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Summary

two models for automated text generation are created by the candidate in
order to summarize top soccer European league matches giving as input
statistics of the two teams collected during a game.
the first approach is obtained from a synthetic text generator, transformer-
based language model: GPT-2 from OpenAI, used as an actual text gener-
ator: giving as input only few words about one match the model has to be
able to create a summary in fluent, syntactically and grammatically correct
English language. another way is then taken using the Text-to-text-transfer-
transformer network (T5) by Google, pre-trained on the C4 dataset: the
model, originally thought as a simple translator is used in this case as text
generator to which the stats of the match are given as input in order to pro-
duce a summary of the game.
For legal and privacy reasons in all the examples and stats shown in this
work names and personal information are replaced by generic nouns.
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Chapter 1

From LSTM to
transformers

1.1 NLP: Natural language processing

In the wide world of artificial intelligence, Natural language processing is the
field that has the difficult task to learn how to read, write, extract meaning
and understand (both grammatically and semantically) the human language.
An NLP model built from scratch can be thought as a child that owns in his
mind a lot of words stored in his brain after having listened or read them
(in our case, the vocabulary given to the network) but with not yet the ex-
perience and knowledge to understand how each word has to be put after or
before another one in order to give to the sentence a specific meaning, how
specific words preceded by others change their meaning or how to read a set
of words catching its meaning and which feeling it is representing.
Natural language processing is one of the most exciting tasks nowadays
(speech recognition and generation devices such as Alexa by Amazon and
Siri by Apple are now widespread in the world) but also one of the most
difficult for different reasons: first of all, the input data that have to be pro-
cessed are words in the best case or, worse, entire sentences and/or articles.
This means that the kind of information available is unstructured and so it
can not be represented as a classical table or relational database. Another
important feature that increases the difficulty to manage human language is
that each word has not to be analyzed as a single token independent from
the others but its meaning can completely change if the word is followed
or preceded by other tokens. This means that during the analysis we can
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1 – From LSTM to transformers

not focus on a single word but also on the context in which that word is used.

1.2 Recurrent neural network and LSTM
As said before, one of the most tricky problem of NLP is that each word can
depend more or less from the other words in the sample so a neural network
has to take into account the words that have preceded the current token and
this is not possible by using a convolutional neural network since it not only
requires a fixed size input but also has no memory of its previous states,
that’s why the focus was switched in the ’90s to recurrent neural networks
(RNN).
RNNs change the paradigm of feed forward networks (the input of a specific
layer can only comes from previous ones) by adding as input, besides pre-
vious outputs, also the hidden states of one or several neurons: in this way,
in a specific time stamp t each neuron can have a composite input made by
the previous outputs and some historical information about what happened
at time T < t (as shown in figure 1.1), so recurrent neural networks become
useful for NLP since their intermediate values (states) can store information
about past inputs (words) for a not fixed time.

However, Two big problems affect the power and accuracy of RNNs.
The first issue is represented by the exploding gradient problem that appears
when the weights used in the network are big, leading the gradients to as-
sume very large values causes of overflow errors, this kind of problem can still
be solved partially by deciding a limit value for the gradient or artificially
reducing it. The actual big problem in RNN is the vanishing gradient one
that occurs when the weights used are small and during back-propagation
weights belonging to the first layers are never updated.
The problem of vanishing gradient led to a new type of recurrent neural net-
work: long short-term memory models (LSTM).
LSTM solves the vanishing gradient problem by adding a new structure
in RNNs representing a memory cell: each memory cell has a single self-
connected recurrent link of fixed weight one which ensure gradients to not
change while flowing through several layers. Figure 1.2 represents a node in
a LSTM and its unfolded version to represent how hidden states are propa-
gated through time.
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1.3 – Transfomers

Figure 1.1.
simplified repre-
sentation of an
RNN

Figure 1.2.
simplified repre-
sentation of an
LSTM

1.3 Transfomers

LSTM, because of its ability to remember (or forget) specific states based on
the fact if one word is considered important (or not important), was for a
long time the state of the art for what concerns NLP.
However in 2017, the paper "Attention is all you need" [1] published a new
kind of model able to outperform long short-term memory architectures
by describing two new concepts: Transformers and sequence to sequence
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1 – From LSTM to transformers

(seq2seq) architecture. As the name suggests seq2seq architectures are net-
works able to transform a specific sequence of data (e.g. a sequence of words)
in another one. Like LSTM, seq2seq networks are very good in NLP tasks
such as translation and text generation but the way they work is very differ-
ent from previous models, in fact these kind of architectures are composed
of two main characters: an encoder, that has the task of taking the input
sequence and mapping it to an higher dimensional space representation, and
a decoder whose task is to take the output representation of the encoder and
transform it in an output sequence.

Figure 1.3. simplified
representation of an
Encoder-decoder based
architecture

Figure 1.3 shows a simplified encoder-decoder based architecture: talking
about the task of translation the encoder and decoder can be thought as two
people that have to complete the task of translating a text from German to
Italian but one of the two (encoder) can only speak German and English
while the other one is able only to manage English and Italian languages.
To perform the task, encoder translate the German text in English than the
Decoder takes the English output of the first translator transforming it in
the final Italian text.
Transformers follow the same architecture of seq2seq networks but introduc-
ing a brand new concept: Attention. Attention can be described as a function
whose task is to map the input represented by three kind of vectors (queries,
key-value pairs) to an output generated by the weighted sum of the values
with the weight of each value given as output by a function that takes as
input a query and the corresponding key. While reading or writing some
text a human reads or writes a specific word thinking also at the context of
that word in the sentence, the attention mechanism works in a similar way
allowing the transformer not only to complete the task of language process-
ing looking at the current word given as input but it also gives decoder the
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1.3 – Transfomers

possibility to know which of the previous words had more importance in the
generation of the text.
Since both the models used for automated text generation in this case of
study base their architecture on the original structure of transformer, a closer
look to transformers architectures is needed. In details, transformers follow
the base encoder-decoder architecture but using several number of modules:
this innovative model uses stacked self-attention, fully-connected layers of
encoder and decoders. With the term "self-attention" is indicated a layer
very similar to the concept of "attention" described above but this time all
the words in the input sequence are taken by the layer that produces the
importance of each word in the text (in the example of translating a text
from German to Italian, the self-attention mechanism can be thought as the
first translator that underlines the most important words in the input text).

Figure 1.4. detailed
representation
of a transformer
architecture

A detailed representation of transformers architecture is shown in figure
1.4: Encoder and decoder stacks module are represented respectively on the
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1 – From LSTM to transformers

left and right side of the picture. The label "Nx" is put near the two blocks
to stress the concept of having not one single encoder or decoder module but
several number of them. As it can be seen looking at the picture, modules
are composed of Multi-headed attention and feed-forward layers. Given the
input consisting of queries (aggregated in a matrix indicated with Q) and
keys (matrix K) of dimension dk and values (matrix V ) with dimension dv
the attention function gives as output the result of the softmax function
applied on the dot product queries and keys each divided by

√
dk

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (1.1)

The multi-headed attention is performed by projecting queries, values and
keys h times and applying the function described above in parallel obtaining
dv dimensional values then aggregated and projected again to obtain the final
values.
In the end, it’s reasonable to assert that, through the multi-headed mech-
anism transformers apply the attention technique several times by linearly
projecting the input vectors allowing the model to learn from different rep-
resentation queries, values and keys.

MultiHead(Q; K; V ) = Concat(head1; ...; headh)WO (1.2)

where headi = Attention(QWQ
i , KWK

i , V W V
i )

The way input vectors are projected is shown in equation 1.2 where W
represents the weight matrices learned during training.

Figure 1.5. Scaled
Dot-Product and
multi-headed attention

In figure 1.5 a detailed representation of single-headed and multi-headed
attention is shown, the second one allows the model to retrieve information
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1.3 – Transfomers

from different sub-spaces of input. The other important layer which builds
the encoder and decoder is the position-wise feed-forward network consisting
of two linear transformation with a RELU activation function between them.
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Chapter 2

Transformer-based
architectures

2.1 Generative Pre-Training Networks
in 2018 A.Radford in his paper "Improving Language Understanding by Gen-
erative Pre-Training" [2] showed a new approach for NLP: in natural language
processing the availability of unlabeled large text is quite huge while labeled
data for specific NLP tasks are not so large. The idea born with GPT (Gener-
ative pre-training network) is to pre-train a model giving as input a very large
amount of unlabeled text and then use the same network only fine-tuning
it on a specific task with labeled data. This brand new semi-supervised ap-
proach shows very significant improvements in natural language processing
tasks.
In details, The training phase of GPT consists in two different stages: the
first one has the task to train a model with a huge amount of unlabeled
text (of different nature, to stress the generalization and regularization of
the model) followed then by the second phase in which a specific task (with
labeled data) is performed.

