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Chapter 1

Introduction

Over the years, Artificial Intelligence(Al) has increased its importance and impact
in today’s society and we have also grown accustomed to accepting his decisions.
Several aspects of our everyday life are based on Al decisions : product recom-
mendations, friend suggestions, targeted advertising. In some important fields Al
decisions have a life-changing importance, such as disease diagnosis or autonomous
vehicle decision. In this fields failure is not acceptable. Al algorithms are very pow-
erful in terms of prediction results , especially Machine Learning (ML) algorithms.
The success of deep learning (DL) and neural networks (NNs) has lead to more
and more research and industrial applications. However those algorithms suffers
from opacity, that it we have difficulties to understand the reasons behinds , in
some cases , crucial decisions. We have the risk of creating decision models that
learn from data that contains human biases and prejudices leading to wrong and
unfair decisions and moreover we can’t resolve these errors because we don’t really
understand decision systems. This impacts not only on ethics but also on safety
and industrial products. Explanations technology can help to create safer products
and the results in scientific research, based on ML models, requires an explanations
for trust and acceptance but also for help the progress of research. The main
focus is that entrust decision to a system that is a black-box and cannot explain
itself is a risk. Explainable Artificial Intelligence (XAI) propose to move to a more
transparent and understandable AI. The goal is to build a suite of technologies
that produce more explainable models without lower performances.

1
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In the last years XAI has become very popular in ML research community
and also popular DL libraries have included their XAI libraries as we can see in
Figure 1.1 that show the incremental trend in Google research including Explain-
able Artificial Intelligence terms and in Figure 1.2 the plot describe the number
of articles written about XAI until 2018. This has led to the development of
frameworks dedicated to producing explanations for black-box model especially in
the context of image and text classification showed in chapter 2
What is missing in the panorama of Explainable Artificial Intelligence is a technique
to produce explanations in the context of audio classification.

The main contribution of our work is to build and test for the first time an Explain-
able Intelligence technique that can produce usefull explanations of input audio
clips to makes models of audio classification more understandable by humans.
Audios have a lot of representation each of which try to represent important features
of the audio that can be used as input of a neural network in order to compute
classifications as explained in chapter 3. Among all the possible representation we
choose to feed as input to a classifier the Log-Mel Spectrogram of the input audio.
Log-Mel spectrogram is a visual representation of the audio power as it varies over
time at different frequencies and is deeply described in chapter 3.

The first phase of the work consisted of building and training an audio classi-
fier. The neural network is builder upon a slightly modified version of VGG,
popular convolutional neural network that showed high performances in computer
vision task. The classifier takes in input patches of the input Log-Mel Spectrogram.
The model architecture and training phase is described in chapter 3.

Since the input of the classifier is a visual representation of an input audio, the
main work on this project consisted in the adaptation of a general explainable
artificial intelligence frameworks in the context of audio classification. We called
our proposed technique A-EBAnO.
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A-EBAnO produces local explanations of the model by applying iterative perturba-
tion on a set of interpretable features and computing the impact that the perturbed
features have on the classification. The main characteristics of A-EBAnO are :

» Exploitation of inner knowledge of the model under analysis.
o Unsupervised extraction of interpretable features easily understandable.

» Visual and numerical explanation based on influence and precision of the input
features.

The workflow of A-EBAnO is composed by several phases, and for each phase precise
solutions have been found and adopted in order to have an novel explanations
framework suitable for the explanation of audio classifications. A deep description
of A-EBAnNO is present in chapter 4. Many experiments have been performed on
A-EBAnO, the results of which are reported in chapter 5 with some explanations
examples and global statistics. These experiments emphasize the capabilities of
A-EBAno to :

o Find features that have a positive, neutral or negative impact on the classifi-
cation.

o Provide the most suitable explanation if we want to focus on time or frequencies
as well as on the general spectrogram.

o Show if the model have cognitive bias due to the training phase.
o Compare models in order to understand what are the more trustable.

The final chapter of this paper present the conclusions on this thesis and some
proposed improvement of the current implementation.



Chapter 2

Explainable Artificial
Intelligence Overview

This chapter shows the needs for XAI methodologies, the different algorithms and
techniques with which an explainable model can be characterized and a discussion
over state of the art technique present in XAI literature.

2.0.1 Needs for eXplainable Artificial Intelligence

To provide an explanation we need an interpretable model. In machine learning
interpretability means being able to produce an explanation in a way that is com-
prehensible to a human. Several reasons underlie the need for XAI methodologies.

Justify results First of all Al must provide justification to comply with the
law, for instance with regulations included in General Data Protection Regulation
(GDPR), that started to take effect in EU in 2018. When we think about an
explanation for a decision, we generally want a justification for a particular result
instead of understanding the inner workings of the process. XAI technologies
provides information to explain results and a way to defend decisions, especially
when these are strange or unexpected.

Systems control Things can go wrong at any time so a deeper knowledge of
the behavior of the systems help to prevents errors or to correct them quickly in
low criticality situations by uncovering hidden vulnerability. This allows advanced
control of the systems.

Improve models Once that a model has been understood and explained the
successive job of improvement is clearly facilitated and moreover we are able to

4



Explainable Artificial Intelligence Overview

make it more intelligent. Therefore XAI can be the starting point for continuous
iterations between human users and machine.

Learn new facts Al has been shown to have the ability to outperform humans
in some specific areas. It would be desirable that the machine have the ability also
to explain its knowledge in an interpretable way for us humans. Only explainable
systems can do this.

Learn .
new Justify
facts results

Improve Systems
models control

Figure 2.1: Reasons for XAI

2.0.2 XAI models and technologies

After discussing how XAI is useful to justify results, control systems and improves
our knowledge, let’s see how these goals can be achieved in terms of algorithms
and technologies used, summarizing works present in [1] and [2].

At the state of the art we have to disposition models intrinsically interpretable for
humans: decision trees, rulers and linear models.

Systems based on a decision tree produces decisional graphs in a tree form. Internal
nodes represent test on the attributes and each branch exiting the node represent
a different result. Every leaf represent a class label. Following the path from the
root to a leave we are able to build the classification rules. They are widely used
for their graphical representation.

Decision rules are functions that links together an observation to an action. The
most common are if-then rules where in the if clause we have a conjunctions of

5
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input variables and the then clause represent a label. Their strength is their textual
representation.

Linear models are capable to show how influential is an attribute for the final
decision. If an attribute increase the model’s output than it have a positive influence
and vice versa. We are able also to understand how much is the influence of the
input attributes when we have unexpected changes between an expected output
and the result of the model.

Exploiting the inner capability of this methods to be easily understandable we can
build a transparent box design for the model to be understandable on its own. The
biggest disadvantages of these methods is that they lack accuracy. Therefore, to
improve accuracy, more complex methods are used and more is the complexity,
less is the understandability of these methods. Examples for this types of models
are Neural Networks, Deep Neural Network, Tree Ensembles , Support Vector
Machines.

An approach in XAI is to don’t change these high complex black-box methods but
to use a reverse engineering process to create post-hoc explanations. These type of
methods are the most common in XAI techniques.

Our objective could be to understand a model globally or only one specific result.
Global explanations shows the whole logic of a model and all entire reasoning leading
to all possible different results. A global interpretability is very hard to achieve
especially for methods that have in input a huge number of parameters. We can
refer to these methods as black-box model explanations.

Following the human habit of focusing on a specific part of the model to understand
the whole of it, a local interpretability may be easier to implement.

Local explanations is focused to explain and justify the result for a single specific
instance . For example to explain the decision of an image classifier, a common
approach is to alter parts of the image to see if those pixels have any influence on
the final label classification. For every image parts that are altered differs from
the parts of the other images, so the explanation is only locally important for that
image. We can refer to these methods as black-box outcome explanations.

Local explanations are the most used methods to make Deep Neural Networks
more understandable, but usually this type of approach are applicable to any type
of models, guiding us towards a further classification of the XAI technologies.

Model specific methods are linked to a specific model. The drawback of these
methods is that we have limited choices when we build the explainable methods.
Model agnostic methods separate predictions from explanation and usually use
post-hoc interpretations. They are the most common developed methods in recent
times.
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2.0.3 State of the art XAI techniques and works

In this section are firstly presented state of the art technique used in eXplainable
Artificial Intelligence and some frameworks with characteristics related to our
technique.

The variety of techniques used to build explanations is large.

Visualization The first natural idea to understand a model, especially Deep
Neural Networks, is to visualize a representation of his inner units. This type of
techniques are applied to supervised learning models.

Surrogate models are inherently explainable models, like Decision Trees and Linear
models, that are trained on the result of a more complex black-box model, in order
to understand and explain the latter, at the risk that the simpler model is not
enough representative of the more complex model.

Partial Dependency Plot (PDP) is a graphical representation of partial correlation
between input variables and a possible outcome.

Individual Conditional Ezpectation (ICE) extend the raw representation of PDP,
revealing links and difference between every single input variable. Another popular
technique is Salient Mask (SM),used especially with images and texts. This
technique use a mask to highlight important feature of the input extracted from
the model.

Extract Knowledge During training phase a model acquire new and improved
knowledge at every step, modifying the representation of his hidden layers. The
effort here is to represent in an understandable form this hidden knowledge, decoding
his hidden representation. We talked before about Rule Extraction.

Another technique is to compress and transfer learning from a deep network to a
shallow network.

Feature Influence This type of models modify the internal representation of a
model or the input in order to understand how much a change in a feature influence
the model performance. Often this type of models are also visualized.

Sensitive Analysis (SA) show how good is the model after introducing perturbation
on the input or hidden layers. It is considered an agnostic explanation technique.
Variable Importance show the importance of a feature for the final prediction of a
complex model. Modifying the value of important features increase the error on
the prediction so we can discriminate from important, neutral or not important
features.
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Examples Explanations based on examples don’t make some modification to the
model or its inner representation but instead they highlight some input data from
a data-set and use them to explain the model behaviour.

Prototypes are representative data for the classification and more an input is similar
to a prototype higher is the probability that it is assigned to the same class. To
avoid over-generalization is important also to show some exceptions: instances that
are not represented by the chosen prototypes.

Another goal is to explain the minimum change in the input that lead to a dif-
ferent result than leaving the input unchanged. This type of technique is called
Counterfactual Explanations. Models that utilizes visual or textual representation
for explanations can be called Black-Box Inspection models.

Global
Explainability Have
Method Scoop
Can be
Local
Intrinsic Past-hoc
By definition Is uzaually
Model-specific Model-agnostic

Figure 2.2: XAI methods taxonomy

Finally, it is important to focus on the type of input data for classification
models.
Every type of a data has a different interpretative capacity for humans. Most of
the models in XAI works on very interpretative input as image, text and tables
that are easily understandable.
Our effort in this project is to work with a type of data that is not yet been explored
in literature, audio data.

Since in literature are not present works that have as topic the explanation of
audio classification, we present works that are the most related or otherwise have

8
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similar features to the model we developed. The frameworks described focus on
the explanations of Deep Neural Networks results or agnostic methods that use
visualization to produce local post-hoc explanations for image or text input data
classification task.

Visual attention for Image Caption Generation In [3] authors describe
their attention based model to automatically create a caption for an image. Their
model is build upon a Convolutional Neural Network(CNN), that takes in input an
image and build a set of feature vectors extracting features from low convolutional
layer, focusing in more specific parts of the input image. Than features vectors are
decoded into captions trough a Long Short Term Memory (LSTM) Network, that
produces a word for every time step.

Authors wanted to add interpretability for their model so they wanted to visualize
the attention learned by the model. In order to reach their goal, they upsampled
attention weights and they added also a Gaussian filter. In this way it is possible
to understand especially why errors are made by the model. Figure 2.3 show an
example of correct attention explanation while Figure 2.4 report the explanation of
a wrong attention. Figures are taken from paper [3].

=
S

A group of people sitting on a boat A woman holding a clock in her hand.
in the water,
Figure 2.4: Wrong attention

Figure 2.3: Correct attention explanation.

explanation.

Rationales for text predictions In [4] is presented a way to incorporate justi-
fications for results of a model directly in the learning problem. Authors call their
justifications rationales. The phrases of the text to be rationales must be short and
coherent and if used as input for the classification task they must sufficient to reach
the same result of the original text. In order to understand how good it’s their
model authors highlights rationales for sentiment of different aspect with different
colors. In Figure 2.5 taken from [4] are presented some examples of rationales.

9
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a beer that is not sold in my neck of the woods , but managed to get while on a roadtrip . poured into an imperial pint glass with a
generous head that sustained life throughout . nothing out of the ordinary here , but a good brew still . body was kind of heavy , but
not thick . the hop smell was excellent and enticing . very drinkable

very dark beer . pours a nice finger and a half of creamy foam and stays throughout the beer . smells of coffee and roasted malt . has a
major coffee-like taste with hints of chocolate . if you like black coffee , you will love this porter . creamy smooth mouthfeel and
definitely gets smoother on the palate once it warms . it 's an ok porter but i feel there are much better one 's out there .

i really did not like this . it just seemed extremely watery . i dont ' think this had any carbonation whatsoever . maybe it was flat, who
knows ? but even if i got a bad brew i do n't see how this would possibly be something i 'd get time and time again . i could taste the
hops towards the middle , but the beer got pretty nasty towards the bottom . i would never drink this again , unless it was free . i 'm
kind of upset i bought this .

