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Summary

Cardiac image segmentation is the problem of learning the anatomical semantics
of each voxel in a three-dimensional heart image. In clinical practice, radiologists
are delegated to draw contours manually, encompassing the structures of interest.
The process is lengthy, monotonous, and prone to subjective errors. Starting from
the 1970s, researchers have thoroughly investigated the possibility of automating
this task. Automated CMR segmentation can help clinicians interpreting the med-
ical conditions, speeding up diagnoses, increasing monitoring reliability, facilitating
surgical planning, and enabling vast population studies. Overall, it would make a
strong contribution to the battle against cardiovascular diseases (CVDs), estimated
to cost 31% of all global deaths. During the last decade, this automation attempt
has been lead by deep learning.

Between 2013 and 2015, deep learning techniques became popular, and more and
more papers on the topic went public. When the MICCAI conference of 2017
hosted the ACDC Challenge, nine participants out of ten implemented a deep con-
volutional architecture to fulfill the segmentation task. This brief time window
represents a drastic change in the field. Results reveal that deep learning methods
can successfully classify patient data and get highly accurate segmentation results.
However, these approaches require fully annotated datasets, which must capture the
anatomical variability of heart images. Collecting so much data requires extensive
human effort. In addition, neural networks do not naturally provide probabilistic
guarantees on their predictions. The inclusion of an external monitoring mecha-
nism is crucial to ensure the reliability of subsequent diagnoses.

This thesis attempts to solve both the problems of generalization and automatic
quality assessment. The proposed solutions revolve around the development of a
convolutional autoencoder, which provides a surrogate quality measure for indi-
vidual segmentation masks and their generating model. In particular, we propose
two different types of measures, a global score, and a pixel-wise map, and we
demonstrate their use by reproducing the results of the ACDC Challenge in the ab-
sence of ground truth. Next, we integrate our autoencoder into a semi-supervised
framework, capable of learning from both labeled and unlabeled data to fulfill the
segmentation task.
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Chapter 1

Introduction

This thesis investigates the state-of-the-art in cardiac image segmentation, which
is the problem of learning the anatomical semantics of each voxel in a three-
dimensional heart image. Our first reference is the ACDC Challenge [1], hosted
in 2017 at the MICCAI conference. On that occasion, it was released a dataset
of 100 healthy and non-healthy patients from the University Hospital of Dijon
(France). In a total of ten participants, nine implemented deep learning techniques,
which achieved human performances in the segmentation of the left ventricle, the
myocardium, and the right ventricle. The proposed models, however, suffer from
significant weaknesses, which we examine and attempt to solve.

Chapter 3 focuses on automatic quality assessment, which consists of identifying
unusable segmentations, ensuring the reliability of subsequent diagnoses. Indeed,
failures can occur in both the acquisition process and the segmentation process of
CMR images. In clinical practice and population studies, it is of utmost impor-
tance to develop an automatic supervision system placed alongside the segmenta-
tion model, guaranteeing its safe use even in the absence of ground truth. Previous
approaches require manual annotations to estimate segmentation performances,
which can be difficult to obtain, or require spatial alignment between ground truth
images and segmentation, achieved by the use of image registration. With this in
mind, we propose a novel learning framework, which addresses the limitations of
past techniques thanks to its formulation under an anomaly detection paradigm.

Chapter 4 focuses on the problem of generalization, which consists of accurately
predicting outcome values for previously unseen data. The models trained on the
ACDC dataset do not perform so well when tested on images taken with different
scanners or protocols or depicting peculiar heart deformations. A first viable option
includes enough anatomical and perspective variability in a unique dataset to rep-
resent a large slice of the population, e.g., the UK Biobank dataset [2]. However,
the manual delineation of important structures within the cardiac image typically
takes several minutes, even for a trained expert. This represents a bottleneck to-
wards large scale data collection. As an alternative, previous works attempt to
solve the problem by decreasing the model complexity or increasing the amount of
training data. On this second path, we propose a novel semi-supervised framework
to include unlabeled data for training.



Chapter 2

Background

2.1 Anatomy of the heart

The heart is one of the most complex and essential organs in the human body, as
well as in most animals. With its 75 beats per minute (and an average of three
billion heartbeats over a lifetime), it provides pressure to the circulatory system.
In this way, the heart allows the approximate 5 liters of blood in an adult body to
flow inside a 100,000-kilometer-long network. The blood brings oxygen and impor-
tant nutrients to the body’s tissues and organs through the arteries, and it carries
metabolic waste on its way back through veins. In humans, the heart is approxi-
mately the size of its owner’s closed fist and is located underneath the sternum and
ribcage, between the lungs, in the middle compartment of the chest.

The heart is divided into four chambers functioning as a double-sided pump, with
an upper atrium and a lower ventricle on each side of the heart [Figure 2.1]. The
right atrium and ventricle are referred to together as the right heart and their left
counterparts as the left heart. The four chambers are divided by a wall of muscle
called the septum. More in detail, the atrioventricular separates the atria from
the ventricles, the interatrial septum separates the atria and the interventricular
septum separates the ventricles. Finally, the heart has four valves, one between
each atrium and ventricle, and one at the exit of each ventricle: the tricuspid valve,
between the right atrium and the right ventricle, the mitral valve, between the left
atrium and left ventricle, the pulmonary valve, at the exit of the right ventricle,
and the aortic valve, at the exit of the left ventricle.

The heart’s atria receive blood from the veins, while the heart’s ventricles pump
blood into the arteries. In particular, when working properly, oxygen-depleted
blood coming from the body’s tissues and organs, except for the lungs, enters the
right atrium. The blood then passes through the tricuspid valve into the right
ventricle, which pumps it to the pulmonary artery. Through this artery, the blood
reaches the lungs, where, during air exchange, it receives oxygen in exchange for
carbon dioxide. The oxygenated blood returns to the heart through the left atrium,
it flows through the mitral valve into the left ventricle and is finally pumped back
to the body through the aorta. Being responsible for reaching every end of the
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Figure 2.1. Anatomy of the heart.

body other than the lungs, the left ventricle has the thickest muscle mass of all the
chambers.

Atria and ventricles contract to make the heartbeat and pump the blood. Each
beat counts two phases: diastole and systole. Systole occurs when the heart con-
tracts to release blood, diastole follows as the heart relaxes. The contractions of
the cardiac muscle are triggered by involuntary electrical pulses coming from the
brain, which keep the blood flowing in proper rhythm. This muscle is called the
myocardium, and together with the inner endocardium and the outer epicardium,
forms the heart wall.

2.2 Cardiovascular diseases

Cardiovascular diseases (CVDs) are estimated to cause 31% of all global deaths,
the highest rate among all the pathologies. CVDs include vascular diseases, which
involve the blood vessels, and heart diseases, which indicate in more specific terms
pathologies affecting the heart. Vascular diseases compromise the circulatory sys-
tem, and they can cause different signs and symptoms all over the body. Since this
thesis is specifically focused on cardiac imaging, speculating on that large part of
vascular diseases that do not leave any trace on the heart is beyond the scope of
this work.

Among vascular diseases, Coronary Artery Disease (CAD) is worth to mention,
since it obstructs the arteries that move oxygen-rich blood through the heart and
the lungs, and can lead to terrible consequences (e.g., stroke, heart failure), as well
as to cardiac deformities (e.g., enlargement of the left ventricle or right ventricle).
If deformities are long-term repercussions, heart failure can be promptly detected
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Figure 2.2. Structural categories of cardiomyopathy.

in cardiac images by calculating the Ejection Fraction (EF). This measure reflects
how much blood leaves a heart ventricle every time it pumps. The EF is expressed
as the percentage of blood pushed out from the left ventricle over the total amount
of blood in it. Values between 50% and 70% are considered normal, while a value
below 40% is an indicator of systolic heart failure. Heart patients can also show
another type of heart failure, called diastolic heart failure, which occurs when the
left ventricle contracts normally during systole, but the ventricle is stiff and does
not relax normally during diastole, which impairs filling.

Heart diseases can lead to deformations. For example, cardiomyopathy is a group of
pathologies that cause the heart muscle to grow larger and turn rigid, thick, or weak.
Types of cardiomyopathy include hypertrophic cardiomyopathy, dilated cardiomy-
opathy, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia, and
Takotsubo cardiomyopathy [Figure 2.2]. Dilated cardiomyopathy originates from
a general enlargement of the heart, which cannot pump blood effectively. Patients
with this disease have an ejection fraction below 40%, and a large left ventricular
volume. Hypertrophic cardiomyopathy, instead, involves the heart’s walls, which
become thicker. This condition does not compromise the cardiac function, which
measures an ejection fraction greater than 55%. Finally, restrictive cardiomyopathy
causes the stiffening of the heart’s wall, without any thickening. Thus the heart
is restricted from stretching and filling with blood properly. The last ones espe-
cially noteworthy are congenital heart defects, which indicate irregularities that are
present at birth. Some of these defects are never diagnosed, others may be found
when they cause symptoms.
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2.3 Cardiac imaging

Having mentioned congenital heart defects, genetic factors may have an impact,
but these diseases are often caused by poor lifestyle habits, such as poor diet,
lack of regular exercise, tobacco smoking, alcohol or drug abuse, and high stress.
These issues are prevalent in modern Western culture, but heart disease has always
plagued the human race. Studies have shown that even ancient Egyptian mummies
had identifiable cardiovascular diseases, specifically, atherosclerosis in different ar-
teries of the body [3]. However, until the discovery of X-rays in 1895, there were
no modalities allowing clinicians to look at the heart, and diagnoses were all given
by physical examination and a doctor’s best guess. From 1896, radiographic find-
ings for heart disease began to be characterized and recorded. With the support
of radiography, clinicians could assess the size of the heart chambers by looking at
the different silhouettes of the cardiac shadow.

In the last century, cardiac imaging has come a long way, witnessing extraordi-
nary advances in the capacity to display interior and borders of a living human’s
heart [4]. Nowadays, many cardiovascular imaging modalities allow evaluating the
heart condition, such as echocardiography, Cardiovascular Computerized Tomog-
raphy (CCT), Cardiovascular Magnetic Resonance Imaging (CMR, also known as
cardiac MRI), invasive coronary angiography, cardiac Positron Emission Tomogra-
phy (PET), and Nuclear Cardiology (NC).