A detailed description of the GPT architecture is shown in figure 2.1. In
the unsupervised training phase, given a set of tokens U = u1, ....un, the task
consists in maximizing the likelihood:

L1(U) =
Ø
i

log P (ui | ui−k, ...., ui−1; Θ) (2.1)

where k is the size of the context window (number of tokens considered

19



2 – Transformer-based architectures

Figure 2.1. detailed
representation of GPT
architecture

in the current step) and P the conditional probability calculated using the
parameters of the network θ.
In the case of Generative Pre-Training networks, the architecture is very
similar to standard transformers but with a main difference: this kind of
models are composed only of multi-layer decoders (so there is not the stack
of encoders showed previously talking about original transformers architec-
ture) and, as seen before, each decoder is composed by a multi-headed self-
attention mechanism followed by a position-wise feed-forward layer in order
to give as result an output probability distribution over each token. Decided
the state of the first hidden layer, each following state can be described using
the preceding one and all the hidden states are finally used in the computa-
tion of the final distribution:

h0 = UWe + Wp

hl = transformer_block(hl−1)∀i ∈ [1, n]

P (u) = softmax(hnW T
e ) (2.2)
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2.2 – Text-to-Text Transfer Transformer (T5)

where U = (uk,.....u1) is the context vector of tokens, n is the number of
layers,We is the token embedding matrix, and Wp is the position embedding
matrix.
After the unsupervised task performed in order to maximize the likelihood
function 2.1, a labeled dataset C has to be given as input for the discrimi-
nating phase: assuming that each sample of C is composed by a sequence of
input tokens x1, ...xm with the corresponding label y, these vectors are used
in the unsupervised pre-trained network to obtain the final transformer’s
block activation hml which is given as input with the parameters Wy to a
linear output layer to predict y:

P (y | x1, ...., Xm) = softmax(hml Wy) (2.3)

Finally, this gives a new objective function to be maximized:

L2(C) =
Ø
x,y

log P (y | x1, ...., xm) (2.4)

An improvement of the first generative pre-training model that is used in
this case study, called GPT-2[3], has the same architecture described in pic-
ture 2.1 but with few modifications: the normalization layers are now moved
to the input of all the sub-blocks and also an additional layer normalization
is added after the final self-attention block, vocabulary, context and batch-
size are increased and Also a initialization different from the one adopted in
the previous model is performed. In the GPT-2 initialization the weights of
residual layers are scaled by a factor of 1√

N
with N representing the total

number of residual layers.

2.2 Text-to-Text Transfer Transformer (T5)
In 2019, Colin Raffel et. al. in their paper "Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer" [4] created a brand new
transfomer-based model stressing to its limit the concept of transfer learning
in order to build a multi-tasking architecture pre-trained with a huge NLP
dataset (a detailed description of data used during T5 training is presented
afterwards).
T5 model is based on the idea of treating every text processing problem as
a “text-to-text” problem.

Looking at the picture representing the architecture of T5(figure 2.2),
text-to-text transfer transformer model appears very similar to a standard
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2 – Transformer-based architectures

Figure 2.2. detailed
representation of T5
architecture

transformer but with little differences. As a standard encoder-decoder trans-
former, T5 takes as input a sequence of tokens that are first embedded in
a new representation and then passed to the encoder stack. As in origi-
nal transformers, the encoder is composed by several blocks each of which
includes a self-attention layer and a feed-forward network with a normal-
ization layer[5] located right before the input of each block component but,
in this case, the activations passing through normalization layers are only
rescaled with no bias added.
The T5 decoder follows the same architecture of encoder but including this
time a standard deviation mechanism after each self-attention layer in order
to take into accounts encoder outputs.
The output of the last encoder block is given as input to a fully-connected
layer with a softmax output that shares its weights with the input embedding
matrix.
Another important feature that characterised text-to-text transfer trans-
former is that, while in standard transformers architecture are used fixed
positional embeddings to provide an explicit positional signal of each token
to the model, T5 is based on relative position embeddings to produce a dif-
ferent learned embedding related to the current offset between the key and
the query that are being compared in the self-attention mechanism and this
is done by adding a scalar to the corresponding logit used to calculate the
attention weights.
Finally, T5 can be seen as a standard transformer architecture where the
normalization layer is modified, and a different position embedding scheme
is used.
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2.3 – Decoding strategies

2.3 Decoding strategies
Both GPT-2 and T5 are based on "auto-regressive" generation: after each
token is produced, it is added to a sequence of tokens that becomes the next
input of the model in its next step. More precisely, this text generation
technique starts from the assumption that the probability distribution of
the next word to be produce can be seen as the product of the conditional
probabilities belonging to the tokens that precede the current one in the
input sequence:

P (w1:T | W0) =
TÙ
t=1

P (wt | w1:t−1, W0) with w1:0 = 0 (2.5)

W0 represents in this case the current sequence of tokens, T represents
the length of the sequence to be generated and it is decided during decoding
phase or as input parameter of the network (maximum number of words to
be generated).
So it is simple to understand that the way transformers choose the words to
be decoded has a big impact on the entire text generation mechanism.
A list of decoding strategies are now presented with respectively pros and
cons in order to have a good understanding about which technique has to be
chosen for each case of study.
The first decoding strategy presented is the "Greedy Search": this technique
chooses the next word as the one with highest probability at each step.

wt = argmax
w

P (w | w1:t−1) (2.6)

As classic greedy algorithms the biggest drawback in this kind of approach
is that only the best probability at each step is chosen so no optimal paths
are searched (e.g: the words that will lead to the best result overall preceded
by a word with a very low probability will never be chosen).
to limit the problems deriving from the first technique, another approach,
called "Beam search", can be used: it is very similar to the first one but in
this case a number of steps equals to the number of beams given as input
is analyzed. It appears clear that, even if beam search will always lead to a
better knowledge of the space of tokens so to a better solution than the pure
greedy approach, there is no guarantee that it will find the best output.
Rather than search the best solution by combining all the possible words
in the vocabulary (exhaustive approach, not possible for computational and
time reasons), a good way to increase the chance to choose one of the best
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2 – Transformer-based architectures

possible path to obtain results is to introduce randomness in the choice of
the words to produce: the basic way to do this could be to randomly select
a word at each step with its probability P (w | w1:t−1) but this leads to very
random results produced without taking into account what the path chosen
is indicating with previous words.
The best choice to introduce randomness as decoding strategy is to pick the
next word increasing the chances to choose a word with high probability by
using the so called "Temperature" of the softmax layer: given the original
formula of the softmax function

softmax(x)i = eyiqN
j=1 eyj

(2.7)

temperature represents an hyper-parameter to control the randomness of
probabilities by scaling logits right before applying the softmax function

softmax(x)i = e
yi
TqN

j=1 e
yj
T

(2.8)

Setting T (temperature) equals to 1 represents the specific case in which
no scaling is performed while, for example, with T=0.7 all the logits become
larger increasing the value distance of resulting probabilities making more
likely to pick words with higher probabilities in random sampling. setting
temperature values very close to zero will lead to the pure greedy strategy
seen before with the problems explained above.
Once it is established that pseudo-random picking next words represents the
best choice, it is possible to combine the sampling and beam search ap-
proaches to produce for sure the best decoding strategies for text generation:
in the first one, top-K sampling,the K most likely next words represent the
set in which the random sampling is applied while in the second one, top-
P sampling, instead of picking only between a set of k elements, the next
word is chosen between the smallest possible set of tokens whose cumulative
probability is greater than the parameter p.
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Chapter 3

GPT-2 for text generation

3.1 Operations and original training
Looking at the architecture in section 2.1, it is not still clear how GPT-2
can create text from scratch so a simple representation of how this network
chooses words to be added in a sequence is needed.
The main concept on which GPT-2 is based is that in the process of gener-
ating text, given an input token, only the next word is predicted in a step:
for example, given as input the word "the", the following step in the net-
work would be to choose the word in its own vocabulary that has the highest
probability. In few words, at each step the network takes one input token to
produce one output probable next token but this way to work appears not so
aligned with what has been explained in section 1.3, with the self-attention
mechanism that should work with vectors of queries and keys. GPT-2 ex-
ploits the multi-headed self-attention mechanism by taking into account all
the previous predicted token: in a generic step, each decoder layer has always
a single key-input vector pair but this pair will be concatenated with all the
other pairs belonging to the same layer in previous step making self-attention
work properly.
Finally, a summary of how GPT-2 creates text is the following: first, the
input sequence of word is converted in a sequence of embeddings through
Byte Pair Encoding [6] that is then given as input to the decoder that pro-
duces a sequence of output embeddings from which the first output word is
sampled. The first output word is then embedded and given as input with
index length-1 to the next step where a new single output word is created
and given embedded as the length-2 input and so on. Actually the first token
from which the process starts is a keyword used to generate the first useful
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3 – GPT-2 for text generation

word for the output (in original training it was used the token "<|startof-
text|>").
In order to understand what kind of text GPT-2 produces and its limits is
useful to take a look at the dataset on which the network was pretrained.
A. Radford et.al. constructed a very large dataset in order to obtain samples
the most "general purpose" as possible. This was done by exploiting web
scrapers (bots able to extract HTML from websites through browsers) to re-
trieve "well done" text from a social media platform (Reddit). The resulting
dataset, called "WebText", contains texts coming from over 45 million links.