Figure 2.5: Rationales for sentiment of various aspects : appearance is red, smell
is blue and palate is green.

Class Activation Mapping (CAM) In [5] authors shows a generic algorithm
called Class Activation Mapping for Convolutional Neural Network. They exploits
the fact that convolutional units can detect object in an input image and using
Global Average pooling layer the ability to localize is kept intact up to top layers
without being lost through Fully Connected Layers. CAM for a specific label
represent the active parts of the image that are responsible for a particular outcome
and its produced by doing a linear combination of the final features maps with the
weights learned in the last layer. Finally to be visualized it is normalized between
0 and 1.

Figure 2.6: CAM for label 'Briard". Taken from [5].

Gradient-weighted CAM (Grad-CAM) Authors of [6] focus on information
that comes from class-specif gradient in order to find important parts of the input
image for the classification. They propose Grad-CAM as visual explanation for
any type of CNN. In contrast to CAM [5], that need a retraining for the model
after changing Fully-Connected Layers with pooling layers, this approach can be

10
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used with any CNN without retraining. Authors highlights a second approach,
Guided Grad-CAM, that contains high resolution and fine details in contrast to
low resolution results of Grad-CAM.

Guided Backpropagation

Reciitied Cony FC Layer
Feaiure Maps Activarions

Guided Grad-CAM

¢ | Tiger Cat

-
Grad-CAM

Figure 2.7: Grad-CAM Overview taken from [6].

Explanations by Perturbations In [7] authors propose a framework to build
explanations as meta-predictors. An explanation is a rule that predicts the result
of a black-box classifier with certain input. One advantage it is that is possible
to use explanation’s ’ prediction accuracy as a way to measure its faithfulness.
Their saliency maps can show the reason behind a classification without highlights
evidence that are not essential. They discuss also various effect on classification of
different types of perturbation explaining where a classifier look by finding which
part of the image change method’s score after being perturbed.

impala

Figure 2.8: Example of learned mask. From [7].

11
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flute: 0.0007 Learned Mask

flute: 0.9973

Figure 2.9: Effect of perturbation on classification score. Taken from [7].

Local Interpretable Model-Agnostic Explanations (LIME)  Authors of
paper [8] propose LIME as a way to explain outcomes of any type of classifier,
thus it is model-agnostic, building a model that is locally interpretable around the
prediction. LIME can be applied both on images and text data. They consider
a binary vector of words indicating if a word is present or not, an interpretable
representation of a text. Instead for a image, the representation is a binary vector
indicating the presence of group of similar pixel near each other (super-pixel). In
order to produce an explanation, small parts of the input data are perturbed and
associated with a label. They made predictions interpretable setting a max number
of word or patches of pixels. Pixels that are important for prediction are showed
and pixels not important for the prediction are greyed out.

Algorithm 1 Algorithm 2
Words that Al considers important: Predicted: Words that A2 considers important: Predicted:

GO . Atheism Posting . Atheism

mean Prediction correct: Hosg Prediction correct:
anyone J Re| J

this by
Kores in
through Nntp
Document Document

From: pauld @verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!

From: pauld®verdix.com (Paul Durbin)
Sobject: Re: DAVID CORESH IS! GOD!

Nntp-Posting-Host: sarge hg.verdix com Nntp-Posting-Host: sarge hq.verdix.com

Organization: Verdix Corp Organization: Verdix Corp

Lines: 8 Lines: B

Figure 2.10: Individual explanations for two different models trying to understand
if a text is about "Christianity" or "Atheism". Bar chart indicates word importance
and color represent the most representative class for that word. From [8].
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Explainable Artificial Intelligence Overview

¥

7

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

Figure 2.11: Examples for 3 different classification explanations on a single
original image. From [8].
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Chapter 3

Audio Classification and
case of study

In this chapter are presented a general overview on Audio classification followed
by a precise description of the audio representation used as input in our proposed
XAI technique and finally we present the neural network and training phase of the
network used as black-box model to produce the explanations.

3.1 Awudio Classification

Audio classification is an application of machine learning and pattern recognition
where an audio signal is associated to corresponding acoustic events in an auditory
scene by use of a class label [9)].

It is utilized in various applications such as automatic tagging of audio files for
audio retrieval, home-monitoring environment for assist elderly people living alone
or for smart-home, it finds applications in surveillance and recognition of animal
and bird species [10].

Audio signals presents a wide range of groups and sub-groups of most of which
intersect [11]. Approximately audible sounds can be divided into 3 groups :

Speech Sound produced by an human to communicate something.

Music Human-made sound with some instruments, including also human body ,
to express feelings or emotions of some nature.
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Environmental sound It can be subdivided into different categories such as
noise, natural sounds and artificial sounds.
Noise can be defined as as spontaneous or pseudo random signal with a pre-
cise distribution of energy, that can be uniform, like happens in White noise, or
non-uniform. Noise can be also defined as unwanted or unnatural sound from a
perceptive point-of-view.
Natural sounds are non-human produced sound that belong from nature or envi-
ronment of nature. Examples are sounds created by animals, air, climate.
Artificial sounds are the opposite of natural sounds and they are produced or
influenced by human. Examples are sounds produced by cars, houses, machines
and technology [11].

These different types of sounds have led to the development of different fields of
research. The most relevant are :

Segmentation Preprocessing step in audio analysis whose aim is to find portions
of the sound with homogeneous characteristics in order to divide parts that represent
different types of sounds like speech, music and silence.

Speech recognition Syntactical recognition of words produced during speech
and includes language and speaker’s sex classification and emotion retrieval.

Music information retrieval Deals with the classification of pieces of music
or different instruments , artists or music genres.

Environmental sounds recognition The most diverse research field because
it includes the analysis and recognition of all types of sounds different from speech
and music [12]. Audio present several aspects that can be captured. A large variety
of features have been designed in order to capture all these different aspects and
they belong to very different domains.

Audio analysis features are:

o Zero Crossing Rate (ZCR):
it is defined as the number of zero crossing on time domain within one second.
It is very cheap and simple to compute.

o Amplitude Descriptor (AD):
the audio signal is divided into segments with low and high amplitude using an
adaptable threshold. It is mostly used in the classification of animal sounds.

o Short-Time energy (STE):
it describes the envelope of a signal as the mean energy per frame.
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o Linear Predictive Coding (LPC):
it is utilized in speech recognition and it exploits the source-filter model for
speech.

o Subband energy ratio:
it gives approximation of the audio signal energy distribution of the spectrum.

o Spectral Fluz (SF):
it describe changes in the shape of the audio spectrum when it vary over time.
A signal with low SF is nearly constant while high SF means abrupt changes
in the spectrum.

These features belongs to temporal domain and frequency domain. They are ex-
tracted for raw audio data ,representing physical properties of the signal and they
are based on different analysis techniques.

LPC exploit autoregression analysis where the value of each sample of the signal is
estimated by a linear combination of shifted values of the same signal while SF is
based on Short-Time Fourier Transform for the computation of the spectrogram.

In frequency domain there are other features that exploit psychoacustic prop-
erties of the sound having semantic meaning in the context of human auditory
perception [12].

Examples of these features are brightness, correlated to the distribution of high
and low frequencies on the signal; tonality, used to distinguish noise from tonal
sounds; loudness, that simulate the human sensation that order sounds from soft
to loud; pitch, that imitate the human capability to distinguish a low sound from a
high sound.

Another important domain of audio features is Cepstral domain.

Cepstral features represent log magnitude spectrum of the sound with smooth fre-
quencies and they are obtained computing the Fourier Transform of the logarithmic
magnitude of the spectrum of the original signal.

Mel-frequency cepstral coefficients (MFCCs) One of the standard tech-
niques in audio retrieval. MFCCs are obtained by converting Fourier coefficients
to Mel-Scale, logarithmicizing and compressing them to eliminate unnecessary
information. The first few compression components are usually used to represent
the shape of audio spectrum. Several variations of MFCCs have been studied in
order to be applied in scales different from Mel-Scale but cepstral coefficients based
on Mel-Scale are the most popular used [12].
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Audio representations in time and frequency domains provides different infor-
mation about the signal from a physical point-of-view. Time information produce
measurable data about the signal and frequency methods give insight on the nature
of the physical phenomenon producing the sound, analyzing the power of the
different constituent frequencies of the signal.

However analyzing input audio using tools that exploit only one domain implies
assuming that the signal is produced by a stationary phenomenon. Real life audio
signals very often have characteristics that vary over time.

This leads to the need for a different class of techniques when dealing with non-
stationary signals [10].

Wavelet based techniques Wavelet transform is a mathematical method uti-
lized in the decomposition of a signal into various components with finite energy
and it offer representation both in time and frequency. An analytic function ad-
missible as ‘'mother wavelet’ [10] is used to produce daughter wavelets by scaling
and shifting in order to better focusing the signal in time-frequency space. Wavelet
based strategies are used in music classification or to de-noise audio signals [11].
One of the strong points of wavelets is that they have a very good capability in
recognizing impulsive sounds like gunshots. In general performances of wavelet
features is comparable with MFCCs performances.

Sparse representation techniques They are based on a sparse representation
of the audio signal obtained with a greedy algorithm. The representation is
based on atoms in an overcomplete fixed dictionary [10]. Features based on this
algorithm have slightly better performance respect to MFCCs. In order to improve
performance it was proposed to use a dictionary signal dependent or to use a large
number of atoms in the signal decomposition. This types of features are able to
produce information on high time-frequency resolution and they improve audio
classification performance when used in combination with MFCCs.

Power spectrum techniques Spectrogram deliver very important informations
about energy of the audio signal in a specific frequency and time region. A lot of
studies was done in order to better understand the influence of all the parameters
involved in the calculation of an audio spectrogram like signal length, sampling
rate, type of windowing function. One of the strengths of spectrogram is that it is
a visual representation of the time-frequency distribution of an audio signal. This
has been exploited in order to find and develop visual features extracted from the
spectrogram that can be used in combination with Artificial Intelligence approaches
to build audio classifiers. Spectrogram features are used in music instrument
environmental audio classification where these features perform consistently better
against MFCCs [10].
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Machine learning methods used in audio classification are :

K-nearest neighbor (KINN) KNN algorithm assumes that similar audio data
are near each other. For each training data the distance to all other training data
is computed, listed , sorted and the first K points are selected. K is chosen after
experimental study. Test data is labeled with the most represented class of the K
chosen point.

Naive Bayes This classifier is based on the Bayesian Theorem. It requires
estimated prior and conditional probabilities of the input data in order to compute
probability of input to belong to a certain class, called posterior probability. It is
also based on the strong assumption that the conditional probabilities of the audio
variables are statistically independent. This technique is very effective when input
dimensionality is large.

Support Vector Machine (SVM) SVM approach classification task in a very
direct way: the input data are mapped to an higher dimension and it search for a
hyperplane that separates classes in this enlarged feature space. If its possible to
find a separating hyperplane then it describes an infinite number of hyperplanes
that can be used to separate classes and choose among them the classifier with ideal
boundary margins. Boundaries between classes can be either linear or non-linear
based on the properties of the input data.

Decision Tree (DT) Training data is used to build the DT than in order to
classify a test data we have to follow a path starting from the root node of the
decision tree. Every non-leaf node we encounter represent a function with different
branch for each value it can receive. We continue on the branch that represent the
characteristic values of the test data arriving at a leaf node representing the class
label of the input.

Convolutional Neural Networks (CNNs) CNNs are composed by a large
number of working units called neurons, aggregated in different types of layers with
specific task. Convolutional layers aim at learning features from the input and
pooling layer down-sample input along time and frequency dimension respectively
[13]. In most of CNN architectures the final classification is linked only to the
last convolutional layer. Alternatives approach process activations also from
all intermediate features map, or split two dimensional convolutions into two
one-dimension convolution in order to better separate transient and long-term
characteristic of the input sound. Modification on traditional CNN are done in
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order to learn filters that are frequency-aware or adding first and second order time
derivative of spectrogram based features in order to detect impulsive sounds [13].

Feedforward Neural Networks FFNNs are one of the oldest machine learning
models. They are composed of joined Perceptrons into layers. Perceptron is the
nearest representation of a neuron. It is composed by multiple inputs, a summator
to sum inputs multiplied by their weights, followed by an activation function before
the output layer. All layers node are fully-connected and activation goes from input
to output without back loops. Layers between input and output are called hidden
layers. They are usually trained using back-propagation.

Recurrent Neural Networks (RNNs) RNNs are unidirectional networks in
which every neuron in hidden layers receive input with a predefined time delay.
They are used when we need a model that are able to access information from
current and previous steps, like speech recognition tasks. This networks are capable
to share parameters and weights of every step in time but RNN cannot remember
informations very distant in time.

3.2 Log-Mel Spectrogram

In recent years, after having observed the enormous benefits brought by the advents
of Deep Convolutional Neural Networks for image classification, several studies
have tried to understand if this type of models could have equally satisfactory
performance in the audio classification and audio event recognition in the sense of
the ability to identify a sound from an audio data.

