
POLITECNICO DI TORINO

SEDE DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea Magistrale

End-to-end training of Logic
Tensor Networks for object

detection

Relatori
prof. Fabrizio Lamberti
prof. Lia Morra

Studente
Filomeno Davide Miro
matricola: 256870

April 2021

Abstract

Neural-symbolic computing aims at integrating two fundamental paradigms in
artificial intelligence: machine learning (that is, the ability to learn from exam-
ples) and symbolic knowledge representation and reasoning (that is, the ability
to reason from what has been learned). The objective of this thesis is the de-
velopment of a novel neural-symbolic architecture for object detection in natural
images. Specifically, this architecture is based on a neuro-symbolic model called
Logic Tensor Networks (LTNs). The base concept behind LTNs is the grounding
of a first order logic (FOL) that allows to represent symbolic knowledge as opera-
tions between tensors in a neural network; LTNs can be trained through stochastic
gradient descent to maximize the satisfiability of the FOL. Not only are LTNs able
to understand logical relationships between two or more objects inside the image,
they also allow to encode prior knowledge that can improve the performance in the
presence of scarce or noisy datasets. LTNs have been applied before to computer
vision tasks. Usually, the image is processed by a pre-trained Convolutional Neural
Network (CNN) or object detector to extract semantic high-level features, which
are then passed to the LTN for further refinement. To the best of our knowledge,
none of the existing works addresses the issues of how to jointly train the LTN and
the CNN. This thesis seeks to address this gap by designing and implementing a
neuro-symbolic object detector which combines a two-stage object detector (Faster
R-CNN) with the LTN. This involved a radical change in the classification process.
The multi-class classifier head is substituted by a set of binary predicates, grounded
in an LTN module, each predicting the presence of a specific class. This results
in a high data imbalance as each training batch contains at most a few positive
examples. To overcome this drawback a new function is introduced for the aggre-
gation of logical terms, denoted Focal Log Sum, which is inspired by the Focal loss.
Faster-LTN achieves a mAP of 0.72 and 0.71 on the PASCAL VOC and Pascal Part
datasets, which is competitive with the results achieved by Faster R-CNN. Exten-
sive experiments were conducted to establish the impact of different aggregation
functions, training strategies, and losses. Finally, experiments are conducted to
highlight how to integrate Faster-LTN with prior knowledge, in the form of logical
predicates, and the impact on object recognition accuracy.

Acknowledgements

A mio padre e mia madre che mi hanno sempre sostenuto in questi anni, in ogni
modo possibile.

A mia sorella Nicoletta che è e sarà sempre la mia più fedele consigliera.
Ai miei nonni paterni Filomeno, di cui porto fieramente il nome, e Nicoletta che

mi proteggono ogni giorno da lassù.
Ai miei nonni materni Giuseppe e Leonarda che mi hanno sempre incoraggiato.
A tutta la mia famiglia.
A tutti i miei amici, con cui ho condiviso ansie e preoccupazioni ma anche gioia

e soddisfazioni.

2

Contents

List of Tables 5

List of Figures 6

1 Introduction 7

2 State of the Art 11
2.1 Introduction . 11
2.2 Symbolic AI vs Connectionist AI 11
2.3 Neurosymbolic AI . 12

2.3.1 Neurosymbolic architectures 14
2.3.2 Neural Logic Network . 16

2.4 Fuzzy Logic . 17
2.4.1 Fuzzy Negation . 17
2.4.2 Triangular Norms . 18
2.4.3 Triangular Conorms . 19
2.4.4 Aggregation operators . 20

2.5 Logic Tensor Network . 21
2.6 Neuro symbolic AI and Computer Vision 23

2.6.1 Object detection and image classification 23
2.6.2 Visual Relationship Detection 23
2.6.3 Visual Question Answering 24

3 Logic Tensor Networks implementation 27
3.1 Introduction . 27
3.2 Original LTNs implementation . 27
3.3 Keras implementation of LTNs . 29
3.4 Experiments . 30

4 Faster-LTN 35
4.1 Introduction . 35
4.2 Faster R-CNN . 36

3

4.2.1 Other object detection works 38
4.3 Integration of LTN in Faster RCNN 41
4.4 Experiments . 45

4.4.1 Introduction . 45
4.4.2 PASCAL VOC . 45
4.4.3 Pascal Parts . 46
4.4.4 Experiments on PASCAL VOC 47
4.4.5 Experiments on PASCAL-Part dataset 51

5 Logical constraints for the Faster-LTN 59
5.1 Introduction . 59
5.2 Logic constrains for classification 59
5.3 PartOF predicate . 61

5.3.1 Mereological constraints . 61
5.4 Experiments . 63

6 Conclusion 67

4

List of Tables

2.1 List of main triangular norms. 18
2.2 List of main triangular conorms. 19
2.3 List of main aggregation operators. 20
3.1 The parameters used for the training of the two models. 30
4.1 Comparison of Focal Loss with gamma = 2 and Cross-Entropy loss. 44
4.2 The PASCAL VOC objects and all their labelled parts. 46
4.3 The parameters that have been set to train the models on the PAS-

CAL VOC dataset. 48
4.4 Results obtained on PASCAL VOC dataset. 49
4.5 The parameters that have been set to train the models on the PASCAL-

Part dataset. 53
4.6 Results obtained on PASCAL-Part dataset. 54
5.1 The parameters that have been set to train the models on the PASCAL-

Part dataset. 63
5.2 Results obtained on PASCAL-Part dataset. 65

5

List of Figures

3.1 The architecture of LTNs. 29
3.2 The loss of official implementation of LTNs. 31
3.3 The loss of Keras implementation of LTNs. 31
3.4 The Precision-Recall curve of official version of LTNs. 32
3.5 The Precision-Recall curve of implemented version of LTNs. 33
4.1 The architecture of Faster R-CNN. 36
4.2 The architecture of Faster R-CNN. Picture taken from the original

paper of Faster RCNN [34]. 40
4.3 The architecture of Faster - LTN module. 41
4.4 The architecture of Faster-LTN module at inference time. 44
4.5 The Precision-Recall curves of the 5 trained model configurations. . 50
4.6 Prediction of Faster-RCNN, PASCAL VOC dataset. 51
4.7 Predictions of Faster-LTN with bg, PASCAL VOC dataset. 52
4.8 The Precision-Recall curves of the 2 trained model configurations. . 55
4.9 Predictions of Faster-RCNN, PASCAL-Part dataset. 56
4.10 Predictions of Faster-LTN, PASCAL-Part dataset. 57
5.1 The Precision-Recall curves model configurations. 64
5.2 Predictions of Faster-LTN with knowledge. 66

6

Chapter 1

Introduction

Artificial Intelligence has accomplished extraordinary progress in the last few years.
In addititions to being object of interest for Reseach and Industry, with thousands
of papers published and millions of dollars invested each years, it has also become
a topic of conversation for ordinary people,fascinated but at the same time worried
about its developments. Deep Learning [19] is the sub-field of AI that more than
other has contributed to the success of the entire sector. Deep Learning applications
in the fields of computer vision, natural language processing, machine translation,
speech recognition and image understanding have revolutionized the state of the
art, allowing to obtain results impossible to achieve with the traditional methods
of computer science. However this powerful tool is characterized by some disad-
vantages that limit the possibilities of use. Deep neural networks, in order to learn
the necessary knowledge for their tasks, they need to observe a lot of labelled data.
In many cases, especially when dealing with a specific domain problem, getting
enough annotated data is problematic. Furthermore the training process of a deep
learning model takes a lot of time and computational resources. Another limitation
of deep neural networks is given by their complexity, which makes it impossible for
a human being to understand their decision process. This aspect limits the appli-
cations based on Deep Learning in fields , like Medicine, where it is essential to
have a transparent decision process in predictions.

Symbolic AI One possible solution to many of these problems comes from Sym-
bolic AI, an approach to Artificial Intelligence that has been popular in decades
past. If in the Deep Learning (and in general in Machine Learning) the model is able
to retrieve knowledge that it needs from data, in Symbolic AI knowledge is entered
by the programmer into the model in the form of logical statements. The training
process does not requires large computational resources, long execution times and
the use of large amounts of data, but it needs human effort. The decision process of
Symbolic AI models is understandable by humans because it consists on reasoning
over available knowledge expressed in high-level concepts.

7

Introduction

Integrate Symbolic AI in Deep Neural Networks The idea is to intergate
in a deep neural model elements get inspired by Symbolic AI in order to have the
advandages of the two paradigms. This new field of research is called Neurosym-
bolic AI. The importance of this new kind of approaches is confirmed by some of
the main AI researchers. In [11] some speeches held in scientific conferences are
mentioned. The AAAI-2020 fireside conversation with Economics Nobel Laureate
Daniel Kahneman, including the 2018 Turing Award winners and DL pioneers Ge-
offrey Hinton, Yoshua Bengio and Yann LeCun ,and the 2019 Montreal AI Debate
between Yoshua Bengio and Gary Marcus, have pointed to new perspectives and
concerns on the future of AI. It has been argued eloquently that if the aim is to
build an AI that is semantically sound, explainable and trustworthy,it needs to
include a sound reasoning layer in combination with deep learning.

This work wants to make a contribution to neurosymbolic integration in the
field of computer vision. More precisely, we want to introduce a new model for
object detection resulting from the interaction of Faster RCNN [34] with a neural-
symbolic paradigm called Logic Tensor Networks (LTNs) [38]. This new model is
called Faster-LTN. The object detection task has the purpose of identifying the
instances of a class of objects in an image. It is a very important task because it
is the basis of other specific tasks such as object segmentation, image annotations,
face detection and recognition, video segmentation. Furthermore, there are many
practical applications based on object detection, for example those related to self-
driving cars,robotics and manufacturing industry [39].

LTNs provide a complete grounding for a First Order Logic language. First-order
logic statements are therefore mapped onto differentiable real-valued constraints
using a many-valued logic interpretation in the interval [0,1].In the literature there
are several applications of LTNs. The results of this work start from the LTNs
applications in object detection presented in [8].

Experiments and results Experiments were conducted with PASCAL VOC [9]
and PASCAL-Part datasets. Faster-LTN has demostated to be competitive with
Faster R-CNN. The new model is able to achieve better performance than the Faster
RCNN, especially using external symbolic knowledge as a constraint of training.
Experiments with PASCAL Parts dataset has been demostrated that performances
go from a mean Average Precision(mAP) score of 0.71 for Faster R-CNN to a
mAP of 0.73 for Faster-LTN with embedded symbolic knowledge. After this brief
introduction of the work we are going to introduce the content of the chapters into
which the thesis has been divided.

