
POLITECNICO DI TORINO

MASTER’S DEGREE THESIS
COMPUTER ENGINEERING - SOFTWARE

A WEB-BASED APPLICATION
FOR COMPUTER-AIDED DESIGN

OF RELATIONAL DATABASES

Candidate: Emanuele Marchetta

Supervisor: Silvia Chiusano
Co-supervisor: Paolo Garza

April 2021

Abstract

Databases allow applications to store and retrieve data in an efficient and reliable way,
among many other things. Even though recent years have witnessed a rise in the use
of NoSQL database technologies, relational databases are still relevant and very useful
in several respects. In order to make effective use of database technology, one has to
master the skill of schema structure design. Concepts at the heart of such design have
been developed and consolidated over time, but no software packages have been de-
ployed with the precise intent of guiding and assisting users – more or less experienced
– throughout the entire process. This thesis work focuses on the design and development
of a tool that serves two main purposes. On the one hand, it offers functionalities spe-
cific to the domain, from ER schema drawing, restructuring, and translation, to logical
schema editing and exporting. On the other hand, it allows users to learn the theoreti-
cal concepts of database design and prevents them from making conventional mistakes.
Rather than just a piece of software, we strived to deliver a great, innovative product.
User experience had a significant impact on development decisions, and interface design
was driven by an extreme push for simplicity and efficiency. It was deployed as a Web
Application for several reasons: they are quicker and easier to build, they work in the
browser (always available on all devices) and they can be updated seamlessly. Although
all requirements set out initially were met, there certainly is a great deal of room for im-
provement. Some edge cases have not been covered and a great number of features can
still be implemented. Also, a lot of emphasis was put on the educational aspect, but –
with some small changes – the software has everything it takes to become a fully-fledged
professional product.

i

Contents

Abstract

1 Introduction and Motivation 1
1.1 Relational Databases Design Process . 1
1.2 Who This Tool Is For . 3
1.3 Existing Alternatives . 3
1.4 Organization of This Thesis . 5

2 Conceptual Design 6
2.1 Entity-Relationship Model . 7

2.1.1 Entities . 7
2.1.2 Relationships . 7
2.1.3 Attributes . 9
2.1.4 Internal and External Identifiers . 10
2.1.5 Generalizations . 11

3 Logical Design 13
3.1 ER Schema Restructuring . 13

3.1.1 Generalizations . 14
3.1.2 Multivalued Attributes . 15
3.1.3 Composite Attributes . 16

3.2 Translation into the Relational Model . 17
3.2.1 Entities . 17
3.2.2 Relationships . 18
3.2.3 Attributes . 20

3.3 Towards Physical Design . 21
3.3.1 Data Types . 21
3.3.2 Constraints . 22
3.3.3 SQL Language . 22

ii

4 Technologies Adopted 25
4.1 Why a Progressive Web Application . 25

4.1.1 Mobile Apps and Web Apps . 25
4.1.2 Single-Page Applications . 27
4.1.3 Progressive Web Applications . 29

4.2 Web APIs . 31
4.2.1 Web Storage API . 31
4.2.2 Canvas API . 33
4.2.3 Touch Events . 34

4.3 Vue.js JavaScript Framework . 35
4.3.1 Overview . 35
4.3.2 Components . 36
4.3.3 Reactivity . 37

4.4 Two.js Drawing API . 38
4.4.1 Overview . 38

5 Product Design and User Experience 41
5.1 User Interface . 41

5.1.1 Minimal UI for Maximum Impact 42
5.1.2 Tool UI Appearance . 43
5.1.3 Responsive Web Design . 44
5.1.4 Editor Navigation . 47

5.2 User Experience . 48
5.2.1 Errors and Suggestions . 48
5.2.2 Hide Unnecessary Information . 49
5.2.3 Real-Time Updates . 51

5.3 Schema Drawing . 52
5.4 Utility Features . 53

5.4.1 Load and Save . 53
5.4.2 Exporting the Diagram . 54

5.5 Enhancing Usability . 55
5.5.1 Undo and Redo . 55
5.5.2 Autosave . 57
5.5.3 Offline Availability . 58
5.5.4 Keyboard Shortcuts . 60

6 Tool Overview 61
6.1 Drawing the ER Model . 61

6.1.1 Entities . 61
6.1.2 Relationships . 64

iii

6.1.3 Attributes . 68
6.1.4 Identifiers . 69
6.1.5 Generalizations . 72
6.1.6 ER Code Generation . 74

6.2 Restructuring Step . 75
6.2.1 Generalizations . 76
6.2.2 Multivalued Attributes . 77
6.2.3 Composite Attributes . 78

6.3 Translation Step . 79
6.3.1 Entities . 79
6.3.2 Relationships . 80

6.4 Logical Schema Editing . 81
6.4.1 Assigning Data Types . 81
6.4.2 Reordering Columns . 82
6.4.3 Unique Constraint . 82
6.4.4 SQL Code Generation . 82

6.5 An Example Use Case . 83
6.5.1 Exercise Text . 84
6.5.2 ER Diagram and Logical Schema 84

7 Conclusions 87
7.1 Summing Up . 87
7.2 Where To Go From Here . 88

7.2.1 Functionality Limitations . 88
7.2.2 New Features . 89
7.2.3 General Improvements . 89

iv

Chapter 1

Introduction and Motivation

Databases play a central role in modern computing systems. They not only store appli-
cation data in an efficient and reliable way, but also offer advanced features like transac-
tions and concurrency control, and face issues regarding reliability, data replication and
recovery from failures. Since they represent such a critical subsystem, the importance
of a good design cannot be overstated. This is especially true for relational databases,
where the structure and format of the data must be determined a priori.

Modern Web Applications can be run from any device, from desktop computers, to
tablets and smartphones. Thanks to the numerous advantages they offer, they are a
great option when it comes to software development. This thesis work aims to design
and develop an engaging product to support every step of the database design process.
Even though the software is not limited to any particular use or application, our main
goal was to deliver a tool capable of assisting users in their learning process.

1.1 Relational Databases Design Process

Relational databases have the characteristic of requiring the definition of a schema. In
this setting, data is organized in tables, and each one of these consists of a set of columns.

The process of designing a relational database has been consolidated over the years and
is composed of three consecutive phases (outlined in Figure 1.1):

• Conceptual design. Informal requirements described in natural language are ex-
pressed in a high-level formal graphical representation, that explicitly states which
entities are involved and what are the relationships among them. A possible ap-
proach to conceptual design is through the use of the Entity-Relationship (ER)
model.

1

• Logical design. A series of well-defined rules allows the translation of the concep-
tual representation defined in the preceding phase into a set of tables, each with
their columns. The output of this step is the logical schema of the database and
refers to a logical data model. This representation is still independent of the phys-
ical details, although the DBMS used for the implementation must be one that
supports that data model.

• Physical design. DBMS-specific features are exploited in such a way that efficiency
and performance are maximized. This requires knowledge about statistics on data,
expected workload, and DBMS operation (i.e. indexing, storage structures, query
processing, etc.).

Figure 1.1: The phases of database design [1].

Clearly, physical design is strongly affected by the DBMS of choice. In order to deliver
a product agnostic to the selection of any particular DBMS, this work focuses mainly on
the first two steps.

2

1.2 Who This Tool Is For

Anyone looking for a software for conceptual and logical design will likely find this tool
helpful. No particular experience or expertise is required to use the software. Every step
of the process is covered: from drawing the ER model, to restructuring and translating
it, and finally editing the resulting logical schema down to the last detail.

Most importantly, however, this product sets itself to provide support for students and
enthusiasts who are learning how to design relational databases. Productivity and au-
tomation have been disregarded in favor of clarity and completeness. Each feature is
implemented in a way that prevents users from making careless mistakes and, whenever
possible, suggestions and clarifications are shown.

1.3 Existing Alternatives

For what concerns the mere purpose of drawing diagrams, a huge number of software
packages are currently available. These tools provide specialized features for creating
and manipulating objects like shapes, lines, and text. These are totally valid options if
the intention is only to concentrate on the drawing aspect. However, while the graphical
side is central to our product, our focus does not stop there.

Figure 1.2: ERDPlus user interface.

On the other hand, some tools are specifically conceived for conceptual schema drawing
and therefore are able to offer features best suited to the needs of database design.
Below is a selection of the most promising ones, with some considerations about their
selling points and the reasons why they do not meet our requirements.

3

ERDPlus

ERDPlus is a database modeling tool to quickly and easily create Entity-Relationship
Diagrams, Relational Schemas, and Star Schemas [2]. It is free to use and quite simple to
operate. The majority of ER schema constructs are supported, and automatic conversion
to the relational schema is offered. Diagrams can be easily loaded from files, saved
for later reuse, and exported as images. This is likely the closest thing to our idea of
application for database design.

Unfortunately, some issues prevent this tool from being complete. The lack of error-
checking makes it fitter for experienced users than for beginners and does not really
help them learn. While being significant, the provided functionality is still limited: gen-
eralizations are not supported and model restructuring is absent.

Microsoft Visio

Microsoft Visio is a diagramming and vector graphics application and is part of the Mi-
crosoft Office family [3]. It is paid (with the possibility of a free trial) and is a com-
plete and extended diagramming software. Among many other things, it allows creating
Entity-Relationship diagrams with the possibility to specify things like relationship car-
dinality, identifier attributes, mandatory, multivalued, and derived attributes.

Figure 1.3: ER model designed using Microsoft Visio [3].

4

The software offers advanced tools like exporting to other Microsoft programs or reverse
engineering to generate an ER model from an existing database schema. On the down-
side, it is not specific to database design and does not support both generalizations and
guided model restructuring/translation. It is more appropriate for brainstorming and
quick diagraming than for in-depth design of relational databases.

1.4 Organization of This Thesis

Chapter 2 discusses the basics of conceptual schema design. It focuses entirely on the
Entity-Relationship (ER) model and covers its fundamental constructs, their meaning,
and the rules that govern them.
Chapter 3 is a reference on conceptual schema restructuring and translation: tasks that
constitute the logical design phase. It looks at how to construct a logical schema that
correctly and efficiently represents all of the information described in the ER schema.
In Chapter 4, we explore the technologies used in the development and explain the ra-
tionale for the technical choices made. Some code examples are reported to showcase a
particular feature’s capabilities or to illustrate possible applications.
Chapter 5 digs into product design, User Interface, and User Experience. It covers best
practices and guidelines of software design, and explains how we took advantage of
them to make our application more usable and enjoyable.
Chapter 6 illustrates in great detail how the software works. It is a comprehensive walk-
through to the different features of the application and highlights common mistakes that
are made and how to avoid them.
Finally, Chapter 7 draws the conclusions of the thesis work and provides some recom-
mendations for future developments of the software, both in terms of functionality and
technology.

5

Chapter 2

Conceptual Design

In general, the design of relational databases starts with the definition of a conceptual
schema. Note that there is no unique formalism for that. In this work, the choice fell
on the Entity-Relationship (ER) model, widely used in structured analysis and concep-
tual modeling. We will use the terms conceptual schema and ER model interchangeably
throughout the text. In this chapter, we illustrate a structured approach to conceptual
design and the data representation tools at the designer’s disposal [1].

Figure 2.1: The conceptual design phase [1]

6

2.1 Entity-Relationship Model

The Entity-Relationship model is the most widely used representation in conceptual de-
sign. It was designed by Peter Chen and published in a paper in 1976, even though
variants of the idea seemed to exist already.

The model provides a high-level view of a specific domain of knowledge by means of
a set of constructs, namely, entities, relationships, attributes, identifiers, and general-
izations. This representation is abstract and independent from any subsequent choice
of implementation. The fact that constructs can be illustrated graphically allows us to
define the model using a diagram.

2.1.1 Entities

An entity is anything that exists physically or logically, and that can be uniquely identi-
fied. It represents a class of objects that have common properties and an autonomous
existence. For instance, Customer, Order, and Invoice are possible examples of entities
in an e-commerce domain. An occurrence of an entity can be seen as an object of the
class represented by the entity itself. Customers Stevens and Rodriguez are examples of
occurrences of the Customer entity.

An entity is rendered graphically as a rectangle with the name inside it (Figure 2.2).
This name is unique across the whole schema: no other entity or relationship can share
the same name.

CUSTOMER

Figure 2.2: Example of an entity in the ER model.

2.1.2 Relationships

A relationship, sometimes also called an association, establishes a logical link between
two or more entities. In other words, it captures how entities are related to each other.
Residence is an example of a relationship that associates entities Person and City, and
Exam is a possible relationship that can exist between the entities Student and Course.
When two entities are involved (it is usually said that they participate), the relationship
is called binary. When three entities are linked together, it is known as ternary. An
occurrence of a relationship is an n-tuple (a pair in the case of a binary relationship),
whose elements are occurrences of the entities involved.

7

ORDER INVOICESALE

Figure 2.3: Example of a relationship in the ER model.

In an ER schema, a relationship is represented graphically by means of a diamond,
containing the name of the relationship, and by lines that connect the diamond with
each participating entity (Figure 2.3). As it was the case for entities, the name of a
relationship must be unique.

supervisee

supervisor

EMPLOYEE SUPERVISION

Figure 2.4: Example of a recursive relationship.

Recursive relationships are possible as well, that is, relationships between an entity and
itself (Figure 2.4). In this case it is necessary to indicate the roles that the entity involved
plays in the relationship.

Cardinality of Relationships

For each entity participating in a relationship, two values are specified. These describe
the minimum and maximum number of relationship occurrences in which the entity
occurrence can participate. In other words, they state how many times in a relationship
between entities an occurrence of one of these entities can be linked to occurrences of
the other entities involved.

In defining cardinalities of relationships, three values are used: zero, one and N (which is
called “many” and indicates an integer greater than one). For the minimum cardinality,
zero or one; the relationship is said to be optional or mandatory, respectively. For the
maximum cardinality, one or many (N); in the first case each occurrence of the entity
is associated with at most one occurrence of the relationship, while in the second case
each occurrence of the entity is associated with an arbitrary number of occurrences of
the relationship.

