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Summary

The increasing spreading of the amount of exchanging data and the dynamic de-
ployment of applications and services lead to an evolution of the traditional network
technology. One possible solution is based on virtualization, in particular, exploit-
ing the Network Function Virtualization (NFV) parading. It is an architectural
approach which aim is to decouple the network functions and the hardware ap-
pliances, making possible the deployment of network service on general-purpose
servers, achieving flexibility during the design of a particular service.

A problem that arises is the service design that usually is performed manually,
and this can lead to errors, especially if the service under analysis is related to
security functions, such as firewalls. In order to avoid these errors, an automated
approach should be used. In this context, it is possible to use a policy-based model
that can be refined and translated.

Because of this consideration, this thesis focussed on security inside NFV, in
particular, analyzing packet filter behavior and it contributed to the translation
from a medium language policy to a low-level configuration taking care of different
firewall languages used in different scenarios. Moreover, it contributed to the de-
velopment of VEREFOO (VErified REFinement and Optimized Orchestration), a
framework that aims to provide a Security Automation approach as a solution to
the problem highlighted before. Previously inside this framework is already per-
form the refinement of the policy from high-level language to the medium level
one generating also policy configured as IP quintuple (source address, destination
address, transport layer protocol, source port, destination port). This work imple-
ments a new model used as a base for the translation and it focused on enforcing
the configuration generated into Iptables, IpFirewall, BPF-iptables, Open vSwitch,
and Fortinet.

The reason under these choices is that Iptables is the standard packet filter
inside the Linux kernel and it is also one of the most widely spread, IpFirewall is a
packet filter based on FreeBSD operating system and it is the core for other well-
known and widely used firewall solutions. The BPF-iptables firewall is used in the
extended Berkeley Packet Filter (eBPF) context and developed by this university
in order to achieve better performance than the previously defined Iptables and
Open vSwitch that is used in Software Defined Networking (SDN) working with
OpenFlow protocol. Fortinet is a physical firewall making possible the application
of this tool also in a mixed environment and create an opening for future scenarios.

The implementation is finally tested in different network scenarios, finding that
most of the translations developed are acting in the same way that is described by
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the medium-level abstraction model. In particular, the best results are achieved
with IpFirewall, Iptables, and BPF-iptables. The module provides a RESTful API
that ensures connectivity to other modules inside the framework. For future works,
it can be extended to other types of firewalls and implements different submodules
for new packet filters. Moreover, can be implemented a machine learning algorithm
that can effectively choose the right packet filter to deploy according to the hardware
resources of the machine and the environment in which it should be deployed.
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Chapter 1

Introduction

1.1 Thesis objective

Network technologies are having an increasing impact on our lives not only because
of the spreading of smartphones but also other smart devices used for different
purposes. This lead to a particular interest in networking and new paradigms arise
in order to overcome the traditional way of networking due to the changes of the
users which is related to. One of them is Network Function Virtualization that
united with Software Defined Networking want to bring a new approach making
an architecture capable to scale and independent from specific vendor appliances.
So security inside the network became a popular topic to deal with and since it
is configured by humans, it can lead to critical issues of the network, that is the
reason why in these years several efforts are put into the automation of security
devices in different environments.

The objective of this thesis is to implement a module capable to perform a
consistent multi-language translation among several packet filters that are available
in the market. The main idea is to develop a data model that is consistent with
the already existing framework, for example, the framework VEREFOO (VErified
REFinement and Optimized Orchestration) which is developed in order to achieve
a policy refinement in Network Function Virtualization environment. Moreover,
another goal that wants to achieve this work is to be able to implement a completely
automated solution that can solve many issues related to packet filter configuration,
especially for non-expert users.

1.2 Thesis description

The structure of the thesis, excluding this first chapter which has the aim to do an
overview of the objective that this research want to reach are:

❼ Chapter 2 that describes the Software Defined Networks and Network func-
tion Virtualization that are the main area in which this research starts its
investigation and the new paradigms for networking.
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❼ Chapter 3 describes the main network security system used during the whole
development of this work: the packet filter. Moreover, it presents also the
main aspects of a firewall and the policy-based configuration architecture that
is the main point for the development of the module. In the end, are analyzed
different techniques in literature useful for preliminary researches.

❼ Chapter 4 describes the tools used during the thesis work, especially underling
the main aspects that lead to the choice of particular software or hardware.

❼ Chapter 5 that describes the data model used as input for the policy trans-
lation and are exposed in terms of that particular language as XML file, the
use cases that will be used to check the correctness of the configuration of the
packet filters.

❼ Chapter 6 describes the main ideas under the development of the code by
means of the java class and how they overcome some problems related to the
different software chosen to deploy.

❼ Chapter 7 describes the result of the module showing the configuration ob-
tained and critical issues had over the testing phase.

❼ Chapter 8 describes the main goals achieved and the further improvement
proposed for future researches.

❼ Appendix A that presents the REST APIs to interface with this module for
every framework capable of produce an input compatible to ingress point of
translation.

❼ Appendix B that presents the settings where is it possible to perform the test
that is the same environment where the tests of this research were performed.

2



Chapter 2

Background

2.1 Software Defined Networking

Software Defined Networking is a new paradigm that tries to overcome the tradi-
tional IP networks’ main problems that are static and rigid. These problems arise
because layering the network helps to transport packets but the topology that it
is created is complex and difficult to manage and it is in contrast with the incred-
ible evolution of the technology and the needs of the companies in terms of larger
networks and data center management.

Moreover, traditional network architecture is made up of three planes that are
embedded in a single physical device that belongs to specific vendors, not providing
enough space for innovation. The three planes are the data plane that is in charge
of forwarding and delivering packets, the control plane that is a management unit
capable of applying rules and action on incoming packets, management plane that
is where are defined network policies.

To overcome this problem network engineers try to develop Software Defined
Networking in an open-source environment. Even if it is an open-source project,
several organizations tried to standardize it. For example Open Networking Foun-
dation (ONF) that is a user-driven organization that is divided in three community
that are working on defining standards and specification in order to make possible
application of Software Defined Networking into the real world. European Telecom-
munication Standard Institute (ETSI) develops standards for Software Defined Net-
working and Network Function Virtualization according to needs of industry. Insti-
tute of Electrical and Electronics Engineers (IEEE) is focused on Standardization
and interoperability of Software Defined Networking.
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Figure 2.1. Basic architecture of SDN. This image is taken from [1]

2.1.1 Key concept

The first time that comes out Software Defined Networking was in 2011 by Mar-
tin Casado et al.[7] referring to a network architecture where networks are pro-
grammable and able to be flexible, agile, and virtualize. Lately were defined the
main concepts that are the pillars of modern networking and are:

❼ Separation between the data plane and control plane: In Software Defined
Networking based networks having forwarding elements, the data plane, and
control logic, the control plane, separated makes it possible to build a simpler
architecture.

❼ Logical centralization of control : The control plane is centralized in the con-
troller or Network Operating System that has a global view of the network
that can be used by the virtualization layer to create abstract views of the
physical network to a different control program that belongs to different de-
velopers.

❼ Flow based control : The forwarding rules are based on flow entries that are
stored in tables inside a switch. If a packet matches one flow of the table, an
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action is performed. Otherwise, it is sent to the controller, so the flow can be
summarized as a sequence of the packet between source and destination.

❼ Programmability : In Software Defined Networking are developed API for the
controller that is used both for network application and services like load
balancer and firewall. Thanks to this also networking is transforming into a
software discipline that needs its level of abstraction.

Abstraction is also the main feature that permits Software Defined Networking
technology to divide network control problems into small pieces easier to manage.
Can be identified three-level that are needed in order to achieve a global view of the
network. One of them is the distribution abstraction that is in charge to protect
the network mechanisms from the problem related to distribution architecture.
Only the control logic is centralized, not the physical devices. Another is the
configuration abstraction in which it is specified all the behavior that the network
has to assume, but it is not in charge of implementing directly that behavior on
the physical infrastructure. Moreover, it provides a simplified model of the network
making it possible focusing on specific goals that have to achieve. Virtualization
plays a fundamental role in this kind of abstraction. The last level of abstraction is
the forwarding one that offers an API for programming network hardware hiding
all the details of the hardware making possible a solution free from specific vendors.

2.1.2 Architecture

Software Defined Networking can be split into three layers like traditional networks:
data plane, control plane, and application layers. In this subsection, it will be
described an idea of each layer with some of the possible solutions that can be
implemented. A general idea can be done using figure 2.2 that will find plenty of
explanation below.
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Figure 2.2. Schema of the components of SDN architecture. This
image is taken from [2]

The Data plane is the physical network architecture that is made up of all the
hardware devices like switches, routers, cables, middleboxes, and so on. In the
Software Defined Networking framework, all the middlebox equipment like firewall
or intrusion detection system are moved in control plane with all the network in-
telligence that is orchestrated by network application built on top of a centralized
controller that has open and standard interfaces. This leads the data plane into two
main entities that are the Infrastructure layer and Southbound interface. The first
one is simply made up of devices that forward packets using OpenFlow protocol
that works on flow tables characterized by a rule for matching different field entries,
a packet counter, and an action to perform on incoming packets. By contrast, the
Southbound interface acts as a communication link between the central controller
and forwarding elements, generally using an API. Thanks to them it is possible to
interact with the forwarding elements dynamically controlling the network in real-
time. The Southbound interface is born from the limitations given by commercial
hardware switches because in the traditional network it is a complex task to deploy
new policies to existing network infrastructure, but using the APIs it is possible to
provide an abstraction to the infrastructure facilitating this task.

The Control plane is the core of all decisions taken inside the network, allowing
the logically centralized controller to access the network console and has a global
view of the network devices. This plane is divided in three layers called Network
hypervisors, Network Operating System and Northbound interface. Network hyper-
visor can be detected between the forwarding elements and the central controller.
It is strictly linked with virtualization because network hypervisors manage all the
virtual machines, providing multi-tenancy support for cloud service providers. This
kind of support can be purchased using an open-source solution or proprietary one

6
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based on the result that wants to be achieved. Network operating system is a cen-
tral core inside Software Defined Networking architecture because it is a keystone
between the forwarding devices and the southbound and northbound interfaces. It
is responsible for all the decisions taken regarding control activities. Like network
hypervisors, it can be chosen between open source or proprietary solutions, but
there is also to decide if the controller should be centralized or distributed. An-
other task is fault management, which consists to distribute again all the tasks
of the fault node among its neighbours. Northbound interface is another abstrac-
tion that is very important for Software Defined Networking outcome because it is
the link between the network operating system and higher application layer. The
communication is reached using REST API, like Southbound interfaces and one
feature is that it is independent of the provider choose for the implementation of
any feature, so it has a map between a service and a specific provider. Moreover, it
has to also provide service to users but not specifying to them the implementation
used to achieve it.

The application layer is where all the activities related to provisioning and mon-
itoring of the networks are created. This is an additional layer used to abstract
more the design that is required for virtualization-based solutions. It is made up of
two network layers called programming languages and network applications. The
first one is an abstraction level that helps the programmer to build the functional-
ities of his application. One of the challenges that want to overcome is that every
function that has to be developed should not interfere with other services and the
management of the controller in order to optimize all the applications that are
running over it. Moreover, it has to guarantee the re-use of the code giving the
possibility to create software differently from the past making possible the use of
the modular application over a monolithic one. Another feature is network vir-
tualization and reduces the latency in forwarding packets from one controller to
another. Network applications are the software program used for implementing all
the network services.

2.2 Network Function Virtualization

Network Function Virtualization is a way to overcome the problem related to de-
ploying physical proprietary hardware for each function that is part of a service.
This problem leads to design network topology chaining in a particular order the
physical resources making this process without flexibility.

2.2.1 Key concept

The first time Network Function Virtualization comes out, it was used to refer to
a flexible network that can deploy services to users in a faster and cheaper way.
In order to achieve this result, some key concept was defined in order to make a
difference from the previous way of deploy of service and they are:

❼ Decoupling software from hardware: In Network Function virtualization en-
vironment every network element is not bound by integrated network and
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software, but they are developed individually, making possible the evolution
in time of the hardware or the software without affecting the execution of the
service.

❼ Flexible network function deployment : Due to decoupling of software from
hardware, it is possible to assign among the time the resources shared in
a Network Function Virtualization environment making possible to run the
different task on the same hardware, improving the overall deploy over the
same physical hardware and it is faster than the traditional way of deploy of
service because editing the network link between resource is flexible.

❼ Dynamic scaling : Taking into consideration that the software and the hard-
ware are independent of one another, furthermore it is fast deploying a new
service or reassigns resources of an existing one, Network Function Virtu-
alization provides a huge help to scale the performance, making it possible
to increase or decrease the resource dynamically with finer granularity than
before.

2.2.2 ETSI example

The concept of Network Function Virtualization was born in 2012, where a lot of
telecommunication service providers write a paper selecting European Telecommu-
nications Standard Institute (ETSI) as a place to make specification that will be
used in different industry field for the Network Function Virtualization. In order
to achieve this result, several used cases were defined by this organization. One of
this is Customer Premises Equipment (CPE) scenario.
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Figure 2.3. Traditional CPE implementation. This image is taken from [3]

Traditionally this scenario is made up of the Service Provider that contains the
Core router, that operates in the internet backbone and Customer sites that imple-
ments multiple Customers Premises Equipment that implements several functions
like Network Address Translation (NAT), firewall, Dynamic Host Configuration
Protocol (DHCP) and so on. In the example shown in figure 2.3, it is possible to
notice that service, for example, CPE 1, is made up of eight functions that can be
part of a service chain. It is the chain of the functions that are needed to be de-
ployed in order to achieve service, taking care of the order of the link between them.
An example can be that the firewall function should be done before NAT and in
this scenario, each function is a physical device that should be connected correctly.
If some changes are needed inside a service, for example adding a new function or
deleting an existing one, the Service Provider needs to go to each customer and
perform the changes.