This thesis focuses on CMR, an imaging technology for the non-invasive inves-
tigation of cardiovascular diseases, which started to develop in the 1970s. General
utilization of MR makes strong use of magnetic fields and radio waves by observing
the polarity due to hydrogen nuclei spin to generate images of the organs in the
body. Subsequently, the alignment of this magnetization is changed by emitting
radio frequency pulses which produce a rotating magnetic field detectable by an
external RF coil. Owing to the beating and breathing motions of the heart, conven-
tional MRI sequences were adapted for cardiac imaging by introducing ECG gating
in 1983, which allows for stop motion-imaging by acquiring data only during a spec-
ified portion of the cardiac cycle, typically during diastole when the heart is not
moving. Increasingly sophisticated techniques were developed, including cardiac
cine-MRI, considered today the standard technique for achieving high resolution
and evaluating global function measurements through segmentation, and tagged
MRI, which uses spin tagging prepulse to produce detectable markers over time,
permitting regional analysis and temporal motion registration. The development
of CMR is an active field of research and continues to see a rapid expansion of
new and emerging techniques. Since MRI uses non-ionizing radiation, it is con-
sidered a non-invasive technique. Advantages of CMRs include the possibilities of
well visualizing the myocardium, acquiring images with different orientations, and
of evaluating perfusion, function, scars, and epicardial coronaries. MR images ac-
quired with an orientation perpendicular to the long axis of the heart is called the
Short Axis plane (SAX) [Figure 2.3]. CMRs generally cover about 10–15 z-plane
slices and 15–30 temporal frames, depending on the size of the heart. However, this
technology is more expensive than other methods, and it is not always available in
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Figure 2.3. Cardiac Cine CMR SAX on the left, illustration of Short-Axis (SAX)
and Long-Axis (LAX) cardiac images on the right.

cardiac care centers. Moreover, pacemakers and metal implants, often present in
heart patients, are contraindications to the use of MRI.

2.4 CMR Segmentation

When dealing with CMRs, doctors are generally interested in measuring clinical
parameters such as ventricular volumes, myocardial mass, and ejection fraction.
The primal step consists of delineating important organs and structures within the
cardiac image: a radiologist is usually delegated to manually draw contours en-
compassing the structures of interest, an analysis which typically takes a trained
expert around 20 minutes per subject. This is lengthy, monotonous, and prone to
subjective errors. For these reasons, researchers have thoroughly investigated the
possibility of automated CMR segmentation and analysis to immediately trace the
borders of the main subparts in a given heart image. Historically, an initial focus
was oriented towards the left ventricle. This choice is motivated by increased vari-
ability and concavity in the shape of the RV, whose segmentation becomes more
challenging than the LV. Apical slices seem also to be more difficult to segment due
to less and unpredictable information at the end of LV and RV.

From the 1970s to the 1990s, low-level pixel processing and mathematical model-
ing were used together to construct rule-based systems for medical image analysis.
Among these techniques, thresholding was one of the simplest and most popular.
It can be performed exploiting both global (e.g., the gray level histogram of the
entire image) or local (e.g., co-occurrence matrix) information. In the straightfor-
ward case of an image composed of two distinct regions with different gray level
ranges, its histogram will show two peaks, separated by a valley. The bottom of
the valley is then taken as a threshold for object background separation. However,
in realistic cases, threshold selection is not such a trivial and effective job. More
complex variants of this method select multiple thresholds to achieve heterogeneous
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image segmentation (i.e, adaptive thresholding) [5, 6, 7] or multi-class segmenta-
tion (i.e, multithresholding) [8, 9]. Sahoo [10] and Lam [11] provided a wide review
on thresholding techniques. The latter, in a wider perspective, summarized other
popular techniques of those times. For example, relaxation [12, 13] is an iterative
approach which allows to classify each pixel in parallel. At each iteration, decisions
made at neighboring points are combined to decide on the next iteration. Another
popular example to be cited is edge detection. In a grayscale image, an edge is a set
of points of abrupt changes in intensity values. Being low-level features, edges can
be detected only basing on local information, without any high-level comprehen-
sion of the image. This intuition points towards parallel solutions, which determine
whether a point is an edge or not basing few neighboring points. In general, a large
variety of parallelization levels characterize the methods available in the literature
[14].

The pixel-driven techniques described above, however, turned out to be incapable
of detecting object boundaries in cardiac texture, due to their wide intensity range
and their lack of overlaps on the edges. This problem was tackled at the end of the
1990s by introducing statistical and physical assumptions derived from the cardiac
structure. Supervised techniques, making use of a set of training data as exam-
ples or templates, became popular to build statistical models. Instead of relying
exclusively on the intensity values to draw contours in cardiac images, statistical
techniques define additional shape, motion, or texture (intensity variations) priors
to constrain the delineation process. The reasons behind this intuition lie in the
fact that heart contours do not change dramatically in the spatial and temporal
direction, as well as among different patients. In general, all human hearts can
be modeled as ellipsoidal objects moving in- and out-wards. From this perspec-
tive, several authors tried to build cardiac priors and integrate them into different
segmentation techniques as an additional constraint to overcome the failures of
low-level pixel methods. Statistical methods can be classified according to the way
they define and make use of priors, which allow the manipulation of previously
segmented contours to locate new ones. Active Shape Models (ASM) [15, 16, 17]
build a shape prior starting from manually segmented data. A shape model reflects
the typical structure of a set of anatomical objects, therefore being invariant to
transformations applied on them. The segmentation process starts by aligning all
the training data to a defined coordinate using rigid registration techniques. In the
case of a heterogeneous number of frames, an interpolation in time is performed to
make it equal. Given then the set of coordinates, the shape model can be defined
as a statistical map of these points in the form of mean x̄ and covariance S:

x̄ =
1

N

X
xi (2.1)

S =
1

N − 1

X
(xi − x̄)(xi − x̄)T (2.2)
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The principal eigenvectors are then extracted from the covariance matrix. Each
training point can be approximated as:

x = x̄ + Pb (2.3)

where P is the matrix collecting the selected eigenvectors, and b is a vector of
weigths. By varying these parameters within suitable limits, new examples of the
same shape can be generated. Finally, segmentation of a new object x0 is performed
by overlapping the statistical model on it and estimating the transformation T that
leads to maximal correspondence:

x0 = T (x̄ + Pb) (2.4)

For all the steps described above several variations can be found in the litera-
ture. The interested readers are referred to [18] for a further study on the alter-
natives. For example, multi-atlas techniques [19, 20, 21, 22] dispose of multiple
options instead of defining a single prior representing the whole population. Active
Appearance Models (AAM) [23, 24, 25] follow the same procedure as ASM, but in-
cluding the texture appearance of the object as well. Finally, motion models [26, 27]
take into account the cardiac cycle to build a motion prior as a temporal constraint.

During the same years, Machine Learning (ML) started to be deployed for di-
agnostic purposes. The typical ML approach consisted of extracting features from
cardiac images with both manual or automatic techniques (such as the segmentation
techniques discussed above) to build a statistical classifier capable of predicting the
presence or absence of specific diseases. This pattern brought to the development
of systems progressively shifting to complete automation. Indeed, handcrafted fea-
tures were initially extracted from the medical images and fed into automatic clas-
sifiers. With the advent of deep learning, computers were programmed to learn by
themselves the optimal features for classification. Especially in the case of images,
Convolutional Neural Networks (CNNs) have succeeded in learning increasingly
higher-level features to turn input images into spatially comprehensive outputs.

CNNs have demonstrated massive efficiency in automating time-consuming visual
tasks, often surpassing human performances in several research fields, such as med-
ical imaging, video surveillance, and autonomous driving. In this thesis, driven
by incentive past results, the clinical practice described above becomes the subject
of further investigations regarding automatic cardiac image segmentation. Thanks
to the exponential growth of computer power along with the availability of public
databases, several works in recent years have already explored the possibility of
developing a computer model capable of accomplishing CMR segmentation with a
nearly human performance at a relatively low cost.
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Figure 2.4. Architecture developed by Isensee [28]. The image portrays the 3D
network. The 2D network is equivalent, but uses 2D convolutions, patch size
352× 352 and 48 initial features.

In 2017, the MICCAI conference hosted the ACDC Challenge [1], whose goal was
to achieve human performances in the segmentation of the left ventricle, the my-
ocardium, and the right ventricle. On that occasion, it was provided training
set with 100 subjects, each paired with the corresponding annotation given by one
clinical expert. Manual references allow performing supervised image segmentation,
which aims to learn the semantics of each pixel by minimizing a global dissimilar-
ity measure between the ground truth and the segmentation result. After being
trained, such a model will be capable of labeling each pixel with a different color
referring to the part of the heart it belongs to. Nine research groups developed
deep learning methods to fulfill the segmentation task, and the top finishers of the
challenge showed that CNNs could successfully get highly accurate segmentation
results.

Isensee [28] developed an ensemble model of 2D and 3D U-Net [29, 30] inspired
architectures, integrating segmentation and disease classification into a fully auto-
matic processing pipeline. Due to different memory requirements, the two archi-
tectures present some differences. First of all, they adopt two different convolution
operations, the 2D convolution and the 3D convolution. In the 2D model, the num-
ber of initial feature maps is 48, and the input patch size is 352× 352. For the 3D
model, these values drop to 26 and 224×224 respectively. Figure 2.4 shows the lay-
ers and the connections which characterize the networks. Each feature extraction
block consists of two padded convolutions, followed by batch normalization and
a leaky ReLU nonlinear activation. The number of feature maps is then doubled
(halved) with each of the 4 pooling (upscaling) operations. Such operations are
carried out only in the short axis plane for the 3D network. Finally, residual con-
nections are inserted along with the upsampling layers. The networks are trained
using a multiclass dice loss. Before each of the last two upscaling operations, deep
supervision is implemented by generating low-resolution segmentation outputs via
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Figure 2.5. Architecture developed by Patravali [33]. The image por-
trays the 3D network.

1x1x1 convolutions, which are then upscaled and aggregated for the final segmenta-
tion. To increase the generalization, a broad range of data augmentation techniques
was adopted, such as mirroring, random rotations, gamma-correction, and elastic
deformation. Due to the low z-resolution, all data augmentation was performed
only in the x-y plane. All slices within the training batch were perturbed with a
probability of 10% and a random offset drawn from N(0, 20) to account for the
presence of slice misalignments.

Baumgartner [31] investigated the impact of using 2D and 3D convolutional layers,
as well as using different losses. In particular, the paper cover 4 convolutional neu-
ral network architectures: FCN-8 [32], 2D U-Net, modified 2D U-Net, and modified
3D U-Net. The modified versions set the number of feature maps in the transpose
convolutions of the upsampling path equal to the number of classes, intuitively as-
sociating each class with at least one channel. Both versions of the 2D U-Net-based
models outperform FCN-8 and the 3D U-Net, while of the two the modified version
leads to slightly better results. The authors highlight the possible reasons, as the
reduction of the total amount of parameters when using 2D U-Net networks, the
reduction of the total amount of training samples when using 3D data, the low res-
olution of the through-plane, and the substantial downsampling of 3D data due to
GPU memory restrictions. All the networks were trained with 3 different loss func-
tions: the standard pixel-wise cross-entropy, a weighted pixel-wise cross-entropy
to account for the class imbalance between the back-ground and the foreground
classes, and finally the dice loss. The weighted loss function led to marginally bet-
ter results than the standard cross-entropy, both surpassing the dice loss.