By looking at the maximum cardinalities, one can classify binary relationships in three
distinct groups (illustrated in Figure 2.5):

• one-to-one relationships, having a maximum cardinality equal to one for both the
entities involved;

8

(0,1) (1,1)

(1,1) (0,N)

(0,N) (1,N)

CITIZEN PASSPORTISSUE

PROFESSOR DEPARTMENTMEMBERSHIP

ACTOR MOVIEPERFORMANCE

Figure 2.5: Examples of cardinality of relationships.

• one-to-many relationships, between an entity with maximum cardinality equal to
one and another with maximum cardinality equal to N;

• many-to-many relationships, having a maximum cardinality equal to N for both the
entities involved.

For what concerns ternary relationships, the participating entities must have maximum
cardinality equal to N. Otherwise, the relationship would not be strictly ternary, as it
would be possible to replace it by using only binary relationships.

2.1.3 Attributes

An attribute is a property associated with an entity or relationship, and whose purpose
is to describe it. LastName and Birthdate are possible attributes of the Customer entity,
while Date and Mark are possible attributes of the relationship Exam between Student
and Course. An attribute can take on different values, and this set is known as the
domain of the attribute.

Age

Name

Sex

PERSON

Figure 2.6: An example of attributes associated to an entity.

9

As depicted in Figure 2.6, when drawing the ER diagram, attributes are shaped as small
circles arranged close to the entity or relationship they refer to and are connected to
them by a line.

Cardinality of Attributes

For each occurrence of an entity or relationship, the associated attributes can assume a
number of values between a minimum and a maximum. The cardinality of an attribute
describes this range and, in most cases, it is equal to (1,1) and is omitted. If so, the
attribute assumes a single value with each entity (or relationship) occurrence.

PhoneNumber
(0,N)

Figure 2.7: Example of an optional multivalued attribute.

However, the attribute may be null or may assume multiple values. In the former case,
the minimum cardinality would be zero and the attribute is said to be optional (as op-
posed to mandatory, when the minimum cardinality is one). In the latter case, the
maximum cardinality would be many (N) and the attribute is called multivalued.

Composite Attributes

Street

City

ZipCode

Address

Figure 2.8: Example of a composite attribute.

It may be the case that an attribute is the natural union of a set of simpler attributes, that
have connected meanings or uses. Such an attribute is qualified as composite. An ex-
ample of a composite attribute is the attribute Address of Customer, with subattributes
Street, City, and ZipCode. A graphical representation of a composite attribute is shown
in Figure 2.8.

2.1.4 Internal and External Identifiers

Each and every entity in the schema must have an identifier, that makes it unique and
distinguishable from all other entities. Often times, the identifier is formed by one or

10

more attributes of the entity itself, and it is known as internal identifier (or key). These
attributes must necessarily have cardinality equal to (1,1). Figure 2.9 shows both the
case of a single attribute and the case where multiple attributes form the identifier.

Name

Code

Color

PRODUCT DateTime

LastName

GuestsNumber

RESERVATION

Figure 2.9: Examples of internal identifiers.

It may happen, however, that the entity attributes alone are not sufficient to identify the
entity occurrences unambiguously. When this is the case, one or more other entities are
involved for the identification. The entity is said to have an external identifier and is
qualified as weak (Figure 2.10). This kind of identification is only possible if there exists
a binary relationship between each external-identifying entity and the weak entity, and
if the latter participates with cardinality equal to (1,1). Note that an external identifier
can involve an entity that is in its turn identified externally, as long as cycles are not
generated.

LastName

FirstName

Registration

STUDENT ENROLLMENT(1,1) (0,N)

Name

City

UNIVERSITY

Figure 2.10: Example of an external entity identifier.

2.1.5 Generalizations

A generalization is a logical link between an entity E, referred to as parent entity, and one
or more other entities E1, ..., En, called child entities. We say that E is a generalization
of E1, ..., En, and that entities E1, ..., En are specializations of the E entity.

Every occurrence of a child entity is also an occurrence of the parent entity. In addition,
every property of the parent entity (such as attributes, identifiers, relationships, and
other generalizations) is also a property of each child entity. Clearly, this means that
child entities in a generalization are exceptions to the rule that each entity must have an
identifier (internal or external): they inherit it from the parent entity.

A generalization is said to be total if every occurrence of the parent entity is also an
occurrence of one of the child entities, otherwise it is partial. A generalization is exclusive

11

(p,o)

PERSON

EMPLOYEE STUDENT

Figure 2.11: Example of a generalization (partial and overlapping).

if every occurrence of the parent entity is an occurrence of at most one of the child
entities, otherwise it is overlapping.

In the conceptual schema, generalizations are indicated by arrows that go from child
entities to the parent entity (Figure 2.11). It is also specified how the generalization is
classified (total/partial and exclusive/overlapping).

12

Chapter 3

Logical Design

Once the conceptual design phase is complete, the next step is to construct a logical
schema that correctly represents all the information described in the ER model. This
activity consists of two main steps: ER schema restructuring and translation into the
relational model [1]. Even though there are rules to be followed, the procedure is not
automatic and requires design choices to be made.

3.1 ER Schema Restructuring

The Entity-Relationship schema is a high-level conceptual representation, and not all of
its constructs naturally translate to the relational model. Generalizations and special
attributes – namely, multivalued and composite attributes – need to be restructured
before proceeding with the translation of the ER schema.

(X,Y)

P1

P0

(t,e)

PARENT

C1

CHILD1

C2

CHILD2

E_PR_P

E_C2R_C2

Figure 3.1: An ER schema with a generalization.

13

3.1.1 Generalizations

The relational model does not support the definition of complex constructs like gener-
alizations. Therefore, it is necessary to replace them with simpler constructs that are
easier to translate. It turns out that these constructs are nothing but entities and rela-
tionships, and that there are three possible options to replace a generalization. These
will be demonstrated by taking as a reference the generic schema in Figure 3.1.

(0,Y)

P1

P0

C1

(0,1)

C2

(0,1)

Type

PARENT E_PR_P

E_C2R_C2

Figure 3.2: Collapsing the child entities into the parent entity.

• Collapse the child entities into the parent entity. Child entities are removed,
and their attributes and participations in relationships are absorbed by the parent
entity, with minimum cardinality set to 0. An attribute named Type is added to this
entity, for the purpose of distinguishing occurrences of the different specializations.
The restructured ER schema is shown in Figure 3.2.

(X,Y)

C1

P1

P0

CHILD1

C2

P1

P0

CHILD2

E_P

E_C2R_C2

R_P1

R_P2

Figure 3.3: Collapsing the parent entity into the child entities.

14

• Collapse the parent entity into the child entities. The parent entity is removed,
and its attributes are repeated (with the same cardinality) in each child entity. All
relationships the parent entity was participating to are replicated for each child
entity. This option is only available if the generalization is total and exclusive, and
is illustrated in Figure 3.3.

P1

P0

PARENT

C1

CHILD1

C2

CHILD2

E_PR_P

E_C2R_C2(X,Y)

(0,1)

(1,1)

(0,1)

(1,1)

IS_CHILD1 IS_CHILD2

Figure 3.4: Substituting the generalization with binary relationships.

• Substitute the generalization with relationships. One-to-one relationships are
used to connect the parent entity with each child entity, logically representing
the same concept as the generalization. There are no transfers of attributes or
relationships, and child entities are identified externally by the parent entity. This
option, shown in Figure 3.4, is the most general and is always applicable.

3.1.2 Multivalued Attributes

In relational databases, table columns – what attributes eventually translate to – are not
able to hold multiple values (e.g. arrays of strings). Consequently, among the tasks of
the restructuring activity is to transform multivalued attributes in order to represent the
same idea in a way compatible with the logical schema.

This is achieved by substituting the multivalued attribute with an entity-relationship
combination (Figure 3.5). In particular, the attribute becomes an entity itself and is
connected to the original entity through a relationship. The original entity participates to
this relationship with a cardinality equal to the cardinality of the multivalued attribute,
while the new entity can participate with cardinality equal to either (1,1) or (1,N).

15

(1,N)

(1,N)

FirstName

Id

LastName

EMPLOYEE

Degree EDUCATIONDEGREE

EDUCATION

FirstName

Id

LastName

EducationDegree

(1,N)

EMPLOYEE

Figure 3.5: Example of a possible restructuring of a multivalued attribute.

3.1.3 Composite Attributes

Composite attributes are a conceptual formalization only possible in the ER schema.
Before proceeding with the translation, they need to be restructured and converted to
regular attributes.

Street

City

ZipCode

Address Address_Street_City_ZipCode

Figure 3.6: Composite attribute restructured by merging subattributes together.

Here, two approaches are always possible. One option, illustrated in Figure 3.6, is to
merge all subattributes into a single heterogeneous attribute, whose value will be the
concatenation of the values of all subattributes. The alternative is to split the composite
attribute and turn each subattribute into an attribute of its own (Figure 3.7).

Street

City

ZipCode

Address City_Address

Street_Address

ZipCode_Address

Figure 3.7: Composite attribute restructured through decomposition.

16

3.2 Translation into the Relational Model

After restructuring the ER schema, all that is left are entities and relationships. There are
precise rules for the translation of these fundamental constructs, and in some cases one
has the possibility to choose between multiple alternatives. At the end of the translation
step, a logical schema is obtained, made up of relations (or tables) possibly linked to
each other by means of referential integrity constraints.

3.2.1 Entities

The way that entities are translated depends on whether they are identified internally or
externally. In all circumstances, however, an entity is translated with a relation.

Entities with Internal Identifiers

In the case of an entity identified by one or more of its attributes, the translation is
straightforward. The entity becomes a relation with the same name, having as attributes
the same attributes as the entity and having its identifier as primary key (Figure 3.8).

Name

Code

Color

PRODUCT Code

Name

Color

PRODUCT

Figure 3.8: Translation of an entity identified internally.

Entities with External Identifiers

If the entity is identified externally, the approach is slightly different. For one thing,
the relationship used for external identification is consumed in the translation. As in
the previous case, the entity still becomes a relation with the same name, having as
attributes the same attributes as the entity. This time, though, the key of the weak
entity is formed putting together the identifiers of all the entities it depends on, plus any
possible attribute taking part in the external identification.

Let us take the schema illustrated in Figure 2.10 as an example. The entity Student
is identified externally by the University entity, through the Enrollment relationship.
The entity University is identified internally and is translated as described previously.

17

The relationship Enrollment goes away in the translation, and the weak entity Student
becomes a relation with the same name, having attributes FirstName and LastName.
Eventually, two other attributes are included in relation Student and form its key: Name
(of relation University, and renamed to University), since it was an identifier of entity
University (and the Student entity depends on University), and Registration (of
entity Student), since it was taking part in the external identification of its parent entity.

Name

City

UNIVERSITY

University

Registration

LastName

FirstName

STUDENT

Figure 3.9: Translation of the schema in Figure 2.10.

Figure 3.9 shows the logical schema that is obtained after the translation step. When
it happens that an attribute of a relation refers to another attribute, we have what is
called a referential (integrity) constraint (further details are given in next sections of this
chapter). In this case, University of Student references Name of University. This
means that each occurrence of relation Student must have a value of the University
attribute for which an occurrence of relation University exists with the same value in
the Name attribute.

Since an external identifier can involve an entity that is in its turn identified externally,
the translation of a weak entity is a recursive task. In order to avoid cascade translations
happening simultaneously, as this would likely confuse users, our software enforces an
order of operations: weak entities may be translated only after all entities they depend
on have been translated.

3.2.2 Relationships

When translating relationships, some distinctions have to be made regarding both their
type (binary or ternary) and, in the case of binary relationships, their cardinality (one-to-
one, one-to-many, or many-to-many). In the following, we cover the way relationships
are translated for all possible combinations of the above.

18

Many-to-many Binary Relationships and Ternary Relationships

As we have seen in Section 2.1.2, ternary relationships require entities to participate
with maximum cardinality equal to N. Hence, it comes as no surprise that they behave
in the same way as binary many-to-many relationships.

These relationships translate into a relation with the same name, having as attributes the
attributes of the relationship and the identifiers of the entities involved; these identifiers,
taken together, form the key of the relation.

One-to-many Binary Relationships

• With mandatory participation: (1,1) – (*,N).
The entity participating with cardinality (1,1) absorbs the relationship, incorpo-
rating the attributes of the relationship and the identifiers of the (*,N) entity as
external references.

• With optional participation: (0,1) – (*,N).
Two alternatives are available:

– The entity participating with cardinality (0,1) absorbs the relationship, in-
corporating the attributes of the relationship and the identifiers of the (*,N)
entity as external references.

– Translate it into a relation with the same name, having as attributes the at-
tributes of the relationship and the identifiers of the entities involved; the
identifiers of the (0,1) entity form the key of the relation, while the identi-
fiers of the (*,N) entity are external references to that entity.

One-to-one Binary Relationships

• With optional participation for one entity: (0,1) – (1,1).
The entity participating with cardinality (1,1) absorbs the relationship, incorpo-
rating the attributes of the relationship and the identifiers of the (0,1) entity as
external references.

• With mandatory participation for both entities: (1,1) – (1,1).
One can follow two approaches:

– The first entity absorbs the relationship, incorporating the attributes of the
relationship and the identifiers of the second entity as external references.

– The second entity absorbs the relationship, incorporating the attributes of the
relationship and the identifiers of the first entity as external references.

19

• With optional participation for both entities: (0,1) – (0,1).
There are four possible choices:

– Translate it into a relation with the same name, having as attributes the at-
tributes of the relationship and the identifiers of the entities involved; the
identifiers of the first entity form the key of the relation, while the identifiers
of the second entity are external references to that entity.

– Translate it into a relation with the same name, having as attributes the at-
tributes of the relationship and the identifiers of the entities involved; the
identifiers of the second entity form the key of the relation, while the identi-
fiers of the first entity are external references to that entity.