Various types of input for classifiers, as well as feature extraction techniques
have been explored in several papers ( section 3.1 ) and we found it particularly
interesting to analyze as a technique the use of segments of a Log-Mel Spectrogram
as input of the classifier. But what is and in which way a Log-Mel Spectrogram is

Log Mel Spectrogram
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Figure 3.1: Log-Mel Spectrogram of Baby Crying
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computed ?

An audio is a signal in which the quantity that change over time is air pressure
. In order to digitally analyze this type of information the first step is sampling.
We take samples of the air pressure in different instants of time, called temporal
sampling interval. The reciprocal of temporal sampling interval is called sampling
rate. Sampling rates used most frequently are 16000 samples per second (16 kHz)
or 44100 samples per second (44.1 kHz).

After sampling the signal what we get is a waveform for the signal. After working
in time domain we must move into frequency domain.

An audio signal is formed by a lot of sound waves with single frequency and it can
be decomposed into a series of cosine and sine waves, which can be recomposed in
the original audio signal. This is possible thanks to a very important mathematical
formula called Fourier transform. We have available a very efficient algorithm for
the calculation of the Fourier Transform called Fast Fourier transform. The result
after the Fourier transform is called spectrum.

In order to represent the spectrum of the signal as it vary over time , the fast
Fourier transform is calculated on windowed segments of the signal overlapping
each other. This algorithm is called short-time Fourier transform and the result is
finally the spectrogram of the signal.

As human beings we have a limited perception of frequencies and amplitudes
so the y-axes of the spectrogram is converted to logarithmic scale. We are not
able to perceive frequencies in a linear way. We can distinguish two frequencies
very well if they are low while at high frequencies it is impossible for us. In 1937
Stevens, Volkmann, and Newmann proposed the Mel Scale that is a scale of the
pitch of the sound(Figure 3.2). Equal distance on the pitch are perceived equally
distant by the listener. Conversion between Hertz(f) and Mel(m) is defined as:

m = 2595 log;,(1 4 700 f)

PITCH IN MELS

|1

[ B
T 6 30 100 W00 OO 10,00
FREQUENCY in Hz (Logarithmic scale)

Figure 3.2: Mel Scale
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Summarizing a Log-Mel spectrogram is a spectrogram with a logarithmic scale
y-axis and where the frequencies are changed to the Mel scale.

3.3 Case of study: VGGish

In their work [14] authors, using Log-Mel spectrogram as input, show that state-of-
the-art image neural networks achieve excellent results on audio classification. In
particular, using VGG [15] they reached an average value across all classes of AUC
equal to 0.911. AUC is area under the Receiver Operating Characteristic (ROC)
curve, that is , the correct accept rate as a function of false accept rate. Perfect
classification achieve AUC of 1.0.

In [14] S. Hershey and other have fed as input on the most used Neural Net-
works non-overlapping frames of 960 ms each taken from an audio. Every frame is
decomposed with a short-time Fourier transform using 25ms windows at time step
of 10 ms. The spectrogram is than integrated into 64 Mel-spaced frequency bins
covering the range 125-7550 Hz. The final input for all the networks is Log-Mel
spectrogram patches with a shape of 96x64.Figure 3.3 is a representation of the
process. An audio waveform is taken in input, Log-Mel spectrogram is computed
and then divided in patches.
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Figure 3.3: Model Input for 5s Audio
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Among all the analyzed networks we decided to focus on a slightly modified
version of VGG. We use a TensorFlow implementation of this model called VG Gish.
VGGish has the following changes compared to VGG ( configuration A ) [15]:

o Input size changed to 96x64 for Log-Mel spectrogram patches;
e Only four group of convolution/maxpool layer instead of five;

o 128-wide fully connected layer at the end. This acts as a compact embedding
layer.

input: | [(None, 96, 64, 1)]
input_1: InputLayer
output: | [(None, 96, 62, 1)]

input: | (None, 96, 64, 1)
convl: Conv2D
output: | (None, 96, 64, 64)

g2 [ input: [ (None, 96, 64, 64) |
\ output: | (None, 48, 32, 64) \

pooll

input: | (None, 48, 32, 64)
conv2: Conv2D
output: | (None, 48, 32, 128)

input:_ | (None, 48, 32, 128)
pool2 2D
[‘output: | (None, 24,16, 128) |

| input: \ (None, 24, 16, 128) |
1 Conv2D | output: \ (None, 24, 16, 256) |

| input: \ (None, 24, 16, 256) |

conv3/conv3_2: Conv2D
‘ = ["ourput: | (None, 24, 16, 256) |

[ Vinput: | (None, 24, 16, 256) |
‘uulpul | (None, 12, 8, 256) \

pool3;

[ input: | None, 12,8, 256) |
| output: \ (None, 12, 8, 512) |

‘ _1: Conv2D

| input: \ (None, 12, 8, 512) |
_2: Conv2D
| output: \ (None, 12, 8, 512) |

\ input: | (None, 12, 8, 512) \
[ ourput: | (None, 6, 4,512) |

poold:

input:_ | (None, 6, 4, 512)
flatten_: Flatten
- output: | (None, 12288)

input: | (None, 12288)
output: | (None, 4096)

) input: | (None, 4096)
vggish_fc1/fcl_2: Dense }—’—{
output: | (None, 4096)
input: | (None, 4096)
vggish_fc2: Dense }—'—{
output: | (None, 128)
Figure 3.4: VGGish Architecture

vegish_fcl/fcl_1: Dense

l—

Vggish can be used as a part of a large model. We treat Vggish as a warm start for
lower layers of a model that takes audio features as input and add more layers on
top of the Vggish embeddings because we want to train our model with Datasets
very different from the one used for Vggish training.

Vggish model definition defines layers up to and including the 128-wide embedding

22



Audio Classification and case of study

layer. In the context of neural networks embeddings are learned continuous vector
representations of discrete variables and their strong point is that they are low-
dimensional so they can reduce dimensionality of the input. Embeddings are
learned on a supervised task and they form the weights of the network which are
tuned with the aim to minimize loss on the task.

The embedding layer of Vggish does not include a non-linear activation, so before
using embeddings as input of our model we have to send the embedding trough a
non-linearity.

We choose the rectified linear activation function (Figure 3.5). If the input is
positive it will be output directly, otherwise if the input is zero or negative it will
output zero. An unit that use this activation function is called rectified linear
activation unit (ReLU).

The output of ReLLU than pass through 3 consecutive 500-wide Fully Connected
Layers. In this type of layers every neuron of a layer are connected to every neuron
of another layer.

Output of the last fully-connected layer goes to a Dropout layer. This type of
layer randomly set input to 0 with a chosen frequency. We set this frequency to
0.2. Dropout layer helps to prevent overfitting, a dangerous condition in which
the network is not able to generalize well on new data, different from data used
for training, leading to a less accurate prediction. At the end the output of the
classifier is calculated by a Sigmoid function (Figure 3.6). For every input the
Sigmoid returns a value between 0 and 1 that represent the probability of the data
to belong to a certain class. We decide to use this type of function because we
desire to have a probability for every class separated from the probability of other
classes as an audio can certainly contain more than one sound within it.

In Figure 3.7 we can see the final and complete architecture of the classifier. It will
be used as the model for the explanations that we will create.
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Figure 3.5: ReLU Activation Figure 3.6: Sigmoid Activation

Function Function
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input: | [(None, 96, 64, 1)]
output: | [(None, 96, 64, 1)]

I

input: | (None, 96, 64, 1)
output: (None, 128)

!

tf keras.activations.relu_8: TFOpLambda

I

input: | (None, 128)
output: | (None, 500)

!

input: | (None, 500)
output: | (None, 500)

!

input: | (None, 500)
output: | (None, 500)

)

input: | (None, 500)
output: | (None, 500)

|

input: | (None, 500)
output: | (None, 50)

!

tf keras.activations.sigmoid_6: TFOpLambda

Input: InputLayer

'VGGish: Functional

input: | (None, 128)
output: | (None, 128)

FC1: Dense

FC2: Dense

FC3: Dense

Dropout: Dropout

Logits: Dense

input: | (None, 50)
output: | (None, 50)

Figure 3.7: Classifier Architecture

3.4 Classifier Training

Machine Learning algorithms can be divided into two group according to the
learning methodology.

Supervised learning is characterized by the use of a Dataset that contains data linked
to their label. The Dataset is often divided into training set, that is feeded into the
classifier in order act as a ’guide’ to the model, that learn some characteristic from
it and use the learned knowledge to produce classification on a test set, independent
from the training test. The model is validated on a validation set with different
possible strategy: subdividing training set into fixed training set and validation
set or using K-Fold Cross Validation, in which the Dataset is divide in k group
with the same size and for k times the model is trained in one of the groups and
validated on the others.

Unsupervised learning is instead based on unlabelled data and the objective of
the algorithm is to find group in which input data should be divided analyzing
similarities and difference among them. In our work we use a supervised learning
algorithm and we choose the followings as training Dataset:

24



Audio Classification and case of study

1. Environmental Sound Classification 50 ( ESC50 )
2. UrbanSound8k

Both Dataset are composed by clips of environmental sounds. We choose them
because we want to test our technique on sounds more related to every-day life
rather than on more task specific types of sound like music or speech. After
choosing the classification and learning algorithm more suitable for our task, the
next phase is the model fitting. A classification model is a mathematical model that
is characterized by important parameters that had to be tuned in order to obtain a
good performance for the input classification. During this phase the model learn
to classify the analyzed data.

During the training of our classifier we used the following parameters:

o Learning Rate : 1.5e™*

Optimizer : Adam ( epsilon = 1le™®)

Loss : Categorical Cross Entropy Loss

Classification Metric : Categorical Accuracy

Epochs : 100

A fundamental choice is that of the metrics to be used to evaluate model classifica-
tion. Each type of input and task has a dedicated set of metrics to use. On the
test set we used on F1-Score as metric to valuate the performance of the classifier.
F1-Score is the harmonic mean between precision and recall.

TruePositive

* Precision : TruePositive+ FalsePositive

. TruePositive
* Recall: TruePositive+FalseNegative

. PrecisionxRecall
* F]—SCO?"@. 2% Precision+ Recall

3.4.1 ESC50 Training

Environmental Sound Classification 50 [16] contains 2000 5s recordings that belongs
to 50 different classes, with 40 clips per class.

The classes present are : Dog, Rooster, Pig, Cow, Frog, Cat, Hen, Insects, Sheep,
Crow, Rain, Sea waves, Crackling fire, Crickets, Chirping birds, Water drops,
Wind, Pouring water, Toilet flush, Thunderstorm, Baby crying, Sneezing, Clapping,
Breathing, Coughing, Footsteps, Laughing, Tooth brushing, Snoring, Drinking/sip-
ping, Knocking, Mouse click, Keyboard typing, Creaks(door/wood), Can opening,
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Washing machine, Vacuum cleaner, Alarm clock, Ticking clock, Glass breaking,
Helicopter, Chainsaw, Siren, Car horn, Engine, Train, Church bells, Airplane,
Fireworks, Hand saw.

The Dataset is divided in 5 folds with 400 clips each.
We used folds 1,3,5 for training with a total of 1200 recordings (6000 patches); fold
2 for walidation and fold 4 for testing, each containing 400 clips (2000 patches).
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Figure 3.8: Train/Validation Accuracy Figure 3.9: Train Loss on ESC50
on ESC50 Dataset. Dataset.
CLASS LABEL | SUPPORT | PRECISION | RECALL | F1I-SCORE | CLASS LABEL SUPPORT | PRECISION | RECALL | F1I-SCORE
Dog 40 1.00 0.75 0.86 Footsteps 40 1.00 0.90 0.95
Rooster 40 1.00 0.55 0.70 Laughing 40 1.00 0.87 0.93
Pig 40 1.00 1.00 1.00 Brushing teeth 40 1.00 0.92 0.96
Cow 40 1.00 0.85 0.92 Snoring 40 0.97 1.00 0.99
Frog 40 1.00 0.92 0.96 Drinking sipping | 40 1.00 0.87 0.93
Cat 40 1.00 0.92 0.96 Door wood knock | 40 0.89 0.62 0.73
Hen 40 1.00 1.00 1.00 Mouse click 40 1.00 0.95 0.97
Insects 40 1.00 0.92 0.96 Keyboard typing | 40 1.00 0.95 0.97
Sheep 40 1.00 1.00 1.00 Door wood creaks | 40 0.90 1.00 0.95
Crow 40 1.00 0.90 0.95 Can opening 40 0.91 0.80 0.85
Rain 40 1.00 1.00 1.00 ‘Washing machine | 40 1.00 0.80 0.89
Sea Waves 40 0.97 0.97 0.95 Vacuum cleaner 40 1.00 1.00 1.00
Crackling fire | 40 1.00 1.00 1.00 Clock alarm 40 1.00 0.90 0.95
Crickets 40 0.97 1.00 0.98 Clock tick 40 0.95 1.00 0.97
Chirping birds | 40 1.00 1.00 1.00 Glass breaking 40 0.19 0.97 0.33
Water drops 40 1.00 0.87 0.88 Helicopter 40 0.85 0.97 0.90
Wind 40 0.97 0.97 0.95 Chainsaw 40 1.00 1.00 1.00
Pouring water | 40 1.00 0.87 0.93 Siren 40 1.00 1.00 1.00
Toilet flush 40 1.00 0.97 0.99 Car horn 40 0.96 0.67 0.80
Thunderstorm | 40 0.90 1.00 0.95 Engine 40 1.00 0.92 0.96
Crying baby 40 1.00 1.00 1.00 Train 40 0.85 1.00 0.91
Sneezing 40 0.95 0.47 0.63 Church bells 40 1.00 1.00 1.00
Clapping 40 0.95 1.00 0.97 Airplane 40 1.00 0.92 0.96
Breathing 40 1.00 0.65 0.79 Fireworks 40 1.00 1.00 1.00
Coughing 40 1.00 0.65 0.79 Hand saw 40 1.00 0.92 0.96

Table 3.1: Classification Report for ESC50

As shown in Figure 3.8 and Figure 3.9 we reached a very good accuracy
both on train and validation set, with a final training loss of 0.3.
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SUPPORT | PRECISION | RECALL | F1-SCORE
Accuracy 0.90 0.90 0.90
Macro Average 2000 0.96 0.90 0.92
Weighted Average | 2000 0.96 0.90 0.92

Table 3.2: Accuracy and F1-Score Average for Test set on ESC50.

