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Summary	
	

		Sharing	 Economy	 is	 developing	 rapidly	 in	 recent	 years	 due	 to	 its	
advantages	 in	 resource	 utilization	 and	 environmental	 protection.	 As	 for	
transportation,	 electric	 car	 sharing	 system	 has	 the	 potential	 ability	 in	
reducing	 air	 pollution	 and	 improving	 transportation	 efficiency.	 Free-
floating	car	sharing	system	is	extremely	convenient	for	the	users.	It	allows	
users	drop	off	 the	vehicle	at	 anywhere	 in	 the	operation	area	 instead	of	
returning	 vehicle	 in	 specific	 place.	 However,	 it	 is	 easy	 to	 cause	 the	
asymmetry	problem	of	vehicle	supply	and	demand.	Therefore,	relocation	
operation	which	takes	vehicles	from	oversupplied	area	to	undersupplied	
area	is	necessary	for	the	system	to	run	in	a	sustainable	state.		
		The	goal	of	this	Master	Thesis	is	first,	to	understand	if	relocation	is	useful	
and	 profitable	 for	 car	 sharing	 system,	 then	 to	 investigate	 and	 compare	
different	relocation	strategies	for	Electric	Free	Floating	Car	Sharing	(EFFCS)	
systems.	 Two	 kinds	 of	 relocation	 strategies	 are	 discussed	here:	 reactive	
relocation	and	proactive	layer	relocation.	Reactive	relocation	means	that	
relocation	operations	are	only	triggered	at	the	end	of	each	trip	when	the	
battery	 level	 of	 vehicle	 is	 below	 a	 specific	 threshold.	 Proactive	 layer	
relocation	refers	to	at	the	end	of	each	hour,	some	vehicles	will	be	relocated	
in	 order	 to	 meet	 the	 user	 demand	 for	 the	 next	 hour.	 The	 number	 of	
relocated	 vehicles	 depends	 on	 the	 number	 of	 system	 employee	 which	
performed	the	relocation	operations.	For	each	relocation	strategy,	system	
performance	and	economic	performance	are	tested	and	evaluated.	Here,	
system	 performance	 refers	 to	 metrics	 like	 the	 faction	 satisfaction	 of	
booking	 request	 and	 number	 of	 unsatisfied	 booking	 request	 which	 no	
available	 vehicles	 nearby.	 Besides,	 economic	 performance	 refers	 to	 the	
relocation	 related	 cost	 including	 hiring	 operational	 workers	 and	 extra	
energy	used	for	relocation,	revenues	and	profit	rate	for	the	whole	EFFCS	
system	so	on.	
		For	 this	 purpose,	 I	 adopt	 and	 extend	 an	 existing	 date-driven,	 discrete-
event	 simulator	written	 in	 Python.	 I	 use	 the	 dataset	which	 comes	 from	
actual	 rentals	 in	 the	 city	 of	 Turin	 performed	 by	 a	 famous	 car	 sharing	
program	car2go.	 I	 conduct	 the	 case	 study	about	 the	 city	of	 Turin	under	
different	 configurations.	 Results	 show	 that	 relocation	 operation	 has	 a	



	 	
	

	
	

	

positive	 impact	 in	 improving	 system	 performance	 of	 satisfying	 more	
booking	 request	 for	 using	 vehicles.	 The	 faction	 of	 satisfied	 booking	
requests	 increases	 about	 5%	 to	 10%	 compared	 with	 no	 proactive	
relocation	scenario	in	our	experiments.	As	for	choosing	charging	relocation	
area,	choose	the	closest	area	with	available	charging	poles	is	regarded	to	
be	the	best	solution.	Besides,	doing	relocation	operation	 in	a	given	time	
frequency	such	as	hourly	execution	seems	meaningful.	However,	a	tradeoff	
between	 better	 performance	 of	 system	 and	 extra	 cost	 needed	 to	 be	
considered.	 For	 instance,	 in	 our	 cases,	 hiring	 workers	 to	 do	 relocation	
operations	definitely	 improves	 system	performance.	The	extra	 revenues	
brought	from	improving	performance	is	around	10,000	€.	However,	it	also	
leads	to	more	system	cost	both	for	paying	for	workers	and	relocation	the	
vehicles	for	about	45,000	€.	
		My	work	about	discussing	different	relocation	strategy	is	useful	in	solving	
the	 problem	 about	 the	 unbalance	 between	 user	 demand	 and	 actual	
distribution	of	vehicles	and	improve	the	system	performance.	What’s	more,	
analysis	about	the	economic	performance	in	relocation	is	meaningful	when	
considering	 real	 world	 situation.	 As	 for	 further	 work,	 research	 can	 be	
expanded	 to	 other	 big	 cities	 such	 as	 Milan.	 Besides,	 more	 complex	
relocation	strategy	such	as	using	machine	learning	model	to	make	whole	
operation	process	adaptive	to	the	real	traffic	situation	could	be	considered	
and	tested.	 	
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Chapter 1  

Introduction 

1.1 Sharing Economy  

		The	sharing	economy	refers	 to	 the	sum	of	economic	activities	 that	use	
modern	information	technologies	such	as	the	Internet,	with	the	sharing	of	
use	 rights	 as	 the	 main	 feature,	 integrate	 massive	 and	 decentralized	
resources,	and	meet	diverse	needs.	It	is	developing	rapidly	over	the	world	
because	of	saving	energy	and	resource.	Sharing	economy	will	become	the	
most	 important	 force	 in	 the	 social	 service	 industry.	 In	 the	 fields	 of	
accommodation,	 transportation,	 education	 services,	 life	 services	 and	
tourism,	excellent	sharing	economy	companies	are	constantly	emerging.	

	
Figure	1.2.1	Annual	Carbon	Dioxide	Emissions	during	Last	Century[1]	

	

	

1.2 Car Sharing 

		In	 terms	 of	 transportation,	 car	 sharing	 is	 becoming	 more	 and	 more	
popular	in	the	last	decades	due	to	its	excellent	performance	in	reducing	air	
pollution	and	fuel	consumption,	releasing	traffic	jam.	Figure	1.2.1[1]	shows	
the	annual	carbon	dioxide	emissions	during	the	last	century.	We	can	see	
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that	each	action	of	reducing	carbon	emission	is	very	necessary.	Car	sharing	
is	a	model	of	car	rental	where	people	rent	cars	for	short	periods	of	time,	
often	by	the	hour.	It	differs	from	traditional	car	rental	in	that	the	owners	
of	 the	cars	are	often	private	 individuals	 themselves,	and	the	car	sharing	
facilitator	is	generally	distinct	from	the	car	owner.	Car	sharing	is	part	of	a	
larger	trend	of	shared	mobility.	Figure	1.2.1[2]	shows	that	the	number	of	
users	in	car	sharing	is	increasing	stably.	Most	of	this	form	of	transportation	
has	been	 taking	place	 in	 the	cities	 in	Europe,	North	America,	 Japan	and	
Singapore[3].	 There	 are	 two	 main	 branches	 in	 car	 sharing	 system:	 the	
station	based	car	sharing	system,	in	which	the	user	picks	and	drops	the	car	
in	 the	 given	 parking	 spots	 and	 the	 Free	 Floating	 Car	 Sharing	
System(FFCS)[4],	 in	which	the	user	picks	up	and	drops	the	car	anywhere	
when	he	starts	or	ends	the	trip	in	the	operational	area.	

		The	latter	solution	has	given	more	flexibility	to	users	however	it	leads	to	
spatiotemporal	 demand	 asymmetries.	 Leaving	 the	 system	 on	 its	 own	
without	any	intervention	saves	money	cost	and	human	resource,	but	it	has	
serious	 results.	 Vehicles	 are	 easily	 get	 stuck	 in	 areas	 with	 low	 demand	
causing	a	loss	of	money	and	low	customer	satisfaction.	Things	get	worse	
for	electric	vehicles.	When	the	vehicles	are	in	the	state	of	low	battery,	they	
are	no	 longer	usable	 for	 future	period	thus	make	the	system	corrupted.	
What	 relocation	 do	 is	 balancing	 supply	 and	 demand	 and	 charging	 low-
battery	cars,	thus	make	the	whole	system	run	in	a	virtuous	circle.	To	offer	
an	appropriate	level	of	service	in	areas	with	high	demand,	the	operator	has	
to	move	the	vehicles	from	oversupplied	area	to	undersupplied	area.	Those	
transfers	are	often	executed	during	the	day	to	optimally	supply	the	high	
demand	during	peak	hours.	Moreover,	as	for	electric	vehicles(EV),	which	is	
more	environmental	friendly	and	widely	used	in	public	car	sharing	system,	
the	worker	has	to	relocate	cars	to	the	charging	hub	when	they	are	going	to	
run	out	of	battery	in	order	to	make	it	use	in	a	sustainable	way.	
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Figure	1.2.1	Number	of	Car	Sharing	Users	