– The first entity absorbs the relationship, incorporating the attributes of the
relationship and the identifiers of the second entity as external references.
However, all these attributes are nullable since they come from an entity par-
ticipating with (0,1) cardinality.

– The second entity absorbs the relationship, incorporating the attributes of
the relationship and the identifiers of the first entity as external references.
However, all these attributes are nullable since they come from an entity par-
ticipating with (0,1) cardinality.

3.2.3 Attributes

Optional Attributes

Whenever attributes of entities or relationships are described as optional, the corre-
sponding attributes of relations can assume null values (they are said to be nullable).
Figure 3.10 shows how, in the logical schema, these attributes are marked with an as-
terisk.

Budget

Name

ReleaseDate(0,1)

PROJECT Name

Budget

ReleaseDate*

PROJECT

Figure 3.10: Optional columns of a table are indicated with an asterisk.

20

3.3 Towards Physical Design

The last phase of database design is the physical design. This process produces the
physical schema of the database, which encompasses the definitions of the relations
and of the physical access structures used, with the related parameters. The activity of
physical database design can be very complex and is certainly outside the scope of this
work, primarily because it very much depends on the DBMS of choice.

Nevertheless, some aspects are common to all implementations. In the following, we
will have a look at the data types of table columns, the different constraints that can
exist in a relational database schema, and the (standard) SQL language.

3.3.1 Data Types

The SQL standard groups predefined data types into types with similar characteristics:

• Character Types

– Character (CHAR)

– Character Varying (VARCHAR)

– Character Large Object (CLOB)

• Binary Types

– Binary (BINARY)

– Binary Varying (VARBINARY)

– Binary Large Object (BLOB)

• Numeric Types

– Exact Numeric Types (NUMERIC, DECIMAL, SMALLINT, INTEGER, BIGINT)

– Approximate Numeric Types (FLOAT, REAL, DOUBLE PRECISION)

• Datetime Types (DATE, TIME, TIMESTAMP)

• Interval Type (INTERVAL)

• Boolean

• XML

• JSON

21

3.3.2 Constraints

A constraint can be seen as a predicate that associates a true or false value with a database
instance. In general, a collection of constraints is defined for a database schema and we
consider correct (or legal) the instances that satisfy all such constraints. It is possible to
classify the constraints in two categories, according to the elements of the database that
are involved in it: intra-relational constraints and inter-relational constraints. Intuitively,
the former ones involve a single relation and the latter ones take into account several
relations.

3.3.3 SQL Language

SQL is an acronym for Structured Query Language, and it was one of the first commercial
languages to utilize Codd’s relational model. SQL has been standardized in the 1980s
and has become the reference language for relational databases.

SQL is more than a mere query language. It consists of different classes of statements,
informally referred to as sublanguages: the main ones are the Data Definition Language
(DDL) and the Data Manipulation Language (DML). The first one has commands to de-
fine a relational database schema, while the second one has commands to modify and
query a database instance.

Schema Definition

With SQL it is possible to define a database schema as a collection of domains, tables,
indices, assertions, views and privileges. It is not necessary for all the components to
be defined at the same time as the schema is created: this can take place in several
successive phases. A schema has a name and an owner, and is created with the CREATE

SCHEMA command.

Domain Definition

A database schema may have zero or more domains. A user-defined domain is charac-
terized by its own name, by an elementary domain (either be predefined or previously
user-defined), by a possible default value, and finally by a (potentially empty) set of
constraints that represent the conditions that must be satisfied by legal domain values.
It is possible to create a user-defined domain by means of the CREATE DOMAIN statement.

Table Definition

A table in SQL has a name and consists of an ordered set of attributes and of a (possibly
empty) set of constraints. Each attribute, in turn, has a name and domain and possibly

22

a set of constraints. The table being created is initially empty and the creator holds all
the privileges associated with it. In this case, the SQL command CREATE TABLE is used.

For example, the schema of a table Department is defined by means of the following
SQL statement:

CREATE TABLE Department (
Name CHAR(20) PRIMARY KEY,
Address CHAR(50),
City CHAR(20)

);

Intra-Relational Constraints

The simplest intra-relational constraints are not null, unique, and primary key.

• Not Null.
The null value is a special value, which indicates the absence of information. The
not null constraint indicates that the null value is not admissible as the attribute
value. If this is the case, the attribute must always be specified at the insertion
stage. However, if a default value is associated with the attribute, it is possible to
carry out an insertion without providing a value for the attribute, since the default
value will be assigned to it automatically.

• Unique.
A unique constraint imposes that one or more attributes of a table are a (super)
key. Thus, it ensures that different rows do not possess the same values. Things
are different for the null value, which can appear in various rows without violating
the constraint, as it is assumed that each null value represents an unknown actual
value different from that of another null value.
Note that the definition of multiple unique constraints on single attributes is very
different from the definition of a unique constraint on the set of those attributes.

• Primary Key.
The primary key is the most important identifier for a relation. SQL allows a pri-
mary key constraint to be specified only once for each table. The primary key
constraint can be directly defined on a single attribute, or by listing the several
attributes that make up the primary key. It is not possible for these attributes to
assume the null value, since the primary key constraint implies the not null con-
straint.

23

Inter-Relational Constraints

The most important inter-relational constraints are referential integrity constraints (in-
troduced in Section 3.2.1). In the SQL language, the construct used to define them is
the foreign key constraint. This constraint creates a link between the values of the at-
tribute(s) of one table and the values of the attribute(s) of another table. The tables
involved are referred to as internal and external.

Basically, for every row of the internal table the value of a given attribute, if not null,
must be present among the values of a given attribute among the rows of the external
table. The only requirement is that the attribute referred to in the external table has a
unique constraint – that is, it identifies the tuples in the external table. This attribute
is typically the primary key of the table, for which the unique constraint is guaranteed.
The same goes for the case where a set of attributes are involved in the constraint.

24

Chapter 4

Technologies Adopted

This chapter is about the technical choices made in this project and aims to provide
insights into the role of each technology in the final application. Discussions about APIs,
framework features, or third-party libraries are kept general and are only meant to be
an overview of the subjects. In some cases, code examples are reported to demonstrate
possible usages of the features offered by such technologies.

4.1 Why a Progressive Web Application

Software applications can be deployed and delivered in a variety of forms, mainly
through desktop, mobile, or Web applications. This decision likely depends on several
factors, such as the target audience or the intended use of the software. While desktop
applications have no competition in some use cases and mobile apps are unrivaled in
many aspects, Web Applications have become increasingly popular and widely used for
how easy it is to develop, distribute and update them.

Based on the intended users of our application, we could have used both the Web en-
vironment and the mobile one for the development of the design tool. The following
sections investigate these two alternatives and provide a rationale for why it was de-
cided to opt for the former in this work.

4.1.1 Mobile Apps and Web Apps

Clearly, seeking to determine the absolute winner among these two contenders is not
the point. Note that they are not mutually exclusive, and in some cases it may be wiser
to develop the product in both environments. Both have strengths and weaknesses, and
either one may be the best fit in a particular scenario. Let us have a closer look at the
main factors that differentiate them.

25

Native Mobile Apps

Figure 4.1: Native Android Apps are built using Android Studio [4].

Native mobile apps are built entirely in technologies that are specifically designed to
leverage mobile operating system and hardware functions, without requiring additional
layers to bridge gaps. These applications are distributed and downloaded by users
through the app store specific to that mobile OS. The two dominating operating sys-
tems for smartphones and tablets are Android (Figure 4.1) and Apple iOS (Figure 4.2),
which together constitute a 99% market share worldwide [5].

Figure 4.2: Apple XCode allows developers to build native iOS Apps [6].

Since they are targeted to a particular mobile platform, native apps only work on devices
from that specific vendor and are incompatible with other environments. However, this
specificity allows them to take full advantage of the functionality built into the operating
system, leading to better performance, consistency, and an unparalleled user experience.

26

Web Apps

A Web-based app is an Internet-enabled application that is accessible via the browser and
is coded in HTML, CSS, and JavaScript. Users are not required to download and install
the app on their device in order to access it. Web Applications are cross-platform, mean-
ing that they are not designed and developed to be used only on a particular operating
system. The browser is their only requirement, so they can be accessed and used from all
sorts of devices: desktop computers, smartphones, and tablets (Figure 4.3). However,
this limits their capabilities as far as accessing the device features is concerned.

Figure 4.3: A Web Application used on a tablet through a browser.

Web Applications are evolving rapidly, becoming more and more powerful. In the next
sections, we will see that a lot of the limitations in typical Web Applications have been
addressed. New development technologies and philosophies like Single-Page Applica-
tions (SPAs) and Progressive Web Applications (PWAs) bridge several major functional
gaps and enable richer and almost native-like mobile experiences.

4.1.2 Single-Page Applications

Single-Page Applications are JavaScript-driven Web Applications that interact with the
user by updating the page dynamically, instead of performing a full reload or transferring
control to another page. The intention is to make transitions faster and give the user the
impression of a more organic and immersive experience, as is the case for native apps.

In this kind of applications, all resources needed to run the software (JS, CSS, and
HTML) are downloaded by the browser in a single page load. After the initial page load,
no more HTML gets sent over the network; instead, only content and data are requested

27

from the server (or are sent to the server). Exchanging only data instead of entire Web
pages is clearly an advantage in terms of both time and bandwidth.

The architecture of modern Single-Page Applications is illustrated in Figure 4.4.

View

DOM

Model

Template

Storage

changes

observes

renders

queries and
writes to

Controller

emits
events

more than just a

Figure 4.4: High-level architecture of Single-Page Applications.

More specifically, this structure is based upon the following fundamental principles [7]:

• Write-only DOM.
No state or data is read from the DOM. Storing state in the DOM is cumbersome
and gets difficult to manage very quickly. A much better alternative is to store the
data in a single place, separate from the presentation layer, and to render the UI
from this data.

• Models as the single source of truth.
There is a single source of truth, the model (not the DOM, and not random ob-
jects spread across the application). Changes happen in one place only and these
updates propagate to the entire application. In this way, state management is eas-
ier and less error-prone, and the possibility of duplicated or inconsistent data is
removed.

• Views observe model changes.
The views reflect exactly the data in the models. It may be the case that multiple
views depend on a single model. When this model changes, it is not the job of
the model to update the dependent views, nor to keep track of them. Instead,
an event system makes sure that views receive notifications when the data in the
model changes, and then these views update and redraw themselves accordingly.

• Decoupled modules that expose small external surfaces.
Components and subsystems should be designed and implemented to be as much

28

reusable and independent as possible. Dependencies increase overall complexity
and make the code hard to test. On the other hand, low coupling and small exter-
nal surfaces make refactoring easy and code easier to maintain.

4.1.3 Progressive Web Applications

Progressive Web Applications are the new phenomenon of application landscape. They
are Web Applications that use emerging Web browser APIs and features along with tra-
ditional progressive enhancement strategy to bring a native app-like user experience to
cross-platform Web Applications. In order to call a Web Application a PWA, technically
speaking it should have the following features: secure contexts (HTTPS), one or more
Service Workers, and a manifest file [8].

Reach

C
ap

ab
ili

ti
es

Figure 4.5: Capabilities vs reach of native apps, web apps, and progressive web apps [9].

PWAs are not created with a single technology. They represent a new philosophy for
building Web Applications, involving some specific patterns, APIs, and other features. In
particular, there are some key principles Web Applications should try to observe to be
identified as Progressive Web Applications. They should be:

• Discoverable. Are identifiable as “applications” thanks to W3C Manifests and Ser-
vice Worker registration, can be easily discovered by search engines, are easier
to expose, catalog and rank, and have metadata usable by browsers to give them
special capabilities.

• Installable. Can be installed on the home screen via browser-provided prompts (a
feature called Web app installation, shown in Figure 4.6). Installing a PWA allows it
to look, feel, and behave like all other installed apps: it is launched from the same

29

place users launch their other apps, it runs in its own window (separate from the
browser), and it appears in the task list.

Figure 4.6: The Add to Home Screen feature allows PWAs to be installed on devices.

• Linkable. Can be easily shared via a specific URL, without the need for an App
store or complex installation process.

• Network independent. Can work when the network is unreliable, or even non-
existent, thanks to Service Workers. Where connectivity is not strictly required,
the application works the same offline as it does online: an offline PWA provides a
true app-like experience for users.

• Progressive. Work for every user, regardless of browser choice, using best prac-
tices such as progressive enhancement. They provide an excellent experience to
fully capable browsers and an acceptable experience to less capable browsers.

• Re-engageable. Can use push notifications to maintain engagement with the user,
sending them updates and new content even when they are not looking at the
application or using their devices.

• Responsive. Work on any screen size and all of the content is available at any
viewport size. Devices come in a range of sizes, and applications may be used at a
range of sizes, even on the same device. Therefore, it is critical to ensure that the

30

UI will fit any form factor: desktop, mobile, or tablet.

• Safe. Are served via HTTPS (a Service Worker requirement) to prevent snooping
and ensure content has not been tampered with. Also, it is easy for users to know
whether they are installing the right app, because its URL will match the product
website domain. This is different from applications in App stores, which may
have a number of similarly-named apps and mislead the user. Web Applications
eliminate that confusion and ensure that users get the best possible experience.

The main technology required for Progressive Web Applications is Service Worker sup-
port. Fortunately, Service Workers are now supported on all major browsers on desktop
and mobile. Other features such as Web App Manifest, Push Notifications, and Add to
Home Screen functionality have wide support too.

4.2 Web APIs

When writing code for the Web, there are a large number of Web APIs available. All
browsers have a set of built-in Web APIs to support complex operations, to help accessing
data and to perform various useful tasks. These can be accessed using JavaScript code,
and follow the recommendations and open standards developed by the World Wide Web
Consortium (W3C).

In this work, we made use of three of these technologies: the Web Storage API, the
Canvas API, and the Touch Events specification. In the following is explained what they
are about and how they were used in this project. Occasionally, some simple usage
examples are also reported.