In Table 3.2 we can see that on the Test set our model can reach a value of 0.90
for accuracy and (.92 value on F1-Score.

We can assert on the basis of these results that our classifier has very good
performances when working with spectrogram patches as input.

3.4.2 UrbanSound8k Training

UrbanSound8k [17] is a Dataset made up of 8732 labeled sound with a duration
less-equal to 4s.

The sounds belong to 10 different urban classes : air conditioner, car horn, children
playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, street music.

The Dataset is quite balanced with 1000 sound for all classes except 929 sound
that belong to ’siren’ class, 429 sounds from ’car horn’ class and 374 sound that
belong to ’gun shot’ class.

The Dataset is divided into 10 fold, ready for a 10-Fold Cross Validation .

We have left the parameters described above unchanged during training, changing
only the number of epochs.

First we have trained the classifier with a 10-Fold Cross Validation, with only 2
epochs on every different fold, reaching an accuracy of 0.86.

Than we used a total of 18449 patches for training set, 6193 patches for validation
set and 6272 patches for test set. We ran the training for 15 epochs.
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We reach a best Validation accuracy of 0.91 and a best training loss of 0.05 as
we can see in Figure 3.10 and Figure 3.11
Results on test set shows an accuracy of (.88 and Average F1-Score equal to 0.89
as we can see in Table 3.4.

CLASS LABEL SUPPORT | PRECISION | RECALL | F1-SCORE
Dog bark 700 0.93 0.96 0.95
Children playing | 185 0.96 0.90 0.93
Car horn 740 0.68 0.89 0.77
Air conditioner 696 0.89 0.80 0.84
Street music 691 0.91 0.91 0.91
Gun shot 860 0.97 0.97 0.93
Siren 78 0.91 0.91 0.91
Engine idling 740 0.94 0.96 0.95
Jackhammer 710 0.86 0.97 0.91
Drilling 872 0.92 0.62 0.74

Table 3.3: Classification Report for US8k.

SUPPORT | PRECISION | RECALL | F1-SCORE
Accuracy 0.88 0.88 0.88
Macro Average 6272 0.90 0.89 0.89
Weighted Average | 6272 0.89 0.88 0.88

Table 3.4: Accuracy and F1-Score Average for Test set on US8k.

Thanks to the lower number of classes compared to ESC50 we are able also to
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look at the Confusion matriz in Figure 3.12.
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Figure 3.12: Confusion Matrix US8k Dataset

All the results point out again very good performance for audio classification.
All classes are well recognized except for some confusion between classes ’car horn’
and ’drilling’.
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Chapter 4
Proposed Methodology

In this chapter will be described a general methodology to produce explanations
for a black-box model and then will be introduced A-EBAnQ, that is a specialized
approach of the general methodology in the context of audio classification. The
general methodology has the aim to produce explanation for image classification
and it is already implemented.

Starting from the fact that the general methodology produces explanations for Neu-
ral Networks that deal with image classification and that the model we developed,
described in the previous chapter, classifies audio by analyzing as input patches of
the Log-Mel spectrogram, which are in fact images, we wondered if it was possible
to produce explanations for audio classification, exploiting the internal algorithms
of the general framework with appropriate and careful modifications.

The proposed technique is applied in the new context of audio classification and
studied to see if we can achieve satisfactory results from the point of view of
comprehensibility of local explanations.

We will present all the changes made to the framework to adapt to the new input
type, paying particular attention to the new feature extraction techniques used in
A-EBAnO for it to adapt to the new context.
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4.1 EBAnO

EBAnO [18] is an innovative explanation framework able to produce explanations
for the decision-making process of Deep Convolutional Neural Networks.

Interpretable

Features Extraction _ Perturbation -

L

Input | ——)

Local
Explanation

Black-Box
Model

Class Label

Figure 4.1: EBAnO Local Explanation process

The explanations are provided through an unsupervised extraction of the ac-

quired knowledge of a black-box model contained in multiple convolutional layers
simultaneously. The extracted knowledge is called Interpretable Feature.
The interpretable features are analyzed by means of perturbation in order to un-
derstand their Influence and Influence Precision on classification output, that it is
finally visualized both with visual and numerical explanation. Figure 5.1 shows all
the process.

4.1.1 EBAO Input

EBANO can receive in input unstructured data, such as images or text. The most
consolidate part of the framework works with images as input. A-EBAnO work
also with images but with a very important difference. While EBAnO produces
explanations for the single image in input, A-EBAnO to produce the explanation for
the classification of the audio in input has to group together all the explanations on
the single Log-Mel spectrogram patches to have a single and complete explanation.
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4.1.2 EBANO Black-Box Models

EBANO could work with all type of DCNNs. EBAnO for images classification has
been tested with the most used Convolutional Neural Network as VGG (VGG16
and VGG19), Inception-v3 and Inception-ResNet.

In our context we used the model build upon VGGish, that is a modified version
of VGG, as described in section 3.3.

4.1.3 EBAnNO Interpretable Features Extraction

The extraction of interpretable features is the most important and crucial phase
of the entire process. During this phase the framework must be able to identify
significant parts of the input that are responsible for classification.

In the context of EBAnO for images the image input is composed by pixel, but an
analysis on every single pixel leads only to results not interpretable for a human
being.

The objective of the extraction becomes therefore that of identifying significant
portions of the input, formed, for example, by pixels correlated with each other.
In order to do this EBAnO utilizes an unsupervised clustering analysis of hyper-
colums. Every pixel on input image is characterized by a vector, called hypercolumn,
of activations of all the layers of DCNN above that pixel [19] and describe all the
acquired knowledge of the model about that pixel.

Proceeding with clustering analysis of hypercolums, EBAnO can put together
correlated pixels and find the portion of the input they belong to. In this way the
clustering is guided only by the weights of the Neural Network that are stored in
the hypercolumn, exploiting the inner knowledge of the model to produce trustfull
and fitting local explanations.

The algorithm used for the clustering is K-Means. The number of 'means’ that we
use during the clustering determines the number of portions in which the input
will come subdivided.

In our context we decided to use this type of feature extraction but we developed
two other feature extraction techniques in order to better analyze the properties
and characteristics of our different domain of the input and also we adapted the
feature extraction technique in order to have a clustering on the hypercolums of
all the patches of the Log-Mel Spectrogram and thus indirectly on the complete
spectrogram itself.
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4.1.4 EBANO Perturbation

In order to understand the the influence of input data on the prediction result,
the original input data is iteratively perturbed at each feature calculated in the
previous step and a new prediction is made on the modified input.

Comparing the results of the two different predictions, one on the original input
and the other on the perturbed input, three possible outcomes are possible :

Original Prediction equal to Perturbed Prediction In this case the modifi-
cation of the input has not brought any impact in the prediction and this indicates
that the concept represented by the feature does not have any relevance for the
predicted class.

Original Prediction weaker than Perturbed Prediction This indicates that
the feature taken in analysis has a negative impact in the prediction, therefore
modifying or eliminating the concept expressed by the feature, the Neural Network
is more accurate in the prediction of the correct class to which the input belongs.

Original Prediction stronger than Perturbed Prediction Observing a
higher uncertainty in the prediction of the correct class after applying the perturba-
tion, we can understand that the concept expressed by the feature is important for
the prediction because it has a positive influence that is mitigated if the feature un-
dergoes some kind of modification. The nature of the perturbation is closely related
to the type of input data. In the context of EBAnO used on Image Classification
task the perturbation used is Gaussian Blur which is suitable for the images domain.

The inputs of our model are, in the same way, images that come from a vi-
sual representation of a type of data that belongs to a completely different domain,
that of audio. For this reason it was necessary to completely change the type of
perturbation choosing one more suitable and consistent for our context.

4.1.5 EBAnNnO Numerical and Visual Local Explanations

In order to have the possibility to produce a local explanation, that presents
both a visual and a numerical part and that shows clearly the influence of each
interpretable feature on a particular class, two indices are proposed:

e« nPIR : normalized Perturbation Influence Relation

e nPIRP : normalized Perturbation Influence Relation Precision
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normalized Perturbation Influence Relation nPIR is a numerical represen-
tation of the influence of the analyzed feature on the prediction of the class we are
interested in, taking in account original prediction and perturbed prediction. The
influence can be positive, neutral or negative as described in subsection 4.1.4

In mathematical terms, given :

C : set of class of interest

ci € (' : class of interest

F : set of interpretable feature

o f€ F :analyzed feature

Do,i : probability of original input to be classified with the class of interest

Pfr.ei - probability of the same input to be classified with the same class of
interest after f perturbation

Firstly is calculated how much the perturbation on f impact the probability :
A]f = Po,ci — Pfci (4]-)

It’s domain is [-1,1] since domain of probabilities is [0,1].

If Ay is positive this means that the original probability p, . is greater than py¢ .,
probability with perturbed feature and so the feature has a positive impact on the
prediction of the class of interest.

Otherwise if p,; is lower than ps., Al is negative and this mean a negative
impact of the feature on the prediction.

If Ay is equal to zero than probabilities are the same and the feature is neutral
on the prediction process.

To calculate the relative impact of the perturbed feature f another index called
Symmetric Relative Influence is introduced:

SRI; = Lot | Pl (4.2)
Pfci DPo,ci

Both contributions, (5.1) and (5.2), are combined together defining Perturbation
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Influence Relation :

P]Rf == Aff * SR]f

Do,ci Pfei
— p , . _p i ) ok (—— + o
( o fCl> (pf,ci po,cz‘) (43)
Dyci Do,ci
= ppeix (1= 229) = po % (1 — 25
O7Ci pf,ci

Finally PIR is normalized in range [-1,1] obtaing the normalized Perturbation
Influence Relation :

nPIR = softsign(PIR) (4.4)
where
softsign(z) = . f|$|

When nPIR has a value close to 1 , feature f has very important positive
influence for the prediction of the class of interest, if it is 0 feature is neutral and if
nPIR is near to -1 the feature under analysis has an important negative impact on
classification.

normalized Perturbation Influence Relation Precision nPIRP reflects how
much the influence of a feature f is focused on the class of interest. In a multi-class
problem a particular feature perturbation can impact more than one class and
more are the classes influenced by that feature less precise is the contribution of
the feature on classification.

In mathematical terms:

fci = Po,ci * |nPIRcz| (45)
C\ci
§o\ei = Z Do * max(0,nPIR,.) (4.6)

Equation (5.5) indicates the absolute influence of feature f over class of interest.
Equation (5.6) indicates the sum of only positive influence on all the classes except
the class of interest.

Both contributes are weighted by the probability of original input to belong to each
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different class. The Perturbation Influence Relation Precision has the following
formulation :

PIRP; = Al(&eisEcned) ¥ SRIp(Eei, §onei)

w1y g S
_gC\cz*(l éci ) 5@*(1 éC\ci)

(4.7)

PIRP is normalized in range [-1,1] obtaing the normalized Perturbation Influence
Relation Precision :

nPIRP = softsign(PIRP) (4.8)

If the nPIRP has a value close to 1 is very focused on the classification of the class
of interest while if it has a value near -1 the impact of feature f on the class of
interest is lower respect the impact on other classes. Finally a value of nPIRP equal
to 0 means that f has the same influence on the class of interest and on other classes.

nPIR and nPIRP don’t take in consideration input type, model architecture and
task so they represent a very general approach that we decided to leave unchanged
in our approach.

Local Explanations An explanation e is composed by a set of features that
are separately perturbed and for each one feature f in this set nP/IR and nPIRP
indexes are calculated.

EBANO produces explanations, extracting and analyzing from two to a maximum
number of features, that we can set, and among all the produced explanation
EBAno select the most informative one. The best explanation is characterized by
the best score S , where § is defined as :

S(e) = max((nPIRs(e)) — min(nPIR¢(e)) (4.9)

Numerical Explanation is a graph showing nPIR and nPIRP for every feature f
composing the explanation.