	

1.3 Thesis Presentation and Motivation 

		In	 this	 thesis,	 I	 will	 study	 different	 relocation	 strategies	 for	 electric	
vehicles.	 Relocation	 operation	 is	 very	 useful	 to	 fill	 the	 gap	 between	
demand	and	supply	in	vehicles.	Moreover,	charging	infrastructure	is	also	
very	necessary	for	making	the	electric	vehicles	run	in	a	long	time.	In	order	
to	 improve	 the	 usage	 of	 charging	 infrastructure,	 charging	 relocation	
strategy	 also	 have	 to	 be	 considered	 carefully.	 Futhermore,	 choosing	
charging	poles	in	the	most	efficient	way	will	also	improve	the	whole	system	
performance.	I	use	a	simulator	to	simulate	real	traffic	situation	in	the	city	
of	Turin,	Italy.	I	generate	thousands	of	real	FFCS	trips	in	given	time	period.	
Firstly,	 by	 implementing	 three	 different	 kinds	 of	 charging	 relocation	
strategies	that	choose	charging	poles	at	the	end	of	each	trip,	I	observe	their	
performance	 and	 study	 the	 additional	 cost	 which	 relocation	 operation	
bring.	 Post	 charging	 relocation	 are	 also	 called	 reactive	 relocation	 in	 the	
thesis.	

		Next,	I	consider	proactive	relocation.	In	that	way,	relocation	is	not	only	
happened	at	the	end	of	each	trip,	but	can	be	scheduled	and	operated	in	a	
given	time	frequency.	I	use	two	different	approaches	to	catch	the	demand	
spatial	variability.	We	propose	an	hourly	triggered	relocation	strategy.	We	
relocate	the	cars	 to	some	zones	which	are	confronted	with	the	demand	
model	at	the	end	of	each	hour.	By	changing	the	fleet	size	and	the	number	
of	relocation	workers,	we	analyze	many	Key	Performance	Indexes	such	as	
satisfaction	fraction	of	booking	trip,	relocation	cost	and	system	revenue	so	
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as	to	consider	the	availability	of	this	strategy.	

		The	main	questions	that	we	try	to	answer	are:	

• Can	 I	 add	 more	 configurations	 to	 the	 existing	 simulator,	 able	 to	
implement	different	kinds	of	both	reactive	and	proactive	relocation	
strategies?	
	

• Can	 I	 fairly	 compare	 system	 performance	 of	 different	 relocation	
strategies?	
	

• Can	 I	 fairly	 compare	 financial	 performance	 of	 different	 relocation	
strategies?	

		More	 specifically,	 the	 research	 questions	 I	 pose	 to	 analyze	 are	 the	
following:	

• How	do	the	different	post	charging	relocation	strategies	 influences	
service	quality	and	operational	cost	in	the	given	city	Turin?	
	

• How	do	proactive	relocation	strategy	influences	service	quality	and	
operational	 cost	 comparing	with	no	 relocation	 strategy	 scenario	 in	
the	given	city	Turin?	
	

• How	 do	 system	 parameters	 such	 as	 fleet	 size,	 the	 number	 of	
relocation	workers	and	charging	poles	density	impact	service	quality	
and	operational	cost	in	the	given	city	Turin?	

		Our	results	show	that	in	the	reactive	model,	taking	the	low	battery	car	to	
the	nearest	available	charging	poles	has	the	most	efficient	performance.	
Besides,	proactive	 relocation	 strategy	make	 the	whole	 system	maximize	
the	 satisfied	 demand	 by	 increasing	 relatively	 acceptable	 additional	
relocation	cost.	

		The	thesis	is	organized	as	follows:	In	Chapter	II	I	propose	more	detailed	
introduction	 about	 previous	 work	 about	 relocation	 in	 free	 floating	 car	
sharing	system	and	the	simulator	I	use	for	the	whole	thesis.	What’s	more,	
I	 also	 review	 existing	 scientific	 literature	 that	 talks	 about	 the	 simulator	
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modelling	topics.	Then	comes	to	Chapter	 III	 that	describes	the	simulator	
and	dataset	 that	 used	 for	 the	 experiment	 in	 detail.	 Besides,	 I	 introduce	
both	reactive	and	proactive	relocation	strategies.	I	present	the	results	of	a	
simulation	campaign	conducted	for	the	city	of	Turin	in	Chapter	IV.	In	the	
end,	conclusion	and	future	expectation	are	proposed	in	Chapter	V.
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Chapter 2	

Background 
	
		In	this	section,	I	will	introduce	why	simulation	is	widely	used	for	modelling	
and	analysis.	Then,	I	will	introduce	the	python	project	and	the	data	that	we	
used	for	the	whole	thesis	experiment.	Other	related	tools	have	also	been	
mentioned	in	a	general	view.	Besides,	the	definition	of	specific	metrics	is	
listed	and	shown	for	analyzing	the	experiments	results.	

2.1 Simulation Modelling Background  

		Simulation	modelling	solves	real-world	problems	safely	and	efficiently.	It	
provides	 an	 important	 method	 of	 analysis	 which	 is	 easily	 verified,	
communicated,	 and	 understood.	 Across	 industries	 and	 disciplines,	
simulation	provides	valuable	solutions	by	giving	clear	insights	into	complex	
systems.	 Simulation	 enables	 experimentation	 on	 a	 valid	 digital	
representation	of	a	system.	Unlike	physical,	such	as	making	a	scale	copy	of	
a	 building,	 simulation	 is	 computer	 based	 and	 uses	 algorithms	 and	
equations.	Simulation	software	provides	a	dynamic	environment	 for	 the	
analysis	of	computer	models	while	they	are	running.	The	uses	of	simulation	
in	business	are	varied	and	it	is	often	utilized	when	conducting	experiments	
on	a	real	system	is	impossible	or	impractical,	often	because	of	cost	or	time.	
Here	are	the	advantages	of	the	simulation[5]:	

• Risk-free	environment: Simulation	provides	a	 safe	way	 to	 test	and	
explore	different	“what-if”	scenarios.	The	effect	of	changing	staffing	
levels	in	a	plant	may	be	seen	without	putting	production	at	risk.	Make	
the	right	decision	before	making	real-world	changes.	
	

• Save	money	and	time: Virtual	experiments	with	simulation	models	
are	 less	 expensive	 and	 take	 less	 time	 than	 experiments	 with	 real	
assets.	 Marketing	 campaigns	 can	 be	 tested	 without	 alerting	 the	
competition	or	unnecessarily	spending	money. 

 
• Visualization: Simulation	models	can	be	animated	in	2D/3D,	allowing	

concepts	and	 ideas	 to	be	more	easily	verified,	 communicated,	and	



																																																											 											Background	 	 	 	 	 	 	

	7	

understood.	Analysts	and	engineers	gain	trust	in	a	model	by	seeing	it	
in	action	and	can	clearly	demonstrate	findings	to	management. 

 

• Insight	into	dynamics: Unlike	spreadsheet	or	solver-based	analytic,	
simulation	allows	the	observation	of	system	behavior	over	time,	at	
any	level	of	detail.	For	example,	checking	warehouse	storage	space	
utilization	on	any	given	date. 

		These	features	are	very	suitable	for	transportation.	Cause	transportation	
is	a	dynamic	process,	the	state	of	the	whole	system	changes	all	the	time	
and	it’s	hard	to	get	or	collect	data	from	the	real	world	due	to	time	and	scale	
limitation.	 However,	 each	 coin	 has	 two	 sides.	 It	 also	 has	 some	
disadvantages:	

• It	can	be	expensive	to	measure	how	one	thing	affects	another,	to	take	
the	 initial	 measurements	 and	 to	 create	 the	 model	 itself	 (such	 as	
aerodynamic	wind	tunnels).	

• To	simulate	something,	a	thorough	understanding	is	needed	and	an	
awareness	 of	 all	 the	 factors	 involved.	 Without	 this,	 a	 simulation	
cannot	be	created.	

		The	process	from	scratch	is	difficult.	Because	the	worker	has	to	design	the	
whole	system,	the	structure	and	any	part	that	involve	in	the	EFFCS.	They	
also	have	to	collect	real	world	data	that	configure	into	the	simulation	to	
make	it	more	convinced.	What’s	more,	 it	 is	hard	both	for	understanding	
the	scientific	tool	itself	and	the	scenarios	that	needed	to	be	implemented.	
It	requires	both	coding	ability	and	research	ability	at	a	relatively	high	level.	

2.2 ICT Background 

		Python	is	chosen	as	the	programming	language	because	it	is	easy	to	write	
and	 understand. Due	 to	 its	 corporate	 sponsorship	 and	 big	 supportive	
community	of	python,	python	has	excellent	 libraries	that	you	can	use	 to	
select	and	save	your	time	and	effort	on	the	initial	cycle	of	development.	
• As	 for	 simulation	 part,	 Simpy[6]	 is	 used	 which	 is	 a	 process-based	

discrete-event	simulation	framework	based	on	standard	Python.	Its	
event	 dispatcher	 is	 based	 on	 Python's	 generators	 and	 can	 also	 be	
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used	 for	 asynchronous	 networking	 or	 to	 implement	 multi-agent	
systems.		
	