4.2.1 Web Storage API

The Web Storage API provides mechanisms by which browsers can store key/value pairs,
in a much more intuitive fashion than using cookies [10]. Indeed, Web Storage differs
from cookies in some key ways:

• Purpose. Cookies are primarily used when communicating with the server and are
automatically included in requests; they can be accessed by both the client and the
server. In contrast, Web Storage is purely designed for use on the client-side: the
server can neither directly read from nor write to it.
As an example, the user’s preferred language could be saved in a cookie (since
this information is needed by the server to provide content in the right language),
while the preference about the page font size could be stored using Web Storage.

31

• Storage size. While cookies are usually limited to 4096 bytes, Web Storage capacity
can be up to about 5MB or 10MB, depending on the browser.

• Interface. Web Storage provides a more organic programmatic interface than cook-
ies. It is possible to access values like an object or, even better, through the use of
the dedicated methods getItem() and setItem().

Current versions of all major browsers support this technology. The two mechanisms
within Web Storage are sessionStorage and localStorage, behaving similarly to session
cookies and persistent cookies respectively:

• sessionStorage maintains a separate storage area for each given origin that’s
available for the duration of the page session (as long as the browser is open,
including page reloads and restores).

• localStorage does the same thing, but persists even when the browser is closed
and reopened.

Example

The Web Storage API allows to securely store key/value pairs. The keys and the values
are always strings, so it may be necessary to convert or serialize data which is not in
string format. Since the objects windowStorage and localStorage are exposed as prop-
erties of the global object window, the JavaScript code to use the Web Storage API is
straightforward:

// save color preference
localStorage.setItem('colorSetting', '#f5df4d');

// read color preference
const color = localStorage.getItem('colorSetting');
// use white if no preference was set
setBgColor(color || '#fff');

How We Use It

At the current stage, our project exploits the Web Storage API to implement the autosav-
ing feature described in Section 5.5.2. Whenever it is required to save the user progress,
the state of the application is serialized in JSON format and stored in the localStorage

object. Correspondingly, at application startup, the software checks whether a record is
present in the local storage and possibly restores the previously saved state.

32

4.2.2 Canvas API

The Canvas API provides a means for drawing graphics via JavaScript and the HTML
<canvas> element. Among other things, it can be used for animation, game graphics,
data visualization, photo manipulation, and real-time video processing [11].

The Canvas API largely focuses on 2D graphics. It is a low-level, procedural model
that updates a bitmap and does not have a built-in scene graph. Although extremely
powerful, it is not always simple to use. For this reason, a number of libraries exist that
can make the creation of canvas-based projects faster and easier.

This API covers every aspect of two-dimensional graphics: from basic ones like drawing
shapes, applying styles and colors, drawing text, and using images to more advanced
ones such as transformations, compositing and clipping, animations, pixel manipulation,
hit regions and accessibility.

Example

If a <canvas> element exists in the DOM, it is enough to obtain its context to start
drawing onto it. For instance, drawing a red 100x100 rectangle, requires only a few
lines of code:

const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
ctx.fillStyle = 'red';
ctx.fillRect(20, 20, 100, 100);

How We Use It

Drawing of Entity-Relationship and Logical schemas was not accomplished using the
Canvas API directly; rather, as presented later in this chapter, a third-party drawing
library has been adopted. However, the diagram exporting feature has only been pos-
sible because of this interface. Once the schema is drawn to the canvas, the toBlob()

method of the HTMLCanvasElement interface creates a Blob object representing the image
contained in the canvas and can then be downloaded as an image file.

Also, pixel manipulation capabilities were exploited in order to give exported images
a transparent background (instead of the default white one). This was achieved with
the getImageData() and putImageData() methods of the canvas context, that allow to
directly read and write a data array to manipulate pixel data.

33

4.2.3 Touch Events

To provide quality support for touch-based user interfaces, the Touch Events specification
offers the ability to interpret finger (or stylus) activity on touch screens or trackpads
[12].

The touch events interfaces are relatively low-level APIs that can be used to support
application-specific multi-touch interactions such as a two-finger gesture. A multi-touch
interaction starts when a finger (or stylus) first touches the contact surface. Other fingers
may subsequently touch the surface and optionally move across the touch surface. The
interaction ends when the fingers are removed from the surface. During this interaction,
an application receives touch events during the start, move, and end phases.

Touch events are similar to mouse events except they support simultaneous touches and
at different locations on the touch surface. The TouchEvent interface encapsulates all of
the touchpoints that are currently active. The Touch interface, which represents a single
touchpoint, includes information such as the position of the touch point relative to the
browser viewport.

Example

The user action of moving a finger inside an element in the page can be easily intercepted
by adding the appropriate event handler:

const panel = document.getElementById('panel');
const position = document.getElementById('position');
panel.addEventListener('touchmove', event => {

// get finger coordinates
const x = event.touches[0].clientX;
const y = event.touches[0].clientY;
position.innerHTML = `${x}, ${y}`;

});

The event variable contains the property touches, a TouchList of all the Touch objects
representing all current points of contact with the surface. A Touch object has several
properties, for example identifier (same finger means same identifier), target (the
element being touched), clientX and clientY (the coordinates relative to the browser
window, regardless of scrolling), etc.

How We Use It

The editor supports panning and zooming, and does this by interpreting mouse events
(click and move, or scroll). To make this behavior available also in mobile devices like

34

smartphones and tablets, the resources provided by the Touch Events interfaces have
been used.

Figure 4.7: Examples of smartphone interaction gestures (designed by Freepik).

These touch events mechanisms allowed for the implementation of a cutting-edge navi-
gation system, that lets users move around in a smooth, precise, and intuitive way. This
state-of-the-art interface is able to respond to gestures like drag, pinch, spread (Figure
4.7), and even a combination of drag and pinch/spread.

4.3 Vue.js JavaScript Framework

When it comes to building a Web Application, one of the first choices to be made is
about the core library that will support the software package. Several different frame-
works are available, each with its own vision, core concepts, characteristics (strengths
and, inevitably, weaknesses), and community support. An alternative choice, totally
legitimate, is to use the JavaScript language directly, without any intermediation from
third-party libraries. This option goes by the name of vanilla JavaScript and has its ad-
vantages and disadvantages: it is faster and lighter, but it is also harder to maintain and
one runs the risk of reinventing the wheel.

Vue.js is a progressive framework for building user interfaces [13]. While its core library
focuses on the view layer only, its ecosystem of supporting libraries makes it capable of
powering large and complex Single-Page Applications. It is an MIT-licensed open source
project, and its latest version (Vue 3) brings new features and breaking changes. In
the following are described some characteristics of Vue, its most recurring idioms, and
features that distinguish it from other frameworks.

4.3.1 Overview

At the core of Vue.js is a system that enables us to declaratively render data to the
DOM using straightforward template syntax. The data and the DOM become linked,

35

and everything is reactive. It is possible to bind data to not only text and attributes, but
also the structure of the DOM (taking advantage of features like conditional rendering
and class and style bindings).

Vue.js uses an HTML-based template syntax and, under the hood, compiles the templates
into Virtual DOM render functions. Combined with the reactivity system, Vue is able to
intelligently figure out the minimal number of components to re-render and apply the
minimal amount of DOM manipulations when the application state changes.

Let us have a look at a few concrete examples. The most basic form of data binding is
text interpolation using the “mustache” syntax (double curly braces):

Message: {{ msg }}

The mustache tag will be replaced with the value of the msg property from the cor-
responding component instance. It will also be updated whenever the msg property
changes. And here is how the v-bind directive is used to reactively update an HTML
attribute:

<a v-bind:href="url"> ...

This will bind the element’s href attribute to the value of the expression url. Finally, the
v-on directive, typically shortened to the @ symbol, is used to listen to DOM events and
run some JavaScript when they are triggered:

<button @click="counter += 1">Add 1</button>

The next sections explore the topics of components and reactivity. While the first one
is common to several Web Application frameworks, the unobtrusive reactivity system is
one of Vue’s most distinct features.

4.3.2 Components

Components are reusable instances with a name. It is common for an app to be organized
into a tree of nested components (Figure 4.8). Components are one of the most powerful
features of Vue: they allow extending basic HTML elements to encapsulate reusable
code.

Components are meant to be used together, most commonly in parent-child relation-
ships: Component A may use Component B in its own template. They inevitably need
to communicate to one another: the parent may need to pass data down to the child,
and the child may need to inform the parent of something that happened in the child.
However, it is also very important to keep the parent and the child as decoupled as

36

possible via a clearly-defined interface. This ensures each component’s code can be writ-
ten and reasoned about in relative isolation, thus making them more maintainable and
potentially easier to reuse.

Figure 4.8: An app is organized in smaller units, called components [14].

In Vue, the parent-child component relationship can be summarized as props down,
events up. The parent passes data down to the child via props, and the child sends
messages to the parent via events.

4.3.3 Reactivity

Reactivity is a programming paradigm that allows us to adjust to changes in a declarative
manner (Figure 4.9). In JavaScript, it is implemented using proxies: a Proxy is an object
that encases another object or function and allows to intercept and redefine fundamental
operations for that object.

Figure 4.9: A spreadsheet formula is great example of reactivity.

37

To create a reactive state from a JavaScript object, one can use the reactive method.
The essential use case for the reactive state in Vue is that it can be used during render.
Thanks to dependency tracking, the view automatically updates when the reactive state
changes.

Sometimes we need state that depends on other state. In Vue, this is handled with com-
puted properties. To directly create a computed value, the computed method is used: it
takes a getter function and returns an immutable reactive ref object for the returned
value from the getter.
While computed properties are more appropriate in most cases, there are times when
a custom watcher is necessary. That is why Vue provides a more generic way to react
to data changes through the watch option. This is most useful when performing asyn-
chronous or expensive operations in response to changing data.

4.4 Two.js Drawing API

Figure 4.10: The Two.js logo, made with Two.js.

Two.js is a two-dimensional drawing API geared towards modern Web browsers [15].
It offers the same set of renderer-agnostic functions to draw in multiple contexts: svg,
canvas, and webgl. It is deeply inspired by flat motion graphics and aims to make the
creation and animation of flat shapes easier and more concise.

4.4.1 Overview

At its core, Two.js relies on a scenegraph. This means that when an object (a Two.Path

or Two.Group) is drawn or created, Two actually stores and remembers that. After its
creation, and until the object is removed from the scene, it is possible to modify it and
apply a number of operations to it (e.g. change its rotation, translation, scale, etc.).

To start with, an instance of Two has to be created and attached to an element in the
page (it is possible to specify properties and construction parameters as needed):

const canvas = document.getElementById('canvas');
const params = { width: 285, height: 200 };
const two = new Two(params).appendTo(canvas);

38

The simplest way to use Two.js is to draw shapes and organize them in groups for easier
management. In the next paragraphs, we explore the main features of Two and provide
some simple examples of its usage. Of course, the actual tool is much more powerful
and complex than what is shown here, and complete documentation can be found on
the project website.

Drawing Shapes

After creating a Two instance it is possible to start drawing shapes using the convenience
functions provided by the library. For instance, making a 150x100 semitransparent dark-
navy rectangle boils down to a few trivial instructions:

// Two has convenience methods to create shapes
let rect = two.makeRectangle(50, 50, 150, 100);

// the object returned has many stylable properties
rect.fill = 'rgb(2, 7, 93)';
rect.opacity = 0.5;
rect.noStroke();

// render everything to the screen
two.update();

Whenever object properties are changed, as in the example above, it is necessary to call
the update() method to tell Two that the scene needs to be redrawn.

Arranging Elements in Groups

Adding shapes to groups makes them easier to handle. Groups provide a simple way
to move content around through the translation, rotation, and scale properties. To
add some shapes to a group the makeGroup() function is used, that returns a Two.Group

object:

// groups can take an array of shapes and/or groups
let group = two.makeGroup(rect, text);

// and have translation, rotation, and scale like all shapes
group.translation.set(two.width / 2, two.height / 2);
group.rotation = Math.PI / 4;
group.scale = 1.15;

// it is also possible to set the same properties that a shape has
group.linewidth = 4;

two.update();

39

It is worth noting that all rendered objects in Two are children of a group. Every Two
instance has the scene property, which is a root-level Two.Group and can act as a camera
by means of the same transformations described above.

Transforms and Masks

Groups and shapes can be transformed using their translation, rotation, and scale

properties. These operations emit from the coordinate space (0,0). These properties are
pretty self-explanatory: translation is a Two.Vector that represents the x, y translation
of the object in the drawing space; rotation is a number that represents the rotation of
the object in the drawing space, in radians; and scale is a number that represents the
uniform scale of the object in the drawing space.

Another powerful feature of Two is masking. At its most basic level, masking is a way of
making parts of a group invisible. But the beauty of masking is that it is non-destructive
– meaning, we can make something invisible but still be able to make it visible again at
any time. In Two, a group has the mask property that can be set to a Two.Path object
that masks the content within the group.

40

Chapter 5

Product Design and User Experience

Developing a software product is much more than just writing code. It is the process
of creating an artifact that aims to integrate the needs of users and the possibilities of
technology. Simplicity and intuitiveness must go hand in hand when designing a piece
of software, so as to create a product that is functional and appealing.

Figure 5.1: The Designer logo.

Designer is the result of our efforts to create a user-friendly, captivating software tool
for computer-aided database design. We have realized that there was no choice but to
completely redesign the user experience from the ground up, putting ourselves in the
users’ shoes and anticipating their needs. As part of the visual identity of the product,
the software has its own logo (depicted in Figure 5.1), that evokes the shape of some
basic constructs of the Entity-Relationship model.

5.1 User Interface

User Interface design is a subset of a field of study called human-computer interaction.
Human-computer interaction is the study of how people and computers work together
so that a person’s needs are satisfied in the most effective way. The User Interface is the
part of a software that people can see, hear, touch, talk to, or otherwise understand or

41

direct. It has essentially two components: input and output. A proper interface design is
the one that provides a mix of well-designed input and output mechanisms that satisfy
the user’s needs, capabilities, and limitations in the most effective way possible. The
best interface is one that is not noticed, and one that allows the user to focus on the
information and task at hand instead of the mechanisms used to present the information
and perform the task [16].