3.2 Data available and retrieved data struc-
tures

First step of the case of study is to retrieve data that could be useful to train
the network and construct useful data structures so a description of available
files and what has been extracted from them is needed.
One of the first useful file contains the list of all European top competition
matches from 2000 to 2020 with results, teams and various statistics on each
game.

teamId MatchId match team teamCountry
teamId1 matchId1 team1 v team2 team1 team1Country
teamId2 matchId1 team1 v team2 team2 team2Country
teamId3 matchId2 team3 v team4 team3 team3Country
teamId4 matchId2 team3 v team4 team4 team4Country
teamId5 matchId3 team5 v team6 team5 team5Country

Table 3.1. example of one page belonging to matches file, here it is not
shown dates and stats that were available in the original file

The information are stored as a csv file with multiple pages with the
format shown in table 3.1: each pair of records describes a match between
two European teams and each record belongs to a pair and gives information
about one of the two teams like country to which the team belongs and stats
retrieved during the match played by the team.
The file is used to retrieve two important information: by reading each page
two data structures are created, the first one is a python dictionary useful
to retrieve the name of a team given its unique id and the second one is a
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Python list containing the ids of all the matches. Both data structures are
then stored in JSON files to simplify their future use.
Another important file to retrieve useful information is the one containing
the list of players belonging to teams that from 2013 to 2020 took part in
elite European competition.
Like in matches file case, players are stored in a multi-page csv file with their
ids, name, belonging team and other important stats as number of goals and
assists performed during the competition, sum of played minutes etc. as
shown in table 3.2

playerId playerName teamName matchesPlayed goalsScored
playerId1 playerName1 teamName matchesPlayed goalsScored
playerId2 playerName2 teamName matchesPlayed goalsScored
playerId3 playerName3 teamName matchesPlayed goalsScored
playerId4 playerName4 teamName matchesPlayed goalsScored
playerId5 playerName5 teamName matchesPlayed goalsScored

Table 3.2. example of one page belonging to players file, here it
is not shown other stats as assists and minutes played that were
available in the original file

To retrieve a reliable data structure from this file a little attention has to
paid: a player belonging to a team can be sold or lend to another one once
the competition in a year finishes or before it starts, so it is not possible
to create data structures based on teams. From the file described above is
retrieved a Python dictionary that giving the id of a player returns the real
name, then the data structure is stored in a JSON file for future use.

teamName coatchId coatchName matches
teamName coachId1 coachName1 matchesPlayed
teamName coachId2 coachName2 matchesPlayed
teamName coachId3 coachName3 matchesPlayed
teamName coachId4 coachName4 matchesPlayed
teamName coachId5 coachName5 matchesPlayed

Table 3.3. example of one page belonging to coaches file

Similar file to the one described above is the one giving information about
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coaches (showed in table 3.3): as before, information are stored in a multi-
page csv file with a record for each coach containing useful information such
as coach name and id, team in which that coach worked in a specific year
and number of official matches where they appeared. Taking into account
the problem described in players file, also in this case a Python dictionary
with the pair coachId, coachName is created and stored.
some of the most important files from which useful information can be ob-
tained are marks: in the world of sport, a mark represents an event that
occurred in a certain minute in a specific game (e.g: goal, substitution, yel-
low/red card but also less important occurrence as shots, off-side etc.).

[ { markId1 : Id ;
Tags : [ " Goal " ] ;
O f f i c i a lT ime : time ;
MatchTime : minute o f the match ;
BodyPart : part o f the body used to s co r e
Sub jec t s : [
{Verb : sub j e c t who scored or s u f f e r e d the goa l
Type :Team
Id : teamID

}
{Verb : sub j e c t who s co r e or s u f f e r e d the goa l
Type : Player
Id : playerID}

.

.

.
]
}
{markId2 : Id ;
Tags : [ " YellowCard " , "RedCard " ] ;

O f f i c i a lT ime : time ;
MatchTime : minute o f the match ;
Sub jec t s : [
{Verb : Received
Type :Team
Id : teamID

}
{Verb : Received
Type : Player
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Id : playerID}
}
.
.
.
{markIdn : Id
.
.
.

}
]

So, once the structure of this kind of files is clear, a lot of useful informa-
tion can be retrieved. A marks file is stored as a JSON structure containing
several Python dictionaries (marks) and each mark has different keys and
values depending on which type of event it describes.
Generic file structure and Two example of marks are shown in the simplified
JSON representation above. The first mark is an example of a "Goal" event,
organised as a dictionary with a key for each relevant information as minute
of the match when event happened and part of the body used to score and
values that can be simple strings, lists (like in the case of the key "Tags"
where the type of event the mark is describing can be retrieved) or another
dictionary (like in the case of the subjects involved in the event, as it can be
seen looking at the example of file: in "Goal" marks this dictionary contains
the id of the team and the player that scored but also which team and player,
most of the time the goalkeeper, that suffered a goal).
The second mark is a simplified example of a "Booking" event (card received
from a player). In this case the structure of the dictionary is quite the same
but few differences can be noticed: besides usual information such as minute
of the game and tags (that in this case discerns if the specified player received
a yellow card, a red card or both) in the case of "Subjects" dictionary only
the team and the player that were punished is stored.
The starting training set on which GPT-2 is trained is retrieved from a text
file containing sentences belonging to existing articles with meta data for
each text where information as type of article (match background, match
report etc.) and ids of match and teams involved are stored. Finally, texts
coming from more than 25700 articles are saved and used as starting dataset.
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3.3 First approach: let GPT-2 work freely
The simplest approach to get first results and check how the network behaves
is to train the network with texts described at the end of section 3.2.
For this purpose, the model used is retrieved from "Hugging face"1, the most
important and used library concerning natural language processing and trans-
formers.
The library allows to create and train different models of the network, from
the smallest to the biggest one, with different configurations and different
frameworks (Tensorflow, pyTorch). As first step, a Tensorflow model pre-
trained on "Webtext" dataset (described in section 3.1) with default parame-
ter is used in order to understand how much the network can fit the starting
training set.

Figure 3.1. example
of text generated by
GPT-2 trained on ar-
ticles

The figure 3.1 shows an example of text generated by the GPT-2 model
trained on matches articles. The decoding strategy used in this case is a
beam search (with number of beams = 7) with the temperature value of the
softmax layer set to 0.9.
It is noticeable that, even if raw text regarding soccer is given as input to the
network, the model is already able to create semantically and grammatically
good sentences.

3.4 GPT-2 training based on keywords
As it can be easily guessed looking at the generation example in section 3.3,
the main problem of a simplified approach is that GPT-2 learns in a very
good way how to construct a well done text both grammatically and semanti-
cally but there is no way to guide the network for understanding the context

1description at: https://huggingface.co/gpt2
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in which sentences are created.
A good way to overcome this issue would be to give to the model a sequence
of keywords that could drive the output text both in training and generative
phase.
Since, as seen in section 3.1, GPT-2 generates text by predicting next words
given an input text, a good way to go could be to give as input text for the
network several keywords in order to lead the model to create sentences that
follow the context given by the structured input.
First attempt regarding this approach is made by extracting the useful input
words directly from input text right before the training phase.
As first step a set of keywords is created by exploiting created data struc-
tures: all the names of teams and players that ever played at least one match
in the official history of the elite European competition are retrieved from
dictionaries described in section 3.2, then other specific keywords are added
such as all the possible phases of the competition (final, semi-final, quarter-
final etc.) and all the possible results (from 0-0 to 12-12).
Besides keywords, another important issue that affects results is the diver-
gence of texts: articles available are not focused only on description of a
specific match but also on the background and history of the teams (how
many times the clubs met and with which results, how well they did in
previous matches, how good important players did in previous games etc.),
information that could confuse the network and lead it to loose the context
and useful sentences in the training set. Since it is not possible (for time
and human resources reasons) to read each article choosing useful sentences,
an empirical approach is performed by retrieving only first sentences of texts
(those who usually contain more information regarding the match to which
the article refers).

Figure 3.2.
representation of
one record with simple
keywords generation

The figure 3.2 shows one sample retrieved from articles and the associated
keywords.
During training, keywords are put as first words followed then by the actual
text. As it can be easily guessed, this first kind of approach is likely to fail
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for several reasons:

• the order of keywords types changes in different samples (e.g. goals are
not always followed by scorers)

• textual search of keywords lead to miss important information because
of the presence of semantic synonyms (as the pronoun ’They’ in the
example)

• this kind of search lead also to add keywords actually not belonging to
text (in the example, the extracted keyword ’home_team’ is actually
not referring to the team but to the name of the stadium in which the
match is played).