The same scenario is quite different using Network Function Virtualization as
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shown on figure 2.4. It is possible to see that the Service Provider implements
a virtualized core router, without affecting the performance, and all the functions
needed to deploy a service inside a generic equipment device, making these functions
virtualized. Moreover, the Customer sites are made-up of customers having the
same devices used just as switch and router. Making the functions needed for a
service chain shared in the Service Provider infrastructure, creating a Data Center,
helps to scale the service to multiple users and decrees the cost when a function
should be changed, removed, or added.

Figure 2.4. CPE implementation with NFV. This image is taken from [3]

2.2.3 Architecture

Network Function Virtualization is divided into three main components: Net-
work Function Virtualization Infrastructure (NFVI), Virtual Network Functions

10



Background

(VNFs) and Services, Network Function Virtualization Management and Orches-
tration (NFV MANO). An explicative figure of how they interact is shown below.

Figure 2.5. Network Function Virtualization Architecture. This
image is taken from [3]

Network Function Virtualization Infrastructure is made up of software and hard-
ware resources that generate the environment where the functions and services are
deployed. The physical resources are computing hardware, storage, and network,
while the virtual ones are an abstraction of the computing, storage, and network
resources. Inside NFVI the abstraction is reached using a virtualization layer that
is helped by a hypervisor that takes care of the different virtual machines. Thanks
to the abstraction layer are possible to decouple virtual resources from physical
ones. As for computing and storage virtual resources, they are made up of differ-
ent virtual machines, while virtual networks are characterized by virtual links and
nodes. In particular, a virtual node is a piece of software capable of acting as a
host or router, while a virtual link is a logical interconnection between two virtual
nodes, that are seen as physical one by the nodes with the advantage that it is
possible to dynamically change its properties.

Virtual Network Functions are functional blocks inside the network infrastruc-
ture with a well-defined role to perform and interfaces that are used to communicate
with other blocks. An example of a network function can be a firewall that in a
virtual environment can be fused with other functions in the same virtual machine.
In Virtual Function Virtualization the function deployed should have the same per-
formance in a traditional network scenario, but the services are achieved only by
changing the order of execution of the functions.
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Network function Virtualization Management and Orchestration it is used to
take care of all the Virtual Network Functions, configuring them and deploy on
physical resources. This process it is includes also the lifecycle management of the
Virtual Functions and the databases used for storing information and data models
that are used during the effective deployment.Moreover it has other interfaces used
for the communications of different components inside Network Function Virtual-
ization Management and Orchestration that are Operations Support System (OSS)
and Business Support System (BSS).

2.3 Comparison between SDN and NFV

Both Network Function Virtualization and Software Defined Networking want to
achieve a passage to a new kind of networking standard that has its backbone
on open software and standard network hardware. In particular Network Func-
tion Virtualization aims to run Network Functions on industry-standard hardware,
while the control plane of Software Defined Networking aims to be implemented as
open software on industry hardware. These two techniques are complementary and
implemented together in a unique solution that will bring great advantages like run-
ning a Software Defined Networking controller in a virtual machine and exploited
as a function in the service chain. Another possible use of these technologies com-
bined could be the flexible and automated deployment offered by Software Defined
Networking as a way to seep-up the Network Function Virtualization functions like
security or policy control.

One of the main differences is that they want to solve a different problem re-
lated to software-driven networking. An example is the virtualization concept that
in Software Defined Networking is the allocation of abstract resource for a particu-
lar application, while in Network Function Virtualization is the way to abstract the
network function from dedicated hardware. Another difference is that Software De-
fined Networking are promoted by Data Center and cloud computing areas because
it is needed a different network infrastructure where data and control plane are dif-
ferent, while Network Function Virtualization is promoted by telecommunications
carrier because it can work on an existing network.
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Chapter 3

Policy-Based Configuration

3.1 Firewall

A firewall is a combination of hardware and software that isolates an organization’s
internal network from the rest of the internet. In particular, it allows some kind
of packets and blocks others that are determined by a logic defined by a system
administrator. Having this concept in mind it is possible to define three goals
achieved by a firewall:

❼ All the traffic from outside to inside and vice versa has to pass through a
firewall putting the device at the edge between the organization network and
the outside networks. This can be achieved using a single access point and
setting the firewall there or using distributed firewalls if the organization is
bigger.

❼ Only the network traffic defined by a system administrator using policy rules
is allowed to pass because all the traffic will pass through the firewall, so the
device is capable of select which packet forward and which packet block.

❼ The firewall is immune to penetration, so it should be correctly configured in
order to ensure security when correctly configured and deployed.

All the firewalls can be classified according to their functionality in three big cat-
egories that are analyzed in the sections below. They are packet filters, stateful
filters, and application gateways.

3.1.1 Packet Filters

The packet filter is usually deployed next to the gateway router that connects the
internal network with the external one. It takes all the datagram separately and
determines if it is allowed to pass or not. This decision is based on the rules deployed
by the system administrator and focuses on these fields:

❼ IP source or destination address.
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❼ Protocol type like TCP, UDP, ICMP.

❼ Transport layer protocol source and destination port number.

❼ TCP flag bits used to establish a connection like SYN, ACK.

❼ ICMP message type.

❼ Position of the packets, if it is entering or leaving the network.

❼ Router interface, where each interface can be configured with a particular
rule.

A filtering policy can be based on one or multiple of these fields, according to the
security level performed on the device. Firewall rules are stored in control lists,
one for each interface. The policy is usually executed from top to bottom, making
possible complex configuration based on the priority of the rules.

3.1.2 Stateful Filters

Another category of firewalls is the stateful filters that implement a track based on
TCP connections in order to achieve better performance in some scenarios where
packet filter solutions are limited. An example can block all the incoming transport
layer packets coming from the external network based on the TCP ACK field, but
applying this rule, a traditional packet filter will also make it impossible for the
connection from the internal network user to surf on the Web.

A stateful filter can overcome the previous outcome tracking a TCP connection
that is characterized by a three-way handshake with the SYN, SYNACK and ACK
packets, then can set a field if the session is over when a FIN packet is received.
Moreover, it is possible to set a timeout that sets the connection over if there is
not a packet exchange during that period. The filter can set rules according to the
field defined by the previous firewall category and adding a new field related to the
connection if it is already established or not.

3.1.3 Application Gateways

The last category of firewall is the application getaways that allow the network
traffic to a specific set of users through a particular application. This goes further
beyond the limits of the packet filter and the stateful filter because it is impossible
to retrieve this kind of information from network and transport layer headers. An
application gateway is an application-specific server where all the data should pass
through it. It is implemented one gateway for each application that is needed to
filter, but they can run on the same host, but on different processes.

An example of a gateway application is an organization’s mail server and Web
cache where the user has to identify himself on the application and then the appli-
cation will perform the connection outside the internal network. The limitation of
this kind of filtering technique is where multiple users have to use the same gateway
machine and the configuration of the client software that should know how to reach
the gateway application and tell which outside server to connect to.
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3.2 Policy-Based Configuration

Firewalls are useful for nowadays organizations because they are strictly linked with
network traffic. In order to protect themself, it needs a proper configuration and
security policy. In RFC 3891 [8] a policy is defined as a method of action that has
to guide decisions that are made in the present or future and also it is a rule that
manages the access to a specific resource inside the network. The decision is taken
by the policy when a condition is satisfied without conflict. In particular:

❼ a policy condition is a representation of all the states corresponding for dif-
ferent fields that have to be set on TRUE in order to execute the action.
The rule applied for obtaining the policy condition can be both a set of OR
statements or AND making the statement in a disjunctive normal form or
conjunctive normal form.

❼ a policy action is one operation that is performed when all the previously
defined conditions are met. The action can be made up of several operations
that have to be performed by the device and these operations can be also
ordered.

❼ a policy conflict occurs when two or more rules performed different actions
that contradict each other leading the device to a state where it is not able to
choose which action to perform. The policy system should avoid this behavior
that is a problem linked to the misconfiguration by the system administrator.
If an error occurs due to the hardware because it can not implement the
action it is no more a policy conflict but it becomes a policy error.

A policy system architecture defined in RFC 3060 [9] exploits these policies defini-
tions discussed before and it is characterized by these main components:

❼ Policy Management Tool : it is the place where the user configures the rules
that are going to be translated into a real device and will be activated through
acting when all the conditions are satisfied.

❼ Policy Repository : it is the datastore that contains all the data regarding
policies with their conditions and actions. The policy stored inside can be
retrieved multiple times defining in this way a data model for them.

❼ Policy Decision Point : it is a logical entity that processes the conditions
needed in order to activate a policy and use the result obtained in order to
execute other network elements.

❼ Policy Enforcement Point : it is a logical entity that executes the policy deci-
sion at the bottom of the hardware configuration.

An example of this kind of Policy Management System is illustrated in the figure
below.
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Figure 3.1. Example of Policy Management System

3.2.1 Policy Abstraction

The model previously proposed can lead to several errors if configured by non-
expert users. A way to overcome this issue is to have two levels of abstraction
while configuring a policy [4]. The first level is defined as High-Security Policy
Language (HSPL) that is composed of a statement made-up by a subject, action
and object declared as a high-level sentence. The subject is the user or the set
of users that will be affected by the policy, the action is the operation that will
be permitted to those users like access or deny particular resources, the object is
the resource affected by the action that can be a network traffic type or particular
services. This kind of policy is defined for non-expert users, in order to achieve
complete protection and it is based on:

❼ simplicity, because the user-defined for the use of this kind of policy needs to
be helped using auto-completion techniques or statement already defined in
a database.

❼ flexibility, because in order to ensure correct protection the user should be
able to set different types of constraints based on time or network traffic.

❼ extensibility, because this kind of abstraction can receive updates related to
new security improvements without changing the already defined structure.

The second level is defined for expert users and it is called Medium Security
Policy Language (MSPL) defined by a set of statements that are going to be related
to the structure of a real firewall configuration like defining the IP addresses of both
source and destination, the priority of the policy execution, a filtering action to be
performed, transport layer information and so on. The idea behind this kind of
level is:
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❼ abstraction, because the model defined should not be related by a particular
firewall vendor, but can be applied to most of them.

❼ diversity, because it should define all the possible security functions that can
be related to different concepts and policies.

❼ flexibility and extensibility, because it should be possible t add new features
introducing new security controls.

❼ continuity, because it should be linked with the previously defined level and
it is used as a way to track a particular HSPL in its actual firewall policy
configuration.

An example of the the use of these policies is underlined in the figure below:

Figure 3.2. Example use of security policy languages. This image is taken from [4]

It is possible to notice that it is identified another policy language defined as
a low-level configuration that is the language defined by every firewall vendor and
changes among them. Moreover are defined also two processes called policy refine-
ment and policy translation are described in the following subsections.

3.2.2 Policy Refinement

Policy refinement is the first level of translation that occurs when is needed to
enforce an HSPL policy. The policy should be synthesized in a policy in MSPL,
without changing the logic behind the previous model. It is performed creating a
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map between values of subject and object field into its lower-level configuration,
then it selects the filtering action to perform helped by a set of interface rules.

3.2.3 Policy Translation

The Policy translation is the last service that is performed by the framework and
it is the actual enforcement of the MSPL inside a firewall. As seen in the figure
3.2, this service can be the second translation of the refinement if the policy was
created in HSPL by a normal user or it is the first translation of the policy from a
new policy by an expert user based on MSPL. This translation can be performed
multiple times from a given MPLS if is needed to enforce the same policy in a
different firewall. This is need because the HSPL and MSPL are created based on
the principle to have the same syntax if the meaning of a policy is the same, while
the low-level configuration does not have a common standard, so are need different
services they are executing the same task.

3.3 Related Work

In literature, different works try to achieve the policy configuration of a system
that inspired this thesis work. An example is Transcompiling firewall [10] that tries
to take a complete configuration of a specific vendor firewall, then it extracts an
abstract level of the policies implemented building each policy in an intermediate
language called IFCL and then it converts them into a different vendor firewall
policy. Other works that were useful for this thesis work are the papers regarding
firewall automation and orchestration in virtualized environment [5] [11] [12] [13]
that build a framework called VErified REFinement and Optimized Orchestrator
(VEREFOO) that is possible to see in figure 3.3. This framework aims to provide
an automatic deployment of Network Functions inside a given set of nodes. It
performs also an optimization of the position of the different nodes exploiting z3 as
a solver for the MaxSMT problem for correct enforcement of the nodes. Moreover
given a set of isolation and reachability requirements for a Virtual Network system,
it can create the correct number of firewalls needed and obtain a configuration
made up of abstract policies created using the MSPL syntax.
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Figure 3.3. VEREFOO architecture. This image is taken from [5]
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Tools

4.1 Iptables

Iptables is a standard packet filter that operates on top of Netfilter that is the
standard packet processing inside of Linux kernel version above 2.6.x. The filters
are possible thanks to a set of tables that are useful to organize a set of chains of
different rules that will deal with different typologies of packets that are approaching
the interface of the machine where it is set. The system administrator can define
tables or using already existing ones, each of them builds for a specific purpose that
is listed below:

❼ Filter Table: it is the default table set and it is used to decide allowing or
denying the incoming packet to its destination.

❼ NAT Table: it is used for network address translation purposes. The main
use of this table is to modify the packet’s source or destination in order to
change how they are forwarded.

❼ Mangle Table: it is used to alter IP headers of the incoming packet. It can
be used for example to change the number of valid network hop, but cannot
change the packet itself. Another use of this table is to mark the packet by
internal kernel making possible the interaction with other networking tools.

Each table is made up of a different chain where the rule is placed. The chains can
have different lengths of rules or can be empty, and if a packet reaches the end of
the chain without action, it will return to the chain that is called it. There are five
built-in chains, but the system administrator can create more. The chains already
available are:

□ PREROUTING : in this chain, the packet will be check before a routing de-
cision is made.

□ INPUT : packets that are entering this chain are going to be locally derived.

□ FORWARD : different from the previous chain, in this one the packet will go
in this chain if have not to routed to the local destination.
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□ OUTPUT : all the packets that are generated by the machine in which are
enabled Iptables will be redirected to this chain.