Similar to [31], Patravali [33] tested 2D and 3D U-Net based networks with dif-
ferent Dice and cross-entropy losses. The architecture is shown in Figure 2.5. Each
block (in blue) consists of two convolutions, intercalated with batch normaliza-
tion and a ReLU activation. The 2D segmentation model is trained slice-by-slice,
whereas we compute volumetric segmentation for the 3D model. In order to remove
inconsistencies in the dataset and ensure that the model receives uniform inputs,
preprocessing steps are performed, such as CLAHE to remove noise and enhance
contrast [34], normalization, clipping, resampling to a common voxel spacing of
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Figure 2.6. Architecture developed by Jang [36].

1.5x1.5x10, resize and crop to a fixed size of 256x256. Finally, on a random basis,
the data is rotated between -15 to +15 degrees and scaled between 0.9 - 1.1 range
to ensure slight robustness and variability in training the network. All the networks
are trained with 3 possible loss functions, the Cross-Entropy Loss (CE Loss), the
Dice Loss, and the Combined Cross Entropy-Dice Loss (Dice-CE Loss). From the
experiments, the proposed dice loss function outperforms CE Loss and CE-Dice
Loss functions across all metrics in both 3D and 2D models.

Yang [35] implemented a 3D U-Net, which substitutes the usual concatenations
with residual connections to smooth gradient flow. The training process conducts
transfer learning starting from a pretrained C3D model, and it exploits a deep
supervision mechanism, attaching several auxiliary loss functions to expose early
layers to better supervision. Limited by volume dimension, only 2 pooling layers
are inserted. Each convolutional layer is followed by a batch normalization layer
and a rectified linear unit (ReLU). The network is trained with a multi-class Dice
loss. Before feeding the data into the network, the intensity of original MR vol-
umes is calibrated with the CLAHE algorithm and normalized as zero mean and
unit variance. Random rotation with a probability of 0.30 is used to augment the
training dataset. The third dimension of the volume is resized to 32 during training
and testing to facilitate consecutive 3D convolution and pooling.

Jang [36] implemented an M-Net [37], which adds to the standard U-Net architec-
ture some concatenations between feature maps of the adjacent layers. The network
is trained end-to-end from scratch. The authors observe that, since the training
dataset has a relatively large slice thickness (from 5 mm to 10 mm), 3D informa-
tion degrades the performance and impedes generalization of the model, making
2D convolutions preferable. Therefore, the proposed FCN architecture [Figure 2.6]
has the same layers with M-net excluding the 3D convolution filter. Due to the
large variety of in-plane dimensions, from 154×224 to 427×512, the authors chose
to re-scale the maximum size of each image to 256, padding the residual regions
accordingly to get constant width and height of 256 × 256. The wide range of
voxel intensity resulting from the use of different scanners or acquisition protocols
is normalized by subtracting to the voxel intensity of each image the mean and
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Figure 2.7. Architecture developed by Khened [38].

dividing it by its standard deviation. Data augmentation is performed by rotating
each image from -60 to +60 degrees at uniform intervals of 15 degrees. A convex
hull is also applied to remove concavities only for LV. Finally, in order to balance
the contributions of each class to the training loss, a weighted cross-entropy is used.

Khened [38] developed a dense U-Net. Dense CNNs facilitate multi-path flow for
gradients between layers, and significantly reduce the number of parameters, which
is ideal to avoid overfitting in scenarios with a limited amount of data. Since the
cardiac MR images of each patient portray various surrounding structures (e.g., the
lungs and diaphragm), they are subject to a huge class imbalance concerning the
background. To alleviate this problem, their method extracts the Regions of Inter-
est (ROI) by applying a Fourier and a Canny edge detector, followed by a circular
Hough transform to compute an approximate radius and center of the LV. Starting
from the center, patches of size 128 × 128 are extracted from each scan. The pro-
posed technique enables the network to precisely learn the fine-grained structures of
the heart while reducing the computation time required for learning the parameters
of the network and also during inference. In order to augment the training data,
rotations, translations, rescaling, and flipping operations are employed. Before
feeding the data into the model, the voxel intensities of each CMR image are nor-
malized to the range of 0-1. The architecture of the network is shown in Figure 2.7.
The down-sampling and up-sampling components of the network adopts the fully
convolutional DenseNets architecture for semantic segmentation [39]. Dense blocks
concatenate new feature maps created at a given resolution. The use of dense blocks
instead of basic convolution blocks makes the system lighter, passing from a total
number of trainable parameters equal to 30M in the U-Net to 4M. Each layer in the
dense block is sequentially composed of Batch Normalization, Exponential Linear
Unit (ELU, observed to make the system converge faster than the ReLU), a 3× 3
convolution, and a dropout of 0.2. The first layer corresponds to an inception layer
[40], which concatenates 3× 3, 5× 5 and 7× 7 convolutions. The Transition-Down
block (TD) implements a 1× 1 convolution and a 2× 2 max-pooling layers. A skip
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Figure 2.8. Architecture developed by Zotti [43].

connection concatenates the output feature maps of the TU block and the output of
the DB block. Finally, the last layer implements a 1× 1 convolution layer followed
by a soft-max operation to generate the final label map of the segmentation. The
parameters of the network were optimized by training with a weighted dual cost
function, the sum of the Dice loss and the Cross-Entropy loss.

Rohé [41] implemented a multi-atlas segmentation framework. The characteris-
tic of such a framework is to divide the workflow into two phases: registration
phase and fusion phase. The first consists of overlaying the target image with all
the images in the training set, in order to create a geometrical alignment, useful
for further analysis. The registration step consists of rigid and non-rigid steps. It
is important to notice that the position and orientation of the heart in the target
image must be known prior to the registration step, in order to allow an appropriate
alignment. This task is performed with a CNN trained to detect two landmarks.
Given this information, the rigid registration step becomes a trivial alignment of
the images, while the non-rigid step relies on SVF-Net [42]. The fuse phase con-
sists of a soft fusion method that merges the registered label fields, using pixel-wise
confidence measures.

Zotti [43] implemented an architecture, called GridNet, which is specifically de-
signed to segment the CMR images, embedding a shape prior and a loss function
tailored to the cardiac anatomy. The model integrates a cardiac center-of-mass
regression module and a segmentation module. The regression module, together
with a precalculated shape prior S, allows for an automatic shape prior registra-
tion by translating S on the estimated center of mass. The shape prior S is a 3D
volume that encodes the probability of each voxel being part of a certain class.
Such probability is estimated by computing the pixel-wise empirical proportion of
each class based on the ground truth label fields provided with the training dataset.
The architecture is made of a grid-like CNN network with 3 columns and 5 rows
[Figure 2.8]. The authors assert that a common issue with MRI cardiac images
is the fact that along the 2D short-axis, the location of the heart sometimes gets
shifted from one slice to another due to different breath-holds during successive



Background

acquisitions. For this reason, the network is fed exclusively with 2D slices taken
from the ED or ES phase independently, on which 2D convolutions of filter size
3× 3 are performed. The first column of convolutions (from CONV-1 to CONV-5)
extracts high-level features, used to predict the cardiac center of mass. The second
column (from CONV-6 to CONV-9) contains 4 convolution layers used to compute
features at various resolutions. The last column (from UNCONV-1 to UNCONV-4)
aggregates features from the lowest to the highest resolution, merging both global
and local features used to segment the image. Overall, the architecture can be seen
as an extension of the U-Net, except for the middle CONV-6 to CONV-9 layers
along with the skip connections and for the use of CONV-5 for center-of-mass es-
timation. Finally, the MERGE-1 layer is fed with 7 feature maps: 4 coming from
UNCONV-4 and 3 from the realignment of S, based on the estimated center of
mass. The architecture makes use of batch normalization, the ReLU activation
function, and dropout. The number of total parameters decreases from 32 million
in the original U-Net to 8 million. The loss used to train the GridNet incorporates
four terms: the cross-entropies of the predicted labels and the predicted contours,
the Euclidean distance between the predicted and the true centers of mass, and the
prior loss. The authors also precise they make no use of any manual preprocessing
and image cropping so that their model learns both high-level features (useful to
distinguish the heart from other organs with a similar shape) and low-level features
(useful to get accurate segmentation results).

Wolterink [44] developed a CNN without an encoder-decoder architecture. At
first, to normalize the differences in voxel size, all 2D images are resampled to
1.4× 1.4 mm2 spacing. To correct for image intensity differences between images,
each MR volume is rescaled between 0 and 1 according to the 5th and 95th per-
centile of intensities in the image. The network is designed to contain a sequence
of convolutional layers with increasing levels of kernel dilatation to predict each
pixel’s label by relying on a sufficiently large receptive field. The model counts two
separated input channels for the ED and the ES phases, and eight output channels,
one per class and phase. The trainable parameters of the CNN are optimized by
minimizing a soft Dice loss function. Potential overfitting of the network was mit-
igated by the inclusion of Batch Normalization layers and of L2-regularization.

Tziritas and Grinias [45] implemented a Chan-Vese level-set method followed by
an MRF graph cut segmentation method and spline fitting to smooth out the re-
sulting boundaries. Since this method does not implement a deep convolutional
architecture, the details are omitted since such techniques are out of the scope of
this thesis work.

Few months after the ACDC Challenge, similar highly accurate results were achieved
by Bai [46] on a far larger dataset, acquired from the UK Biobank [2]. The dataset
collects CMR images of 5008 patients, each pixel-wise annotated by a team of 8
experts. The proposed model [Figure 2.9] is adapted from the VGG-16 and it con-
sists of 16 convolutional layers with 3 × 3 kernel, followed by batch normalization
and a ReLU activation. After every two or three convolutions, the feature map is
downsampled by a factor of 2 so as to learn features at a more global scale. Feature
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Figure 2.9. Architecture developed by Bai [46].

maps learned at different scales are then upsampled to the original resolution us-
ing transposed convolutions to be then concatenated. Finally, three convolutional
layers of kernel size 1 × 1, followed by a softmax function, are used to predict a
probabilistic label map. The mean cross-entropy between the probabilistic label
map and the manually annotated label map is used as the loss function. This
architecture differs from U-Net for the upsampling half of the network, which it-
eratively doubles the feature map at each scale. Before feeding the images to the
network, they are all cropped to the same size of 192×192 and intensity normalized
between 0 and 1. Data augmentation is performed on-the-fly by applying random
translation, rotation, scaling, and intensity variation to each mini-batch of images.

The authors tested their model on both the ACDC dataset and the UK Biobank
dataset. Their expectations were unfulfilled: once trained on one dataset, the model
showed low performance on the other. This pointed out a clear generalization prob-
lem for cardiac image segmentation.

Poor generalization is not the only contemporary problem in CMR segmentation.
The current bottleneck towards the large scale use of learning-based pipelines comes
from the monitoring and maintenance of the deployed ML systems. In clinical
practice, a quality control step comes right after the acquisition through visual
inspection. In the case of effective automation of the only segmentation process,
the result is subject to a careful quality check by a human operator, and thus not
fitting into high-throughput acquisition protocols. However, the identification of
unusable segmentations is crucial to ensure the reliability of subsequent diagnoses,
and consequently, it must be automized as well and not left behind.