• Pandas[7]	is	mainly	used	for	data	processing.	Pandas	allows	various	
data	manipulation	operations	such	as	merging,	reshaping,	selecting,	
as	well	as	data	cleaning,	and	data	wrangling	features.	

	
• Pandas	is	built	on	top	of	NumPy[8]	library,	which	is	the	fundamental	

pack-	 age	 for	 scientific	 computing	 with	 Python,	 providing	 among	
other	things	a	powerful	and	efficient	N-dimensional	array	object.	

	
• Tableau[9]	is	used	for	create	result	figure.	It	is	a	powerful	and	fastest	

growing	data	visualization	tool.	It	helps	in	simplifying	raw	data	into	
the	very	easily	understandable	format.	Data	analysis	is	very	fast	and	
clear	with	Tableau	and	the	visualizations	created	are	in	the	form	of	
dashboards	and	worksheets.	

	
• Other	useful	tools	to	work	with	Python	include	the	IDEs	PyCharm[10],	

where	I	pull	and	modify	code	and	do	single	run	on	local	PC	and	the	
Jupyter[11]	 Notebook	 cluster,	 you	 can	 run	 multiple	 runs	 that	
consume	 more	 memory	 and	 time	 on	 the	 cluster	 by	 setting	 the	
appropriate	port	number.	

2.3 Relocation Background 

  In	this	section,	I	focus	mainly	on	reviewing	the	literature	on	operational	
aspects	of	the	relocation	problem	in	vehicle-sharing	systems	to	highlight	
my	contributions.	I	refer	to	Laporte[12]	for	a	more	comprehensive	review	
of	other	relevant	operational	problems.		

		In	 one-way	 car	 sharing	 systems,	 relocation	 can	 be	 carried	 out	 either	
through	operator	intervention,	e.g.,	using	relocation	personnel[13][14][15]	
and	using	a	trip	choice	mechanism[16]	or	through	customers	by	controlling	
their	 actions,	 e.g.,	 through	 incentives[17].	 The	 focus	 of	 relocation	 is	 to	
achieve	 certain	 desirable	 inventory	 levels	 either	 through	 manual	
rebalancing	using	trucks[18]	or	through	incentive	mechanisms	designed	to	
influence	customer	behavior[19][20].	
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		In	 an	 initial	 conceptual	 paper,	Weikl	 and	Bogenberger[22]	 present	 and	
evaluate	several	user-based	and	operator-based	relocation	strategies	for	
FFCS	systems.	 In	a	subsequent	paper,	Weikl	and	Bogenberger	propose	a	
practice	 ready	 six	 step	 relocation	model	 for	 a	 mixed	 FFCS	 system	with	
traditional	 and	 electric	 vehicles.	 Based	 on	 historical	 data,	 the	 area	 is	
categorized	into	macro	zones	and	an	optimization	model	is	used	to	achieve	
desired	macro	level	relocation.	Rule	based	methods	are	used	for	making	
intra	 zone	 micro-level	 relocation	 and	 refueling/recharging	 decisions.	 A	
similar	model	for	demand-based	relocation	in	FFCS	systems	is	presented	
by	 Schulte	 and	 Voß	 and	 Herrmann[23].	 Caggiani[24]	 propose	 dynamic	
clustering	method	to	identify	the	size	and	number	of	flexible	zones	in	which	
to	perform	repositioning	operations.	He[25]	studied	robust	repositioning	
strategies	in	dynamic	environments.	

		Closely	 related	 to	 my	 work,	 Alessandro[26]	 considers	 joint	 decision	
making	 for	 EV	 relocation.	 When	 the	 charging	 operations	 are	 needed,	
electric	 vehicles	 are	 relocated	 to	 the	 nearest	 available	 charging	 station	
instead	of	the	nearest	charging	station.	Although	station	blocking	will	not	
happen,	 more	 relocation	 distance	 will	 be.	 Different	 charging	 relocation	
strategies	 are	 compared	 in	 concern	 of	 the	 system	 and	 economic	
performance.	One	possible	kind	of	approach	is	to	schedule	relocations	at	
fixed	 times	 (e.g.,	 at	 night),	 to	 rebalance	 the	 system[27].	 In	 this	 thesis,	 I	
proposed	 the	 relocation	 strategies	 that	 relocation	 operations	 are	
happened	in	a	given	time	frequency.	

2.4 Related Work 

2.4.1 eC2S  

		Alessandro	 Ciociola	 builds	 simulation	 named	 eC2S	 of	 the	 Electric	 Free	
Floating	Car	Sharing	(EFFCS)	systems	to	observe	real	problems	in	terms	of	
spatiotemporal	demand	asymmetries.	A	city	operating	area	is	divided	into	
square	zones	of	dimension	500m*500m.Each	zone	is	assigned	an	identity	
number.	Each	trip	is	marked	from	an	origin	zone	to	the	destination	zone.	
Every	trip	distance	in	the	simulation	in	computed	from	a	zone	centroid	to	
another	zone	centroid.	During	the	trip,	vehicle	is	not	available	and	moves	
from	one	zone	to	another,	its	battery	level	corresponding	decreases	with	
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the	distance.	After	the	trip	ends,	vehicle	becomes	free	cars	in	destination	
zones.	 They	defined	 valid	 zones	 as	 zones	 that	become	destination	of	 at	
least	one	trip	for	the	whole	system	duration.	Charging	zone	is	the	zone	with	
charging	 poles.	 The	 number	 of	 charging	 zones	 is	 given	 by	 a	 specific	
percentage	of	the	whole	valid	zones.	Charging	poles	are	located	in	the	area	
of	the	city	with	the	highest	probability	of	being	destination	zones.	Figure	
2.1	shows	a	kind	of	possible	the	charging	zone’s	distribution	in	the	city	of	
Turin	by	setting	the	ratio	between	charging	poles	and	vehicles	to	0.02.	We	
can	see	that	trips	are	more	 likely	to	happened	 in	the	central	of	the	city.	
Each	zone	has	N	poles	that	allows	N	vehicles	charging	at	the	same	time.	At	
the	end	of	a	rental,	if	the	battery	level	of	a	vehicle	is	below	a	threshold	b 
and	 needs	 to	 be	 charged	 to	 threshold	 a,	 we	 can	 have	 the	 highest	
probability	that	it	does	not	need	to	be	relocated	and	get	charged.	If	there	
are	no	 charging	hubs	 in	 its	 own	 zone,	 it	 is	 relocated	 to	 the	 closest	 free	
charging	 point.	 This	means	 if	 there	 are	 charging	 poles	 in	 zone	 A	 and	 B	
where	zone	A	is	closer	to	the	low	battery	vehicle	compared	with	zone	B.	
The	vehicle	will	be	relocated	to	zone	A	unless	all	of	the	charging	poles	are	
been	in	use	in	zone	A	while	poles	in	zone	B	are	available.	If	there	is	no	free	
charging	pole	anywhere	in	the	city,	the	car	queues	at	the	nearest	charging	
pole.	When	the	charging	operation	ends,	it’s	free	to	choose	if	the	vehicle	
will	relocate	to	its	origin	zone	or	just	leave	in	the	charging	zone.	
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Figure	2.1	possible	Charging	Zone	Location	in	Turin	

	

2.4.2 Dataset 
	
		The	input	data	comes	from	actual	rentals	performed	by	car2go	users	in	
the	 city	 of	 Turin	 [5].	 Each	 observed	 rental	 has	 precise	 geo-spatial	
coordinates	for	origin	and	destination,	and	accurate	timestamps.	Data	are	
stored	in	csv	format	file.	Each	line	corresponds	to	a	trip.	Each	booking	has	
the	following	information	described	in	Table	1:		

Parameter	 Description	 Example	values	

plate			 plate	of	the	vehicle	that	performed	the	trip			 245/FF124SJ	

start_time			 starting	time	of	the	booking	 2017-10-01	
02:00:37+02:00	

end_time			 ending	time	of	the	booking	(unix	time)	

	

2017-10-01		
02:37:18+02:00	

start_longitude	 longitude	of	the	initial	position			 7.628310000000001	
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start_latitude	

end_longitude	

	

latitude	of	the	initial	position			

longitude	of	the	final	position			

	