Figure 3.3. example
of text generated by
GPT-2 trained with
keywords extracted
directly from text

The issues explained above can be noticed in the text generated by a "top
k" decoding strategy, with k set to 20 and temperature set to 0.7 (figure 3.3):
even if some of the input keywords can be found in the text, the network
continues to not following text given as input (e.g. it writes a 3-2 result
rather than the one given as keyword) and also adding useless information
(e.g the home team reached semi-finals for the third time in five years) not
obtainable from starting words.
So a new approach has to be found in order to produce a more structured
set of keywords related to the input text but not extracted directly from it.
Following the lead of Max Woolf 2 a new "Encoder" class is created with the
task to produce a set of keywords with a well defined structure.
Given a text and a set of keywords the class tries to adjust the order of the
words with the aim to give to the network an idea of the scope and this is
done by creating an input sample composed of different parts: "category"
where keywords giving the context of the input text are put, "keywords"
where meaningful words appearing or guiding the text have to be written
and "Title" representing the actual input text in samples.

2link available at: https://github.com/minimaxir/gpt-2-keyword-generation
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Unfortunately there is no mathematical or theoretical reason behind this use
of keywords besides the attempt to debias the input text for the network,
however, empirically it can be noticed that, when a structured and hierarchi-
cal representation of significant words in the sentences is used, GPT-2 seems
to approach better what is expected in a controlled text generation task.
Since the keywords have to appear in the final input samples as the first
part of the text, characters not belonging to original text have to be used to
distinguish both keywords and text and different functions (category/actual
keywords) of tokens. After a careful research in the text (searching for char-
acters not appearing in original sentences) some special characters are chosen
as delimiters: the special character ”‘” indicates the "section" keyword, ”∧ ”
represents the start of the keywords belonging to input text, ”@” indicates
the starting point of text to be generated and the special character ” ∼ ”
represents the starting point of each part of input (section, keywords or text).
In order to create desired input with a fixed structure for each article, key-
words need to be extracted in a way such that a well understandable scheme
is followed. To do so the marks described in section 3.2 are used within new
kind of files.
First, words driving the input have to be chosen and looking at sentences it
is clear that information giving meaning to articles are entities like phase of
the competition (final, semi-final etc.), name of teams, result of the match,
name of players who scored or suffered goals, name of coaches.

for each match with a v a i l a b l e marks :
keywords=get_keywords (match_marks )
save_keywords_in_fi le ( keywords )

get_keywords ( marks_f i l e ){

home_team , away_team = get_teams_name ( )
home_coach , away_coach = get_coaches_name ( )
match_type = get_competition_phase ( )

home_goals=0
away_goals=0
home_scorers=l i s t ( )
away_scorers=l i s t ( )
home_suffers=l i s t ( )
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away_suffers=l i s t ( )

for each mark conta in ing tag " Goal " :
i f mark conta in s tag "OwnGoal " :

as s ign_goa l (home_team , away_team , OwnGoal=True )
add_scorer ( home_scorers , away_scorers , OwnGoal=True )
add_suf fer ( home_suffers , away_suffers , OwnGoal=True )

else :
a s s ign_goa l (home_team , away_team , OwnGoal=False )
add_scorer ( home_scorers , away_scorers , OwnGoal=False )
add_suf fer ( home_suffers , away_suffers , OwnGoal=False )

keywords = l i s t ( )
keywords . add (match_type , home_team , away_team , home_goals )
keywords . add ( away_goals , home_scorers , away_scorers )
keywords . add ( home_suffers , away_suffers , home_coach , away_coach )

return keywords
}

The pseudo-code above represents the script used to extract keywords.
For each events file belonging to specific articles, keywords are retrieved by
exploiting information contained in mark describing goals paying attention
for the special case of own goals, in particular: first keywords returned are
the type of match, teams and coaches name, then two integer numbers rep-
resenting goals scored by the home team and the away one, finally, four lists
representing name of players who scored or suffer the goal for the respective
team. Since the marks don’t contain names of entities but their ids,the use
of data structures to map id of entities in name described in section 3.2 is
essential.
Once keywords for each top European competition match are stored, they
are given as input to the encoder class within the original text belonging to
the respective article.

Figure 3.4 shows a final training input sample given to GPT-2: the type
of match is given to the network as "section" keyword while the other tokens
previously described are used as list of keywords belonging to text (the term
"belonging" has not to be interpreted as "present in text" but as "words that
could be or not written in the original article but in any case give meaning
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Figure 3.4.
representation of
one sample with
structured keywords
generation

to the text").
Figure 3.5 shows an example of text generated by GPT-2 trained with struc-
tured keywords with a "top k" decoding strategy, with k set to 20 and tem-
perature set to 0.7.

Figure 3.5. example
of text generated by
GPT-2 trained with
keywords extracted
from marks

It appears clear that the way entities are now given as input lead the net-
work to generate a text more strictly related to words given as start. However
the issues previous explained remain unresolved since the network continues
to add information not related to keywords to generated text.

3.5 Why GPT-2 leads to poor results
Looking at the results obtained with GPT-2, even without evaluating mod-
els, it seems clear that the network is not following very much the attempts
to guide the text generation.
The model seems to start basing the generation on the given keywords but
then it diverges to create text always correlated to the world of soccer but
without any acknowledge of the context and the way traced before.
In the official Github repository of GPT-2 model3 in section "model_card"

3link available at: https://github.com/openai/gpt-2
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it is explained which use case GPT-2 is intended to achieve:

"Because large-scale language models like GPT-2 do not distinguish fact
from fiction, we don’t support use-cases that require the generated text to
be true.
Additionally, language models like GPT-2 reflect the biases inherent to the
systems they were trained on, so we do not recommend that they be deployed
into systems that interact with humans unless the deployers first carry out a
study of biases relevant to the intended use-case."

So reading what the authors of the model wrote, it appears clear that
forcing GPT-2 to follow some sort of schema based on real facts is a not so
easy task for two main reasons: The network itself was not build with the
will to base its generation on real facts but only to create text from scratch
without predefined directions and moreover GPT-2 is inevitably related to
the dataset it was trained on which does not consider the interaction (directly
or not as question and answer tasks or guided text generation using keywords)
with humans.
Since there is not the availability of a large (millions of samples) training set
about the task this use case is about to complete, a brand new way has to
be taken.
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Chapter 4

T5 and Data-to-Text
Generation

4.1 Data-to-text Generation
Since the task of guided generation of text from scratch seems not a viable
road with the available amount of data, the case of study switches to a new
kind of text generation: rather than expecting a large text from a set of words
given in input, a better way to guide the generation could be to start from
a table of data containing the stats about the match expecting as output
sentences describing each record of the input structured information.
The new approach followed is called Data-to-text Generation and it is defined
as the task of generating text from a data source.
In order to perform data-to-text generation, first a new architecture able
and built to accomplish this kind of task has to be used, a dataset has to
be constructed in the way the new model requires and, working now with
tabular data with a well-defined structure, different evaluation metrics have
to be used to check results.

4.2 T5: operations and original training
As explained in section 2.2, T5 is a large transformer-based architecture
trained on a huge unlabeled dataset (C4) to achieve in the best way multi-
task learning. The authors of the neural network intended and trained the
model to be fine-tune in a very big range of tasks by treating each problem
as a text-to-text work: during training, the model tries to produce new text,
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even for tasks usually not requiring this kind of output (as classification
and regression problems). Even if there is no theoretic evidence that this
kind of approach should work better than others, T5 reached terrific results
especially on natural language processing tasks.
The way in which T5 obtains an output text from input is very similar to
the way original transformer works:
The input sequence is first of all embedded and given to the first encoder
that processes the incoming vector to a self-attention layer and feed forward
network producing an output that is given to the next encoder and so on until
the last encoder block is reached, then the last encoded output is transformed
into attention vectors of keys and values that take into account the relation
between input tokens. The vectors described above are given as input to the
encoder-decoder attention layer of each decoder helping it to focus only on
appropriate tokens of the input sequence. Each decoder, besides the specific
component used to exploit the knowledge retrieved from encoders, has a
structure very similar to the encoding one so also in this phase each output
is given to the next block until the final decoder is reached whose results are
processed by a fully connected (linear) and a softmax layer to obtain words
with respective probabilities.
As said, T5 has been trained first on a huge unlabeled text set in order to
achieve then good performance on different tasks. A closer look to starting
dataset (C4) is needed to obtain a good knowledge about what the network
can do and how new data can be extracted to construct new datasets.
The Colossal Clean Crawled Corpus (C4) was built by exploiting Common
Crawl as source of text scraped from web. Common Crawl is a publicly
available archive providing web extracted text with no markup and other
non-text content from scraped HTML files. Since the original text contained
not human text (e.g. HTML source code, error messages) and also natural
text not useful for NLP tasks (e.g. offensive language, shopping lists) a very
careful clean up has been made:

• kept only text ending with termination punctual mark (e.g. period,
question mark).

• discarded pages containing only fewer than 5 sentences and lines with
less than 3 words.