The problem of automatic quality assessment and the problem of generalization
are the protagonists of the next two chapters.



Chapter 3

Efficient model monitoring for
quality control in cardiac image
segmentation

In this chapter, we present a novel learning framework to monitor the performance
of cardiac image segmentation models in the absence of ground truth. Formulated
as an anomaly detection problem, the monitoring framework allows to derive surro-
gate quality measures for a segmentation and allows to flag suspicious results. The
intuition behind this work lies on the possibility of estimating a model of variability
of cardiac segmentation masks from a reference training dataset provided with a
reliable ground truth. This model relies on a a convolutional autoencoder, which
can be subsequently used to identify anomalies in segmented unseen images. We
propose two different types of quality measures, a global score and a pixel-wise
map. We demonstrate their use by reproducing the final rankings of the ACDC
Challenge [1] in the absence of ground truth. Results show that our framework is
accurate, fast and scalable, making it a viable option for quality control monitoring
in clinical practice and large population studies.

3.1 Motivation

The current bottleneck towards the large scale use of learning-based pipelines in
the clinics comes from the monitoring and maintenance of the deployed machine
learning (ML) systems [47], assuring continuous high model performance and seg-
mentation results. As shown in [1], despite the very high performances achieved,
these methods may generate anatomically impossible results. In clinical practice
and population studies, it is of utmost importance to constantly monitor a model’s
performance to determine when it degrades or fails, leading to poor quality results,
as they may represent important risks. A system’s continuous performance assess-
ment and the detection of its degradation are challenging after deployment, due
to the lack of a reference or ground truth. Therefore, translation of models into
clinical practice requires the development of monitoring mechanisms to measure a
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model’s segmentation quality, in the absence of ground truth, that guarantee their
safe use in clinical routine and studies.

Several factors could be cause of failures in both the acquisition process and the
segmentation process of CMR images. Tarroni [48] asserts that the quality of a
CMR image can easily be compromised, depending on the ability of the opera-
tor to correctly select the acquisition parameters in relation to the subject being
scanned, the cooperation of the subject who must minimize movements during the
process, and on some further circumstances out of the control of both the operator
and the patient, such the presence of arrhythmias, the presence of bulk, the blood
flow and the magnetic field inhomogeneities. The paper presents a fully automated
quality control pipeline for CMR images, capable of detecting the scenarios de-
scribed above to warn a human operator. When analysing 19265 short-axis (SA)
cine stacks from the UKBB, such pipeline reports up to 14.2% with suboptimal
coverage, up to 16% affected by noticeable inter-slice motion, up to 2.1% with an
average end-diastolic cardiac image contrast below 30% of the dynamic range.

Insufficient image quality could cause a failure in any segmentation model and,
in general, there is no way to determine a priori the behaviour of black box al-
gorithms, such as neural networks, on new data. Nevertheless, when integrating
automatic segmentation into a clinical setting it is of prime importance to be able to
measure output quality, also in the absence of ground truth. Therefore, translation
of models into practice requires the development of monitoring mechanisms to mea-
sure model performance, guaranteeing their safe use in clinical routine and studies.
In a first attempt to assess performance in the absence of ground truth, Kohlberger
[49] trained a model from segmentation errors measured against a ground truth,
using a set of hand-crafted features, to predict overlap error and Dice Score Coeffi-
cient (DSC). To avoid the need of hand-crafted features, Robinson [50] proposed a
supervised DL-based approach to predict Dice Similarity Coefficients (DSC) from
estimated quality obtained via reverse testing strategy. This assessment is quick
enough to allow an immediate intervention, such as a second scan in case the first
is not analysable, both with or without the need of a human operator. Although,
the results reported do not allow a direct one-to-one mapping to the reference DSC,
but they need to be rounded on some threshold to correctly predict whether a seg-
mentation is good or poor, without distinguishing between two segmentations of
similar quality. More recently, Puyol-Antón [51] used a Bayesian neural network to
measure a model performance by classifying its resulting segmentation as correct
or incorrect.

The main drawback of the three methods mentioned in the paragraph above is
that they require annotations reflecting a large set of quantitative (e.g. DSC) or
qualitative (e.g. correct/incorrect) segmentation quality levels, which can be diffi-
cult to obtain. The Reverse Classification Accuracy (RCA) [52, 53] addressed this
problem by using atlas label propagation. This registration-based method relies
on the spatial overlap between predicted segmentations and reference atlases to
measure the performance of a segmentation model on new data. The framework
consists of a reverse classifier, trained from scratch on each new patient’s scan,
referring to the result of the original model as ground truth. Once trained, the
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reverse classifier is tested on some reference images with available ground truth.
This process works under the hypothesis that if the predicted segmentation is of
good quality, then the reverse classifier will produce a good segmentation on at
least one atlas image. However, training a new classifier to evaluate any new data
has tight computational demands, and does not conform to a real-time application.
Furthermore, it is possible that the atlas registration step fails. This is often the
case for certain cardiac pathologies that introduce significant morphological defor-
mations that the registration step is not able to recover [54]. In such cases, it is
necessary to verify the results and manually fine-tune the registration step, limiting
the method’s scalability.

We present a novel learning framework to monitor the performance of cardiac im-
age segmentation models in the absence of ground truth. Differently from previous
learning-based approaches [49, 50, 51], we avoid the need of any type of annota-
tions about the quality of a segmentation for training. Our approach also avoids
the required spatial alignment between ground truth images and segmentations
of RCA [53], thus circumventing image registration. The proposed monitoring
framework relies on an anomaly detection setup with a convolutional autoencoder.
Autoencoders can locate the cause of a low-quality verdict inside the segmentation
itself. Reporting these occurrences to an expert, he could promptly focus on the
precise part of the scan causing the failure in the segmentation model, speeding up
eventual corrections. Since many relevant applications must rely on novelty detec-
tion protocols, the identification of anomalous structures in natural image data has
been extensively covered in recent years. Machine learning systems seem to have
difficulties to recognize if an image is similar or not to the images they previously
observed, task efficiently performed by humans instead.

In 2019 Bergmann [55] conducted a thorough evaluation of current state-of-the-
art unsupervised anomaly detection methods based on deep architectures. Among
the many approaches suggested over the years, the most effective make use of
Deep Convolutional Autoencoders (CAEs) [56], Generative Adversarial Networks
(GANs) [57] or features appositaly extraced from pre-trained convolutional neural
networks. In this work, CAEs are subjects of further experiments and readjust-
ments for the identification of inconsistencies within segmentation masks.

3.2 Method

We first present our cardiac segmentation model monitoring framework, followed
by a description of the selected architecture and training settings. Hereafter, we
refer to 2D images and convolutional autoencoders, our backbone network. The
extension to 3D images or other types of autoencoders is trivial.
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Figure 3.1. Architecture of an autoencoder.

3.2.1 Background

An autoencoder (Fig. 3.1) is an artificial neural network which aims to copy its in-
put to its output, made of an encoding and a decoding part. Through the encoder,
the input is projected into a latent representation, a code which encapsulates the
information needed to the decoder for the reconstruction.

Autoencoders are designed to be unable to learn to copy perfectly: in this way,
the model is forced to prioritize which aspects of the input should be copied, often
learning useful properties of the data. The most common way to obtain useful fea-
tures is to constrain the latent representations to lay in a lower dimensional space
than the input space. An autoencoder with such property is called undercomplete.
The learning process of an autoencoder consists of minimizing a loss function LAE

which retrieves larger penalties the more dissimilar the output is from the input.
The main challenge when designing an autoencoder is the choice of the capacity for
the encoder and the decoder, together with the choice of the latent size. There is
not a strong mathematical theory to support these choices, and bad decisions lead
to perform the copying task without extracting useful information.

3.2.2 Model Monitoring Framework

Let us denote X ∈ CH×W a segmentation mask of width W and height H, with C
the set of possible label values. A Convolutional Autoencoder (CA) is trained to
learn a function
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Figure 3.2. A convolutional autoencoder (CA) is trained with ground truth (GT)
masks from a cardiac magnetic resonance (CMR) dataset. At inference, the CA

reconstructs an input mask bX, previously segmented by a given model. The recon-
structed mask ( bX 0) acts as a pseudo ground truth (pGT) to estimate a function
ρ, a surrogate measure of the segmentation quality and the model performance.

f : CH×W → CH×W , (3.1)

with X 0 = f(X) ≈ X, by minimizing a global dissimilarity measure between an
input mask X and its reconstruction X 0. In an anomaly detection setup, the CA is
trained using normal samples, i.e., samples without defects. In our framework, the
normal samples are the ground truth (GT) masks associated to the images used to
train a segmentation model (Fig. 3.2a). The CA learns to reconstruct defect-free
samples, i.e. the GT, through a bottleneck, the latent space Z.

At inference (Fig. 3.2b), the CA is used to obtain bX 0 = f( bX), where bX is a
segmentation mask, generated by a cardiac segmentation model/method on unseen

data, and bX 0 its reconstruction. Since the CA is trained with ground truth data,
the quality of the reconstruction will be generally high for segmentation masks with
similar characteristics than those in the ground truth. Poor segmentations, which
the CA has not encountered at training, will instead lead to bad reconstructions
( bX 0 /≈ bX). Indeed, it will not be possible to find a proper representation of the
input within Z, forged to exclusively capture intrinsic traits of correct segmen-
tations from the GT. Autoencoder-based anomaly detection methods exploit the
reconstruction error, i.e. k bX 0 − bXk2, to quantify how anomalous is a sample [58].
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We use this principle to establish a surrogate measure of the segmentation quality
by quantifying a segmented mask and its reconstruction.

Let us so formalize the function ρ( bX, bX 0), a surrogate measure of the segmentation
quality of the mask in the absence of GT. In this context, we denote bX 0 a pseudo
GT (pGT) since it acts as the reference to measure performance. We present two
different scenarios for ρ. First, we propose

ρ1 : CH×W → R, (3.2)

which represents the most commonly setup in autoencoder-based anomaly detec-
tion, ρ1 often being the L2-norm. Due to the generic nature of ρ1, better suited
metrics for segmentation quality assessment can be used instead, such as the DSC
or the Hausdorff Distance (HD). Secondly, we propose

ρ2 : CH×W → RH×W . (3.3)

This function generates a visual map of the inconsistencies between the two masks.
We use as ρ2(·) a pixel-wise XOR operation between the segmentation mask bX and
the pGT.

These two types of measures can be used jointly for performance assessment and
model monitoring. Measures obtained from ρ1-type functions (Def. 3.2) can be
paired with a threshold to flag poor segmentation results. The raised alert would
then be used to take application-specific countermeasures as, for instance, a visual
inspection of an inconsistency map generated by ρ2-type functions (Def. 3.3).

