
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

GitOps and ArgoCD: Continuous
deployment and maintenance of a full
stack application in a hybrid cloud

Kubernetes environment

Supervisor

Prof. Fulvio RISSO

Candidate

Matteo D’AMORE

Academic Year 2020-2021

Summary

The thesis work focuses on the development of a solution for the Continuous
Deployment of environments on Kubernetes clusters (hybrid cloud), based on the
GitOps approach. Nowadays, cloud computing and containers are increasingly used
in business environments.
Kubernetes is the most common container orchestrator, and it can be used with
the vanilla version or with other distributions. Kubernetes allows users to manage
application infrastructures using a declarative approach, thanks to YAML files. For
this reason, it makes sense to place these files within a Git repository.
If the infrastructure updates are made only by operating on the infrastructure
repository and as a result of these changes, the environments on Kubernetes are
updated, GitOps approach is achieved. In a nutshell, GitOps embraces many good
practices introduced by the DevOps philosophy, like the CI/CD pipelines and
Infrastructure as Code. It introduces something new: Git repository as a unique
source of truth. It is a developer-centric approach, since developers are familiar
with Git and because of this, it is interesting to exploit this paradigm to give
developers more autonomy in managing the infrastructure.
“With the demands made on today’s infrastructure, it is crucial for organizations
to implement infrastructure automation that is repeatable, traceable, and less
prone to human error. GitOps takes DevOps best practices used for application
development, such as version control, collaboration, compliance, and CI/CD, and
applies them to modern infrastructure automation”.
As a result, the development team becomes more independent of infrastructure
team. These environments are used to develop new features, test new releases,
and update versions of the application in the production state. At the same time,
the company does not want to give developers free access to the infrastructure
repositories, which contain YAML manifests (Secrets, Deployments, Services, etc.),
used for defining the environments to be deployed within Kubernetes clusters.
Part of the thesis work concerns the development of a “pull-based” GitOps pipeline,
using ArgoCD as a continuous deployment operator and GitHub Actions for the
continuous integration and other automated tasks. Developers can operate on
infrastructure repositories in a controlled and indirect way.

ii

By streamlining the interaction between the development and the infrastructure
team, one of the advantages is the reduction in the average time required to provision
or modify an environment on Kubernetes. In order to maintain the principles
of “need to know” and “least privilege”, developers can’t access infrastructure
repositories directly.
Thanks to the GitOps paradigm, to ArgoCD and to an abstraction level provided
by the YAML file called "input" (conceived during the thesis work), developers
can generate custom environments on Kubernetes, without them knowing the
Kubernetes details and the management/compilation of YAML files describing k8s
resources. The simplicity of interfacing is another strong point of this solution,
since only the knowledge of Git (a tool familiar to developers) and the compilation
of the “input” file is required.
The input file is a sort of “access key” to interact with the infrastructure files in a
controlled way.
By using the “input” file, the following things can be chosen for each environment:
the clusters in which to deploy, the frontend and backend images to be used, the
infrastructure parameters (replicas, ports, etc), the secrets and the configMaps.
These parameters can be redefined as many times as users like, as long as the
environment exists on k8s.
Two Kubernetes cluster were created and managed during the thesis work. The first
one is an on-premise cluster, which implements the vanilla version of Kubernetes.
It is composed by a worker and a master node. These two nodes were created
from two VMs with Centos7 OS. The second one is a Microsoft Azure cluster. A
different cloud service provider was chosen to demonstrate that the solution is also
multi-vendor.
The thesis work also includes the use of a branching strategy and a tag strategy,
which is automatically managed by the GitHub Actions workflows.
Within the infrastructure repository, the Kubernetes environments are managed by
Kustomize, which is a configuration management tool. This tool is very interesting
because of its feature of redefining resources written declaratively in YAML files,
leaving the base files unchanged. The directory structure is also very readable.

iii

Acknowledgements

Voglio ringraziare tutti coloro che mi hanno supportato ed accompagnato in
questo percorso di laurea magistrale.

iv

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1

2 Background 3
2.1 Containers . 3

2.1.1 Container vs VM . 3
2.2 Docker . 5
2.3 Cloud Computing . 9

2.3.1 Cloud Solutions . 9
2.4 Mutable and Immutable infrastructure 10
2.5 Kubernetes . 11

2.5.1 Architecture . 12
2.6 Kustomize . 18

2.6.1 kustomization file . 18
2.6.2 Build Kustomize resources 19
2.6.3 Overlays . 19
2.6.4 secretGenerator . 24
2.6.5 images update . 24
2.6.6 Patches . 25

2.7 GitHub Actions . 28

3 Towards GitOps 29
3.1 Git . 29
3.2 DevOps . 31

3.2.1 Principles . 31
3.2.2 DevOps benefits . 32

vi

3.2.3 DevOps tools . 33
3.3 GitOps . 34

3.3.1 Principles . 34
3.3.2 Benefits . 35
3.3.3 Tools . 36
3.3.4 Push-based pipeline . 37
3.3.5 Pull-based pipeline . 37

4 Argo CD 39
4.1 Introduction . 39
4.2 How it works? . 39
4.3 Why ArgoCD? . 41

4.3.1 ArgoCD vs other solutions 41
4.3.2 Why not a CI/CD pipeline? 42
4.3.3 Features . 42
4.3.4 ArgoCD Architecture . 44

4.4 Application . 45
4.5 Project . 48
4.6 App of Apps . 48
4.7 High Availability . 48
4.8 Disaster Recovery . 48

5 Solution 49
5.1 Introduction . 49
5.2 Business Case . 50
5.3 Branching strategy . 51

5.3.1 Introduction . 51
5.3.2 Git Flow branching strategy 51
5.3.3 Branches . 52

5.4 input file . 56
5.4.1 backend, frontend and db fields 56
5.4.2 image field . 57
5.4.3 branch . 59
5.4.4 clusters . 60

5.5 config file . 60
5.6 Repositories . 62

5.6.1 Code Repositories . 62
5.6.2 Infrastructure Repository 63
5.6.3 ArgoCD Repository . 66
5.6.4 Image Repositories . 68
5.6.5 Backup-files Repositories . 68

vii

5.7 Workflows . 69
5.7.1 Code Repositories . 69
5.7.2 Infrastructure Repository 71
5.7.3 ArgoCD Repository . 74

5.8 Example . 76
5.8.1 Initial setup . 76
5.8.2 Startup and deployment of the production environment . . . 78

5.9 Objectives and Validation . 88
5.9.1 Infrastructure incident recovery 88
5.9.2 Deployment time of environments 89
5.9.3 input file . 91
5.9.4 Workflows execution time 92
5.9.5 Reduction of provisioning and update time 93
5.9.6 Approval process . 94

5.10 Liqo . 94
5.10.1 Liqo transparency . 96
5.10.2 Liqo alongside ArgoCD . 96
5.10.3 Implementation . 96

6 Conclusion 98

Bibliography 100

viii

List of Tables

4.1 Tools comparison . 42
4.2 ArgoCD vs CI/CD tool. 43

ix

List of Figures

2.1 Containers vs VMs [1] . 4
2.2 Kubernetes adoption [9] . 11
2.3 Kubernetes architecture [11] . 12

3.1 DevOps Process [25] . 33
3.2 Push-based pipeline [27] . 37
3.3 Pull-based pipeline [28] . 38

4.1 ArgoCD keeps the live state synchronised with the desired state . . 40
4.2 ArgoCD web UI example . 44
4.3 ArgoCD Architecture [31] . 44

5.1 master and release branches point to two different commits 51
5.2 Branching strategy [33] . 52
5.3 How input file is applied . 56
5.4 Repositories and teams . 62
5.5 kustomize directory structure . 65
5.6 kustomize example . 65
5.7 Manifests directory . 66
5.8 config files content . 76
5.9 config files content . 77
5.10 input file within the master branch 79
5.11 prod directory within the thesis-infrastructure repository 80
5.12 Application manifests within the ArgoCD repository 80
5.13 Command to apply the initial manifest 80
5.14 Content of the initial manifest . 81
5.15 ArgoCD web UI . 81
5.16 prod environment deployed in the on-premise cluster 82
5.17 prod environment deployed in the Azure cluster 82
5.18 The input file related to the new feature features/f1 83
5.19 The new directory f1 created within the infrastructure repository . 83

x

5.20 The manifests within the ArgoCD repo, after the creation of the
new feature f1 . 84

5.21 ArgoCD web UI with the new environments associated with features/f1 84
5.22 features/f1 deployed in the on-premise cluster 84
5.23 features/f1 deployed in the Azure cluster 85
5.24 The input file related to the new feature releases/r1 85
5.25 ArgoCD web UI with the new environment associated with releases/r1 86
5.26 releases/r1 deployed in the Azure cluster 86
5.27 ArgoCD reacts to the deletion of the manifest associated with the

release/r1 branch . 86
5.28 New tag for the master branch . 87
5.29 Re-syncronisation time (U=update, D=delete, BE=backend, FE=frontend,

Dep=Deployment, Svc=Service) . 89
5.30 First test on deployment time . 90
5.31 Second test on deployment time . 90
5.32 Third test on deployment time . 91
5.33 Example of an input file . 91
5.34 Ratings . 92
5.35 Average execution time for each workflow. Code, Infr and ArgoCD

refer to the repositories . 93
5.36 Percentage of time required to build and push the Docker image . . 93

xi

Acronyms

K8S
Kubernetes

CRD
Custom Resource Definition

YAML
Yet Another Markup Language

VM
Virtual Machine

CI
Continuous Integration

CD
Continuous Delivery

IaC
Infrastructure as Code

UI
User Interface

VMM
Virtual Machine Manager

OS
Operative System

xiii

PAT
Personal Access Token

xiv

Chapter 1

Introduction

The IT world is constantly evolving. In the mid 90’s, infrastructures consisted only
of hardware purchased by the company and maintained within its own buildings.
There were specialised operators who had to take care of the physical servers man-
ually. In this context, the servers were managed using the mutable infrastructure
approach, which consists of maintaining and modifying the server in place.
With regard to software development, at that time code was written in isolation.
The structured versioning did not exist. Compilation and testing of code was
handled manually by the development team, as well as for creating release packages.
Then, the release package was given to the operations team, who were in charge
of deploying it. There was a variable time lag, from a few hours to many days
before the new release actually went into production. This time depended on the
availability and skills of the operations team. Moreover, there was little communica-
tion and co-operation between development and operations teams. From the point
of view of the development team, there was frustration because of the possible
long deployment times for new releases. On the other hand, the operations team
was frustrated if the new release had problems when deployed. This resulted in
employee dissatisfaction and slow software development and release times.
At the beginning of 2000, the Agile methodology took off. It improved the develop-
ment process but not the deployment process, so something was still missing.
Around 2008, the concept of DevOps emerged, as a consequence of a discussion on
the drawbacks of the Agile approach. DevOps is a philosophy, which with the help
of practices and tools, has enabled the automation and integration of processes
between software development and operations teams. From that moment, the
software can be built, tested and released in a faster and more reliable way. It
reduced the separation between the development and operations teams.
Among the many new features introduced, it is worth mentioning CI/CD pipelines
and Infrastructure as Code.
Returning to the subject of mutable infrastructures, there have also been big

1

Introduction

improvements in this area. The first improvement was the introduction of the
virtualization. It is a technology that made possible the introduction of virtual
machines first and containers (lightweight VMs) later. VMs have made it possible
for companies to create virtual servers instead of physical ones. Thanks to it, a
single physical machine can host multiple instances of servers.
In this scenario, the immutable infrastructure approach emerged. It means that a
server, once it has been provisioned, will no longer be modified. If a new version is
needed, a new virtual server will be provisioned and the old one will be removed. In
2006, Amazon launched Amazon Web Services, which offers services to other clients
via the internet. From this event, came the era of cloud computing. Nowadays,
cloud computing is becoming increasingly popular.
Cloud computing, DevOps best practices, containers and containers orchestrator,
like Kubernetes, have generated the GitOps approach. In a nutshell, GitOps is
focused on Continuous Deployment, in a cloud native environment. When it was
conceived, it was made to work with Kubernetes. It introduces Git as a single
source of truth and Git repositories are used to hold the infrastructure files, ex-
pressed declaratively, following the Infrastructure as Code approach. One of the
great advantages of GitOps is the pull based pipeline, which is possible thanks to
operators such as ArgoCD or Flux.
Today, cloud native applications are more and more common and Kubernetes is
heavily used to manage them. It is necessary for developers, in addition to working
on the source code, to be more independent in infrastructure management, as daily
deployments can be done hundreds of times.
Automation of the processes of provisioning and updating of k8s environments,
related to features, releases and production is something that would improve the
productivity and cooperation between development and operations teams, speeding
up deployment times and consequently the development life cycle.
As a result, operations team is relieved of a major burden and can invest its time
in other actions, which bring value to the company. Developers can work with the
infrastructure, without having to know in detail how Kubernetes works and the
commands it requires. They can build and customize environments on Kubernetes
without directly writing infrastructure YAML files.

2

Chapter 2

Background

2.1 Containers
Containers are an alternative to VMs. Specifically, the container is a form of
lightweight virtualization. The idea behind containers is a system that can guarantee
the properties of computer virtualization, consuming less resources.

2.1.1 Container vs VM
Containers and virtual machines are often confused. Although there are some
similarities, containers differ from VMs in several aspects.
Virtual machines emulate the hardware system. Each VM runs a specific guest
operating system, along with libraries, binaries, and applications. A physical server
can host multiple VMs, each with potentially a different OS. Generally, there is one
application per VM, in order to isolate the environment. The hypervisor or VMM,
is a software, firmware or hardware that allows the creation and management of
multiple VMs.
VMs are a very good solution, but they consume a large amount of system resources
and generate overhead, especially when there are multiple VMs running on the
same physical host.

On the other hand, containers share the same host OS. Thanks to this, containers
are much lighter in size and generate less overhead. Lightness turns into speed, as
a container takes just a few seconds to run, whereas a VM can take up to a few
minutes.

Container advantages

• Encapsulation: containers enclose into a unique entity the application source
code, dependencies and network configuration.

3

Background

Figure 2.1: Containers vs VMs [1]

• Lightweight: containers require less system resources than virtual machines
because they don’t include operating system overhead.

• Scalability: physical host machines can contain hundreds of containers.

• Portability: containers can be deployed easily to multiple different operating
systems and hardware platforms.

• Versioning: container are versioned, in fact the container name is composed
by an hash, which contains also the version.

• Consistent operation: DevOps teams know applications in containers will
run the same, regardless of where they are deployed.

• Efficiency: containers allow applications to be more rapidly deployed, patched
and scaled.

• DevOps oriented: containers support Agile and DevOps efforts to accelerate
development, test and production cycles.

4

Background

2.2 Docker
Docker is an open source tool designed to make it easier to manage applications by
using containers [2]. It provides an implementation that standardises the use of
containers on different platforms. The main components are:

• Docker Engine;

• Docker Client;

• Docker Image;

• Docker Container.

Docker Engine

Docker Engine is the platform core. It is a daemon process, executed in background
on the host machine. Docker Engine provides access to all the functionalities and
services made available by Docker.
A Docker container can be moved across different machines(with Docker Engine
installed) and it will work in the same way, even if the machines are running two
different OSes. This is a great achievement, as it is often the case that when moving
an application to different execution environments, something gets broken [3].

Docker Client

Docker Client communicates with Docker daemon (Docker Engine). It is not
necessary for Docker Client and the daemon to run on the same physical machine.
Docker Client can connect to a remote Docker daemon. Communication takes
place through a REST API, over UNIX sockets or a network interface.

Docker Image and Container

A Docker Image is an immutable template that contains a set of instructions for
creating a Docker container [4]. Then, a Docker Container is a running instance of
an image.
The image is immutable, so it never changes and it is a strong advantage, since
users always know what they are going to run, independently from the environment.
Generally, an image is identified by registry/user/nameImg:tag, where latest is the
default tag. Modularity is a feature of images, indeed an image can be composed by
many read-only layers, which are images too. When a container is created from an
image, it is added a new writable layer, called container layer. Even if a container
is stopped and restarted, it maintains changes within the filesystem. Thanks to the

5

Background

modularity, it can be possible that multiple images share the same N base layers
and this is an advantage in terms of memory usage.

Docker Registry

Docker images are pulled and pushed from and to repositories. Repositories lies
into Registries. Every host has a own local registry. A user can create its own
remote registries. The official remote Docker registry is Docker Hub.

Dockerfile

It is possible to build a new image from a Dockerfile. Dockerfile is a text file that
contains a set of instructions used to build an image.