Visual Explanation is a visual representation of the interpretable features extracted,
in which the contribution of each feature is represented by a color scale based on
the nPIR value directly on the input data.
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4.2 A-EBAnO

In this section are described general workflow and architecture of A-EBAnO to
produce local explanations of the predicted class label of an input audio. After
preprocessing of the input audio, it is feeded into the classifier, interpretable features
are extracted from the input exploiting the inner knowledge that the black-box
model has learned during the training phase, iteratively every feature, among all
those that compose each explanation, are perturbed and the best local explanation
is computed analyzing the differences between the prediction probabilities before
and after perturbation, producing a numerical and visual explanation of the classi-
fication of the input audio.

A-EBAnNO stands for Audio-EBAnO to to emphasize how the work is a specialization
in the audio classification task of the EBAnO general framework.

4.2.1 A-EBAnO Input Pre-Processing

A-EBAno receives in input an audio file in Waveform Audio File format, commonly
referenced as ‘wav’. It represent the principal format for raw uncompressed audio,
used to store high quality audio files.

For the audio classification is used its Log-Mel spectrogram from which the inter-
pretable features are extracted.

The input “wav’ file is converted to mono, an array of only one dimension, it
is resampled to 16000 Hz ( 16 kHz ) and the Log-Mel spectrogram is computed.

Given :
o Input audio data : the mono dimensional array of waveform data

o Audio Sample Rate = 16 kHz

o Log-offset = 0.01 : a value to add when Logarithm is calculated in order to
avoid -Inf.

o Window Length seconds = 25 ms : durationof each windows to analyze
o Hop Length seconds = 10 ms : advance between successive windows
the input is divided in sequence of overlapping frames with :

o Window Length = Audio Sample Rate * Window Length seconds = 400 samples
in each frame.
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when each frame start

o Hop Length = Audio Sample Rate * Hop Length seconds = 160 points after
the proceeding one.

Each frame is windowed with a ’periodic’ "Hann Window’, a cosine of period
equal to Window Length, and the Short-Time Fourier Transform magnitudes are
calculated using:

o FFT Length = 2+ [REIIAZeLenall] — 51

building a two dimensional array where each row contains the magnitudes of the

% + 1 = 257 values of FFT for the corresponding frame of input.

The matrix S of STFT magnitudes arranged as frames = bins is post multiplied
to a matrix A of Mel Weights to build a mel spectrogram M = S * A with shape
frames x number of mel bins.

Matrix A is constructed using:

o Number of mel bins = 64 : number of column of S representing how many
bands are present in the resulting Mel Spectrum

o Number of spectrogram bins = 257 : bins contained in the source spectrogram
o Audio Sample Rate = 16 kHz

o Lower Edge Hertz = 125 Hz : lower bound of frequencies to be included in
the Mel spectrum

o Upper Edge Hertz = 7500 Hz : upper bound of frequencies to be included in
the Mel spectrum

The Log-Mel Spectrogram is finally computed as log( M + Log-Offset ).
At the end the Log Mel spectrogram is divided into patches that contains :

e 96 frames of 10 ms duration each.
e 64 frequency bands.

From every patch separately the interpretable features are extracted, they pass
through the perturbation phase and the best ezplanation of the prediction of the
class label for that patch is produced.

In order to have the explanation on the complete Log-Mel spectrogram , A-EBAnO
loop over all the patches of the input spectrogram, doing all computations and at
the end combine individual explanations to produce the full local explanation.
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4.2.2 A-EBAnO Black-Box Model

In order to produce ezplanations of the classification result of an input, we need a
Deep Neural Network that takes in input the audio file and makes the prediction.
A-EBAnNO in the current implementations uses the network builded upon VGGish
and described in section 3.3.

4.2.3 A-EBAnNO Features Extraction

Features extraction is a very critical phase of the overall workflow of A-EBAnO. It
is responsible to find not only usefull but in particular easily interpretable parts of
the input that have important impact on the prediction of the class label.

In our work we firstly have conducted experiments with the features extraction
technique used on the general framework. In our context we refer to this technique
as Single Patch Features Extraction

Analyzing its weaknesses when used in our context we adapted this technique
for be suitable in our context and we refer to it as Spectrogram Features Extraction

Audio has a fundamental characteristic which is that of being a signal that varies
over time and the Log Mel Spectrogram is a visual representation of the audio’s
amplitude while it varies over time at different frequencies.

In order to have explanations that which emphasize whether and how the neural
network exploits this two fundamental characteristics to produce class prediction,
we build up two new features extraction techniques in which the input is divided
once in frequency bands and the other in time bands. We refer to these as Frequency
Bands Features Extraction and Time Bands Features Extraction

To summarize we experiments with 4 different features extraction techniques:
1. Single Patch Features Fxtraction
2. Spectrogram Features Extraction
3. Frequency Bands Features Extraction

4. Time Bands Features Extraction

Single Patch Features Extraction We first investigated the behavior of the
feature extraction technique of the general framework in our new context to see if it
had the capabilities of extracting portions of images that could be easily analyzed
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and that it could select portions of the input that had some significance for the
classification of the class label of the audio input.

This features extraction technique analyzes every single patch singularly, studying
it as an input in itself not taking in consideration the fact that it is only a portion
of the complete spectrogram to analyze.

Weights on the all Convolutional Layers that we want to study are extracted and for
every unit the hypercolumn is calculated . Than hypercolumn vector dimensionality
is reduced through Principal Component Analysis ( PCA ).

PCA is the algorithm to calculate principal components of some input data points
in order to do a change of basis of the data , projecting input only on the first
few principal component, reducing in this way the dimensionality of the input.
Principal components of a series of input data points in a real n-space is a collection
of n direction vectors where every vector is the direction of a line that best fit input
points, i.e. for which the average squared distance between the points and the line
is minimized while being orthogonal respect to other direction vectors. The first
principal component is the direction that mazimize variance of the projected data.
Experimenting over 200 audio input we find that the number of principal compo-
nents that maximize cumulative explained variance is 65.

10

09

= o o
o -l o

=]
n

Comulative explained variance

0.4

03

o 10 20 30 40 50 =) 70
number of compenents

Figure 4.2: Cumulative explained variance w.r.t number of principal components.

A clustering on the reduced hypercolums vector is done by the K-Means algo-
rithm and a feature map is produced with number of feature spacing from minimum
2 features to a maximum number of features that we can set as parameter of
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A-EBAnO.

Algorithmicaly (Figure 4.3) the features map is a 2 dimensional array of the
same size of the input patch where every cell in the matrix, representing a pixel
of the Log-Mel patch, contains the id of the cluster that it belong to and it is
visualized using different colors for different clusters (Figure 4.4).
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Figure 4.3: Example of internal representation of a low resolution features map
with 4 features.
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Figure 4.4: Visual representation of Single patch features map with 6 features.
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Spectrogram Features Extraction With the previous technique we have seen
how the knowledge learned by the black-box model is mined by A-EBAnO in order
to build explanations for the predicted class analyzing one patch at time of the
complete Log-Mel spectrogram.

The main weakness of this approach is that we lose sight of the fact that the
patch belongs to a single input, i.e. the complete audio Log-Mel spectrogram, and
that therefore the patches are closely related to each other, being together the
union of the spectrogram. Taken individually, the extraction of features from each
patch could lead to the loss of information and parts of the input that impact the
classification, especially between the points of junction between the different patches.

The solution that we propose is to loop a first time trough all the patches that
make up the Log-Mel spectrogram, calculating the hypercolumns for each patch
and concatenating them into a data structure.

After collecting all the patches, the data structure contains the hypercolums of all
the patches at the same time and so indirectly contains the knowledge acquired by
the model on the complete spectrogram.

We proceed by calculating on this data structure the clustering of the hypercolums
and we obtain the interpretable features as if we had in input the total Log Mel
Spectrogram.

After extracting the features the data structure is framed with patches of the same
size of the input patches and the framed data structure is stored into A-EBAnQO.
In A-EBAnO workflow another loop start from the first patch in order to produce
the explanation on the entire spectrogram and using this features extraction tech-
nique every patch have already calculated its features map to which it is associated
through its indez in the loop. For example patch number 2 finds its feature map
at index 2 of the data structure that collects the complete feature map on the
spectrogram.

In our implementations the data structure is a list, so the complete Log-Mel
spectrogram is stored into a list of 2-dimensional array.

With this different features extraction technique the aim is to recover the uniqueness
of the single patches in the complete spectrogram to try to have features with
a more continuous trend along the whole spectrogram and may be less clearly
separated passing from one patch to the next, as they appear using the first feature
extraction technique.
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Algorithm 1 Spectrogram Features Extraction. Given n number of patches

=

10:
11:

12:

> Initialization
HC + empty > Data structure to store hypercolums of each patch
> Execution
for i =0 ton do
p < load_patch(i) > Load current patch
hc_patch < extract__hypercolumns(p) > Extract hypercolumns of current
patch

HCYi] - he_patch > Store current patch hypercolumns

: end for
: he < concatenate(HC, axis = 0) > Get a single data structure
features_map < clustering(hc) > Build the features map
framed_map < frame(features_map) > Divide in frame the complete

features map
> A-EBAnO workflow continue and every patch at index i find the correspondent
features map on framed_map/i]

Features map
o
8
5

aN

Frequency

Figure 4.5: Visual representation of patch features map with 9 features calculated
using Spectrogram Features Extraction technique.
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The objective of this and previous features extraction techniques is to extract
impacting portions of the input for the classification of the predicted class.
These techniques helps us to understand what parts of the spectrogram are more
important for the black-box model and if it is correctly focused and can follow the
portions of the spectrogram that present sound energy patterns consistent to the
input sounds.

The two features extraction methods are useful also to have visualization of the
general approach of the model in the input classification.

To be practical, observing Figure 4.4 it is possible to recognized a clustering that is
focused on creating vertical regions while Figure 4.5 present a division in horizontal
features.

In the next sections will be clear that the first figure show that the model is more
focused on the frequencies of the input patch while the second figure show that the
best features which to build the explanation are taken focusing on a time division
of the input.

Frequency Bands Features Extraction The Log-Mel spectrogram show the
signal strength at the various frequencies.

In order to focusing the explanation on this important characteristic of the spec-
trogram and to be able to strictly analyze how the frequency of the input audio
impact the outcome prediction , we build up this features extraction technique.

The objective of the features extraction is to create a clustering of input points
correlated each other. The analysis of frequency bands really don’t need to mine
the inner knowledge of the model in order to calculate the feature map. Instead we
directly create the features map algorithmically.

As we can see in figures on the previous section and discussed in subsection 4.1.1,
every patch has a 96x64 dimension, where 96 stands for 96 frames of 10ms each
and 64 stands for 64 Mel frequency bands.

This means that visually every patch is represented with the time on the y-axis
and frequencies on x-axis.

The frequency bands feature map is represented as a set of vertical clusters for this
reason.

In the implementation of the technique we could choose between two different ways
of working:

Division into static frequency bands Using this approach we can decide to
divide every patch with a chosen number of features, disregarding the maximum
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number of feature chosen at the start of the analysis.

Division into dynamic frequency bands A-EBAno build an explanation us-
ing from 2 to the max number of features chosen as parameter , so the final number
of bands composing the features map can change reflecting the number of features
composing the most informative explanation for the patch. In this way consecutive
patches could have a different number of features in the features map.

We chose to use the second strategy for a very important reason. An audio
can vary a lot from one instant of time to another. Every patch represent approxi-
mately 1 second ( 960 ms ) of the input audio and different patches can represent
very different characteristic of the input respect to other patches, so we left to
A-EBAnO to choose what are the right number of bands, for every different patch,
to use in order to create the most informative explanation, so as not to risk losing
sight of important information, as could happen using a static frequency bands
division.

The objective of this features extraction technique is to highlights the impact
of a certain frequency band on the classification of the class of interest. We can
understand if the sound recognized in the audio file is classified using an appropriate
range of frequencies.

A sound that we perceive as low is generated by a sound wave with a low frequency
while a high-pitched sound is generated by a high frequency sound wave. If in the
classification of a low sound, high frequencies have a more positive impact on the
classification than there could be some kind of error or imprecision in the model,
that should instead be based more on the low frequencies. The opposite is true for
high sounds.
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Figure 4.6: Example of internal representation of a low resolution Frequency
bands features map with 4 features.
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Figure 4.7: Visual representation of single patch Frequency bands features map
with 7 features.

Time Bands Features Extraction Log-Mel spectrogram does not only show
the signal strength at the various frequencies but also how it change over time.
Each instant of time of the input audio can represent an important event for
classification both in terms of positive and negative impact. At any instant there
may be a change in sound or its immediate absence. We therefore thought that we
needed a tool that would make us able to analyze the input by time bands. All the
analysis done for the previous feature extraction technique also applies to this one.
The time on the Log-Mel spectrogram patches is located on the y-axis so the time
bands feature map is represented as a set of horizontal clusters.

We also thought that also for this technique the best solution was to have a dynamic
time bands division.