3.2.3 Network Architecture

We use the CA architecture proposed in [59] as the backbone network (Fig. 3.3),
introducing the following modifications. We use a latent space dimension to accom-
modate 100 features maps of size 4×4. A softmax activation function is added to
the last layer to normalize the output to a probability distribution over predicted
output classes, as well as batch-normalization and dropout to each hidden layer.
We use the loss function:

L = LMSE(X,X 0) + LGD(X,X 0) (3.4)
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where LMSE is the mean squared error loss and LGD the generalized dice loss [60].
Trained over 500 epochs, for the first 10 epochs LGD is computed leaving aside
the background class to avoid the convergence to a dummy blank solution. The
network weights are set using a He normal initializer. The Adam optimizer is ini-
tialized with learning rate 2× 10−4 and a weight decay of 1× 10−5. After every
epoch, the model is evaluated on the validation set. The weights retrieving the
lowest L value are stored for testing.

Layer Output Size Parameters

Kernel Stride Padding

Input 256x256x4
Block1 128x128x32 4x4 2 1
Block2 64x64x32 4x4 2 1
Block3 32x32x32 4x4 2 1
Block4 32x32x32 3x3 1 1
Block5 16x16x64 4x4 2 1
Block6 16x16x64 3x3 1 1
Block7 8x8x128 4x4 2 1
Block8 8x8x64 3x3 1 1
Block9 8x8x32 3x3 1 1
Conv2d 4x4x100 4x4 2 1

Block

Conv2d

BatchNorm2d

LeakyReLU

Dropout

Figure 3.3. Architecture of the encoding module. The decoder is built reversing
this structure, and replacing convolutions with transposed convolutions.

3.3 Experimental Setup

3.3.1 Data

We used data from the Automatic Cardiac Diagnosis Challenge (ACDC) [1]. The
dataset consists of an annotated set with 100 short-axis cine magnetic resonance
(MR) images, at end diastole (ED) and end systole (ES), with corresponding labels
for the left ventricle (LV), right ventricle (RV) and myocardium (MYO). The set
was split into training and validation subsets using a 80:20 ratio. The challenge
also provides a testing set with 50 cases, with no ground truth publicly available.
To have uniform image sizes, these were placed in the middle of a 256×256 black
square. Those exceeding this size were center cropped.

3.3.2 Setup

We trained the monitoring framework using the ground truth masks from the ACDC
training set and used it to assess the performance of five methods participating in
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the ACDC Challenge [31, 28, 38, 35, 45] and an additional state-of-the-art cardiac
segmentation model [46]. We trained five of these models [31, 28, 38, 35, 46] using
the challenge’s full training set (MR images and masks) and then segmented the
ACDC test images. For the remaining method [45], we obtained the segmentation
masks directly from the participating team. We gained access to the code of another
model [61], but we were not able to reproduce results similar to those reported in
the challenge [1]. Therefore, we discarded this model for the remaining experiments.

The segmentations from every method were fed to the monitoring framework. The
resulting pGTs were used to compute ρ1-type measures (Def. 3.2), the DSC and the
HD, and a ρ2-type measure, an inconsistency map (Def. 3.3). We also computed
pseudo DSC/HD using the RCA [53]. The ACDC challenge platform estimates
different performance measures (DSC, HD, and other clinical measures) on the
testing set upon submission of the segmentation results. We uploaded the masks
from every model to obtain real DSC and HD. To differentiate the real measures
computed by the platform from our estimates, we denote the latter ones pDSC and
pHD. In our experiments, we set pHD > 50 or pDSC < 0.5 to flag a segmentation
as suspicious and pHD = pDSC = 0 to raise an erroneous segmentation alert flag.

3.3.3 Implementation

We implemented our framework in Pytorch. All the cardiac segmentation models
used the available implementations, except for [45], where we had the segmenta-
tion masks. The RCA was implemented following the guidelines in [53, 52] using
a previously validated atlas propagation heart segmentation framework [22]. All
experiments ran on Amazon Web Services with a Tesla T4 GPU. To encourage
reproducibility, our code and experiments are publicly available1.

3.4 Results

Figure 3.4 and Figure 3.5 present scatter plots of the real HD and DSC from the
ACDC platform and the pHD and pDSC obtained with our framework and the
RCA [53, 52]. We present results for LV, RV and MYO and report the Pearson
correlation coefficient r.

We obtain r(HD, pHD) = 0.950, 0.938 and 0.971, r(DSC, pDSC) = 0.715, 0.915
and 0.769 for the LV, RV and MYO, which show a high correlation between real
scores and our estimations. Our framework consistently outperforms RCA. The real
and pseudo HDs show higher correlations than the DSC. This can be explained by

1https://github.com/robustml-eurecom/quality_control_CMR

https://github.com/robustml-eurecom/quality_control_CMR
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Figure 3.4. HD vs. pHD for our framework (CA) and RCA on LV (left), RV
(center) and MYO (right). Models with highest (top) and lowest (middle) r,
and all cases (bottom).

the higher sensitivity of the HD to segmentation errors. Instead, the DSC is robust
to minor segmentation errors making accurate prediction of very high performing
models is challenging, as the metric shows little variability.

In one case (Fig. 3.4 and Fig. 3.5 middle rows), our method fails to obtain pseudo
measures that highly correlate to the real ones (and the same actually happens for
RCA). This case presents low HDs/high DSCs, reflecting high quality segmenta-
tions. Although our framework predict low pHDs and high DSCs, it seems that an
accurate prediction of very high performing models is challenging.

Table 3.1 and Table 3.2 simulate the ACDC Challenge results using real HD and
pHD/DSC and pDSC for every model to determine if our framework is a reliable
means to rank the performance of the different cardiac segmentation methods. We
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Figure 3.5. DSC vs. pDSC for our framework (CA) and RCA on LV (left),
RV (center) and MYO (right). Models with highest (top) and lowest (middle)
r, and all cases (bottom).

report results for LV, RV and MYO in ED and ES and compare them against
the RCA. The ranking quality is assessed using the Spearman correlation coeffi-
cient rs between the real and the pseudo measures, excluding one method [28] for
which RCA failed. In the case of HD, which indeed shows a higher r coefficient
(Fig. 3.4), we were able to reproduce the real ranking (rs=1.0) for five out of six
cases. In the remaining cases, there are only small differences between the real and
our pseudo ranking, with the exception of DSC-ED-MYO (rs=0.3) and DSC-ES-
LV (rs=0.1). This shows that our framework is a reliable mean for method ranking.

Through the use of alert flags we were able to detect 16 cases for which the chal-
lenge platform reported NaN values that indicate errors in the submitted results.
Fifteen cases were flagged as erroneous (pHD = pDSC = 0) and one as suspicious
(pHD > 50) by our framework. Fig. 3.6 shows the inconsistency maps of two cases.
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Table 3.1. ACDC Challenge simulation reporting real HD (GT), pHD using the
proposed framework (Ours) and RCA, and the Spearman correlation coefficient rs
between the the real and the pseudo measures for 6 models in ED and ES. pHD
using RCA for [28] were excluded due to failures in the registration step.

ED
LV RV MYO

Model GT Ours RCA GT Ours RCA GT Ours RCA

Bai [46] 39.01 23.38 15.55 50.21 31.82 56.22 47.10 28.46 20.42
Baumgartner [31] 7.14 3.87 9.30 14.00 7.72 37.63 9.49 4.43 10.52
Isensee [28] 7.01 3.88 - 11.40 7.82 - 8.44 4.38 -
Khened [38] 16.81 6.39 10.58 13.25 6.87 39.01 16.09 6.08 11.22
Tziritas [45] 8.90 4.69 8.92 21.02 9.86 41.10 12.59 4.58 10.65
Yang [35] 16.95 5.29 12.96 86.08 47.24 44.75 31.93 16.39 15.12
rs - 0.90 0.90 - 1.00 0.80 - 1.00 1.00

ES
LV RV MYO

Model GT Ours RCA GT Ours RCA GT Ours RCA

Bai [46] 50.53 29.56 20.01 52.73 31.40 53.68 52.72 31.05 26.60
Baumgartner [31] 10.51 4.41 9.56 16.32 7.10 35.50 12.47 4.77 9.33
Isensee [28] 7.97 4.07 - 12.07 6.99 - 7.95 4.27 -
Khened [38] 20.14 6.96 11.72 14.71 7.07 35.65 16.77 6.03 10.36
Tziritas [45] 11.57 5.00 10.46 25.70 9.61 36.51 14.78 5.59 10.60
Yang [35] 19.13 6.11 11.78 80.42 33.21 40.68 32.54 16.98 13.68
rs - 1.00 0.90 - 1.00 0.80 - 1.00 0.90

Table 3.2. ACDC Challenge simulation reporting real DSC (GT), pDSC using the
proposed framework (Ours) and RCA, and the Spearman correlation coefficient rs
between the the real and the pseudo measures for 6 models in ED and ES. pDSC
using RCA for [28] were excluded due to failures in the registration step.

ED
LV RV MYO

Model GT Ours RCA GT Ours RCA GT Ours RCA

Bai [46] 0.96 0.93 0.80 0.94 0.88 0.67 0.89 0.80 0.45
Baumgartner [31] 0.96 0.93 0.73 0.93 0.89 0.61 0.88 0.81 0.38
Isensee [28] 0.97 0.93 - 0.95 0.89 - 0.90 0.81 -
Khened [38] 0.94 0.92 0.74 0.88 0.88 0.56 0.85 0.82 0.40
Tziritas [45] 0.95 0.92 0.74 0.86 0.86 0.57 0.79 0.80 0.43
Yang [35] 0.81 0.89 0.65 0.31 0.48 0.33 0.43 0.71 0.34
rs - 0.80 0.70 - 0.90 0.90 - 0.30 0.60

ES
LV RV MYO

Model GT Ours RCA GT Ours RCA GT Ours RCA

Bai [46] 0.85 0.87 0.67 0.86 0.84 0.53 0.86 0.82 0.54
Baumgartner [31] 0.89 0.84 0.60 0.86 0.86 0.43 0.89 0.82 0.48
Isensee [28] 0.93 0.85 - 0.90 0.85 - 0.92 0.83 -
Khened [38] 0.86 0.85 0.59 0.83 0.83 0.37 0.88 0.82 0.49
Tziritas [45] 0.87 0.81 0.56 0.74 0.80 0.37 0.80 0.80 0.44
Yang [35] 0.65 0.72 0.52 0.18 0.45 0.23 0.46 0.66 0.43
rs - 0.10 0.30 - 0.90 0.90 - 1.00 0.60

The top-most shows a segmentation flagged as erroneous, where the inconsistency
map confirms that the LV has not been segmented. The bottom-most presents a
segmentation flagged as suspicious, where the LV pHD is high (pHD = 104.93), al-
though the pDSC = 0.814 is within normal range. The inconsistency map confirms
the clear segmentation error.
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Figure 3.6. Segmentations (a, d and g), along with pGTs (b, e and h), and
inconsistency maps (c, f and i). Case a shows a successful segmentation,
which is indeed not flagged by our framework. Case d is flagged as erroneous
with pHD = pDSC = 0 in the LV; case g is flagged as suspicious with pHD =
104.93 for the LV (pDSC = 0.814). The inconsistency maps confirm the
segmentation errors.
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3.5 Conclusions

We presented a novel learning framework to monitor the performance of cardiac im-
age segmentation models in the absence of ground truth. Our framework addresses
the limitations of previous learning-based approaches thanks to its formulation un-
der an anomaly detection paradigm, which allows training without the need of
quality scores labels. The reported results show a good correlation between real
performance measures and those estimated with the pGT, making it a reliable al-
ternative when there is no reference to assess a model.