Chapter 2 provides an overview of the main works related to Neurosymbolic
AI. It is more focused on explaining the main concepts and introducing the main
applications in the Computer Vision task related to Neurosymbolic AI. Chaper 3
explains the implementation details of the LTNs. It also introduces a new im-
plementation of LTNs using the keras library. Chapter 4 presents the integration

8

Introduction

Faster RCNN-LTN and finally Chapter 5 introduces all the experiments in which
are implemented logical constrains in the Faster RCNN-LTNs model.

9

10

Chapter 2

State of the Art

2.1 Introduction
This chapter illustrates some of the main works concerning neurosymbolic AI by
introducing some theoretical aspects which recur in subsequent chapters.

In Section 2.2 we explain what Symbolic AI and Connectionist AI are, what are
their strengths and weaknesses and why the former has given way to the latter as
the main research paradigm in the field of artificial intelligence.In Section 2.3 is
explained the neurosymbolic paradigm.

Starting from some works in the literature, the main concepts related to neu-
rosymbolic AI are illustrated.

In Subsection 2.3.1 some common architectural patterns in neurosymbolic mod-
els are visually represented. An example of how Boolean logic can be implemented
in a neural network, a fundamental aspect for neurosymbolic AI, is presented in
Subsection 2.3.2. In Subsection 2.4 some concepts of fuzzy logic are defined which
are fundamental for subsequent developments.

In Section 2.5 the LTN is presented, a neurosymbolic model which is the starting
point for this thesis work.

Finally, Section 2.6 defines the state of the art of neurosymbolic models applied
to the various tasks of computer vision.

2.2 Symbolic AI vs Connectionist AI
Symbolic artificial intelligence also known as Good, Old-Fashioned AI was the pre-
dominant approach for artificial intelligence until 1980s.

This paradigm is based on the interpretation and manipulation of symbols that
are high-level representations of objects or entities. These representations can be
manipulated by computers. The combination of symbols that express interrelation

11

State of the Art

is called reasoning. An example of system that implements symbolic AI is expert
system that is a network of rules coded as if-Then statement.

The main advantages of this paradigm is the transparency of the decision-making
process of the model and the fact that it does not need huge amount of data to
acquire knowledge.

This kind of approach has been left in favor of data driven approaches like
deep learning because they performs better in complex task like computer vision
and natural language processing in which is difficult or impossible to encode the
necessary knowledge in a system based on symbols and rules to treat them.

The successful aspects of the so called connectionist AI are that it is able to
learn rules given the data and learn a features representation of the raw input data
suitable for the given task.

Despite the huge success of deep learning and connectionist AI at the expense of
Symbolic AI these approaches have some issues related to the huge amount of data
and computation resources that they need to learn rules and the interpretability of
models for humans.

2.3 Neurosymbolic AI
Neurosymbolic computing is a recent field in artificial intelligence that study ap-
proaches that combine logic reasoning with neural network.

It is important to understand how researchers have thought to combine these
two paradigms.

The work [6] provide a good explaination of key concepts regarding neuro sym-
bolic systems.

Grounding In some works logic knowledge is embedded in a neural system and a
way to do that is by a grounding. A grounding is a step in which logic knowledge
is encoded in a tensor space in order to have a representation manageable by neural
networks.A straightforward example of grounding is in [8]. In this case grounding
is learned from examples by training a neural network in order to optimize the
truth-values of the formulas in the background knowledge .

Fuzzy Logic The determinism that characterize logic may seem irreconcilable
with the randomness of neural networks. A possible solution of this issue is fuzzy
logic, a new kind of logic in which truth values can be in the continuous intervall
between 0 and 1. This logic defines its logical operation AND,OR and NOT.

In [8] fuzzy logic is used by grounding to translate boolean predicates. Another
way to conciliate boolean logic with neural network is given by neural logic network
[37] which represent a first simple way of combining neural networks with Boolean
logic.

12

2.3 – Neurosymbolic AI

Another interesting NeSy model is [29]. This system, instead of integrating
reasoning capabilities into a neural network, integrates some neural componets in
the probabilistic programming language ProLog [5]. This probabilistic language
coinsist of a set of ground probabilistic facts F ,each associated with a probability
p and a set of rules. The probabilities of each fact are independendent from each
others. Given a query q it is possible to compute the probability P (q) by considering
the given facts and rules.The neural networks are intregrated as neural annotated
disjunction (nAD). An annotated disjuntion is an expression of the form : p1 ::
h1; ...; pn :: hn : −b1, ...bm where pi are probabilities and hi and bi are atoms.
Whenever all bi hold, hj will be true with probability pj. A nAD take the form:
nn(mq, t, u) :: q(t, u1); ...; q(t, un) : b1, ..., bm , where bi are the atoms, t is the input of
the neural network and ui...un are the possible outputs of the neural network.The
deepProbLog program , given a set of pairs (p, q) Q ,will be able to output the
desired success probability p for the query q.

Another similar work is [41] propose an architecture that integrate neural net-
works with an answer set program given by a symbolic reasoning engine like CLINGO.

Subsymbols We have seen how a predicate of symbols can be represent by a ten-
sor by using a groungding, but how represent symbols itself as real value tensors? In
[8] symbols are substitute by sub-symbols that in this case are vectors of features
extracted by an object detector.As explained in the cited paper,“reasoning about
equality corresponds closely to reasoning about similarity in embedding space.” Log-
ical predicates explain relationships between symbols and the whole form knowl-
edge.

Training end to end neuro-symbolic elements A challenge of neurosymbolic
AI is to train the neuro elements of the model end to end with symbolic ones and
the recent work [4] provides an interesting example of how a neural network can be
linked to a model called Knowledge Enhancer that inject knowledge into models for
multi-label classification. Starting from the predictions y this module modifies the
classifier predictions in order to increase the satisfaction of a set of clauses K.The
semantic of clauses is given by using the concept of t-conorm.

The objective of KE is to maximize the t-conorm of each clause.This model
proposes the concept of t-conorm boost function that is a fuction δ : [0,1]n → [0,1]n
that proposes the changes to be applied on the inputs to increase the value of t
- conorm applied on them : ⊥ (t + δ(t)) ≥⊥ (t). Another interesting feature of
this model is that each clause is weighted by a parameter wc that is learned by the
model.

13

State of the Art

2.3.1 Neurosymbolic architectures
After this brief explanation of some of the main concepts of neuro-symbolic artificial
intelligence,it is important to understand how this idea was actually implemented
in working models. The work [40] offers an overview of the main architectural
templates of neural networks combined with symbolic elements.

Learning with symbolic input and output In this pattern a neural network
accepts as input a symbolic structure and output another symbolic structure.

SymNeuroSym

Learning on data with symbolic output In the template below a neural
network accepts as input some data (images,vectors of numers) and has a symbolic
output.

Data Neuro Sym

Ontology learning Starting from data (e.g text)this kind of module are able to
extract ontology useful for subequent reasoning.

Data Neuro Sym Sym module Sym

Perceptual abstraction It uses data to extract symbols useful for the training
of the final neural network.

Data Neuro Sym Neuro Data

Explaination The system output retrospective symbolic explanations for predic-
tions.

Data Neuro Data Neuro Sym

Abstraction The first neural stage refines the input data with the help of a
symbolic ontology and the abstracted data are then feed to a classifier.

Data Neuro Sym Neuro Data

Sym

14

2.3 – Neurosymbolic AI

Learning with symbolic information as a prior The knowledge encoded in
symbols is used as a prior for neural network learning. An example of this kind of
neuro-symbolic integration is [8] that uses symbolic knowledge as a constraint in
training the neural network.

Also the architecture of Faster-LTN can be traced back to this kind of integra-
tion. Neural component is given by Faster-RCNN and Symbolic module is given
by the part of the network inspired by LTNs.

Sym Sym module Sym

Data Neuro Data

Meta-reasoning over learning systems In this pattern the symbolic module
is used to control the behaviour of a learning agent. It should be able to set
hyperparamiters of the neural module.

Sym module

NeuroData Output

Merged systems Learning system in which symbolic and neural parts are closey
interconnected.An exaple is [36]

Data Neuro-Sym Data

In the next paragraphs are proposed insights about two models mentioned above:
Logic Tensor Networks and Neural Logic Network.

15

State of the Art

2.3.2 Neural Logic Network
The idea of [37] is to approximate the behavior of an elementary logical operator
like AND,OR and NOT with a simple feed forward neural network that is fitted to
approximate logic operations . Input variables (True or False) are learned vector
representation and logical predicates are rendered combining boolean variables with
vector representations and operators with trained modules. The output of the
last module is compared to the T vector using a similarity module that produce
a probability score about how close to the true is the result.The AND and OR
networks are feed forward neural network with one hidden layer:

AND(wi, wj) = Ha2f (Ha1f (wi|wj) + ba) (2.1)

where Ha1f ∈ Rd×2d,Ha2f ∈ Rd×d,ba ∈ Rd. but obviously with only one vector
as input. The similarity module is based on cosine similarity between two vectors
wi and wj :

Sim(wi, wj) = σ

A
α

wi, wj
ëwiëëwjë

B
(2.2)

The resulting loss function:

L = Lc + λl
Ø
i

ri + λl
Ø
w∈W

ëw2ëF (2.3)

in which the first term Lc is a cross-entropy loss function,the λl
q
i ri is sum of

all logic regularizer, predefined terms added to the loss to ensure that solutions
that respect the logical properties of the operators are selected in the training. The
last term is a regularizer to avoid overfitting. The training data are some boolean
variable vi randomly generated and combined in logical preidicates.

16

2.4 – Fuzzy Logic

2.4 Fuzzy Logic
In this section some concepts related to fuzzy logics are explained, such as t-norms,
t-conorms and aggregation functions, which are frequently used in neurosymbolic
models such as LTNs. Further details can be found in [16].

2.4.1 Fuzzy Negation
A Fuzzy Negation is a function N : [0,1] → [0,1] so that N (0) = 1 and N(1) =
0.It is the function used to compute the negation of a truth value. N is strict if it
is strictly decreasing and continuous, and strong if for all a ∈ [0,1] , N(N(a)) = a.
The strict and strong classic negation is:

Nc (a) = 1 − a (2.4)

17

State of the Art

2.4.2 Triangular Norms
A t − norm (Triangular Norm) is a function T : [0,1]2 → [0,1] that is commutative
and associative. Other properties that it has are:

1. Monotonicity.∀a ∈ [0,1] , T (a, .) is increasing.

2. Neutrality.∀a ∈ [0,1] , T (1, a) = a.

It defines the semantics of the conjunction or AND in Boolean logic. In 2.1 are
illustated the main t-norms.