□ POSTROUTING : packets are passing through this chain after a routing de-
cision it is made, just before been sent outside the hardware.

Each rule can perform different actions like accept the packet, deny it or jump to
another chain, making possible multiple combinations between them.

4.2 Ipfirewall

Ipfirewall is a stateful firewall and packet filter written as an external module for
FreeBSD operating systems. Later it became integrated into the kernel and it can
deal with ipv4 and ipv6 network traffic. It is an open-source firewall and it is used as
a base for more complex and well-known firewalls likeM0n0wall [14] that is the main
idea for the development of OPNsense[15]. Since the syntax that defines the rules
for a policy is complex, it is easy for a network administration made configuration
errors or most users can find it difficult to build them. This is one of the reasons why
it is used for this thesis work because thanks to the automatic configuration created
by the software, all the problems related to humans configuration are deleted.

The internal structure of the firewall can be identified by several components[16]
that are:

❼ packet accounting facility.

❼ bridge facility.

❼ forward facility.

❼ logging facility.

❼ NAT facility.

❼ dummynet traffic shaper facilities.

❼ ipstealth facility.

❼ advanced special-purpose facilities.

4.3 BPF-Iptables

BPF-Iptables is a firewall developed inside the Polycube project inside Politecnico
di Torino, that is a framework that allows the development of fast and dynami-
cally loadable network function exploiting modern network technologies. The main
idea under this development was to create a firewall with the semantics similar to
Iptables but exploiting the performance given by extended Berkley Packet Filter
(eBPF) that will be explained in the subsection below.

The components of the data plane of this firewall architecture are:
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❼ Header Parser : it is a module in the ingress and egress pipeline that extracts
the packet headers that are used by eBPF programs for filtering rules. One
peculiarity of this module is that if a new rule requires an additional field, the
code is dynamically generated, compiled again, and injected into the kernel.

❼ Chain Selector : it is the second module that appeared in the bpf-iptables
pipeline and it is responsible for select the correct chain where the packet
should be processed. In this firewall it is not possible to create a new chain,
so the choice is limited to three chains that are INPUT, OUTPUT, and
FORWARD having the same definition of the corresponding Iptables chains.
In order to achieve a correct behavior, two instances of this module are created
inside the firewall. One is used for the ingress pipeline and the other is used
for the egress one.

❼ Matching algorithm: this firewall implements a Linear Bit-Vector Search
(LBVS) that is more flexible than the linear search adopted by iptables. The
algorithm used requires a bi-dimensional table for every field that will be used
for the match that is filled by values of that field presented in the ruleset.

❼ Classification Pipeline: it is the module where the packet is filtered. It is
characterized by a cascade of eBPF programs calling each other. The action
performed by each program composing this module are:

□ extracts the packet field data from a map filled by Header Parser module.

□ performs a lookup on its own BPF map to find the bivector associated
with the field on the current packet.

□ performs a tail-call to the next program of the module chain after saving
the bivector.

❼ Connection Tracking : it is a module implemented for stateful filters, that adds
multiple eBPF programs both in the ingress and egress pipeline. Moreover,
there is an additional matching component added in the classification pipeline
which is used as a filter based on the state of the connection.

The control plane architecture is characterized by actions that are taken when one
of the following events occurs and they are:

❼ Bpf-iptables start-up: when the program started, it sets an eBPF program
that takes the incoming and outgoing packets to the network interfaces and
sends them to the ingress and egress hook starting the first pipeline. After
all, this is correctly implemented, it is configured the Chain Selector module
by subscribing to any Netlink event related to the status or address changes
on the host’s interfaces.

❼ Netlink notification: when a new Netlink notification is received, bpf-iptables
checks the nature of that notification and updates the new address in the
Chain Selector, otherwise sets the eBPF program used as redirection from
the network interface to the ingress or egress pipeline on the new interfaces.
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❼ Ruleset changes : when the rule configuration is changed it is called a process
that calculates the new value-bivector pairs for each field. The new values
generated are finally inserted inside a new eBPF map and the program creates
a new parallel chain.

Figure 4.1. Architecture of bpf-iptables. This image is taken from [6]

4.3.1 eBPF

Extended Berkeley Packet Filter (eBPF) is an in-kernel virtual machine for packet
filtering introduced in Linux kernel version 3.15. It was proposed the first time by
Alexei Starovoitov in 2013 as a way to overcome the previous version on Berkeley
Packet Filter, now known as cBPF. This new technology brought several improve-
ments especially inside its architecture that can be summarized as follows:

❼ making possible the interaction with the generic event inside the kernel that
can lead the evolution of eBPF not only linked with packet filtering but also
with other system calls.

❼ availability of networking hook points that are socket filter, responsible of
intercepts packets after the IP routing; traffic control hook capable of takes
ingress and egress packet; eXpress Data Path, also known as XDP, this hook
is located after the network card drivers and it makes possible two levels
of approaches called Driver mode and Generic mode used for performance
improvement.

❼ introducing maps as data structures is possible to make a stateful firewall or
in general taking care about stateful processing.

❼ implementing tail-calls that are mechanism useful for connecting programs
and use a function call to return to a different place that it is not the caller.
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❼ overcoming limitation of BPF code that is not capable to invoke kernel run-
time through system calls. Since the interaction with the kernel is limited
to a safer one, these functionalities can be called helpers functions, so eBPF
can use them to modify packets or make more sophisticated execution like he
previously analyzed tail calls.

❼ increasing the flexibility and performance exploiting the power of a 64-bit
architecture and a Just-In-Time compilation.

4.4 Open vSwitch

Open vSwitch is an open-source implementation of a distributed virtual multilayer
switch. It is mostly used for hardware virtualization and can be exploited by Soft-
ware Defined Networking as a way for distributing packets using Open Flow protocol
that will be better analyzed inside the next subsection. Even if it is not a firewall,
there are different applications in Software Defined Networking environment[17], so
it was selected as a packet filter in a distributed scenario.

There are several components inside the Open vSwitch environment that are[18]:

❼ ovs-vswitchd : it is the daemon that implements the switch itself.

❼ ovsdb-server : it is a database used for obtaining the configuration of the
switch thanks to database queries.

❼ ovs-dpctl : it is used to configure the kernel module of the switch.

❼ XenServer RPMs : it is used to allow an Open vSwitch to be installed on a host
where is running a Citrix XenServer and increase the possible functionalities
of the switch.

❼ ovs-vsctl : it is call useful for updating the database configuration needed for
future deployment.

❼ ovs-appctl : it is used to send commands to a running Open vSwitch.

4.4.1 Open Flow

Open Flow is the first protocol designed for implementing communications between
forwarding elements and controller inside a Software Defined Networking architec-
ture. It was standardized by Open Networking Foundation (ONF) putting several
efforts taking care of the principle defined when it was presented the first time and
they are:

❼ separation of control plane and data plane.

❼ centralization of the control.

❼ flow-based control.
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Currently, Open Flow is used for accessing and manipulating the forwarding plane
of network devices that can be physical and virtual.

Elements capable of doing network functions based on Open Flow are called
Open Flow switches that are characterized by flow tables in the place of commonly
used routing tables. A flow table is made up of multiple field entries that are used
for different network functions, for example, the source of destination address. Each
flow can be distinguished in three main segments[19]:

❼ Header : it is unique for each flow and defines it as containing a tuple com-
posed at most by ten fields.

❼ Action: it specifies how to handle the packets incoming inside the specific
flow. Possible actions are to forward a packet to a port or the controller or
drop it.

❼ Statistics : it has information related to the number of packets inside a flow,
the time from the last matched packet, or the number of bytes that used that
flow.

The communication between switch and controller used a special communication
channel also known as Secure Sockets Layer. This channel is not only used for Open
Flow messages, but also for packets with unknown flow entries, that are directly
sent to the controller that will take an action to perform on it.

4.5 FortiGate 50E

FortiGate 50E series is a physical firewall that provides security against different
types of cyber attack and it is easy to configure and deploy thanks to FortiOS, a
proprietary operating system that provides a Graphical User Interface for entry-
level users and Command Line interface designed for advanced users. The operating
system is combined with FortiASIC processors provides also high performance,
especially for medium-sized businesses. It is developed and build by Fortinet that
is an American company that aims to provide security services like firewalls and
VPN since 2000.

It is used as a physical firewall in order to achieve a complete development of
the module of this thesis and for testing the effects of the new technologies on a
traditional network scenario and try to extend the paradigm exploited to hybrid
network solutions. The model specification that it is used can be found in its
data-sheet[20].
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Approach

5.1 Data model

The data model used as input for the dispatcher can be identified as an XML
schema of the resource NFV. It is characterized by many elements exploited by
other modules inside the framework. In particular, this thesis work focuses on
graphs element that is the container of all the graph that has to be analyzed.

<xsd:element name="NFV">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="graphs" minOccurs="1" maxOccurs="1"/>

<xsd:element ref="Constraints" minOccurs="0"

maxOccurs="1"/>

<xsd:element ref="PropertyDefinition" minOccurs="1"

maxOccurs="1"/>

<xsd:element ref="Hosts" minOccurs="0"/>

<xsd:element ref="Connections" minOccurs="0"/>

<xsd:element ref="NetworkForwardingPaths" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="ParsingString" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:key name="hostKey">

<xsd:selector xpath="Hosts/Host"/>

<xsd:field xpath="@name"/>

</xsd:key>

<xsd:keyref name="ConnectionSourceHost" refer="hostKey">

<xsd:selector xpath="Connections/Connection"/>

<xsd:field xpath="@sourceHost"/>

</xsd:keyref>

<xsd:keyref name="ConnectionDestHost" refer="hostKey">

<xsd:selector xpath="Connections/Connection"/>

<xsd:field xpath="@destHost"/>

</xsd:keyref>

<xsd:unique name="ConnectionUniqueness">

<xsd:selector xpath="Connections/Connection"/>

<xsd:field xpath="@sourceHost"/>
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<xsd:field xpath="@destHost"/>

</xsd:unique>

<xsd:keyref name="keyRefNode" refer="keyNode">

<xsd:selector xpath="NetworkForwardingPaths/Path/node"/>

<xsd:field xpath="@name"/>

</xsd:keyref>

<xsd:unique name="PathUniqueness">

<xsd:selector xpath="NetworkForwardingPaths/Path"/>

<xsd:field xpath="@id"/>

</xsd:unique>

<xsd:unique name="BandwidthUniqueness">

<xsd:selector

xpath="Constraints/BandwidthConstraints/BandwidthMetrics"/>

<xsd:field xpath="@src"/>

<xsd:field xpath="@dst"/>

</xsd:unique>

<xsd:key name="keyGraph">

<xsd:selector xpath="graphs/graph"/>

<xsd:field xpath="@id"/>

</xsd:key>

<xsd:keyref name="PropertyRef" refer="keyGraph">

<xsd:selector xpath="PropertyDefinition/Property"/>

<xsd:field xpath="@graph"/>

</xsd:keyref>

</xsd:element>

Listing 5.1. XML schema of NFV

The graphs element is made up of several graph that are entity defined as a
collection of nodes, each one of them is characterized by its function like firewall,
NAT, load balancer, a name that is the IP address given to it, a neighbors list
containing all the addresses where this node should be linked to and a configura-
tion that depends on the type used on the function field. An example of the node
schema is presented below.

<xsd:element name="node">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="neighbour" maxOccurs="unbounded"

minOccurs="0"/>

<xsd:element ref="configuration" maxOccurs="1"

minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:long" use="optional"/>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="functional_type" type="functionalTypes"

use="optional"/>

</xsd:complexType>

<xsd:unique name="uniqueNeighbourId">

<xsd:selector xpath="neighbour"/>

<xsd:field xpath="@id"/>

</xsd:unique>

<xsd:unique name="uniqueConfigurationId">

<xsd:selector xpath="neighbour"/>

<xsd:field xpath="@id"/>

</xsd:unique>
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</xsd:element>

Listing 5.2. XML schema of node element

In this thesis work is only the analyzed the node element with a specific function,
the firewall one. Its configuration is characterized by:

❼ a name field that is the peculiar name of that configuration.

❼ a description field that is a description of the configuration.

❼ a default action field which specifies if the firewall will be in whitelisting mode,
enabling all connections, or blacklisting mode, disabling all connections.

❼ a set of elements that are the policy to enforce inside the firewall.

In particular elements element is structured in this way:

□ id : it is an optional attribute and it is a Long type variable used to store the
identification number of the policy. It is used in the REST API implementa-
tion.

□ action: it is an attribute that defines if the policy will allow or deny the
network traffic described by the others parameter.

□ source: it is the IP address of the source from which the traffic will be gen-
erated. It is a String having four 8-bit numbers followed by a dot. Moreover
can be used a special character, ”-1” in this case, that is used to identify a
subnet mask different from /32.

□ destination: it is the IP address of the destination that should be reached by
this policy. Like the source field, it t is a String having four 8-bit numbers
followed by a dot and implements, in the same way, the use of different
netmasks using the special character ”-1’ ’.

□ protocol : it is an optional attribute used when the policy is referred to as
a transport layer protocol. The possible value of this field is TCP if the
policy will affect only tcp protocol, UDP if the policy will care about udp
connections, and ANY for both.

□ src port : it is usually an optional field that becomes necessary if the transport
layer attribute is set. Possible values are * if the policy should be applied to
every port, a single integer if only one part should be affected by the policy,
or two integers linked with - in order to underline a range of port that the
policy should take care.

□ dst port : it is an optional field linked to the transport layer protocol and the
destination address of the policy defined. In particular, can assume value
equals to * if the policy should be applied to every port on the destination
IP address. It can be also a single value specifying the port that will allow or
deny that traffic or a range of port written as the minor port number plus a
- followed by the major number of the port range.
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□ priority : it is an optional attribute that specifies the execution order of the
policies. It can be omitted or defined ad * if the policy does not have an
order of execution, otherwise, it is an integer number. Lower is the number,
higher will be the priority assigned to that particular policy. Policies with
the same priority number are treated like there is no priority among them.