45.0507	

7.6712	
end_latitude	 latitude	of	the	initial	position			 45.07638	

euclidean_distance	 distance	travelled	in	meters	(line	connecting	initial	and	

final	position)			
4413	

duration	 time	of	the	bookings	in	second	(final_time	minus	

init_time)			
2201.0	

start_year	 start	year	at	the	beginning	of	the	booking			 2017	

end_year	 end	year	at	the	beginning	of	the	booking	 2017	

year	 year	of	the	booking		 2017	

start_month	 start	month	at	the	beginning	of	the	booking			 10	

end_month	 end	month	at	the	beginning	of	the	booking			 10	

month	 	 10	

start_hour	 start	hour	at	the	beginning	of	the	booking			 2	

end_hour	 end	year	at	the	beginning	of	the	booking			 2	

start_weekday	 start	day	at	the	beginning	of	the	booking			 Sun	

end_weekday	 end	day	at	the	beginning	of	the	booking			 Sun	

start_daytype	
If	start	day	is	Sunday	or	Saturday,	the	start_daytype	is	

weekend,	otherwise	is	weekday.	 weekend	

end_daytype	
If	end	day	is	Sunday	or	Saturday,	the	end_daytype	is	

weekend,	otherwise	is	weekday.	 weekend	

TABLE 2.1 

DATA FORMAT OF INPUT BOOKING REQUESTS 

2.4.3 Related Metrics  
 
		The	intervention	of	the	system	is	always	accompanied	by	costs.	The	whole	
system	 should	 be	 profitable	 for	 the	 provider,	 so	 costs	 and	 additional	
benefits	have	to	be	compared.	In	order	to	monitor	the	system	performance	
and	economic	effect,	the	following	metrics	are	listed	and	considered:	

Fraction	Satisfied: Percentage	of	satisfied	user	requests.	It	is	calculated	as	
number	of	satisfied	user	requests	divide	total	requests.	When	a	new	rental	
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request	 is	generated,	 the	 system	 looks	 for	an	available	car	with	enough	
battery	in	the	origin	zone,	or	in	its	1-hop	neighbor	zone.	If	the	user	can’t	
find	an	available	car	close	to	the	origin	of	the	request,	or	did	not	find	a	car	
with	enough	energy	to	perform	the	desired	trip.	The	request	is	regarded	as	
unsatisfied.	 This	 metric	 shows	 the	 system’s	 ability	 in	 distributing	 the	
vehicles	with	the	changeable	demand	and	quality	of	the	service	in	terms	of	
cars	availability	for	users’	requests.	

Relocation	Cost: it	 gives	an	 indication	of	 the	cost	of	 charging	process	 in	
terms	of	time	of	money	needed	to	drive	cars	to	charge.	When	a	car	needs	
to	be	charged	and	no	user	is	willing	to	help,	the	system	has	to	physically	
move	it	to	the	closest	charging	point.	Relocation	 is	an	extra	activity	that	
executes	by	system	employed	workers.	They	have	to	be	paid	given	hourly	
salary.	The	total	relocation	working	cost	can	be	calculated	as:	

relocation worker cost = N workers * duration days * 24 * hourly worker 
cost 

charging	cost:	There	are	charging	poles	 infrastructure	cost	and	charging	
energy	cost	for	electric	vehicles.	Poles	cost	is	defined	as:	

poles cost = (N charging poles) * duration months * (hardware cost  / 
pole useful life + pole labor cost / pole useful life + pole annual 
maintenance cost + pole annual tax) / 12 

cps	zones	percentage:	Describe	the	charging	zones	density.	For	example,	
if	it	equals	to	0.02,	it	means	that	the	number	of	charging	zones	is	2%	of	the	
number	of	valid	zones.	

n		poles	n	vehicles	factor: Describe	the	charging	poles	density.	The	bigger	
the	number	is,	the	more	charging	poles	the	whole	system	has. For	example,	
if	 it	 equals	 to	 0.02,	 it	means	 that	 the	 number	 of	 charging	 poles	 is	 two	
percentage	of	the	number	of	total	system	vehicles.	

Energy	 cost	 is	 described	 by	 total	 kWh	 charging	 energy	 been	 used	 and	
energy	price	0.19	euro/kWh.	It	can	be	calculated	as:	

energy cost = tot charging energy * kWh price 

Revenue: Revenue	is	the	system	income	that	users	pay	for	renting	the	
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vehicles.	Price	per	minute	for	using	the	vehicle	is	0.2	euro.	Thus	

revenue = tot mobility duration * price per minute 

Profit: Profit	describes	the	net	income	of	the	system.	It	is	defined	as		

 profit = ( revenue – total cost ) / total cost  

  In	order	to	improve	the	whole	system	performance,	different	relocation	
strategies	are	 implemented.	They	are	divided	in	two	categories:	reactive	
and	 proactive	 approaches.	 Reactive	 relocation	 refers	 to	 the	 relocation	
operations	 happen	 only	 at	 the	 end	 of	 the	 trip.	 However,	 proactive	
relocation	 operations	 happen	 at	 a	 given	 time	 frequency.	With	 reactive	
strategies,	we	decide	if	and	how	to	relocate	only	when	a	certain	condition	
is	 triggered	 during	 the	 simulation.	With	 proactive	 strategies,	we	 decide	
how	and	when	to	relocate	with	a	schedule. Implementation	details	will	be	
discussed	in	Chapter	III. 
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Chapter 3 

Methodology and Tools 
	
		In	this	section,	the	structure	of	the	simulator	will	be	introduced	first.	Then,	
the	extra	metrics	that	used	for	show	the	experiment	results	will	be	listed.	
What’s	more,	 the	definition	and	explanation	of	each	 relocation	 strategy	
will	be	mentioned.	

3.1 Simulator 

		eC2S	 is	 a	 data-driven,	 discrete-event	 simulation	 software	 for	 EFFCS	
(Electric	Free	Floating	Car	Sharing)	system.	It	is	able	to	model	car	sharing	
demand	 from	 data	 coming	 from	 real	 car	 sharing	 systems	 and	 run	
parametric	simulation	campaigns,	providing	also	analysis	and	visualisation	
tools	 useful	 to	 compare	 different	 charging	 scenarios	 and	 fleet	
management	strategies.	It	is	written	in	Python	and	contains	the	following	
folders:		

• Demand_Modelling:	 contains	 code	 which	 implement	 the	 demand	
model	for	by	configuring	city,	duration,	simulation	technique	and	so	
on.		
	

• Data: contains	raw	data		including	booking	trips,	city	geometric	and	
charging	stations	in	forms	of	pickle	and	csv.		
	

• Supply_Modelling:	contains	code	which	implement	the	supply	model	
for	meeting	the	demand	by	configuring	number	of	vehicle,	charging	
poles	placement	policy	and	so	on.	
	

• SimulationInput:	 contains	 classes	 implementing	 the	 logic	 for	
managing	the	 input	of	 the	simulation.	This	 includes	many	different	
running	configurations,	statistical	models	and	shared	data	structures.		
	

• Simulation:	contains	classes	implementing	the	simulation	logic.	This	
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includes	 the	 abstraction	 for	 user	 requests	 generation,	 mobility,	
charging	and	relocation	strategies.	It	is	the	core	simulation	module.	
	

• SimulationOutput:	 contains	 classes	 for	 statistics	 collection,	
aggregation	and	visualisation.			

• SingleRun: contains	functions	for	running	a	single	simulation	with	a	
specified	configuration.			

• MultipleRun: contains	 functions	 for	 running	 a	 set	 of	 simulations	
following	a	grid	of	configuration	parameters.	It	is	possible	to	run	a	set	
of	simulations	on	many	cores	in	parallel.			

• Figures:	 contains	 charts	 produced	 in	 the	 simulation	 output	 phase	
organized	 by	 simulation	 city,	 scenario	 and	 configuration	 name.	 It	
includes	 booking	 requests	 and	 charging	 boxplot,	 event	 profiles,	
vehicle	feature	profile	and	boxplot	etc.	
	

• Results:	 contains	 simulation	 results	 in	 form	 of	 pickles	 and	 csv	
organised	 by	 simulation	 city,	 scenario	 and	 configuration	 name.	 It	
includes	 detailed	 booking	 requests,	 all	 system	 configuration	 and	
performance	metrics,	history	status	of	stations,	vehicles	and	zones.	
More	detailed	metrics	about	the	result	file	are	in	appendix.	

		Each	booking	request	has	several	features.	Origin	id	is	the	zone	which	the	
trip	start	location	belongs	to.	Destination	id	is	the	zone	location	which	the	
end	location	belongs	to.	Driving	distance	is	computed	as	Euclidean	distance	
between	 two	 zones	 multiplied	 by	 a	 correction	 factor	 representing	 the	
average	driving	distance.	Moreover,	date,	hour	and	start	time	and	end	time	
describe	its	time	attribute.	