1 #Dockerfile example
2

3 FROM ubuntu:16.04
4 LABEL version="v1.1"
5 RUN apt get update && apt get y install apache2
6 COPY index.html /
7 var /www/ index.html
8 VOLUME /
9 var /www

10 EXPOSE 80
11 CMD ["D", "FOREGROUND"]
12 ENTRYPOINT ["apachectl]

Each instruction in a Dockerfile creates a new layer that will compose the
resulting image. For the sake of efficiency, it may be useful to group instructions
whenever possible.

1 #this command creates only one layer, BETTER
2 RUN apt get update && apt get y install ifconfig && apt get install traceroute
3

4 #these three commands create three different layers
5 RUN apt get update
6 RUN apt get y install ifconfig
7 RUN apt get y install traceroute

The main commands are described below.

FROM

This command must be written first in the Dockerfile. It defines the base image on
which to build the image.

6

Background

LABEL

It is an optional command, used to add metadata to the image. Labels are key-value
pairs.

RUN

This instruction executes into Docker Engine a shell command. It is used to install
software and packages useful to execute the container based on this image.

CMD

The CMD instruction is used to execute a shell command at runtime, when a
container is executed from the image. In each Dockerfile, there can be only one
CMD instruction. If there are more than one, only the last one is executed. The
main goal is to give default instruction that the container will execute.

ENTRYPOINT

ENTRYPOINT has the same purpose of CMD. It defines the program to be
executed when the container starts up. It is possible to parameterize the image
by passing via the CLI parameters to the executable defined by ENTRYPOINT.
However, there are slight differences with CMD:

• A command passed with the CLI can override CMD but not ENTRYPOINT.

• The CMD command, if present together with the command ENTRYPOINT
command, defines parameters treated in the same way as those the same way
as those passed from the command line.

COPY

COPY instruction copies a new file into image destination directory, from a source
path. Source file must be inside the host "context of build".

ENV

ENV instruction sets the environment variables that will reside inside the container.

VOLUME

The VOLUME instruction creates a mount point for the specified path.

7

Background

EXPOSE

The EXPOSE instruction exposes a container port through which it can be con-
tacted.

8

Background

2.3 Cloud Computing

Cloud computing means delivering services over the internet. Cloud computing
appeared after the advent of virtualization. VMs enable a much more flexible use of
the resources and servers are put in data centers. Amazon in 2006 created the first
cloud computing service, Amazon AWS. It was offering to customers, on-demand
computing, storage and networking resources.

2.3.1 Cloud Solutions

If a company wants to interface with the world of the cloud computing, there are
several solutions it can adopt, depending on business needs [5].

Private cloud

The private cloud can be hosted by a cloud service provider or can be on-premise
(physically located within company data center). In both cases, resources are used
exclusively and are delivered via a secure private network. The company has full
control over data and services. This is the best solution if the company wants to
match a fine grained custom specifications.

With the on-premise solution, the company must buy and manage its own
servers. The management is done by its own staff.
The company has full control over data and services and the physical resources are
not shared with anyone else. The disadvantage of this solution is the cost, since
the building which host physical devices, cooling systems, physical devices and
management are a big expense for the company. Another disadvantage is the lack
of flexibility. If the company wants to increase its own resources, it has to buy,
configure and manage new resources, and it takes a lot of time.

Public cloud

With this kind of solution, cloud resources are provided by a third-party cloud service
provider via the internet. Cooling, hardware, software and other infrastructure
devices are managed by the cloud service provider. There is no need to buy
hardware and software or even to pay someone for the maintenance. It is easy
to scale up and down the resources, since cloud service provider provides them
on-demand. In a public cloud, resources are shared among multiple tenants and
they are not used exclusively.

9

Background

Hybrid cloud

It is a mix of private and public cloud solutions. A possible solution is to use
private cloud environment for sensitive activities and the public cloud for tasks
that are not sensitive.

2.4 Mutable and Immutable infrastructure
Before virtualization, all infrastructures were mutable. All servers were physical
and once deployed, needed continuous maintenance, such as bug fixes, upgrades
and modifications. Mutable means that modifications are made in place [6].
Maintenance had to be done manually, server by server. This approach has many
disadvantages [7]:

• Each server is unique because of the myriad manual changes made over time.
This makes it very difficult to diagnose and manage each server.

• Many times, changes on a server are not documented. This makes versioning
impossible to maintain.

• Updates can fail, as in a complex environment it can happen that something
stops working properly. It introduces non-negligible downtimes.

• Hard Debugging.

With the advent of virtualization and cloud computing, the concept of immutable
infrastructure has emerged. This change was caused by the movement from physical
to virtual servers. Immutable infrastructure means that servers are never modified
after deployment. When a server needs to be upgraded or modified, it is replaced by
a new, properly updated one (a new version). Every update is versioned, automated
and new servers are provisioned quickly. Errors and configuration drifts are much
more rare. The horizontal scaling is easy to do, thanks to virtualization, which
allows multiple identical copies of the server to be deployed quickly. Docker and
Kubernetes are tools related to the immutable infrastructure.

10

Background

2.5 Kubernetes

"Kubernetes (also known as k8s or "kube") is an open source container orchestration
platform that automates many of the manual processes involved in deploying,
managing, and scaling containerized applications" [8].
It is currently the most used orchestrator, widely adopted across diverse businesses.

Figure 2.2: Kubernetes adoption [9]

Kubernetes was introduced in 2014 as an open source version of the internal
Google orchestrator Borg.
Borg was introduced by Google around 2003-2004. It was a large-scale internal
cluster management system, which ran a huge number of jobs, from a great number
of applications, across many clusters, each with up to tens of thousands of machines
[10].
Starting from 2017-2018, Kubernetes has been adopted by many companies. One of
the reasons why Kubernetes gained popularity so fast is its open source architecture
and an incredible number of documentation and support provided by its community.
There are multiple Kubernetes distributions. There is a vanilla version, the basic
one, and many others, such as RedHat OpenShift, Tectonic, Rancher and so on.

11

Background

2.5.1 Architecture
The k8s architecture is shown in 3.1. A cluster is a set of resources that are
coordinated by a single instance of k8s. Each Kubernetes cluster is composed by a
master node only or a master node and one or more worker nodes.

• Master node: it must necessarily exist, since it is the central point of control
of the entire cluster. It may be duplicated for redundancy and load balancing.
It controls and manages a set of worker nodes. It can work also as worker
node, if the cluster is composed only by this node.

• Worker node: it hosts the pods, which are the components of the application
workload. It also contains some agents which communicate with the master
node.

Thanks to this structure, Pods can be distributed on different nodes, balancing
the resource consumption. Master node is composed by many components such
as API server, controller manager, scheduler and etcd database. Instead, worker
nodes have only kubeproxy and kubelet.

Figure 2.3: Kubernetes architecture [11]

12

Background

Master Node Components

Master node, the control plane unit of Kubernetes cluster, is responsible for making
global decisions, maintaining the status of all objects in the cluster and reacting to
events. It continuously performs control loops to monitor changes.
Master node is the component used by users to interact with Kubernetes. Clients
make requests and it make sure to take the actual state of cluster towards the
desired one. The Master node components contains:

• API Server: the API Server exposes the Kubernetes API. It allows users to
validate and configure all cluster objects such as pods, deployments, services
etc. Moreover, it processes requests, validates them, and updates the objects
in etcd.

• Controller Manager: it embeds the control loop. If there are changes, the
controller manger synchronise the current state of cluster with the desired
one. In Kubernetes, there are multiple controllers, like Endpoints Controller,
Namespace Controller, Replication Controller.

• etcd: etcd is a consistent, highly available and distributed key-value data
store. It is used to store all cluster data. Etcd is written in Go and acts based
on the Raft consensus algorithm.

• Scheduler: if there are unscheduled pods, it assigns them to different worker
nodes, evaluating multiple metrics, such as availability of computing resources,
affinity and anti-affinity specifications, policy constraints of pods or quality of
service requirements.

Worker Node Components

Worker nodes are simpler than Master node. Each worker node hosts Pods and
two daemons:

• Container Runtime: Container runtime is responsible for running containers.
There are multiple choices supported by Kubernetes, but the most common is
Docker.

• Kubelet: this daemon is responsible for monitoring the containers. It makes
sure that all containers are running properly in Pods. Using PodSpecs, the
kubelet checks that the containers described into them are running and healthy.
For instance, if a pod fails, the kubelet restarts it. In any case, it manages
only containers which are created by Kubernetes.

13

Background

• Kube-Proxy: Kube-Proxy is a network proxy, which maintains network rules
on each worker node. These rules allow network communications to the pods
from inside or outside of the Kubernetes cluster.

Pod

The smallest deployable and manageable unit in Kubernetes is called pod. Each
pod consists of one or more containers, which are deployed on the same physical
host.
All the containers inside a pod are tightly coupled, because they share the same
resources, like storage volumes and networking.
Pod has a unique IP address, shared by all containers. Containers within the pod
see each other on the localhost interface, whereas containers that belong to different
pods communicate with the IP address of their pod. Kubernetes orchestrate pods
instead of containers.
Hence, a pod is very similar to a virtual machine or in terms of Docker, it is similar
to a group of Docker containers with shared filesystem volumes and namespaces.
A pod is bound to a node throughout its lifecycle.

Replication Controller

Replication Controller is responsible to ensure that the specified number of pods
are always up and running at any one time, and if not, it converges the number of
pods to the required one. More specifically, it terminates pods if they are too many
or it starts more pods if they are too few. Each pod replication is called replica.
It is a good practice to define a Replication Controller instead of creating manually
a pod. If a pod is created manually, it can be evicted in case of any failure. Using
a replication controller to create pods, it replaces pods if they are deleted, fail or
are terminated. This controller ensures a safer method to maintain application
healthy.

ReplicaSet

Traditional infrastructure model treats servers as pets (pets model). If a server goes
down, it must be fixed, in order to make it available again. With this approach,
servers are unique and indispensable.
The other model is the cattle model, used by Kubernetes. With this approach,
servers are only replicas. Servers can fail. There are no worries if a server fails, as
a new one, equal to the previous, is created.
ReplicaSet is an API object in Kubernetes, which manages scaling of pods. It
maintains the desired number of pods at any given time, constantly checking their

14

Background

state. ReplicaSets are the upgrade of Replication Controllers, since they provide
more features.

Deployment

Deployment is a higher-level concept than ReplicaSet and generally users rely on
this object to handle pods. Deployments provide a declarative way to enforce
updates to pods and ReplicaSets. When a new version of the Deployment is
provided, a new ReplicaSet is created. Pods are moved increasingly from the old
ReplicaSet to the new one.

Service

A Service allows to expose applications running on the pods. As pods are ephemeral,
they can be created or removed by Replication Controller and their IP addresses
are not stable. Each newly created pod will receive a new IP address.
Service instead is a stable access point that never changes.
Users should not connect to the applications with pod IPs. Kubernetes services solve
the issue offering an endpoint API, which lets services being accessible externally.
In addition, Kubernetes has an internal domain discovery process, where each
service has assigned a single DNS name. The DNS name corresponds to:

• <serviceName>, if source and destination are inside the same namespace.

• <serviceName.namespace.svc.cluster.local>, if the source and destination are
in different namespaces.

There are different ways to expose a service [12]:

• ClusterIP: it exposes the Service on a cluster-internal IP. Choosing this value
makes the Service only reachable from within the cluster. This is the default
ServiceType.

• NodePort: it exposes the Service on each Node’s IP at a static port (Node-
Port). A ClusterIP Service, to which the NodePort Service routes, is auto-
matically created. Users will be able to contact the NodePort Service, from
outside the cluster, by requesting <NodeIP>:<NodePort>.

• LoadBalancer: it exposes the Service externally using a cloud provider’s
load balancer. NodePort and ClusterIP Services, to which the external load
balancer routes, are automatically created.

• ExternalName: it maps the Service to the contents of the externalName
field, by returning a CNAME record with its value.

15

Background

Namespace

Kubernetes supports multiple virtual clusters backed by the same physical cluster.
These virtual clusters are called namespaces.
Namespaces are intended for use in environments with many users spread across
multiple teams, or projects. If a cluster is shared among few users, it is not
mandatory to leverage the namespace mechanism. Namespaces provide a scope for
names. Names of resources need to be unique within a namespace. Instead, accross
different namespaces there can be equal resource names. Namespaces cannot be
nested and each k8s resource can only be in one namespace.

kubectl

This is a line tool that interacts with kube-apiserver and send commands to the
Master node. Each command is converted into an API call. The kubectl tool
supports three kinds of object management:

• Imperative commands

• Imperative object configuration

• Declarative object configuration

Declarative Management of Kubernetes Objects

"Kubernetes objects can be created, updated, and deleted by storing multiple object
configuration files in a directory and using kubectl apply to recursively create and
update those objects as needed. This method retains writes made to live objects
without merging the changes back into the object configuration files" [13].
Thanks to configuration YAML file, it is possible to define the k8s objects that
describe the infrastructure in a declarative way. An example of a YAML file that
represents a Deployment k8s object is given below:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: myApp
5 spec:
6 selector:
7 matchLabels:
8 app: myApp
9 template:

10 metadata:
11 labels:
12 app: myApp

16

Background

13 spec:
14 containers:
15 - name: nginx
16 image: nginx:latest
17 ports:
18 - containerPort: 80

Custom resource definition

Kubernetes is highly configurable and extensible. Custom resource definition (CRD)
is one of the things that k8s allows you to do. The CRD API resource allows
users to define custom resources, which are extensions of the Kubernetes API [14].
A resource is an endpoint in the Kubernetes API that stores a collection of API
objects of a certain kind.
Once a custom resource is installed, users can create and access its objects using
kubectl. The name of a CRD object must be a valid DNS subdomain name.

17

Background

2.6 Kustomize
Kustomize is a Kubernetes native configuration management tool [15]. It is a
standalone tool that customizes k8s objects through a kustomization file [16].
Kustomize adds, removes and updates k8s files without forking them, with a pure
declarative approach [17]. To make customization simpler, Kustomize offers a range
of useful methods, such as generators (Secret generator, ConfigMap generator).
Using patches, Kustomize adds environment-specific updates to existing files without
touching them.

2.6.1 kustomization file
This is the core file which enables the power of Kustomize. It is a YAML file, and it
must be defined inside each folder that it is wanted to be managed by Kustomize.

Let’s suppose there is the folder myApp that contains k8s YAML files and it is
wanted to be managed by Kustomize. The file structure is the following:

1 myApp/
2 myDeployment.yaml
3 myService.yaml
4 kustomization.yaml

A basic content of the kustomization file could be:

1 apiVersion: kustomize.config.k8s.io/v1beta1
2 kind: Kustomization
3 resources:
4 - myDeployment.yaml
5 - myService.yaml

As it can be seen, in order to include the files that will be managed by Kus-
tomize, they must be added as list, inresources. You have to add to the list only
those files that you want Kustomize to manage(e.g. only myDeployment.yaml or
myService.yaml could have been added).
A kustomization file can contain a huge amount of fields, which can be divided in
four big categories:

• Resources: the existing resources that are to be customized, like Deployments,
Services, CRDs;

• Generators: what new resources should be created. In this set for instance
there is the secretGenerator, which allows the creation of k8s secrets;

18

Background

• Transformers: they transform resources (e.g. change the container image of
a specific pod);

• Meta: they are fields used to influence the three categories above.

In these sections only some fields will be inspected (i.e. fields that were used to
develop the thesis work solution).

2.6.2 Build Kustomize resources
Once the kustomization file is defined, in order to obtain the resources updated,
there are two different approaches. The first one is to use a specific Kustomize
command alone:

kustomize build <folder_path>

It is important to remark that the folder path must contain the kustomization
file. If it is wanted also to deploy in k8s the new resources generated, the command
is:

kustomize build <folder_path> | kubectl apply -f -

There is a second way to do the same thing. Starting with Kubernetes 1.14,
Kustomize had been integrated with kubectl. Then the command in this case is:

kubectl apply -k <folder_path>

2.6.3 Overlays
A very interesting and helpful feature of Kustomize is the concept of bases and
overlays. A base directory, is a directory that contains a kustomization file and a
set of k8s resources expressed within YAML files.
An overlay directory, is a directory with a kustomization file that refers to other
directories, called bases. An overlay may have multiple bases.
In the overlays directory, base files can be updated without touching them. It is
added a new logical layer where resources are manipulated. With this approach,
let’s suppose there is a base directory that contain basic k8s objects, which describe
an application. It can be defined an overlay directory, which customises the base
version, changing the number of replica, the namespace, the image version and so
on.
While all this is being done, the base directory is not touched and files within it
remain the same.

19

Background

Overlays Example

Assume that there is a simple application, composed by a Deployment and a Service,
and you want to deploy it on Kubernetes, using two different Docker images and
two different namespaces.