5.1.1 Minimal UI for Maximum Impact

Nick Babich, in his article The Art of Minimalism in Mobile App UI Design [17], writes that
“minimalism is a perfect marriage of form and function. Its greatest strength is clarity of
form – clean lines, generous whitespace, and minimal graphical elements brings simplicity
to even the most confounding subject matter. That is, of course, if it is used effectively.”

In order to achieve beautiful design and great usability, everything has to be kept concise,
clear, and consistent. A few key principles guide designers on how to shift towards a
simpler interface, removing all unnecessary visual design details in the UI. Among them
are:

• Simple color scheme.
A simple color scheme has a positive effect on user experience, while having too
many colors could be detrimental. Also, it is important to have a balanced satu-
ration and enough contrast. A three color combination is a good starting point:
it is enough to create variation and visual interest. There are many good ways
to choose a color palette, for example monochromatic, analogous, triadic, or split
complementary. The important thing is to not use colors in equal amounts, and
instead exploit them to visually prioritize elements and highlight important details.

• Consistent typeface.
Multiple typefaces rarely result in a better user experience. In reality, mixing sev-
eral different fonts can make the app seem fragmented and inconsistent. Reducing
the number of fonts on a screen can reveal the power of typography: a great user
interface should be delivered by playing with font weight, style, and size, not by
using different typefaces.

• Visual hierarchy and emphasis.
Visual hierarchy concerns the arrangement of elements in a way that implies im-
portance. Visual contrast (emphasis) can be achieved by size, proximity, color,
opacity, and actual tonal contrast between elements. For example, things like ob-
scuring backgrounds behind popups or modal boxes, or using neutral colors for
the general scheme and adding contrasting colors for calls to action, help the user
focus on the action that should be taken.

42

5.1.2 Tool UI Appearance

With all these considerations in mind, we strived to conceive a graphical interface that
would be as clean and direct as possible. On a desktop window, the application looks
like shown in Figure 5.2. The space available is almost entirely devoted to the model
editor, without any panels or windows for element properties/outlines.

Figure 5.2: The User Interface of the Designer app.

Minimal UI, careful color usage, clean shapes, and proper typeface selection make the
software look smart and engaging. The interface often includes icons that simplify the
usage and understanding of the tool, especially for inexperienced users. The main parts
of the graphical interface are the editor, the toolbar, and the code panel.

Editor

The editor is the beating heart of the whole application: this is where the user creates the
design and where the diagram is rendered graphically. Here the schema drawing process
happens continuously, reflecting the model changes observed in the application state and
handling user interactions such as mouse clicks and touch gestures. The drawing area is
not limited to the size of the window panel but extends indefinitely and can be navigated
with ease (see Section 5.1.4 for more details).

Toolbar

The vast majority of actions are performed using the toolbar on the left-hand side of the
editor (Figure 5.3). As explained at greater length in Section 5.2.2, this is not a static
component. Instead, different commands are available depending on the current step
of the design and the type of the selected element in the model (if any). Furthermore,

43

when an action cannot be performed, the relative button is disabled and does not re-
spond to user input (this condition is also represented graphically by making the button
semitransparent). Additional insights about the toolbar are given when discussing User
Experience design (Section 5.2).

Figure 5.3: The application toolbar (as it appears in the ER design step).

Code Panel

In certain steps of the design process, a code section is present, which provides a textual
representation of the model and reflects changes that happen in the editor. In the con-
ceptual design step, it shows a sort of pseudo-code that describes the Entity-Relationship
model in textual form (we called it ER code). In the logical schema editing step, it shows
SQL code in a generic dialect, for exporting the design to a DBMS of choice. A syntax
highlighting feature (powered by the Prism library [18]) was added, to make the code
more readable and easily comprehensible.

5.1.3 Responsive Web Design

In the early days of Web design, pages were built to target particular screen sizes. If
the user had a larger or smaller screen than expected, results ranged from unwanted

44

scrollbars to overly long line lengths, and poor use of space. As more diverse screen
sizes became available, the concept of Responsive Web Design (RWD) appeared, a set
of practices that allow Web pages to alter their layout and appearance to suit different
screen widths, resolutions, etc. [19].

One of the core qualities of Progressive Web Applications (presented in Section 4.1.3)
is their ability to adapt to any viewport size. This requires focusing on only the most
important data and actions in an application, as there is simply no room for extraneous,
unnecessary elements. Figure 5.4 gives a glimpse of how the Designer app adapts to
a smartphone screen: as there is not enough room to fit both the code and the model
sections, the user is given the opportunity to show them alternatively by toggling a blue
sidebar.

Figure 5.4: How the Designer app adapts to fit a mobile viewport.

Note that responsive Web design is not a separate technology – it is a term used to
describe an approach to Web design or a set of best practices, used to create a layout that
can respond to the characteristics of the device being used to view the content. Modern
CSS layout methods are inherently responsive, and new features have been built into the
Web platform to make designing responsive applications easier. Techniques like media
queries, flexible grids, and flexbox are central in Responsive Web Design.

45

Media Queries

Media queries enable developers to run a series of tests (e.g. whether the user’s screen
is greater than a certain width, or has a certain resolution) and apply CSS selectively
to style the page appropriately for the user’s needs. It is possible to add multiple media
queries within a stylesheet, tweaking the whole application layout or parts of it to best
suit the various screen sizes. The points at which a media query is introduced, and the
layout changed, are known as breakpoints.

For example, the following media query tests to see if the current web page is being
displayed as screen media (therefore not a printed document) and the viewport is at
least 600 pixels wide. The CSS for the .box selector will only be applied if these two
things are true:

@media screen and (min-width: 600px) {
.box {

width: 500px;
margin: 0.5em 1em;

}
}

Flexible Grids

Rather than changing their layout between breakpoints, responsive applications can be
built on flexible grids. A flexible grid means that there is no need to target every possible
existing device size and build a pixel-perfect layout for it, as that approach would be
unfeasible. By using a flexible grid, breakpoints and changes in the design only need
to happen when the content starts to look bad. For instance, if the line lengths become
unreadably long as the screen size increases, or a box becomes squashed with two words
on each line as it narrows.

For example, if the target column size is 120 pixels, and the context (or container) it is
in is 960 pixels, the percentage of the column width with respect to the container width
is calculated to get a value that can be used in the CSS:

.col {
width: 12.5%;

}

Flexbox

In flexbox, flex items will shrink and distribute space between the items according to the
space in their container, as their initial behavior. By changing the values for flex-grow

46

and flex-shrink one can indicate how the items should behave when they encounter
more or less space around them.

To have items (elements with the .item selector) take an equal amount of space in a
container, it is possible to use the flex: 1 shorthand:

.container {
display: flex;

}
.item {

flex: 1;
}

Flexbox is a powerful modern method that allows building a simple responsive layout
without the need to specify percentage values for column sizes.

5.1.4 Editor Navigation

The editor, which displays the rendered model, is obviously interactive: objects can
be selected, modified, and moved around. Even if the editor panel is constrained by the
window size, reducing the drawing space to that area only would have been a significant
limitation. For this reason, we added controls to navigate the editor. Both with the
mouse in a desktop client and with fingers in a mobile/tablet environment, it is possible
to interact with the editor to zoom and pan.

Figure 5.5: Mouse position is not taken into account when zooming.

Implementing the pan function is trivial, as it can be easily accomplished by a geomet-
ric translation (or offset) of the model in the drawing space. Conversely, there are two
main ways to deliver zoom functionality. One is straightforward to implement but gives
mediocre results (Figure 5.5), while the other is slightly more sophisticated to program
but makes the interaction feel way more natural and intuitive (Figure 5.6). The easier
path is to merely apply a scale transform in response to the user-generated event, with-
out taking into account the mouse/finger position. The more precise solution, the one

47

used in our software, is to zoom using the mouse pointer (or the centroid of the fingers
positions) as the pivot of the scale transform. As a matter of fact, both a translation and
a scaling are applied to achieve this effect.

Figure 5.6: The zoom action enlarges the area pointed by the mouse.

5.2 User Experience

User Experience is how a person interacts with and experiences a product, system, or
service. It includes the user’s perceptions of utility, ease of use, and efficiency. Plenty of
guidelines and best practices have been refined over time to give users a great experi-
ence. The following paragraphs shed light upon a few key elements that make Designer
really stand out.

5.2.1 Errors and Suggestions

Since the software is primarily intended for educational purposes, setting up an effective
and meaningful system for showing errors and suggestions was paramount. This is a
very prominent aspect of the tool’s ability to assist users in designing a database.

Figure 5.7: An explanation is given every time an action is not allowed.

Figure 5.7 shows a concrete example of how one can learn theory concepts by simply
using the software. Whenever an action from the ones available in the toolbar cannot
be performed, the button is disabled and the cursor switches to the “forbidden” symbol.
But most importantly, a message is displayed next to the button with a brief explanation
of why that precise action is not feasible or makes no sense. An alternative would be to

48

let the user click the button and then display a popup with an error message. However,
we believe that our approach is more user-friendly, more impactful, and less frustrating.

When an error condition affects a specific schema item, the error is shown directly in the
diagram editor. The user can learn more about the issue by selecting the problematic
item, and an error bar will appear on the bottom part of the interface with a more
detailed explanation. Chapter 6 dives deeper into potential errors that may happen in
the design process and how to fix them.

Figure 5.8: Different graphics are used to represent different kinds of error conditions.

Figure 5.8 depicts how different representations are used in different situations: while
the entity on the left has a problem, the entity on the right is itself the problem.

5.2.2 Hide Unnecessary Information

It is crucial to keep users focused on the important information and functions. Since
our mental focus is finite, unnecessary elements should be removed from the UI or
deemphasized. The fact that a piece of software is packed full of features does not mean
that the user should be overwhelmed and confused by being shown all of them together.
In Designer, we applied this concept on several occasions.

Figure 5.9: The main menu is shown by clicking on the textual logo.

49

For a start, the application menu is not constantly displayed on the interface. Instead, it
is hidden by default and can be revealed by clicking on the textual app logo (as shown
in Figure 5.9). The menu contains functions for creating a new design, loading one from
disk, or saving the current one to a file, as well as other extra functions for giving feed-
back, reporting bugs, and visiting the DBDMG website. These functions are estimated
to be used no more than five or ten times in a typical working day, as opposed to more
design-related features (the ones exposed in the toolbar), which are expected to be used
hundreds of times. This is the rationale behind the decision of concealing the main menu
while keeping the toolbar always visible and ready.

Figure 5.10: Available toolbar functions change depending on the situation.

The toolbar itself is another great example of application of the “hide unnecessary infor-
mation” principle. Overall, the database design process in our software employs a total
of about forty functions. Besides being a relevant space management issue, showing that
many buttons all at once can be disorienting. Consequently, the toolbar was designed in
such a way that it only shows the software functions relevant to the current design step
and to the selected item. An example of this concept is portrayed in Figure 5.10, which
shows a portion of the toolbar under two different conditions. On the left, the one we
encounter in the conceptual design step when no item is selected: it contains buttons
to create entities and relationships, to proceed with the translation, and to export the
ER schema. On the right, the toolbar shown in the conceptual design step when an en-
tity item is currently selected: it features buttons to create a generalization, to add an
attribute, and to rename or delete the selected entity.

50

5.2.3 Real-Time Updates

By taking advantage of Vue’s reactivity features, our software is capable of updating in
real-time all interface components, in response to changes that happen in the model.
The code panel, for example, does not need to be generated by activating a certain
function. Instead, all changes in the design model are instantly reflected in the code.

Figure 5.11: Popup dialogs fail to provide a great user experience.

The renaming of an item in Designer is a great example of real-time updates in action.
The usual popup dialogs (Figure 5.11) have several disadvantages: they hide a large
portion of the workspace, preventing users from looking at the bigger picture; one must
click the Save or OK button in order to see changes applied; and any errors, inconsisten-
cies, or conflicts can only be displayed when the popup for renaming is closed.

Figure 5.12: Renaming is not obtrusive and allows to immediately spot conflict errors.

Instead of using popup dialogs, the Rename button in the toolbar shows a textbox “in
place” in a way that the schema remains fully visible. Any issues occurring due to the
renaming action can be spot right away and corrected on-the-fly. Figure 5.12 illustrates
a Student entity and another entity being renamed in the same way. Without leaving
the rename control, the user can figure out the mistake and fix it.

51

5.3 Schema Drawing

An important part of the development effort was put into the creation of a high-level
schema drawing library. This library is built upon Two.js and uses its lower-level func-
tions to render complex diagrams on screen. Several such libraries are already available,
but none of them felt appropriate for our standards and for the fresh look we wanted to
give to our software.

drawModel()

Participation {
 entity: ...,
 relationship: ...,
 cardinality: ...,
 role: ...
}

drawEntity()

drawRelationship()

drawParticipation()

drawGeneralization()

Entity {
 ...
}

Relationship {
 ...
}

Figure 5.13: Operation of the drawModel() function.

Everything starts with the drawModel() function. It has the job of populating the scene
with all the objects in the model and maintaining them. To provide separation of con-
cerns and to keep the logic open for extension, the drawModel() function does not con-
tain any knowledge on how to render schema elements graphically. Instead, as illus-
trated in Figure 5.13, each element type simply defines the way it should be drawn, and
the model-drawing logic only takes care of calling these methods.

drawRelationship()

drawRelationshipText()

drawRelationshipDiamond()

drawWarnLine()

MEMBERSHIP

MEMBERSHIP

Figure 5.14: The schema drawing library abstracts low-level drawing details.

52

The different draw() functions include detailed instructions for turning each construct
specification into a Two.Group that contains all the appropriate basic graphical ele-
ments needed for that particular schema construct. Figure 5.14 shows what is inside
the drawRelationship() function, used to graphically represent a Relationship ob-
ject: a drawRelationshipText() function to display the name of the relationship, a
drawRelationshipDiamond() function to draw its characteristic diamond shape, and a
drawWarnLine() function to show a red/yellow line in case of errors/warnings.