The aim of this technique is to help us to understand if the black-box model
can distinguish exact moment of time that are important for the classification.

If at a certain instant of time the sound that is present, clearly don’t belong to the
input audio class or if there is not sound at all and the classification gave an exact
result for the input audio classification, we expect the explanation to show how
that exact instant of time has zero or negative impact.
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If this is not the case then some kind of problem could be present in the classifier.
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Figure 4.8: Example of internal representation of a low resolution Time bands
features map with 4 features.
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Figure 4.9: Visual representation of single patch Time bands features map with
8 features.
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4.2.4 A-EBAnNnO Perturbation

After extracting interpretable features, A-EBAnO proceeds with an iterative per-
turbation against all these features producing a set perturbed Log-Mel spectrogram
patches, where portion that not belong to the feature under analysis are left
unchanged while the input portion that belong to the feature that A-EBAno is
studying are perturbed . The perturbed patches are fed again into the DNN
under analysis and the prediction of the perturbed input is made. By comparing
the prediction on the original input and on the perturbed one, the influence and
influence precision are calculated.

To obtain the perturbed patches we had two solutions:

Perturbation on the input audio When A-EBAnO workflows start , we can
perturb the input audio, calculate and store its Log-Mel spectrogram patches into
A-EBAnQO. During the production of the perturbed patches we only need to retrieve
the exact patch of the spectrogram computed on the modified input and combine
it with the original spectrogram patch under analysis.

Perturbation on the spectrogram patch We directly modify the input patch
with some consistent noise only on the portion of the patch that belong to the
current feature. In the current implementation of A-EBAnO we decide to use
the second strategy because is less computationally expensive and faster and also
because the real input of the classifier is not the audio but its Log-Mel spectrogram
so we think that is more appropriate to modify directly the patch.

In this work we propose as perturbation Additive White Gaussian Noise (AWGN).
It is Gaussian because he have a normal distribution, white because it has uniform
power on all the frequency band and additive because is added to the intrinsic noise
that can be present in the perturbed signal.

Given the original patch and the feature map, every time a feature must be
analysed, a feature mask is created where are highlighted only the points that
belong to that feature. These points are marked with "1".

Than we build the AWGN using as mean of the distribution zero and as standard
deviation the standard deviation of the audio power levels in the patch.

Than we use the feature mask to build the perturbed patch: points that not belong
to the feature remain equals to themselves while the noise is added to the value of
the points that are part of the interpretable feature.
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Algorithm 2 Algorithm to produce a perturbed patch

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

> 4 _p is input patch

> f m is feature mask

> Execution

mean — 0

std < std(i_p)

noise < normal(mean, std)
notsy_patch < 1_p + noise
opposite_mask < 1 — f m
pl < noisy patch x f_m
P2 < i__p* opposite__mask
pp < pl 4+ p2

return pp

end procedure

procedure GET__PERTURBED__INPUT(7_p, f m)

> Standard Deviation

> mask for not-perturbed input point
> get only perturbed points of the feature

> get non perturbed points

> combine together into perturbed patch

> Perturbed patch is returned
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Figure 4.10: Perturbation process using Spectrogram Features Extraction.
Perturbation using Single Patch Features FExtraction is equal and is not reported.
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Figure 4.11: Perturbation process using Frequency Bands Features Extraction
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Mask

0 25 50 0 25 50 o

Figure 4.12: Perturbation process using Time Bands Features Extraction

4.2.5 A-EBAnO Post-Processing

An explanation to be usefull must must clearly understandable by all types of users.
When we work with audio signals we are used to having time represented on the
x-axis and others characteristic on the y-axis.

In our work we build explanations on audio classification based on the Log-Mel
spectrogram of the input audio . It is a visual representation of the power of the
sound present in the audio as it change over time at various frequencies. Working
with spectrogram than we expect to have a visualization that uses the x-axis to
represent time and y-axis to represent frequencies.

As we can see in all examples in the previous sections, A-EBAnO takes the audio
input, calculate its Log-Mel Spectrogram and then divide it in patches of shape
96x64. Visualizing the patches, and consequently all the workflow step outputs of
A-EBAnO, we can see that the two axis, time and frequency, are swapped. It is
possible to leave this convention for axes unchanged, but the output explanation
would be difficult to understand and study.

In order to present a clearly understandable explanation, after all calculations is
done and before producing the visual representation, we proceed to post-process
the input patches and the output visual explanation.

Comparing the Log-Mel spectrogram calculated with A-EBAnO with Log-Mel
Spectrogram calculated with Librosa [20], a Python package for audio analysis, we
understand that, in order to have a coherent visual representation of the spectro-
gram, we have to both rotate and flip vertically it.

Post-Processing is applied to every patch of the features map and consequently
to every patch composing the visual explanation and then inputs with the right
orientation are combined together in the final explanation.
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A-EBANO Spectrogram Librosa Spectrogram
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Figure 4.13: Visual post-processing visualized on the complete spectrogram

4.2.6 A-EBAnNO Visual and Numerical Local Explanations

Visual and numerical local explanations are the final outputs of A-EBAnO. Their
objective is to show in two different way the influence of every extracted inter-
pretable feature on the classification of the audio input.

Visual explanation is composed by two different contributes:

Interpretable Features Map It is a visual representation of the extracted
features in which each one is marked with a numerical id and a different color.

Visual Explanation Each interpretable feature impact on the classification
is shown using a graduated color scale from green, positive influence, to red,
negative influence, passing through gray, neutral influence, directly on the Log-Mel
spectrogram. Each explanation specify the label of the class of interest and what
features extraction technique has been used coded with a numerical id : 0 for Single
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Patch Features Fxtraction, 1 for Frequency Bands Features Fxtraction, 2 for Time
Bands Features Extraction, 3 for Spectrogram Features Extraction.

On the abscissa time is reported while on the ordinate is reported frequency.
The indexing of the features is not incremental but for every patch start again
from 1 to the maximum number of extracted features. In this way we think the
explanation is more easily readable because the ids would tend to reach high
numbers creating confusion on the visualization.

The following figures shows features map and visual explanation on the same audio
input Log-Mel spectrogram for the 4 different feature extraction techniques.

4096
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Figure 4.14: Audio Input Log-Mel spectrogram
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Figure 4.15: Features map (top) and visual explanation (down) using Single
Patch Features Extraction technique.

52



Proposed Methodology

Class of interest: 2 Method : 1
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Figure 4.16: Features map (top) and visual explanation (down) using Frequency
Bands Features Fxtraction technique.
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Figure 4.17: Features map (top) and visual explanation (down) using Time Bands
Features Extraction technique.
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Figure 4.18: Features map (top) and visual explanation (down) using Spectrogram
Features Extraction technique.

The objective of local Numerical Fxplanation is to show in a easy way the two
proposed index values for every different interpretable feature extracted.

Numerical explanation shows with a bar chart the value of nPIR reached by
every features. nPIR stand for normalized Perturbation Influence Relation and it
range from -1 to 1, where -1 indicates a very negative influence of the feature on
the classification result while 1 indicates a very positive influence of the feature on
the classification of the audio input.

The second index ,normalized Perturbation Influence Relation Precision (nPIRP) ,
is showed as a mean value over all the patches composing the complete Log-Mel
Spectrogram. We decided to use this type of representation because during the
experiments it was found that the value of the index was always very close to -1 or
1 for every feature, values that indicate respectively that the feature considered
has a more important impact on the other classes than the class of interest or that
it is highly focused in describing the class of interest. So including the value of
nPIRP in the graph doesn’t add any useful information and makes it harder to read.

Figure 4.19 shows the numerical explanation of a 5s correctly classified audio of a
crying baby (coi = 20) using Spectrogram Features Eztraction technique (method
= 3). It also showed the mean value of nPIRP. The x-axis shows the ID of each
feature extracted for each different patch. The indexes are not incremental on
the whole spectrogram but start again from index 1 for each patch for reasons of
readability of the graph.
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The y-axis shows the value of the nPIR index for the respective feature.

On top of the graph several informations are provided :

o Class of Interest :

the classification analysis is carried out.

e Method :

e nPIRP mean :

the features extracted on the spectrogram.

Class of interest: 20 Method : 3 [nPIRP mean : 1.0]

the corresponding index of the class of interest on which

indicates the feature extraction technique used in the analysis.

show the mean value of the nPIRP index calculated over all

0.25
= dL £ ||
c

'l
||
_ | II
LT II

Figure 4.19: Numerical Explanation example

Feature ID
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Chapter 5
Experimental Results

In this chapter are discussed the experimental results observed after manually
inspecting 200 audio taken from ESC50 Dataset and 50 audio from UrbanSound8K
Dataset.

In the first section we describe the experimental settings, that we show 3 examples
deeply analyzed. Other examples show peculiar A-EBAnO explanations. We then
describe a comparison between two models trained on the two different Dataset
and finally an automated global analysis of the quality of the features extracted by
A-EBAnO.

5.1 Experimental Settings

In this section are explained the implementation choices to produce local explanation
in context of audio classification using A-EBAnQO, explained in section 4.2.

Classifiers During the experiments we produced local explanation using 2 models.
The classifier architecture is explained in section 3.3. The classifier is build upon
Vggish, a slightly modified version of VGG, a popular Neural Network used in image
classification. The 2 models differ in the Dataset used during the training.

Datasets and Task The two Dataset used in the experiments are ESC50, de-
scribed in subsection 3.4.1 and UrbanSound8K, explained in subsection 3.4.2. They
are the same Dataset used during the training of the classifier.

Both Datasets are composed of audio clips of environmental sounds so the classifi-
cation task for which the local explanations are produced is Environmental Sound
recognition, explained in section 3.1.
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Number of layers and extracted features Model used in the experiments
have a total of 6 convolutional layers. These layers contains the knowledge that we
want to mine to build up the local explanation of the classification. Using all the
layers can produce a very deep tensor that is difficult to manage. Moreover the
most characterizing informations of the model are stored in the deepest layers of
the network. This led our analysis to be focused on the 3 deepest convolutional
layers of the classifier.

A fair upper limit of the number of extracted features is necessary in order to be
able to build an explanation composed by meaningful semantic features. A too
large or small number of features leads to an explanation with an unclear meaning
for the user. During the experiments we set a maximum number of interpretable
features to 10. We think is a fair trade-off between cost of computation and
interpretability of the explanations. All explanations will be formed from features
in a range from 2 to 10 and the most informative explanation for every patch of
the Log-Mel spectrogram is chosen by A-EBAnO and combined with the most
informative explanation of all other patches forming the final explanation of the
entire spectrogram.

5.2 Explanation Examples

In this section are deeply analyzed 3 different type of explanation: one right
explanation, explanation with an input audio clip with presence of silence and an
explanation of a wrong prediction.

For every example are presented the input Log-Mel Spectrogram, top-5 predictions
based on the mean value of the predictions probabilities over all the patches forming
the input, visual and numerical explanations.

Other explanations showing peculiar performance of A-EBAnO are then presented.

5.2.1 Example of right prediction

This example show the explanations of a correct prediction on the class Crying
Baby, with class ID equal to 20. Log-Mel spectrogram is show in Figure 5.1 and
top-5 prediction probabilities are shown in Table 5.1
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Hz

4096 1

2048 1

1024 4

5121
.

Log Mel Spectrogram

Figure 5.1: Log-Mel Spectrogram Crying Baby

ORIGINAL LABEL | PREDICTED LABEL | PROBABILITY
Crying Baby Crying Baby 0.95

Door wood creaks 0.00

Dog 0.00

Rooster 0.00

Pig 0.00

Table 5.1: Prediction probabilities Crying Baby (COI = 20).
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Single Patch Features Extraction Explanations In this section are showed
visual and numerical explanations using Single Patch Features Fxtraction technique
(Method = 0). Figure 5.2 and Figure 5.3 compose Visual explanation while
Figure 5.4 shows the Numerical Explanation.

Class of interest: 20 Method : 0

7500 p-
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5656 _ . N g, @
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0.0s 0.965 1.92s 2.88s 3.84s 4.85
Time

Figure 5.2: Interpretable Features Map Crying baby using method 0
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Figure 5.3: Visual Explanation Crying baby using method 0

Class of interest: 20 Method : 0 [nPIRP mean : 0.99]
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Figure 5.4: Numerical Explanation Crying baby using method 0

Analyzing the explanations we can see that A-EBAno is able to show to us that
the most important parts of the clip for the classification are the first two seconds
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and the last second. Comparing features map to numerical explanation we can see
that nPIR value on this portions of the clip are very close to 1 and represented
with a vibrant green. In this two segments of the clip is clearly audible a sound
of a crying baby. Interesting to note is that from around second 2 to the end of
second 3 A-EBAnO correctly show portions of the spectrogram that have a neutral
or negative influence on the prediction indeed in this section the sound is very
different because the baby stop for a moment to cry and emits two coughs. The last
patch representing last second of the clip is also described with a slightly negative
influence features with ID equal to 1 and 8. In this last part the baby makes a
shrill sound that the model classify better as a door creaks. The interpretable
features extracted by A-EBAnO are very focused on describing label Crying Baby
with a mean nPIRP value of 0.99.