3.2 Extra Metrics  

		In	order	to	consider	system	performance	and	economic	cost	in	different	
relocation	strategies,	more	detailed	metrics	should	consider.	As	for	system	
performance,	I	consider	relocation	outward	distance,	which	represents	the	
sum	of	all	relocation	distance	of	the	system.	
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		As	for	economic	cost,	there	will	be	charging	poles	for	charging	relocation	
strategies.	Therefore,	extra	cost	for	preparation	for	the	charging	zone	are	
needed:	
	
zone make-ready cost =  make-ready cost per zone * n charging zones 
/pole useful life / 12 * duration month 
	
Thus,	the	total	charging	infrastructure	cost	is:	
	

charging infrastructure cost = poles cost + zone make-ready cost 
 

Besides,	cars	cost	is	defined	as:	
 
cars cost = n vehicles * vehicles*annual leasing cost/ 12* duration 
month 
 

scenario cost = cars cost + charging infrastructure cost 
 

Washing	cost	is	defined	as:	
	
washing cost = disinfection cost *n charges + washing cost * n bookings 
/ 100 
 
The	cost	for	the	simulation	process	is	defined	as:	
	

sim cost = relocation worker cost + energy cost + washing cost	
The	total	cost	for	the	whole	system	is	sum	of	simulation	cost	and	scenario	
cost:	

total cost = scenario cost + sim cost 
	

3.3 Reactive Relocation Strategy  

		E3f2s	has	to	ensure	that	vehicles	spread	in	the	city	have	enough	energy	
to	serve	the	users. After	the	end	of	each	trip,	the	simulator	should	check	
each	vehicle’s	battery	level,	if	it	is	below	a	specific	threshold,	the	vehicle	
needs	to	be	charge	before	it	serves	the	next	trip.	Charging	poles	are	not	
located	 in	 every	 zone	of	 the	 city.	 So	 here	 comes	 to	 the	 question	 about	
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choosing	 which	 zones	 with	 charging	 poles	 the	 low	 battery	 vehicle	 will	
relocate	to.	Here	I	propose	three	different	kinds	of	strategies	in	choosing	
charging	zones: 

• Closest_free:	choose	the	nearest	zone	with	available	charging	poles	
to	 charge.	 After	 relocation	 operation,	 the	 vehicle	 can	 be	 charged	
immediately.	First	I	will	sort	the	zones	by	the	distance	between	the	
relocation	starting	zone	and	all	the	charging	zone.	Then	I	will	check	if	
the	nearest	charging	zone	has	free	poles,	if	it	has	then	I	choose	this	
zone	 as	 charging	 relocation	 zone	 otherwise	 move	 to	 the	 second	
nearest	charging	zone	and	check	and	so	on.		

	

•  # find the nearest available station with charging poles   
•                 for zone in zones_by_distance.index:  
•  # check if the nearest charging zone is available 
•                     if self.charging_stations_dict[zone].charging_station.count <

 self.charging_stations_dict[   
•                         zone].charging_station.capacity:   
•                         free_pole_flag = 1   
•                         charging_zone_id = zone  
•  # calculate the energy needed for relocation 
•                         cr_soc_delta = self.get_cr_soc_delta(   
•                             booking_request["destination_id"],   
•                             charging_zone_id,   
•                             vehicle   
•                         )   
•  # remaining energy is not enough for relocation, mark the zone unavailable 
•                          if cr_soc_delta > booking_request["end_soc"]:   
•                             free_pole_flag = 0   
•  # choosing the zone as the relocation charging zone 
•                         else:   
•                             charging_zone_id = charging_zone_id   
•                             break   

	
• Random:	randomly	pick	one	zone	with	charging	poles	to	charge.	After	

relocation	operation,	the	vehicle	can	be	charged	immediately.	I	just	
pick	one	random	charging	zone	to	check	if	it	has	free	charging	poles.	
If	 it	has,	 I	choose	this	zone	as	charging	relocation	zone	otherwise	 I	
pick	another	zone	randomly	and	check	again	and	so	on.	
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• # find a random station to charge   
•                 while True:   
• # randomly pick one zone  
•                     random_zone_id = random.choice(zones_by_distance.index)   
• # remove the zone from picked zone list 
•                     zones_by_distance.pop(random_zone_id)   
• # check if the charging zone is available 
•                     if self.charging_stations_dict[random_zone_id].charging_stati

on.count < self.charging_stations_dict[   
•                         random_zone_id].charging_station.capacity:   
•                         free_pole_flag = 1   
•                         charging_zone_id = random_zone_id   
• # calculate the energy needed for relocation 
•                         cr_soc_delta = self.get_cr_soc_delta(booking_request["des

tination_id"], charging_zone_id, vehicle)   
• # remaining energy is not enough for relocation, mark the zone unavailable 
•                         if cr_soc_delta > booking_request["end_soc"]:   
•                             free_pole_flag = 0   
•                         else:   
•                             charging_zone_id = charging_zone_id   
• # if the charging zone is available or all the zones have been picked,finish the 

picking loop procedure 
•                     if free_pole_flag == 1 or zones_by_distance.empty :   
•                         break   

	
• Closest_queueing:	 choose	 the	nearest	 zone	with	charging	poles	 to	

charge.	 After	 relocation	 operation,	 the	 vehicle	 should	 wait	 in	 the	
queue	until	other	charging	operation	ends	and	charging	pole	become	
available	again.	First	I	will	sort	the	zones	by	the	distance	between	the	
relocation	starting	zone	and	all	the	charging	zone.	Then	I	will	set	the	
nearest	charging	zone	as	charging	relocation	zone.		

	

• # find a nearest station to charge   
• # sort the other charging zones by distance with the giving vehicle zone id  
• zones_by_distance = self.simInput.supply_model.zones_cp_distances.loc[   
•                     int(booking_request["destination_id"])   
•                 ].sort_values()   
•                 free_pole_flag = 0   
•                 for zone in zones_by_distance.index:   
•                     free_pole_flag = 1   
•                     charging_zone_id = zone  
• # calculate the energy needed for relocation  
•                     cr_soc_delta = self.get_cr_soc_delta(   
•                         booking_request["destination_id"], charging_zone_id, self

.vehicles_list[vehicle]   
•                     )   
• # remaining energy is not enough for relocation, mark the zone unavailable 
•                     if cr_soc_delta > booking_request["end_soc"]:   
•                         free_pole_flag = 0   
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• # choosing the zone as the relocation charging zone, finish the picking loop 
procedure  

•                     else:   
•                         charging_zone_id = charging_zone_id   
•                         break  

		Relocation	operation	are	described	as	a	dictionary:	
1. charge_dict = {   
2.             "charge": charge,   
3.             "resource": resource,   
4.             "vehicle": vehicle,   
5.             "operator": operator,   
6.             "zone_id": charging_zone_id,   
7.             "timeout_outward": timeout_outward,   
8.             "timeout_return": timeout_return,   
9.             "cr_soc_delta": cr_soc_delta,   
10.             "charging_outward_distance": charging_outward_distance   
11.         }   

			Zone	id	is	the	charging	zone	id	I	choose	for	relocation.	Timeout	outward	
describes	the	time	duration	of	doing	the	relocation	operation.	If	relocation	
flag	equals	to	true,	the	vehicle	has	to	return	back	to	its	origin	zone	before	
changing,	 timeout	 return	will	be	equal	 to	 timeout	outward	otherwise	0.	
Cr_coc_delta	is	the	battery	consumption	of	doing	the	relocation	operation	
and	charging	outward	distance	is	the	distance	between	relocation	starting	
zone	and	relocation	ending	zone.	
		The	relocation	cost	and	system	performance	will	differ	within	the	above	
three	strategies,	cause	the	relocation	path	and	distance	is	totally	different.	
The	 closest_queueing	 strategy	 definitely	 has	 the	 minimum	 relocation	
distance	 however	 closest_free	 strategy	 saves	 time	 for	waiting	 in	 queue,	
thus	 will	 make	 vehicle	 become	 available	 again	 more	 quickly.	 Random	
strategy	 is	 hard	 to	 tell	 its	 pros	 and	 cons.	 The	 overall	 performance	 will	
depend	on	their	experiment	results.	

	

3.4 Proactive Layer Relocation Strategy 

	
			
		The	 above	 part	 is	 reactive	 relocation,	 which	 means	 that	 the	 system	
decides	whether	to	do	relocation	operations	at	the	end	of	each	trip.	This	
kind	 of	 relocation	 strategy	 will	 be	 very	 time	 consuming	 and	 lack	 of	
intelligence.	 In	order	to	avoid	this	problem,	 I	have	proposed	a	proactive	
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layer	relocation	strategy.	This	kind	of	relocation	is	not	happened	by	trips	
but	on	a	regular	time	duration.	We	set	the	relocation	operation	execute	at	
the	end	of	each	hour.	When	trips	end	in	the	scheduled	time	slot,	we	trigger	
relocation.	 In	 other	word,	 proactive	 relocation	happens	24	 times	 a	day.	
Given	a	number	of	 relocation	workers	N,	each	worker	will	 remove	a	car	
from	one	choosing	zone	to	another	destination	zone.	So,	there	will	be	N	
electric	vehicles	changing	their	position	separately	at	the	end	of	each	hour.	
Which	strategies	we	will	use	to	choose	relocation	starting	zones	and	ending	
zones?	
	
