr](%[addr_c]!) \n\t"

: [addr_c] "+&r"(idx_c)

: [s00] "r"(c00), [s01] "r"(c01), [s02] "r"(c02),

[s03] "r"(c03), [s10] "r"(c10), [s11] "r"(c11),

[s12] "r"(c12), [s13] "r"(c13), [c_incr] "r"(P_incr)

: "memory");

idx_a += N; // adjust A matrix pointer

}

}

}

84

List of Acronyms

ALUarithmetic logic unit

ATarea-timing

CCcore complex

CRFcamera response function

CSRcontrol and status register

DSPdigital signal processing

DSPUdigital signal processing unit

EOCend-of-computation

FD-SOIFully-Depleted Silicon-Over-Insulator

HDLhardware description language

HDRhigh dynamic range

IoT Internet of things

IPC instruction per cycle

IPU integer processing unit

ISA instruction set architecture

ISP image signal processor

LSU load-store unit

85

List of Acronyms

MACmultiply-accumulate

MCUmicrocontroller unit

MSBmost significant bit

MSUmultiply-subtract

NTnear-threshold

PCprogram counter

PULPParallel Ultra-Low Power

RAW read-after-write

RISC reduced instruction set computer

RTL register-transfer level

SIMD single-instruction-multiple-data

SIMD single instruction, multiple data

SPM scratchpad memory

TCDM tightly-coupled-data-memory

TVM test virtual machine

WAWwrite-after-write

86

List of Figures

2.1. Block diagram of the Snitch baseline; thinner arrows stand for individual
data transfers, while thicker arrows also include the flow of control signals. 9

2.2. On the left, the MemPool cluster, divided in 4 groups; on the right, a
detailed view of the first local group, from [7]. Dashed lines represent
register boundaries. 10

2.3. Architecture of a MemPool tile with K request ports and K response ports,
from [7]. 10

2.4. Example of exposure fusion from [32]; the weight maps of each input
exposure is computed by means of the quality figures and employed to
fuse them in the final result. 12

3.1. Flow of the design methodology that we established through the cus-
tomization of the RISC-V environment; the labels in a monospaced font
represent the actual tools from RISC-V that we extended with Xpulpimg. 14

4.1. Block diagram of the MemPool CC extended with Xpulpimg, focused
on the differences with respect to the baseline of Fig. 2.1; the register
boundary around the IPU is also highlighted, even if already present in
the MemPool CC baseline. 23

4.2. Block diagram of the Snitch IPU coprocessor extended with Xpulpimg
functionalities. 23

4.3. Block diagram of the modifications we introduced to manage the third
operand for the extended load and store operations and the post-increment
mechanism. 26

4.4. Interface between the Snitch core and its IPU coprocessor. 30
4.5. Block diagram of the DSPU. 31
4.6. Block diagram of the shared comparator in the DSPU. 32
4.7. Block diagram of the arithmetic unit of the DSPU. 33
4.8. Block diagram of the clip unit in the DSPU. 36
4.9. Block diagram of the MAC unit in the DSPU. 38
4.10. Block diagram of the SIMD unit in the DSPU. 42

87

List of Figures

5.1. Area figures of MemPool CC as a function of the clock period; the right
plot focuses on the most critical frequencies. 48

5.2. Area figures of the Snitch core from MemPool CC synthesis as a function
of the clock period; the right plot focuses on the most critical frequencies. 48

5.3. Area figures of the Snitch IPU coprocessor from MemPool CC synthesis
as a function of the clock period; the right plot focuses on the most critical
frequencies. 49

5.4. Performance of the MemPool CC in terms of MACs/cycle measured
simulating the 8-bit 3 × 3 2D convolution kernel. 53

5.5. Performance of the MemPool CC in terms of MACs/cycle measured
simulating the matrix multiplication kernels. 55

5.6. Breakdown of MemPool tile post-synthesis area figures in its baseline and
Xpulpimg versions. 59

5.7. Breakdown of MemPool tile post-synthesis power figures in its baseline
and Xpulpimg versions. 60

5.8. Energy efficiency of the MemPool tile measured with respect the multi-
plications and additions operations performed in the 8-bit matmul kernel. 61