5.4 Utility Features

Besides all software functionalities devoted to schema drawing and model restructuring
and translation, we also deployed some features to support portability, durability and to
allow sharing. Among these, functions to load design files from the user’s device or to
save them, and functions for exporting diagrams as images.

5.4.1 Load and Save

Figure 5.15: The saved file contains details of the design in JSON format.

As we will see in Section 5.5.2, our software is equipped with an autosave functionality
that automatically stores the current progress of the design in the browser. Even so,
there is still the need to allow the user to save the design file that is currently being

53

edited. This is the only way to share one’s work with other people, but is also useful
for backup purposes. The design file contents are in plain text and hold the complete
application state in JSON format (Figure 5.15).

Similarly, a feature for users to load a design file from disk and resume working where
they left off was developed. Both actions are available in the main menu of the applica-
tion (Figure 5.9). As soon as a design is loaded from a file, its contents will replace the
current work and the autosave routine will start using the new file as “draft”: every new
change will be stored locally in the browser, according to the mechanism explained in
the relative section.

5.4.2 Exporting the Diagram

Even though taking a screenshot of the editor is always a viable option, a feature for
exporting the diagram as an image was deemed necessary. It allows saving the model
being edited as a transparent PNG image, for use in presentations and articles (Figure
5.16).

Figure 5.16: Exporting the diagram for use in lecture slides.

The export functionality is available when drawing both the Entity-Relationship model
and the logical schema, and can be activated by clicking the Export button in the toolbar
(Figure 5.17). The image is then generated on the fly and downloaded to the user’s
device. Any errors present in the diagram are not included in the final image.

We took advantage of the Canvas API (Section 4.2.2) and the Two.js drawing library
(Section 4.4) in order to deploy this feature. The schema is drawn to a canvas, whose
contents are then converted to a Blob object and downloaded as image/png.

54

Figure 5.17: The Export button in the toolbar.

5.5 Enhancing Usability

The set of features that will be covered in this Section are not strictly related to database
design. Though not explicitly required, they were implemented for the sole purpose of
enhancing usability and making the software more desirable to the final user.

5.5.1 Undo and Redo

The ability to undo an operation in a computer program was independently invented
multiple times, in response to how people used computers. It is an interaction technique
currently implemented in the majority of software applications. The undo command
erases the last change done to the document, reverting it to an older state. On the other
hand, the redo command restores changes that have been reverted using the undo com-
mand (Figure 5.18). With the possibility of undo, users can explore and work without
fear of making mistakes, because every action can easily be undone [20].

S1 S2 S3
A1 A2

current location

redo redo

undo undo

past future

Figure 5.18: An overview of how the Undo/Redo mechanism works.

Usually undo is available until the user undoes all executed operations, or until a certain
number of operations has been undone (this number is commonly known as history
buffer size, or simply history size). In addition, there are some actions that are not stored
in the undo buffer, and thus they cannot be undone. Such actions include file saving,
navigation (pan and zoom), selecting and deselecting elements.

55

Two categories of undo models exist: linear and non-linear. The undo model adopted in
our project is a restricted linear model. In particular, it is:

• linear, because it is implemented with a stack (LIFO structure) that stores the
history of all executed commands. When a new command is executed it is added
on top of the stack. Hence only the last executed command can be undone and
removed from the history. Undo can be repeated as long as the history is not empty.

• restricted, because the history list size is limited. That is, when a defined size is
reached, the first executed command is deleted from the list.

Undo can be implemented through different patterns. The most common patterns are
the Command Pattern and the Memento Pattern. In our project, we use a very trivial
implementation of the second option.

HISTORY

entire application state

time

redo

undo

history pointer

Figure 5.19: The Undo/Redo feature is implemented using a history array.

In a nutshell, an array emulates the file history, and undo and redo commands allow
the user to move around. Regarding the array contents, the full checkpoint strategy is
adopted: after each command is executed, the complete state is saved. This implemen-
tation, although not highly efficient, is straightforward and is still a good choice in the
case of a limited history size.

56

5.5.2 Autosave

As explained previously, users have the possibility to save their work for later reuse or
for sharing with other people. Nonetheless, a feature was included in the application
which automatically saves the progress in the database design (commonly referred to as
“draft”, as shown in Figure 5.20). This technique is widely used in the vast majority of
current web-based editing tools and helps to reduce the risk or impact of data loss in
case of a crash or freeze.

Figure 5.20: Left: There are unsaved changes. Right: The design draft is saved.

This feature makes use of the Web Storage API technology described in Section 4.2.1.
The entire state of the application at a given moment is serialized in JSON format and
stored using the localStorage mechanism, in order to persist design data even after the
browser is closed. Each time the application is launched, it looks for the presence of a
design draft locally and – if it is there – restores it, allowing the user to resume work
seamlessly.

Some applications save the user’s progress at regular time intervals, while others do
it after an action is performed or a task is completed. In our software, all changes
to the design are saved continuously. Having such kind of autosave function in place
removes the need for saving design files entirely, except for backup or sharing purposes.
Clearly, this implementation poses problems in terms of application performance: user
actions triggering an autosave may occur many times per second and this computational
overload may eventually cause the application to be unresponsive or to freeze.

To avoid this kind of problem, we use a technique called debouncing. In essence, the
debounce function delays processing of an event for a certain amount of time and, if
another event is fired during this delay, the old one is discarded (and the delay timer is
reset). The way that debounce operates is summarized in Figure 5.21. In the beginning,
Event a happens and it is delayed. Then Event b happens and, while waiting for the
delay time to go by, Event c happens. This causes the reset of the delay timer, so Event
c overrides Event b. Finally, Event d happens and it is delayed normally, since no other
events happen in the meantime. In our case, circles at the top represent changes to
the design document, and circles at the bottom represent activations of the autosave
function.

57

a cb d

a c d

debounce

Figure 5.21: Example of operation of the debounce function.

This same mechanism is used in Web pages that have autocomplete search boxes, where
not every keystroke results in an API request. As a rule of thumb, one should wrap any
interaction that triggers excessive calculations or API calls with a debounce.

5.5.3 Offline Availability

Platform-specific apps show some content and provide some sort of limited interaction
even when no network connection is available. It might not be anything particularly
meaningful, and the user could even be unable to achieve what he or she wanted to
achieve, but at least one gets the feeling that the app is in control. In contrast, on the
Web, traditionally nothing happens when the browser is offline. Most likely an error
message appears reading “There is no Internet connection”, and there is the chance an
offline dino game is available to fill the time (Figure 5.22).

Figure 5.22: On the Web, not much can be done without an Internet connection.

58

As described in Section 4.1.3, Progressive Web Applications are network independent:
they are decoupled from the backend and they work offline in the same way as they
do online. Data is stored in the frontend and synchronized with the server whenever
possible. In other words, the lack of connectivity is not treated as an error, but only
as a temporary situation where the user is still able to work with the application. Web
Applications that require an Internet connection to work may show a simple branded
page with the information that the user is currently offline, and here there is no limit to
creativity.

Service Worker

GET /app.js

Web App

Network

Cache Storage API

GET /app.js

cache.put()

200 OK

Service Worker

GET /app.js

Web App

Network

Cache Storage API

caches.match()

200 OK

Figure 5.23: Enabling technologies: Service Workers + Cache Storage API.

On the technical side, this is made possible through the use of Service Workers and
the Cache Storage API (Figure 5.23). Service Workers are a virtual proxy between the
browser and the network. They run on a separate thread from the main JavaScript code
of the page and do not have any access to the DOM structure. Since Service Workers are
very powerful, they can only be executed in secure contexts (that is, through HTTPS).

Figure 5.24: The Service Worker checks if new content is available and updates the cache.

Here is how it works: the Service Worker is registered by the application, and this means
it is automatically downloaded, then installed, and finally activated. Upon installation,
the static app files – HTML, CSS, JavaScript, and image files – are cached using the
Cache Storage API. The Service Worker then listens for fetch events (which fire every
time an HTTP request is made by the app) and is able to intercept requests and respond
to them with custom responses. This allows us to serve content from the cache instead of

59

the network, and therefore users can access the app also when no Internet connection is
available. When a new version of the app is released, a new service worker is installed in
the background which will then add all application files (including the new static assets)
to a new cache (Figure 5.24). The updated Service Worker is then activated and takes
over management of the page from the old one.

Usually, the most recent Web Application frameworks do all the work themselves thanks
to special plugins. Vue.js is no exception and uses the @vue/cli-plugin-pwa package to
take care of all the PWA-related duties, including the registration of a Service Worker
that will precache the site’s local assets.

5.5.4 Keyboard Shortcuts

As we have seen, the design is built by interacting with the editor and by using the
application toolbar. To speed up the operation of the software for desktop users, some
actions have an associated keyboard shortcut. JavaScript offers two event handlers that
make this feature easy to implement, which are the keyup and keydown events. The
keydown event is fired when a key is pressed and the keyup event is fired when a key
is released. Some keyboard shortcuts in Designer are Ctrl+Z to undo, Ctrl+Y to redo,
Canc/Delete to delete an item.

In our case, shortcuts are desired to be caught within a particular area of the page
(namely, the editor) rather than across the entire document, so listeners for the keydown

and keyup events should be set on the root DOM element of that area. Event listeners
on an element catch all events within that element, including events fired from children
elements. When listening for events, it is often useful to call the preventDefault()

function to prevent the default actions from happening when they are not desired.

60

Chapter 6

Tool Overview

After having discussed the technologies at the core of this software, and after having
explained the ideas and principles that inspired its design, and after having shown the
main components of its interface, we now proceed to illustrate its functionality. Rather
than selecting a particular scenario and performing the whole database design process
using that as a reference, we prefer to showcase the software functionality on smaller
and more refined use cases.

6.1 Drawing the ER Model

When the application starts up, it is ready for conceptual design. If no design draft is
saved locally, the editor appears empty and the user can start building the design without
needing to configure or set anything. One usually draws basic constructs first, and then
proceeds with more advanced idioms.

The rest of this section shows how to use the software to design a complete, full-grown
Entity-Relationship schema from scratch. For each construct, we will provide an expla-
nation on how to create it, how to modify its properties, what errors could arise, and
how to avoid them.

6.1.1 Entities

Entities can be created in the diagram through the use of the Entity button in the toolbar
(Figure 6.1). Once this tool is selected, a semitransparent entity rectangle will appear
behind the mouse cursor (on desktop devices only) and will follow its movements. At
this point, the user should move the cursor to the desired position in the schema where
the newly-created entity should appear.

61

Figure 6.1: Entities can be drawn by selecting the Entity button.

Finally, with a mouse click or a touch on the screen, the entity is added to the diagram. It
gets assigned a default name, that is, the word ENTITY followed by the object identifier
(a progressive integer number).

Figure 6.2: Entities have been created, but they seem to have a problem.

As soon as an entity is created, a red line appears below its name (Figure 6.2). That is
the way that our software indicates that there is a problem with that element (as we will
see, the same happens with other constructs as well). To figure out what the problem is,
it is enough to select the entity by simply clicking on it (or by touching it).

Figure 6.3 shows two things. The first one is that items appear in bold when they are
selected, to be properly differentiated from the rest of the elements. The second one
is that when we select an item that has some problems (either errors or warnings) the
software displays an explanatory message giving more details on the issue.

Of course, errors and warnings are two very different things. While warnings are noth-
ing more than suggestions or best practices, errors are out-and-out flaws in the design
that prevent the user from proceeding to the next steps and that should be corrected
immediately.

62

Figure 6.3: A detailed error description appears when the item is selected.

When dealing with entities, one may encounter the following errors:

• “There is a name conflict. Multiple entities/relationships are named ‘X’.”
Entities must have unique names in the schema. To fix this error, the user can give
a different name to one conflicting entity/relationship.

• “The entity has multiple attributes with the same name.”
Attributes of an entity must have unique names. This issue can be solved by re-
naming one of the conflicting attributes.

• “The entity has no internal or external identifier.”
An entity must necessarily have an identifier, either internal or external. One
option is to mark one or more entity attributes as identifiers, thereby creating a
key for the entity. Another option is to create an external identifier by including
other entities in the identification (see Section 2.1.4 for more details).

• “A child entity must not have any internal or external identifier.”
The only exception to the rule that an entity must have an identifier is when the
entity is a child entity in a generalization. Since they inherit the attributes of their
parent, and the parent entity necessarily has an identifier, they automatically have
one too. Thus, they do not require – in fact, cannot have – their own identifier
explicitly defined.

On the other hand, an entity may show the following warnings:

• “The entity has no attributes (apart from identifiers).”
An entity whose all attributes are identifiers is completely fine from the theoretical
point of view. However, it is not much use in the real world and it would be better
if some more attributes were added to the entity.

Some actions are available to different kinds of constructs, but we will only discuss
them here: they are the Rename action and the Delete action (Figure 6.4). These buttons

63

appear in the toolbar whenever an item that supports the relative actions is selected.

Figure 6.4: The Rename and Delete buttons in the toolbar.

When the user clicks the Rename button, an input field appears that allows entering
the new name for the selected item. Only alphanumeric characters and the underscore
symbol () are allowed (even though a name cannot begin with a digit). Whitespaces
are automatically converted to underscores. In the case of entities and relationships, the
name is forced to be uppercase.

Figure 6.5: Renaming an item.

The Delete button lives up to its name and removes from the diagram the selected item.
To avoid ending up with a cluttered schema, deleting an item may entail the removal of
other items that depend on it. Indeed, it should be no surprise that deleting an entity
causes its attributes to be disposed of as well, or that deleting a relationship results in
the elimination of related participations.

6.1.2 Relationships

It is possible to add relationships to the conceptual schema by means of the Relationship
button in the toolbar (Figure 6.6). Similarly to what happens with entities, a semitrans-
parent diamond appears behind the mouse cursor, indicating that a relationship is about
to be created. Again, with a mouse click (or a touch) the relationship is drawn in the
desired location.