• deleted pages containing obscene or offensive language

• discarded pages containing the word "Javascript" and the curly bracket
("{") in order to eliminate pages containing code or error messages (in
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natural language usually this kind of words are not present)

• discarded also all the pages not written with English language text.

The resulting "C4" text is a huge dataset composed by 750 GB unlabeled
data of quite clean and natural English text about various topics.

4.3 First approach: from GPT-2 to T5
The obvious first step to check how much better T5 can rely on an input
sequence to generate text than GPT-2 is to use the same training set de-
scribed in section 3.4 comparing the output sentences retrieved by the two
networks. First of all, the dataset used with GPT-2 has to be transformed
in a structured input more compliant to what T5 expects.
The base Tensorflow model of the "hugging face"1 library used in this case
of study requires in training phase an input composed of three well-defined
parts: "target_text", the ideal output text that the network should generate,
"input_text", input sequence to be processed, "prefix", string representing
which task has to be accomplished (in this case the string "create_text" is
used).

Figure 4.1. example
of the first structure of
training samples for T5

In figure 4.1 it is shown how keywords and training samples in general are
transformed to be compliant to a T5 input.

1description available at: https://simpletransformers.ai/docs/t5-model/
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Figure 4.2. first text
generated by T5 on a
fictional input sample

the first text generated by T5 from a fictional input sample is shown in
figure 4.2, as decoding strategy a "top k", with k set to 20, and a "top p"
approach, with p set to 0.95 are combined. It is noticeable that, although an
input not exactly compliant to the structures T5 expects is used, the model
seems to follow given keywords in a same or even better way than GPT-2.

4.4 Totto dataset and use in T5
Once understood that an approach of text generation based on input struc-
tured could lead to a better results rather than trying to guide a pure text
creation, a way to structure data in a compliant way to what T5 expects
has to been found. Looking at benchmarks on data-to-set experiments the
dataset closer and more similar to what the case of study means to do seems
to be the one published in 2020 by Ankur P. Parikh et al.[7] whose description
could be helpful to understand why certain decisions in the dataset self-built
for the use case need to be taken.
Since data-to-text generation is defined as the task of generating a target
textual description y conditioned on source content x in the form of struc-
tured data, a form of input can easily be represented by tables.
Totto is an open-domain English table-to-text dataset with over 120,000
training examples composed by Wikipedia tables with enlightened cells and
target sentences for each related table. In order to construct the state of the
art dataset for data-to-text generation several steps were needed:

• To obtain only Wikipedia pages containing tables-sentences pairs de-
scribing statistics (sports, politics etc.), retrieved only tables and sen-
tences having in common at least three non-date number with non-zero
digits.
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• To retrieve only sentences related to tables, kept only texts with at least
3 distinct cell contents from the same row in a table

• Annotate tables containing links that drove to other pages containing
sentences related to tables of the previous pages

After these automatic steps a more human based clean up phase was per-
formed by "annotators":

• Table readability: deletion of poorly formatted or not understandable
tables.

• Cell Highlighting: highlighting of cells that supported a phrase consid-
ering a sentence supported by a table when part of it was present in
cells content or in table’s metadata or when the analyzed text could be
logically inferred by the table.

• Phrase deletion: removal of sentences unsupported by the highlighted
cells

• Decontextualization: modification of sentences containing ambiguous
pronouns and nouns with respective tables entities.

• Secondary Annotation Task: correction of grammatical errors possibly
still present in texts after previous steps.

The final dataset retrieved 2 contains more than 120.000 samples with over
1.200.000 overall target sentences.

Figure 4.3.
distribution of
different topics in
Totto dataset

2publicly available at: https://github.com/google-research-datasets/totto
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In figure 4.3 the distribution of topics in the final obtained Totto dataset
are shown, as it can be seen a large number of tables and sentences generated
regards sport (about 45.000 samples).
After having described how a well-done data-to-text dataset can to be struc-
tured (tables with record containing entities and metadata and short sen-
tences strictly related to important cells), the way this kind of structure
could be given as input to T5 has to be found.
In 2020 Mihir Kale in his paper[8] studied the "pre-train + fine-tune" strat-
egy for data-to-text tasks comparing results obtained from old state of the
art model (like Bert) with T5 on three different dataset:

• "WebNLG" to convert graphs in textual description.

• "MultiWoz" to convert slot of key-value pairs in textual question and
answer.

• "ToTTo" to convert tables with highlighted cells in text describing records.

T5 seems to outperform in each benchmark the previous state of the art
but what is important for this case study is to understand how the tables
belonging to ToTTo are transformed in order to be accepted as input from
the transformer-based architecture.

Figure 4.4. example
of how ToTTo records
are linearized to be
used in T5 fine-tune

As figure 4.4 shows, the transformation of ToTTo samples to be compliant
to T5 input structure is quite simple: all the pages belonging to the dataset
are linearized using a HTML-like format in which tags represents entities of
the sample.

• The title of the page and each section have a specific tag with the
"page_title" tag in common for all the sections and tables belonging
to that specific page.
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• each table belonging to a specific section is indicated by the tag "table".

• Each cell containing a value for a specific entity is started with the tag
"cell" and the header of that cell is positioned right after the actual value
in the tag "col_header".

• the target sentence is left as is.

The way ToTTO records are transformed appears quite reasonably: since
T5 is built as a text-to-text neural network every kind of data that has to
be processed need to be first turned into a text-like input, in this way the
network is able to treat each problem as a translation task that, as seen in
section 1.3, can be easily solved by a transformer-based architecture.

4.5 Data retrieved
Once understood how data have to be structured in a data-to-text problem
and how to transform them to be used as input in T5, it appears clear to
have a big issue regarding data explained in section 3.2: as seen, to make T5
work properly, texts used as target sentences have not to be too much long
and also they have to be very correlated to the metadata given in input.
Data retrieved from top European league is made of too much tokens and
also it is too divergent (texts contain, besides sentences strictly related to
the analyzed match, also information about the history of teams and about
key events occurred in previous face to face matches).
Since target texts available were not useful for training the network, two
possible approaches could be chosen:

1. Manually modification of existing text in short sentences strictly related
to events described by metadata.

2. Creation of new target sentences obtained from different sources.

Since the first approach is not possible for human resources and time
reasons, new sources of text have to be found.
As seen in section 4.4 and in all the dataset previously described, the best
way to obtain text of good quality is to use web scraper to get text from
HTML pages regarding the interested topic.
Chosen this kind of approach new issues arise regarding web pages and text
obtained:
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• how difficult is to make a connection between already available metadata
and web pages in order to navigate on links that have text actually
related to the match stats are referring to.

• how hard is to obtain text strictly related only to the events described
on match stats.

• how difficult is to make a connection between each stat of a specific
match and each sentence retrieved from web for that match.

Which are the first websites from where to extract texts describing match
are very easy to choose: The official website of the elite European league is
a good starting point for several reasons:

• each URL has a base string in common for each match and its last part
is composed by an id exactly corresponding to the id of marks file from
where metadata are retrieved.

• Each web page of the official site has a list of minute-per-minute events
happened during the match with comments.

Unfortunately, the description of events in pages has not a well-defined struc-
ture or a title from which it could be understood what is described (a textual
research for entities in texts could be a solution but as seen in section 3.4
this approach probably lead to very bad results, considering also that for
only one minute more than one commented text not relating to the event
is written) so as starting point only final comments and description of final
verdict are taken.
In order to extract HTML text from web pages two Python libraries are used:
the first one, "BeautifulSoup4"3 allows to scrape HTML text from web, nav-
igate through tags and extract text, the second web scraper, "Selenium"4
allows to interact with pages before extracting information (e.g: scroll until
the bottom to make the page load new information, click buttons etc.).

for each match_id :
u r l = base_URL + match_id
page = get_URL( u r l )

3documentation available at: https://www.crummy.com/software/BeautifulSoup/
4documentation available at: https://www.selenium.dev/
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page . s c ro l l_unt i l_ in t e r e s t ing_tex t_found ( )

for each text_with_tag_p :

i f t ex t . conta in s ( " Ful l−time−v e rd i c t " ) :
wr i t e t ex t in to "match_id . txt "

i f t ex t . conta in s ( " f i n a l −comment " ) :
wr i t e t ex t in to "match_id . txt "

The pseudo-code above shows how the created script works: for each id in
the list of matches with available metadata, first the page object to interact
with the web site is gotten, then the page is scrolled until the text containing
what has to be taken is reached, finally, since the interesting text is located
in p tags in the HTML document, in the file named with the id of the current
match it is written the text present in each "p" tag that contains the title
searched.
Once texts are available, in order to construct the data set is worth only to
create a table with metadata as cells and sentences coming through the text
file whose name contains the same id of the the mark file from which stats
are extracted as targets.