Compared with state-of-the-art RCA, our method avoids the use of image reg-
istration which makes it more robust, scalable and considerably faster (≈ 20 min
RCA vs. ≈ 0.2 s ours, per case). CAs allow for fast inference which conforms to
real-time use, thus permitting a quick quality assignment, for example, in a clinical
setting. All these characteristics make the proposed framework a viable option for
quality control and system monitoring in clinical setups and population studies.

We are proud to specify that the writing of this chapter led to the submission
of a paper at FIMH 2021.



Chapter 4

Semi-supervised segmentation for
improved cross-domain
generalisation

In this chapter, we introduce a semi-supervised learning framework that builds
upon the results achieved by our quality assessment model in Chapter 3. We train
again a convolutional autoencoder to learn the variability of ground truth data in
a source domain. Under the assumption that the label space is consistent across
domains, the quality control (QC) module serves as a proxy of the segmentation
model’s performance when tested in unlabelled data from a target domain. This
information is used as feedback to refine the training of the segmentation model,
which learns from both labelled and unlabelled data and adapts to the target. We
evaluated our method on a public multi -centre, -vendor and -disease cardiac MR
image segmentation dataset [62]. We show that by using a single labeled source
domain along with unlabelled data from the target domain, we increase the cross-
domain generalisation of the segmentation model as measured by the Dice score
coefficient.

4.1 Motivation

Deep learning methods still suffer a severe limitation: they fail to generalise to a
domain different from the one of the training set [46], e.g., a different scanner, ac-
quisition protocol or population demographics. In order to fulfill the task of CMR
segmentation in a traditional supervised manner, data scientists need manually
delineated cardiac images to train their models. Labeling data from the unseen
domain to then re-train the original model, although straightforward, is expensive,
labour-intensive and not scalable to clinical scenarios. The collection of a signif-
icant amount of data requires a major effort by radiologists, which are delegated
to manually draw contours of the heart sections, an analysis that typically takes a
trained expert around 20 minutes per subject. For this reason, it is hardly viable
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Figure 4.1. Segmentation workflow developed by Guo [67].

to include in an annotated training set enough variability to faithfully represent
different demographics, protocols and scanners.

An example of the generalisation problem pointed out in the previous paragraph
can be found in Bai’s work [46]. The authors combined cardiac images from the
ACDC dataset [1] and the UK Biobank dataset [2], counting respectively 100 and
5008 patients. They showed that once trained on one dataset, their model did
not generalise well when tested on the other unless performing fine-tuning to force
the adaption of the model to the new data. Since fine-tuning requires resuming
the training process every time the protocol or the scanner in use changes, this is
not a practicable solution. The reasons behind such a disappointing result have
to be sought in the major differences between the two datasets under study. Be-
sides the fact that images were taken with different scanners and protocols, the
UK Biobank dataset is more homogeneous, with a preponderance of healthy cases.
On the contrary, a wide proportion of the ACDC dataset consists of pathological
cases, some absent in the UK Biobank cohort due to the variety of clinical patterns.

Model generalisation is an active topic of research beyond medical imaging [63, 64],
and, over the past years, multiple works have explored alternatives [65, 66, 67, 68,
69] to improve the generalisation capacity of CMR segmentation models. U-Net
based models count millions of parameters, so previous methods have tackled the
problem by reducing the model’s complexity using regularisation [67] or optimised
network architectures that reduce the number of parameters [68]. Khened [68] pre-
sented a DenseNet-based FCN architecture, whose optimized connectivity pattern
leads to parameter efficiency and, consequently, to better generalisation. Guo [67]
developed a model integrating CNN, continuous kernel cut, and bound optimiza-
tion in a unified max-flow framework which was demonstrated to improve model
generalisability. [Fig. 4.1] Although these techniques are very effective at reducing
overfitting when the training sets are small, there is no guarantee they can mitigate
poor cross-domain generalisation.

An alternative to improve model generalisation is to increase the amount of avail-
able training data. Data augmentation has been explored to enlarge the training set
by simulating various possible data distributions across different domains, applying
geometrical operations to the source training data. Chen [65] proposed a training
pipeline for CNN-based cardiac segmentation methods revealing simple but effec-
tive data normalization and augmentation strategies that improve generalisability.
The technique, however, has shown to be less performing with cross-domain data
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Figure 4.2. The architecture of a GAN, a generative model capable of draw-
ing samples with the same statistics as in a given dataset. Its functioning de-
pends on the outcome of a game played by two neural networks, the generator
and the discriminator.

than with the intra-domain ones [65]. Domain adaptation techniques propose to
enlarge the training set by combining labeled source domain data with target do-
main one. Depending on how the target domain data is exploited, these methods
can be unsupervised [69, 70] or semi-supervised [66, 71].

Nie [71] developed an attention-based semi-supervised deep learning framework
integrating a fully convolutional confidence network to adversarially train a pelvic
organ segmentation model. Such setup was originally introduced by Hung [72] in
a more general context. The framework substitutes the generator and the CNN-
based discriminator of a Generative Adversarial Network (GAN) [57] [Fig. 4.2] with
a segmentation network and an FCN-based discriminator respectively. Instead of
a binary output, an FCN-based discriminator retrieves a confidence map of the
same width and height as the input. Each value of the confidence map represents
the probability of being peculiar to the ground truth domain or the segmentation
output domain at a local level. This information points out the trustworthy regions
in the label maps output by the segmentation network on unlabelled data, which
are therefore integrated into the backpropagation learning process.

Chen [70] presented an unsupervised domain adaptation framework, named as Syn-
ergistic Image and Feature Alignment (SIFA), to adapt a segmentation network to
an unlabeled target domain. The proposed model conducts synergistic alignment
of domains from both image and feature perspectives. The authors leveraged ad-
versarial learning and deeply supervised mechanism to simultaneously transform
the appearance of images across domains and enhance domain-invariance of the
extracted features [Fig. 4.3].

For both the methods described above [71, 70], domain adaptation approaches
rely on adversarial training, which, however, represents their main limitation. In-
deed, it has been well-established that adversarial training is difficult and prone to
instabilities due to problems such as mode collapse and non-convergence [73].
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Figure 4.3. Architecture developed by Chen [70].

In this chapter, we propose to exploit QC information to assist a segmentation
model to learn from unlabelled data coming from a new domain. Under the assump-
tion that the label space is consistent across domains, we train a QC assessment
module to learn the variability of ground truth data in a source domain. At infer-
ence, the QC module provides estimates of a segmentation model’s performance in
unseen data from the target domain. We use these quality measurements as feed-
back to refine the training of a segmentation model, which was previously trained
using source domain data. To the best of our knowledge, although segmentation
quality measurements are a proxy of a model’s generalisation capabilities, this infor-
mation has not been explicitly used to improve cross-domain generalisation before.
Formulated as a semi-supervised process, our training framework avoids the lim-
itations of data augmentation strategies. Furthermore, our QC module allows us
to avoid the adversarial setup of domain adaptation techniques, thus leading to
improved robustness and stability.

4.2 Method

Let us denote X ⊂ RH×W the input image domain, and Y ⊂ CH×W the domain
of the corresponding segmentation masks with width W and height H, where C
is the set of possible label values. Our goal is to train a segmenter network M
using Ds = {(xs

i ,y
s
i )}ns

i=1, a training set from a given source domain s, consisting
of ns source images xs

i ∈ X and the corresponding segmentation masks ys
i ∈ Y .

In addition to Ds, we have access to Dt = {(xt
i)}nt

i=1 an unlabelled set in a target
domain t, which is different from s.

To achieve cross-domain generalisation, i.e. preventing the performance drop of
M when tested in t, we propose a learning framework, in which the generalisation
of the segmenter M is enabled by a QC assessment module. Assuming that the
space Y is consistent across domains, the QC module consists of a reconstruction
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Figure 4.4. Illustration of our method. During the supervised phase, both
the segmenter M and the image reconstructor R are trained independently
using Ds. During the semi-supervised phase, the pre-trained segmenter M
is used to segment unlabelled images from Dt that are then fed to R. The
difference between the reconstruction byR and the model’s segmentation byM

is backpropagated to update M.

network R, which quantifies if a segmentation mask provided by the segmenter in
the domain t is compatible with the general variability of ground truth data learned
from domain s.

The framework is trained in two phases. First, M and R are individually trained
on Ds (supervised phase). Second, using Dt, M is updated to achieve realistic
segmentations in the target domain t according to the QC feedback given by R
(semi-supervised phase). Figure 4.4 illustrates the proposed framework scheme.

4.2.1 The segmenter M

The segmenter network M learns a function fM : X → Y , which is then used to
predict a segmentation mask byM = fM(x). In this sense, it is a standard segmen-
tation network trained in a supervised setting, where the training and validation
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sets come from the same source domain s. It should be noted that the functioning
of the framework is not conceived to depend on a specific segmenter architecture,
for which several options are available in the literature tailored for cardiac image
segmentation [74].

4.2.2 The image reconstructor R

In line with Chapter 3, we use an anomaly detection setup for QC of image segmen-
tations. In this context, the image reconstructor R is trained to learn a function
fR : X × Y → Y , with byR = fR(x,y) ≈ y. (4.1)

In an anomaly detection setup, R is trained using normal samples, i.e. samples
without defects. In our framework, the normal samples are the ground truth masks
coming from Ds. The reconstructor learns to recreate defect-free samples, i.e. the
ground truth, through a bottleneck.

Under the assumption that the space Y is consistent across domains, once trained,
R is used to obtain byR = fR(x, byM), where byM is a segmentation mask, generated
by the cardiac segmenterM on unseen data, and byR its reconstruction. Since R is
trained with ground truth data, the quality of the reconstruction will be generally
high for segmentation masks with similar characteristics than those in the ground
truth. Poor segmentations, which R has not encountered at training, will instead
lead to bad reconstructions (byR /≈ byM).

Autoencoder-based anomaly detection methods measure the degree of (dis-) simi-
larity between the input (byM) and its reconstruction (yR) and use this information
as a surrogate measure for QC of the segmentation. We use this principle to mea-
sure the performance of M in the target domain t and then backpropagate it to
refine M.