1 kustomize/
2 base/
3 myDeployment.yaml
4 myService.yaml
5 kustomization.yaml
6 overlays/
7 version1/
8 kustomization.yaml
9 version2/

10 kustomization.yaml

In the base directory there are the definitions of Deployment, Service k8s objects
and kustomization file:

1 #myDeployment.yaml
2

3 apiVersion: apps/v1
4 kind: Deployment
5 metadata:
6 name: thesis-app-dep
7 labels:
8 app: thesis-app
9 spec:

10 selector:
11 matchLabels:
12 app: thesis-app
13 template:
14 metadata:
15 labels:
16 app: thesis-app
17 spec:
18 containers:
19 - image: app-owner/thesis-app:latest
20 name: thesis-app
21 imagePullPolicy: Always
22 ports:
23 - name: http
24 containerPort: 8080

20

Background

1 #myService.yaml
2

3 apiVersion: v1
4 kind: Service
5 metadata:
6 name: service
7 labels:
8 app: thesis-app
9 spec:

10 selector:
11 app: thesis-app
12 ports:
13 - protocol: TCP
14 port: 8080
15 targetPort: 8080

1 #kustomization.yaml
2

3 apiVersion: kustomize.config.k8s.io/v1beta1
4 kind: Kustomization
5 namespace: base-ns
6 resources:
7 - myDeployment.yaml
8 - myService.yaml

In order to see the output resources, you have to build with the command kubectl
build kustomize/base. The output is:

1 #kustomize base output
2

3 apiVersion: v1
4 kind: Service
5 metadata:
6 labels:
7 app: thesis-app
8 name: service
9 namespace: base-ns

10 spec:

21

Background

11 ports:
12 - port: 8080
13 protocol: TCP
14 targetPort: 8080
15 selector:
16 app: thesis-app
17 ---
18 apiVersion: apps/v1
19 kind: Deployment
20 metadata:
21 labels:
22 app: thesis-app
23 name: thesis-app-dep
24 namespace: base-ns
25 spec:
26 selector:
27 matchLabels:
28 app: thesis-app
29 template:
30 metadata:
31 labels:
32 app: thesis-app
33 spec:
34 containers:
35 - image: app-owner/thesis-app:latest
36 imagePullPolicy: Always
37 name: thesis-app
38 ports:
39 - containerPort: 8080
40 name: http

Now, as has been said previously, the kustomization file within the folder kus-
tomize/overlays/version1/ was written with the intention of modifying the Docker
image and the namespace name. Moreover, in order to use kustomize/base/kus-
tomization.yaml as base, this must be specified in the kustomize/overlays/ver-
sion1/kustomization.yaml:

1 #kustomization.yaml within version1 directory
2

3 apiVersion: kustomize.config.k8s.io/v1beta1

22

Background

4 kind: Kustomization
5 namespace: version1-ns
6 resources:
7 - ../../base
8 images:
9 - name: app-owner/thesis-app:latest

10 newTag: custom-tag

After building, the output is:

1 #output
2

3 apiVersion: v1
4 kind: Service
5 metadata:
6 labels:
7 app: thesis-app
8 name: service
9 namespace: version1-ns

10 spec:
11 ports:
12 - port: 8080
13 protocol: TCP
14 targetPort: 8080
15 selector:
16 app: thesis-app
17 ---
18 apiVersion: apps/v1
19 kind: Deployment
20 metadata:
21 labels:
22 app: thesis-app
23 name: thesis-app-dep
24 namespace: version1-ns
25 spec:
26 selector:
27 matchLabels:
28 app: thesis-app
29 template:
30 metadata:

23

Background

31 labels:
32 app: thesis-app
33 spec:
34 containers:
35 - image: app-owner/thesis-app:custom-tag
36 imagePullPolicy: Always
37 name: thesis-app
38 ports:
39 - containerPort: 8080
40 name: http

As it can be seen, the namespace and the image tag has changed as expected.
It is important to remember that the resources within base directory, have not
been touched during these steps. A different customisation could be generated for
version2 folder.

2.6.4 secretGenerator
Secret resources can be easily generated in the kustomization file thanks to the
secretGenerator field. The same is for configMapGenerator. Each entry in the list
corresponds to a secret resource. Secrets can be generated from files, literals or
environment variables.

2.6.5 images update
kustomization file includes "images" field, which contains a list of images that can
be modified. For each existing image, users can modify the name, tag or digest.
"images" only updates existing images and it does not create new ones. In order to
point a specific image, the fieldname must be the name of an existing image.

1 # myDeployment.yaml
2

3 apiVersion: apps/v1
4 kind: Deployment
5 metadata:
6 name: dep
7 spec:
8 template:
9 spec:

10 containers:

24

Background

11 - name: mynginx
12 image: nginx:1.7.0

1 # kustomization.yaml
2

3 apiVersion: kustomize.config.k8s.io/v1beta1
4 kind: Kustomization
5 images:
6 - name: mynginx
7 newName: mynginx-newName
8 newTag: newTag
9 resources:

10 - deployment.yaml

1 # output result
2

3 apiVersion: apps/v1
4 kind: Deployment
5 metadata:
6 name: dep
7 spec:
8 template:
9 spec:

10 containers:
11 - image: mynginx-newName
12 name: newTag

2.6.6 Patches
In the previous sections it has been shown how to update resource values like the
namespace or the images and how to add secrets. If users want to operate in a
more specific way, adding or overriding fields on existing resources, they must use
patches field in kustomization file.
This field contains a list of patches to be applied to the resources. There are two
different ways to patch a resource: strategic merge patch and JSON patch. Only the
JSON patch will be discussed here, as it is the approach used in the thesis work.

25

Background

In general, patches field contain a list of element:

1 # patches field example
2

3 patches:
4 - path: backend_backend-dep_deployment_patch.yaml
5 target:
6 labelSelector: tier=backend
7 name: backend-dep
8 - path: frontend_frontend-service_service_patch.yaml
9 target:

10 labelSelector: tier=frontend
11 name: frontend-service

The path field identifies a file containing a list of entries which follow the json
6902 standard. The target field is used to select one or more YAML files to apply
the customisations indicated in the file which is the path value.
Since target can include multiple fields for filtering, the selected resources are all
those that match all fields. In the example, name identifies themetadata.name of the
resource, while labelSelector identifies one of the labels expressed in metadata.labels.
The resource that are pointed are those in the base directory.

1 # json 6902 file example
2

3 - op: add
4 path: /spec/replicas
5 value: 1
6 - op: add
7 path: /spec/template/spec/containers/0/env
8 value:
9 - name: MYSQL_ROOT_PASSWORD

10 valueFrom:
11 secretKeyRef:
12 key: MYSQL_ROOT_PASSWORD
13 name: db-db-dep
14 - name: MYSQL_DATABASE
15 valueFrom:
16 secretKeyRef:
17 key: MYSQL_DATABASE
18 name: db-db-dep

26

Background

Every entry is composed by:

• op: this field can assume different values, like add, remove, replace, etc.
The most interesting is add, as this is enough to do everything necessary on
resources. The add operation adds (if the target does not exist) or replaces (if
the target exists) the value in the target location [18].

• path: this field indicates the target object within the YAML file.

• value: this field indicates the value to be taken by the object indicated in the
path.

27

Background

2.7 GitHub Actions
GitHub Actions is a tool provided by GitHub that implements workflows, with
whom CI/CD pipelines can be created [19]. Each workflow is represented by a
YAML file, that must be created into .github/workflows/ path. This path must be
within the GitHub repository.
Workflows can be triggered by many events, like push, deletion of a branch, merging
of a pull request, etc. A workflow can be triggered also by another workflow, which
may be in the same repository or in a different one. An example of a workflow
could be the following:

1 name: push-backend
2 on:
3 push:
4 branches:
5 - 'master'
6 - 'features/**'
7 - 'releases/**'
8 jobs:
9 setup:

10 name: Setup
11 runs-on: ubuntu-latest
12 steps:
13 - name: Checkout code
14 uses: actions/checkout@v2
15 # ...

• name identifies the name of the workflow.

• on it is used to choose which events trigger the workflow. In this specific
case, the workflow "push-backend" is triggered by push on one of the listed
branches.

• jobs contains one or more jobs. Each job inside "jobs" contains several actions
which will be executed. In that example, "Setup" is a job.

• runs-on specifies in which running environment the job has to be exe-
cuted. There are multiple choices, including "ubuntu-latest", "macos-latest" or
"windows-latest".

• steps are the tasks inside a job. Each step can run commands, actions within
the repository, setup tasks, etc.

28

Chapter 3

Towards GitOps

3.1 Git
Git is an open source distributed version control system [20]. It is principally used
for managing source code in software projects, but it can also be used for generic
files.

Version Control

Version control is a system that records changes to one or multiple files. Versions
are always accessible and if a user wants to return to a previous state of files
handled by Git, he can do it.

Distributed Version Control System

Firstly, there was the Local Version Control System, an approach that had a simple
database that kept all the changes to a file under revision control. The evolution
was the Centralized Version Control System, that added the collaboration feature.
This feature is achieved thanks to a single centralized server that contains all the
versioned files. But this solution has the problem of the single point of failure.
If the centralized server goes down for an hour, nobody can work on it. Then, there
is the Distributed Version Control System, that is the approach used by Git. With
this solution, users don’t just check out the latest snapshot of the files, but they
clone the entire repository, with the entire history. In this case, if the server goes
down, every collaborator has locally a full backup of data.

Git treats its data like a series of snapshots, taking a picture at every commit of
what all files look like and stores a reference to that snapshot. If the files have not
changed, Git does not store them again, but uses just a link to the previous ones it

29

Towards GitOps

has already stored, for efficiency reasons.
To share a user’s work with other team members, it is needed to connect to the
repository located on a remote server on the network. The remote repository has
the complete history of all files.

File states

There are three main states that files can reside in: modified, staged, and committed.

• Modified means that it has been changed files but they have not been com-
mitted on the local database;

• Staged means that it has been marked a modified file in its current version to
go into next commit snapshot;

• Committed means that the data is safely stored in local database.

Commit

A commit is a list of all changes since the parent commit, it is like a snapshot.
Moreover, commits have associated some metadata information, like a unique id
that identify the commit within the repository. Every commit must by described
by a message, which should describe the changes.

Branch

A branch is just a stream of consecutive commits. It is nothing more than a pointer
to a certain commit.
A new branch can be "branched" from any commit, creating a separate branch
from that point forward.
It is a stream of one or more contiguous commits. Generally, there is always a
starting branch, called master.

30

Towards GitOps

3.2 DevOps
DevOps is nothing but a set of philosophies, practices, and tools that help an
organisation to deliver better products faster by facilitating an integration of the
development and operations functions [21].
The word DevOps is a combination of the terms development and operations,
meant to represent a collaborative or shared approach to the tasks performed by a
company’s application development and IT operations teams.

The concept of DevOps emerged out of a discussion between Andrew Clay and
Patrick Debois in 2008. They were concerned about the drawbacks of Agile and
wanted to come up with a solution [22].

3.2.1 Principles
DevOps is associated with a series of principles [23].

Automation

Automating as much as possible is a DevOps key feature. Automation includes
development, testing, configuration and deployment operations. It allows for no
human errors, if it is implemented correctly, gaining in reliability.
Moreover, there is a gain also in agility and repeatability. Developers and operations
teams can concentrate on other processes, such as adding value and quality to the
product.

Continuous Integration

Since developers push code changes frequently, it is convenient to automate the
process of building and testing. This is done by Continuous Integration, imple-
mented through pipelines. It allows to detect bugs early and to maintain code in a
state that can be deployed effortlessly.

Continuous Deployment/Delivery

It is a consequence of the CI. When the pipeline builds and tests the code changes,
Continuous Deployment/Delivery deploys to production that changes, always in an
automatic way.
It allows faster time to market, steady deployment process and reliable rollbacks.
Continuous Delivery and Continuous Deployment are similar concepts, often con-
fused. Both share the acronym CD and can be used with CI. The biggest difference
concerns the deployment process.

31

Towards GitOps

In Continuous Delivery, code flows automatically through multiple steps to prepare
it for production deployment, but does not automatically go live. The code changes
must first be manually approved.
Instead, in Continuous Deployment, the code is automatically released into a live
production environment, monitoring if the new deployed environment presents
problem. In that case a rollback is made.

Infrastructure as Code

IaC allows to manage and provision IT infrastructure through code and automation.
Benefits are consistent resource creation and management, reusability, scalability,
self-documented infrastructure and simplification of complex infrastructures.
"Infrastructure as Code is the management of infrastructure in a descriptive model,
using the same versioning as DevOps team uses for source code" [24].
IaC model generates always the same environment every time it is applied, like
a source code, which generates always the same binary every time it is compiled.
Without IaC, each target environment must be treated individually, which becomes
an hard and complex task, especially if there are many different targets.

Continuous Monitoring

This practice ensures that the application runs without problems, collecting data
about the performance and the stability of services, systems and infrastructures. It
allows to detect problems, in order to make fast recovery.

Containers

If possible, it is better to use containers instead of virtual machines, because of
lightness and deployment rapidity. Moreover, a container can be tested easily.

3.2.2 DevOps benefits
Some benefits are:

• fewer silos and increased communication between IT groups;

• faster time to market for software;

• rapid improvement based on feedback;

• less downtime;

• improvement to the whole software delivery pipeline through builds, validation
and deployment;

32

Towards GitOps

Figure 3.1: DevOps Process [25]

• less manual work, thanks to automation;

3.2.3 DevOps tools
In general, users can rely on CI/CD pipeline, containers and cloud hosting. These
tools can be open source, proprietary or supported distributions of open source
technology.

• Code repositories: version-controlled source code repositories enable multi-
ple developers to work on code and rollback to a previous version of code if
needed. Moreover, tracking allows to check changes. GitHub, GitLab, can be
two of multiple other choices.

• Artifact repositories: source code is compiled into artifacts for testing. Also
artifacts should be collected into repositories, like JFrog.

• CI/CD pipeline: they enable to validate and deliver application to the end
user through automation during the development lifecycle.
Continuous Integration tool initializes processes so that developers can create,
test and validate code in a shared repository.
Continuous Delivery extends these automatic steps through production-level
tests and configuration setups for release management.
Continuous Deployment does something more, invoking tests, configuration
and provisioning, as well as monitoring and potential rollback capabilities.
Common tools are Jenkins, GitLab CI, CircleCI, GitHub Actions.

• Configuration Management: Puppet, Chef, Ansible.

• Monitoring: Dynatrace, Prometheus. They are used to observe the perfor-
mance and security of code releases.

33

Towards GitOps

3.3 GitOps
GitOps was introduced by Weaveworks in 2017. It is a paradigm or a set of
practices, which was primarily designed to do Kubernetes cluster management
and application delivery. More generally, it can be considered as a cloud native
paradigm, strictly related to the continuous delivery process. GitOps is focused on
Git as a single source of truth. As it will be seen later, GitOps leverages the many
feature and benefits of Git.
It is a developer-centric approach, since developers are familiar with Git and using
it to manage infrastructure, makes everything easier. The Git repository contains
a declarative description of the infrastructure desired, then it can be called "infras-
tructure repository". GitOps embraces the IaC pattern, placing it in a cloud native
context and combining it with the concepts of orchestration, observability, declara-
tivity and immutable infrastructures. One of the aims of GitOps is to automate the
deployment process of what is inside the infrastructure repository. But that is not
all, as it is also wanted to automate the synchronization process between the de-
sired state (contained within the Git repository) and the live state (deployed on k8s).

Therefore, it is an operating model for k8s (or other cloud native technologies),
for building cloud native applications. Not only does GitOps provide best practices
that unify deployment, management and monitoring for containerized applications,
but also provides the developer with a better experience for managing applications.

3.3.1 Principles
There are principles to follow if it is wanted to use GitOps:

• Declarative approach: declarative means that configuration is guaranteed
by a set of facts instead of a set of instruction. Everything must be described
in a declarative way and must stay in a Git repository. GitOps was created to
be applied to k8s, which uses a predominantly declarative approach. Therefore,
it is good that GitOps also follows the same methodology.

• Desired state versioned: the desired system state must stay in a Git
repository. Since Git is a version control system, the infrastructure repository
contains the history of the infrastructure. There is a single place from which
everything is derived and driven. It is easy to rollback the infrastructure to a
previous state.

• Changes automatically applied: the desired state is described in the Git
repository. Every time it changes, also the desired state changes. When
the change takes place, the system automatically synchronizes with the new

34

Towards GitOps

desired state. The most remarkable feature is that the user does not need
cluster credentials to make that change.