Since the number of sentences obtained from the official website of the
top European competition are not so numerous (for each match id up to two
lines of resulting text are retrieved bringing the number of targets up to 260)
a new source of text is needed.
A good description of important events in European football matches is con-
tained in the sport section of the "BBC" website (the main British public
service broadcaster). As in the previous case, the URL that brings to a web
page is composed by a base path plus a unique id used to indicate a spe-
cific match. What is interesting is that in BBC pages a "Live text" section
describes minute per minute what happened during the game and most im-
portant events (yellow/red cards, goals and substitution) are highlighted in
the HTML5. Using web pages not coming from the same source of metadata
lead to different problems but also to advantages:

• the match ids of marks and BBC URL are not the same so there is no
direct correspondence to exploit.

5example of a match web page available at: https://www.bbc.com/sport/football/43621073
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• the minutes in which an event occurs can be different between the of-
ficial website of the league and the British broadcaster (there can be a
difference up to a value of one because of the moment on which the event
is annotated during the match)

• Since important events are highlighted, they can be easily retrieved from
the HTML text.

• some of the entities values with special characters could be simplified
(e.g: removing accents in names) in one source and not in another.

For what concerns ids correspondence, since a list of BBC ids with name of
the teams is not available, it has to be done manually checking also for each
web page if the list of events is available (this lead to eliminate about four
sample of the original list of ids).

for each BBC_id :
u r l = base_URL + match_id
page = get_URL( u r l )
l ive_text_button = page . f ind_button ( " Live−Text " )
l ive_text_button . c l i c k ( )
t ex t_ava i l ab l e = True
while ( t ex t_ava i l ab l e ) :

for each h igh l i ghted_text :
wr i t e t ex t in to "BBC_match_id . txt "

try :
next_events_button = page . f ind_button ( "Next−page " )
next_events_button . c l i c k ( )

except :
t ex t_ava i l ab l e = False

The pseudo-code showed above describes how the script for BBC events
works: unlike official league website, in this case the events are not reachable
directly after having load the page but a little interaction with the website is
needed. First, gotten a web page corresponding to a match, the button "Live
text" has to be pushed to access events occurred during the game (button
pressure is done by Selenium functions), then not all the events are already
available so, after having retrieved the highlighted text contained in the page,
the button "Next page" has to be clicked in order to make Ajax load other
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information from the web server. The extraction of sentences for each id
stops when no "Next page" button is found so no remaining pages available
are found.
The use of a third part text increases significantly the amount of samples:
since up to 15 sentences are retrieved for each match the total number of
sentences is now made of about 1700 lines.

for each id in o f f i c i a l _ i d :
BBC_id = ids_correspondance ( id )

for each event in BBC_id :
i f event in o f f i c i a l_ e v e n t s :

i f event [ minute ] in set ( o f f i c i a l_event_minute s ) :

i f event==’Goal ’ :
bu i ld_record ( )

i f event==’Card ’ :
transform_text (BBC_text , o f f i c i a l _ s t a t s )
i f (BBC_team in o f f i c i a l_mark ) and
i f (BBC_player in o f f i c i a l_mark ) :
bui ld_record ( )

i f event==’ Subs t i tu t i on ’ :
transform_text (BBC_text , o f f i c i a l_mark )
i f ( l eav ing_player in o f f i c i a l_mark ) or
i f ( ente r ing_player in o f f i c i a l_mark ) :
bui ld_record ( )

Once the text sample are ready, there is the need to construct records
linking events from official stats with the ones belonging to web pages. The
pseudo-code above shows how the link is made: for each official match the
BBC id is found (exploiting the correspondence data structure manually
built) then, for each match, events are linked by comparing events in a short
amount of time (one minute before or after the official time or in the exact
time). Finally, for each type of events a different action is performed:

• "goal" events are stored as is (making as assumption the impossibility
that 2 goal can be scored in the same minute)
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• "card" events are stored only if the name of the team and the player
match in official stats and BBC text (to avoid the possibility of wrong
matches coming from punishment of more than one player in a time
frame of 2 minutes)

• "substitution" are stored only if the name of at least one player matches
(to avoid the case of more than one substitution in the same time frame)

In order to overcome the unfortunate case in which name of players and
teams are simplified in one of the two sources a transformation is applied
before comparing: both stats and texts are flatted (accents and special char-
acters are eliminated) and all the characters are transformed in lower case to
obtain matches.
Once texts have been extract and before building the input samples for the
network, the way to proceed has to be chosen. Two main approaches can be
followed:

1. Extraction from ToTTo dataset of the samples with topic "sport" and
linearization of European league metadata following the exact rules of
tables linearization by Mihir Kale, performing then a double fine-tuning
by first giving to T5 sport samples of Totto and in a second phase data
created from matches.

2. Taking as example ToTTo linearization, find a way to linearize metadata
performing then a single fine-tuning

As seen in section 4.4, the number of ToTTo sport tables retrieved is about
45000 while the available tables for this case study are close to 260 in the
first data set and to 1700 in the second one: performing a double fine-tuning
could probably lead to a biased model too much influenced by the bigger
number of samples and too little aware of interesting samples so the second
approach is clearly the most reliable one.

Figure 4.5 shows one sample belonging to the training set built with the
league’s official website: what is remarkable is that the input text (stats) is
given to the network as a structure very similar to how the linearization of
ToTTo’s samples works: each input text has a pseudo-HTML structure with
a tag for the title and one for each cell with the respective end tag, what is
different than what has been seen in section 4.4 is that in this case of study
each target text belongs to one record so there is no need to group records
in a table (one record corresponds to one sample).

50



4.5 – Data retrieved

Figure 4.5. example
of one input retrieved
from official website

Figure 4.6. example
of one input retrieved
from BBC website

Figure 4.6 shows one sample belonging to the training set built with BBC
web pages. looking at the sample belonging to the official website several
differences can be noticed:

1. In BBC case, target texts are shorter and describe specific events oc-
curred during the match.

2. Since new target sentences describe specific events also stats are made of
more specific cells: in the example above it can be seen that in "Goal" oc-
currence not only the scorer is given as input but also other information
as the position of the shot and the body part used to score.

3. As expected, name with special characters can be different in different
sources (not visible in the example) but with the transformation per-
formed during data set construction the match is found anyway.

Once data sets are ready they are shuffled and divided in training sets
(85% of the number of samples) to be given as input to the model and vali-
dation ones (15%) to be used to check the goodness of final models.
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4.6 Optimizers: AdamW vs Adafactor
Before starting with training phase, the optimizers available for the network
has to be explained since they can have a big impact on the final result-
ing network. The library used gives two different choices on the optimizer,
AdamW or Adafactor.
In 2015, Diederik P. Kingma and Jimmy Lei Ba proposed in their paper[9]
a new kind of optimizer, called Adam, able to combine several features of
previous solutions.
This optimizer can be seen as an improvement of the stochastic gradient
descent algorithm that combines the advantages of two algorithms based on
SGD: Adagrad and RMSprop. Since Adagrad maintains a fixed "learning
rate" hyper-parameter (improving performances in NLP compared to classic
SGD) and RMSprop updates its "learning rate" hyper-parameter looking at
how fast the magnitude of the gradients change during different updates (im-
proving results on noisy training set), Adam tries to combine both features
by basing the learning rates updates on two different moments.

Figure 4.7. Adam
base algorithm for
weights update

In figure 4.7 is shown the base algorithm through which Adam optimizer
updates weights. Given a set of hyper parameters, at each step the optimizer
calculate values of the two moments that will be used for weights update
after avoiding batches to become biased through a normalization made with
an hyper-parameter for each moment (β1, β2). Such as SGD+momentum
updates his learning rate so does Adam but with moments that are not fixed
making the hyper parameter adapt in different phases.
Adam was first the most used optimizer algorithm since Ashia C. Wilson
et al.[10] demonstrated that for a large variety of problems the algorithm
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performs worst than classic SGD+momentum optimizer.
In 2019, Ilya Loshchilov and Frank Hutter in their paper[11] increased Adam
results (calling this modified algorithm AdamW) by simply using weight de-
cay instead of classic L2 normalization to reduce over-fitting demonstrating
also that while for standard stochastic gradient descent they appear as the
same equation, in the case of adaptive gradient algorithms, such as Adam,
they lead to different results.
In 2018, Noam Shazeer and Mitchell Stern[12] proposed a new optimization
algorithm, called Adafactor, based on Adam: the goal was to reduce memory
usage preserving the benefits of adaptivity discovered by Diederik P. Kingma
and Jimmy Lei Ba.
As seen in figure 4.7, Adam maintains in memory all the parameter for each
weight to estimate the second moment meaning that the amount of memory
needed becomes equal to the number of parameter. Adafactor overcomes
this issue by maintaining only the per-row and per-column sums and esti-
mating the second moment with these sums, decreasing the amount of mem-
ory needed to store estimators for a nXm weight matrix from O(n ∗m) to
O(n + m).