Table 2.1. List of main triangular norms.

Name T-Norm
Godel TG (a, b) = min(a, b)
Product TP = ab

Lukasiewicz TLK (a, b) = max(a+ b− 1,0)

Drastic product TD (a, b) =
min(a, b) , if a == 1 or b == 1
0, otherwise

Nilpotent minimum TnM (a, b) =
 0 if a + b ≤ 1

min(a, b) otherwise

Yager TY (a, b) = max
3

1 − ((1 − a)p + (1 − b)p)
1
p ,0

4
, p ≥ 1

18

2.4 – Fuzzy Logic

2.4.3 Triangular Conorms
A t − conorm (Triangular Conorm) is a function S : [0,1]2 → [0,1] that is commu-
tative and associative. Other properties that it has are:

1. Monotonicity. ∀a ∈ [0,1] , S (a, .) is increasing.

2. Neutrality. ∀a ∈ [0,1] , S (0, a) = a.

It defines the semantics of the disjunction or OR in Boolean logic. T- conorms
are obtained from t-norms by appling the De Morgan’s laws :

p ∨ q = ¬ (¬p ∧ ¬q) (2.5)

Given T a t-norm and NC the classical negation,T ’s NC-dual S is obtained using:

S (a, b) = 1 − T (1 − a,1 − b) (2.6)

In 2.2 are illustated the main t-conorms.

Table 2.2. List of main triangular conorms.

Name T-Conorm
Godel SG (a, b) = max(a, b)
Product SP = a+ b− ab

Lukasiewicz SLK (a, b) = min(a+ b,1)

Drastic sum SD (a, b) =
max(a, b) , if a == 0 or b == 0
0, otherwise

Nilpotent minimum SnM (a, b) =
 1 if a + b ≥ 1

max(a, b) otherwise

Yager SY (a, b) = min
1
(ap + bp)

1
p ,1

2
, p ≥ 1

19

State of the Art

2.4.4 Aggregation operators
An aggregation operator is a function A : [0,1]n → [0,1] that is symmetric and
increasing with respect to each argument, and for which A (0, ...,0) = 0,A (1, ...,1) =
1. The aggregator is used to compute quantifiers like ∀ and ∃. Table 2.3 illustrates
the list of main aggregation functions used in past works.

Table 2.3. List of main aggregation operators.

Name Aggregation operator
Minimum Am (x1, ..., xn) = min (x1, ..., xn)
Product AP (x1, ..., xn) = rn

i=1 xi
Maximum AM (x1, ..., xn) = max (x1, ..., xn)

Mean Amean (x1, ..., xn) =
1

1
n

qn
i=1 x

p
i

2 1
p 1

01 For p = 1,2, −1 we have Aritmetic,Geometric and Harmonic means

20

2.5 – Logic Tensor Network

2.5 Logic Tensor Network
LTNs [8] propose a grounding of a First Order logic Language. Given a first-order
logic language L,its signature is composed of three sets: a set C of constants,a set
F of function and a set P of predicates. This model define a n-grounding , n ∈ N,
G for a FOL L.It is a function defined on the signature of L satisfying the following
conditions:

1.G (c) ∈ Rn for every constant symbol c ∈ C (2.7)
2.G (f) ∈ Rn·α(f) → Rn for every function f ∈ F (2.8)
3.G (P) ∈ Rn·α(P) → [0,1] for every predicate p ∈ P (2.9)

The semantics of closed terms and atomic formulas is defined as follow:

G (f (t1, ..., tm)) = G (f) (G (t1) , ...,G (tm)) (2.10)
G (P (t1, ...tm)) = G (P) (G (t1) , ...,G (tm)) (2.11)

The semantic for connectivities is defined according to any fuzzy logic definition
(Lukasiewicz, product or Godel). The groundings of main logical operators, using
Lukasiewicz logic are:

G (¬φ) = 1 − G (φ) (2.12)
G (φ ∨ ψ) = min(1,G (φ) + G (ψ)) (2.13)
G (φ ∧ ψ) = max(0,G (φ) + G (ψ) − 1) (2.14)
G (φ → ψ) = min(1,1 − G (φ) + G (ψ)) (2.15)
G (∀xφ(x)) = lim

T→term(L)
meanp(G(φ(x))|t ∈ T) (2.16)

Combining the explained rules, the model is able to represent numerically a
symbolic predicate like ∀Dog(x) → ∃y((partOf(x, y) ∨ Tail(y))). Considering K, the
set of all logical clauses cl ∈ K that define the knowledge base, the learning strategy
is to find a grounding G∗ such as to maximize the truth values of the clauses cl.
Learnable groundings for both functions and predicates are defined.

The grounding of a m-ary function symbol is:

G (f) (v) = Mfv +Nf (2.17)

where v =
e
vT1 , ...,vTm

fT
is the mn-ary vector containing each vi. Mf ∈ Rn×mn

and Nf ∈ Rn are tensors of parameters that must be fitted.

21

State of the Art

The grounding of a predicate takes the form of:

G (P) (v) = σ
1
uT

P tanh
1
vTW

[1:k]
P v + VPv + bp

22
(2.18)

where σ is the sigmoid function, W [1 : k] ∈ Rk×mn×mn, Vp ∈ Rk×mn ,up ∈ Rk

and bp ∈ R are learnable tensors of parameters.
After defining the groundings of each element of L’s signature, we define the

learning problem posed by the LTNs.
A partial grounding Ĝ is a grounding that is defined on a subset of the signature

of L.
A grouded theory GT is a pair

e
K, Ĝ

f
with a set of closed formulas K and a

partial grounding Ĝ.
A grounding G is a completion of Ĝ if G is a grounding for L and coincides with

Ĝ on the symbols where Ĝ is defined.
A grounding G satisfies a GT

e
K, Ĝ

f
if G completes Ĝ and G (φ) = 1 ∀ φ ∈ K.

When a GT is not satisfiable, we are interested in the best possible satisfaction
that we can reach with a grounding. This is defined as the best satisfiability
problem: given a GT

e
K, Ĝ

f
we want to find a G∗ that maximize the truth-value

of all clauses cl ∈ K:

G∗ = argmaxĜ⊆G∈GG

 Þ
cl∈K

cl

 (2.19)

A GT is defined given the labelled data and the knowledge available and, given
them, we want to learn G∗ in order to maximize the satisfability of GT.

For example in [8] is defined a GT for Semantic Image Interpretation (SII). Con-
sidering the signature of σSII = éC,F ,Pê, C = ∪p∈Picsb (p) is the set of all bouding
boxes in all the images, F = ∅ and P = {P1,P2} where P1 = {Dog,Cat,Person,...}
is the set of all unary predicates for classification and P2 = {partOf} is the set of
all binary predicates,in this case only partOf.

Training set for LTNs can be defined as T =
e
K, Ĝ

f
. K contains a set of literals

Ci (b) or ¬Ci (b) for every bounding box labelled or not labelled with class Ci and
partOf (b, bÍ) or ¬partOf (b, bÍ) for every pair éb, bÍê for which the prdicate partOf
is true or false. This is common in machine learning where classifiers (i.e. the
grounding of predicates) are inductively learned from positive examples (such as
Cat(b, b)) and negative examples (¬Cat(b, b)).

The novelty is given by the fact that we can define logical formulas capable
of encoding external knowledge in addition to that provided by class labels. For
example, we can define more complex formulas like ∀Dog(x) → ∃y((partOf(x, y) ∨
Tail(y))) if we want to establish that "if y is part of x and x is a Dog then y is a
Tail ". Loss function must be minimized in order to maximize the truth value of
GT given G.

22

2.6 – Neuro symbolic AI and Computer Vision

2.6 Neuro symbolic AI and Computer Vision
The impressive ability of neural networks to find patterns in data by extracting
suitable features from data alone has made them attractive in computer vision,
especially with the invention of convolutional neural networks. CNNs propose so-
lutions to the problems of image classification, object detection and segmentation
that overcome traditional approaches. Moreover, in these tasks it can be useful
to exploit knowledge and symbolic reasoning to have more accurate predictions,
less computational effort, and in cases where there is a lack of labeled data. This
paragraph is an overview of main computer vision works that get inspired by this
idea.

2.6.1 Object detection and image classification
The paper [22] proposes a layer, to be inserted in a CNN architecture that uses
symbolic knowledge encoded in a graph, to influence feature extraction. This layer
learns a representation that combines low-level knowledge extracted by the previous
convolution with high-level knowledge coming from nodes and edges of a symbolic
graph. This representation is added to the input feature map and output tensor is
forwarded to a next convolutional layer.

The work [30] it is another work that takes advantage of symbolic knowledge
encoded in a graph. This model, given the detections of a Faster R-CNN, selects
some nodes of the symbolic graph. A function, to be learned for each node evaluates
its importance for the final classification. At each step the nodes close to the
previous ones are evaluated.

It is possible to use LTNs [8] to improve the performance of the classification
of an object detector.Class membership is a unary predicate of a FOL and, as
explained before, LTNs define a grounding for a predicate of a FOL.

2.6.2 Visual Relationship Detection
The task of visual relationship detection aims to find into the image attributes
(<subject, attribute >) and relationship between objects (<subject, predicate, ob-
ject >). For example if an image depicts a man riding a white horse,a VRD system
should be able to detect <horse, white >and <man, ride, horse >. The datasets
that are most used in this task are [17] and [27].

The work [27] it’s one of the most important works about this task. It gives
an idea of how relationships between concepts can be exploited for VRD.Beside a
visual appearance module that extract visual features from images, a language mod-
ule projects annotated relationships in an embedding space in which semantically
similar relationships are optimized to be close together. For example, it can be ex-
ploited the fact that the relationship <man,on,horse >is similar to <man,ride,horse

23

State of the Art

>. This paper also illustrates some challenges for VRD problem. The fact that
make visual reasoning tasks so challenging is the lack of examples compared to
huge amount of possible relationships:for n entities the number of possible predi-
cates between them tend to n×n. It might be useful to support data-driven learning
through the use of symbolic knowledge expressed through logical predicates.

This idea is encouraged by the fact that large knowledge bases are available,
such as WordNet [10],FrameNet [2] and ConceptNet [25].

In [43] starting from the bounding boxes of the objects in the image,extracted
using an object detector like [35],using a first bidirectional-LSTM each bounding
box is labelled taking care of the other objects in the image. This reflects the idea
of [18]. Next a second bidirectional-LSTM predicts edges between objects.