With this type of technique we can understand also that in general A-EBAno
produces explainable features that represent both frequencies bands and time
bands . In this example the most informative portions of the spectrogram are
represented mostly with features that develop horizontally on the frequency axes
while in the portions of the clip where there are portions of sound that do not
belong to the class of audio input, A-EBAnO extract features that develop on the
time axes.

Frequency Bands Features Extraction Explanations Using this features
extraction technique (method = 1) we can better focus on the analysis of the
frequencies covered by the sound in the clip on the Log-Mel scale.

Class of interest: 20 Method : 1
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125 : . - ; :
0.0s 0.965 1.92s 2.88s 3.84s5 4.85
Time

Figure 5.5: Interpretable Features Map Crying baby using method 1
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Class of interest: 20 Method : 1
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Figure 5.6: Visual Explanation Crying baby using method 1
Class of interest: 20 Method : 1 [nPIRP mean : 1.0]
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Figure 5.7: Numerical Explanation Crying baby using method 1
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We can see with the visual explanation, represented in Figure 5.5 and Figure 5.6,
A-EBAnO dynamic features band division over the patches composing the spec-
trogram. Every patch it is divided in the most informative number of frequency
bands. Explanations produced using this features extraction techniques show to
use what frequencies bands are the most important in the classification. Over all
the clips low frequencies are always important in classification, typical of the sound
of a crying baby. In the first two and the last second also high frequencies have a
positive influence with nPIR values represented in the numerical explanation in
Figure 5.7 with a value of 1. In the central part of the clip high frequencies have a
neutral influence on the class of interest classification because during this moment
of time the baby do not cry but emits cough and inhale air. In the last second we
can see that mid frequencies have a negative impact while on the whole clip mid
frequencies have a neutral influence. The precision of extracted features is very
high, with a mean nPIRP value of 1.0.

Time Bands Features Extraction Explanations FExplanations produced us-
ing this features extraction method (method =2) better highlights the instants of
time that influence the model in the input classification.

Analyzing explanations produced with this features extraction technique we can
see in the visual explanations in Figure 5.9 based on the features map in Figure 5.8
that the classification result is mostly positively influenced by the last moment
instant of the baby’s first wailing and the first moment of time of the baby’s second
wailing. At the end of the second wailing the child emits the two coughs and this
instants of time are correctly estimated neutral for the classification. At the start
of the last second we have a negative influence time bands while the rest of the
clip have a positive influence in the classification as we can see in the numerical
explanation in Figure 5.10, where nPIR values of the central extracted features on
the patch, with ID range from 2 to 7 , are all 1 or close to 1.

Class of interest: 20 Method : 2
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Figure 5.8: Interpretable Features Map Crying baby using method 2
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Class of interest: 20 Method : 2
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Figure 5.9: Visual Explanation Crying baby using method 2
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Figure 5.10: Numerical Explanation Crying baby using method 2
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Spectrogram Features Extraction Explanations Unlike the first way of
features extraction, using this type of technique (method = 3) the extracted features
are calculated by taking as input the hypercolumns of the complete spectrogram of
the input audio.

Class of interest 20 Method 3
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Figure 5.11: Interpretable Features Map Crying baby using method 3
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Figure 5.12: Visual Explanation Crying baby using method 3

Class of interest: 20 Method : 3 [nPIRP mean : 0.99]

1.00

0.75

Seiihid i

-0.25

—0.50

—-0.75

-1.00
12 3 456 7 81012345678 91012345678 910123 456 78 910123 45¢67 8 910

Feature ID

Figure 5.13: Numerical Explanation Crying baby using method 3

We can see that similar to the explanations produced using method 0, the
interpretable features present a development on the frequency axis for the parts of
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the clip that have a very positive influence on the classification, i.e. the first and
last seconds. In the middle part, where the sound type is different from the audio
class, the features have a development on the time axis.

The biggest difference is in the latest patch. In this case all the part of the spectro-
gram representing the vagus of the newborn correctly presents a positive influence,
while the method 0 presented it negatively influential. The start and the end
of the patch are the portion of the spectrogram that have a negative influence,
corresponding to the same portions recognized using method 2. Mean value of
nPIRP is also in this case very high with value equal to 0.99

Comparing it with method 0 , we can say that Spectrogram features extraction
method produces interpretable features that describe the spectrogram in more
detail and in a more precise way and therefore we consider it preferable to method

0.

5.2.2 Example of audio clip with silence

This example show how A-EBAnO is able to understand and analyze portions of
the input audio spectrogram in which audio is actually present, completely ignoring
the silent parts of the clip. Log-Mel spectrogram and top-5 prediction probabilities
are shown in Figure 5.14 and Table 5.2 and visual and numerical explanations
using Time Bands Features Extraction (method = 2) and Spectrogram Features
Eztraction (method = 3) techniques of an audio clip belonging to class Coughing,
with class ID equal to 24 are provided.

Log Mel Spectrogram

+0 dB
-20 dB
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-60 dB

0 0.6 12 18 24 3 36 42 48
Time

Figure 5.14: Log-Mel Spectrogram Coughing
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ORIGINAL LABEL | PREDICTED LABEL | PROBABILITY
Coughing Coughing 0.80

Glass breaking 0.34

Sneezing 0.31

Door wood knock 0.29

Rooster 0.28

Table 5.2: Prediction probabilities Coughing (COI = 24)

Class of interest: 24 Method : 2

7500
5656 - L] ~ L o~ ~
= L)
N -
N 3812 - _ ~ ~
1968 1 = =
125 T T T
0.0s 0.96s 1.92s 2.88s 3.84s 4.85
Time
(a) Features Map Coughing
Class of interest: 24 Method : 2
7500
5656
N 3812
1968
125 T T
0.0s 0.96s 1.92s 2.88s 3.84s 4.85
Time
(b) Visual Explanation Coughing
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(c) Numerical Explanation Coughing

Figure 5.15: Visual and Numerical Explanations Coughing using method 2
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Class of interest: 24 Method : 3
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(b) Visual Explanation Coughing
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(c) Numerical Explanation Coughing

Figure 5.16: Visual and Numerical Explanations Coughing using method 3

Analyzing explanations produced using both interpretable features extraction
techniques we can see that A-EBAnOQO is able to distinguish portions of the Log-Mel
spectrogram that actually contain information to be analyzed from those that do
not have any sound.

Last two seconds of the clip are silent and A-EBAnO correctly explain to us that
that part of the audio input is completely ignored. The first patch positively
influence the result of the prediction with values of nPIR equal to 1 to the most
features extracted on this clip by both techniques.

Both analyses show that after this initial cough there is a moment of time that
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negatively affects classification. In this moment in time, a type of guttural sound
is distinguishable that differs from the typical coughing sound. In method 2 is
represented with the feature ID number while using method 3 it is represented
with an ID equal to 7. In the clip there is then a moment of silence that is recog-
nized as neutral, with ID equal to 2 in Figure 6.15a and then followed by a final
quick cough that again is recognized as positively influencing the classification result.

Important to notice is that in both analysis after the last cough a small por-
tion of the spectrogram that is silent has a slightly positive influence . Analysing
other audio input has emerged that types of sound that can be characterized as
impulsive, like coughs, have created a cognitive bias during the training of the
model. In fact, the model tends to recognize silence just after all types of impulsive
sounds as positively influential in classification. WE can also recognize this bias by
looking at the classification probability table. The top-3 predicted label all belong
to 'impulsive’ type of sound.

5.2.3 Example of wrong prediction

This is an example of incorrect classification explanation. The original label of
the audio input is Cat, but the classifier incorrectly classify the input as Glass
breaking. In Figure 5.17 is reported the Log-Mel Spectrogram and top-5 prediction
are showed in Table 5.3. Explanations using Frequency Bands Features Extraction
(method = 1) and Spectrogram Features Extraction (method = 3) are reported after
prediction probabilities table. The first analysis is performed using the wrong label
‘glass breaking” with label ID equal to 39 as the class of interest. Then the analysis
is shown using the original 'cat’ label as class of interest with label ID equal to 5.

Log Mel Spectrogram
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Figure 5.17: Log-Mel Spectrogram Cat
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ORIGINAL LABEL | PREDICTED LABEL | PROBABILITY
Cat Glass breaking 0.52

Door wood knock 0.50

Sneezing 0.47

Cat 0.44

Coughing 0.43

Table 5.3: Prediction probabilities Cat (COI = 5). Glass Breaking COI = 39.

Class of interest: 39 Method : 1
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(a) Features Map coi = Glass Breaking
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(b) Visual Explanation coi = Glass Breaking
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(c) Numerical Explanation coi = Glass Breaking

Figure 5.18: Visual and Numerical Explanations using method 1 with coi =
'Glass Breaking’
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(c) Numerical Explanation coi = Glass Breaking

Figure 5.19: Visual and Numerical Explanations using method 3 with coi =
'Glass Breaking’

Analyzing firstly the explanations produced using as class of interest the wrong
predicted label 'Glass Breaking’ we can understand that the the error is due to
the first moments of silence following the cat’s meow. Both features extraction
techniques shows that the features that affect classification the most are those
represented by the low and high frequency bands in the second patch, which starts
just after the end of the meow. Explanations produced using Frequency Bands
Features Extraction (Figure 5.18) highlight how much influence is feature with
id equal to 1 that reach a nPIR value over 0.75. nPIR index values reached by
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features number 8 and 10 in the numerical explanation using Spectrogram Features
Extraction (Figure 5.19) technique are lower but still positive. Their effect is
mitigated by the fact that the analysis is performed on the full spectrogram, where
their positive influence have a minor impact on the classification.

Is important to highlights that the mean of nPIRP value on both the analy-
sis is very negative : -0.98 using Frequency Bands Features FExtraction method and
-0.83 using Spectrogram Features Eztraction method. This mean that the classifier
is very is very uncertain about the ability of the extracted features to describe
significant portions of the input.

These explanations give further evidence to the claim that the model is biased
when it has to classify a type of audio that has a very short sound followed by a
long silence.

Now we analyze the explanations produced using 'Cat’ as class of interest in
order to understand why the model is unable to classify the sound correctly. We
show explanations using again Frequency Bands Features Extraction (Figure 5.20)
and Spectrogram Features Extraction (Figure 5.21) techniques to have a fair com-
parison.

Studying the explanations using as class of interest the label 'Cat’ we notice
that now portion of the spectrogram that correctly represent the cat’s meow are
recognized as positively influential. Looking at the explanation produced using
Frequency Bands Features Fxtraction technique two over three extracted features
in the first patch have positive values of nPIR. Especially features with ID equal to
2 have a nPIR very close to 1. The same portion of the spectrogram is recognised
also using Spectrogram Features Extraction method has the same positive value but
slightly less than 0.5.

The important reason because the model can’t correctly recognise the sound
in the audio is that the mean of nPIRP is low for both the explanations : 0.24
using method 1 and 0.26 using method 3.

When the model have not a mean value of nPIRP, so it is not completely certain
that the extracted features are focused on describing only the class of interest, it
prefers to classify the sound in the patch as 'Glass breaking’, because of the bias
acquired during training.
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Figure 5.20: Visual and Numerical Explanations using method 1 with coi = *Cat’
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Class of interest: 5 Method : 3
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Figure 5.21: Visual and Numerical Explanations using method 3 with coi = ’Cat’
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5.2.4 Other Relevant Examples

In this section we show 3 other examples in which we can see the ability of A-
EBANO to find features that can describe in a clear and precise way the input
audio and to build in this way an explanation useful to the user in understanding
the result of the classification. For each examples the spectrogram, top-3 prediction
and visual explanation are provided using the most suitable features extraction
technique for the explanation.

Siren (frequencies) In this example we can see how A-EBAnO explanations
shows that the correct classification of input audio as ’Siren’ sound is due to the
interpretable features that represents high frequencies as we can expect listening
to the sound of a siren, characterized by high frequencies sounds. Table 5.4 show
the classification probabilities for the top-3 predicted label.

Figure 5.22(c) shows the visual explanation of the classification. On over the
clip high frequencies have a positive influence on the classification with nPIR values
near to 1. In the third patch is present a portion of the low frequencies represented
in the spectrogram that also have a positive influence. It is due to the presence of
second ’Siren’ sound that that comes from a source further away from the place
where the clip was recorded , which could be described by lower frequencies.

ORIGINAL LABEL | PREDICTED LABEL | PROBABILITY
Siren Siren 0.99

Car horn 0.00

Church bells 0.00

Table 5.4: Prediction probabilities Siren (frequencies)(COI = 42).
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(a) Log-Mel Spectrogram Siren (frequencies)
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(c) Visual Explanation Siren (frequencies)

Figure 5.22: Log-Mel Spectrogram and Visual Explanation Siren using Frequency
Bands Features Extraction technique
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Train This example emphasizes the use of Time Bands Features FExtraction
technique to clearly understand what moments of time during the audio clip are the
most important for the classification. The input audio belong to the class "Train’.
Top-3 predicted class are reported in Table 5.5.