• Software agents to ensure correctness and alert on divergence: once
the state of the system is declared and kept under version control, software
agents can inform the user whenever the live state does not match the desired
expectations and eventually they could make Continuous Deployment, syn-
chronising the live state. The use of agents also ensures that the entire system
is self-healing.
Self-healing reinforces the mechanisms already present in k8s.
The software agents act as the feedback and control loop for the operations.

3.3.2 Benefits
The benefits of applying GitOps best practices are:

• Stored history of infrastructure changes: as the application infrastruc-
ture can only be changed by performing updates in the Git repository, all
changes are recorded.

• Productivity: Continuous Deployment automation with an integrated feed-
back control loop speeds up the mean time to deployment. Development
and operations teams can ship 30-100 times more changes per day, increasing
overall development output 2-3 times [26]. If the user needs a new environment
or wants to update an existing one, he just has to modify the Git repository
by pushing updates. There is no need to write scripts for Continuous Delivery.

• Better Developer Experience: developers can use familiar tools like Git
for managing infrastructure. It is not needed to know k8s in details.
Furthermore, each team member can check the repository and better under-
stand the changes, leveraging verbose commits and documentation, which
should be written by other team members.

• Stability: Git repository can be used as a external audit log source, since it
contains all cluster changes. It can be known who did what and when, and
this can be used to meet SOC 2 compliance.

• Decoupling CI from CD: GitOps offers flexibility in the choice of tools.
There are GitOps tools like Flux or ArgoCD, which synchronise the infras-
tructure repository with the live state on Kubernetes (CD). These tools can
be used independently with GitHub Actions, GitLab CI, etc. (CI) without
any kind of constraint.

35

Towards GitOps

• Reliability: Git repository allows to easily rollback the infrastructure. Be-
cause the entire system is described in Git, there is a single source of truth
from which to recover after a meltdown, reducing the mean time to recovery
(MTTR) from hours to minutes.

• Reduction of human error: infrastructure is completely described in YAML
files, declaratively. If files are written properly, the output is always the same.

• Approval process: if the company uses tool like GitHub or GitLab, it could
rely on the approval mechanism of these tools (pull requests). Some critical
branches such as production could pass through a more fine-grained process
of acceptance and review. Other branches, such as feature branches, may be
subject to fewer controls, being less critical.

• Consistency and Standardization: GitOps provides a consistent and
standardized end-to-end workflow across the entire organization.

• Security: Git’s strong correctness and security guarantees, backed by the
strong cryptography used to track and manage changes, as well as the ability
to sign changes to prove authorship and origin is key to a secure definition of
the desired state of the cluster.

3.3.3 Tools
GitOps provides the freedom to use different tools to implement the CI/CD pipeline,
there are not strict rules. Open source or proprietary tools can be choosen. The
three main tools GitOps native, which provide the continuous delivery, are the
following:

• ArgoCD;

• Flux;

• Jenkins X.

It is important to understand that GitOps provides a solution for the Continuous
Delivery or Deployment. In order to develop a complete solution, considering
Continuous Integration also, other tools must flank the GitOps CD tool, like
Jenkins, GitLabCI, Github Actions.
It can be used a k8s controller that implements the operator pattern, to listen for
and synchronize deployments to the k8s cluster (e.g. ArgoCD). This solution is
more secure and automates the complex task to update YAML files. It allows to
achieve Continuous Deployment, because when there are differences between the
desired state (Git repository) and the live one, the operator synchronizes the live
state.

36

Towards GitOps

3.3.4 Push-based pipeline
A push-based pipeline means that code starts with the Continuous Integration
steps and could continue its path through a series of scripts or uses kubectl by
hand to push changes to the k8s cluster. This is the standard CI/CD approach
nowadays.

Figure 3.2: Push-based pipeline [27]

This is not the best option, since the deployment is not declarative. Moreover,
the CI/CD pipeline must contain the k8s cluster credential and it is a risk. Finally,
the disadvantage of this approach is that the live state does not synchronize with
the desired one automatically, since there is not a k8s operator like ArgoCD or
Flux.

3.3.5 Pull-based pipeline
The pull-based pipeline has the same CI implementation of the pull-based one,
but it differs from how the continuous deployment is implemented. An operator
is introduced here, like ArgoCD or Flux. It takes over the role of the pipeline
by continuously comparing the desired state in the infrastructure repository with
the live state in the k8s cluster. Whenever differences are noticed, the operator
updates the infrastructure to match the live state. Additionally, the image registry
can be monitored to find new versions and to update them. Just like the push-
based deployment, this variant updates the environment whenever the environment
repository changes.
Moreover, with the operator, changes can also be noticed in the other ways. If the
live environment deployed changes in any way not described in the infrastructure
repository, these changes are reverted. This ensures that all changes are made
traceable in the Git log, by making all direct changes to the cluster impossible.
This change in direction solves the problem of push-based deployments, where the
environment is only updated when the infrastructure repository changes. Since the
operator compares the live state with the desired one, the k8s cluster credential

37

Towards GitOps

are not supplied to the pipeline.

Figure 3.3: Pull-based pipeline [28]

38

Chapter 4

Argo CD

4.1 Introduction
ArgoCD is a declarative, GitOps continuous delivery tool used in Kubernetes.
Application definitions, configurations, and environments should be declarative and
version controlled. Application deployment and lifecycle management should be
automated, auditable, and easy to understand [29].
ArgoCD fully embraces the GitOps approach, then, it is used alongside of Git
repositories, as unique source of truth. As collateral effect, the user benefits from
version control, which is an intrinsic Git feature.
Moreover, it is a cloud native tool, since it is designed to be a Kubernetes operator.
It is a relatively new technology, since the first release was published on March
2018. The main goal of this technology is to automate the deployment process of
applications.

4.2 How it works?
In a nutshell, if you want to deploy an application into the Kubernetes cluster, you
can create an ArgoCD manifest that is a declarative yaml file. Inside it, You must
specify the remote Git repository you want to connect. The repository might be
a Github repository or a GitLab repository and so on, it is not important which
one is used, as the the ArgoCD manifest only needs the https URL to perform
the connection. Inside the repository, the k8s manifests can be specified in several
ways, like kustomize application, helm charts, ksonnet applications, plain yaml/json
files, ksonnet applications or a custom management tool. Another fundamental
parameter that must be specified is the destination clusters, where the application
is expected to be deployed.
The ArgoCD manifest can be deployed on kubernetes. It represents a Custom

39

Argo CD

Resource Definition and it is called Application. The Git repository connected to
the Application, contains all the necessary yaml files that allow the application to
be deployed within the k8s cluster.
Once the application is deployed, ArgoCD checks for any changes within the repos-
itory. If it finds updates, automatically it will keep the deployed application in the
desired remote state.
For instance, if an user decides to increase the number of replicas of a specific
kubernetes Deployment object, he can make it directly on the Git repository,
committing and pushing the change in the specific yaml file. ArgoCD will notice
inside the repository and converges the Deployment to the desired state, increasing
the number of replicas.

Figure 4.1: ArgoCD keeps the live state synchronised with the desired state

ArgoCD is implemented as a Kubernetes controller, which monitors running
application and compares the current state against the desired target state, where
the desired state is represented by yaml files in the Git repository. When a deployed
application differs from the desired target state, it is defined as “OutOfSync”. On
the other hand, when there are not differences, it is defined as “Sync”. The process
of synchronization can be automatic or manual, the user can choose the preferred
modality, for each Application (e.g. Application1 can be synchronized automatically
and Application2 manually).

40

Argo CD

4.3 Why ArgoCD?
4.3.1 ArgoCD vs other solutions
Nowadays there are plenty of tools that can be used for generic CI/CD, like GitLab
CI, GitHub Actions, Jenkins. But these tools originated before the coming of
GitOps approach. GitOps was originally created to handle infrastructure files only
through Git, by leveraging on the already existing IaC approach. When the Git
repository changes, as a result of a commit, the live state should converge to the
desired one. Then, deployment process is separated from the CI process, since it
springs from a change in the Git repository and not necessarily from a natural
consequence of CI steps.
ArgoCD, Flux and Jenkins X instead, follow the GitOps paradigm. They have
common goals but also different features, since they are built to cover different
use-cases [30].

FluxCD is a small and lightweight component. It is the simplest, without many
features. It can run with very limited RBAC permissions. A Flux instance can
only observe one repository, which makes the tool a bit awkward, if you want to
manage a huge number of applications.

Jenkins X collects together a great number of tools to build a development work-
flow around repositories in GitHub. It can run Continuous Integration pipelines
also. It manages deployments based on changes in Git repositories.

ArgoCD can manage deployments for multiple applications in different clusters.
It runs with cluster-wide permissions in the cluster but also manages access and
permissions for teams and projects. It has a intuitive web UI, very complete and
useful. It can be used for monitoring, provisioning and other actions. Moreover,
ArgoCD offers additional features that may be useful.

ArgoCD was chosen for several reasons:

• Web UI: the user interface is simple, expressive and allows users to monitor
and interact with applications. The monitoring is in real time.

• Multi-tenancy: among all the solutions, it is the one that best manages
multi-tenancy.

• Trivial installation and configuration.

• With one instance you can manage multiple Git repositories and deploy in
multiple clusters, with minimal configuration effort.

41

Argo CD

ArgoCD Flux Jenkins X
Sync desired state - live state :) :) :)

Run on k8s natively :) :) :)
Single instance in multicluster environment :) :(:|

Watching multiple repositories :) :(:)
Multi-tenancy :) :(:|
Mutli-cluster :) :| :|
Native web UI :) :(:(

Kustomize support :) :) :(
GitOps to maintain toll itself :) :(:)
Straightforward usability :) :) :|

CI :(:(:)
CD :) :) :)

Market Presence :) :| :|

Table 4.1: Tools comparison

• All known companies that have implemented the GitOps approach have chosen
ArgoCD, which is therefore the tool with the greatest market presence.

4.3.2 Why not a CI/CD pipeline?
Generally CI pipeline is triggered by a change in the source code. Once the CI
steps are finished, the pipeline executes commands through kubectl, to apply the
changes within the Kubernetes cluster. These are imperative commands to reach
the desired state. Since one of the GitOps principles is the declarative approach to
describing the infrastructures, in order to follow the IaC model, it is good that all
the tools associated with GitOps, are declarative too.
Moreover, the CD steps can be removed from the pipeline, switching from a push
based to a pull based pipeline. This goal can be achieved through an external tool,
ArgoCD, which detects the drift in Git repository and manages CD autonomously.

Finally, ArgoCD provides out of the box an interesting series of features that a
standard CI/CD pipeline cannot provide. On the other hand, ArgoCD only deals
with CD. If you want to integrate CI also, another tool is needed for that purpose.

4.3.3 Features
ArgoCD tool has a multitude of features and customizable parameters. Here the
most interesting:

42

Argo CD

ArgoCD GitHub Actions
Purely declarative :) :(

K8s native :) :(
Rollbacks :) :(

No exposure of credentials
outside the cluster :) :(

Agnostic with respect
to git-like repositories :) :(

Auto-sync if live state differs
from the desired one :) :(

CI :(:)
CD :) :)

Table 4.2: ArgoCD vs CI/CD tool.

• Once ArgoCD is installed in one k8s cluster, external clusters can be bound
to it. Then, you can choose in which clusters to deploy the k8s objects that
are in the Git repository pointed by the ArgoCD Application.

• Web UI is a really simple and intuitive, which allows you to do a lot of things,
like creating or deleting an Application. Moreover it is useful to monitor
applications in real-time (see figure 4.2).

• Thanks to Git, the history of the deployed infrastructure is maintained. It is
possible to rollback to a previous state, using commits. It can be also done
directly from the UI.

• RBAC and Multi-tenancy policies.

• Support for management and templating tools like Kustomize, Helm, Jsonnet,
Ksonnet.

• Exposure of Prometheus metrics.

• A single instance of ArgoCD can handle many applications of different teams
thanks to the Project CRD. A Project object can hold multiple Applications
and this abstraction fits well with the team logic concept. Members of a
team will only see the Projects assigned to them, then, only the applications
associated with the Projects. This model is very similar to the k8s namespaces.

43

Argo CD

Figure 4.2: ArgoCD web UI example

4.3.4 ArgoCD Architecture

Figure 4.3: ArgoCD Architecture [31]

Once argoCD is deployed in the Kubernetes cluster, with its own namespace
“argocd”, running:

$ kubectl get pods -n argocd

The output is:

44

Argo CD

NAME READY STATUS RESTARTS
argocd-application-controller-0 1/1 Running 0
argocd-dex-server-748c65b578-cmtr4 1/1 Running 0
argocd-redis-6fb68d9df5-6m28h 1/1 Running 0
argocd-repo-server-64f4ddf469-td8nb 1/1 Running 0
argocd-server-846cf6844-h72v5 1/1 Running 0

ArgoCD Server

It is the pod that represent the API server, that is a gRPC/REST server. It exposes
the API, that can be consumed by CLI, Web UI and CI/CD systems.

ArgoCD Repo Server

It is an internal service. It maintains a local cache of the Git repository, holding
manifests that describe applications.

ArgoCD Application Controller

It is a Kubernetes controller, which given the deployed applications, compares the
live state with the desired one. It also takes corrective actions in order to sync the
live state.

ArgoCD Dex Server

It uses an in-memory database.

ArgoCD Redis

Redis is an open source (BSD licensed), in-memory data structure store, used as
a database, cache, and message broker. In this case, it is pre-configured with the
understanding of only three total redis servers/sentinels.

4.4 Application
The Application CRD is the Kubernetes resource object representing a deployed
application instance in an k8s cluster.

1 apiVersion: argoproj.io/v1alpha1
2 kind: Application
3 metadata:

45

Argo CD

4 finalizers:
5 - resources-finalizer.argocd.argoproj.io
6 name: thesis-demo-prod-in-cluster
7 namespace: argocd
8 spec:
9 project: default

10 source:
11 path: kustomize/overlays/prod/
12 repoURL: https://github.com/owner/thesis-demo-infrastructure.git
13 targetRevision: HEAD
14 destination:
15 name: in-cluster
16 namespace: thesis-demo-prod
17 syncPolicy:
18 automated:
19 allowEmpty: true
20 prune: true
21 selfHeal: true
22 syncOptions:
23 - CreateNamespace=true

As it can be seen in the above manifest it is written in YAML language. This
is an extended example, since the basic information that generally you write in
the manifest are fewer. In any case, it is interesting to inspect the content of this
Application manifest:

• metadata.finalizers.[0].resources-finalizer.argocd.argoproj.io: allows
cascading deletion of resources. When this manifest is deleted from ArgoCD,
all the associated resources are deleted automatically. Without this finalizer,
only the app would be deleted, leaving the resources deployed on k8s.

• metadata.name: is the name of the Application inside an ArgoCD instance.
It must be unique.

• metadata.namespace: must be the same namespace where ArgoCD has
been installed, generally "argocd".

• spec.project: is the project the application belongs to.

• spec.source.repoURL: is the git repository URL, to which the application
is bound to. It is the source of the application manifests.

• spec.source.path: is the relative path inside the repository where there are
the application manifests.

• spec.source.targetRevision: is the symbolic reference (typically HEAD).

46

Argo CD

• spec.destination.name: is the cluster name where the application is to be
deployed. Alternatively, it can be used spec.destination.server, which contains
the cluster URL, but it is less intuitive (e.g. https://kubernetes.default.svc).

• spec.destination.namespace: is the namespace of the k8s resources when
deployed.

• syncPolicy.automated.prune: by default, automated sync will not delete
resources when Argo CD detects the resource is no longer defined in the Git
repository. To prune the resources, a manual sync can always be performed,
with pruning button checked. But if this key is set to true, the pruning
mechanism is done automatically as part of the automated sync.

• syncPolicy.automated.allowEmpty: by default, automated sync with
prune set to true have a protection from any automation/human errors when
there are no target resources. It prevents application from having empty re-
sources. To allow applications have empty resources, it must be set allowEmpty
key to true.

• syncPolicy.automated.selfHeal: specifies if partial app sync should be
executed when resources are changed only in target Kubernetes cluster and no
git change detected. If, after the auto-sync, there is a difference between live
and desired state, the live state is converged to the desired one. By default, it
is set to false.

• syncPolicy.syncOptions.[0].CreateNamespace: ensures that namespace
specified as the application destination exists in the destination cluster. If it
does not exist, it is created.

The Application can be created with ArgoCD CLI, kubectl or through web UI.

1 $ kubectl apply -n argocd -f <filename or URL to k8s manifest for the app>
2

3 $ argocd app create APPNAME --file <filename or URL to k8s manifest for the app>

The same applies to cancellation.