The [21] instead exploits deep reinforcement learning to extract attributes and
predicates from images. These models exploit the idea of representing the semantic
content of an image as a graph and to train them in a supervised way are avail-
able some datasets like [17] and [27] in which images are annotated with graph
representation,also called scene graph.

Also the Logic Tensor Networks [8] can be used in a VRD context. The work [7]
applies LTNs on VRD dataset [27]. A relationship is a binary predicate that accepts
two bounding boxes as input and return a score between 0 and 1 that measure how
probable

2.6.3 Visual Question Answering
The task of visual question answering (VQA), starting from an image and a ques-
tion,the system can output an answer in a natural language.

An example of how symbolic reasoning will be exploited for this task is [15]. This
work is interesting because it introduces a concepts vocabulary, a set of semantic
embedding concepts that describes objects,attributes and relations.This set of em-
beddings is used both in scene graph building and in the extraction of reasoning
instructions from question expressed in natural language.

In [28] the interesting point is that starting from an image and a related ques-
tion ,a fact detection module is able to generate a set of relative relations of the
form 〈subject, predicate, object〉 and the semantic attention module selects relevant
relations for the answere.

In [20] is proposed a visual question answering module in which external knowl-
edge, coming from ConceptNet [25], is represented like a graph in which each node
is an entity (person,horse,ecc) and each edge represents a predicate (ride,play,ecc).
Using a learned module this system is able to query some informations from this
big knowledge base.

In [42] we have a model composed of three main modules. A scene parser
receives as input an image and give as output a structural scene representation.
This structural scene representation collects some informations about the objects

24

2.6 – Neuro symbolic AI and Computer Vision

detected in the image, for example shape, color and spatial information.A question
parser, given a question in natural language,outputs a program that is executed by
a program executor.

25

26

Chapter 3

Logic Tensor Networks
implementation

3.1 Introduction
In this chapter, we are illustated all the implementative details about Logic Ten-
sor Networks and presents a new Keras implementation of LTNs. The reference
code,written by using Tensorflow library, is that relating to [8]. Section 3.2 provide
an analysis of the main sections of the code that implements what was theoretically
illustrated in 2.5. Before moving on to the Faster-LTN, it was decided to propose
a Keras implementation of the LTNs. Section 3.3 explains all details about it. The
two implementations are trained and tested and all the results are shown in Section
3.4.

3.2 Original LTNs implementation
The authors of [8] have made available the code and a dataset of bounding boxes
previously extracted by Fast R-CNN [12] (executed over PASCAL-Part 2007 [9]
dataset). Each data sample is a vector of real numbers containing the 4 coordinates
that localize the object in the image and a probability score for each considered
class.

Input The class Domain define the input for LTNs predicates. For each class
are defined a batch of positive examples and a batch of negative examples.The
number of samples is the same for all batches and is an hyperparameter of the
model (batch size). In the work [8] the partOF predicate is also presented. This
is a binary predicate, it accepts two bounding boxes as input and returns the
probability that a bounding box is part of another.In this case each input example

27

Logic Tensor Networks implementation

is the concatenations of two single bounding boxes plus two joint features: the
containment ratios between two bbxes. Given Area(b) the area of a bounding box
b , the containment ratios between two bounding boxes b1 and b2 are :

Area (b1) ∩ Area (b2)
Area (b1)

Area (b1) ∩ Area (b2)
Area (b2)

(3.1)

The sample batches are replaced with other examples after a number of iterations
specified in the frequency batch generation hyperparameter.

Predicate The class Predicate implements Equation 2.18. Each predicate
takes the batch of positive examples and the batch of negative examples as input and
evaluates the probability score for each example. In the code has been implemented
a Predicate object for each class that we want to predict plus a predicate for the
partOF.

Literal The Literal class does the negation of predictions on negative exam-
ples. The semantics of logical negation can be rendered through different fuzzy
logics (Łukasiewicz,Product and Goedel).

Clause The class Clause performs a first aggregation of literals. This class
defines logical clause for K as explained in 2.5. If the number of literals passed is
greater than one, in this class it is possible to logically combine them in order to de-
fine logical constraints. Examples of logical constraints state, for instance, that
the part-of relation is asymmetric (∀xy(partOF(x, y) → ¬partOF(y, x))) or that ev-
ery whole object cannot be part of another object (∀xy(Person(x) → ¬partOF(y, x))
). The semantics of logical connectives can be expressed using one of the many def-
initions of fuzzy logic (Lukasiewicz, product or Godel). Given a Literal (or a logical
combination of literals into more complex logical clauses), this class aggregates all
examples by using a specified clause aggregator. The possible choices for this
hyperparameter are minimum,mean, harmonic mean and product. We can define a
clause for each logical formula we want to introduce in the training. All clauses that
we have defined compose the knowledge K that must be satisfied by the grouding
G∗. At the end, for each clause is computed a probability score that is the result
of the aggregation of all scores associated with each example in the batch.

Loss The final loss is computed by aggregating all the clauses. The possi-
ble choices for aggregator are minimun,mean,harmonic mean and weighted mean.
The objective of the training is to maximize the truth of the knowledge encoded in
each istance of the class clause and so minimize the negative value of the aggre-
gation of all clauses. As a regularization term, the square norm of all parameters
to be trained is added to the loss.The contribution of this term to the loss can be
weighted by the smooth factor parameter.

28

3.3 – Keras implementation of LTNs

3.3 Keras implementation of LTNs
The first step is to replace the work [8] in order to integrate them in an object
detection architecture. The starting point are the code and the data made avariable
by the authors of [8]. In

Figure 3.1. The architecture of LTNs.

Figure 3.1 depicts the architecture of Keras LTNs implementation at training
time.

The logic inside the Keras implementation is similar to the original one. The
Keras library is a wrapper for the Tensorflow library. The advantage obtained using
Keras is given by a greater readability of the code obtained by using high-level
functions. Furthermore, this implementation facilitates the final integration work,
since the code used for the Faster RCNN uses Keras. The logic of Predicate,
Literal and Clause is implemented through Keras Layer classes, a class made
available by the library that allows to define the internal logic of a basic building
blocks of neural networks.

29

Logic Tensor Networks implementation

3.4 Experiments
To be sure that Keras implementation obtains comparable results with the original
one, both versions have been trained and tested using the same data provided
by the authors. In Table 3.1 are shown the hyperparameters setted to train the
two models. Different configurations of learning rate and smooth factor have been
tried and in Table 3.1 have been inserted only those that allow to obtain the best
performance.

Table 3.1. The parameters used for the training of the two models.

Hyperparameters LTNs original implementation LTNs Keras implementation
Learning rate 1e-3 1e-3
Optimizer RSMProp RSMProp
Decay 0.9 0.0

Smooth factor (Lambda) 1e-8 1e-4
t-norm Łukasiewicz Łukasiewicz

aggregator harmonic mean harmonic mean
clause aggregator harmonic mean harmonic mean

k 6 6
batch size 250 250

frequency batch generation 100 100

Figure 3.2 and Figure 3.3 show the trend of LTNs armonic mean loss in the
training of the two models.

Figure 3.4 and Figure 3.5 illustrates the Precision-Recall curves of the two mod-
els. These graphs are computed by using the evaluation code provided by the
authors and the test split of data. We can see that the performances reached by
the two models are comparable,(near to the official ones) and this certifies that the
Keras implementation reflects the state of the art of LTNs.

30

3.4 – Experiments

Figure 3.2. The loss of official implementation of LTNs.

Figure 3.3. The loss of Keras implementation of LTNs.

31

Logic Tensor Networks implementation

Figure 3.4. The Precision-Recall curve of official version of LTNs.

32

3.4 – Experiments

Figure 3.5. The Precision-Recall curve of implemented version of LTNs.

33

34

Chapter 4

Faster-LTN

4.1 Introduction
After defining the Keras LTNs implementation, the next step is to integrate the LTN
module inside the pipeline of an object detector to try to improve its predictions.
The dataset used by the authors of [8] collects a set of bounding boxes extracted
by a Fast R-CNN [12]. The LTNs and the object detector are trained and tested
separately.This chapter illustrates the main steps that led to the definition of Faster-
LTN for joint training. Instead of the obsolete Fast RCNN [12], the more recent
Faster RCNN [34] was taken as a starting point. The design of that has required
the solution of many problems:

• Architecture: It is fundamental to understand how to insert the LTN module
in the object detector architecture to maximize the results. At the point of the
network where the LTN will be inserted, it will have to be modified in order
to better accommodate the new layers. In disjoint training, a trained object
detector extracts the features for the LTN. In this case, the two models will
have to be trained together. This adds complexity to the Faster RCNN. The
number of trainable parameters increases from 24,087,976 of Faster RCNN to
25,406,296 of Faster-LTN. Furthermore, in [8] the background class is not im-
plemented, which is fundamental for Faster-LTN because allow to discriminate
input elements that do not belong to any class.

• Batch learning: Vanilla LTNs at training time accepts as input a fixed batch
of data and iterates over it for many iterations. Faster RCNN ,at each iteration,
extracts a batch of positive or negative examples from an input image. For
this reason, the number of objects associated with a class at each iteration
cannot be fixed. The objects predicted in an iteration depend on the current
image that the model receives from input.

In Section 4.2 there is an introduction of the object detection module adopted

35

Faster-LTN

for the following experiments [34] and a brief overwiew of main object detection
modules in literature. Section 4.3 introduces the key characteristics of the proposed
Faster-LTN. Section 4.4 exhibits the datasets used to train and test the FRCNN-
LTN model and the results obtained.

4.2 Faster R-CNN

Figure 4.1. The architecture of Faster R-CNN.

Faster R-CNN has represented the object detection state of Art in the past
years.It was the first deep learning model that was able to achieve this task without
using region proposal extraction algorithms like selective search.The figure 4.2 is
taken from the paper [34] and depicts the architecture of the original Faster RCNN.
Its architecture is composed of a CNN network as a backbone that is trained end
to end with 2 learnable modules : the RPN module and the detector.

Backbone In this work, Faster R-CNN uses a ResNet50 network [14] as back-
bone. ResNet, short for Residual Network, proposes a way to build deeper network
architectures avoiding the vanishing gradient problem.

36

4.2 – Faster R-CNN

It is easy to think that a deeper network allows for better performance. It has
been observed that this is true as long as the net is not too deep. If the network is
too deep, during the back-propagation towards the initial layers, it tends to assume
values close to zero (the chain rule multiplies error gradient values lower than one
and then, when the gradient error comes to the first layers, its value goes to zero).

It is possible to have the opposite problem , the gradient value tends indiscrim-
inately towards high values as it approaches the initial layers. This phenomenon is
called gradient exploding. A ResNet network is composed of many stacked basic
blocks, called residual blocks. A residual block outputs H(x) = F (x) + x,
where x is the input of the block, F (x) is the function fitted by the trainable layers
inside the block.