Deciding whether to start designing a schema with entities or relationships is left to the
discretion of the user. The software does not enforce any particular order: one can draw

64

all entities first, all relationships first, or mix the two things.

Figure 6.6: Relationships can be drawn using the Relationship button.

Once the schema contains both entities and relationships, it is possible to start connect-
ing these two types of constructs and have entities participate in relationships. To do
that, we select the relationship and then click the Connect button (Figure 6.7).

Figure 6.7: The Connect button appears when a relationship is selected.

After selecting the Connect tool, a message appears saying that the user should pick an
entity to participate in the selected relationship (as illustrated in Figure 6.8).

Figure 6.8: An entity should be selected to create a participation.

Once the desired entity is clicked or touched (Figure 6.9), a participation is created
between this entity and the relationship from which the Connect tool was activated. The
participation is considered to be an item in and of itself, that can be for example selected
and deleted.

65

Figure 6.9: Selecting an entity (when the Connect tool is active) creates a participation.

A participation has some properties that can be modified, namely the cardinality and the
role. These can be accessed and edited from the application toolbar when a participation
item is selected. The Cardinality button opens a menu (Figure 6.10) that allows choosing
the participation cardinality among four possible options (with minimum cardinality
equal to zero or one, and maximum equal to one or many).

Figure 6.10: The menu for specifying the cardinality of a participation.

Editing the role of a participation (using the button in Figure 6.11) is very similar to
renaming an item, with the exception that the role can be an empty string. Specifying
the role for a participation is optional, with the exception of recursive relationships.

To create a recursive relationship, it is enough to connect the same entity to the relation-

66

Figure 6.11: The Role button is used to set a participation’s role.

ship twice. In that case, the participation lines are drawn in a slightly different way, as
depicted in Figure 6.12. Should any of the two participation items be deleted, the way
participation lines are drawn would go back to the normal representation.

Figure 6.12: Participation lines are drawn differently in recursive relationships.

When working with relationships, it is possible to observe the following errors:

• “There is a name conflict. Multiple entities/relationships are named ‘X’.”
Relationships must have unique names in the schema. To fix this error, rename
one of the conflicting entities/relationships.

• “The relationship must have at least two participations.”
It does not make sense for a relationship to have one participation only. This error
can be fixed by connecting the relationship to more than just one entity. In the case
of recursive relationships, one participation is still not enough and the relationship
should be connected twice with the entity.

• “The relationship has multiple attributes with the same name.”
Attributes of a relationship must have unique names. This issue can be solved by
giving one of the conflicting attributes a different name.

• “A relationship involved in external identification cannot be recursive.”
It would not be a proper external identification without an outside entity. That is
why recursive relationships (those of an entity with itself) and external identifica-
tion are not compatible with each other and give rise to this error. To overcome the

67

problem, one can either give up on external identification or make the relationship
not recursive.

• “A recursive relationship requires participation roles to be specified.”
Participation roles are always optional, except for recursive relationships. In that
case, roles must be specified since they are needed in the translation step.

• “A ternary relationship requires all participation cardinalities to have maxi-
mum value N.”
This is a requirement of ternary relationships. The issue is easily fixed by setting
the maximum cardinality to N in all the participations.

• “A relationship involved in external identification cannot have any attributes.”
Attributes are not allowed in relationships that serve for external identification. To
solve this problem, the attributes of the relationship should simply be removed.

6.1.3 Attributes

Figure 6.13: Attributes are created from an entity or a relationship.

Unlike entities and relationships, attributes are not independent, thus they cannot exist
as standalone items. An attribute either refers to an entity or to a relationship and
is created from the parent item, by means of the Attribute button (Figure 6.13). The
attribute is then created in the proximity of the item it refers to, and is arranged in a
way that does not obstruct or cover other items of the schema.

Figure 6.14: Relationship attributes cannot be multivalued.

68

Similar to what happens with participations, attributes can have a cardinality specified as
well. An attribute is optional when its minimum cardinality is zero, and it is multivalued
when its maximum cardinality is N. Modifying the attribute cardinality is done using a
menu that is cut from the same cloth as the one used for participations (Figure 6.10).
However, as shown in Figure 6.14, relationship attributes cannot be multivalued, so their
cardinality value can only be one of two options: (0,1) or (1,1).

Figure 6.15: An entity attribute can be turned into a composite attribute.

In Section 2.1.3, we have seen that it can sometimes be convenient to group attributes
of the same entity that have closely connected meanings or uses and that the set of
attributes obtained in this fashion is called a composite attribute. Figure 6.15 illustrates
how to create a composite attribute using Designer: it is enough to select an attribute of
an entity and click the Subattr button in the toolbar (Figure 6.16).

Figure 6.16: The Subattr button allows creating composite attributes.

The following errors may arise when dealing with attributes:

• “The attribute has multiple subattributes with the same name.”
This error can only occur with composite attributes and is fixed by giving one of
the conflicting attributes a different name.

6.1.4 Identifiers

Identifiers must be specified for each entity in the schema, with the only exception
of child entities in generalizations. Section 2.1.4 describes identifiers thoroughly and
claims that they can be divided into internal identifiers and external identifiers. We will
address them separately in the following paragraphs.

69

Internal Identifiers

Internal identifiers are the ones formed by one or more attributes of the entity itself
(this kind of identifier is commonly referred to as key). To create such an identifier, the
Identifier button is used (Figure 6.17).

Figure 6.17: The Identifier button toggles the identifier property.

The button works as a toggle switch: it turns normal attributes into identifier attributes
and the other way around. Figure 6.18 shows how it is enough to mark one or more
entity attributes as identifier in order to create a key for the entity (and how the “no
identifier specified” error goes away).

Figure 6.18: Creation of an entity key by marking one of its attributes as identifier.

When two or more attributes are marked as identifiers, their graphical representation
is slightly different, as illustrated in Figure 6.19. The attribute circles do not appear
filled anymore, but instead a curve goes through all of them – with small dots at the
intersections – and is closed with a filled circle at one end.

Figure 6.19: Graphical representation of multiple-attribute internal identifiers.

70

External Identifiers

When the attributes of an entity are not sufficient to identify its occurrences unambigu-
ously, we resort to external identifiers. These can involve one or more entities associated
with the entity being identified through a relationship, and the entity being identified
must participate in such a relationship with cardinality (1,1).

Figure 6.20: The External Identifier button in the application toolbar.

To put an external identifier in place, we first have to select the participation that con-
nects the entity to identify with the relationship with the entity used for external identi-
fication. At that point, by clicking on the button in Figure 6.20, we obtain the external
identifier we were looking for. Other participations may be added to the external iden-
tification, as well as any attributes of the entity being identified.

Figure 6.21: Creation of an external identifier.

Let us take once more the schema in Figure 2.10 as a reference. The Student entity
has to be identified externally, so we select the participation with (1,1) cardinality that
connects it to the Enrollment relationship and we click the External Identifier button
(Figure 6.21).

Figure 6.22: Entity attributes may be included in external identification.

71

Any entity attributes that contribute to the external identification (as in the case of the
Registration attribute of entity Student) are included in a similar fashion, as illus-
trated in Figure 6.22.

6.1.5 Generalizations

Generalizations are logical links between entities of the schema. Setting them up in
Designer is straightforward, using the Parent button (Figure 6.23).

Figure 6.23: Generalizations are created using the Parent button.

Since generalizations only concern entity items, we need to select an entity to make the
Parent button appear in the toolbar. Once the tool is activated, a message tells the user
to pick an entity to be the parent of the current entity (Figure 6.24).

Figure 6.24: To produce a generalization item, a parent entity should be designated.

As soon as an entity is clicked or touched, it becomes the parent entity in the general-
ization, while the entity that was selected when the Parent tool was activated becomes
the child entity in the generalization (Figure 6.25). A generalization may exist between
a parent entity and multiple child entities. To do that, it is enough to repeat the process

72

above for each child entity: we select the child, activate the Parent tool, and click on the
parent entity.

Figure 6.25: To produce a generalization item, a parent entity should be indicated.

The generalization is itself an item, composed of smaller subitems: the generalization
parent (the arrow), and multiple generalization children (lines connecting child entities
to the generalization parent item). While deleting the generalization parent item com-
pletely removes the generalization from the schema, deleting a generalization child item
only removes the corresponding child entity from the generalization.

Figure 6.26: The generalization parent item (left) and a generalization child item (right).

A generalization is categorized by default as partial and exclusive, but this property can
be easily modified using the Generalization Type button. A menu will appear (Figure

73

6.27), where one can choose among four possible combinations: partial or total, and
exclusive or overlapping.

Figure 6.27: The menu for specifying the type of a generalization.

6.1.6 ER Code Generation

The code section in the conceptual design step reflects the model in the editor, as shown
in Figure 6.28. As there was no standard language specification to describe an Entity-
Relationship schema, we did come up with a possible language ourselves. The code is
divided into three parts: entities, relationships, and generalizations.

As mentioned in Section 5.1.2, the code features syntax highlighting using the third-
party JavaScript library Prism. The ER language was of our own invention, so Prism
could not offer off-the-shelf support for it. Thankfully, the library allows defining new
languages or extending existing ones. This is achieved by defining – using patterns
known as regular expressions – the new language’s keywords, tags, comment styles, etc.

For example, generalizations can be defined in the ER language by means of the follow-
ing syntax:

<ParentEntityName> <= {
<ChildEntityName>
{, <ChildEntityName>}

} (partial|total, exclusive|overlapping)

74

Figure 6.28: ER code automatically generated during conceptual design.

6.2 Restructuring Step

Once the conceptual schema is complete, one can proceed with the logical design phase,
which includes the restructuring step and the translation step. This is achieved by click-
ing on the Translate button shown in Figure 6.29: the software will automatically detect
if a restructuring action is necessary for the current ER diagram.

If this is the case, the user is presented with a screen very similar to the one used for
conceptual design. The only two differences are the absence of the ER code panel and
the fact that now some constructs are colored in red, as illustrated in Figure 6.30. This
is the restructuring step, and the highlighted items are the ones that need our attention.

As we know from Section 3.1, model restructuring is about removing generalizations,

75

Figure 6.29: The Translate button in the application toolbar.

Figure 6.30: Items highlighted in red need to be restructured.

multivalued attributes, and composite attributes. The user is requested to start by
restructuring generalizations first, before continuing with the two special kinds of at-
tributes (that do not require to be processed in any particular order). All operations are
executed using the Fix button in Figure 6.31, and later we will see how this same button
is also used in the translation step.

Figure 6.31: Restructuring and translation are done using the Fix button.

6.2.1 Generalizations

The constructs that must be restructured first are generalizations. This step makes no
distinction between the generalization parent item and the generalization child items
(unlike the conceptual design phase), and selecting the generalization arrow or one of
its lines to child entities will select the entire generalization item (Figure 6.32).

76

Figure 6.32: The generalization item is selected and must be restructured.

When a generalization item is selected and the Fix button is clicked, the menu reported
in Figure 6.33 is shown to the user. The restructuring methods available are: collapsing
the child entities to the parent entity, collapsing the parent entity into the child entities,
or substituting the generalization with parent-child relationships.

Figure 6.33: The three available options for fixing generalizations.

Recall from Section 3.1.1 that the choice of collapsing the parent entity into the child
entities is only allowed when the generalization is total and exclusive.

6.2.2 Multivalued Attributes

Attributes with maximum cardinality equal to N have no equivalent representation in the
logical schema. For this reason, they need to be replaced with a new entity connected

77

to the attribute’s parent entity through a relationship (this matter was discussed in more
detail in Section 3.1.2).

Figure 6.34: Multivalued attributes cannot be directly translated.

These attributes are substituted by choosing one of the two alternatives in the menu of
Figure 6.35: the Unique button makes the new entity participate in the relationship with
a (1,1) cardinality, while the Shared button assigns a (1,N) cardinality instead.

Figure 6.35: The two ways of restructuring a multivalued attribute.

6.2.3 Composite Attributes

Composite attributes are among the constructs that cannot be directly translated, and
therefore need to be restructured. A composite attribute is highlighted in red in the
restructuring step, as depicted in Figure 6.36.

Figure 6.36: Composite attributes require restructuring.

78

From Section 2.1.3, we know this kind of construct has two possible restructurings: one
where each subattribute becomes an attribute on its own, and another where all subat-
tributes are merged to form a single attribute. When a composite attribute is selected,
and the Fix button is clicked, the user is presented with the two options (Figure 6.37).

Figure 6.37: The two ways of restructuring a composite attribute.

The outcomes of the restructuring activity concerning composite attributes have been
presented in Section 3.1.3.

6.3 Translation Step

Upon completion of the restructuring phase, or if the conceptual schema is such that
no restructuring is needed, the ER schema is to be translated into a logical schema.
When the user enters this phase, the model only consists of entities, relationships, and
attributes. Translation starts from strong entities, proceeds with weak entities (those
that are identified externally), and is concluded with relationships. The application
prescribes this particular order of operation to help the less experienced to better under-
stand what goes on behind the scenes.

6.3.1 Entities

The translation of entities, both the ones identified internally and those identified exter-
nally, happens in a completely automated manner. It is enough to select the entity and
click the Fix button, and the software will do the rest. For clarity purposes, we decided
to let the user control this step even if no choices about the translation have to be made.
This avoids overwhelming users with many changes occurring all at once and helps them
learn more effectively.

Figure 6.38 illustrates an entity before translation and the corresponding table ob-
tained after clicking on the Fix button. The software autonomously figures out what
the columns of the new table will be, its primary key, as well as any nullable columns
and external references.

79

Figure 6.38: There are no choices to be made when translating entities.

While in the process of translating entities and relationships, the diagram is neither a
conceptual schema nor a logical one. Tables may appear connected to each other or to
entities by means of relationships, even if that makes little sense and has no counterpart
in the literature. Note that this is to be intended as an intermediate step, whose sole
function is to produce a logical schema. Our idea is that the advantage of empower-
ing users with the ability to see first-hand the effects of the translation activity greatly
overcomes the benefits of the unyielding pursuit of academic rigor.