1 $ kubectl delete -n argocd -f <filename or URL to k8s manifest for the app>
2

3 $ argocd app delete APPNAME

47

Argo CD

4.5 Project
The AppProject CRD is the Kubernetes resource object representing a logical
grouping of applications. It is defined by the following key pieces of information:

• sourceRepos: is the reference to the repositories that applications within
the project can pull manifests from.

• destinations: is the reference to clusters and namespaces that application
within the project can deploy into.

• roles: list of entities with definitions of their access to resources within the
project.

4.6 App of Apps
This is a pattern that allows an app to create other apps, which in turn can create
other apps. This allows the user to declaratively manage a group of app that can
be deployed and configured together. It can be useful if it is wanted to deploy
multiple environment related to the same application.
The idea is to apply an Application resource manifest. This Application, which
we call X, points to a relative path in a remote Git repository, which contains one
or more Application manifests. Every Application manifest within this repository
points in turn to other relative paths in other repositories. Therefore, running
the kubectl apply command on X, automatically ArgoCD deploys all the other
applications. When a manifest is added, removed or updated, within the repository
pointed by X, ArgoCD takes care of adding, removing or updating the Application
on the live state on Kubernetes.

4.7 High Availability
Argo CD is largely stateless, all data is persisted as Kubernetes objects, which
in turn is stored in Kubernetes’ etcd. Redis is only used as a throw-away cache
and can be lost. When lost, it will be rebuilt without loss of service. A set HA of
manifests are provided for users who wish to run Argo CD in a highly available
manner. This runs more containers, and run Redis in HA mode.

4.8 Disaster Recovery
You can use argocd-util to import and export all Argo CD data.

48

Chapter 5

Solution

5.1 Introduction

DevOps was conceived to answer to the problem of co-operation between developer
and operations teams. Thanks to DevOps, a lot of thing changed in better, but
there are still improvements that can be made.
In a company, when a software project is developed in a hybrid cloud environment,
there is still the issue of provisioning and managing of infrastructures. If a developer
requires an environment on Kubernetes to develop a new feature, he has to ask an
employee of the operations team to do it. From the moment the request is made,
several days or even weeks may pass before the environment is provisioned. It
happens because of the necessary approval steps.
Then, the operations employee schedules the commitment and when the time comes,
additional time is needed to do the provisioning. Generally, it is not an automated
process, then it requires time to be done.
After provisioning, the environment should require modifications, i.e. infrastructure
parameters, new version of Docker images, different clusters where to deploy the
environment. Also this task requires time. It would be nice if the developer could
manage this process more autonomously.
The starting point toward this goal is the GitOps approach, because it is developer-
centric. Shortly, GitOps could be seen as a union of Git tool (well-known by
developers) and DevOps practices. It has been chosen GitOps also for its cloud
native purpose, because hybrid cloud is increasingly becoming common as a business
solution.
Moreover, there is a need for a company to have an improved approach to the
infrastructural management of Kubernetes environments. Also in this case, GitOps
may be the answer, since it is focused on the infrastructure automation and
maintenance.

49

Solution

5.2 Business Case
The business case concerns a company that wants to develop and maintain a full
stack application. The full stack application is composed by the backend and
frontend. The company wants to leverage a hybrid cloud environment, with an
on-premise cluster and a cluster of a cloud service provider, in order to have more
flexibility, redundancy and deployment options. These are not stringent constraints,
since other operational choices could be made (e.g. multiple public cloud cluster
that belongs to different cloud service providers).
When developing a project, you want to add new features, testing new releases and
update the production environment.
The idea is to give developers a strong independence from the operations team. A
developer should create, update and delete Kubernetes environments on demand,
automatically, modifying them as needed.
The problem is that the operations team can’t give to developers the access rights
to operate freely on infrastructure. Therefore, a solution must be developed that
allows the operations team to provide developers with a secure and controlled tool
to access and interact with infrastructure repositories. During the thesis work, a
possible solution was developed and proposed.

50

Solution

5.3 Branching strategy
5.3.1 Introduction
If a company starts to work on a new software project and it decides to rely on Git,
one of the very first steps is to define a valid and consistent branching strategy.
In Git, a branch represents a pointer to a commit. It is a useful abstraction for the
edit, stage and commit processes.

Figure 5.1: master and release branches point to two different commits

When a Git project is created, a default branch must be defined, typically called
master. After creating the master branch, multiple other branches may be created,
with a unique name inside the project. The branching strategy is nothing more
than a structured solution of branches managing.

5.3.2 Git Flow branching strategy
Being that the thesis work focuses on the use case of developing a full stack
application, consisting of frontend and backend, the Git Flow branching strategy
has been chosen [32]. Although the thesis work is predominantly inspired by this
model, some minor modifications and variations have been introduced, as they
were considered appropriate.

This strategy was created by Vincent Driessen in 2010.
These are the branches involved:

• master ;

51

Solution

Figure 5.2: Branching strategy [33]

• develop;

• features/** ;

• releases/** ;

• hotfix/** ;

5.3.3 Branches
There are only two branches created at the beginning of the repository creation
and with an infinite lifetime: master and develop. The master branch contains the

52

Solution

source code that reflects the production-ready state.
The develop branch is the "operative" branch. From that branch, features and
releases branch are forked. When it reaches a stable point, after that one or more
feature branches have been merged with develop, a release branch can be branched
off.

Feature, release and hotfix branches have a limited lifetime, being that once they
are terminated and merged back to the right branch, as a result of a pull request,
they are deleted.
Each one of these branches have a specific purpose and is bound to strict rules,
such as from which branches it can originate or into which branches it must be
merged back.

Feature branches

• This kind of branches are branched off from the develop branch.

• Once they are completed, they are merged back into the develop branch.

• Conventionally, the branch naming convention is features/** (e.g. features/first-
feature, features/myFeature). "**" can be replaced by any other value except
"/".

Feature branches are used to develop new features that will be included in the
next release. When the development of a feature starts, the target release in which
this feature will be incorporated may be known or already unknown. Substantially,
a feature branch exists as long as the feature is in development, but after it is
merged back into the develop branch, it is deleted.
A developer can pull that branch from remote and work on it locally.
But when he wants to test progress, he must push commits, in order to trigger the
pipeline, which generate the new Docker image and update the k8s environment.
The branch creation can be made locally or remotely.
If it is done locally and the developer wants the k8s environment to be created, he
must push the feature branch to origin, to trigger the pipeline.

Locally creation of a feature branch
$ git checkout -b features/myFeature develop

A feature branch can only be merged back to the develop branch by means of a
pull request.

53

Solution

Release branches

• This kind of branches are branched off from the develop branch.

• Once they are completed, they are merged back into the master branch. When
the merge is done, the "master" branch must be merged to the "develop"
branch, to ensure that they remain aligned.

• Conventionally, the branch naming convention is releases/** (e.g. releases/first-
release, features/release1). "**" can be replaced with any other value except
"/".

Release branches support the preparation of a new production release. The
release is tested to see that everything works properly, before opening the pull
request.
It allows for minor bug fixes, since it is expected that all new implemented features
have already been tested. But, if a release incorporates several feature branches,
it can be tested whether they, as a whole, work as expected. The key moment to
branch off a new release branch from develop is when the develop branch reflects
what you would like to have in the new release.
The release branch exists until it is merged back into the master branch.
Unlike feature branches, a release branch must be created directly on the remote
repository, since everyone must know of its existence. Moreover, also in this case,
it is necessary to create the environment on k8s, in order to start tests and the
environment is created at the end of the workflows, so it must stay in the remote
repository. From this point, a developer can pull locally that branch in order to
fix bugs. A wise use of issue must be made, in order to avoid more than one
developer fixing the same bugs. After the changes have been made, the developer
must remotely push the changes, to update the Kubernetes environment and to
continue to test it. When the release is ready, the pull request can be opened. After
proper reviews, the pull request is merged to the master branch. Since the develop
branch must reflects the master one, develop branch is rebased with master branch.

HotFix branches

• This kind of branches are branched off from the master branch.

• Once they are completed, they are merged back into the master branch.

• Conventionally, the branch naming convention is hotfix/** (e.g. hotfix/fast-
hotfix, features/hotfix1). "**" can be replaced with any other value except
"/".

54

Solution

Hotfix branches are very much like release branches, since they are also meant
to prepare for a new production release, albeit unplanned. They arise from the
necessity to act immediately upon an undesired state of a live production version.
When a critical bug in a production version must be resolved immediately, a hotfix
branch may be branched off from the corresponding tag on the master branch that
marks the production version.

When the hotfix is resolved, a pull request is opened and the hotfix branch is
merged back to "master" branch. Now, there are two different scenarios:

• If a release branch exists, it is rebased with the master branch.

• If a release branch does not exist, the change is rebased on the develop branch.

Tag Strategy

The master branch, which reflects the production state, must be tagged properly
with version numbers. The tag is composed by a major and a minor numbers and
it is written in that formvX.Y (e.g. v2.4). The tag approach is as follows:

• When the master branch is created, there is no version.

• At the end of the first release, the master branch is tagged with v0.1.

After the first release:

• When a new release is merged, the major number increases by one and the
minor number is set to 0 (e.g. from v1.1 to v2.0).

• When a new hotfix is merged, the major number remains the same, whereas
the minor grows by 1 (e.g. from v1.1 to v1.2).

55

Solution

5.4 input file
As it has been said at the beginning of this chapter, developers should be more
free to operate on infrastructure files.

Figure 5.3: How input file is applied

The input file is written in YAML language and is the controlled access point,
which allows developers (but not only them) to edit infrastructural YAML files.
We will look in detail at all the fields that can be inserted into this file.

5.4.1 backend, frontend and db fields

1 backend:
2 - replicas: 1
3 type: deployment
4 - port: 8080
5 type: service
6 frontend:
7 - replicas: 1
8 type: deployment
9 - port: 80

10 type: service
11 db:
12 - type: deployment
13 secrets:
14 - MYSQL_ROOT_PASSWORD: password
15 - MYSQL_DATABASE: mydb

These fields are optional and contain a list of object. They allow an user to
add or override some parameters which are inside the backend, frontend or db

56

Solution

YAML files. This customization can be done either at the provisioning time of the
environment or later, once it has been provisioned. The updates are propagated
every time the input file is modified and a developer pushes the changes to the
code repository.

Moreover, it is possible to inject also one or more secrets or configMaps into the
Deployment YAML file. Every object which belong to the list must include the
"type" field, related to the k8s object (i.e. deployment or service). For instance, if a
developer wants to update the port number of the frontend pod, he must insert
into the input file:

• frontend.type : "deployment"

• frontend.port : "80"

All the fields must be written in lower case. Some of the possible values that can
be inserted within the input file are as follows ("*" can assume "backend","frontend"
or "db" as possible values):

1. Deployment:

• *.replicas: it refers to spec.replicas.
• *.port: it refers to spec.template.spec.containers.[0].ports.[0].containerPort.

In the solution developed, theone-container-per-Pod was considered, which
is the most common use case.

• *.secrets: this field contains a list of secrets, composed by Secret-Name:
Value. Values must be written in plain text and not base64 encoded. Once
a secret is written in the input file, automatically it is inserted within
the Deployment YAML file as environment variable. To do this, the
secretGenerator is used, which is a field in the kustomization file that
allows secrets to be generated.

2. Service:

• *.port: it refers to spec.ports.

5.4.2 image field

1 image:
2 frontend:
3 tag: custom-tag1
4 backend:
5 tag: custom-tag2

57

Solution

The image field allows users to update the image tag for the frontend and the
backend. It is an optional field, so it may be completely or partially omitted (the
tag can only be specified for the frontend or backend image). If wrong tag names
are inserted, the Kubernetes environment will not be generated correctly and will
present errors, which will be reported by ArgoCD. In this case, it is up to someone
to fix this problem.

• image.backend.tag: the tag value for the backend image.

• image.frontend.tag: the tag value for the frontend image.

In order to understand the logic behind image, here are the general rules:

1. Push on the backend repository:

(a) push on master branch:

i. if there is already a production environment deployed, image.frontend.tag
is neglected and it is used the image tag related to the last stable
image, i.e. the image that is currently in production.
image.backend.tag is neglected and the latest build image is used, i.e.
the one generated as a result of the current push.

ii. if there is not a production environment deployed, it is important to
specify an existing frontend image tag.

(b) push on features/** or releases/** branches:

i. if there is already a production environment deployed and image.frontend.tag
is specified, it is used this tag for the frontend image. If instead im-
age.frontend.tag is not specified, it is used the image tag related to
the last stable image, i.e. the image that is currently in production.
image.backend.tag is neglected and the latest build image is used, i.e.
the one generated as a result of the current push.

ii. if there is not a production environment deployed, image.frontend.tag
must be specified necessarily and it must be an existing frontend image
tag.
image.backend.tag is neglected and the latest build image is used, i.e.
the one generated as a result of the current push.

2. Push on the frontend repository: the same of above but must be inverted
frontend and backend names.

58

Solution

The problem of the production environment

If there is a feature branch called features/f1 on the frontend side and there is a
feature branch called in the same way on the backend side, it does not generate
inconsistencies. Two separate environments will be generated on k8s, mutually
independent.
It is not the same for the production environment. The master branch on frontend
and backend repositories converges to the same k8s environment. Then, it has been
chosen to use a flag value into the config file within the infrastructure repository,
called prod-input-master. This flag can be equals to backend or frontend and if it
is omitted, the default value is backend.
Suppose that the prod-input-master is equals to backend. In this case, when changes
are pushed on the master branch into the frontend repository, the input file will
be ignored. Then, there is only one repository that can update the production
infrastructure environment. In any case, the images are correctly updated both for
the frontend and backend.

5.4.3 branch
The branch value has been inserted only for security and consistency reasons. There
are generally two situations where the input file in a branch is incorrect.
For instance, when a feature branch is merged back to the develop branch, the
input file is overwritten. Because of this, the develop branch now contains the
input file related to the feature branch. When it happens that a release branch is
generated from develop, some workflows start automatically in order to provision
the new environment on k8s. But this is not correct, because the release branch
contains the input file related to the old feature branch. In order to break this
automatic mechanism, the workflow which starts every time a release branch is
created, checks the value of the branch field.
If this value is different from the actual name of the branch where the input file
lies, the workflow fails.
Another example is when a release branch is merged to the master branch, after
a pull request. In this other case, the master branch, which corresponds to the
production state, contains the input file related to the release branch. This is the
default behaviour of the solution. When it happens, to make everything work again,
there are multiple options:

• Leave the input file unchanged and update only the branch value properly;

• Update manually the entire input file;

• Replace the input file with a new one, which is a stable version for that type of
branch, just changing the branch value. This file can be stored into a different

59

Solution

repository, designed to contain this kind of backup file.
There is another option, designed to have more automation but less customiza-

tion. This option uses an additional repository, a backup-files repository. This
repository, contains a default input file for the production, releases and features
branches.
It is useful to have this repository because it can be used also as a guide for
inexperienced developers. In the config file contained in the code repositories, there
are three flags that can be set to true or false (false by default):

• default-input-prod: related to the master branch.

• default-input-release: related to the release branch.

• default-input-feature: related to the feature branch.

When these values are set to true, the input file inside the branch is never
considered but the one in the backup repository. As it can be seen, this option
is more automation-oriented. This could be useful especially for the production
environment, which is the most critical. So, default-input-prod could be set to true
and the others to false. Anyway, there is freedom of choice.

5.4.4 clusters
The clusters field contains a list of names. These names corresponds to the cluster
names, from the internal point of view of ArgoCD. ArgoCD is installed on a
specific cluster, but it can connect to many others. Each cluster is recognised by
a name. For instance, there are two different clusters. The one where ArgoCD is
installed is called "in-cluster" (the default name given by ArgoCD) and the other
"second-cluster". If a developer wants to deploy an environment on both clusters,
the input file will contain:

1 clusters:
2 - in-cluster
3 - second-cluster

If he wishes to remove the environment from the "in-cluster" after the provisioning,
he must remove "in-cluster" from the list associated to the "clusters" field, then
push changes, in order to propagate them.

5.5 config file
It is a YAML file that must be added to all repositories except the backup repository.
It is used to set necessary parameters about the solution configuration.

60

Solution

In the code repositories

It is the same for the backend and frontend repositories. The allowed fields are as
follows:

• docker-backend-repo: this is a mandatory field and its value is the name of
the repository where the backend Docker images are stored (e.g. myAppName-
backend).

• docker-frontend-repo: this is a mandatory field and its value is the name of
the repository where the frontend Docker images are stored (e.g. myAppName-
frontend).

• infrastructure-repo: this is a mandatory field and its value is the name of
infrastructure repository.

• backup-input-repo: this is a mandatory field its value is the name of the
backup-files repository.

• tier: this is mandatory field and its value identifies whether the code repository
is backend or frontend.