The input of the block is added to the output, this operation is called skip
connections. 16 residual blocks are stacked in ResNet50 and each residual block
contains 3 different convolutional layers.

Region Proposals Network The feature map extracted by the backbone is the
input of the RPN module. This module is responsible to extract and filter region
proposals.

To generate proposals RPN is slided over the feature map.The network takes
as input a n × n spatial window. Each sliding window is mapped to a lower-
dimensional feature. This feature is fed into two sibling fully- connected layers: a
box-regression layer and a box-classification layer. At each sliding window location,
we simultaneously predict k different region proposals. The k proposals are relative
to k reference boxes called anchors. These anchors are computed by considering
different combination of scale and aspect ratios. For example, if we consider 3
different scales [128,256,512] and 3 different aspect ratios 1 : 1,1 : 2,2 : 1 the
number of possible anchors k is equal to 9. If the feature map has width W and
height H the number of proposals is equal to WHk. They need to be filtered.

The model performs a binary classification over the extracted proposals in order
to distinguish between positive and negative proposals. Positive proposals are those
that reach an Interception over Union overlap with any ground-truth box greater
than a given threshold.Negative proposals are those for which the IoU score is lower
than 0.3 for all ground-truth boxes. Proposals that are not positive and no negative
do not participate to the training. The loss relative to this module is:

L ({pi} , {ti}) = 1
Ncls

Ø
i

Lcls (pi, p∗
i) + λ

1
Nreg

Ø
i

p∗
iLreg (ti, t∗i) (4.1)

The ground-truth label p∗
i is 1 if the anchor is positive, 0 otherwise. pi is the

predicted probability of anchor i is being an object. ti is a vector representing
the parametrized 4 coordinates of the predicted bounding box. t∗i represents the
parametrized 4 coordinates of the ground truth. The classification loss Lcls is log

37

Faster-LTN

loss over two classes (object vs. not object). The regression loss is:

Lreg (ti, t∗i) = R (ti − t∗i) (4.2)

where R is the robust loss function(smooth L1) defined in [12].

Detector module This model accepts as input the coordinates of the extracted
and filtered region proposals plus the feature map from the backbone. The first
problem to solve is to map each proposal to an equal size vector representation.
This is the aim of RoI pooling. RoI pooling for every region of interest from the
input, it takes a section of the input feature map that corresponds to it and divides
that section into a fixed number of regions k. Finally, it applies max pooling to all
obtained regions. In this way each proposal is associated to a feature vector of k
elements. After some fully connected layers the module ends with two sibling output
layers. The first output a discrete probability p = (p0, ..., pK), over Kcategories+
backgroundclass. This probability is computed by using the softmax function over
the output of a fully connected layer. The second sibling layer outputs bounding-
box regression offsets, tk = tkx, t

k
y, t

k
w, t

k
h for each of the K object classes, indexed by

k. The multitask loss takes the form of Equation 4.1. The classification loss is the
log loss for the true class. The regression loss is the robust loss function(smooth
L1).

4.2.1 Other object detection works
Faster RCNN and all the models of the region proposal family (RCNN [13],Fast
RCNN [12] and Faster RCNN [34]) are called two stages detectors. The detection
happens in two stages: First, the model proposes a set of regions of interests by
using selective search or region proposal network. The extracted proposals are
filtered and only the selected proposals are processed by the classifier.

Other models are called one stage detectors. These approaches skip the
region proposal stage and runs detection directly over a dense sampling of possible
locations. One stage detectors are simpler and faster than two stages ones but may
potentially lose in performance.

YOLO (You Only Look Once) [33] applies a CNN to the full input image.Then
divides the image into S ×S regions. For each regions predict bounding boxes and
probability. Improvements of original YOLO are given by YOLOv2 / YOLO9000
[31] , YOLOv3 [32] and YOLOv4 [3].

Single Shot Detector [26] is one of the first works that uses a convolutional
neural network’s pyramidal feature hierarchy for efficient detection of objects of
various sizes. On top of the backbone network, SSD adds some convolutional layers
of decreasing size. Earlier large layers are suitable to detect small size objects,
instead later small layers are more suitable to detect biger objects. The detection
is performed at each pyramid layer.

38

4.2 – Faster R-CNN

An improvement of pyramid concept is introduced by Feature Pyramid Networks
[23]. FPN is a new backbone for object detection. FPN performs a set of convo-
lutional layers for feature extraction. The outputs of the past convolutional layers
are reconstructed by upsampling the last feature map. In this way we have recon-
structed layers that are semantically stronger. In order to predict the locations
better, lateral connections between the reconstructed layers and the corresponding
feature maps are added.

The RetinaNet [24] exploits FPN as backbone. Another improvement is given
by this work is the definition of focal loss function.

39

Faster-LTN

Figure 4.2. The architecture of Faster R-CNN. Picture taken from the original
paper of Faster RCNN [34].

40

4.3 – Integration of LTN in Faster RCNN

4.3 Integration of LTN in Faster RCNN

Figure 4.3. The architecture of Faster - LTN module.

In [8] and [7] LTN receives as input a set of labeled bounding boxes extracted
from images by an object detector like [34]. LTN is used to improve the classification
of the object detector. This aspect was the starting point for the end to end
integration of the two models.

In the specific case of the Faster R-CNN, the LTN training module was inserted
at the top of the detector module of the object detector. As was explained in
Section 4.2 the detector module of Faster RCNN ends with two sibling layers. The
first is for classification and compute the probability scores of each of K+1 classes.
To do that, this layer is used as activation the Softmax function. The second layer
compute for each class a tuple of four parameters used to adjust the prediction of
the bounding box.

The idea is to use as input of LTNs Predicate layers the output of Faster RCNN
classification layer. The softmax activation function is removed to avoid the gra-
dient vanishing problem and so, the FRCNN classification loss is substitute by the
LTNs loss.

Predicate This connects the network of the Faster RCNN with the LTN pred-
icates. For the classification alone, a predicate must be defined for each class to
predict. Predicate layer is implemented following 2.18.

In the original faster RCNN, the softmax function guarantees a strong mutual
exclusion between classes and with the integration the model loses this peculiarity.

41

Faster-LTN

However, in addition to classification Predicates it is also possible to insert binary
or more Predicates, such as the partOF, which increases the capabilities of the
model. Each predicate outputs a score between 0 and 1 for each example in the
batch.

Literal Starting from these probability scores we need to define the literals.In
logic, a literal is an atomic formula or its negation. All false statements are negated.
The semantics of the logic NOT operator is given by the logic of Łukasiewicz:

F¬(x) = 1 − x (4.3)

The implementation adds a set of vectors yj, one for each j-th class, whose
elements are equal to 1 if the i-th example belongs to the j-th class, 0 otherwise.
The formula of literal is:

Literalj(xi) =
xi if yj,i = 1

1 − xi otherwise

(4.4)

Clause and aggregation of literals This class defines all logical clauses that
define the knowledge K that we want to satisfy. Different from [8] K is defined at
each iteration, considering the examples extracted from the current input image.
The logical formulas that can be defined in this class can be related to a single
predicate (and its negation), or to the relationships between predicates logically
expressed using logical connectives.

The semantics of the AND and OR operators is given by the Łukasiewicz t-
norm and t-conorm. This aspect allows the object detector to receive a series of
information on the classes to be identified and on the relationships between them
in the form of logical propositions. It is necessary to aggregate all the probability
scores of all clauses / literals formulated to be able to calculate the final loss,that is
a second level of aggregation over all aggregated scores. Figure 4.3 provides a visual
representation of Faster-LTN. This is the general architecture of the Faster-LTN
integration in the training phase.

Class imbalance problem Given that there are K predicate layes, one for each
class, which, as explained so far, autonomously provide their predictions, we pass
from a multiclass classification through the softmax function, as done by the original
Faster -RCNN, to K binary classifications.

42

4.3 – Integration of LTN in Faster RCNN

This has brought out a problem of unbalancing of the classes. In a batch, on
average only one or a few examples are associated with the same class, the rest are
examples associated with other classes or backgrounds, therefore negative examples.

The harmonic mean as an aggregation function, as done by the official implemen-
tation, because it does not weigh adequately the contribute of positive examples in
estimating the error. If we have many currently classified negative examples and a
few misclassified positive examples, the harmonic mean will give an optimum value.

The work [16] compares the main t-norms, t-conorms and aggregation functions
used in neurosymbolic architectures, highlighting their advantages and disadvan-
tages related above all to their derivability. A particularly interesting aggregation
function is the log-product:

Alog sum =
NØ
i=0

log (xi) (4.5)

where xi is the literal of i-th example in the batch of size N . The partial
derivative of this function is equal to ∂Alog sum

∂xi
= 1

xi
. For very low literals the

derivative is very high and it is nonvanishing almost everywhere. Considering the
literal formula, this aggregation function is nothing more than the cross entropy
loss.

To solve the class imbalance problem, we define a new aggregation function
called focal log sum

Afocal log sum = −
NØ
i=0

(1 − xi)γlog (xi) (4.6)

This function is no more than the focal loss that was presented in [24] applied
to logical aggregation of terms. In RetinaNet [24] for each pyramid layer, more
anchor boxes can be extracted and only a small part of these can be assigned to an
object in the ground truth while the vast majority are background classes.

The usage of this function instead of cross-entropy can allow to mitigate the
class imbalance problem generated by the architecture. It is therefore very useful in
situations where the model is able to identify many true negatives but has difficulty
in recognizing the true positives given their small number. This is just what happens
in LTN predicate training. Table 4.1 a comparison between the focal loss with γ = 2
and the cross entropy loss is proposed. A correctly classified example (pt = 0.9) is
evaluated 2 orders of magnitude less in the focal loss.

The final loss is the sum of all the aggregations of all literals of all clauses.

Loss = −
KØ
j=0

NØ
i=0

(1 − xi,j)γlog (xi,j) (4.7)

where xi,j is the literal of proposal i-th in the class j-th.

43

Faster-LTN

Table 4.1. Comparison of Focal Loss with gamma = 2 and Cross-Entropy loss.

pt FL CE
0.1 -1.865 -2.303
0.9 -0.001 -0.105
0.5 -0.693 -0.173

Inference phase In the inference phase, the definition and aggregation of
literals and the definition of any logical constraints are removed. The classification
vector is given by the concatenation of the scores calculated by each predicate for
each input proposal in the batch. Figure 4.4 shows the FRCNN-LTN integration
at the inference time.