Our reconstructor is implemented as a modified convolutional autoencoder. Differ-
ently from the original conception [59], the autoencoder network receives as input
both the segmentation mask to reconstruct yi and its associated image xi. The
output remains only the reconstructed segmentation mask (Eq. 4.1).

4.2.3 Two-phase training

In this section we look at the details of the two-phase training process, which is
summarised in Algorithm 1.
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Algorithm 1 Two-phase training algorithm

Require: Datasets Ds, Dt, threshold λ
Ensure: Segmenter M

1: Initialize M,R
2: repeat
3: Sample (xs

i ,y
s
i ) from Ds

4: Forward pass:byM
i ← fM(xs

i )
Drop-connect(R)byR
i ← fR(xs

i ,y
s
i )

5: Estimate losses:
LM

sup ← L(byM
i ,y

s
i )

LR
sup ← L(byR

i ,y
s
i )

6: Back-propagate LM
sup, LR

sup

7: Update model parameters M,R
8: until stopping criteria met
9: repeat

10: Sample (xs
i ,y

s
i ) from Ds

11: Sample xt
j from Dt

12: Forward pass:byM
i ← fM(xs

i )byM
j ← fM(xt

j)
13: Reconstruct:byR

j ← fR(xt
j, byM

j )
14: Estimate losses:

LM
sup ← L(byM

i ,y
s
i )

LM
semi ← L(byM

j , byR
j )

15: Back-propagate LM
sup, λLM

semi

16: Update model parameters M
17: until stopping criteria met

Step 1: Supervised phase.

During the supervised phase,M and R are trained individually on the labelled set
Ds. M is trained to minimise a loss function measuring the dissimilarity between
the ground truth masks {ys} and the model’s prediction byM :

LM
SUP = LGD(byM ,ys), (4.2)

with LGD generalised dice loss [60]. The reconstructor R uses the loss

LR
SUP = LMSE(byR,ys) + LGD(byR,ys), (4.3)

where LMSE is the mean squared error loss and LGD the generalised dice loss.

To ensure robustness, we apply drop-connect [75] to the input layer of the image x
channel by multiplying the weights by a Bernoulli distributed variable u:

u ∼ B(p)
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with probability p of being 1. We set p = 0.5.

Step 2: Semi-supervised phase.

Trained in the supervised phase, R is no longer subject of training. The semi-
supervised training phase seeks to refineM by back-propagating information from
the reconstructor R, helping M to generalise better. The training alternates la-
belled and unlabelled data, respectively from Ds and Du.

During the forward pass, M predicts a segmentation mask byM using data from
either Ds or Dt. If the input sample has been drawn from Ds, a loss is computed
as in Eq. 4.2. When the input sample comes from Dt, as there is no ground truth
data, R is used to obtain a surrogate measure of the generalisation capabilities of
M. The reconstructor is fed with byM and estimates byR (Eq. 4.1). The similarity
of the two segmentation masks is measured through the loss:

LSEMI = LWGD(byM , byR), (4.4)

with LWGD the weighted generalised dice loss. Finally, both losses are combined
into a total loss:

LTOTAL = LM
SUP + λLSEMI, (4.5)

with λ is a scaling hyper-parameter factor which reflects the reliability of the re-
construction. The loss is backpropagated to refine the training of M.

4.2.4 Implementation.

We adapted a state-of-the-art cardiac segmentation network [28]1, the winner of
the ACDC Challenge [1], as the segmenter network. Originally written in Theano,
we re-implemented it in PyTorch. For the sake of training speed-up, we use only
the 2D submodel from the original ensemble method. The model was trained us-
ing an Adam optimiser, with an initial learning rate of 5e−4, which was decayed
by 0.985 at each epoch, and a weight decay of 1e−5. The network weights were
initialised using a He normal initialiser [76]. For the reconstructor, we extended

1https://github.com/MIC-DKFZ/ACDC2017
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the convolutional autoencoder [59] implementation in Chapter 3 to account for the
concatenated input consisting of segmentation masks and images. The value of λ
(Eq. 4.5) was selected via hyperparameter tuning among 1e-{1,2,3}. All code was
written in PyTorch, and run on Amazon Web Services with a Testa T4 GPU.

4.3 Experiments and Results

4.3.1 Experimental Setup

Data. We used data from the Multi-Centre, Multi-Vendor & Multi-Disease Car-
diac Image Segmentation Challenge (M&Ms) [62]. The dataset consists of 345 CMR
images, at end diastole (ED) and end systole (ES), with corresponding labels for
the left ventricle (LV), right ventricle (RV) and myocardium (MYO). Data were
collected from five different centres in three different countries, which used four
different MR scanner vendors. The set was split into five folds, one per centre,
and further divided into training and validation subsets using a 80:20 ratio. CMR
scans were standardised to have zero mean and standard deviation of 1. To have
uniform image sizes, these were placed in the middle of a 352×352 black square.
Those exceeding this size were center cropped.

Setup. We trained M and R using data from one vendor at a time. We split
the data at the subject-scan level, using 70, 10, 20 % cases for training, validation
and testing. The data from the vendors not used in the supervised phase was used
in the semi-supervised phase. The segmenter was tested in the reserved test splits
from all the vendors. We used the Dice score and the Hausdorff distance to evaluate
the segmentation results.

4.3.2 Results

Benchmark. We compare our method with several alternatives. Specifically, we
evaluate: i) the segmenter M, trained with Ds, as the reference baseline (REF),
ii) a state-of-the-art data augmentation method for cardiac segmentation [65] (DA)
in combination with the REF baseline and iii) ADS-Net a state-of-the-art semi-
supervised method for image segmentation [71]. We implemented the data aug-
mentation method following the guidelines in [65]. For ADS-Net, we used the
available code as starting point. Hyper-parameter tuning was performed following
the authors’ guidelines.

Table 4.1 and Table 4.2 summarise the quantitative results using the Dice score
in ED and ES respectively, where we also include the use of DA with our frame-
work. Fig. 4.5 presents qualitative results. The results show model brings clear
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Figure 4.5. Qualitative results of benchmark performance. From the left to the
right: GT, REF, REF+DA, ASDNet, ours.

benefits, improving the cross-domain generalisation ofM with respect to the base-
line model (REF). We see that data augmentation brings some benefits although
less significant than the ones reported by our method. This is consistent with pre-
vious results reported in the literature [65]. Regarding ASD-Net, we highlight the
difficulties in the training process. The loss of this network is the weighted sum
of three losses: a supervised one, a semi-supervised one, and an adversarial one.
The adversarial term is due to the presence of a discriminator and a generator that
fight one another. This process is, in general, hard to balance and it can cause
the model to diverge. In addition, the ASD-Net contains several hyperparameters,
whose tuning is required. Small changes in the learning rates of the generator and
the discriminator can have relevant effects on the general performance. In addition,
being the total loss a weighted sum of three different terms, it is necessary to find
the correct values for the three weights.



Semi-supervised segmentation for improved cross-domain generalisation

Table 4.1. Quantitative evaluations reporting mean Dice score and standard
deviation (in parenthesis) for ED.

A B C D
A LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.93 0.81 0.88 0.93 0.79 0.88 0.83 0.62 0.70 0.89 0.72 0.83
(0.06) (0.11) (0.06) (0.03) (0.07) (0.07) (0.18) (0.18) (0.27) (0.07) (0.07) (0.10)

REF+ DA 0.92 0.82 0.87 0.92 0.78 0.90 0.86 0.67 0.85 0.91 0.77 0.89
(0.07) (0.07) (0.10) (0.04) (0.09) (0.05) (0.07) (0.12) (0.08) (0.04) (0.06) (0.07)

ASDNet 0.90 0.78 0.86 0.86 0.69 0.86 0.79 0.56 0.66 0.82 0.60 0.86
(0.05) (0.06) (0.07) (0.07) (0.06) (0.05) (0.10) (0.12) (0.32) (0.10) (0.09) (0.07)

Ours 0.93 0.83 0.87 0.92 0.79 0.87 0.88 0.71 0.70 0.87 0.74 0.86
(0.04) (0.05) (0.06) (0.04) (0.06) (0.05) (0.09) (0.09) (0.27) (0.04) (0.07) (0.06)

Ours + DA 0.93 0.81 0.87 0.89 0.72 0.81 0.86 0.66 0.65 0.87 0.69 0.83
(0.04) (0.05) (0.06) (0.04) (0.06) (0.08) (0.05) (0.09) (0.24) (0.03) (0.07) (0.08)

A B C D
B LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.54 0.38 0.44 0.93 0.81 0.87 0.81 0.67 0.71 0.88 0.73 0.82
(0.30) (0.26) (0.33) (0.09) (0.12) (0.14) (0.20) (0.18) (0.30) (0.05) (0.12) (0.13)

REF + DA 0.36 0.29 0.22 0.93 0.80 0.85 0.88 0.73 0.84 0.87 0.66 0.66
(0.33) (0.28) (0.32) (0.06) (0.11) (0.15) (0.06) (0.10) (0.10) (0.09) (0.21) (0.26)

ASDNet 0.74 0.56 0.54 0.93 0.82 0.88 0.86 0.72 0.68 0.89 0.74 0.82
(0.27) (0.27) (0.32) (0.05) (0.09) (0.12) (0.10) (0.13) (0.32) (0.04) (0.09) (0.12)

Ours 0.74 0.54 0.60 0.91 0.79 0.84 0.84 0.72 0.62 0.85 0.71 0.77
(0.25) (0.23) (0.26) (0.05) (0.08) (0.05) (0.11) (0.09) (0.26) (0.06) (0.08) (0.08)

Ours + DA 0.81 0.66 0.68 0.93 0.81 0.90 0.82 0.68 0.71 0.88 0.74 0.85
(0.21) (0.19) (0.24) (0.03) (0.08) (0.04) (0.18) (0.14) (0.26) (0.04) (0.05) (0.07)

A B C D
C LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.55 0.37 0.49 0.86 0.71 0.85 0.91 0.76 0.86 0.42 0.27 0.53
(0.27) (0.23) (0.31) (0.19) (0.19) (0.09) (0.06) (0.10) (0.09) (0.35) (0.24) (0.31)

REF + DA 0.65 0.47 0.38 0.89 0.77 0.75 0.89 0.76 0.86 0.63 0.43 0.21
(0.29) (0.27) (0.32) (0.09) (0.08) (0.21) (0.09) (0.12) (0.08) (0.31) (0.25) (0.29)

ASDNet 0.78 0.57 0.70 0.93 0.79 0.86 0.89 0.73 0.86 0.78 0.53 0.73
(0.23) (0.21) (0.25) (0.03) (0.06) (0.07) (0.10) (0.14) (0.06) (0.17) (0.18) (0.14)