3.4.1. Zone Selection Techniques	
	

• Aggregation:	By	choosing	starting(ending)	zone,	we	choose	cars	 in	
the	most(least)	 aggregated	and	 crowded	 zones.	We	 sorted	all	 the	
valid	zones	by	the	number	of	vehicles	in	its	zone	by	descending	order.	
Then	we	selected	top	N	zones	as	our	relocation	starting(ending)	zone.		

	
• KDE[28][29]:	 By	 choosing	 the	 destination	 zones,	we	 first	 to	make	

sure	that	the	ending	zone	should	be	the	valid	zones.	Then	the	end	
zones	list	should	not	overlap	with	the	starting	zones.	Otherwise	the	
relocation	work	is	useless,	one	relocation	moves	vehicle	from	zone	
A	to	zone	B,	the	other	moves	it	back	from	zone	B	to	A.	Then	we	use	
the	next	hour’s	KDE	distribution	to	generate	ending	zone	for	N	times	
in	 order	 to	 get	 N	 ending	 zones.	 In	 statistics,	kernel	 density	
estimation	(KDE)	 is	 a	 non-parametric	 way	 to	estimate	the	
probability	density	function	 of	 a	 random	 variable.	Kernel	 density	
estimation	is	 a	 fundamental	 data	 smoothing	 problem	 where	
inferences	about	 the	population	are	made,	based	on	a	 finite	data	
sample.	KDE	is	largely	used	as	a	general	tool	in	spatial	analysis.	For	
example,	parameters	of	traffic	accident	prediction	models	have	been	
estimated	 mainly	 based	 not	 on	 KDE	 but	 on	 raw	 count	 data	 in	
Japan.	Yu	 et	al.	 (2014)	recently	 reported	 that	 KDE	 outperformed	
other	 hazardous	 road	 segment	 identification	 methods. We	
generalize	 over	 space	 using	 KDE.	 For	 this	 purpose,	 we	 leverage	
Kernel	Density	 estimator	 from	 scikit-learn,	with	 a	Gaussian	 kernel	
and	a	2	x	2	identity	matrix	as	bandwidth.	First,	we	divide	the	city	into	
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500m	x	500m	squares,	generating	a	matrix	of	city	zones.	Then,	we	fit	
a	 four-dimensional	KDE	on	origin-destination	 zone	couples,	where	
each	zone	is	represented	by	its	two	indexes	inside	the	matrix.	We	do	
this	 fitting	 48	 times,	 one	 for	 each	 time	 slot	 for	weekdays	 and	 for	
weekends.	 Thus,	 we	 have	 a	 spatial	 representation	 of	 mobility	
patterns	between	different	zones	during	each	hour	of	the	day.		
	

• Delta[30]:	It	is	the	most	complex	technique	that	we	propose.	It	uses	
the	fraction	of	current	available	vehicles	in	each	zone,	as	a	proxy	for	
current	 state	 S.	 It	 uses	 approximated	 counts	 of	 origins	 (O)	 and	
destinations	 counts	 (D),	 to	 calculate	 a	 prediction	 of	 the	 the	 total	
outcoming	or	incoming	flow	of	vehicles	in	a	zone	at	a	given	hour	of	
a	given	type	of	day	(i.e.,	weekday	or	weekend).	O	and	D	are	derived	
directly	from	the	trace,	computing	the	average	out-flow	and	in-flow	
of	vehicles	from	a	zone	at	a	given	hour	of	a	given	day	type,	and	they	
type		for	zone	z	is	them	computed	as	the	difference	between	O(d,i;z)	
and	D(d,i;z).	A	positive	flow	means	that	we	predict	that	the	number	
of	vehicles	depart	from	a	zone	at	a	given	hour,	will	be	higher	than	
the	number	of	vehicles	arrive.	The	strategy	selects	as	starting	(ending)	
zone	 the	 one	 with	 the	 lowest	 (highest)	 delta	 (∆),	 which	 is	 the	
difference	between	predicted	flow	for	next	hour(s)	and	current	state,	
for	a	given	time	t	(in	hours)	and	a	given	zone	z,	as	can	be	seen	in	(3.1).	
Thus,	 higher	 delta	 means	 that	 a	 shortage	 of	 vehicles	 is	 more	
probable.	For	example,	it	can	mean	that	we	predict	high	positive	flow	
and	we	know	from	S	that	there	are	not	enough	vehicles.		

														∆ d, t; z = ( ),*;+ ,- ),*;+./0
12./3

4
− S(d, t; z)            (3.1) 

	
		This	is	the	only	strategy	for	which	we	can	specify	a	window	width	W,	to	
be	 able	 to	 take	 into	 consideration	more	 than	 just	 one	 hour	 in	 the	 next	
future.	This	is	also	the	only	strategy	that	allows	us	to	relocate	more	than	
one	vehicles	at	a	time,	with	a	number	of	relocated	vehicles	that	is	given	by	
∆	itself.
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Chapter 4	

Case Study of Turin 
	
		In	this	chapter,	various	relocation	strategies	are	implemented	and	tested	
in	the	simulation	by	given	different	configurations.	After	getting	the	digital	
results,	I	draw	different	plots	in	Tableau	in	order	to	visualize	the	result	and	
analyze	them.	

4.1. Reactive Relocation Strategy Results 

		In	order	to	compare	system	performance	and	economic	performance	of	
three	different	post	charging	relocation	strategies.	 I	run	the	simulator	 in	
the	city	of	Turin	from	October	to	November	of	2017.	The	parameters	grid	
for	this	set	of	simulations	is	in	table	4.1.	
	

Parameter	 Description	 Values	

a	 the	charging	threshold			 20	

b	 the	charging	upper	bound	 100	

cps	zones	percentage	 charging	zones	density	with	regards	to	total	zones	 0.2	

	N	poles/N	vehicles	
factor	

number	of	charging	poles	with	regards	to	vehicles	 (0.01,0.19),	step	0.01	

n	vehicles	sim	 total	vehicles	run	in	the	simulation	 414	

relocation	
the	flag	to	show	if	the	car	after	charging	will	bring	

to	its	origin	zone	before	charging	
False	

relocation	worker	 The	number	of	charging	relocation	workers	 1000	

charging	relocation	
strategy	

charging	relocation	strategy	used	for	experiments	
["closest_free",	

"random",	
"closest_queueing"]	

annual	leasing	cost	 annual	leasing	cost	per	vehicle	 4000	

disinfection	cost	 disinfection	per	charging	operation	 15	
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washing	cost	 washing	cost	per	vehicle	 8	

pole	labor	cost	 labor	cost	for	building	the	pole	 2200	

pole	hardware	cost	 hardware	cost	for	building	the	pole	 1700	

pole	useful	life	 how	many	years	a	pole	can	use	 10	

pole	annual	
maintenance	cost	

pole	maintenance	cost	per	year	 5000	

cosap	annual	tax	 pole	tax	fee	per	year	 355	

zone	make-ready	cost	 building	cost	per	zone	 1500	

kWh	cost	 energy	price	per	kWh	 0.19	

price	per	minute	 price	the	when	a	user	use	the	vehicle	per	minute	 0.2	

request	rate	factor	
the	ratio	between	the	number	of	the	real	booking	

request	and	input	booking	request	
1	

TABLE 4.1 

PARAMETER FOR CHARGING RELOCATION EXPERIMENTS 

4.1.1. System Performance 
	

	
	