Figure 4.4. The architecture of Faster-LTN module at inference time.

44

4.4 – Experiments

4.4 Experiments

4.4.1 Introduction
In this section are shown the results of some experiments performed using Pascal
VOC and its PASCAL-Part extension as datasets. All experiments try to measure
the performance of Faster RCNN-LTN in classification with respect to the Faster
RCNN.Therefore, only unary classification predicates are considered and no logical
constraints are inserted.

4.4.2 PASCAL VOC
The dataset PASCAL VOC is shown in this section. It has been used in the fol-
lowing experiments. The Pattern Analysis,Statistical modelling and Computational
Learning (PASCAL) is a Network of Excellence funded by the European Union. It
also promotes the use of machine learning in many relevant application domains
such as machine vision, speech, haptics, brain-computer interface, user-modelling
for computer-human interaction, multimodal integration, natural language process-
ing, information retrieval and textual information access. From 2005 to 2012, It
carried out the PASCAL Visual Object Classes project. The objectives of this
project are as reported by the official website:

• Provides standardised image data sets for object class recognition.

• Provides a common set of tools for accessing data sets and annotations.

• Enables evaluation and comparison of different methods.

• Run challenges evaluating performance on object class recognition.

The proposed challenges are inherent to different tasks related to computer vi-
sion. Different versions of the dataset have been published from 2005 to 2012. The
differences are due to the different challenges proposed. For these experiments was
chosen the PASCAL VOC 2010 version. It collects 10103 images containing
23374 annotated objects,divided into 20 classes:

• Person: person.

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor.

The split proposed by the authors of the dataset was used to train and test the
model: 4998 images for training and 5105 for testing.

45

Faster-LTN

4.4.3 Pascal Parts
This dataset is a set of additional annotations for PASCAL VOC 2010. These
new classes are related to the components of the objects tagged by the PASCAL
VOC dataset. Table 4.2 shows for each original class of PASCAL VOC, all its
components are recognized and labeled by the dataset.

Table 4.2. The PASCAL VOC objects and all their labelled parts.

Objects Parts
Aereoplane body, engine, wing, stern, tail, wheel.
Bycycle wheel, handlebar, headlight, saddle.
Bird beak, head, eye, foot, leg, wing, neck, eye, foot, leg, wing, tail, torso.
Boat
Bottle body, cap.
Bus license plate, side, door, license plate, headlight, mirror, wheel, window.
Car license plate, side, door, license plate, headlight, mirror, wheel, window.
Cat head, leg, paw, ear, eye, leg, neck, nose, tail, torso.
Chair
Cow head, leg, ear, eye, horn, muzzle, neck, tail, torso.

Diningtable
Dog head, leg, ear, eye, horn, muzzle, neck, tail, torso.
Horse head, leg, ear, eye, horn, muzzle, neck, tail, torso.

Motorbike wheel, handlebar, headlight, saddle.
Person hair, head, ear, eye, eyebrow, foot, hand, leg, arm, mouth, neck, nose, torso.

Pottedplant plant, pot
Sheep head, leg, ear, eye, horn, muzzle, neck, tail, torso.
Sofa
Train coach, head, headlight.

Tvmonitor screen.

46

4.4 – Experiments

4.4.4 Experiments on PASCAL VOC
First we want to compare the performance obtained from the original Faster R-
CNN with the integrated Faster-RCNN-LTN model. In these first experiments no
logical constraint is implemented. Table 4.3 shows the parameters used for the first
5 experiments.

Weights the classes Starting from the model defined in the previous chapter,
different configurations and combinations of these have been tested. A term α has
been added to the focal focal log sum function, defined in Equation 4.6. Equation
4.6 becomes:

Afocal log sum = −
NØ
i=0

α(1 − xi)γlog (xi) (4.8)

The α parameter is used to weight the contribution of the predictions associated
with each predicate in the calculation of the final loss. It therefore depends on
the number of examples associated with a given predicate in the dataset. Given
p (C) = examples ∈ C

Total examples
we can defines :

%posC = batch size

2 p (C) (4.9)

%negC = batch size

2 + batch size

2 (1 − p (C)) (4.10)

This values try to estimate the number of examples labeled as Predicate c that
are present in the batch. The parameters alpha for positive and negative examples
for Predicate posC are computed by using the formulas:

αposC = 1 − β

1 − β%posC (4.11)

αnegC = 1 − β

1 − β%negC (4.12)

In this way, in addition to overweighting the positive examples of all classes com-
pared to the negative ones, the contribution of the examples of the most represented
predicates in the dataset is underweighted.

Predicate background The Predicate background is not implemented in the
original version of the LTN. In Faster-RCNN it is fundamental because the model
performs a multiclass classification by using the softmax function and this requires
that each example can be associated with a class. Most of the examples extracted
from the RPN can not be associated with objects in the ground truth and therefore
are labeled as background.

47

Faster-LTN

Faster-LTN ,as explained before, performs n independent binary classifications
and so, the class background is optional. However, if you do not use a background
predicate, you force the model to classify each extracted object. This leads to
a considerable increase of false positives and an underestimation of the Average
Precision. Table 4.3 shows parameters that have been set to train the models.
Table 4.4 depicts the Average Precisions obtained by the trained model for each
class.

Figure 4.5 illustrates the Precision-Recall curves for all models.
Finally, Figure 4.6 and Figure 4.7 show the output of Faster-RCNN and Faster-

LTN with bg on an image of the test set of PASCAL VOC dataset.

Table 4.3. The parameters that have been set to train the models on
the PASCAL VOC dataset.

Hyperparameters FRCNN Faster-LTN Faster-LTN alpha Faster-LTN bg Faster-LTN bg alpha
Learning rate classifier 1e-5 1e-5 1e-5 1e-5 1e-5

Learning rate rpn 1e-5 1e-5 1e-5 1e-5 1e-5
Optimizer classifier Adam Adam Adam Adam Adam

Optimizer rpn Adam Adam Adam Adam Adam
Anchor scales 128,256,512 128,256,512 128,256,512 128,256,512 128,256,512

Lambda rpn classifier 1 1 1 1 1
Lambda rpn regression 1 1 1 1 1
Lambda classifierltn 1 1 1 1 1
Lambda regression 1 1 1 1 1
rpn min overlap 0.3 0.3 0.3 0.3 0.3 0.3
rpn max overlap 0.7 0.7 0.7 0.7 0.7 0.7
classifier min overlap 0.1 0.1 0.1 0.1 0.1
classifier max overlap 0.5 0.5 0.5 0.5 0.5

batch size 32 32 32 32 32
epoch lenght 1000 1000 1000 1000 1000
num epochs 80 300 300 300 300
num classes 21 20 20 21 21

t-norm Łukasiewicz Łukasiewicz Łukasiewicz Łukasiewicz
clause aggregator focal log sum focal log sum focal log sum focal log sum

k 6 6 6 6
gamma 2 2 2 2
beta 0.9999 0.9999

48

4.4 – Experiments

Table 4.4. Results obtained on PASCAL VOC dataset.

Class FRCNN Faster-LTN Faster-LTN alpha Faster-LTN bg Faster-LTN bg & alpha
aeroplane AP 0.82 0.71 0.70 0.85 0.75
bicycle AP 0.78 0.62 0.64 0.76 0.76
bird AP 0.79 0.62 0.55 0.71 0.69
boat AP 0.55 0.36 0.31 0.57 0.45
bottle AP 0.64 0.36 0.35 0.54 0.39
bus AP 0.71 0.69 0.74 0.82 0.74
car AP 0.85 0.52 0.53 0.76 0.61
cat AP 0.90 0.84 0.85 0.92 0.83
chair AP 0.47 0.30 0.30 0.56 0.36
cow AP 0.69 0.52 0.55 0.64 0.64

diningtable AP 0.58 0.46 0.38 0.69 0.48
dog AP 0.87 0.81 0.80 0.86 0.83
horse AP 0.79 0.74 0.71 0.83 0.74

motorbike AP 0.86 0.73 0.72 0.80 0.75
person AP 0.84 0.70 0.67 0.82 0.75

pottedplant AP 0.44 0.29 0.25 0.39 0.32
sheep AP 0.73 0.59 0.60 0.79 0.68
sofa AP 0.52 0.48 0.45 0.55 0.49
train AP 0.76 0.72 0.71 0.81 0.75

tvmonitor AP 0.66 0.53 0.51 0.71 0.56
mAP 0.71 0.58 0.57 0.72 0.63

49

Faster-LTN

Figure 4.5. The Precision-Recall curves of the 5 trained model configurations.

50

4.4 – Experiments

Figure 4.6. Prediction of Faster-RCNN, PASCAL VOC dataset.

4.4.5 Experiments on PASCAL-Part dataset
Two models were trained on this dataset. The original Faster RCNN and the
Faster-LTN in the configuration without alpha but with the bg class.

Table 4.5 exhibits all the parameters that have been setted to train the model
with PASCAL-Part dataset.

Table 4.6 illustrates the Average Precision of each trained model with respect to
each class of the dataset.

On the contrary, Figure 4.8 shows the Precision-Recall curves obtained from the
two models trained with PASCAL-Part, taking into account all the predictions on
all the classes.

Figure 4.9 and Figure 4.10 show the output of Faster-RCNN and Faster-LTN on
an image of the test set of PASCAL-Parts dataset.

51

Faster-LTN

Figure 4.7. Predictions of Faster-LTN with bg, PASCAL VOC dataset.

52

4.4 – Experiments

Table 4.5. The parameters that have been set to train the models on the
PASCAL-Part dataset.

Hyperparameters FRCNN Faster-LTN
Learning rate classifier 1e-5 1e-5
Learning rate RPN 1e-5 1e-5
Optimizer classifier Adam Adam

Optimizer rpn Adam Adam
Anchor scales 128,256,512 128,256,512

Lambda rpn classifier 1 1
Lambda rpn regression 1 1
Lambda classifierltn 1 1
Lambda regression 1 1
rpn min overlap 0.3 0.3 0.3
rpn max overlap 0.7 0.7 0.7
classifier min overlap 0.1 0.1
classifier max overlap 0.5 0.5

batch size 32 32
epoch lenght 1000 1000
num epochs 80 300
num classes 21 21

t-norm Łukasiewicz
clause aggregator focal logsum

k 6
gamma 2
beta

53

Faster-LTN

Table 4.6. Results obtained on PASCAL-Part dataset.