88

List of Tables

4.1. All the extended load and stores instructions introduced in Xpulpimg
with Extended L/S addressing modes. Note that b, h and w represent
the data length of the memory access, standing respectively for byte,
half-word and word. Load operations of sub-words can either be signed
or unsigned. The immediates employed are iimm12s, the standard 12-bit
signed I-type immediate, and simm12s, the standard 12-bit signed S-type
immediate. 25

4.2. Branching instruction with immediate comparison introduced in Xpulpimg
with Generic arithmetic operations. The register rs1 is compared against
pimm5s, the 5-bit sign-extended immediate introduced from Xpulp; the
PC offset is instead given by bimm12s, the standard 12-bit signed B-type
immediate. 28

4.3. Generic 32-bit arithmetic operations introduced in Xpulpimg with Generic
arithmetic operations. 32

4.4. Immediate and register-register 32-bit clip operations from Generic arith-
metic operations; the immediate employed by immediate clips is pimm5u,
the 5-bit zero-extended Xpulp immediate. 34

4.5. 32-bit extension instructions for byte and half-word data introduced with
Generic arithmetic operations. 36

4.6. MAC operation for the multiplication of two 32-bit operands with 32-
bit multiplication or subtraction, introduced in Xpulpimg with MAC
operations. The lowest 32-bit of rs1 · rs2 are used for the accumulation
operation. 37

4.7. Generic packed-SIMD arithmetic instructions, from Packed-SIMD ex-
tension; the employed immediate is the 6-bit Xpulp immediate, which is
sign- or zero-extended based on the executed instruction. Note that shift
operations use only the least significant 4 bits of the second operand for
half-word-level parallelism, and the least significant 3 bits for byte-level
parallelism. 39

89

List of Tables

4.8. Packed-SIMD dot-product instructions, from Packed-SIMD extension;
the employed immediate is the sign- or zero-extended 6-bit Xpulp imme-
diate. All the dot-product instructions multiply the elements of the first
operand with the second operand, basing on the addressing mode, and
sum them up into a 32-bit destination. 40

4.9. Support instructions for packed-SIMD operations from Packed-SIMD
extension; they represent a basic extension for the packing and unpacking
of SIMD data. 41

5.1. Assembly code improvement of the 2D convolution hot-loop among
Xpulpimg design iterations; the instructions highlighted in blue are the
new ones with respect to the previous extension. 47

5.2. MemPool CC average post-synthesis area increase with respect to the
baseline version; the average refers to the clock period sweep between 2
ns and 0.5 ns. 49

5.3. MemPool CC maximum operating frequency for each design. 49
5.4. Absolute benchmark figures for single-core 2D convolution of 32 × 32

8-bit matrices. 53
5.5. Benchmark results with respect to MAC operations for single-core 2D

convolution of 32 × 32 8-bit matrices. 53
5.6. Assembly code improvement of the 32-bit matrix multiplication hot-loop

from the baseline to the Xpulpimg version; the instructions introduced by
Xpulpimg are highlighted in blue. 56

5.7. Absolute benchmark figures averaged on the 16 simulated cores for the
32-bit matrix multiplication kernel. 56

5.8. Benchmark results with respect to MAC operations for the 32-bit matrix
multiplication kernel. 56

5.9. Assembly code improvement of the 8-bit matrix multiplication hot-loop
from the baseline to the Xpulpimg version; the instructions introduced by
Xpulpimg are highlighted in blue. 58

5.10. Absolute benchmark figures averaged on the 16 simulated cores for the
8-bit matrix multiplication kernel. 58

5.11. Benchmark results with respect to MAC operations for the 8-bit matrix
multiplication kernel. 58

5.12. MemPool tile post-synthesis area figures at 500 MHz in the worst-case
corner; the areas regarding the MemPool CC and its sub-modules are
averaged over its 4 replicas. 59

5.13. MemPool tile post-synthesis power analysis running matmul at 500 MHz
in the typical corner. 60

90

Bibliography

[1] R. Thabet, R. Mahmoudi, and M. H. Bedoui, “Image processing on mobile devices:
An overview,” in International Image Processing, Applications and Systems Conference.
IEEE, 2014, pp. 1–8.

[2] H. Ayed, J. Ermont, J.-l. Scharbarg, and C. Fraboul, “Towards a unified approach
for worst-case analysis of Tilera-like and Kalray-like NoC architectures,” in 2016
IEEE World Conference on Factory Communication Systems (WFCS). IEEE, 2016, pp.
1–4.