• default-input-prod: this is an optional field and can be true or false. The
default value is false.

• default-input-release: this is an optional field and can be true or false. The
default value is false.

• default-input-feature: this is an optional field and can be true or false. The
default value is false.

In the infrastructure repository

The allowed fields are as follows:

• app-name: this is a mandatory field and its value is the name of the applica-
tion managed and associated with Kustomize.

• argocd-repo: this is a mandatory field and its value is the name of the
ArgoCD repository.

• prod-input-master: this is an optional value that can take either backend
or frontend as values. The default value is backend.

61

Solution

In the ArgoCD repository

The allowed fields are as follows:

• source-repo-url: this is a mandatory field and its value is the https URL of
the infrastructure repository. This value is needed to allow ArgoCD to look at
the remote repository, which represents the desired state of the Kubernetes
environments.

5.6 Repositories
There must be remote repositories for both code and infrastructure management.
The choice of git-like web tool to use is not binding. For this reason, it was
decided to use GitHub, since it is the most common and widely used tool. Because
of this choice, GitHub Actions implements the CI pipeline. The development
team has direct access to the code repositories and does not have direct access to
infrastructure repositories, which are managed by the ooperations team.
This is done because of the role separation. As will be seen later, the development
team can access the infrastructure repositories with the help of GitHub Actions
and the input file.

Figure 5.4: Repositories and teams

5.6.1 Code Repositories
The applications that can be developed in this thesis solution are those formed by
a frontend and a backend. Two separate repositories have been created, one for
the frontend and the other for the backend.

62

Solution

These repositories contains:

• The source code and related files;

• Dockerfile used to build the Docker image;

• The script directory, which contains Python scripts used in conjunction with
the workflows;

• The config.yaml file, used for configuration purpose;

• The input.yaml file, used to customize the Kubernetes environment.

• The workflows directory, which contains the GitHub Action workflows.

Moreover, also some secrets must be set:

• DOCKERHUB-USERNAME: the owner name of DockerHub repositories
which contain Docker images for frontend and backend.

• DOCKERHUB-TOKEN: the access token to push new Docker images on
DockerHub.

• PAT-TOKEN: a GitHub token. It must be in all repositories that have
workflows which interact with other ones.

Only the developer team has access rights to these repositories. The choice of
keeping the two repositories separate instead of having only one has been made for
many reasons:

• Two separate sets of pipeline. It is more difficult to identify if only frontend
or backend source code has been changed, as a result of a Git push. As a
consequence, it is harder to choose which CI pipelines to trigger.

• Some developers can only interface with a repository (e.g. two developers
are frontend specialists). It enables a better independence and a cleaner
separation.

• If the project becomes very large, it is more difficult to manage a single
repository.

5.6.2 Infrastructure Repository
The purpose of the infrastructure repository is primarily to contain the infrastructure
files used to deploy environments on Kubernetes. These files are handled through
Kustomize, following the principle of base and overlays structure. This repository
contains:

63

Solution

• The kustomize directory;

• The script directory, which contains Python scripts used in conjunction with
the workflows;

• The config.yaml file, used for configuration purpose;

• The workflows directory, which contains the GitHub Action workflows.

Moreover it must also have set the secrets DOCKER-USERNAME and PAT-
TOKEN, which is a GitHub token. It must be in all repositories that have
workflows which interact with other ones.

This repository is designed to be dedicated to a single application.

kustomize directory

The kustomize directory contains all the files needed to deploy environments on
Kubernetes. In the figure 5.5 is shown the basic directory structure. Each leaf
directory must contain the kustomization file, to activate the Kustomize mechanisms.
The base directory contains all the basic YAML files which describe the application.
These files could be Deployment and Service files for backend, frontend and database.
It is not important that these are completely filled in, as the input file will add
multiple fields, such as secrets, replicas, ports, namespaces, etc. But for the solution
to work, some fields must be specified:

• kind;

• metadata.name;

• metadata.labels.app;

• metadata.labels.tier.

All the above fields are essential to identify the files and customise them.
In any case, it is important to say that not only these fields should be specified,

because the solution takes care of a finite number of fields (in the current version).
So, in general, the files within the base directory should contain a semi-complete
template of how the application should be structured (e.g. the type of a Service, the
selector of a Service, etc.), because the input file is focused on customization and
not on creating the environment from scratch. The overlays directory contains the
structure for defining new environments to be deployed. There is the prod directory
which is associated with the production environment, unique in the application
(there is no difference between frontend and backend).

64

Solution

Figure 5.5: kustomize directory structure

Figure 5.6: kustomize example

The backend and frontend directories contain directories associated to the environ-
ments related to the two portion of the application. Specifically, they can contain
either feature or release environments.

In the figure 5.6 there is an example of a possible situation. There are four
different directories inside overlays, which are generated and filled automatically
and they describe four environments:

• prod: it is associated with the production environment (master branch);

• R1 : it is associated with the frontend release environment (releases/R1
branch);

65

Solution

• my-f1 : it is associated with a backend feature environment (features/f1
branch);

• my-f2 : it is associated with a backend feature environment (features/f2
branch).

It is important to remember that for each leaf directory within overlays, there
is a branch in one of the two code repositories (or just one, in case of prod).
In addition, users only has to manually create the kusutomize/base directories and
fill base with YAML files. Everything else is generate automatically with a Python
script, if one or more directories are still missing.

5.6.3 ArgoCD Repository
This repository is used to contain the YAML manifests used by ArgoCD to deploy
the k8s environments.

This repository contains:

• The manifests directory;

• The script directory, which contains Python scripts used in conjunction with
the workflows;

• The config.yaml file, used for configuration purpose;

• The workflows directory, which contains the GitHub Action workflows.

Moreover, it must also have set the secret PAT-TOKEN, which is a GitHub token.
It must be in all repositories that have workflows which interact with other ones.

manifests directory

Figure 5.7: Manifests directory

66

Solution

This repository is designed to be shared across different application, and for this
reason in the figure 5.7 is shown that manifests hosts multiple directories, one per
application.

Every manifest is associated to an environment in a specific cluster (this means
that the same environment, in order to be deployed over two clusters, must have
associated two manifests).
These manifests are generated automatically, based on input file, config files and
the branch name associated with the environment. Each manifest has a unique
name, which has the following format:

• "prod"+"-"+"<CLUSTER-NAME>": for the production environment;

• "<tier>"+"-"+"<BRANCH-NAME>"+"-"+"<CLUSTER-NAME>": for the
other environments.

An example of manifest is the following:

1 apiVersion: argoproj.io/v1alpha1
2 kind: Application
3 metadata:
4 finalizers:
5 - resources-finalizer.argocd.argoproj.io
6 name: thesis-demo-prod-in-cluster
7 namespace: argocd
8 spec:
9 destination:

10 name: in-cluster
11 namespace: thesis-demo-prod
12 project: default
13 source:
14 path: kustomize/overlays/prod/
15 repoURL: https://github.com/owner/thesis-demo-infrastructure.git
16 targetRevision: HEAD
17 syncPolicy:
18 automated:
19 allowEmpty: true
20 prune: true
21 selfHeal: true
22 syncOptions:
23 - CreateNamespace=true

anchor file

Every directory within manifests contains an anchor file, which is an empty file that
only keeps the folder visible. In fact, GitHub does not show empty folders. This is

67

Solution

a problem when an application does not have temporarily active environments and
ArgoCD has an Application CRD which points to that directory.

5.6.4 Image Repositories
The image repository is the place where are stored multiple versions of a Docker
image. There is a repository for the frontend and another for the backend images.
It has been adopted DockerHub as registry, but the solution can work also with
other public or private registries. Due to limitations on private repositories (only
one can be private with the free version of DockerHub), it was decided to make
the repositories public. In order to have only 2 repositories, the image name
is built in this way: <DOCKER-OWNER>/<DOCKER-REPO>:<COMMIT-
SHA>-<BRANCH-ID>. Where,

• DOCKER-REPO can be the backend or frontend repository;

• COMMIT-SHA is the SHA value associated to the last pushed commit,
which has triggered the workflow;

• BRANCH-ID can assume prod, features-<NAME-FEATURE> or releases-
<NAME-RELEASE> as values(e.g. if there is a branch called releases/my-
release, the tag name will be <COMMIT-SHA>-releases-my-release).

To be more precise, each time a new version of the image is built, the tag with
latest is also pushed on DockerHub. This tag is overwritten every time.

5.6.5 Backup-files Repositories
This repository is responsible for containing backups of some files, such as input
files. There are no constraints on what it can contain. Certainly, for the purpose
of this thesis, it must contain:

• <app-name> directory: this repository contains a directory for every appli-
cation handled by the company. Inside this folder, there must necessarily
be:

1. main-app-manifests: this directory contains the ArgoCD manifest that
must be deployed manually in Kubernetes to activate the app of apps
pattern. It points to themanifests/<app-name> folder within the ArgoCD
repository;

2. feature, release and prod directories: these directories contains the three
input files, one for the production environment, one for the release envi-
ronment and one for the feature environment.

68

Solution

They serve as templates on which to base new input files and are used if
the default-input flags within the config file in the code repositories are
set to true.

5.7 Workflows
The pipelines used to implement the Continuous Integration are those related to
GitHub, i.e. GitHub Actions and they are called workflows. Now, they will be
analysed one by one, repository by repository. In the following sections the steps
of each workflow will be analysed, focusing on the general logic and not on each
technical aspect.

5.7.1 Code Repositories
The workflows are the same for the frontend and backend repositories.

Workflow Push

This workflow is triggered when there is a push on the master, features/** or releas-
es/** branch, where "**" means any name (e.g. releases/my-release, features/f1).

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Check the existence of the Dockerfile, input and config files: if at
least one of these file does not exist within the repository, the workflow is
interrupted.

3. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

4. Validation of the config file: a Python script processes the config file,
checking that it contains all the necessary fields and valid values for every
field.

5. Creation of variable from the config file: a Python script extract values
from the config file.

6. Build and push of Docker images: the same image is built and pushed
on the DockerHub repository, with two different tags (see 5.6.5).

7. Trigger the Workflow Update (see 5.7.2) of the infrastructure repos-
itory: the next workflow is triggered using the workflow-dispatch action. Input
values are passed to the next workflow. In order to be able to do this, it is
necessary to set the same PAT-TOKEN within the repositories.

69

Solution

Workflow Delete

This workflow is triggered when a feature/** or releases/** branch is deleted.

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Check the existence of the config file: if this file does not exist within
the repository, the workflow is interrupted.

3. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

4. Validation of the config file: a Python script processes the config file,
checking that it contains all the necessary fields and valid values for every
field.

5. Creation of variable from the config file: a Python script extract values
from the config file.

6. Trigger the Workflow Delete (see 5.7.2) of the infrastructure reposi-
tory: the next workflow is triggered using the workflow-dispatch action. Input
values are passed to the next workflow. In order to be able to do this, it is
necessary to set the same PAT-TOKEN within the repositories.

Workflow Rebase

This workflow is triggered when a Pull Request is merged, and it happens only
when a release branch is merged back to master, a hotfix branch is merged back
to master or a feature branch is merged back to develop. The last case is not
interesting, as this workflow is intended to keep the develop branch synchronised
with the master branch, using the Git rebase command. The workflow splits into
two, depending on which branch has been merged with the pull request. If a hotfix
branch is merged back to master:

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

3. Extract branch name: If a release branch exists, the rebase of the master
must be done on that branch. Otherwise, it must be done on the develop
branch. In order to choose the right branch, a Python script is run.

70

Solution

4. Rebase: it is done the command git rebase master on the correct branch.

5. Save changes: it is made a push to save changes.

If a release branch is merged back to master:

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Rebase: in this case, there are no choices, since the rebase action must be
done on the develop branch.

3. Save changes: it is made a push to save changes.

Workflow Update-Tag

This workflow is triggered when a hotfix or release branch is merged back to master,
as a consequence of a Pull Request. The purpose is to update the tag of the master.
The master tag is in the form vX.Y and the tag mechanism is explained in section
5.3.3.

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

3. Generation of the new tag: a Python script generate the new tag, de-
pending on the branch that has been merged back to the master branch (see
5.3.3).

4. Save changes: the tag is pushed and then saved.

5.7.2 Infrastructure Repository
Workflow Update

This workflow is triggered by the Workflow Push of the code repository (see 5.7.1).
It takes as inputs the following values, passed by the Workflow Push:

• Docker image tag;

• Code branch name;

• Code repository name;

• Tier: it can assume frontend or backend as values;

71

Solution

• Docker frontend repository: the repository name on DockerHub for the
frontend images;

• Docker backend repository: the repository name on DockerHub for the
backend images;

• Default input flag: it can be true or false. If it is true, the input file
inside the backup-files repository is used, otherwise the one within the code
repository, in the proper branch;

• Backup-files Repository: if the default input flag is set to true, the input
file will be fetched from this repository.

The steps of the workflow are as follows:

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Check the existence of the config file: if this file does not exist within
the repository, the workflow is interrupted.

3. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

4. Validation of the config file: a Python script processes the config file,
checking that it contains all the necessary fields and valid values for every
field.

5. Creation of variable from the config file: a Python script extract values
from the config file.

6. If Default Input Flag is equal to true:

(a) Checkout backup-files repository: it is done in order to fetch the
input file.

7. If Default Input Flag is equal to false:

(a) Checkout code repository: it is checked out the code repository in
order to fetch the input file.

8. Creation of the directory structure within overlays: since this work-
flows is triggered as a consequence of creating or updating a master, features/**
or releases/** branch, a Python script is executed in order to generate the
leaf directory associated with one of these branch.
Moreover, the script also adds the kustomization file and fills it with some

72

Solution

basic values. If the directory associated to the environment already exists, it
means that the environment has been already provisioned. In this case, the
directory is emptied and the kustomization file is recreated.
This happens because the infrastructure changes as a result of the push may
be multiple, so rebuilding allows a leaner script to be written, without losing
speed of execution.

9. Customization of the environment: once the directory has been created,
the input file is parsed by a Python script, in order to apply customisations.

10. Update the docker image tag: a Python scripts parses the input file
again, to update the frontend and backend image tags to be used for this
environment.

11. Save changes: the changes within the infrastructure repository are saved
with the git commit and git push.

12. Trigger the Workflow Update (see 5.7.3) of the ArgoCD repository:
the next workflow is triggered using the workflow-dispatch action. Input values
are passed to the next workflow. In order to be able to do this, it is necessary
to set the same PAT-TOKEN within the repositories.

Workflow Delete

This workflow is triggered by the Workflow Delete of the code repository (see 5.7.1).
It takes as inputs the following values, passed by the Workflow Push:

• Code Branch Name;

• Tier : it can assume frontend or backend as values.

The steps of the workflow are as follows:

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Check the existence of the config file: if this file does not exist within
the repository, the workflow is interrupted.

3. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

4. Validation of the config file: a Python script processes the config file,
checking that it contains all the necessary fields and valid values for every
field.

73

Solution

5. Creation of variable from the config file: a Python script extract values
from the config file.

6. Delete directory: a Python script deletes the directory associated with the
branch that has been delete.

7. Save changes: the changes within the infrastructure repository are saved
with the git commit and git push.

8. Trigger the Workflow Delete (see 5.7.3) of the ArgoCD repository:
the next workflow is triggered using the workflow-dispatch action. Input values
are passed to the next workflow. In order to be able to do this, it is necessary
to set the same PAT-TOKEN within the repositories.

5.7.3 ArgoCD Repository
Workflow Update

This workflow is triggered by the Workflow Update of the infrastructure repository
(see 5.7.2). It takes as inputs the following values, passed by the Workflow Push:

• Code Branch Name;

• Code Repository Name;

• Tier : it can assume frontend or backend as values;

• App Name: this is the name of the application;

• Default input flag: it can be true or false. If it is true, the input file inside the
backup-files repository is used, otherwise the one within the code repository,
in the proper branch.

• Backup-files Repository: if the default input flag is set to true, the input file
will be fetch from this repository.

The steps of the workflow are as follows:

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Check the existence of the config file: if this file does not exist within
the repository, the workflow is interrupted.

3. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

74

Solution

4. Validation of the config file: a Python script processes the config file, checking
that it contains all the necessary fields and valid values for every field.

5. Creation of variable from the config file: a Python script extract values
from the config file.

6. If Default Input Flag is equal to true:

(a) Checkout Backup-files Repository.

7. If Default Input Flag is equal to false:

(a) Checkout code repository: it is checked out the code repository in
order to fetch the input file.