Class FRCNN Faster-LTN
Aeroplane AP 0.86 0.88

Animal Wing AP 0.50 0.67
Arm AP 0.74 0.65

Artifact Wing AP 0.70 0.53
Beak AP 0.71 0.61
Bicycle AP 0.80 0.77
Bird AP 0.82 0.77
Boat AP 0.59 0.67
Body AP 0.76 0.70

Bodywork AP 0.73 0.93
Bottle AP 0.61 0.57
Bus AP 0.82 0.90
Cap AP 0.89 0.83
Car AP 0.74 0.83
Cat AP 0.90 0.88

Chain Wheel AP 0.78 0.75
Chair AP 0.57 0.51
Coach AP 0.49 0.60
Cow AP 0.74 0.76

Diningtable AP 0.66 0.51
Dog AP 0.81 0.84
Door AP 0.58 0.74
Ear AP 0.80 0.72

Ebrow AP 0.79 0.51
Engine AP 0.46 0.58
Eye AP 0.77 0.65
Foot AP 0.78 0.77
Hair AP 0.85 0.87
Hand AP 0.81 0.70

Handlebar AP 0.50 0.67
Head AP 0.88 0.87

Headlight AP 0.70 0.50
Hoof AP 0.72 0.80
Horn AP 0.74 0.72
Horse AP 0.77 0.87
Leg AP 0.60 0.59

License plate AP 0.73 0.53
Locomotive AP 0.71 0.82

Mirror AP 0.82 0.75
Motorbike AP 0.79 0.83
Mouth AP 0.90 0.68
Muzzle AP 0.81 0.83
Neck AP 0.68 0.70
Nose AP 0.81 0.73
Person AP 0.79 0.83
Plant AP 0.41 0.47
Pot AP 0.49 0.70

Pottedplant AP 0.59 0.68
Saddle AP 0.84 0.72
Screen AP 0.52 0.68
Sheep AP 0.80 0.84
Sofa AP 0.67 0.76
Stern AP 0.83 0.69
Tail AP 0.67 0.48
Torso AP 0.80 0.78
Train AP 0.68 0.79

Tvmonitor AP 0.62 0.76
Wheel AP 0.74 0.74
Window AP 0.57 0.59

mAP 0.72 0.7154

4.4 – Experiments

Figure 4.8. The Precision-Recall curves of the 2 trained model configurations.

55

Faster-LTN

Figure 4.9. Predictions of Faster-RCNN, PASCAL-Part dataset.

56

4.4 – Experiments

Figure 4.10. Predictions of Faster-LTN, PASCAL-Part dataset.

57

58

Chapter 5

Logical constraints for the
Faster-LTN

5.1 Introduction
In this chapter are introduced some experiments performed by Faster-LTN that
exploits some logical constrains at the training phase. As explained in 2.5 Logic
Tensor Networks provide a grounding of a First Order logic Language(FOL). With
LTNs it is possible to encode simple FOL formulas (e.g the object x is a Cat),but
even more complex formulas like ∀x (Cat (x) → ¬.Dog (x)).

Given the predictions of the Predicate levels, Faster-LTN allows you to define
literals and combine them logically using logical operators whose semantics are
given by fuzzy logic. In this way, new clauses are obtained which contribute to the
loss, therefore their truth value must be maximized.

By adding these constraints, it is hoped to provide the model with additional
knowledge about the problem, in this case classification and partOf, for better
performance. All axioms that were used for this work are the same introduced by
[8].

5.2 Logic constrains for classification
Faster-LTN replaces multiclassification in the final layer with softmax function as
backbone with n independent binary classifiers, one for each class. In this new
architecture, we do not have the mutual exclusion given by the act of softmax
function.

It was thought to insert in the training clauses that define mutual exclusion
between classes logically. For example, if a proposal is classified as Cat, this involves
that the proposal can not be at same time a Dog. In logical terms:

59

Logical constraints for the Faster-LTN

∀x (Cat (x) → ¬Dog (x)) (5.1)

This expression is equivalent to:

∀x (¬Cat (x) ∨ ¬Dog (x)) (5.2)

This last formula is the one used in the code to build this kind of axiom. The
semantic of disjunction is given by Lukasiewicz t-conorm:

SLK (a, b) = min(a+ b,1) (5.3)

Given the fact that:

Cat (x) → ¬Dog (x) ≡ ¬ (¬Dog (x)) → ¬Cat (x) ≡ Dog (x) → ¬Cat (x) (5.4)

Are added to the model new N ˙(N−1)
2 clauses to define the logical implication

between each possible pair of classes. Another kind of logical axiom is given by:

∀x (Cat(x) ∨Dog(x) ∨ ...P erson(x)) (5.5)

We want to constrain the model to assign to a given proposal x an high prob-
ability score for at least one class. At each proposal must be assigned to a class.
The defined model has been trained by using PASCAL-Parts dataset. As in the
experiments presented on the previous pages, for training and test sets are taken
the train and validation splits proposed proposed in the annotations of the dataset.

60

5.3 – PartOF predicate

5.3 PartOF predicate
After introducing the logical constraints in the training of the Faster-LTN it was
introduced a new kind of Predicate : the partOF Predicate. This layer, given the
features relative to two objects as input, must be able to understand if the first
object is part of the last one. For example, if in the image are detected a Cat
and a Tail, this layer will output the probability score that the Tail is part of the
Cat. In Faster-LTN this layer accepts as input the logits of two object proposals
,extracted by the previous layers of the network, concatenate with the coordinates
of the associated Region of Interest and two joint features given by the containment
ratios between the two Regions of Interest:

Area1 ∩ Area2

Area1
and

Area1 ∩ Area2

Area2
(5.6)

5.3.1 Mereological constraints
The definition of partOF Predicate allows to introduce in the training a new kind of
constrains more related to the characteristics of each class. We can define Mereolog-
ical constrains about classes taken from external base knowledge like WORDNET
[10]. In this case, axioms are considered that explain the part-whole and whole-part
relationships between the various classes of the PASCAL-Part dataset. An example
of whole-parts constrains can be:

∀x, y (Cat(x) ∧ partOf(y, x) → Tail (y) ∨Head (y) ... ∨ Eye (y)) (5.7)

On the contrary an example of part-wholes constrains is:

∀x, y (Tail(y) ∧ partOf(y, x) → Cat (x) ∨Dog (x) ... ∨Horse (x)) (5.8)

An overview of mereological relationships between the classes of PASCAL parts
dataset is given by Table 4.2. The formula ,used practically in the code, equivalent
to 5.8 and with only OR operators is equal to:

∀x, y (¬Cat(y) ∨ ¬partOf(y, x) ∨ Tail (x) ∨ Torso (x) ... ∨ łHead (x)) (5.9)

This formula is obtained by exploiting the equivalence:

A → B ≡ ¬A → B (5.10)

In this way we have:

61

Logical constraints for the Faster-LTN

∀x, y (¬ (Tail(y) ∧ partOf(y, x)) ∨ Cat (x) ∨Dog (x) ... ∨Horse (x)) (5.11)

To remove the AND operator can be applied the De Morgan’s Law:

¬ (A ∧B) = ¬A ∨ ¬B (5.12)

62

5.4 – Experiments

Table 5.1. The parameters that have been set to train the models on the
PASCAL-Part dataset.

Hyperparameters Faster-LTN knowledge Faster-LTN knowledge and partOF
Learning rate classifier 1e-5 1e-5
Learning rate RPN 1e-5 1e-5
Optimizer classifier Adam Adam
Optimizer RPN Adam Adam
Anchor scales 128,256,512 128,256,512

Lambda rpn classifier 1 1
Lambda rpn regression 1 1
Lambda classifierltn 1 1
Lambda regression 1 1
rpn min overlap 0.3 0.3 0.3
rpn max overlap 0.7 0.7 0.7
classifier min overlap 0.1 0.1
classifier max overlap 0.5 0.5

batch size 32 32
epoch lenght 1000 1000
num epochs 300 300
num classes 60 60

t-norm Łukasiewicz
clause aggregator focal logsum

k 6
gamma 2
beta

5.4 Experiments
In this section are illustrated the results obtained by Faster-LTN with logical con-
strains only relative to classification (see Section 5.2) and Faster-LTN with partOf
and logical constrains (see Section 5.3). In this last training are defined all the
axioms relative to classification plus ones relative to mereological relations between
classes.

Table 5.1 shows the parameters used for the training.
Table 5.2 instead shows the Average Precision scores of the Faster-LTN knowl-

edge together with APs of the other trained models.
Finally Figure 5.1 depicts the Precision-Recall curves of the 4 trained models on

PASCAL-Part.
Figure 5.2 shows the output of Faster-LTN with knowledge on an image of the

test set of PASCAL-Part dataset.

63

Logical constraints for the Faster-LTN

The Average Precision measured on partOf predicate is equal to 0.12.

Figure 5.1. The Precision-Recall curves model configurations.

64

5.4 – Experiments

Table 5.2. Results obtained on PASCAL-Part dataset.

Class FRCNN Faster-LTN Faster-LTN knowledge Faster-LTN knowledge partOf
Aeroplane AP 0.86 0.88 0.87 0.87

Animal Wing AP 0.50 0.67 0.65 0.66
Arm AP 0.74 0.65 0.72 0.75

Artifact Wing AP 0.70 0.53 0.51 0.47
Beak AP 0.71 0.61 0.85 0.67
Bicycle AP 0.80 0.77 0.78 0.84
Bird AP 0.82 0.77 0.85 0.86
Boat AP 0.59 0.67 0.58 0.54
Body AP 0.76 0.70 0.83 0.70

Bodywork AP 0.73 0.93 0.79 0.81
Bottle AP 0.61 0.57 0.69 0.66
Bus AP 0.82 0.90 0.86 0.79
Cap AP 0.89 0.83 0.66 0.84
Car AP 0.74 0.83 0.82 0.82
Cat AP 0.90 0.88 0.87 0.88

Chain Wheel AP 0.78 0.75 0.66 0.73
Chair AP 0.57 0.51 0.49 0.65
Coach AP 0.49 0.60 0.62 0.58
Cow AP 0.74 0.76 0.82 0.77

Diningtable AP 0.66 0.51 0.68 0.59
Dog AP 0.81 0.84 0.79 0.84
Door AP 0.58 0.74 0.77 0.72
Ear AP 0.80 0.72 0.73 0.71

Ebrow AP 0.79 0.51 0.61 0.52
Engine AP 0.46 0.58 0.51 0.55
Eye AP 0.77 0.65 0.85 0.68
Foot AP 0.78 0.77 0.84 0.82
Hair AP 0.85 0.87 0.84 0.81
Hand AP 0.81 0.70 0.79 0.79