[3] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky, “NVIDIA A100
Tensor Core GPU: Performance and Innovation,” IEEE Micro, no. 01, pp. 1–1, 2021.

[4] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo, J. Reybert,
and T. Strudel, “A distributed run-time environment for the Kalray MPPA-256
integrated manycore processor,” Procedia Computer Science, vol. 18, pp. 1654–1663,
2013.

[5] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore processors,” IEEE
Signal Processing Magazine, vol. 26, no. 6, pp. 26–37, 2009.

[6] J. Redgrave, A. Meixner, N. Goulding-Hotta, A. Vasilyev, and O. Shacham, “Pixel
visual core: Google’s fully programmable image vision and AI processor for mobile
devices,” in Proc. IEEE Hot Chips Symp.(HCS), 2018, pp. 1–18.

[7] M. Cavalcante, S. Riedel, A. Pullini, and L. Benini, “MemPool: A shared-L1 memory
many-core cluster with a low-latency Interconnect,” arXiv preprint arXiv:2012.02973,
2020.

[8] F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Snitch: A tiny pseudo dual-issue
processor for area and energy efficient execution of floating-point intensive work-
loads,” IEEE Transactions on Computers, 2020.

[9] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand,
F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-V core with DSP extensions
for scalable IoT endpoint devices,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

91

Bibliography

[10] A. Waterman and K. Asanovic, “The RISC-V instruction set manual, volume I:
Unprivileged ISA,” EECS Department, UC Berkeley, 2019.

[11] K. Asanović and D. A. Patterson, “Instruction sets should be free: The case
for RISC-V,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146, Aug 2014. [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2014/EECS-2014-146.html

[12] A. S. Waterman, “Design of the RISC-V instruction set architecture,” Ph.D. disserta-
tion, UC Berkeley, 2016.

[13] A. Waterman and K. Asanovic, “The RISC-V instruction set manual, volume II:
Privileged ISA,” EECS Department, UC Berkeley, 2019.

[14] RISC-V. (2021) RISC-V opcodes. GitHub. Accessed March 2, 2021. [Online].
Available: https://github.com/riscv/riscv-opcodes

[15] ——. (2021) RISC-V GNU toolchain. GitHub. Accessed March 2, 2021. [Online].
Available: https://github.com/riscv/riscv-gnu-toolchain

[16] ——. (2021) RISC-V ISA simulator. GitHub. Accessed March 2, 2021. [Online].
Available: https://github.com/riscv/riscv-isa-sim

[17] ——. (2021) RISC-V tests. GitHub. Accessed March 2, 2021. [Online]. Available:
https://github.com/riscv/riscv-tests

[18] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “A comparison between processor
architectures for multimedia applications,” in Proc. 15th Annual Workshop on Circuits,
System and Signal Processing (ProRISC 2004), the Netherlands, 2004, pp. 138–152.

[19] RISC-V. (2021) RISC-V P specification. GitHub. Accessed March 2, 2021. [Online].
Available: https://github.com/riscv/riscv-p-spec

[20] OpenHW Group. (2021) CV32E40P User Manual. Accessed March 2, 2021. [Online].
Available: https://cv32e40p.readthedocs.io/en/latest

[21] PULP Platform. (2020) PULP RISC-V GNU toolchain. GitHub. Accessed
March 2, 2021. [Online]. Available: https://github.com/pulp-platform/
pulp-riscv-gnu-toolchain

[22] OpenHW Group. (2021) CV32E40P. GitHub. Accessed March 2, 2021. [Online].
Available: https://github.com/openhwgroup/cv32e40p

[23] PULP Platform. (2021) PULPissimo. GitHub. Accessed March 2, 2021. [Online].
Available: https://github.com/pulp-platform/pulpissimo

[24] ——. (2021) Snitch. GitHub. Accessed March 2, 2021. [Online]. Available:
https://github.com/pulp-platform/snitch

92

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://github.com/riscv/riscv-opcodes
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-p-spec
https://cv32e40p.readthedocs.io/en/latest
https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
https://github.com/openhwgroup/cv32e40p
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/snitch

Bibliography

[25] R. Raskar and J. Tumblin, “Computational photography,” in ACM SIGGRAPH 2005
Courses, 2005, pp. 1–es.