8. Update Manifests: a Python script is in charge to generates new ArgoCD
Application manifests.

9. Save changes: the changes within the infrastructure repository are saved
with the git commit and git push.

Workflow Delete

This workflow is triggered by the Workflow Delete of the infrastructure repository
(see 5.7.2). It takes as inputs the following values, passed by the Workflow Push:

• Code Branch Name;

• Tier : it can assume frontend or backend as values;

• App name: this is the name of the application.

The steps of the workflow are as follows:

1. Checkout code: This action checks-out the repository containing the current
workflow. Thanks to it, the workflow can access the repository.

2. Setup Python: Python environment is set up, with version 3.x and additional
modules are installed.

3. Delete manifests: a Python script delete all the manifests associated to a
branch. It happens for the releases/** or features/** branches.

4. Save changes: the changes within the infrastructure repository are saved with
the git commit and git push.

75

Solution

5.8 Example
In order to fully understand how the proposed solution works, a complete example
will follow. Since the thesis solution was designed to be applied to an applications
consisting ofa backend and frontend, the example is based on such an application,
which is composed by an Angular frontend, a Spring Boot backend and MariaDB
database. The name of the application is thesis-app.

5.8.1 Initial setup
Repositories

The initial setup consists of creating all the necessary repositories, so: code-frontend-
repo, code-backend-repo, infrastructure-repo, argocd-repo and backup-files-repo
(the choice of names is arbitrary). Every repository must be filled with the proper
files (see 5.6) and secrets. It is not necessary to create immediately the input files
in the code repositories. They can be created when developers want to deploy a
new environment. Here the repositories have been named as follows:

• thesis-code-backend;

• thesis-code-frontend;

• thesis-infrastructure;

• thesis-argocd;

• thesis-backup-files.

The figures 5.8 and 5.9 show the content of the input files.

Figure 5.8: config files content

To make the workflows work, it is important to set the same Personal Access
Token (PAT) within the repositories containing the workflows.

76

Solution

Figure 5.9: config files content

In GitHub, PAT is set by going to "Settings > Developer Settings > Personal access
tokens" and clicking to "Generate new token". Once this is done, the "workflow"
box must be checked and the token generated must be inserted in all repositories
containing communicating workflows. To insert the token inside the repository,
the user has to click on "Settings > Secrets" and then on "Generate new token",
pasting in this place the token.
As code repositories must push images to DockerHub, they must contain an access
token (set as secret), which is generated by going to the DockerHub settings (in
the DockerHub website). The kustomize/base/ directory, which is contained in the
thesis-infrastructure-repo, must be filled with the application YAML files. In this
case, it contains the following files:

• deployment-backend.yaml;

• deployment-frontend.yaml;

• deployment-database.yaml;

• service-backend.yaml;

• service-frontend.yaml;

• service-database.yaml;

• kustomization.yaml.

Clusters

Two Kubernetes clusters were chosen to be administered. The first one is a on-
premise cluster, which consists of two nodes, master and worker, generated from
two VMs with Centos7 as OS. The second one is a cluster created with Microsoft
Azure, then it is a public cloud cluster. It was chosen to install ArgoCD only in
the on-premise cluster, as it does not need to be installed in all clusters. In order
for ArgoCD to deploy in the Azure cluster, there is a simple procedure to follow:

1. Copy the the Azure kubeconfig file into the .kube directory of the on-premise
cluster, which contains ArgoCD;

77

Solution

2. Set the KUBECONFIG environment variable so that it contains the paths to
both on-premise and Azure kubeconfigs (the two paths must be separated by
":");

3. Run argocd cluster add CONTEXT –name <name-azure-cluster>, where
CONTEXT value can be found within the kubeconfig file and name can be
chosen arbitrarily. The chosen name will be the one used by ArgoCD to
identify the cluster.

ArgoCD

After installing ArgoCD, it is ready to be used. The simplest way to interact
with it, is through the web UI, even because the solution is thought to be used by
developer firstly. But for the deploying of the first manifest, which follows the App
of apps pattern (see section 4.6), it is easier to use the kubectl apply command. The
manifest, which is in the thesis-backup-files repository, can be downloaded locally
by cloning the repository.

5.8.2 Startup and deployment of the production environ-
ment

The example starts with a production environment already created, in terms of
YAML files within the prod directory of the thesis-infrastructure repository, ready
to be deployed. The related input file can bee seen in the figure 5.10.

The DockerHub repositories already contain an image for the frontend and one
for the backend.

The infrastructure repository, as a consequence of the Workflow Push, started
the Workflow Update, which created the overlays directory and within it, the prod
directory.

The Workflow Update which belongs to the infrastructure repository, triggered
the Workflow Update of the ArgoCD repository, which have generated the two
ArgoCD manifests.
These manifests will allow the deployment of the production environment, both in
the on-premise cluster (in-cluster) and in the Azure cluster (azure-cluster).

In order for ArgoCD to start managing the thesis-app, an user must manually
execute the command shown in figure 5.13, which applies the manifest, described
in the figure 5.14, inside k8s.

Watching the ArgoCD web UI (figure 5.15), three Applications has been deployed:

• thesis-app-prod-azure-cluster: the production environment, which is de-
ployed in the Azure cluster, as can be deduced from its name;

78

Solution

Figure 5.10: input file within the master branch

• thesis-app-prod-in-cluster: the production environment, which is deployed
in the on-premise cluster;

• thesis-app: this is the Application which has applied manually. It watches the
thesis-argocd repository, maintaining synchronized the environments related
to the thesis-app web application.

As it can be seen from the figure 5.16 and figure 5.17, the pods have been created
in the two clusters.

Development of a new feature

The second step is to provision a new environment for the development of a new
feature, on the backend.
To do this, you need to create a new feature branch from develop, in the thesis-
code-backend repository. The feature branch is called features/f1.

79

Solution

Figure 5.11: prod directory within the thesis-infrastructure repository

Figure 5.12: Application manifests within the ArgoCD repository

Figure 5.13: Command to apply the initial manifest

The input file for this branch is shown in figure 5.18. It differs from that of the
production environment in the number of replicas for the frontend, which in this
case is only one.

Also in this case, workflows generate a new folder in the thesis-infrastructure
repository (figure 5.19) and two new manifests in the thesis-argocd repository (figure
5.20).

80

Solution

Figure 5.14: Content of the initial manifest

Figure 5.15: ArgoCD web UI

Once the workflows have been completed, ArgoCD reacts by synchronising the
live state with the desired one (in the ArgoCD repository), adding the two new
environments (figure 5.21).

Figures 5.22 and 5.23 show the new pods created automatically.
Once the development of the feature is finished, a pull request must be opened,

to merge it back into develop. The code can be validated and reviewed and then,
merged. By doing so, the workflows will remove the files associated with that

81

Solution

Figure 5.16: prod environment deployed in the on-premise cluster

Figure 5.17: prod environment deployed in the Azure cluster

branch and consequently, the environments will also be removed from the clusters.

Creation of a release branch

Now the backend is ready for a new release. Then from the develop branch, a new
release branch is generated, called releases/r1. The workflows are always the same,
and once they have finished processing, ArgoCD will generate the new environment.
In this case, as can be seen from the contents of the input file (figure 5.24), it was
decided to deploy only to the Azure cluster (figure 5.25).

After few seconds, the new pods are up and running in the Azure cluster (figure
5.26).

The new release is tested and once it is ready, a new pull request is opened for
it to be merged with the master branch. The pull request is checked, validated,
reviewed and finally merged. As a result of this merge, multiple workflows are

82

Solution

Figure 5.18: The input file related to the new feature features/f1

Figure 5.19: The new directory f1 created within the infrastructure repository

triggered in the thesis-code-backend repository:

• Workflow Push: this workflow updates the new backend image for the
production environment.

• Workflow Delete: this workflow will trigger other workflows, in order to
remove files and the environment on the k8s cluster related to the releases/r1
branch (figure 5.27).

• Workflow Rebase: this workflow will rebase the develop branch with the
master branch.

83

Solution

Figure 5.20: The manifests within the ArgoCD repo, after the creation of the
new feature f1

Figure 5.21: ArgoCD web UI with the new environments associated with fea-
tures/f1

Figure 5.22: features/f1 deployed in the on-premise cluster

84

Solution

Figure 5.23: features/f1 deployed in the Azure cluster

Figure 5.24: The input file related to the new feature releases/r1

• Workflow Update-tag: this workflow will add a new tag to the master
branch. As there were no tags associated with the master before, the new
version will be v0.1 (figure 5.28). See section 5.3.3 for more details about the
tag strategy.

85

Solution

Figure 5.25: ArgoCD web UI with the new environment associated with releas-
es/r1

Figure 5.26: releases/r1 deployed in the Azure cluster

Figure 5.27: ArgoCD reacts to the deletion of the manifest associated with the
release/r1 branch

HotFix branch

After the new version of the application was put into production, a bug was
discovered. Therefore, it is needed to create a hotfix branch from the master branch
to fix the production environment. In the example, a branch called hotfix/newhotfix
has been created. The creation of this branch does not automatically deploy any
environment, as it is designed to fix small problems at speed.
When the bug has been fixed, this branch must be merged back to the master

86

Solution

Figure 5.28: New tag for the master branch

branch, via a pull request. When the pull request will be closed, as a consequence
of the merge, two workflows will be triggered:

• Workflow Rebase: the develop branch is rebased with the master branch.

• Workflow Update-tag: now the new value of the master tag is v0.2.

87

Solution

5.9 Objectives and Validation

In general, there are already advantages and peculiarity that have been explored in
the GitOps section (see 3.3) and in the ArgoCD chapter (see 4). What has been
achieved in the development of this project is a structured solution to manage
infrastructure files related to a full stack application, taking advantages of all
the benefits of Git. Infrastructure files can be created, modified and destroyed
automatically, thus enabling Continuous Delivery and Continuous Deployment
and achieving greater performance in terms of time and minimising the possibility
of human error. All the best practices related to GitOps are respected, with
the adoption of a pull based pipeline, leveraging on ArgoCD. The input file is a
simple operating interface, which also allows developers to generate customised
environments, which will be deployed on Kubernetes. This can be done without
them having to know specifically how Kubernetes works, how to write kubectl
commands or YAML files related to k8s objects. The solution also works well in a
multi-cluster and multi-vendor environment, providing flexibility and the possibility
to be used in application contexts other than the one studied.

5.9.1 Infrastructure incident recovery

Thanks to ArgoCD and the continuous check between the state of the environment
deployed live on k8s and the desired state in the remote Git repository, improper
changes (voluntary or involuntary) to the live infrastructures are immediately
corrected. So there is a drastic reduction in the re-synchronisation time of the
environment due to an infrastructure incident. If there is no ArgoCD, which reacts
promptly, the recovery would have to be done manually, which would take much
longer and consequently increase the downtime of the application. Moreover, it
takes no effort to understand what is not working, only to realise that infrastructure
parameters have been improperly changed or Kubernetes objects have been removed.
In order to evaluate the reaction time of ArgoCD, evaluation experiments were
carried out. Re-synchronisation times were calculated following a change made
in the application’s live environment. For the experiment, three replicas of the
repository server and the API server were used.

As it can be seen, these operations all take a few seconds, since as soon as
something is modified or deleted, ArgoCD reacts. Two tests have been carried out:
In the first, the live environment was modified in a context where ArgoCD contained
only this environment. In the second, it contained 10 different environments. The
average time did not change, so reporting the second graph would have been
insignificant, as it is practically the same as the first.

88

Solution

Figure 5.29: Re-syncronisation time (U=update, D=delete, BE=backend,
FE=frontend, Dep=Deployment, Svc=Service)

5.9.2 Deployment time of environments
Another interesting fact is the time taken by ArgoCD to deploy N environments
on Kubernetes. This can be interesting in the case of disaster recovery, if you have
to redeploy a lot of environments. If the time taken is short, the disruption is less.
Another case is the provisioning of multiple environments in a multi-cluster context.
The first test was made with the standard configuration, already expressed in the
previous sections:

• The on-premise cluster composed by two nodes, the master and the worker.
The master has allocated 2 of the 8 CPU’s of the laptop used to host the
cluster and 4600MB RAM. The worker has allocated 1/8 CPU and 3600MB
RAM.

• The Azure cluster, with 2vCPU and 8GB RAM.

• ArgoCD installed within the on-premise cluster.

• The environments have been distributed equally between the two clusters.

As it can be seen in the figure 5.30, the deployment time is reasonable, but
after the deployment of 7 environments, the time starts to grow quite fast. The
bottleneck is in the pod replicas concerning ArgoCD and also in the scarce resources
set up for the on-premise cluster. In the second test, everything was left unchanged,
but the pod replicas of ArgoCD were increased. The number of replicas for the API
server and repository server were increased from one to three. It is clear that the

89

Solution

Figure 5.30: First test on deployment time

Figure 5.31: Second test on deployment time

situation is much better (figure 5.31), but the resources of the on-premise cluster
are still a bottleneck.

Then, it has been done a last test. The only way to improve performance, as
the resources of the laptop used to host the on-premise cluster are limited, was to
use only the Azure cluster, which is more powerful.
So, ArgoCD was installed on Azure, and the number of replicas concerning the API
server and the repository server were set to three. In this last test (figure 5.32), a
significant increase in performance is observed. This leads to the conclusion that,
by using an appropriate number of cluster resources, depending on the average
workload of the cluster, deployment times are very low.

90

Solution

Figure 5.32: Third test on deployment time

5.9.3 input file
One thing that was sought during the development of the solution was the simplicity
and intuitiveness of the input file. This is fundamental, in order to have a tool that
is as complete as possible, but at the same time, it is less complex than the editing
of multiple YAML files related to Kubernetes resources. The average length of an
input file is about 23-26 rows.

Figure 5.33: Example of an input file

91

Solution

In order to assess the user-friendliness, it was evaluated by 8 employees, who
had little or no knowledge of Kubernetes. The "how-to" was explained to them
within five minutes. After that, they were asked to use it by deploying one or more
environments.
Finally, they were asked to give a grade from 0 to 5 about the user-friendliness,
simplicity and intuitiveness of the input file (figure 5.34).

Figure 5.34: Ratings

As can be seen from the graph, the grades were quite satisfactory.

5.9.4 Workflows execution time

An important part of the thesis work concerns the writing of workflows. It is
therefore important to consider whether the execution times of these workflows
are acceptable. In the graph 5.35 there are the average times of all workflows,
calculated over multiple executions at different times and in different contexts.

The graph shows that all workflows take a few seconds to run, except for the
Workflow Push. However, it can be noticed from the graph 5.36, that much of
the time is taken up by the build and push process for the Docker image. For the
compilation of these graphs, two different applications were considered, one simpler
and the other more complex, in terms of LOC.

So, considering the benefits these workflows give, in terms of process automation,
the time they take is very low.

92

Solution

Figure 5.35: Average execution time for each workflow. Code, Infr and ArgoCD
refer to the repositories

Figure 5.36: Percentage of time required to build and push the Docker image

5.9.5 Reduction of provisioning and update time

In a business context, when a developer requests the provisioning or modification
of an environment on k8s, the time required can be considerable. Instead, with the
solution proposed, doing this takes much less time. A manual provisioning takes
time and efforts by operations team. The operator, after the approval cycles, has
to schedule when to create the environment. Then, he has to create it manually

93

Solution

and this takes time. If the developer then needs updates, the process starts all over
again. In the thesis solution, there may be the same approval cycle, but once it is
finished, deployment is automated or semi-automated.
The process could be semi-automatic because, due to internal policies, a validation
check by an operations team employee may be required. In this case, validation is
a faster and leaner process, because it is limited to the review of the single input
file, and not of all the infrastructure YAML files, which may be several.

5.9.6 Approval process
Since the solution uses GitHub repositories, you could rely on the pull requests,
which allows changes to be reviewed before they are approved.
There are less critical situations where reviews could be bypassed, streamlining
the provisioning or modification process, depending on the branches. Some critical
branches such as production could pass through a more fine-grained process of
acceptance and review.
Other branches, such as feature branches, may be subject to fewer controls.