Handlebar AP 0.50 0.67 0.60 0.68
Head AP 0.88 0.87 0.89 0.86

Headlight AP 0.70 0.50 0.65 0.60
Hoof AP 0.72 0.80 0.90 0.67
Horn AP 0.74 0.72 0.78 0.83
Horse AP 0.77 0.87 0.86 0.75
Leg AP 0.60 0.59 0.58 0.62

License plate AP 0.73 0.53 0.63 0.59
Locomotive AP 0.71 0.82 0.78 0.77

Mirror AP 0.82 0.75 0.79 0.87
Motorbike AP 0.79 0.83 0.81 0.84
Mouth AP 0.90 0.68 0.80 0.72
Muzzle AP 0.81 0.83 0.82 0.80
Neck AP 0.68 0.70 0.69 0.64
Nose AP 0.81 0.73 0.73 0.70
Person AP 0.79 0.83 0.82 0.81
Plant AP 0.41 0.47 0.44 0.47
Pot AP 0.49 0.70 0.62 0.68

Pottedplant AP 0.59 0.68 0.53 0.64
Saddle AP 0.84 0.72 0.79 0.78
Screen AP 0.52 0.68 0.65 0.64
Sheep AP 0.80 0.84 0.83 0.81
Sofa AP 0.67 0.76 0.62 0.51
Stern AP 0.83 0.69 0.78 0.75
Tail AP 0.67 0.48 0.59 0.56
Torso AP 0.80 0.78 0.82 0.79
Train AP 0.68 0.79 0.83 0.76

Tvmonitor AP 0.62 0.76 0.69 0.78
Wheel AP 0.74 0.74 0.70 0.74
Window AP 0.57 0.59 0.62 0.61

mAP 0.72 0.71 0.73 0.7265

Logical constraints for the Faster-LTN

Figure 5.2. Predictions of Faster-LTN with knowledge.

66

Chapter 6

Conclusion

The results obtained from the Faster-LTN model show that this is competitive with
the traditional Faster-RCNN model. It is able to obtain good performance on two
different datasets. With some configurations it is also able to surpass the starting
model.

The addition of logical knowledge significantly improves performance.
A fundamental aspect of this work is the introduction of the focal log sum

function as an aggregation function of logical literals. Thanks to this innovation,
it was possible to overcome the architectural problems due to integration.

The number of epochs required to train a Faster-LTN model is higher than Faster
RCNN and Faster-LTN has an higher number of parameters to optimize.

However, Faster-LTN can be an interesting staring point for new models capable
to solve more complex tasks. This integration strategy can be used on other object
detectors. The problems to be solved are similar. Especially those related to the
unbalancing classes, brilliantly solved by the focal log sum.

External knowledge can be useful in the situation in which is encountered a lack
of informations in training data. In [8] has been tried LTNs with a noisy training
set. The training with logical constrains has demostrated that the model is able to
reach good performance also in this situation.

Moreover, starting from this idea, Faster-LTN can be applied to the Few-Shot
learning.

Few-Shot learning is a topic of Machine Learning in which we want to predict
something based on a few training examples. The extreme case of Few-Shot learning
is called One-Shot learning, in which we want to predict something that the model
has never seen before. We can compensate the lack of labelled data of a class with
some logical clauses that express some logical properties of that class.

Furthermore, the fact that the model is able to handle external symbolic knowl-
edge and to identify relationships between objects can be the starting point for
defining models capable of solving complex tasks such as Visual Question Answer-
ing or Visual Relationship Detection.

67

68

Bibliography

[1] Martin Abadi et al. “TensorFlow: A system for large-scale machine learning”.
In: 2016, pp. 265–283.

[2] Collin F Baker, Charles J Fillmore, and John B Lowe. “The berkeley framenet
project”. In: Proceedings of the 17th international conference on Computa-
tional linguistics-Volume 1. Association for Computational Linguistics. 1998,
pp. 86–90.

[3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “Yolov4:
Optimal speed and accuracy of object detection”. In: arXiv preprint arXiv:2004.10934
(2020).

[4] Alessandro Daniele and Luciano Serafini. “Neural Networks Enhancement
through Prior Logical Knowledge”. In: arXiv preprint arXiv:2009.06087 (2020).

[5] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “ProbLog: A Prob-
abilistic Prolog and Its Application in Link Discovery.” In: IJCAI. Vol. 7.
Hyderabad. 2007, pp. 2462–2467.

[6] Luc De Raedt et al. “From Statistical Relational to Neuro-Symbolic Artificial
Intelligence”. In: arXiv preprint arXiv:2003.08316 (2020).

[7] Ivan Donadello and Luciano Serafini. “Compensating Supervision Incomplete-
ness with Prior Knowledge in Semantic Image Interpretation”. In: 2019 Inter-
national Joint Conference on Neural Networks (IJCNN). IEEE. 2019, pp. 1–
8.

[8] Ivan Donadello, Luciano Serafini, and Artur D’Avila Garcez. “Logic tensor
networks for semantic image interpretation”. In: arXiv preprint arXiv:1705.08968
(2017).

[9] Mark Everingham et al. “The pascal visual object classes (voc) challenge”.
In: International journal of computer vision 88.2 (2010), pp. 303–338.

[10] Christiane Fellbaum. “WordNet”. In: The encyclopedia of applied linguistics
(2012).

[11] Artur d’Avila Garcez and Luis C Lamb. “Neurosymbolic AI: The 3rd Wave”.
In: arXiv preprint arXiv:2012.05876 (2020).

69

BIBLIOGRAPHY

[12] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international con-
ference on computer vision. 2015, pp. 1440–1448.

[13] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, pp. 580–587.

[14] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[15] Drew Hudson and Christopher D Manning. “Learning by abstraction: The
neural state machine”. In: Advances in Neural Information Processing Sys-
tems. 2019, pp. 5901–5914.

[16] Emile van Krieken, Erman Acar, and Frank van Harmelen. “Analyzing differ-
entiable fuzzy logic operators”. In: arXiv preprint arXiv:2002.06100 (2020).

[17] Ranjay Krishna et al. “Visual genome: Connecting language and vision using
crowdsourced dense image annotations”. In: International Journal of Com-
puter Vision 123.1 (2017), pp. 32–73.

[18] Luis Lamb et al. “Graph Neural Networks Meet Neural-Symbolic Computing:
A Survey and Perspective”. In: arXiv preprint arXiv:2003.00330 (2020).

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436–444.

[20] Guohao Li, Hang Su, and Wenwu Zhu. “Incorporating external knowledge to
answer open-domain visual questions with dynamic memory networks”. In:
arXiv preprint arXiv:1712.00733 (2017).

[21] Xiaodan Liang, Lisa Lee, and Eric P Xing. “Deep variation-structured rein-
forcement learning for visual relationship and attribute detection”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 848–857.

[22] Xiaodan Liang et al. “Symbolic graph reasoning meets convolutions”. In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 1853–1863.

[23] Tsung-Yi Lin et al. “Feature pyramid networks for object detection”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 2117–2125.

[24] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of
the IEEE international conference on computer vision. 2017, pp. 2980–2988.

[25] Hugo Liu and Push Singh. “ConceptNet—a practical commonsense reasoning
tool-kit”. In: BT technology journal 22.4 (2004), pp. 211–226.

[26] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European conference
on computer vision. Springer. 2016, pp. 21–37.

70

BIBLIOGRAPHY

[27] Cewu Lu et al. “Visual relationship detection with language priors”. In: Eu-
ropean conference on computer vision. Springer. 2016, pp. 852–869.

[28] Pan Lu et al. “R-VQA: learning visual relation facts with semantic attention
for visual question answering”. In: Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. 2018, pp. 1880–
1889.

[29] Robin Manhaeve et al. “Deepproblog: Neural probabilistic logic program-
ming”. In: Advances in Neural Information Processing Systems. 2018, pp. 3749–
3759.

[30] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. “The more you
know: Using knowledge graphs for image classification”. In: arXiv preprint
arXiv:1612.04844 (2016).

[31] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2017, pp. 7263–7271.

[32] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In:
arXiv preprint arXiv:1804.02767 (2018).

[33] Joseph Redmon et al. “You only look once: Unified, real-time object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779–788.

[34] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: Advances in neural information processing sys-
tems. 2015, pp. 91–99.

[35] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: Advances in neural information processing sys-
tems. 2015, pp. 91–99.

[36] Matthew Richardson and Pedro Domingos. “Markov logic networks”. In: Ma-
chine learning 62.1-2 (2006), pp. 107–136.

[37] Adam Santoro et al. “A simple neural network module for relational reason-
ing”. In: Advances in neural information processing systems. 2017, pp. 4967–
4976.

[38] Luciano Serafini and Artur d’Avila Garcez. “Logic tensor networks: Deep
learning and logical reasoning from data and knowledge”. In: arXiv preprint
arXiv:1606.04422 (2016).

[39] Abdul Vahab et al. “Applications of Object Detection System”. In: Interna-
tional Research Journal of Engineering and Technology (IRJET) 6.4 (2019),
pp. 4186–4192.

71

BIBLIOGRAPHY

[40] Frank Van Harmelen and Annette ten Teije. “A boxology of design patterns for
hybrid learning and reasoning systems”. In: arXiv preprint arXiv:1905.12389
(2019).

[41] Zhun Yang. “Extending Answer Set Programs with Neural Networks”. In:
arXiv preprint arXiv:2009.10256 (2020).

[42] Kexin Yi et al. “Neural-symbolic vqa: Disentangling reasoning from vision
and language understanding”. In: Advances in neural information processing
systems. 2018, pp. 1031–1042.

[43] Rowan Zellers et al. “Neural motifs: Scene graph parsing with global context”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 5831–5840.

72

	List of Tables
	List of Figures
	Introduction
	State of the Art
	Introduction
	Symbolic AI vs Connectionist AI
	Neurosymbolic AI
	Neurosymbolic architectures
	Neural Logic Network

	Fuzzy Logic
	Fuzzy Negation
	Triangular Norms
	Triangular Conorms
	Aggregation operators

	Logic Tensor Network
	Neuro symbolic AI and Computer Vision
	Object detection and image classification
	Visual Relationship Detection
	Visual Question Answering

	Logic Tensor Networks implementation
	Introduction
	Original LTNs implementation
	Keras implementation of LTNs
	Experiments

	Faster-LTN
	Introduction
	Faster R-CNN
	Other object detection works

	Integration of LTN in Faster RCNN
	Experiments
	Introduction
	PASCAL VOC
	Pascal Parts
	Experiments on PASCAL VOC
	Experiments on PASCAL-Part dataset

	Logical constraints for the Faster-LTN
	Introduction
	Logic constrains for classification
	PartOF predicate
	Mereological constraints

	Experiments

	Conclusion