□ directional : it is an optional attribute that can assume two possible values.
It can be true if the policy is applied also from destination to source without
changing the transport layer protocol. The second value can be false, meaning
that the policy will affect only the traffic described by the other attributes.
If omitted is considered false.

The XML schema of the elements element is shown below:

<xsd:element name="elements">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="id" type="xsd:long" minOccurs="0"/>

<xsd:element name="action" type="ActionTypes"

minOccurs="0" default="DENY"/>

<xsd:element name="source" type="xsd:string"/>

<xsd:element name="destination" type="xsd:string"/>

<xsd:element name="protocol" type="L4ProtocolTypes"

minOccurs="0" default="ANY"/>

<xsd:element name="src_port" type="xsd:string"

minOccurs="0"/>

<xsd:element name="dst_port" type="xsd:string"

minOccurs="0"/>

<xsd:element name="priority" type="xsd:string"

minOccurs="0" default="*"/>

<xsd:element name="directional" type="xsd:boolean"

minOccurs="0" default="true"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Listing 5.3. XML schema of elements

A firewall example in XML language is shown below. In particular, it is a fire-
wall with IP address 10.0.0.2, connected to other two devices, one with address
10.0.0.1 and the other 20.0.0.1, it has a configuration called conf1 with related de-
scription and it is set in whitelisting mode, enabling all the connections. It has one
policy that blocks all the TCP connections that coming from the subnet 10.0.0.0/24
on every port available and directed to 20.0.0.1/32 on port 80.

<node name="10.0.0.2" functional_type="FIREWALL">

<neighbour name="10.0.0.1"/>

<neighbour name="20.0.0.1"/>

<configuration name="conf1" description="description␣of␣confi1">

<firewall defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>10.0.0.-1</source>
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<destination>20.0.0.1</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>80</dst_port>

</elements>

</firewall>

</configuration>

</node>

Listing 5.4. Example of firewall in whitelisting mode

5.2 Use Case

Thanks to the data structure defined above it are possible to create different uses
cases that can be exploited by all the module created for this thesis work and
checked the correctness between the input and the output. One element that char-
acterizes all the use cases is the description attribute of the configuration because
it is formatted in a special way due to a particular module described later.

5.2.1 UC1

The first use case defined it is one of the simplest configurations. It is a firewall
in whitelisting mode, so able to forward all the traffic received without any other
policy. The XML schema is characterized by a name with the corresponding IP
address, the functional-type that is a firewall, the IP address of the devices to which
it is linked to and a configuration called conf1 because it is referred to this specific
use case. The description presents the name of the bridge that will be used in
a particular type of firewall developed during this thesis work. In the end, it is
possible to notice the default action set on ALLOW that will describe the behavior
of the firewall.

<node name="192.168.56.2" functional_type="FIREWALL">

<neighbour name="192.168.56.3"/>

<neighbour name="192.168.57.4"/>

<configuration name="conf1" description="b0:␣UC1">

<firewall defaultAction="ALLOW"/>

</configuration>

</node>

Listing 5.5. Use case 1 node XML schema

5.2.2 UC2

In order to check the correctness of the configuration of the firewall deployed, the
second use case is defined as a firewall in blacklisting mode, so blocking all the
traffic received, without any policy allowing any kind of connection. This time the
XML schema is a firewall with an IP address defined by the name, two devices
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linked to it, and their corresponding address. There is a configuration called conf2
related to the number of this use case and in the description field there is present
also the name of the bridge used by a particular submodule. Since it is comple-
mentary to the first use case, its defaultAction is set to DENY, blocking all the
incoming network traffic.

<node name="192.168.56.5" functional_type="FIREWALL">

<neighbour name="192.168.56.3"/>

<neighbour name="192.168.57.4"/>

<configuration name="conf2" description="b0:␣UC2">

<firewall defaultAction="DENY"/>

</configuration>

</node>

Listing 5.6. Use case 2 node XML schema

5.2.3 UC3

The third use case can be described as a whitelisting firewall with one policy that
denies particular network traffic. This configuration aims to test the correct trans-
lation of the policy that has different netmasks. This firewall is characterized by
a name that contains its network address, the device which it is connecting in
sense of graph connection, a configuration name that is conf3 directly linked to the
use case number, and its description that includes the name of the bridge to use,
need by a particular firewall. Its defaultAcation is ALLOW, setting the firewall in
whitelisting mode and the policy describes an action that will block the network
traffic from all the IP addresses identified by the source subnet (/24 in this case)
that want to use any transport layer protocol to a specific IP address, blocking all
the ports from both source and destination.

<node name="192.168.56.6" functional_type="FIREWALL">

<neighbour name="192.168.56.3"/>

<neighbour name="192.168.57.4"/>

<configuration name="conf3" description="b0:␣UC3">

<firewall defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>192.168.56.-1</source>

<destination>192.168.57.4</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</firewall>

</configuration>

</node>

Listing 5.7. Use case 3 node XML schema
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5.2.4 UC4

This use case aims to check if the directional feature is translated correctly. In
order to achieve this, it is implemented a whitelisting firewall with one policy that
exploits the directional attribute, blocking all the tcp traffic from every port of
the source to a specific port of the destination address and vice versa. The XML
settings of this firewall have its IP address in the name field, followed by the de-
vices connected to it. The configuration is characterized by conf4 name, before it
belongs to the fourth use case, a description with the bridge used in one particular
firewall and the defaultAction ALLOW. The policy is made up by a DENY action,
in order to block the network traffic over tcp connection thanks to protocol field
set to TCP, a source IP address with all possible network ports, and a destination
address targetting port 8080. Moreover having the attribute directional set on true,
there will be another policy that will deny tcp traffic from the destination at port
8080 to the source IP address at every port number.

<node name="192.168.56.7" functional_type="FIREWALL">

<neighbour name="192.168.56.3"/>

<neighbour name="192.168.57.4"/>

<configuration name="conf4" description="b0:␣UC4">

<firewall defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>192.168.56.3</source>

<destination>192.168.57.4</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>8080</dst_port>

<directional>true</directional>

</elements>

</firewall>

</configuration>

</node>

Listing 5.8. Use case 4 node XML schema

5.2.5 UC5

The fifth use case is in charge to verify the priority settings of a firewall. It imple-
ments a whitelisting firewall, that allows all the network traffic, with two policies.
One policy blocks an amount of traffic with a certain priority while the other allows
a subset of the previous traffic with higher priority. To better understand the XML
schema of this firewall is made up of a node element having as a name the IP ad-
dress of the machine that will deploy the firewall, as functional-type FIREWALL,
followed by the IP address of the devices linked to it. The configuration has its
name related to the number of the use case, conf5 in this scenario, inside the de-
scription there is the name of the bridge used by a certain firewall. The whitelisting
mode is enabled setting the defaultAction on ALLOW. As for the policies, the first
one with priority equals 10 will block all the tcp connections from any port of the
source field IP address to port 45 up to 56 on the destination field. The second
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policy with priority equals 5 will allow the traffic coming from the same IP address
of the previous policy and same destination, but only enabling port 50. Since the
priority of the second policy is higher than the first one, the packet that has to
reach the destination on port 50 will be forwarded.

<node name="192.168.56.8" functional_type="FIREWALL">

<neighbour name="192.168.56.3"/>

<neighbour name="192.168.57.4"/>

<configuration name="conf5" description="b0:␣UC5">

<firewall defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>192.168.56.3</source>

<destination>192.168.57.4</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>45-56</dst_port>

<priority>10</priority>

</elements>

<elements>

<action>ALLOW</action>

<source>192.168.56.3</source>

<destination>192.168.57.4</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>50</dst_port>

<priority>5</priority>

</elements>

</firewall>

</configuration>

</node>

Listing 5.9. Use case 5 node XML schema
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Chapter 6

Implementation

The structure of this module can be divided into two main groups. The first one is
identified as a dispatcher that takes the medium-level resource and distributes them
among all the translations available. The second is made up of all the submodules
that made possible the policy enforcement on the vendor-specific firewall. The
figure below represents an abstract view of the whole process.

Figure 6.1. Module workflow

6.1 Firewall Serializer

This is the main class that can be found in the package it.polito.verefoo.firewall. Its
constructor is characterized by two parameters:

❼ an NFV data structure that is described in the previous chapter.
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❼ a type of firewall that is needed the translation.

The type of the translation of one particular firewall happens related with the enum
java class FirewallDeploy that is shown below:

public enum FirewallDeploy {

FORTINET,

IPFIREWALL,

IPTABLES,

EBPF,

OPENVSWITCH,

ALL

}

Listing 6.1. Definition of FirewallDeploy

In particular, the options that are represented in this class are explained as:

□ FORTINET that implies that the translation should be done for a physical
firewall.

□ IPFIREWALL that is used for FreeBSD support, generating an ipfw set of
rules.

□ IPTABLES that creates a script that sets an Iptables firewall in Linux envi-
ronment.

□ EBPF that generates a script for bpf-iptables that can be deployed if need a
packet filter working on eBPF.

□ OPENVSWITCH that is set if the output of the program is only a configu-
ration to deploy on SDN environment, pointing on a particular OpenvSwitch
bridge.

□ ALL that is mainly used to have all the configuration available and check if
there are problems during translation in one or more firewalls.

6.2 Iptables

This class implements the translation from the firewall abstraction model to Ipta-
bles packet filter. This firewall is an open-source firewall build inside Linux 2.4.x
and 2.6.x kernels and operates on top of Netfilter, which is the standard packet
processing of the previously defined kernels. Its mechanism is based on chains of
rules that can be combined using the jump instruction. A chain is characterized by
a default rule that can assume two possible values: DROP for discard the packets,
ALLOW for forwarding them. This class manipulates three chains of the five there
are added by default and they are:
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❼ INPUT that is the chain taking care of the packets that will be delivered
locally.

❼ OUTPUT that is the chain used by the packet that is sent by this machine.

❼ FORWARD is the chain where all the packet that is routed by the firewall.

The script generated by this class has a first part that deletes all the policies already
installed on the machine identified as firewall and sets the default action of each
chain based on the value on the abstract model. Then are applied some policy
based on the elements element of the model following the logic explained below:

□ iptables -A FORWARD: it is the fix part of the command generated by the
class for a single policy that inserts this rule after the last one on the FOR-
WARD chain.

□ -p protocol : it is generated when a transport layer protocol is defined inside
the model.It can assume tcp or udp values, but when ANY in the model has
to be translated, it will generate one rule with tcp and another with udp
protocol, having all the other features without changes.

□ -s sourceIP/NetmaskSrc: it shows the source address with its automatically
generated netmask that will trigger the action of this policy.

□ -d destinationIP/NetmaskDs : it shows the destination address with its auto-
matically generated netmask that will trigger the action of this policy.

□ - -sport lowerbound[:upperbound] : it is generated if it is setted the transport
layer protocol and the model it is different from the value ”*”. This field
indicates the port number of the source address to which the policy should
be activated. It can also assume a ranged port number using the lower-bound
and the upper-bound having between ”:” character as a separator.

□ - -dport lowerbound[:upperbound] : it is generated if it is setted the transport
layer protocol and the model it is different from the value ”*”. This field
indicates the port number of the destination address to which the policy
should be activated. It can also assume a ranged port number using the lower
bound and the upper bound having between ”:” character as a separator.

□ -j action: it is the action that will be executed by this policy translating the
two values on the model into ALLOW and DROP respectively.

If the priority is set, all the rules are stored in memory and ordered based on its
priority number having the result that the rule with the higher number will be
inserted before inside the chain. It deals with directional field adding another ruler
with the right parameter modified having the same priority as the original policy.
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6.3 IpFirewall

This class aims to implement a complete configuration of a packet filter on FreeBSD
operating system based on Ipfirewall. It operates on 31 numbered sets, having the
last one used for default rules. Moreover, each policy is characterized by a rule
number that can assume values between 1 and 65534 that indicates the priority of
execution of the rules, having more priority if the number is smaller. The sets are
implemented just for flexible enabling and disabling of a group of rules belonging
to the same set.

The output configuration file produced by this class will first remove all the rules
of previous configurations and then delete set number 31 that is not affected by
the flush command. After this preliminary operation are added all the policy that
based on the abstract configuration can have different fields that are summarized
below:

□ ipfw -q add: it is the fixed part generated by the class that ensures the correct
working of the Ipfirewall without showing any output to the machine console.

□ ruleNumber : it is the number which the policy are processed when a packet
goes inside the firewall.

□ set setNumber : usually, the algorithm implements only set number 1 for all
the policy received and set 31 for the default action. They are to be considered
as a container that is used for better management of the policies.

□ action: it is the action to perform if the packet matches the rule. It can
assume two possible values that are “deny” for block the packet and “allow”
to let it pass and deliver to its destination.

□ protocol : this field is setted based of the protocol used. If the transport layer
part of the policy is absent, it will set the protocol to “ip”, otherwise, it will
set “tcp” or “udp” based on the choice inside the abstract policy.

□ from sourceIP/NetmaskSrc: it shows the source address with its automatically
generated netmask that will trigger the action of this policy.

□ sourcePortLowerbound[-upperbound] : it is generated if it is setted the trans-
port layer protocol. This field indicates the port number of the source address
to which the policy should be activated. It can also assume a ranged port
number using the lower bound and the upper bound having between ”-”
character as a separator. If the model has any value “*”, the algorithm will
generate a rule that blocks or allows all the incoming packets with that source
ports.

□ to destinationIP/NetmaskDs : it shows the destination address with its auto-
matically generated netmask that will trigger the action of this policy.

□ destinationPortLowerbound[-upperbound] : it is generated if it is setted the
transport layer protocol. This field indicates the port number of the desti-
nation address to which the policy should be activated. It can also assume
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a ranged port number using the lower bound and the upper bound having
between ”-” character as a separator. If the model has any value “*”, the
algorithm will generate a rule that blocks or allows all the incoming packets
with that destination ports.

If the directional flag is set, another rule having the same priority but the opposite
source and destination addresses and ports, if dealing with a transport layer policy,
is added. After all the policies are correctly inserted inside the configuration file,
also a special rule on set 31 is added based on the default action of the abstract
firewall.