Fig.	4.1.1:	Fraction	Satisfied	with	respect	to	N	poles/N	vehicles	Factor.	Curves	show	the	performance	with	
different	charging	relocation	strategies.	
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		Figure	4.1.1	shows	the	fraction	satisfied	varying	different	charging	poles	
and	 relocation	 strategies.	We	 can	 see	 that	 the	more	 charging	poles	 the	
system	has,	the	more	booking	requests	that	can	be	satisfied.	Because	when	
the	trip	ends,	 if	 the	system	has	as	many	poles	as	possible,	the	vehicle	 is	
easily	 to	 find	 charging	 poles	 and	 can	 reach	 to	 the	 charging	 zones	 very	
quickly,	 at	 the	 same	 time	 it	 consumes	 little	 battery	 for	 relocation,	 thus	
charging	duration	also	decreases.	As	for	relocation	strategy,	closest_free	
and	 random	 has	 the	 overall	 better	 performance	 compared	 with	
closest_queueing.	When	the	N	poles/N	vehicles	Factor	is	greater	than	0.04,	
the	satisfied	fraction	stays	in	stable	rate	at	around	90%	for	the	two	better	
strategies.	 But	 for	 N	 poles/N	 vehicles	 Factor	 greater	 than	 0.15,	 the	
performance	doesn’t	vary	a	lot.	Therefore,	it	is	not	necessary	to	increase	
charging	 poles	 as	 much	 as	 possible	 in	 order	 to	 improve	 system	
performance.	The	reason	can	be	that	as	for	closest_queueing,	the	vehicle	
may	need	to	wait	after	it	reaches	to	the	charging	zone,	so	the	vehicle	is	not	
available	both	at	charging	time	and	waiting	time,	this	strategy	will	reduce	
the	number	of	available	vehicles	for	the	whole	system,	thus	influence	the	
system	performance	in	satisfy	booking	request.	
		In	 Figure	 4.1.2	 shows	 the	 charging	outwards	 distance	 varying	different	
charging	poles	and	relocation	strategies.	We	can	see	that	there	is	a	clear	
order	that	random	is	greater	than	closest_free,	and	closest_free	is	greater	
than	 closest	 queueing	 for	 charging	 outwards	 distance.	 It’s	 easily	 to	
understand	because	in	closest_queueing	strategy,	vehicle	relocates	to	its	
nearest	zone	however	closest_free’s	 relocation	zone	may	a	 little	 further	
than	closest_queueing	because	the	zone	should	be	not	only	charging	zone	
but	also	currently	free	for	charging.	As	for	random	relocation,	it	is	the	most	
distance	consuming.	The	relocation	zone	selection	is	completely	random	
regardless	of	the	relocation	starting	zone	of	the	vehicle,	therefore	the	sum	
of	relocation	distance	is	much	higher	than	the	other	two	strategies.	With	
the	more	density	of	poles	in	the	operation	zone,	vehicle	is	more	easily	to	
find	a	charging	zone	in	its	neighbor,	therefore	the	total	charging	outwards	
distance	decreases	when	 then	N	poles/N	vehicles	Factor	 is	 greater	 than	
0.05	both	in	closest_queueing	and	closest_free.	
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Fig.	4.1.2:	Charging	outwards	distance		with	respect	to	N	poles/N	vehicles	Factor.	Curves	show	the	performance	
with	different	charging	relocation	strategies.	

	
4.1.2. Economic Performance 
	
		Then	we	move	to	analyze	economic	metrics	for	relocation	and	the	whole	
system.	In	Figure	4.1.3,	I	show	the	cost	related	metrics	including	simulator	
cost	and	total	cost.	Firstly,	it	is	easy	to	tell	that	the	more	charging	poles	the	
system	has,	the	more	infrastructure	cost	for	building	the	charging	zone	and	
charging	 poles	 will	 have.	 Therefore,	 the	 total	 cost	 will	 increase	 by	
increasing	charging	pole	density.	Next,	as	for	simulation	cost,	we	can	see	
that	cost	of	random	relocation	strategy	is	greater	than	cost	of	closest_free	
strategy.	 Closest_queueing	 strategy	 has	 the	 lowest	 cost.	 This	 result	 is	
accordance	 with	 the	 order	 of	 charging	 outwards	 distance	 and	 fraction	
satisfied	above.	The	more	satisfied	fraction	is,	the	more	booking	request	
will	 be.	 Therefore,	 there	 will	 be	 more	 vehicles	 need	 to	 charge	 so	 the	
charging	 cost	 increase.	Closest_queueing	 strategy	has	 the	 least	 satisfied	
fraction,	hence,	the	simulation	cost	is	the	lowest.	Closest_free	and	random	
have	 relatively	 equal	 satisfied	 fraction,	 but	 closest_free’s	 relocation	
distance	lower	than	random’s,	so	the	cloest_free’s	simulation	cost	is	lower	
than	random’s.	Since	total	cost	is	the	sum	of	simulation	cost	and	scenario	
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cost	and	 scenario	 cost	doesn’t	 change	with	different	kinds	of	 relocation	
strategy,	the	shape	and	tend	of	total	cost	is	accordance	with	the	simulation	
cost.		
		Finally,	in	Figure	4.1.5,	I	analyze	the	revenue	and	profits	by	giving	different	
charging	 relocation	 strategies.	 Revenue	 is	 strongly	 linear	 related	 to	 the	
total	mobility	duration.	So,	we	can	get	a	conclusion	that	the	more	satisfied	
fraction	is,	the	more	mobility	duration	it	will	be.	In	consequence,	revenue	
will	be	higher	with	more	satisfied	fraction.	Cloest_queueing	has	the	lowest	
system	 performance,	 therefore,	 it	 causes	 in	 the	 lowest	 revenue.	
Closest_free	and	random	has	the	relatively	same	system	performance	so	
the	revenue	they	get	is	relatively	the	same.	Profits	refers	to	net	income	of	
the	whole	system,	so	both	cost	and	revenue	will	influence	the	profit	rate	
of	the	car	sharing	system.	We	can	see	from	the	figure	that	by	the	N	poles/N	
vehicles	 Factor	 is	 smaller	 than	 0.15,	 closest_queueing	 has	 the	 lowest	
system	profits.	The	reason	is	that	although	closest_queueing	cost	least	in	
relocation	and	total	system,	it	also	brings	the	least	revenue	for	satisfying	
booking	request.	It	both	earns	the	least	and	cost	the	least.	However,	for	
the	other	two	relocation	strategies,	both	the	revenue	and	cost	is	relatively	
high,	thus	the	profit	don’t	vary	a	lot.	But	in	general,	closest_free	has	the	
highest	 profit	 because	 its	 relocation	 distance	 is	 much	 smaller	 than	
random’s.	
		Through	comprehensive	consideration	of	the	above	data,	we	can	get	the	
final	conclusion	that	in	the	simulation	case	of	city	of	Turin	with	the	specific	
configuration,	closest_queueing	relocation	strategy	has	the	worst	system	
performance.	 What’s	 more,	 closest_free	 is	 the	 best	 solution	 both	 for	
system	 performance	 and	 economic	 performance.	 Besides,	 as	 for	 the	
charging	pole	density,	too	 low	or	too	high	 is	not	a	good	choice.	Too	low	
density	leads	to	bad	system	performance,	however,	too	much	poles	cost	a	
lot.	 Hence,	 N	 poles/N	 vehicles	 Factor	 between	 0.04	 and	 0.15	 performs	
good	in	the	Turin	case	study.	
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Fig.	 4.1.3:	 Cost	 Related	Metrics	with	 respect	 to	N	 poles/N	 vehicles	 Factor.	 Curves	 show	 the	 performance	with	
different	charging	relocation	strategies.	

	

	
	

Fig.4.1.4:	Income	Related	Metrics	with	respect	to	N	poles/N	vehicles	Factor.	Curves	show	the	performance	with	
different	charging	relocation	strategies.	
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4.2. Proactive Relocation Strategy Results 

		Still,	in	order	to	see	how	different	proactive	layer	strategies	will	affect	the	
whole	car	sharing	system.	I	implement	the	proactive	layer	strategy	in	the	
original	simulator.		The	number	of	relocation	workers	will	influence	both	
the	 relocation	 throughput	 and	 relocation	 cost.	 Therefore,	 different	
number	of	relocation	workers	are	set	and	tested.		I	run	the	simulator	in	the	
city	of	Turin	from	October	to	November	of	2017.	The	parameters	grid	for	
this	set	of	simulations	is	in	table	4.2:	
	

Parameter	 Description	 Values	

a	 the	charging	threshold 20	

b	 the	charging	upper	bound	 100	

n	vehicles	 total	vehicles	run	in	the	simulation	 (100,400),	step	10	

n	requests	 number	of	booking	requests	 10000	

cps	zones	percentage	
charging	zones	density	with	regards	to	total	

zones	
0.2	

N	poles/N	vehicles	
fator	

number	of	charging	poles	with	regards	to	
vehicles	

0.2	

charging	relocation	
strategy	

charging	relocation	strategy	used	for	
experiments	

"closest_free"	

annual	leasing	cost	 annual	leasing	cost	per	vehicle	 4000	

disinfection	cost	 disinfection	per	charging	operation	 15	

washing	cost	 washing	cost	per	vehicle	 8	

pole	labor	cost	 labor	cost	for	building	the	pole	 2200	

pole	hardware	cost	 hardware	cost	for	building	the	pole	 1700	

pole	useful	life	 how	many	years	a	pole	can	use	 10	

pole	annual	
maintenance	cost	

pole	maintenance	cost	per	year	 500	
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cosap	annual	tax	 pole	tax	fee	per	year	 355	

zone	make-ready	cost	 building	cost	per	zone	 1500	

kWh	cost	 energy	price	per	kWh	 0.19	

vehicle	relocation	
the	flag	to	show	if	proactive	relocation	will	be	

execueted	
[True,False]	

vehicle	relocation	
strategy	

vehicle	relocation	strategy	chosen	for	
experiments	

"only_scheduled"	

vehicle	relocation	
technique	

how	to	choose	starting	zones	and	end	zones	of	
relocation	

[{"start":	
"aggregation",	"end":	
"kde_sampling",},	

{"start":	"delta",	
"end":	"delta",}]	

n	relocation	workers	 the	number	of	proactive	relocation	workers [0,3,6,9,12]	

worker	hourly	salary	 price	for	hiring	the	relocation	workers	 18	

price	per	minute	 price	the	when	a	user	use	the	vehicle	per	
minute	

0.2	

request	rate	factor	
the	ratio	between	the	number	of	the	real	
booking	request	and	input	booking	request	