Figure 4.8. Adafactor
base algorithm for
weights update

As it can be seen in Adafactor base algorithm (figure 4.8), the term α
used to update weights is now calculated through a relative step size term
{ρt}Tt=1 and then multiplied by the scale of a parameter matrix defined as
the root-mean-square of its components:

αt = max(Ô2, RMS(Xt−1))ρt (4.1)

the αt term is also low bounded by a small parameter Ô2 to avoid the value
zero for initial parameters. In few words, Adafactor proposes to reach similar
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results compared to Adam using a very less amount of memory.

4.7 Evaluation metrics and results
In order to train the network with the training set created from official league
website, one 12 GB CUDA GPU is used for 20 epochs.

Optimizer Training time Final loss
AdamW 5m 19s 0.061

Adafactor 6m 03s 0.066

Table 4.1. loss and training time to process the training set created
with official league website

As it can be seen in table 4.1, AdamW optimizer seems to be faster and able
to reach lower losses (it does not mean in this case that the produced results
are better), this can be explained by the fact that Adafactor, by building new
matrices to reduce memory used, requires more time to construct matrices
during updates.
The losses produced by T5 are calculated by "Cross entropy": it is a measure
of the difference between two probability distribution very used in deep-
learning. This way to calculate a loss is based on the concept of "entropy":
declaring yi the probability of the ith outcome, the entropy of a sequence
composed by n tokens can be performed as:

e =
nØ
i=0

yi log 1
yi

(4.2)

and represents the amount of "surprisal" trasmitted in all the outcomes.
The term surprisal is used with statistical meaning:

s = log 1
yi

(4.3)

and represents the amount of useful information that an outcome gives
(less probable outcomes bring more information than likely ones). In the case
in which there is the need to understand the difference between a probability
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distribution pi and an estimation of that distribution di, the entropy measure
becomes cross-entropy:

c =
nØ
i=0

pi log 1
di

(4.4)

Since both equations 4.2 and 4.4 take into account the probability distribu-
tion Y as benchmark and since the second equation represents the difference
between that distribution and one of its estimations, it is quite simple to un-
derstand that cross-entropy will be always greater or equal to entropy (equal
when pi = di).
Since cross-entropy increases when the estimation becomes further from the
real distribution, it can be used as a loss function to minimize in order to
bring the predicted probability distribution closer to the actual one. How-
ever, for this specific case study a measure that takes into account only how
similar two texts are can be confusing to the network, that’s why good metric
evaluations have to be used.

Figure 4.9. text gen-
erated by the net-
work trained on offi-
cial comments

Figure 4.9 shows the generated text on two models trained on sentences
coming from the official website with the optimizers described above given
a fictional input cell, both texts are generated with a "top-k" plus "top-p"
decoding strategy with k = 50 and p = 0.90. The issues described previously
can be easily verified on the generated example:

• Because of the few number of samples, models are likely to overfit and
add information not belonging or not obtainable from the input cell (it
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can be noticed mainly on the result with Adafactor where information
on previous matches and phases of the league probably belonging to
training samples are present).

• Since the target texts in training samples are retrieved from final com-
ments on the match (i.e. sentences not strictly related to what the cell
describes) the output contains positive and negative comments not re-
trievable from cells (it can be noticed in sentences as "there are some
positives for the players" and "It was a tough match").

Optimizer Training time Final loss
AdamW 1h 38m 04s 0.015

Adafactor 1h 46m 04s 0.016

Table 4.2. loss and training time to process the training set created
with BBC website

The stats collected after training T5 on the dataset created using BBC
web pages are shown in table 4.2, in this case the network is trained for 50
epochs. As expected, since the number of samples is bigger than the previous
set, the average execution time needed to compute one epoch significantly
increases and also the average loss reached appears clearly smaller because
of the length and the tighter relation of sentences to the input metadata.

Figure 4.10. text gen-
erated by the network
trained on BBC web
pages (Goal)

In figures 4.10, 4.11 and 4.12 are shown examples of generated text for
three different events by the network trained on BBC web pages with a "top-
k" plus "top-p" decoding strategy (k = 50, p = 0.9), results with Adafactor
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Figure 4.11. text gen-
erated by the network
trained on BBC web
pages (Substitution)

Figure 4.12. text gen-
erated by the network
trained on BBC web
pages (Booking)

are not represented in this case because the generated sentences are exactly
the same shown in figures. As said, since the target sentences are short and
very specific also the generated text appears not so long as what has been
produced in the previous case and also strictly related to input metadata.

The first metric evaluation used in this case study is BLEU, published by
Kishore Papineni et al[13].
It is usually used as a metric for automatic machine translation evaluation
in order to avoid human work that, besides the accuracy of the analysis, can
requires months of work and is not repeatable with exactly same results. Bleu
bases its metric on the assumption that "The closer a machine translation is
to a professional human translation, the better it is." so the aim is evaluate
how close automatic generated samples are to human generated sentences
and to do so two main ingredients are needed:

1. a numerical “translation closeness” metric.

2. a corpus of good quality human reference translations.
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This metric evaluation bases its scores on the accuracy metric and the first
way to compare a generated sample with its reference could be to count the
words shared and take this amount as quality of translation:

score = #matches

#words_in_sentence
(4.5)

However this kind of score could lead to favor long generated sentences
that do not match a big number of words in the reference but simply contain
a lot of words referring to the same token of the human text. This issue is
solved in Bleu by the use of the so called "modified uni-gram precision":

• Count maximum number of times a word occurs in each reference text.

• Divide the total occurrences of each word by the count previously cal-
culated.

• add the values found for each word and divide the final number by the
total number of candidate words.

Figure 4.13. example
of modified uni-gram
precision of a text com-
posed by one word

In figure 4.13 it can be seen how with modified uni-gram precision calcu-
lation the score of matching goal decrease from 7/7 (standard precision) to
2/7.
As known, the meaning and context that a word could give in a sentence can
completely change depending on which tokens precede or follow it, that’s
why words between candidates and references have to be compared also as
n-gram (set of consecutive words).
Also in the case of n-gram the standard precision measure is not enough so
the so called "modified n-gram precision" is used, a metric very similar to
what has been described before but with the exception of using set of words
rather than a single one.
Since standard Blue presents issues related to the phase in which the score is
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retrieved (precision is calculated before decoding tokens) a modified version,
called sacreBlue , created by Matt Post[14] of the evaluation metric is used:
the score is now calculated each time after having decoded generated tokens.

Table 4.3 shows the different scores reached: as expected the precision
reached with the training set containing BBC text results much higher than
official comments, this is because texts belonging to the British broadcaster
are much shorter and related to metadata than the ones coming from official
web pages.

Dataset Optimizer Blue score
Official AdamW 1.54
Official Adafactor 0.42
BBC AdamW 80.09
BBC Adafactor 80.67

Table 4.3. Blue scores reached with described training sets and optimizers

The second evaluation metric proposed is PARENT[15] (Precision And
Recall of Entailed Ngrams from the Table).
Blue metric bases its measures on the assumption that reference text is the
perfect ideal output and all the targets have to be compared to it in order
to get a reliable precision measure. However, in table-to-text generation,
when data are generated automatically as in this case study, reference text
could diverge from information contained in tables and not represent a good
comparison basis. In order to calculate precision and recall, Parent uses re-
spectively a union and an intersection of the reference texts and the tables to
avoid not to take into account missing data in reference or consider incorrect
information.
Each table T can be defined as a set of records composed of tuples (attribute,
value):

T = {rk}Kk=1 (4.6)

By denoting G and R respectively the generated and the reference text
that describe a specific table T , the evaluation set of tables, texts and refer-
ence generated by a model M can be represented as:

DM = {(T i, Ri, Gi)}Ni=1 (4.7)
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Since, as in the case of Bleu, there is the need to introduce more words to
be compared in a single step, the set of n-grams of order (number of words
in sequence) n in specific references and texts are indicated as Ri

n and Gi
n

with #Ri
n
(g) and #Gi

n,Ri
n
(g) representing respectively the count of the specific

n-gram g in Ri
n and the minimum between counts regarding the same n-gram

on Ri
n and Gi

n.
In order to obtain precision and recall in this specific case study, since tables
can not be directly compared to reference and generated texts, the notion of
entailment probability has to be introduced and it represents how probable
is that an n-gram in a text is correct given the associated table:

w(g) = Pr(g ⇐ T i) (4.8)

Parent’s precision and recall take into account this entailment probability
so the actual measures that the metric calculates are called "entailed preci-
sion" and "entailed recall".
In the case of precision, the task is to find the fraction of n-grams in Gi

n

that are correct by considering an n-gram g "correct" if it is contained in the
reference Ri

n or it has high probability to be inferred from the table T i (so
if the probability 4.8 is high). By denoting the probability that an n-gram
belonging to Gi

n is also contained in Ri
n as:

Pr(g ∈ Ri
n) =

#Gi
n,Ri

n
(g)

#Ri
n
(g) (4.9)

the entailed precision can be calculated as:

En
p =

q
g∈Gi

n
[Pr(g ∈ Ri

n) + Pr(g /∈ Ri
n)w(g)]#Gi

n(g)q
g∈Gi

n
#Gi

n(g) =
q
g∈Gi

n
#Gi

n(g)w(g) + #Gi
n,Ri

n
(g)[1− w(g)]q

g∈Gi
n

#Gi
n(g)

(4.10)

For what concerns recall of generated text, both the measure on the ref-
erences (Er(Ri)) and tables (Er(T i)) are calculated in order to take into
account respectively sentences structure and information contained for each
generation and then combined with geometric average:

Er = Er(Ri)(1−λ)
Er(T i)λ (4.11)

with the parameter λ used to decide the weight of each specific member.
The average plays the role of a logic "and" representing so the intersection

60



4.7 – Evaluation metrics and results

between the two quantities.