6.4 BPFFirewall

This class is used to implement a firewall capable to exploit eBPF technology,
making a configuration for bpf-iptables. The firewall used for the configuration
was developed in 2018 and it aims to replicate the Iptables syntax making some
update on the architecture behind. However, there are several differences from
Iptables regarding the number of chains available and the port range either source
and destination.

The current chain available that are the same affected by the configuration
created by this class are:

❼ INPUT that is the chain taking care of the packets that will be delivered
locally.

❼ OUTPUT that is the chain used by the packets that are sent by this machine.

❼ FORWARD is the chain where all the packets are routed by the firewall.

As for the port range, since it is not implemented, the class uses an algorithm that
takes as input the lower bound and upper bound of the range and it creates multiple
rules in order to achieve the same result of the abstract model. If it is present the
default value “*” used to describe that the policy will affect all the ports, that field
is omitted in the policy created.

The configuration generated by the whole algorithm deletes the previous policy
that is stored in the three chains and sets the default action of that chains based
on the same parameter in the abstract firewall. Then the first rule is inserted in
the chain having id set to 0 while the others have this pattern:

□ polycubectl pcn-iptables chain FORWARD append: it is the fixed part gen-
erated by the class that ensures the correct working of this firewall.

□ src=sourceIP/NetmaskSrc: it shows the source address with its automatically
generated netmask that will trigger the action of this policy.

□ dst=destinationIP/NetmaskDs : it shows the destination address with its au-
tomatically generated netmask that will trigger the action of this policy.
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□ l4proto=protocol : it sets the transport layer protocol according to the model.
The possible options are “tcp” and “udp” but if both have to be enforced,
the class will generate two rules, one for each transport layer protocol.

□ sport=sourcePort : it is the source port related to the transport layer protocol.
Since this firewall does not support ranged port for this field, it is implemented
an algorithm that generates one rule for each source port and is combined
with the destination port in order to avoid duplicates of the same policy.

□ dport=destinationPort : it is the destination port related to the transport
layer protocol.Since this firewall does not support ranged port for this field,
it is implemented an algorithm that generates one rule for each destination
port and is combined with the source port in order to avoid duplicates of the
same policy.

□ action=action: it is the action performed by the rule that can take two values
according to the abstract configuration of the firewall. The values can be
ACCEPT for allowing traffic that matches the previously defined field and
DROP to block it.

If the priority is set inside the abstract model of the firewall, all the policies are
sorted in ascending mode and then inserted based on the value of that field. If there
are multiple rules with the same priority the order will be casual. If the direction
field is set to true when the rule is processed, it is generated a copy of that rule
in terms of action, priority, and protocol, but with an inverted source address and
port with the destination one.

6.5 OpenvSwitch

The translation performed by this class is based on Open vSwtch which is a dis-
tributed multi-layer switch used in Software Defined Networking environment. In-
side this thesis work, it is used as a way to configure a device in order to achieve a
packet filter for OpenFlow protocol. Before explaining the main characteristics of
the algorithm implemented, it is useful to underline that Open vSwitch is not devel-
oped like a packet filter, but some studies have tested this kind of scenario achieving
good results[17][21]. In order to generate a good configuration, it is needed an Open
vSwitch bridge inside the machine has to be configured and it is needed the name
of the bridge at the beginning of the description field followed by “:” character.

This firewall work using flows, where each one is characterized by a policy. The
configuration script generated by this class deletes all the existing flows available
on the Open vSwitch switch and then created a set of rules based on the incoming
policies of the abstract model. An example of the comma-separated fields need for
a complete creation of one is policy is:

□ ovs-ofctl add-flow bridgeName: it identifies the name of the bridge where the
flow should be inserted. It is extracted from the description of the abstract
firewall configuration model.
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□ priority=priorityNumber : it is the priority of the flow that has to be exe-
cuted. Since the priority in Open vSwitch is define in decrementing order,
an algorithm is performed in order to achieve the same result as the other
modules.

□ dl type=0x800 :it is a fixed part generated by the algorithm that identifies
the Ethernet interfaces.

□ nw src=sourceIP/NetmaskSrc: it shows the source address with its automat-
ically generated netmask that will trigger the action of this policy.

□ nw dst=destinationIP/NetmaskDs : it shows the destination address with its
automatically generated netmask that will trigger the action of this policy.

□ nw proto=protocolNumber : it is the number related to the transport layer
protocol used referred to RFC 768[22] and RFC793[23]. It is used numbers 6
for tcp and 17 for udp and a double rule is generated if the abstract model
has to implement both.

□ tp src=sourcePort : it represents the port of the source address that will trig-
ger this flow. It is expressed in hexadecimal, supporting also masks in order
to perform multiple port scan. There is an algorithm that takes the lower
bound and the upper bound of the policy in the abstract model if presented
and generates a set of strings, where each one should be policy to enforce
in order to cover all the ports needed. Then multiple rules are generated
according to the destination port list of the port to enforce.

□ tp dst=destinationPort : it represents the port of the destination address that
will trigger this flow. It is expressed in hexadecimal, supporting also masks
in order to perform multiple port scan. There is an algorithm that takes
the lower bound and the upper bound of the policy in the abstract model
if presented and generates a set of strings, where each one should be policy
to enforce in order to cover all the ports needed. Then multiple rules are
generated according to the source port list of the port to enforce.

□ action=action: it defines the action that is performed by the flow. Only two
values are allowed that are ”NORMAL” to allow traffic “drop” to block it,
according to the model.

If the abstract policy contains the directional field set on true, the module will
generate an additional flow having the same priority and protocol but opposite
network ports and addresses. When all the policy is correctly translated, it is
created a new flow with the lowest priority, for example, 0 reading Open vSwitch
documentation[18], having only the action set having the same value of the default
action that is present in the abstract firewall configuration.

6.6 Fortinet

The last class implemented by the module translates the abstract firewall model to a
physical firewall. The firewall used is a FortiGate 50E, provided by Kyoto Institute
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of Technology laboratories, and developed by Fortinet which is an American leader
company in security hardware and deployment. It was hard dealing with this device
because the main idea under this product was to create a firewall for a system
administrator that is not an expert that is helped by a Graphical User Interface.

The output of this class is a configuration script that has to be deployed using a
USB key inside the physical device and it is based on the Command Line Interface
proposed by Fortinet and following FortiOS configuration principles[24]. The main
components that are configured by the class are the following:

□ system settings : it is used to configure the device in the transparent mode that
processes all the incoming and outgoing packets applying the policy defined
by the set of rules previously configured.

□ firewall service category : this group identifies the category in which all the
policy will be stored. It is characterized by a name and a comment. It is
usually set by the class having default value “custom verefoo”.

□ firewall schedule recurring : it is possible to define when the policy will be
executed. It is defined by a name and a day in which the policy will be
active. This class defines a custom schedule setter every day.

□ firewall address : the source and destination addresses need this group to be
configured, one for each network address, in order to be used inside a policy.
The main fields that made up this group are:

– name: it is the name of the address created that has the prefix “src” if
it is a source address or “dst” if it is a destination address.

– uuid : it is a universal unique identifier used in network infrastructure
in order to obtain coordination between elements in a distributed envi-
ronment without a controller.

– subnet : it is the union between the ipv4 address and the netmask that
identifies a set of addresses where the policy will be applied.

□ firewall service custom: this portion of the configuration defines a service
that is placed inside the category created before and sets the transport layer
protocol that will trigger the policy. It has a field for tcp and one for udp and
is it possible to define a range for both destination and source port for which
the policy is applied.

□ firewall policy : this is the piece of the created configuration that will create
the policy. It has several fields previously generated:

– uuid : it is a universal unique identifier used in network infrastructure
in order to obtain coordination between elements in a distributed envi-
ronment without a controller.

– srcintf : it is the interface from which the traffic will arrive in order
to apply the filter policy. It is configured by the algorithm like all the
available LAN interfaces.
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– dstintf : it is the interface from which the traffic will be sent in order
to apply the filter policy. It is configured by the algorithm like all the
available LAN interfaces.

– srcaddr : it is the source address that will match the incoming packet
in order to be filtered. It is set using the previously defined group of
firewall addresses.

– dstaddr : it is the destination address that will match the incoming packet
in order to be filtered. It is set using the previously defined group of
firewall addresses.

– action: it is the filtering action to be performed. It is set according to
the model to “accept” if the traffic will be permitted or “deny” if the
traffic should be blocked.

– schedule: it is when the policy should be active and takes as argument
the previously created schedule group.

– service: it is related to the transport layer protocol. If it is set will take
the service group previously created and put its name in this portion of
the configuration.

If the priority field is set the policy is sorted by that field before the translation
through the algorithm. If the direction boolean is set to true, it is created just a
new firewall policy group and a firewall service custom, but exploiting the other
groups with inverted source and destination addresses. After all the policies are
processed if the default action of the abstract configuration is set on allow, the class
will generate an additional policy with the lowest priority because it is not possible
to change the default behavior of the device that is in blacklisting mode.
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Validation

7.1 Use Case 1

In this section, it is analyzed for every possible firewall scenario, the outcome, and
the configuration of the firewall generated by its relative class. The first case ana-
lyzed is the configuration of the Iptables firewall starting from an abstract model
that simply sets the device in whitelisting mode. It is possible to notice from the
configuration listed below that the machine at the beginning deletes all the policy
configured previously and it sets the INPUT, FORWARD, and OUTPUT chain on
ACCEPT value due to the use case 1 where the default action allows every incom-
ing connection.

#!/bin/sh

cmd="sudo␣iptables"

✩{cmd} -F

✩{cmd} -P INPUT ACCEPT

✩{cmd} -P FORWARD ACCEPT

✩{cmd} -P OUTPUT ACCEPT

Listing 7.1. Output of UC1 iptables

The same use case applied to Ipfirewall produces a different configuration, based
on the java class that implements it. In particular, this script makes all the sets
empty, then it is added a default rule on the default setting that allows every traffic
from any ipv4 address to any others. The configuration applied to the machine
under test is shown below.

#!/bin/sh

cmd="/sbin/ipfw␣-q"

✩{cmd} -f flush

✩{cmd} delete set 31

✩{cmd} add 65534 set 31 allow ip from any to any

Listing 7.2. Output of UC1 ipfirewall
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After the test was performed on Linux and FreeBSD operating systems with a
positive outcome, it took place a test of the firewall exploiting eBPF on Use Case 1.
The configuration produced this time is pretty familiar compared to the Iptable one
thanks to the effort of the developer in order to achieve the same semantics of the
famous Linux firewall. The script that is presented below shows that INPUT, OUT-
PUT, and FORWARD chains are manually deleted by previous chains and it sets
them allowing the incoming packets, according to the abstract model configuration.

#!/bin/sh

cmd="polycubectl␣pcn-iptables␣chain"

✩{cmd} INPUT rule del

✩{cmd} FORWARD rule del

✩{cmd} OUTPUT rule del

✩{cmd} INPUT set default=ACCEPT

✩{cmd} FORWARD set default=ACCEPT

✩{cmd} OUTPUT set default=ACCEPT

Listing 7.3. Output of UC1 bpf-iptables

The solution based on Software Defined Networking that exploits the Open
vSwitch switch use the description attribute inside the configuration of the ab-
stract packet filter and set the bridge: firstly eliminating all the existing flows, then
adding a flow with the smallest priority available that allows all incoming packets
to reach their destinations. The configuration is shown below.

#!/bin/sh

sudo ovs-ofctl del-flows b0

sudo ovs-ofctl add-flow b0 priority=0,dl_type=0x800,action=NORMAL

Listing 7.4. Output of UC1 open vSwitch

All the configurations created by the java class of the physical firewall are not
tested in real network scenarios due to the lockdown established after SARS-CoV-
2. It was just verified that the script worked on a real device deploying it through
a USB key. The whitelisting packet filter in this configuration is characterized by
different groups that set the service category, schedule recurring, firewall service
custom, the transparent mode in order to perform the filter in any position inside
the network. Moreover, it is set a policy that allows network traffic from every
direction. The configuration created is shown below.

config system settings

set opmode transparent

end

config firewall service category

edit "custom_verefoo"

set comment "new category for verefoo services"

next

end
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config firewall schedule recurring

edit "always_custom"

set day sunday monday tuesday wednesday thursday

friday saturday

next

end

config firewall address

edit "src_1"

set uuid 7701c7b1-5b08-4470-bc1b-c5f2a616bb7a

next

end

config firewall address

edit "dst_1"

set uuid 4e39c136-163d-4863-b214-30f245da80ba

next

end

config firewall service custom

edit "custom_service_1"

set category "custom_verefoo"

set comment "default action service"

set tcp-portrange 0-65535:0-65535

set udp-portrange 0-65535:0-65535

next

end

config firewall policy

edit 1

set uuid 2df68c98-6377-48a5-a242-379a15f5814e

set srcintf "lan"

set dstintf "lan"

set srcaddr "src_1"

set dstaddr "dst_1"

set action accept

set schedule "always_custom"

set service "custom_service_1"

next

end

Listing 7.5. Output of UC1 fortinet

7.2 Use Case 2

The second section describes the configuration of real firewalls starting from the
abstract model that is created for an abstract firewall model that blocks every kind
of connection, so it is in the so-called blacklisting mode. The Iptables java class
translation is shown below and it is characterized by the replacement of all existing
policies with the default action of the INPUT, FORWARD, and OUTPUT chains
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set in dropping packets mode, how underlined by the abstract model.

#!/bin/sh

cmd="sudo␣iptables"

✩{cmd} -F

✩{cmd} -P INPUT DROP

✩{cmd} -P FORWARD DROP

✩{cmd} -P OUTPUT DROP

Listing 7.6. Output of UC2 iptables

The Ipfirewall configuration for this second use case is characterized by a set
of commands that made all the sets previously loaded with any rules, empty and
sets the default behavior of the machine creating a rule in the last set that denies
all the packets that belong to the network layer and transport layer. The script
generated by the java class is shown below.