[26] M. Levoy. (2014) HDR+: Low Light and High Dynamic Range photography in the
Google Camera App. Google AI Blog. Accessed March 2, 2021. [Online]. Avail-
able: https://ai.googleblog.com/2014/10/hdr-low-light-and-high-dynamic-range.
html

[27] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from
photographs,” in ACM SIGGRAPH 2008 classes, 2008, pp. 1–10.

[28] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and
M. Levoy, “Burst photography for high dynamic range and low-light imaging on
mobile cameras,” ACM Transactions on Graphics (TOG), vol. 35, no. 6, pp. 1–12, 2016.

[29] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman, and E. Shechtman,
“Robust patch-based HDR reconstruction of dynamic scenes,” ACM Trans. Graph.,
vol. 31, no. 6, pp. 203–1, 2012.

[30] OpenCV. (2021) OpenCV. GitHub. Accessed March 2, 2021. [Online]. Available:
https://github.com/opencv/opencv

[31] M. A. Robertson, S. Borman, and R. L. Stevenson, “Dynamic range improvement
through multiple exposures,” in Proceedings 1999 International Conference on Image
Processing (Cat. 99CH36348), vol. 3. IEEE, 1999, pp. 159–163.

[32] T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in 15th Pacific Conference
on Computer Graphics and Applications (PG’07). IEEE, 2007, pp. 382–390.

[33] OpenCV. High Dynamic Range (HDR). Accessed March 2, 2021. [Online]. Available:
https://docs.opencv.org/master/d2/df0/tutorial_py_hdr.html

[34] D. Schiavone. (2019) RISC-V PULPissimo test. GitHub. Accessed March 2, 2021.
[Online]. Available: https://github.com/davideschiavone/riscv_pulpissimo_test

[35] S. Riedel. (2020) MemPool power breakdown. GitHub. Accessed March 2,
2021. [Online]. Available: https://github.com/pulp-platform/mempool/blob/
183098b34c68b11ff8c590f666f90feba485ce7c/doc/Power_Breakdown.pdf

[36] PULP Platform. (2021) PULP DSP Library. GitHub. Accessed March 2, 2021.
[Online]. Available: https://github.com/pulp-platform/pulp-dsp

93

https://ai.googleblog.com/2014/10/hdr-low-light-and-high-dynamic-range.html
https://ai.googleblog.com/2014/10/hdr-low-light-and-high-dynamic-range.html
https://github.com/opencv/opencv
https://docs.opencv.org/master/d2/df0/tutorial_py_hdr.html
https://github.com/davideschiavone/riscv_pulpissimo_test
https://github.com/pulp-platform/mempool/blob/183098b34c68b11ff8c590f666f90feba485ce7c/doc/Power_Breakdown.pdf
https://github.com/pulp-platform/mempool/blob/183098b34c68b11ff8c590f666f90feba485ce7c/doc/Power_Breakdown.pdf
https://github.com/pulp-platform/pulp-dsp

	Introduction
	Background and Related Work
	RISC-V open ISA
	Instructions encoding management
	GNU compiler toolchain
	Spike simulator
	Unit tests suite

	Open-source DSP extensions
	RISC-V P draft extension
	Xpulp custom DSP extension

	Snitch processor core
	ISPs and MemPool
	Image processing algorithms

	Design Methodology
	Selection of suitable instructions
	Instruction encoding generation
	GNU toolchain custom subset
	Spike simulator extension
	Unit tests verification
	Snitch RTL implementation
	Synthesis

	Hardware Architecture
	Snitch architecture extension
	Post-increment and register-register loads and stores
	Immediate branching
	Instructions offloaded to the IPU

	Snitch IPU architecture
	Shared comparator
	Arithmetic operations
	Clip unit
	Extension unit
	MAC unit
	SIMD unit

	Results
	Evaluation setup
	Benchmarking methodology
	Synthesis methodology

	Design iterations evaluation
	Incremental analysis of design iterations
	Convolution benchmark analysis

	Additional benchmarks
	32-bit matrix multiplication
	8-bit matrix multiplication

	Tile-level synthesis results
	Power analysis

	Conclusion and Future Work
	Xpulpimg Instruction Set
	Generic arithmetic operations
	Extended L/S addressing modes
	MAC operations
	Packed-SIMD extension

	2D Convolution Algorithm
	Matrix Multiplication Algorithm
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