En
r (Ri) =

q
g∈Ri

n
#Gi

n,Ri
n
(g)w(g)q

g∈Ri
n

#Ri
n
(g)w(g) (4.12)

In the equation 4.12, representing the recall calculated on references, the
term w(g) (that is a contribution retrieved from tables) is used as a weight
to exclude divergent texts (that will have low values of w).
Recall referring to tables, using the equation 4.6 and denoting r̄k the string
value of rk, can be calculated as:

Er(T i) = 1
K

KØ
k=1

1
|r̄k|

LCS(r̄k, Gi) (4.13)

with r̄k number of tokens contained in the string value of a specific record
rk and LCS(r̄k, Gi) the length of the longest subsequence in common between
r̄k and the generated sentence Gi (function used to ensure the same order of
string entities between table and generated text).
Finally, entailed precision and recall can be described as two new measures
able to estimate how good the generated text follows information retrieved
from the union (precision) and the intersection (recall) of references and
tables.
entailed precision and entailed recall are finally combined into an F_score
measure to composed the actual Parent score for a single instance:

F_score = 2
( 1
recall)(

1
precision) = 2 precision ∗ recall

precision + recall
(4.14)

The final Parent score of an entire evaluation set for a model M is then
calculated as the average Parent score of each instance:

PARENT (M) = 1
N

NØ
i=1

PARENT (Gi, Ri, T i) (4.15)

Table 4.4 shows results obtained by applying Parent evaluation metric to
available datasets and optimizers. Interesting information can be extracted
from the table:
1. As in the case of Bleu, entailed precision of models obtained with BBC

training set is much higher than what is reached with official sentences.

2. entailed recalls (and consequently F_scores) reach quite small value in
both datasets.
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The small values obtained with entailed recall can be explained by a dif-
ferent reason for each dataset:

• In the case of the training set obtained from official comments, the ref-
erence text is too much divergent compared to tables, this lead the in-
tersection between the two measures explained in equation 4.11 to be
very small obtaining as a result low values of entailed recall even if the
generated text contains an acceptable number of table entities.

• In the case of the training set obtained from BBC sentences, even if
generated text reaches high precision values, the length of all members
of the equations (tables, generated and reference texts) lead to low up-
bounded values of recall.

Dataset Optimizer Parent precision Parent recall Parent F_core
Official AdamW 0.36 0.03 0.04
Official Adafactor 0.37 0.05 0.06
BBC AdamW 0.93 0.08 0.12
BBC Adafactor 0.94 0.08 0.12

Table 4.4. Parent scores reached with described training sets and optimizers

4.8 conclusions
Looking at the generated examples and results several conclusions can be
inferred:

• The approach involving the use of T5 outperforms what is obtained
with GPT-2, so a data-to-text approach in this case study seems to be
the best way to proceed rather than the attempt to force pure text-
generation networks to base their work on keywords.

• The length of sentences to be generated play a key role on the goodness
of generation so a good trade-off has to be found: in the case of quite
big amount of tokens (such as in the case of official comments) results
seems to fall down but too much short sentences generation could result
in a text not so correlated (sentences generated using BBC web pages
describe only single events that need then to be put together to produce a
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match summary and with no human interaction this lead to an accurate
but not so fluent text).

• Besides the length, another important feature of texts to be in training
phase has to be the low divergence: the training set has to be composed
of sentences strictly related to and composed by entities belonging to
tables (in the case of official comments data set, the long and divergent
text leads to very bad results both in examples of generated text and in
the evaluation metrics used).
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Chapter 5

future works

5.1 GPT-3
Before abandoning generative pre-training networks an approach based on
the new architecture created by openai, GPT-3,is worth to try.
Although the architecture and the specific feature of the model are not pub-
licly available, what is known about the network is already very interesting
for this case study:

1. The architecture of GPT-3 remains very similar to previous generative
pre-training networks: the most important part of the model is still
represented by multi-layer decoders as described in section 2.1.

2. The number of parameters of GPT-3 is increased up to 175 billions of
parameters (the largest GPT-2 model reaches 1.5 billions) making GPT-
3 the most powerful and largest language model ever created.

3. The main aim of generative pre-training is stress to its limit by training
the network on about 500 billions of tokens in the unsupervised learning
phase.

4. The number of parameters and the amount of data on which GPT-3 is
trained leads the network to accomplish a wide range of tasks, including
translation problems. So it can be used as a text-to-text translator like
T5.

This features make GPT-3 very interesting for this case study since it
combines the pros of both GPT-2 and T5 representing a hybrid network that
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can solve data-to-text problems with the power of the best generative pre-
training network.

5.2 Use of better datasets
As seen in this case study, besides the ability of the network to generate flu-
ent text, another important factor in the goodness of results is represented
by training sets having a good trade-off between divergence and length of
sentences.
The first approach to retrieve better dataset is to find a data source (in
official data available or through web scrapers) strictly related to matches
events and not too divergent (e.g. not containing sentences regarding history
of teams and players and descriptions of previous games in which they faced).
A second and more general approach could be to merge sentences belonging
to the same data sources or coming from different founts.
As seen in section 4.5 the number of samples retrieved from BBC is much
higher than the one obtained with official comments, unfortunately the sen-
tences scraped are very short and describe specific events of the match. A
way to obtain entire summaries strictly related to match events could be to
manually merge sentences belonging to the same game, obtaining a number
of training samples similar to the one obtained with official web pages (so
quite low) and then increase the size of the training set by implementing one
of the following approach:

1. Using the same data source (e.g BBC), obtaining more samples by scrap-
ing events for matches belonging to different soccer competitions, man-
ually merging descriptions of important events and concatenating ob-
tained summaries in order to build the final set.

2. Obtaining more samples by concatenating, to the existing set, sam-
ples coming from different sources (e.g different broadcasters with web
pages describing events of matches) after having properly merged events
obtained from a single match description in order to create a well-
structured summary.

66



Bibliography

[1] Ashish Vaswani, Noam Shazeer, et al. Attention Is All You Need.
[2] A. Radford Improving Language Understanding by Generative Pre-

Training.
[3] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever Language Models are Unsupervised Multitask Learners.
[4] Colin Raffel, Noam Shazeer et. al. Exploring the Limits of Transfer Learn-

ing with a Unified Text-to-Text Transformer.
[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normal-

ization.
[6] Sennrich, R., Haddow, B., and Birch, A. Neural Machine Translation of

Rare Words with Subword Units.
[7] Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui,

Bhuwan Dhingra, Diyi Yang, Dipanjan Das ToTTo: A Controlled Table-
To-Text Generation Dataset.

[8] Mihir Kale Text-to-Text Pre-Training for Data-to-Text Tasks.
[9] Diederik P. Kingma, Jimmy Lei Ba ADAM: A METHOD FOR

STOCHASTIC OPTIMIZATION.
[10] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and

Benjamin Recht The Marginal Value of Adaptive Gradient Methods in
Machine Learning

[11] Ilya Loshchilov, Frank Hutter DECOUPLED WEIGHT DECAY REG-
ULARIZATION

[12] Noam Shazeer, Mitchell Stern Adafactor: Adaptive Learning Rates with
Sublinear Memory Cost

[13] Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu BLEU: a
Method for Automatic Evaluation of Machine Translation

[14] Matt Post A Call for Clarity in Reporting BLEU Scores
[15] Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-Wei Chang, Di-

panjan Das, William W. Cohen Handling Divergent Reference Texts when

67



Bibliography

Evaluating Table-to-Text Generation

68


	List of Tables
	List of Figures
	I Problem Description and used architectures
	From LSTM to transformers
	NLP: Natural language processing
	Recurrent neural network and LSTM
	Transfomers

	Transformer-based architectures
	Generative Pre-Training Networks
	Text-to-Text Transfer Transformer (T5)
	Decoding strategies


	II Proposed solutions
	GPT-2 for text generation
	Operations and original training
	Data available and retrieved data structures
	First approach: let GPT-2 work freely
	GPT-2 training based on keywords
	Why GPT-2 leads to poor results

	T5 and Data-to-Text Generation
	Data-to-text Generation
	T5: operations and original training
	First approach: from GPT-2 to T5
	Totto dataset and use in T5
	Data retrieved
	Optimizers: AdamW vs Adafactor
	Evaluation metrics and results
	conclusions

	future works
	GPT-3
	Use of better datasets

	Bibliography