Ours 0.82 0.67 0.69 0.93 0.80 0.87 0.90 0.75 0.85 0.86 0.65 0.71
(0.23) (0.20) (0.30) (0.03) (0.05) (0.05) (0.09) (0.12) (0.06) (0.05) (0.08) (0.19)

Ours + DA 0.75 0.60 0.61 0.91 0.78 0.82 0.87 0.69 0.80 0.87 0.71 0.72
(0.22) (0.19) (0.28) (0.03) (0.04) (0.07) (0.09) (0.13) (0.08) (0.05) (0.08) (0.09)

A B C D
D LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.73 0.59 0.63 0.91 0.78 0.84 0.78 0.62 0.54 0.94 0.83 0.92
(0.21) (0.18) (0.34) (0.05) (0.05) (0.16) (0.22) (0.22) (0.38) (0.04) (0.03) (0.03)

REF + DA 0.89 0.73 0.78 0.91 0.77 0.88 0.91 0.73 0.81 0.94 0.83 0.90
(0.07) (0.07) (0.12) (0.04) (0.06) (0.08) (0.05) (0.11) (0.07) (0.03) (0.02) (0.04)

ASDNet 0.76 0.68 0.77 0.87 0.70 0.82 0.72 0.61 0.66 0.92 0.74 0.88
(0.18) (0.08) (0.18) (0.05) (0.06) (0.13) (0.22) (0.14) (0.30) (0.05) (0.06) (0.04)

Ours 0.86 0.69 0.67 0.90 0.78 0.85 0.86 0.74 0.68 0.93 0.81 0.90
(0.11) (0.10) (0.29) (0.04) (0.04) (0.10) (0.08) (0.09) (0.30) (0.03) (0.03) (0.03)

Ours + DA 0.88 0.70 0.79 0.91 0.78 0.85 0.83 0.69 0.64 0.94 0.82 0.90
(0.10) (0.12) (0.16) (0.03) (0.04) (0.07) (0.19) (0.14) (0.25) (0.03) (0.03) (0.04)
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Table 4.2. Quantitative evaluations reporting mean Dice score and standard
deviation (in parenthesis) for ES.

A B C D
A LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.86 0.78 0.80 0.83 0.71 0.74 0.73 0.60 0.65 0.83 0.71 0.74
(0.15) (0.15) (0.10) (0.10) (0.15) (0.11) (0.27) (0.25) (0.25) (0.10) (0.11) (0.12)

REF + DA 0.90 0.82 0.82 0.83 0.73 0.79 0.74 0.65 0.77 0.81 0.75 0.81
(0.08) (0.09) (0.10) (0.08) (0.17) (0.11) (0.19) (0.20) (0.09) (0.12) (0.08) (0.10)

ASDNet 0.82 0.76 0.78 0.66 0.68 0.74 0.62 0.52 0.58 0.66 0.63 0.74
(0.10) (0.09) (0.11) (0.13) (0.06) (0.11) (0.17) (0.19) (0.30) (0.18) (0.09) (0.15)

Ours 0.87 0.81 0.78 0.81 0.82 0.74 0.77 0.73 0.64 0.79 0.80 0.79
(0.08) (0.06) (0.09) (0.10) (0.05) (0.11) (0.12) (0.09) (0.25) (0.10) (0.04) (0.08)

Ours + DA 0.86 0.80 0.76 0.72 0.73 0.63 0.72 0.63 0.55 0.79 0.74 0.74
(0.09) (0.06) (0.11) (0.13) (0.05) (0.12) (0.11) (0.13) (0.22) (0.10) (0.05) (0.11)

A B C D
B LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.51 0.43 0.37 0.87 0.85 0.82 0.74 0.71 0.67 0.86 0.82 0.74
(0.31) (0.29) (0.28) (0.12) (0.13) (0.15) (0.19) (0.15) (0.27) (0.06) (0.09) (0.23)

REF + DA 0.45 0.42 0.27 0.87 0.85 0.82 0.80 0.78 0.79 0.84 0.78 0.68
(0.36) (0.32) (0.28) (0.08) (0.10) (0.13) (0.13) (0.08) (0.11) (0.12) (0.18) (0.23)

ASDNet 0.67 0.59 0.53 0.88 0.87 0.81 0.78 0.71 0.67 0.84 0.82 0.78
(0.26) (0.26) (0.27) (0.09) (0.09) (0.13) (0.15) (0.16) (0.26) (0.06) (0.07) (0.10)

Ours 0.68 0.52 0.54 0.77 0.82 0.70 0.68 0.67 0.51 0.76 0.77 0.66
(0.25) (0.24) (0.23) (0.11) (0.09) (0.09) (0.27) (0.26) (0.21) (0.13) (0.10) (0.13)

Ours + DA 0.78 0.71 0.65 0.84 0.85 0.78 0.72 0.70 0.64 0.81 0.81 0.79
(0.23) (0.22) (0.23) (0.09) (0.05) (0.06) (0.27) (0.24) (0.25) (0.07) (0.05) (0.07)

A B C D
C LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.66 0.52 0.51 0.82 0.75 0.73 0.86 0.81 0.79 0.54 0.40 0.50
(0.30) (0.25) (0.25) (0.11) (0.17) (0.21) (0.13) (0.09) (0.08) (0.34) (0.31) (0.27)

REF + DA 0.71 0.62 0.42 0.77 0.73 0.66 0.81 0.77 0.73 0.58 0.50 0.36
(0.27) (0.22) (0.27) (0.18) (0.19) (0.28) (0.12) (0.12) (0.13) (0.31) (0.29) (0.34)

ASDNet 0.78 0.66 0.61 0.85 0.81 0.72 0.83 0.79 0.71 0.76 0.64 0.71
(0.27) (0.23) (0.26) (0.09) (0.13) (0.12) (0.16) (0.12) (0.07) (0.15) (0.19) (0.20)

Ours 0.79 0.68 0.64 0.84 0.81 0.72 0.82 0.78 0.71 0.80 0.70 0.72
(0.23) (0.22) (0.27) (0.08) (0.12) (0.12) (0.15) (0.13) (0.08) (0.12) (0.15) (0.11)

Ours + DA 0.72 0.65 0.57 0.77 0.81 0.67 0.72 0.72 0.63 0.82 0.76 0.68
(0.25) (0.22) (0.29) (0.10) (0.10) (0.12) (0.15) (0.13) (0.11) (0.05) (0.09) (0.14)

A B C D
D LV MYO RV LV MYO RV LV MYO RV LV MYO RV

REF 0.72 0.62 0.57 0.81 0.76 0.71 0.73 0.65 0.53 0.94 0.88 0.88
(0.25) (0.23) (0.32) (0.12) (0.19) (0.26) (0.31) (0.29) (0.36) (0.02) (0.03) (0.08)

REF + DA 0.83 0.74 0.73 0.83 0.82 0.77 0.81 0.74 0.70 0.94 0.89 0.86
(0.16) (0.13) (0.16) (0.09) (0.06) (0.14) (0.12) (0.17) (0.17) (0.03) (0.02) (0.07)

ASDNet 0.81 0.71 0.63 0.73 0.72 0.68 0.68 0.62 0.62 0.86 0.79 0.85
(0.10) (0.08) (0.28) (0.11) (0.10) (0.23) (0.27) (0.27) (0.28) (0.10) (0.06) (0.05)

Ours 0.80 0.71 0.59 0.73 0.80 0.70 0.70 0.71 0.61 0.89 0.85 0.87
(0.21) (0.14) (0.30) (0.11) (0.04) (0.17) (0.19) (0.19) (0.30) (0.04) (0.04) (0.04)

Ours + DA 0.80 0.69 0.68 0.78 0.81 0.72 0.69 0.64 0.52 0.91 0.87 0.86
(0.20) (0.19) (0.21) (0.09) (0.06) (0.10) (0.28) (0.27) (0.28) (0.03) (0.03) (0.06)



Chapter 5

Conclusions

This thesis yielded two algorithms as an attempt to solve respectively the problem
of generalization and the problem of automatic quality assessment in the field of
CMR segmentation. Both the proposed methods revolve around the development
of a convolutional autoencoder, which provides segmentation masks clean of pe-
culiar defects with reference to any training dataset provided with reliable ground
truth. We called the output of the autoencoder pseudo Ground Truth (pGT), and
we used it to derive quality measures in Chapter 3 and to develop a semi-supervised
framework in Chapter 4.

We provided two different types of quality measures, a global score, and a pixel-
wise map. The former acts as a monitor to flag irregularities; the latter locates the
cause of a low-quality verdict inside the mask itself. Combined, the two measures
allow surveilling the performance of cardiac image segmentation models in the ab-
sence of ground truth. Compared with previous approaches, our method is more
robust, scalable, and considerably fast. This permits a quick quality assignment,
for example, in a clinical setting.

When plugged into a semi-supervised framework, our autoencoder provides a refer-
ence to calculate a dissimilarity loss function on unlabeled data. These data do not
need additional labeling effort but can provide a large representation of the cardiac
anatomy, improving cross-domain generalisation. Experiments led to incorporate
a QC module into the learning pipeline of a segmentation model. Working to-
gether, these two modules achieved state-of-the-art performances in cardiac image
segmentation. Future experiments should investigate the possibility of using the
QC module to select the data from the target domain with a real need to refine
the model. In addition, our work focuses on the problem of domain shift within a
single modality, which can be considered as a limitation. Future research could be
directed towards the extension of the method to multiple modalities, which existing
QC methods cannot cope with.
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[42] M.-M. Rohé, M. Datar, T. Heimann, M. Sermesant, and X. Pennec, “Svf-
net: Learning deformable image registration using shape matching”, Medical
Image Computing and Computer Assisted Intervention MICCAI 2017 (M. De-
scoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, and S. Duchesne,
eds.), Cham, 2017, pp. 266–274, DOI 10.1007/978-3-319-66182-7 31

https://doi.org/10.1007/978-3-319-75541-0_14
https://doi.org/https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/10.1007/978-3-319-75541-0_16
https://doi.org/10.1007/978-3-319-75541-0_16
https://doi.org/10.1007/978-3-319-75541-0_17
https://doi.org/10.1109/ISBI.2017.7950555
https://doi.org/10.1007/978-3-319-75541-0_15
https://doi.org/10.1109/CVPRW.2017.156
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1007/978-3-319-75541-0_18
https://doi.org/10.1007/978-3-319-66182-7_31


Bibliography

[43] C. Zotti, Z. Luo, O. Humbert, A. Lalande, and P.-M. Jodoin, “Gridnet with au-
tomatic shape prior registration for automatic mri cardiac segmentation”, Sta-
tistical Atlases and Computational Models of the Heart. ACDC and MMWHS
Challenges (M. Pop, M. Sermesant, P.-M. Jodoin, A. Lalande, X. Zhuang,
G. Yang, A. Young, and O. Bernard, eds.), Cham, 2018, pp. 73–81, DOI
10.1007/978-3-319-75541-0 8

[44] J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, “Automatic seg-
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