#!/bin/sh

cmd="/sbin/ipfw␣-q"

✩{cmd} -f flush

✩{cmd} delete set 31

✩{cmd} add 65534 set 31 deny ip from any to any

Listing 7.7. Output of UC2 ipfirewall

The translation performed by the bpf-iptables class it is quite simple also in
this use case. It is possible to see from the configuration below that the output of
its related java class performs removal of all the rules on the available chains and
sets the default action of each one to DROP, accordingly to the default action that
characterizes the abstract module that defines the second use case.

#!/bin/sh

cmd="polycubectl␣pcn-iptables␣chain"

✩{cmd} INPUT rule del

✩{cmd} FORWARD rule del

✩{cmd} OUTPUT rule del

✩{cmd} INPUT set default=DROP

✩{cmd} FORWARD set default=DROP

✩{cmd} OUTPUT set default=DROP

Listing 7.8. Output of UC2 bpf-iptables

The configuration based on Open vSwitch in this second case can be summa-
rized with the removing of all the flows that were available inside the virtual switch
and a flow that blocks all the packets received using Ethernet interfaces. The out-
put performed by the related java class is shown below.

#!/bin/sh
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sudo ovs-ofctl del-flows b0

sudo ovs-ofctl add-flow b0 priority=0,dl_type=0x800,action=drop

Listing 7.9. Output of UC2 open vSwitch

As for the physical firewall, the configuration generated by the module will set
only the operating mode of the device and a category for future configurations.
It is possible to notice that in the file generated below there are no rules pro-
cessed by the device because the default behavior of this particular packet filter is
already in blacklisting mode, denying all the incoming and outgoing network traffic.

config system settings

set opmode transparent

end

config firewall service category

edit "custom_verefoo"

set comment "new category for verefoo services"

next

end

config firewall schedule recurring

edit "always_custom"

set day sunday monday tuesday wednesday thursday

friday saturday

next

end

Listing 7.10. Output of UC2 fortinet

7.3 Use Case 3

The third section describes the implementation of a firewall in whitelisting mode
with a blocking rule. The rule implements a netmask using the “-1” wildcard
where it needs to implement the include that sets of addresses. Moreover, it is not
specified the transport layer protocol, so will be enforced both tcp and udp.

The first configuration related to this use case is the Iptables one. It is possible
to notice that after the previous policies deletion and the setting of the default
action for all the chains, two rules are added instead of one, one to enforce the
policy using tcp protocol and another enforcing udp. Moreover, the netmasks are
correctly set as shown in the following output.

#!/bin/sh

cmd="sudo␣iptables"

✩{cmd} -F

✩{cmd} -P INPUT ACCEPT

✩{cmd} -P FORWARD ACCEPT

✩{cmd} -P OUTPUT ACCEPT
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✩{cmd} -A FORWARD -p tcp -s 192.168.56.0/24 -d 192.168.57.4/32

-j DROP

✩{cmd} -A FORWARD -p udp -s 192.168.56.0/24 -d 192.168.57.4/32

-j DROP

Listing 7.11. Output of UC3 iptables

The configuration based on Ipfirewall for this use case presents a previous policy
deletion rule, included the previously default action to perform for packets that do
not match any rules and a rule that denies all the traffic having a source port and
a destination port. in the end, there is a rule that will be defined by the default
action. Also in this scenario, the netmasks are correctly set.

#!/bin/sh

cmd="/sbin/ipfw␣-q"

✩{cmd} -f flush

✩{cmd} delete set 31

✩{cmd} add 1 set 1 deny ip from 192.168.56.0/24 0-65535 to

192.168.57.4/32 0-65535

✩{cmd} add 65534 set 31 allow ip from any to any

Listing 7.12. Output of UC3 ipfirewall

For the bpf-iptables scenario, in this use case, the module generates a config-
uration file that deletes all the previous rule chain by chain and sets the default
action in the same way in ACCEPT state. Then two rules are added, one for each
transport layer protocol. Also in this scenario, the netmask is correctly detected
and enforced. The output of this configuration is shown below.

#!/bin/sh

cmd="polycubectl␣pcn-iptables␣chain"

✩{cmd} INPUT rule del

✩{cmd} FORWARD rule del

✩{cmd} OUTPUT rule del

✩{cmd} INPUT set default=ACCEPT

✩{cmd} FORWARD set default=ACCEPT

✩{cmd} OUTPUT set default=ACCEPT

✩{cmd} FORWARD insert id=0 src=192.168.56.0/24

dst=192.168.57.4/32 l4proto=tcp action=DROP

✩{cmd} FORWARD append src=192.168.56.0/24 dst=192.168.57.4/32

l4proto=udp action=DROP

Listing 7.13. Output of UC3 bpf-iptables

An example of firewall configuration using Open vSwitch for this particular use
case defines at the beginning the previously deployed policy deletion, then sets two
rules having the corresponding nw proto equals to 6 for the tcp connection related
rule and 17 for udp one. Moreover in the end there is a rule that sets the default
action according to the model and the netmasks are correctly enforced.
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#!/bin/sh

sudo ovs-ofctl del-flows b0

sudo ovs-ofctl add-flow b0 dl_type=0x800,

nw_src=192.168.56.0/24,nw_dst=192.168.57.4/32,

nw_proto=6,action=drop

sudo ovs-ofctl add-flow b0 dl_type=0x800,

nw_src=192.168.56.0/24,nw_dst=192.168.57.4/32,

nw_proto=17,action=drop

sudo ovs-ofctl add-flow b0 priority=0,dl_type=0x800,action=NORMAL

Listing 7.14. Output of UC3 open vSwitch

The last configuration presented for this use case is the one related to the physi-
cal firewall. It presents the settings of the device like the operative mode, a custom
service category, and a custom schedule that will be triggered forever. Then there
is the configuration of the addresses for source and destination that is correctly
translated from the abstract configuration. There is also a service that is created
having both tcp and udp without duplication of the rule. In the end, there is the
composition of the policy using the groups previously defined. The same structure
is defined for the policy created for default action since the behavior of this firewall
is to block all the incoming connections.

config system settings

set opmode transparent

end

config firewall service category

edit "custom_verefoo"

set comment "new category for verefoo services"

next

end

config firewall schedule recurring

edit "always_custom"

set day sunday monday tuesday wednesday thursday

friday saturday

next

end

config firewall address

edit "src_1"

set uuid 3989710a-74fe-4ca1-8d2a-39c5d20f5b5c

set subnet 192.168.56.0 255.255.255.0

next

end

config firewall address

edit "dst_1"

set uuid 5bf2f662-b4e6-40c2-9a8a-6ad42b601a71

set subnet 192.168.57.4 255.255.255.255

next

end
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config firewall service custom

edit "custom_service_1"

set category "custom_verefoo"

set comment "sample service"

set tcp-portrange 0-65535:0-65535

set udp-portrange 0-65535:0-65535

next

end

config firewall policy

edit 1

set uuid 52da1cec-79a7-4de6-83e9-de6ff28f9897

set srcintf "lan"

set dstintf "lan"

set srcaddr "src_1"

set dstaddr "dst_1"

set action deny

set schedule "always_custom"

set service "custom_service_1"

next

end

config firewall address

edit "src_2"

set uuid aeeccbcb-2388-4f29-9931-6c2706cdac52

next

end

config firewall address

edit "dst_2"

set uuid 0c68c105-e24d-4e74-9750-3575a2d0cbe8

next

end

config firewall service custom

edit "custom_service_2"

set category "custom_verefoo"

set comment "default action service"

set tcp-portrange 0-65535:0-65535

set udp-portrange 0-65535:0-65535

next

end

config firewall policy

edit 2

set uuid 13925faf-d92c-4bb3-8cdb-0335b24cc21c

set srcintf "lan"

set dstintf "lan"

set srcaddr "src_2"

set dstaddr "dst_2"

set action accept
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set schedule "always_custom"

set service "custom_service_2"

next

end

Listing 7.15. Output of UC3 fortinet

7.4 Use Case 4

This section describes the implementation of a firewall in whitelisting mode with a
blocking rule that blocks only the tcp transport layer traffic on port 8080. More-
over, it is implemented the directional flag is used for applying the policy in both
dimensions.

The first configuration related to this use case is the Iptables one. It is possible
to notice that after the previous policies deletion and the setting of the default
action for all the chains, two rules are added instead of one, one to enforce the pol-
icy using tcp protocol having the source port set and another enforcing the same
protocol but having the destination port set. Moreover, the source and destination
addresses are also exchanged as shown in the following output.

#!/bin/sh

cmd="sudo␣iptables"

✩{cmd} -F

✩{cmd} -P INPUT ACCEPT

✩{cmd} -P FORWARD ACCEPT

✩{cmd} -P OUTPUT ACCEPT

✩{cmd} -A FORWARD -p tcp -s 192.168.56.3/32 -d 192.168.57.4/32

--dport 8080 -j DROP

✩{cmd} -A FORWARD -p tcp -s 192.168.57.4/32 -d 192.168.57.4/32

--sport 8080 -j DROP

Listing 7.16. Output of UC4 iptables

The configuration based on Ipfirewall for this use case presents a previous policy
deletion rule, included the previously default action that is mandatory to perform
for packets that do not match any rules. Then two rules are enforcing the same
protocol, the transport layer in this case, but with all the fields related to the source
and destination exchanged, like the address and the transport layer port. In the
end, there is a rule that will be defined by the default action allowing all the other
packets to pass.

#!/bin/sh

cmd="/sbin/ipfw␣-q"

✩{cmd} -f flush

✩{cmd} delete set 31
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✩{cmd} add 1 set 1 deny tcp from 192.168.56.3/32 0-65535 to

192.168.57.4/32 8080-8080

✩{cmd} add 1 set 1 deny tcp from 192.168.57.4/32 8080-8080 to

192.168.56.3/32 0-65535

✩{cmd} add 65534 set 31 allow ip from any to any

Listing 7.17. Output of UC4 ipfirewall

For the bpf-iptables scenario, in this use case, the module generates a configura-
tion file that deletes all the previous rule chain by chain and sets the default action
to ACCEPT in order to allow all the incoming packets. Then two rules are added,
one for each direction having addresses and ports exchanged. Even if it is only one
policy divided into two rules the first is inserted in the chain and the other is ap-
pended because one already exists. The output of this configuration is shown below.

#!/bin/sh

cmd="polycubectl␣pcn-iptables␣chain"

✩{cmd} INPUT rule del

✩{cmd} FORWARD rule del

✩{cmd} OUTPUT rule del

✩{cmd} INPUT set default=ACCEPT

✩{cmd} FORWARD set default=ACCEPT

✩{cmd} OUTPUT set default=ACCEPT

✩{cmd} FORWARD insert id=0 src=192.168.56.3/32

dst=192.168.57.4/32 l4proto=tcp dport=8080 action=DROP

✩{cmd} FORWARD append src=192.168.57.4/32 dst=192.168.56.3/32

l4proto=tcp sport=8080 action=DROP

Listing 7.18. Output of UC4 bpf-iptables

An example of firewall configuration using Open vSwitch for this particular use
case defines the previously deployed policy deletion, then sets two rules that have
the same network protocol, but with opposed addresses and ports. It is possible
to notice that the ports are correctly translated because the hexadecimal value of
0x1f90 is the integer number 8080.

#!/bin/sh

sudo ovs-ofctl del-flows b0

sudo ovs-ofctl add-flow b0 dl_type=0x800,

nw_src=192.168.57.4/32,nw_dst=192.168.56.3/32,

nw_proto=6,tp_src=0x1f90,action=drop

sudo ovs-ofctl add-flow b0 dl_type=0x800,

nw_src=192.168.56.3/32,nw_dst=192.168.57.4/32,

nw_proto=6,tp_dst=0x1f90,action=drop

sudo ovs-ofctl add-flow b0 priority=0,dl_type=0x800,action=NORMAL

Listing 7.19. Output of UC4 open vSwitch

The last configuration presented for this use case is the one related to the phys-
ical firewall. In this scenario, it is first set the device operative mode, the custom
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service category, and the custom schedule that will be triggered forever. Then
there is the configuration of the addresses for source and destination. There are
two services created having exchanged ports but the same transport layer protocol.
In the end, there is the composition of the two policies using the groups previously
defined and reusing the two addresses created but used in the opposite fields. After
the two policies, there is the last one created for default action since the normal
behavior of this firewall is to block all the incoming connections.

config system settings

set opmode transparent

end

config firewall service category

edit "custom_verefoo"

set comment "new category for verefoo services"

next

end

config firewall schedule recurring

edit "always_custom"

set day sunday monday tuesday wednesday thursday

friday saturday

next

end

config firewall address

edit "src_1"

set uuid 7a6127c6-6421-480a-8599-06edb3fe4b1b

set subnet 192.168.56.3 255.255.255.255

next

end

config firewall address

edit "dst_1"

set uuid b500a731-0c57-4610-a596-027cdcf9eb04

set subnet 192.168.57.4 255.255.255.255

next

end

config firewall service custom

edit "custom_service_1"

set category "custom_verefoo"

set comment "sample service"

set tcp-portrange 8080-8080:0-65535

next

end

config firewall policy

edit 1

set uuid 6d2528c9-ac17-4553-b930-c78a1609eb22

set srcintf "lan"

set dstintf "lan"
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set srcaddr "src_1"

set dstaddr "dst_1"

set action deny

set schedule "always_custom"

set service "custom_service_1"

next

end

config firewall service custom

edit "custom_service_2"

set category "custom_verefoo"

set comment "sample service"

set tcp-portrange 0-65535:8080-8080

config firewall policy

edit 2

set uuid 7c0876c2-4c8f-4961-a31d-c0105372a599

set srcintf "lan"

set dstintf "lan"

set srcaddr "dst_1"

set dstaddr "src_1"

set action deny

set schedule "always_custom"

set service "custom_service_2"

next

end

config firewall address

edit "src_3"

set uuid b056ac01-5ca3-4dfe-aac8-ac41a770cb75

next

end

config firewall address

edit "dst_3"

set uuid 8c2371b4-096c-4973-83da-b104edfc61e4

next

end

config firewall service custom

edit "custom_service_3"

set category "custom_verefoo"

set comment "default action service"

set tcp-portrange 0-65535:0-65535

set udp-portrange 0-65535:0-65535

next

end

config firewall policy

edit 3

set uuid 54035cec-f6ac-4ea6-a3ed-f1809b921ee6

set srcintf "lan"

set dstintf "lan"
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set srcaddr "src_3"

set dstaddr "dst_3"

set action accept

set schedule "always_custom"

set service "custom_service_3"

next

end

Listing 7.20. Output of UC4 fortinet

7.5 Use Case 5

This last section describes the implementation of a firewall in whitelisting mode with
a blocking rule that blocks only the tcp transport layer traffic on ports between 45
to 56. Then there is an allowing policy having the same parameters except from
the destination port that is only 50. Moreover, it is implemented the priority field
that is used to apply the allowing policy before blocking one if one packet arrives.