Log Mel Spectrogram
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(a) Log-Mel Spectrogram Train
Class of interest: 45 Method : 2
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(b) Features Map Train
Class of interest: 45 Method : 2
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(c¢) Visual Explanation Train

Figure 5.23: Log-Mel Spectrogram and Visual Explanation Train using Time
Bands Features Extraction technique
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ORIGINAL LABEL | PREDICTED LABEL | PROBABILITY
Train Train 0.82

Wind 0.11

Dog 0.00

Table 5.5: Prediction probabilities Train (COI = 45)

Analyzing the visual explanation in Figure 6.23(c) we understand that the model
is focused on two precise moment of time , around second 2 and at the end of
the clip. In this moments of time is clearly audible the sound of the train while
crossing a junction between tracks. It is this type of sound present in the audio
clip that the classifier utilize to correctly classify the audio as 'Train’. Features
representing time bands with negative influence represent represent instants of time
during which the sound of the running train can be mistaken for that of the wind.

Siren (Spectrogram segmentation) This final example want to show how
A-EBAnO Spectrogram Features Eztraction method can find interpretable features
that can precisely follow and describe the distribution of the sound power on the
spectrogram. The input sound belong to the class 'Siren’ and top-3 predicted
classes are reported in Table 5.6.

ORIGINAL LABEL | PREDICTED LABEL | PROBABILITY
Siren Siren 0.99

Dog 0.00

Rooster 0.00

Table 5.6: Prediction probabilities Siren (COI = 42)
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Looking at the Log-Mel spectrogram in Figure 6.24(a) we can easily understand
that could be difficult to find interpretable features that can correctly describe the
power distribution of the sound in the spectrogram. However the features map
that we can see in Figure 6.24(b) shows that A-EBAnO its able to find features
that highlights correctly the portion of the spectrogram that represent the power
distribution.
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(a) Log-Mel Spectrogram Siren
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(b) Features Map Siren
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(c) Visual Explanation Siren

Figure 5.24: Log-Mel Spectrogram and Visual Explanation Siren using Spectro-
gram Features Fxtraction technique
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5.3 Comparison between models

In this section we show a comparison between the explanations of classification
result on a input audio, taken from ESC50 Dataset, representing a ’'Dog’ sound,
using two instances of our classifier. The first model is trained on ESC50 Dataset
(subsection 3.4.1) and the other one is trained on UrbanSound8K Dataset (subsec-
tion 3.4.2).

We decide to use the model trained on UrbanSound8K that uses the same strategy
of training of the model trained on ESC50 ,where the Dataset is divide in random
train,validation and test sets, to have a fair comparison.

For the comparison we show the Visual Fxplanation of the classification using only
the Spectrogram Features Fxtraction technique. The visual explanation contains
indirectly the nPIR index values for every interpretable feature extracted, encoded
by the color scale . Mean value of nPIRP value is also provided to have a complete
understanding of the explanations.

This type of comparison allows us to understand the influence that can have the
Dataset in the training of the model and therefore on its performances.

Log Mel Spectrogram
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Figure 5.25: Log-Mel Spectrogram Dog from ESC50

Figure 6.25 represent the Log-Mel Spectrogram of the input audio.

The comparison baseline is the classification result and visual explanation of
the classification performed by the model trained on ESC50 Dataset. Top-1 class
predicted is 'Dog’ with a probability of 0.99.
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Figure 5.26: Visual Explanation of the classification performed by model trained
on ESC50

The visual explanation using Spectrogram Features Extraction technique in
Figure 5.26 show to use that the starting and ending parts of the spectrogram
have a very positive influence on the classification with a neutral portion of the
spectrogram in correspondence of instant of silence. Mean of nPIRP index is 1.0
meaning that A-EBAnO was able to find features that precisely describe the class
of the audio.

Now we feed into the model trained with the other Dataset, UrbanSound8K,
the same input audio

The classifier is able to correctly classify the input audio as 'Dog’ with a probabil-
ity equal to 0.94. The visual explanation produced by A-EBAnO is reported in
Figure 5.27.
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Figure 5.27: Visual Explanation of the classification performed by model trained
on USSK

Looking at the visual explanation is very clear that the model absolutely don’t
recognize any portion of the spectrogram that can be representative of the input
audio label as positively influencing the prediction. All the spectrogram have a
neutral impact on the classification. This mean that any perturbed mined features
change the result of the classification. Also the mean of nPIRP value is bad with a
value equal to -1. It seems that using UrbanSound8K as a training Dataset leads
to the creation of a model that is not capable of generalizing its classification,
not being able to learn from precise portions of the spectrogram that positively
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affect the classification result, which it may be able to identify in audio other than
those used in its training. Class of interest are different because the label "Dog’ is
represented by different ID’s in the two Datasets used during the training

To complete the comparison we feed as input of the model trained on ESC50,
a 'Dog’ audio file taken from UrbanSound8K, in order to understand if the prob-
lem is the Dataset itself or if A-EBAnO its not capable to correctly perturb the
interpretable features extracted from audio input taken from UrbanSoundS8K.

The network correctly classify the input as 'Dog’ with a probability equal to
0.20, representing the top-1 label predicted.
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Figure 5.28: Log-Mel Spectrogram Dog from UrbanSound8k
Class of interest: 0 Method : 3
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Figure 5.29: Visual Explanation Dog from UrbanSound8k performed by model
trained on ESC50

In Figure 5.28 we can see the Log-Mel Spectrogram of the audio input while
Figure 5.29 represent the visual explanation produced using Spectrogram Features
Extraction method. As we can easily notice in this case A-EBAnO produce an
usefull explanation of the classification. The central part of the audio clip is
important in the classification while starting and ending patches are more neutral.
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The mean of nPIRP value over the spectrogram is equal to 0.42.

Thanks to the explanations produced using A-EBAnO we can conclude that
in case we should between the two models certainly our choice would fall on the
model trained on ESC50, because A-EBAnO has shown us that the classifications
produced are actually based on precise portions of the input and therefore our
confidence in its results is higher.

5.4 Global Analysis

In the previous sections every example show the local explanations produced by
A-EBAnNO taking a single input at time.

In order to have a global vision of the proposed methodology we collect statistics
over 200 audio taken from ESC50.

For each Features Extraction technique the distributions of the nPIR maximum and
minimum values were calculated from explanations produced by A-EBAnO using
as class of interest the top-1 prediction label, along with the feature distribution
based on the values of nPIR.

Globally are analyzed 800 explanations composed of a total of 1000 different Log-
Mel Spectrogram patches.

The objectives of this global analysis is to understand if A-EBAnO is able to
find relevant features for the classification and to analyze the computation cost
between the four different features extraction techniques looking at the computation
time.

Distribution of min and max nPIR values In Figure 5.30 are showed the
distributions of min and max values of nPIR computed for the all four Features
Extraction techniques.

For all the methods the positively influential features, with maximum nPIR are
mostly included in the [0.75,1.0] range. Time Bands and Spectrogram features
extractions techniques only presents some values that fall in the [0.00,0.25] range.
Rare but present are in all methods maximum values below 0.0. This means that
for certain type of inputs A-EBAnNO is not able to find a a positive influential
feature.

Mostly of the feature with minimum nPIR are located in the [-0,25,0.25] range. Less
influential features have a slightly negative or neutral impact for the classification
process. Especially Spectrogram Features Extraction technique present near to zero
minimum value of nPIR above 0.25.
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The large distance between minimum and maximum nPIR values, that is re-
sponsible in the right choice of the most informative explanation presented by
A-EBAnNQO, suggest to us that the model can produce usefull explanations.
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Figure 5.30: Distributions of min and max nPIR values for Features Extraction
method

Distributions of nPIR values Figure 5.31 show the number of features for dif-
ferent bins of nPIR values, calculated using all four Features Extraction technique.
All 4 distributions show that mostly of the interpretable features extracted by
A-EBAnO fall in the [0.0,1.0] range. This means that the proposed methodology
can mostly find features that have a neutral or positive impact on the classification
result. This is not surprising as the classification metrics on this Dataset (subsec-
tion 3.4.1) show high model accuracy.

Spectrogram Features Extraction divide the input spectrogram in a larger number
of features. The peak of neutral features is over 5000 for this technique while the
other three shows a peak around 2000. This means that this techniques produce a
more precise features map that uses to analyze the spectrogram.

In Table 5.7 are reported the percentages of features with nPIR greater or equal
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to 0.50, representing positively influential features. Frequency Bands Features
Extraction method have the highest percentage. The input of the classification are
spectrogram. This type of visual representation of audio data shows the power
distribution of audio power over time for different frequencies in the Mel Scale.
Spectrogram representation is so focused on the frequencies and this result show
that a division of the input in frequency bands leads to find a larger number of
positive features.

The lowest percentage is reached by Spectrogram Features Fxtraction method. This
is due to the number of neutral features that is more that double respect to others
methods. The reason is that since this method divides the input into a larger
number of features it is more likely to find both neutral and negative features, thus
lowering the percentage of positive features on the total of those extracted.
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Figure 5.31: Distributions nPIR values for Features Extraction method

FEATURES EXTRACTION TECHNIQUE | PERCENTAGE POSITIVE FEATURES
Single Patch 37%
Frequency Bands 44%
Time Bands 35%
Spectrogram 22%

Table 5.7: Percentage of features with nPIR >= 0.5
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Computational Cost Measuring how much time is required to complete the
analysis described in the previous section we can compare the computational cost
of the four features extraction techniques.

It was found that analysis using Single Patch Features Fxtraction and Spectrogram
Features Fxtraction techniques takes 125 minutes over 200 input audio with an
computational time equal to 38 & 2s for each explanation, while analysis using Time
Bands Features Fxtraction and Frequency Bands Features Extraction methods takes
60 minutes with an computational time for each input of 21 £ 2s .

It is not surprising that the two methods that are based on the hypercolums
clustering took double the time of the other two techniques. What is important to
notice is that Spectrogram Features Extraction techniques does not lead to higher
computational cost in time. This is another point in favor of preferring Spectrogram
Features Eztraction technique over Single Patch Features Extraction methods. It
produce more precise and detailed explanations at the same computational cost.

85



Chapter 6

Conclusion and Future work

The objective of this thesis is to propose and test a methodology for the explanation
of black-box models in the context of audio classification. The needs of this works is
emerged looking at the lack of explanations technique in the audio classification field.

Our technique is called A-EBAnO and is based on an perturbation process over
extracted interpretable features from the input, in order to measure the impact in

terms of influence and precision of the perturbed features over the original predicted
label.

Four different methods of features extraction are proposed each of which is focused
on the analysis of different proprieties of the input.

Single Patch Features Fxtraction is based on an unsupervised clustering of the
weights of the convolutional layers of the analyzed model. Its major objective is
to highlights portions of the input that have positive, neutral or negative impact
over the classification. It’s usefull to understand what property of the input, in our
work Log-Mel Spectrogram of the audio, is more influential.

One problem of this features extraction technique is that analyze one patch of the
Log-Mel spectrogram at time, loosing the continuity in time of the input. Our
answer to this problem is the Spectrogram Features Extraction technique. The
process is the same but its done over the complete set of weights of the input,
collecting the processed data from all the patches and analyze it at the same time.
Comparing this two techniques on a good number of input we can conclude that
Spectrogram Features Extraction techniques is preferable because it is capable to
find a number of features that better describe the input spectrogram with a com-
putational cost equal to the Single Patch Features Fxtraction method. The other
two techniques, Frequency Bands and Time Bands, are usefull to better focus
our analysis on this two aspects and experiments show how that they are very
capable to underline time and frequency bands that are used by the model for the
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classification.

The explanations are based on a visual and numerical part. Combining this two
types of explanations we have a very intuitive way to understand the impact of
features on the classification result.

Producing human understandable visual explanations was the most difficult chal-
lenge to overcome due the peculiar process of analyzing the input by the black-box
model used in our project and a lot of effort has been made in the post-processing
phase of the methodology in order to have result that can be human understandable.

In this work we analyzed audio that represented environmental sound. A fu-
ture analysis of our proposed technique can be done on more task specific input as
speech or music.

A first improvement of A-EBAnO will be to make it able to produce not only
local explanations of singles input but also global explanations to understand the
influence of specific concept on the complete set of predictions provided by the
model.

The perturbation used in the project is a additive noise directly on the image of
the patch of the Log-Mel spectrogram. Another solution is to perturb the audio
input data and produce a perturbed Log-Mel spectrogram.

This project used a audio classifier based upon VGGish. The next step is first to
test our methodology using other networks and to made A-EBAnO fully model
agnostic technique.

One of the biggest improvements will be making A-EBAnO able to produce
near real-time explanations of the Log-Mel spectrogram input, using algorithms
and features extraction techniques based on the analysis of data streaming instead
of the current batch analysis of the input, that is clearly noticeable in the current
implementation explanations.

In conclusion A-EBAnO show a good capability in producing human understand-
able explanations of local predictions over audio classification. This is a first work
that combined together eXplainable Artificial Intelligence and audio classification
and so mostly of the implementation choices could be improved in future. The
hope is to have being able to show that explanations on audio classification are
possible and they can be analyzed by an human being.

Over the years Machine Learning will continue to grow and probably the model
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will became more and more difficult to understand so it is very important that
researches in the eXplainable Artificial Intelligence proceed and the same speed in
order to produce model highly trustable by humans.
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