5.10 Liqo
Liqo is an open source project started at Politecnico of Turin that allows Kubernetes
to seamlessly and securely share resources and services, so you can run your tasks
on any other cluster available nearby [34].
Assume that a company manages N clusters and in each one, Liqo is installed.
From the point of view of a specific cluster, the other N-1 remote clusters are seen
as worker nodes, or more precisely virtual nodes.
After that, pods can be deployed in one of the N available clusters. There are
several ways, in k8s, to force a pod to be scheduled to a specific node.

nodeSelector

In Kubernetes, nodes can be labelled with multiple values. The way to do this is
very simple:

$ kubectl label nodes <node-name> keyLabel=valueLabel

To see the labels of a node:

$ kubectl get nodes --show-labels

For instance, assume that the worker node called w1 has been labelled with
secondName=myFavourite. If you want to deploy a pod on this node, using the
new label, you have to use nodeSelector field:

94

Solution

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: db
5 labels:
6 tier: db
7 spec:
8 containers:
9 - name: mariadb

10 image: mariadb
11 nodeSelector:
12 secondName: myFavourite

nodeName

You can also schedule a pod to one specific node via setting nodeName.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: db
5 spec:
6 nodeName: w1
7 containers:
8 - name: mariadb
9 image: mariadb

Affinity and anti-affinity

nodeSelector provides a simple way to constrain pods to nodes with specific labels.
If you want a more complex way to select the target node, affinity/anti-affinity are
a better choice:

• The language offers a huge number of matching rules;

• The rules can be soft or preference instead of a strict constraint. If the
scheduler can’t satisfy rules, the pod will still be scheduled;

• There are also constraints against labels on other pods running on the node,
rather than against labels on the node itself, which allows rules about which
pods can and cannot be co-located. For this reason, there are node affinity
and inter-pod affinity/anti-affinity.

95

Solution

5.10.1 Liqo transparency
One of the greatest advantages of using Liqo is that it is transparent.
When it has been installed in the two clusters used in the thesis work, ArgoCD
continued to function correctly. Nothing has been broken. This is the reason why
we have tried to introduce it in the thesis work, finding an alternative way to use
the ArgoCD multi-cluster feature.

5.10.2 Liqo alongside ArgoCD
In the thesis work, an application can be deployed in one of the available k8s
cluster. The cluster names are meaningful within the context of ArgoCD and they
are unique. This means that once a cluster has a name, it is unique.
The name actually could be changed, but this is strongly discouraged because it
could affect Applications that already exist. If a manifest is deployed on a specific
cluster, that manifest contains the cluster name.
The problem is that a developer, who needs to provision a new application, might
find the cluster name insufficient to choose the right cluster. Perhaps the developer
does not even know the association between the cluster name and the actual cluster.
By using labels, users can achieve greater expressiveness, being able to describe
clusters with keywords, making the choice of deployment easier and more guided.
It would be convenient if he could benefit from a more accurate and fine-grained
description of clusters, through multiple labels. He could even add custom labels,
to make it easier to recognise clusters.
This can be done using the nodeSelector field or affinity/anti-affinity into the
proper infrastructural YAML files. Thanks to Liqo, all the other clusters are seen
as k8s nodes, then it is easy to apply labels to them. If the developer has the rights,
he can do this himself, otherwise, he can ask to someone who has the rights. The
operation of adding a label needs only one command, then it is nothing onerous.

5.10.3 Implementation
For this solution to work, a few changes must be made. Firstly, Liqo must be
installed in every Kubernetes cluster. In addition, a new field (a flag) must be
implemented in the input file, specifying whether the Liqo approach or the standard
approach is to be used. With the standard approach, the name of the clusters in
which the environment is to be deployed are indicated in the clusters field.
On the other hand, with the Liqo approach, clusters must be indicated within
the Deployment YAML files, using nodeSelector or affinity/anti-affinity fields and
indicating the labels. For the sake of uniformity, the list of labels could be listed
in a clusterLabels field. Then, a Python script should automatically fill in the

96

Solution

Deployment resources, with the aim of having a simpler, more readable solution,
that is less prone to human error.

97

Chapter 6

Conclusion

In the Master’s Thesis the GitOps approach was studied, with the intention of
applying it in a concrete case and understanding its potential. Together with this, it
was decided to use ArgoCD, a native GitOps tool among the most widely adopted
in company contexts, so that its advantages could be exploited.
The use case was the deployment of a solution to allow provisioning and one-click
configuration of Kubernetes environments, with the peculiarity of being a multi-
cluster and multi-vendor solution, to achieve scalability and portability.
To achieve this, a practical and simple tool, the input file, has been devised, which
allows even employees such as developers to be as autonomous as possible in the
creation, modification and deletion of Kubernetes environments. These environment
are related to feature development, release testing and production deployment, so
they are generally necessary environments for the deployment and maintenance of
an application.
The thesis work, while covering phases related to the Continuous Integration,
focused on the automation of infrastructure processes and their maintenance. In
addition, the focus was on the Continuous Delivery and Continuous Deployment,
as GitOps is an approach designed to deal with these aspects.
It was decided to build a solution tailored to a web application, consisting of two
code repositories, one for the backend and one for the frontend.
Although this is a limitation, with appropriate modifications and rearrangements of
the architecture and scripts, it is possible to adapt this solution to a microservices
application.
The scripts and workflows are designed to be as generic as possible. In fact, for
example, if you want to extend the input file by adding the customisation of a new
infrastructure parameter, the average number of lines of code required to do this is
less than 15.
The thesis work was carried out in a consultancy firm. As a consequence, after
having been evaluated and validated by internal staff, it was decided to start from

98

Conclusion

this solution to put in place a new version, for both internal and external use.

99

Bibliography

[1] Ryan. Container e Containerization: cos’è e come funziona. 2019. url: https:
//www.ryadel.com/wp- content/uploads/2019/08/containers- vs-
virtual-machines-1024x518.jpg (cit. on p. 4).

[2] What is Docker. url: https://opensource.com/resources/what-docker
(cit. on p. 5).

[3] Docker overview. url: https://docs.docker.com/get-started/overview/
(cit. on p. 5).

[4] Edward Kisller. A Beginner’s Guide to Understanding and Building Docker
Images. 2020. url: https://jfrog.com/knowledge-base/a-beginners-
guide-to-understanding-and-building-docker-images/ (cit. on p. 5).

[5] What are public, private and hybrid clouds? url: https://azure.microsoft.
com/en-in/overview/what-are-private-public-hybrid-clouds/ (cit.
on p. 9).

[6] Toye Idowu. Introduction to Immutable Infrastructure. 2019. url: https:
//www.bmc.com/blogs/immutable-infrastructure/ (cit. on p. 10).

[7] Kris Flores. Mutable Vs Immutable Infrastructure – A Comprehensive Guide
to Choose the Best. 2020. url: https://www.bridge-global.com/blog/
mutable-vs-immutable-infrastructure/ (cit. on p. 10).

[8] What is Kubernetes? url: https://www.redhat.com/en/topics/containe
rs/what-is-kubernetes (cit. on p. 11).

[9] Lawrence E Hecht. What data says about Kubernetes deployments patterns.
2018. url: https://cdn.thenewstack.io/media/2018/03/40c0a560-
chart- kubernetes- manages- containers- at- 69- of- organizations-
surveyed.png (cit. on p. 11).

[10] Ferenc Hámori. The history of Kubernetes on a Timeline. 2018. url: https:
//blog.risingstack.com/the-history-of-kubernetes/ (cit. on p. 11).

[11] Sindhuja Cynixit. Kubernetes Architecture. 2019. url: https://miro.medium.
com/max/924/1*2y516oRxWBY9ASyN25t0mQ.png (cit. on p. 12).

100

https://www.ryadel.com/wp-content/uploads/2019/08/containers-vs-virtual-machines-1024x518.jpg
https://www.ryadel.com/wp-content/uploads/2019/08/containers-vs-virtual-machines-1024x518.jpg
https://www.ryadel.com/wp-content/uploads/2019/08/containers-vs-virtual-machines-1024x518.jpg
https://opensource.com/resources/what-docker
https://docs.docker.com/get-started/overview/
https://jfrog.com/knowledge-base/a-beginners-guide-to-understanding-and-building-docker-images/
https://jfrog.com/knowledge-base/a-beginners-guide-to-understanding-and-building-docker-images/
https://azure.microsoft.com/en-in/overview/what-are-private-public-hybrid-clouds/
https://azure.microsoft.com/en-in/overview/what-are-private-public-hybrid-clouds/
https://www.bmc.com/blogs/immutable-infrastructure/
https://www.bmc.com/blogs/immutable-infrastructure/
https://www.bridge-global.com/blog/mutable-vs-immutable-infrastructure/
https://www.bridge-global.com/blog/mutable-vs-immutable-infrastructure/
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://cdn.thenewstack.io/media/2018/03/40c0a560-chart-kubernetes-manages-containers-at-69-of-organizations-surveyed.png
https://cdn.thenewstack.io/media/2018/03/40c0a560-chart-kubernetes-manages-containers-at-69-of-organizations-surveyed.png
https://cdn.thenewstack.io/media/2018/03/40c0a560-chart-kubernetes-manages-containers-at-69-of-organizations-surveyed.png
https://blog.risingstack.com/the-history-of-kubernetes/
https://blog.risingstack.com/the-history-of-kubernetes/
https://miro.medium.com/max/924/1*2y516oRxWBY9ASyN25t0mQ.png
https://miro.medium.com/max/924/1*2y516oRxWBY9ASyN25t0mQ.png

BIBLIOGRAPHY

[12] Kubernetes Service. url: https://kubernetes.io/docs/concepts/servic
es-networking/service/ (cit. on p. 15).

[13] Declarative Management of Kubernetes Objects Using Configuration Files.
2021. url: https://kubernetes.io/docs/tasks/manage-kubernetes-
objects/declarative-config/ (cit. on p. 16).

[14] Custom Resources. url: https://kubernetes.io/docs/concepts/extend-
kubernetes/api-extension/custom-resources/ (cit. on p. 17).

[15] Kustomize official website. url: https://kustomize.io (cit. on p. 18).
[16] Declarative Management of Kubernetes Objects Using Kustomize. 2021. url:

https://kubernetes.io/docs/tasks/manage- kubernetes- objects/
kustomization/ (cit. on p. 18).

[17] Kustomize Documentation. 2020. url: https://kubectl.docs.kubernetes.
io/references/kustomize/ (cit. on p. 18).

[18] IETF. JavaScript Object Notation (JSON) Patch. url: https://tools.ietf.
org/html/rfc6902#section-4.1 (cit. on p. 27).

[19] GitHub Actions Documentation. url: https://docs.github.com/en/
actions (cit. on p. 28).

[20] Scott Chacon and Ben Straub. Pro Git book. url: https://git-scm.com/
book/en/v2 (cit. on p. 29).

[21] Harsh Binani. What is Devops? The complete guide to DevOps. 2019. url:
https://medium.com/cuelogic-technologies/what-is-devops-the-
complete-guide-to-devops-with-examples-13db789dd1c (cit. on p. 31).

[22] Roadway to IT Revolution: The History of DevOps. url: https://www.
appknox.com/blog/history-of-devops (cit. on p. 31).

[23] Meredith Courtemanche, Emily Mell, and Alexander S. Gillis.What is DevOps,
the ultimate guide. 2020. url: https://searchitoperations.techtarget.
com/definition/DevOps (cit. on p. 31).

[24] What is Infrastructure as Code. url: https://docs.microsoft.com/en-
us/azure/devops/learn/what- is- infrastructure- as- code (cit. on
p. 32).

[25] url: https://miro.medium.com/max/1050/0*n57zykBMdOdmUg7C.png
(cit. on p. 33).

[26] Guide To GitOps. url: https://www.weave.works/technologies/gitops/
(cit. on p. 35).

[27] Push Based Pipeline. url: https://www.gitops.tech/images/push.png
(cit. on p. 37).

101

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kustomize.io
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://tools.ietf.org/html/rfc6902#section-4.1
https://tools.ietf.org/html/rfc6902#section-4.1
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://medium.com/cuelogic-technologies/what-is-devops-the-complete-guide-to-devops-with-examples-13db789dd1c
https://medium.com/cuelogic-technologies/what-is-devops-the-complete-guide-to-devops-with-examples-13db789dd1c
https://www.appknox.com/blog/history-of-devops
https://www.appknox.com/blog/history-of-devops
https://searchitoperations.techtarget.com/definition/DevOps
https://searchitoperations.techtarget.com/definition/DevOps
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code
https://miro.medium.com/max/1050/0*n57zykBMdOdmUg7C.png
https://www.weave.works/technologies/gitops/
https://www.gitops.tech/images/push.png

BIBLIOGRAPHY

[28] Pull Based Pipeline. url: https://www.gitops.tech/images/push.png
(cit. on p. 38).

[29] ArgoCD official website. url: https://argoproj.github.io/argo-cd/
(cit. on p. 39).

[30] Rafael Portela and Ádám Sándor. Comparing GitOps tools. 2020. url: https:
//blog.container-solutions.com/fluxcd-argocd-jenkins-x-gitops-
tools (cit. on p. 41).

[31] Aditya Soni. ArgoCD: GitOps Continuous Delivery Approach On Google
Kubernetes Engine. 2020. url: https://miro.medium.com/max/1050/1*
3nPB4xER4aC2iXVs40K4Pw.jpeg (cit. on p. 44).

[32] Vincent Driessen. A successful Git branching model. 2010. url: https://
nvie.com/posts/a-successful-git-branching-model/ (cit. on p. 51).

[33] Vincent Driessen. A successful Git branching model. 2010. url: https://
nvie.com/img/git-model@2x.png (cit. on p. 52).

[34] Liqo official website. url: https://liqo.io (cit. on p. 94).
[35] Aurore Malherbes. Observability for CD with Argo. 2021. url: https://www.

padok.fr/en/blog/cd-argo.
[36] The history of Cloud computing. url: https://about.gitlab.com/topics/

gitops/.
[37] The history of Cloud computing. url: https://www.cloudbees.com/gitops/

what-is-gitops.
[38] The history of Cloud computing. url: https://www.scality.com/solved/

the-history-of-cloud-computing/.
[39] Fulvio Risso. Cloud Computing. University Lecture. 2020.
[40] Giovanni Malnati. Internet Application. University Lecture. 2020.
[41] Git in a Nutshell. 2019. url: https://kancane.nl/git-in-a-nutshell/.
[42] Florian Beetz, Anja Kammer, and Simon Harrer. GitOps. url: https://www.

gitops.tech.
[43] DevOps: Principles, Practices, and DevOps Engineer Role. 2021. url: https:

//www.altexsoft.com/blog/engineering/devops-principles-practice
s-and-devops-engineer-role/.

102

https://www.gitops.tech/images/push.png
https://argoproj.github.io/argo-cd/
https://blog.container-solutions.com/fluxcd-argocd-jenkins-x-gitops-tools
https://blog.container-solutions.com/fluxcd-argocd-jenkins-x-gitops-tools
https://blog.container-solutions.com/fluxcd-argocd-jenkins-x-gitops-tools
https://miro.medium.com/max/1050/1*3nPB4xER4aC2iXVs40K4Pw.jpeg
https://miro.medium.com/max/1050/1*3nPB4xER4aC2iXVs40K4Pw.jpeg
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/img/git-model@2x.png
https://nvie.com/img/git-model@2x.png
https://liqo.io
https://www.padok.fr/en/blog/cd-argo
https://www.padok.fr/en/blog/cd-argo
https://about.gitlab.com/topics/gitops/
https://about.gitlab.com/topics/gitops/
https://www.cloudbees.com/gitops/what-is-gitops
https://www.cloudbees.com/gitops/what-is-gitops
https://www.scality.com/solved/the-history-of-cloud-computing/
https://www.scality.com/solved/the-history-of-cloud-computing/
https://kancane.nl/git-in-a-nutshell/
https://www.gitops.tech
https://www.gitops.tech
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Containers
	Container vs VM

	Docker
	Cloud Computing
	Cloud Solutions

	Mutable and Immutable infrastructure
	Kubernetes
	Architecture

	Kustomize
	kustomization file
	Build Kustomize resources
	Overlays
	secretGenerator
	images update
	Patches

	GitHub Actions

	Towards GitOps
	Git
	DevOps
	Principles
	DevOps benefits
	DevOps tools

	GitOps
	Principles
	Benefits
	Tools
	Push-based pipeline
	Pull-based pipeline

	Argo CD
	Introduction
	How it works?
	Why ArgoCD?
	ArgoCD vs other solutions
	Why not a CI/CD pipeline?
	Features
	ArgoCD Architecture

	Application
	Project
	App of Apps
	High Availability
	Disaster Recovery

	Solution
	Introduction
	Business Case
	Branching strategy
	Introduction
	Git Flow branching strategy
	Branches

	input file
	backend, frontend and db fields
	image field
	branch
	clusters

	config file
	Repositories
	Code Repositories
	Infrastructure Repository
	ArgoCD Repository
	Image Repositories
	Backup-files Repositories

	Workflows
	Code Repositories
	Infrastructure Repository
	ArgoCD Repository

	Example
	Initial setup
	Startup and deployment of the production environment

	Objectives and Validation
	Infrastructure incident recovery
	Deployment time of environments
	input file
	Workflows execution time
	Reduction of provisioning and update time
	Approval process

	Liqo
	Liqo transparency
	Liqo alongside ArgoCD
	Implementation

	Conclusion
	Bibliography