The first configuration related to this complex use case is the Iptables one. It
is possible to notice that after the previous policies deletion and the setting of the
default action for all the chains, one rule is added, the one that allows connection
on port 50 using tcp traffic. Then is added the blocking rule over tcp on the range
between 45 to 56. This translation is the opposite as configured in the abstract
model, but it follows the policy increasing number for the deployment.

#!/bin/sh

cmd="sudo␣iptables"

✩{cmd} -F

✩{cmd} -P INPUT ACCEPT

✩{cmd} -P FORWARD ACCEPT

✩{cmd} -P OUTPUT ACCEPT

✩{cmd} -A FORWARD -p tcp -s 192.168.56.3/32 -d 192.168.57.4/32

--dport 50 -j ACCEPT

✩{cmd} -A FORWARD -p tcp -s 192.168.56.3/32 -d 192.168.57.4/32

--dport 45:56 -j DROP

Listing 7.21. Output of UC5 iptables

The configuration based on Ipfirewall for this use case presents a previous policy
deletion rule, included the previously default action that is mandatory to perform
to be sure to clean properly the environment. Then two rules are enforcing the
same protocol, the transport layer, the same source and destination addresses,
192.168.56.3 and 192.168.57.4 respectively, but different action and destination
port. The first rule blocks the traffic over ports 45-56 with a rulenumber equals to
the priority, while the second allows it over port 50 and is characterized by a minor
rulenumber. Even if they are added like showed in the model, the policy will be
enforced based on the rulenumber. In the end, there is a rule that will be defined
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by the default action allowing all the other packets to pass.

#!/bin/sh

cmd="/sbin/ipfw␣-q"

✩{cmd} -f flush

✩{cmd} delete set 31

✩{cmd} add 10 set 1 deny tcp from 192.168.56.3/32 0-65535 to

192.168.57.4/32 45-56

✩{cmd} add 5 set 1 allow tcp from 192.168.56.3/32 0-65535 to

192.168.57.4/32 50-50

✩{cmd} add 65534 set 31 allow ip from any to any

Listing 7.22. Output of UC5 ipfirewall

For the bpf-iptables scenario, in this use case, the module generates a config-
uration file that deletes all the previous rule chain by chain and sets the default
action to ACCEPT in order to allow all the incoming packets. Then a rule is added
based on allowing policy with higher priority, then are added several blocking rules
generated by the blocking policy of the model, because this firewall doe not exploit
port range as an argument. The output of this configuration is shown below to
better understand how the algorithm for ranged port works.

#!/bin/sh

cmd="polycubectl␣pcn-iptables␣chain"

✩{cmd} INPUT rule del

✩{cmd} FORWARD rule del

✩{cmd} OUTPUT rule del

✩{cmd} INPUT set default=ACCEPT

✩{cmd} FORWARD set default=ACCEPT

✩{cmd} OUTPUT set default=ACCEPT

✩{cmd} FORWARD insert id=0 src=192.168.56.3/32

dst=192.168.57.4/32 l4proto=tcp dport=50 action=ACCEPT

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=45 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=46 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=47 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=48 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=49 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=50 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=51 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=52 action=DROP
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✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=53 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=54 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=55 action=DROP

✩{cmd} FORWARD append src=192.168.56.3/32 dst=192.168.57.4/32

l4proto=tcp dport=56 action=DROP

Listing 7.23. Output of UC5 bpf-iptables

An example of firewall configuration using Open vSwitch for this particular use
case defines the previously deployed policy deletion, then sets multiple rules that
having the same action, the same priority but different ports, since the device is
only capable to understand the values in hexadecimal notation and the conversion
generates multiple rules instead of the only one presented in the abstract configu-
ration. Then is added the allowing policy over port 50 with higher priority and in
the end, the policy encapsulates the default action.

#!/bin/sh

sudo ovs-ofctl del-flows b0

sudo ovs-ofctl add-flow b0 priority=65525,dl_type=0x800,

nw_src=192.168.56.3/32,nw_dst=192.168.57.4/32,

nw_proto=6,tp_dst=0x2e/0xfffe,action=drop

sudo ovs-ofctl add-flow b0 priority=65525,dl_type=0x800

,nw_src=192.168.56.3/32,nw_dst=192.168.57.4/32,

nw_proto=6,tp_dst=0x30/0xfff8,action=drop

sudo ovs-ofctl add-flow b0 priority=65525,dl_type=0x800,

nw_src=192.168.56.3/32,nw_dst=192.168.57.4/32,

nw_proto=6,tp_dst=0x38,action=drop

sudo ovs-ofctl add-flow b0 priority=65525,dl_type=0x800,

nw_src=192.168.56.3/32,nw_dst=192.168.57.4/32,

nw_proto=6,tp_dst=0x2d,action=drop

sudo ovs-ofctl add-flow b0 priority=65530,dl_type=0x800,

nw_src=192.168.56.3/32,nw_dst=192.168.57.4/32,

nw_proto=6,tp_dst=0x32,action=NORMAL

sudo ovs-ofctl add-flow b0 priority=0,dl_type=0x800,action=NORMAL

Listing 7.24. Output of UC5 open vSwitch

The last configuration presented for this use case is the one related to the phys-
ical firewall. In this scenario, it is first set the device operative mode, the custom
service category, and the custom schedule that will be triggered forever. Then there
is the configuration of the addresses for source and destination and the service for
each policy of the model but implemented using the priority field. Since the exe-
cution it is based on the order of insertion, it is created firstly the rule having an
allowing action and then the other one where the action is denied. After the two
policies, there is the last one created for default action since the normal behavior
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of this firewall is to block all the incoming connections.

config system settings

set opmode transparent

end

config firewall service category

edit "custom_verefoo"

set comment "new category for verefoo services"

next

end

config firewall schedule recurring

edit "always_custom"

set day sunday monday tuesday wednesday thursday

friday saturday

next

end

config firewall address

edit "src_1"

set uuid 5d4f700a-1f25-4245-be0c-940270f8400c

set subnet 192.168.56.3 255.255.255.255

next

end

config firewall address

edit "dst_1"

set uuid 55031bd8-8d96-4a3f-ad9a-f65fc8b3c1b7

set subnet 192.168.57.4 255.255.255.255

next

end

config firewall service custom

edit "custom_service_1"

set category "custom_verefoo"

set comment "sample service"

set tcp-portrange 50-50:0-65535

next

end

config firewall policy

edit 1

set uuid 65f4772a-53b4-47f0-a43f-20756100547c

set srcintf "lan"

set dstintf "lan"

set srcaddr "src_1"

set dstaddr "dst_1"

set action accept

set schedule "always_custom"

set service "custom_service_1"

next
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end

config firewall address

edit "src_2"

set uuid 69e96499-aa99-4de4-a2ac-041387ba5f61

set subnet 192.168.56.3 255.255.255.255

next

end

config firewall address

edit "dst_2"

set uuid fd471c25-5907-45ff-b81b-c48596cdbc50

set subnet 192.168.57.4 255.255.255.255

next

end

config firewall service custom

edit "custom_service_2"

set category "custom_verefoo"

set comment "sample service"

set tcp-portrange 45-56:0-65535

next

end

config firewall policy

edit 2

set uuid 6a75a64b-8ec1-424d-993f-671b06a98f4d

set srcintf "lan"

set dstintf "lan"

set srcaddr "src_2"

set dstaddr "dst_2"

set action deny

set schedule "always_custom"

set service "custom_service_2"

next

end

config firewall address

edit "src_3"

set uuid 634dd48c-c832-47b5-852c-c3d5c8e48e27

next

end

config firewall address

edit "dst_3"

set uuid 329c624d-eccc-4164-ab48-23937aed708d

next

end

config firewall service custom

edit "custom_service_3"

set category "custom_verefoo"

set comment "default action service"

set tcp-portrange 0-65535:0-65535

59



Validation

set udp-portrange 0-65535:0-65535

next

end

config firewall policy

edit 3

set uuid 2ba02398-c3d6-4858-829e-e5504ba6c446

set srcintf "lan"

set dstintf "lan"

set srcaddr "src_3"

set dstaddr "dst_3"

set action accept

set schedule "always_custom"

set service "custom_service_3"

next

end

Listing 7.25. Output of UC5 fortinet
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Chapter 8

Conclusions

8.1 Achieved Objectives

This research is intended to perform an analysis of the current firewall available
in the market and integrate them in the automation context of Network func-
tion Virtualization and Software Defined Networking. These two concepts are new
paradigms that are having a lot of resonance in this years. In particular, exploit-
ing the policy-language configuration this research was able to develop a service
capable of performing the last step of policy translation and it can dynamically
change the translated language according to the environment where the node will
be deployed.

This result is achieved thanks to preliminary work done studying in literature
different data models that in the end, it is an extension of the model proposed
as Medium Security Policy Language inside VEREFOO. Besides, several types of
research were performed on the technology to exploit in this work that in the end
is a packet filter capable of use eBPF, another one is an open-source so compliant
to the main concepts of Software Defined Networking and another one capable of
performing a filtering action over Open Flow protocol.

Moreover were performed several tests in normal network scenarios obtaining
very good results for most of the firewall developed during this research. In par-
ticular, the best results were achieved with Iptables, Ipfirewall, and bpf-iptables,
while the worst performance was achieved with the one based on Open vSwitch.

However, during this research, there were several limitations. The first one was
to apply the same abstract language to all the devices and overcome the differences
in terms of configuration management. Another was the efficiency of the firewall
chosen to develop and related tests. Especially the choice of Open vSwitch as a
firewall does not achieve the same performance as the other configuration mostly
because the use of packet filter for this architecture is not the role thought by its
developers.
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8.2 Future works

As for future development related to this research, it is possible to choose different
directions. One of them is to implement other modules for firewall exploiting other
technologies or discover new firewalls that achieve better performance than the one
used in this work, especially for Open Flow protocol-based firewall. Another one is
to develop a machine learning mechanism capable of choosing the firewall suitable
for the condition of the Network Function to deploy, taking into consideration the
environment where it should be deployed and the computational resources needed
by the machine.
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Appendix A

REST API

A.1 Design

In this section it is provided the REST APIs implementation in order to fully use
this module with others in Software Defined Networking Environment. Now are
presented all the resources that are possible to obtain through a request. The
following methods can be summarized in the figure A.1:

❼ /fwd/nodes/addnfv

□ POST
This method accepts a Network Function Virtualization element and
creates a set of nodes, the one compatible with a firewall node. If success
the reply is the set of the current nodes available for the deployment with
status code 200, otherwise a 400 status code will be emitted if some
problem occurs.

❼ /fwd/nodes/addgraph

□ POST
This method accepts a Graph element and creates a set of nodes that
have the capability to be deployed as firewalls. If success the reply is the
set of the current nodes available for the deployment with status code
200, otherwise a 400 status code will be emitted if some problem occurs.

❼ /fwd/nodes

□ POST
This method accepts a node element that will be inserted in the list of
available nodes. If success the reply is the id of the current node created
having status code 200. If a node with the same id already exists a status
code 409 will be emitted, otherwise, a 400 status code will be emitted if
another problem related to the server occurs.

□ GET
This method accepts two integers as a request parameter and displays
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all the nodes between them with a status code 200. If the parameters are
wrong, a 400 status code is emitted, while if there are no nodes between
that parameters, a 404 status code is emitted.

□ DELETE
This method deletes all the nodes inside the application emitting the
status code 204 if the deletion occurs without problems. If the list of
nodes is empty, a 404 status code is emitted.

❼ /fwd/nodes/{nid}

□ PUT
This method accepts a node element and a nid and replaces the existing
node with the new one sent. If it succeeds, the reply has status code
204, otherwise, a 404 status code will be emitted.

□ GET
This method accepts a nid as a request parameter and retrieves the
node with that particular identification number. The reply shows the
node with status code set equals 200, otherwise a 404 status code will
be emitted if the resource is not found.

□ DELETE
This method accept a nid as request parameter and delete the node
with that particular identification number. The reply is the status code
equals to 204 if the operation is performed correctly, otherwise a 404
status code will be emitted.

❼ /fwd/nodes/{nid}/configuration

□ POST
This method accepts a nid as a request parameter and a firewall element
and creates the firewall configuration for that node that is a set of poli-
cies. The reply is the list of policies of that node having a status code
set to 201, while a 409 status code will be emitted if there is a conflict
inside the resource or a generic 400 otherwise.

□ PUT
This method accept a nid as request parameter and change the con-
figuration of that node. The reply has status code setted to 204 if the
content is changed correctly, otherwise a 404 status code will be emitted.

❼ /fwd/nodes/{nid}/configuration/firewall

□ POST
This method accept a nid as request parameter and a element element
and creates a policy for that node. The reply is the policy id for that
node having status code setted to 201, while a 409 status code will be
emitted if there is a conflict inside the resource or a generic 400 otherwise.

❼ /fwd/nodes/{nid}/configuration/firewall/{eid}
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□ PUT
This method accepts an element element and retrieves nid and eid from
the request parameter and replaces the existing policy of a node with the
new one sent. If it succeeds, the reply has status code 204, otherwise, a
404 status code will be emitted if the resource is not found or 409 if the
node does not exist.