6.3.2 Relationships

Relationships translate in many different ways depending on their cardinality, as de-
scribed in Section 3.2.2. Hence, the Fix button in the toolbar does not exhibit a uniform
behavior. If only one option is available, the relationship is translated directly. Other-
wise, a menu with all the possible solutions is shown.

Figure 6.39: Possible translations of (0,1) - (*,N) relationships.

For example, in the case of a one-to-many binary relationship with optional participation,
the two options displayed in Figure 6.39 are given to the user. The first one, named Into
(0,1), suggests that the (0,1) entity incorporates the relationship. The second one, called
Table, indicates that the relationship is translated into a new table.

80

Figure 6.40: Possible translations of (1,1) - (1,1) relationships.

Figure 6.40 shows a different situation. When the relationship is one-to-one with manda-
tory participation for both entities, it is absorbed by one of the two entities at the discre-
tion of the user. That is why the Fix button shows a menu with two options named Into
A and Into B.

6.4 Logical Schema Editing

What is obtained as a result of restructuring and translation of the conceptual schema
is a genuine, complete logical schema. However, the software offers some fine-tuning
capabilities oriented towards physical design, but still agnostic to any specific choice of
database management system. The user can specify actual data types of table columns,
reorder fields as desired, define unique constraints, and export SQL code.

6.4.1 Assigning Data Types

Given that the logical schema editing step produces DBMS-ready SQL code, it is neces-
sary to assign a data type to each table column. This is done by clicking the Data Type
button, which shows the dropdown box illustrated in Figure 6.41.

Figure 6.41: Assignment of a data type to a column.

While it is true that each DBMS makes available its own set of data types, the list pro-
vided in our software is the most generic and standard. The aim is to offer, to the fullest
extent possible, cross-platform SQL code generation.

81

6.4.2 Reordering Columns

The order in which columns appear in a table is decided arbitrarily by the software
during the translation step. The user may change such order using the Move button
(Figure 6.42), as long as columns belonging to the primary key of the table are always
positioned above all other columns.

Figure 6.42: Table columns can be reordered with the Move button.

This function comes in handy in cases where the attributes of an entity or relationship
– arranged meticulously in the conceptual schema – are then discombobulated when
translating the parent item.

6.4.3 Unique Constraint

The software gives the option to create single-column unique constraints by means of
the Unique button (Figure 6.43). For obvious reasons, this option is not available to the
columns that form the primary key of a table.

Figure 6.43: The Unique button in the toolbar.

The Unique button works as an on/off switch, in a similar way to the Identifier and
External Identifier buttons: it marks normal columns as unique and transforms unique
columns back to normal.

6.4.4 SQL Code Generation

The code panel that was showing ER code in the conceptual design phase reappears in
the logical schema editing step. This time it contains standard SQL code for porting the

82

database schema to a DBMS, In particular, it includes DDL statements for the definition
of the database tables, with their columns, primary keys, unique constraints, and foreign
key constraints. Figure 6.44 shows an example of the contents of the SQL code panel.

Figure 6.44: SQL code automatically generated during logical schema editing.

6.5 An Example Use Case

Thus far, the tool overview has been focusing on the individual functionalities as if they
were independent of each other. In this section, we take advantage of all the features
presented previously in this chapter and apply them to a real-world example. We will
be dealing with a database design exercise very similar to the ones that students may
be facing in an undergraduate course in databases. For the sake of brevity, we do not
explain the process in detail but we only report the final resulting conceptual and logical
schemas.

83

6.5.1 Exercise Text

The AirQ company monitors and analyzes the air quality in cities and wants to design a
database to manage its activities.

• AirQ analyzes the concentration of various pollutants such as carbon monoxide
and nitrogen dioxide. Each pollutant is identified by a code and characterized by
its name, a brief description, the measurement unit, and a list of the main causes of
the production of the pollutant (e.g. vehicular traffic, heating systems, industrial
activity).

• AirQ employees are identified by their social security number (SSN). For each
employee, the name, the hire date, the mobile phone number, and the e-mail
address (if available) are known. Employees are classified as administrative staff,
technical staff, and analysts. For analysts, the qualification is recorded.

• A network of fixed stations is exploited to monitor the concentration of pollutants.
Each station is characterized by a unique code and its geographical position, ex-
pressed in terms of latitude and longitude. Each station includes different sensors.
Each sensor is identified by a unique code and characterized by the station where
it is placed and the monitored pollutant.

• The sensor measurements are stored in the database. Each measurement has a
value and is identified by the sensor, the date, and the time when it was collected.
Each month a report summarizing measured concentrations for various pollutants
is generated. Each report is identified by a unique code and is characterized by
the release date and the list of measurements included in the report itself. Each
measurement is used in at most one report. For each report, the analyst who
performed the verification and validation of the report is also recorded.

• In case of a station failure, a maintenance operation for the station is carried out.
For each maintenance operation, the database stores the date, the start and end
time of the intervention, the station involved, the technician who carried out the
maintenance, and the issues that caused the failure. Different maintenance op-
erations can be performed for the same station on the same date. However, a
technician cannot perform two or more maintenance operations simultaneously.

6.5.2 ER Diagram and Logical Schema

Figure 6.45 depicts the Entity-Relationship diagram describing the conceptual schema of
a database for the above application. After performing the restructuring and translation
steps, and after a few finishing touches, we obtain the logical schema in Figure 6.46.

84

SSN

Name

HireDate

MobilePhone

EmailAddress(0,1)

(t,e)

EMPLOYEE

ADMIN TECHNICIAN QualificationANALYST

Code

Name

MeasurementUnit

Description
MainCauses(1,N)

POLLUTANT

Issues (1,N)

EndTime

StartTime

Date

MAINTENANCE PARTICIPATION

Latitude

Code

Longitude

STATION

Code

SENSOR

Time

Date
Value MEASUREMENT

ReleaseDate

Code
REPORT

VERIFICATION

MENTION

EXECUTION

SCOPE

(0,N)

(1,1)

(0,N)

(1,N)

(1,1)

(0,1)

(1,1)

(0,N)

(0,N)

(1,1)

(1,1)

(0,N)

(1,1)

(1,N)

INVOLVEMENT

COMPOSITION

Figure 6.45: The ER diagram obtained using Designer.

85

SSN

Name

HireDate

MobilePhone

EmailAddress*

EMPLOYEE

Issue

ISSUE

Code

ReleaseDate

Analyst

REPORT

Code

Name

MeasurementUnit

Description

POLLUTANT

Cause

CAUSE

Code

Station

Pollutant

SENSOR

Code

Latitude

Longitude

STATION

SSN

Qualification

ANALYST
SSN

TECHNICIAN

SSN

ADMIN

Sensor

Time

Date

Value

Report*

MEASUREMENT

Technician

StartTime

Date

EndTime

Station

MAINTENANCE

Pollutant

Cause

POLLUTANT_MAINCAUSES

Issue

MaintenanceTechnician

MaintenanceStartTime

MaintenanceDate

MAINTENANCE_ISSUE

Figure 6.46: The derived relational logical schema.

86

Chapter 7

Conclusions

7.1 Summing Up

The database design process demands a great deal of effort and requires many deli-
cate decisions to be taken. Building a software application for computer-aided database
design means first of all to limit as much as possible the burden on users, both new-
comers and experienced ones. The tool developed in this thesis work focuses entirely on
this task, giving strong emphasis to specific conceptual and logical design features, and
providing the most fine-grained functionality.

To the untrained eye, our software may look like a diagram drawing application. On
some level, it certainly is. A significant amount of effort was devoted to implementing
schema design features on a browser environment, balancing efficiency and appearance.
The choice of developing a brand-new schema drawing library has definitely paid off in
the long term, as no compromises had to be made at any point. We had complete
freedom to decide how constructs would be represented graphically and how they would
respond to user interactions. Our drawing subsystem does not target low-level graphics-
related browser technologies directly. Instead, it is built upon the formidable Two.js API
to take advantage of its cross-browser, renderer-agnostic capabilities. It was crucial to
adopt a library that was at the same time easy to use and powerful enough to create
stunning and complex graphics.

However, Designer is much more than just a database-design-specific drawing tool. It
offers plenty of features to support users throughout the whole design process. Un-
dergraduate students and inexperienced users may find it especially helpful to learn by
doing. The full de-facto Entity-Relationship schema specification is supported, including
all of its constructs – each with its own properties – and graphical representations. In
addition, model restructuring and translation are completely covered. Ad hoc functions

87

have been deployed to deal with constructs that cannot be directly translated, and all
possible restructuring options are shown to the user. While the translation step may have
been implemented in a declarative way, a more visual alternative was favored: turning
entities and relationships into tables only requires a few clicks. Everything happens in
front of the user’s eyes and it is easy to understand the logic behind each function.

The ultimate goal of this thesis work was to create the best educational tool for con-
ceptual data modeling. What makes the design computer-aided is the constant presence
of error-checking features, the step-by-step approach to the process, and the compre-
hensive explanations and suggestions. Putting aside the functional point of view, the
creation of a top-quality user experience and a captivating user interface has been at the
core of our agenda from day one. We followed up-to-date UX guidelines and adopted
several best practices to engage users and make our product lovable and easy to use. The
choice of a Web Application was not random: we wanted to make the tool accessible to
the widest possible audience, and we did that by supporting a vast range of devices.

7.2 Where To Go From Here

Even though we have achieved the goals we set for ourselves, the product is not at all
complete. It has great potential, yet much still needs to be done in terms of functionality,
technology infrastructure, and browser support.

7.2.1 Functionality Limitations

The conceptual design phase presents some limitations. For example, the software does
not support entities with more than one (internal or external) identifier, nested general-
izations, and composite attributes in relationships. Also, in the case of external identifi-
cation, no checks are made to ensure that the chain does not contain any loops.
Also, the restructuring activity does not currently include: an analysis of redundancies,
to delete or retain possible redundancies present in the schema; the partitioning and
merging of entities and relationships, to partition concepts in the schema into more than
one concept or to merge several separate concepts into a single one; the selection of
primary identifiers, to choose an identifier for those entities that have more than one.
In the logical schema editing step we have not implemented – primarily to avoid confus-
ing non-expert users – features to have a column be part of the primary key, to make it
optional, or to delete it. While it is true that these can be directly derived from previous
steps, including such fine-tuning features would make the software more attractive to
advanced users.

88

7.2.2 New Features

There are countless ways to improve the application by adding new and interesting fea-
tures. The important thing is to always keep the users’ needs in mind.
An idea would be to make the ER code panel interactive: that is, not only having changes
in the editor being reflected in the code but also the other way around. Changing prop-
erties of schema items in the code would simultaneously update the model accordingly.
To go even further, the application could allow generating a conceptual design in a com-
pletely declarative way, with the user eventually using the editor only to adjust small
graphical details.
The logical design could be extended to cover other important aspects, such as the nor-
malization procedure. Normalization is a verification tool used to evaluate the quality
of a relational database, so as to avoid redundancies and undesirable behavior during
update operations.

7.2.3 General Improvements

The application requires the browser of the user to be updated in order to work correctly.
If for whatever reason older browsers should be supported, a series of adjustments from
the compatibility point of view would be necessary. These would be achieved mainly
through the use of polyfills, JavaScript codes that provide a certain API wherever the
browser does not have it natively.
The overall performance of our application is quite good, but one can always do better.
The use of SVG as rendering target is a good choice if the number of drawn items
is limited. In our case, we hardly expect this number to go beyond the threshold of
one hundred items, so the performance remains at an acceptable level. Should this
ever become a usability concern, other rendering alternatives – for instance, Canvas or
WebGL – need be considered. Since several advantages of the SVG approach were taken
advantage of in the current implementation, some effort would be necessary to obtain
similar results with other technologies.

89

Bibliography

[1] Paolo Atzeni et al. Database Systems - Concepts, Languages and Architectures.
McGraw-Hill Book Company, 1999. ISBN: 0-07-709500-6.

[2] ERDPlus. URL: https://erdplus.com/.
[3] Microsoft Visio. URL: https://www.microsoft.com/en/microsoft-365/visio/

flowchart-software.
[4] Android Studio. URL: https://developer.android.com/studio.
[5] Mobile OS market share. URL: https://www.statista.com/statistics/272698/

global-market-share-held-by-mobile-operating-systems-since-2009/.
[6] Apple XCode. URL: https://developer.apple.com/xcode/.
[7] Modern Web Applications: An Overview. URL: http://singlepageappbook.com/

goal.html.
[8] Progressive Web Apps. URL: https://developer.mozilla.org/en-US/docs/Web/

Progressive web apps.
[9] What Are Progressive Web Apps? URL: https://web.dev/what-are-pwas.

[10] Web Storage API. URL: https://developer.mozilla.org/en-US/docs/Web/API/
Web Storage API.

[11] Canvas API. URL: https://developer.mozilla.org/en- US/docs/Web/API/
Canvas API.

[12] Touch Events. URL: https://developer.mozilla.org/en- US/docs/Web/API/
Touch events.

[13] Vue.js Introduction. URL: https://v3.vuejs.org/guide/introduction.html.
[14] Components Basics. URL: https://v3.vuejs.org/guide/component-basics.html.
[15] Two.js. URL: https://two.js.org/.
[16] Wilbert O. Galitz. The Essential Guide to User Interface Design: An Introduction

to GUI Design Principles and Techniques. John Wiley & Sons, Inc., 2007. ISBN:
0470053429.

[17] The Art of Minimalism in Mobile App UI Design. URL: https://uxplanet.org/the-
art-of-minimalism-in-mobile-app-ui-design-b21aa671dd7f.

[18] Prism. URL: https://prismjs.com/.
[19] Responsive design. URL: https://developer.mozilla.org/en-US/docs/Learn/

CSS/CSS layout/Responsive Design.
[20] Undo. URL: https://en.wikipedia.org/wiki/Undo.

90