□ GET
This method accept a nid and eid as request parameter and retrieve
the policy with that particular identification node. The reply shows
the policy with status code set equals 200, otherwise, a 404 status code
will be emitted if the resource is not found or 409 if there is a problem
retrieving the node.

□ DELETE
This method accept a nid and eid as request parameter and delete the
policy with that particular node. The reply is the status code equals to
204 if the operation is performed correctly, otherwise a 404 status code
will be emitted.

❼ /fwd/deploy/getIptables/{nid}

□ GET
This method accept a nid as request parameter and translate the policies
contained in that node for an Iptables firewall configuration. The reply
is the configuration file ready for the download with status code setted
equals to 200, otherwise a 404 status code will be emitted if the resource
it is not found.

❼ /fwd/deploy/getIpfw/{nid}

□ GET
This method accept a nid as request parameter and translate the policies
contained in that node for an Ipfirewall firewall configuration. The reply
is the configuration file ready for the download with status code setted
equals to 200, otherwise a 404 status code will be emitted if the resource
it is not found.

❼ /fwd/deploy/getBpfFirewall/{nid}

□ GET
This method accept a nid as request parameter and translate the policies
contained in that node for a bpf-iptables firewall configuration. The reply
is the configuration file ready for the download with status code setted
equals to 200, otherwise a 404 status code will be emitted if the resource
it is not found.

❼ /fwd/deploy/getOpenVswitch/{nid}

□ GET
This method accept a nid as request parameter and translate the policies
contained in that node for an Open vSwitch firewall configuration. The

69



REST API

reply is the configuration file ready for the download with status code
setted equals to 200, otherwise a 404 status code will be emitted if the
resource it is not found.

❼ /fwd/deploy/getFortinet/{nid}

□ GET
This method accept a nid as request parameter and translate the policies
contained in that node for a Fortinet firewall configuration. The reply
is the configuration file ready for the download with status code setted
equals to 200, otherwise a 404 status code will be emitted if the resource
it is not found.
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Figure A.1. Resource design
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Appendix B

Test Replication

In this appendix will be explained all the techniques used to set up the environment
for replicate the tests. They were performed on a machine having:

❼ Ubuntu 20.04.1 LTS as 64-bit operating system.

❼ Hard disk of 1T.

❼ Intel Core i7-4700MQ as processor.

❼ RAM installed equal to 11 GB.

❼ VirtualBox version 6.1.19 installed.

Figure B.1. Configuration used for test validation

Moreover the five use cases can be found inside the XML file useCaseFirewallDe-
ployment.xml inside the folder testfile/Others/ [37].
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B.1 Iptables Scenario

In order to replicate this scenario it is needed to create three virtual machines:

❼ Machine A having Ubuntu 18.04.5 LTS, 1024 MB of RAM, and 10 GB of the
virtual hard disk.

❼ Machine F having Ubuntu 18.04.5 LTS, 1024 MB of RAM, and 10 GB of the
virtual hard disk.

❼ Machine B having Ubuntu 18.04.5 LTS, 1024 MB of RAM, and 10 GB of the
virtual hard disk.

Now it is time to set up the network accessing to network management of Virtual-
Box and creating two subnets and editing them as follows:

Table B.1. Subnet set-up iptables scenario

Name AddressIPv4 Netmask IPv4 Enable DHCP

vboxnet0 192.168.56.1 255.255.255.0 yes
vboxnet1 192.168.57.1 255.255.255.0 yes

Before assigning the subnet it is better to have Machine F in bridge mode and
insert on terminal:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install net-tools

sudo sysctl net.ipv4.ip_forward=1

Listing B.1. Set-up Machine F iptables scenario

Now the machine should be shut down and before restarting it, Machine A and B
should be set. It is possible to turn on both machines and install net-tools if it is
not installed yet. After this operation, they have to be configured in the VirtualBox
network panel.

❼ In Machine A will be enabled the first adapter with connection type “ only
hosts” selecting the subnet vboxnet0.

❼ In Machine B will be enabled the first adapter with connection type “ only
hosts” selecting the subnet vboxnet1.

Both machines should be restarted and check if the IP address is correctly config-
ured using the command ifconfig on the terminal.

❼ Machine F network is configured on Virtualbox enabling two network adapter
and setting both on “only hosts”. The first adapter should be linked to
vboxnet0, while the second should be linked to vboxnet1.
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It is possible to restart also this machine and set up one configuration file produced
by the module developed during this thesis. After checking the IP address given
by the DHCP server using the command ifconfig on the terminal, it is possible to
set up Machine A:

sudo ip route add 192.168.57.0/24 via 192.168.56.X dev enp0s3

#substitute X with the value set by DHCP on machine F

Listing B.2. Enable Machine A routing to Machine B iptables scenario

And machine B:

sudo ip route add 192.168.56.0/24 via 192.168.57.X dev enp0s3

#substitute X with the value set by DHCP on machine F

Listing B.3. Enable Machine B routing to Machine A iptables scenario

After running of the module developed during this thesis having as input file the
one defined at the beginning of this appendix and IPTABLES as enum parameter,
there are several files in the main directory of the project. Each file having the
prefix iptablesFirewall followed by the use case number plus .sh can be deployed
on this machine F enforcing the related rules.

Then it is possible to check if the rule deployed are correctly enforced using
ping command or sudo nc -l [portNumber ] on server side and nc [serverIpAddress ]
[portNumber ] on client side for transport layer simulation.

B.2 IpFirewall Scenario

In order to replicate this scenario it is needed to create three virtual machines:

❼ Machine A having Ubuntu 18.04.5 LTS, 1024 MB of RAM, and 10 GB of the
virtual hard disk.

❼ Machine F having FreeBSD 12.1, 1024 MB of RAM, and 16 GB of the virtual
hard disk.

❼ Machine B having Ubuntu 18.04.5 LTS, 1024 MB of RAM, and 10 GB of the
virtual hard disk.

After running of the module developed during this thesis having as input file the one
defined at the beginning of this appendix and IPFIREWALL as enum parameter,
there are several files in the main directory of the project. Each file having the
prefix rc followed by the use case number plus .rules can be deployed on this
machine F enforcing the related rules.

Now it is time to set up the network accessing to network management of Vir-
tualBox and creating two subnets and editing them as follows:
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Table B.2. Subnet set-up IpFirewall scenario

Name AddressIPv4 Netmask IPv4 Enable DHCP

vboxnet0 192.168.56.1 255.255.255.0 yes
vboxnet1 192.168.57.1 255.255.255.0 yes

Now it is possible to set-up the environment of the F machine typing the fol-
lowing commands in the Command Line Interface:

sysrc firewall_enable=’’YES’’

sysrc firewall_script=’’/etc/rc_1.rules’’ #or the firewall rule

name according to the use case

service ipfw start

Listing B.4. Set-up Machine F IpFirewall scenario

In order to enable packet forwarding, it is possible to edit the default file /etc/rc.conf
changing gateway enable = ”NO” into gateway enable = ”Y ES” using a text
editor.

Now the machine should be shut down and before restarting it, Machine A and
B should be set. It is possible to turn on both machines and install net-tools if it is
not installed yet. After this operation, they have to be configured in the VirtualBox
network panel.

❼ In Machine A will be enabled the first adapter with connection type “ only
hosts” selecting the subnet vboxnet0.

❼ In Machine B will be enabled the first adapter with connection type “ only
hosts” selecting the subnet vboxnet1.

Both machines A and B should be restarted and check if the ip address is correctly
configured using the command ifconfig on the terminal.

❼ Machine F network is configured on Virtualbox enabling two network adapter
and setting both on “only hosts”. The first adapter should be linked to
vboxnet0, while the second should be linked to vboxnet1.

It is possible to restart also this machine and set up one configuration file
produced by the module developed during this thesis. After checking the IP address
given by the DHCP server using the command ifconfig on the terminal, it is possible
to set up Machine A:

sudo ip route add 192.168.57.0/24 via 192.168.56.X dev enp0s3

#substitute X with the value set by DHCP on machine F

Listing B.5. Enable Machine A routing to Machine B IpFirewall scenario

And machine B:
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sudo ip route add 192.168.56.0/24 via 192.168.57.X dev enp0s3

#substitute X with the value set by DHCP on machine F

Listing B.6. Enable Machine B routing to Machine A IpFirewall scenario

Then it is possible to check if the rule deployed are correctly enforced using ping
command or sudo nc -l [portNumber ] on server side and nc [serverIpAddress ] [port-
Number ] on client side for transport layer simulation.

B.3 BPF-Iptables Scenario

In order to replicate this scenario it is needed to create three virtual machines:

❼ Machine A having Ubuntu 18.04.5 LTS, 1024 MB of RAM, and 10 GB of the
virtual hard disk.

❼ Machine F having Ubuntu 18.04.5 LTS, 4096 MB of RAM, and 94 GB of the
virtual hard disk.

❼ Machine B having Ubuntu 18.04.5 LTS, 1024 MB of RAM, and 10 GB of the
virtual hard disk.

Now it is time to set up the network accessing to network management of Virtual-
Box and creating two subnets and editing them as follows:

Table B.3. Subnet set-up bpf-iptables scenario

Name AddressIPv4 Netmask IPv4 Enable DHCP

vboxnet0 192.168.56.1 255.255.255.0 yes
vboxnet1 192.168.57.1 255.255.255.0 yes

Before the assignment of the subnet it is better to set-up Machine F in bare
metal configuration inserting on the terminal the following commands:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install git

copy polycube

cd polycube/

sudo ./SCRIPTS/install.sh pcn-iptables

sudo polycubed --daemon

sudo pcn-iptables-init

sudo script

sudo apt-get install net-tools

sudo sysctl net.ipv4.ip_forward=1

Listing B.7. Set-up Machine F bpf-iptables scenario
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Now the machine should be shut down and before restarting it, Machine A and B
should be set. It is possible to turn on both machines and install net-tools if it is
not installed yet. After this operation, they have to be configured in the VirtualBox
network panel.

❼ In Machine A will be enabled the first adapter with connection type “ only
hosts” selecting the subnet vboxnet0.

❼ In Machine B will be enabled the first adapter with connection type “ only
hosts” selecting the subnet vboxnet1.

Both machines should be restarted and check if the IP address is correctly config-
ured using the command ifconfig on the terminal.

❼ Machine F network is configured on Virtualbox enabling two network adapter
and setting both on “only hosts”. The first adapter should be linked to
vboxnet0, while the second should be linked to vboxnet1.

It is possible to restart also this machine and set up one configuration file
produced by the module developed during this thesis. After checking the IP address
given by the DHCP server using the command ifconfig on the terminal, it is possible
to set up Machine A:

sudo ip route add 192.168.57.0/24 via 192.168.56.X dev enp0s3

#substitute X with the value set by DHCP on machine F

Listing B.8. Enable Machine A routing to Machine B bpf-iptables scenario

And machine B:

sudo ip route add 192.168.56.0/24 via 192.168.57.X dev enp0s3

#substitute X with the value set by DHCP on machine F

Listing B.9. Enable Machine B routing to Machine A bpf-iptables scenario

After running of the module developed during this thesis having as input file
the one defined at the beginning of this appendix and EBPF as enum parameter,
there are several files in the main directory of the project. Each file having the
prefix bpfFirewall followed by the use case number plus .sh can be deployed on
this machine F enforcing the related rules.

Then it is possible to check if the rule deployed are correctly enforced using
ping command or sudo nc -l [portNumber ] on server side and nc [serverIpAddress ]
[portNumber ] on client side for transport layer simulation.

B.4 Open vSwitch Scenario

In order to replicate this scenario it is needed to create just one virtual machine
with the following specifications:
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❼ Machine F having Ubuntu 18.04.5 LTS, 4096 MB of RAM, and 40 GB of the
virtual hard disk.

Then are needed two namespaces in order to test the firewall configuration of this
scenario. In particular, are defined the namespace left and right in order to put
machine F in the “middle”. The first commands to insert in the terminal of machine
F are:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install net-tools

sudo ip netns add left

sudo ip link add vethl0 type veth peer name vethl1 netns left

sudo ip netns add right

sudo ip link add vethr0 type veth peer name vethr1 netns right

sudo apt install openvswitch-switch

Listing B.10. Set-up F machine for Open vSwitch scenario

Now that the main points of the environment are set, it is possible to define the
first namespace using the following commands:

sudo ip netns exec left sudo ip addr add 192.168.56.3/24 dev

vethl1

sudo ip netns exec left sudo ip link set dev vethl1 up

sudo ip netns exec left sudo ip route add 192.168.57.0/24 dev

vethl1

Listing B.11. Set-up left namespace

In order to achieve the configuration of the second namespace, the commands to
use are:

sudo ip netns exec right sudo ip addr add 192.168.57.3/24 dev

vethr1

sudo ip netns exec right sudo ip link set dev vethr1 up

sudo ip netns exec right sudo ip route add 192.168.56.0/24 dev

vethl1

Listing B.12. Set-up right namespace

The last thing to do is to create the open vSwitch bridge that will be used as a
point to deploy the different flows outlined by the configuration file. It can be done
using the following commands:

sudo ovs-vsctl add-br b0

sudo ovs-vsctl add-port b0 vethl0

sudo ovs-vsctl add-port b0 vethr0

sudo ip link set vethr0 up

sudo ip link set vethl0 up

Listing B.13. Set-up Open vSwitch after namespace creation
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Another step to do is to enable the left namespace loopback interface and the right
namespace loopback interface using the following piece of code:

sudo ip netns exec left sudo ip link set lo up

Listing B.14. Last settings in left namespace

sudo ip netns exec right sudo ip link set lo up

Listing B.15. Last settings in right namespace

The environment is finally set and it is possible to install one of the configuration
files produced by the module developed during this thesis for this scenario having as
input file the one defined at the beginning of this appendix and OPENVSWITCH
as enum parameter. Several files in the main directory of the project will be created
having the prefix ovsFirewall followed by the use case number plus .sh that can
be deployed on this machine enforcing the related flows.
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