1.69546	

TABLE 4.2 

PARAMETER FOR PROACTIVE RELOCATION EXPERIMENTS 

4.2.1. System Performance 
	
		In	 the	 Figure	 4.2.1.1,	 I	 visualize	 the	 satisfied	 fraction	 of	 the	whole	 car	
sharing	 system	 in	 the	 above	 configuration.	 Part	 (a)	 shows	 the	 system	
performance	 among	 different	 proactive	 relocation	 strategies.	 It	 is	 clear	
that	proactive	layer	strategy	improves	the	satisfied	demand.	What’s	more,	
delta	relocation	strategy	performs	better	than	other	strategy.	I	change	the	
total	number	of	vehicles	in	the	whole	system	and	the	number	of	relocation	
workers	in	part	(b).	The	more	workers,	the	more	relocations	are	executed	
hourly.	When	the	number	of	worker	equals	to	0,	it	means	that	no	system	
operator	operates	vehicle	relocation,	therefore,	proactive	layer	relocation	
doesn’t	 trigger.	 We	 can	 see	 that	 when	 compared	 with	 no	 proactive	
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relocation,	proactive	relocation	has	an	average	2%~10%	improvement	in	
fraction	 satisfied	metric	when	 the	number	of	 vehicles	 is	 in	an	abundant	
level.	However,	when	the	number	of	vehicles	is	too	little,	in	this	case	less	
than	 160,	 fraction	 satisfied	 doesn’t	 vary	 a	 lot.	 The	 reason	 is	 that	 the	
number	 of	 vehicle	 itself	 can’t	 meet	 the	 demand	 of	 system,	 instead	 of	
unbalanced	 distribution	 of	 vehicles	 leads	 to	 the	 unsatisfied	 booking	
request.	When	the	number	of	relocation	workers	increases,	the	number	of	
satisfied	booking	requests	also	increases.	The	reason	is	that	more	vehicles	
are	relocated	to	the	region	which	more	requests	are	generated.	Another	
obvious	phenomenon	 is	 that	 the	more	vehicles	 the	whole	system	owns,	
the	more	booking	request	can	be	satisfied.	
	

	
(a)various	strategies																													 	 	 	(b)	various	number	of	workers	

Fig	4.2.1.1:	Fraction	Satisfied	with	respect	to	the	number	of	vehicles.	

	
	

Fig.	4.2.1.2:	Fraction	Satisfied	with	respect	to	the	number	of	vehicles	for	new	proactive	relocation	.Curves	show	
the	performance	with	different	number	of	relocation	workers.	
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		Meanwhile,	 I	 also	 analyze	 vehicle	 relocation	 distance	 by	 varying	 the	
number	of	relocation	workers.	The	results	are	shown	in	Figure	4.2.1.3.	It	is	
easy	to	understand	that	with	more	number	of	workers,	more	relocation	
operations	 are	 executed,	 so	 the	 total	 relocation	 distance	 is	 positively	
correlated	 with	 the	 number	 of	 workers.	 When	 the	 number	 of	 vehicles	
increases,	total	vehicle	relocation	distance	also	increases	slightly.	We	can	
see	 from	 Figure	 4.2.1.4	 that	 the	 number	 of	 relocations	 also	 increases	
slightly	 with	 the	 number	 of	 vehicles	 increases.	 Why	 the	 number	 of	
relocation	operation	increases?	The	reason	is	that	although	our	proactive	
relocation	 is	 triggered	 hourly,	 it	 selects	 vehicles	 which	 end	 their	 trips	
recently.	 That	 means	 that	 only	 if	 a	 trip	 ends	 in	 a	 zone	 included	 in	 the	
schedule,	we	 relocate.	 So,	we	do	 less	 relocation	 than	planned,	until	 the	
number	of	vehicles	 is	high	enough	to	trigger	all	scheduled	relocation	for	
each	hour.	In	order	to	avoid	this	issue,	I	have	developed	a	new	proactive	
relocation	strategy.	The	relocation	operation	is	only	triggered	at	the	end	of	
each	hour,	instead	of	the	end	of	trip.	The	results	are	shown	below:	
	

	
	

Fig.	4.2.1.3:	Total	Vehicle	Relocation	Distance	with	respect	to	the	number	of	vehicles.	Curves	show	the	
performance	with	different	number	of	relocation	workers.	
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Fig.4.2.1.4:	Number	of	Relocations	with	respect	to	the	number	of	vehicles.	Curves	show	the	performance	with	
different	number	of	relocation	workers.	

	
		We	can	see	from	the	lower	part	of	Figure	4.2.1.5	that	the	new	proactive	
relocation	strategy	keeps	the	same	amount	of	relocations	no	matter	the	
number	of	vehicles	changes	or	not.	Meanwhile,	with	higher	car	density,	
shorter	distance	between	the	starting	zone	and	ending	zone	will	be.	For	
this	 reason,	 the	 total	 relocation	 distance	 decreases	 slightly	 with	 the	
number	of	vehicles	increases.	
		Besides,	 satisfied	 fraction	 is	also	updated	and	plotted	 in	Figure	4.2.1.2.	
With	 more	 relocations,	 more	 requests	 will	 be	 satisfied.	 The	 system	
performance	gap	between	no	relocation	and	relocation	becomes	bigger.	
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Fig.4.2.1.5:	Number	of	Relocations	&	Relocation	Distance	of	new	proactive	relocation	with	respect	to	the	number	

of	vehicles.	Curves	show	the	performance	with	different	number	of	relocation	workers.	
	

	

	
Fig.	4.2.1.6:	Number	of	Relocations	&	Relocation	Distance	of	delta	strategy	with	respect	to	the	number	of	

vehicles.	Curves	show	the	performance	with	different	number	of	relocation	workers.	
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4.2.2. Economic Performance 
	
		Now	 we	 move	 to	 see	 the	 economic	 change	 that	 the	 proactive	 layer	
strategy	brings.	Firstly,	let’s	see	the	index	of	revenue	in	Figure	4.2.2.1.	The	
trend	and	shape	of	revenue	are	similar	with	the	satisfied	fraction.	When	
the	number	of	vehicles	is	smaller	than	160,	revenues	doesn’t	vary	a	lot	by	
different	 number	 of	 workers.	When	 the	 number	 of	 vehicles	 is	 enough,	
proactive	layer	strategy	actually	improves	the	revenue	of	the	whole	system.	
With	more	 number	 of	 workers,	 the	more	money	 the	 system	 can	 earn.	
However,	 that’s	 not	 absolute	 regulation.	 We	 can	 see	 that	 when	 the	
number	of	vehicles	equal	 to	310,	 three	relocation	workers	brings	higher	
revenue	compared	with	six	and	nine	workers.	Then	reason	is	that	revenue	
reflects	the	total	mobility	duration.	Total	mobility	duration	is	the	product	
of	number	of	booking	request	and	average	duration	per	trip.	With	more	
requests	satisfied,	that	doesn’t	mean	the	total	mobility	duration	will	100%	
increase.	 But	 in	 a	 general	 view,	 increasing	 the	 number	 of	 relocation	
workers	 has	 a	 positive	 effect	 in	 increasing	 the	 whole	 revenue.	 When	
considering	new	proactive	relocation	strategy	in	Figure	4.2.2.2,	revenues	
becomes	higher	with	the	same	number	of	relocation	workers	and	vehicles	
because	of	higher	satisfied	fraction	for	the	car	sharing	system.	
	

 
 

Fig.	4.2.2.1:	Total	Revenues	with	respect	to	the	number	of	vehicles.	Curves	show	the	performance	with	different	
number	of	relocation	workers.	
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Fig.	4.2.2.2:	Total	Revenues	of	new	proactive	relocation	with	respect	to	the	number	of	vehicles.	Curves	show	the	
performance	with	different	number	of	relocation	workers.	

	
		Figure	 4.2.2.3	 shows	 the	 cost	 related	 metrics	 including	 total	 cost	 and	
proactive	relocation	cost.	Relocation	cost	is	highly	correlated	with	the	total	
relocation	distance.	Both	the	shape	and	trend	is	similar	with	upper	part	of	
Figure	 4.2.1.6.	 As	 for	 total	 cost,	 it	 is	 easy	 to	 figure	 out	 that	 the	 more	
vehicles	and	the	more	number	of	relocation	workers,	the	higher	total	cost	
will	be.	
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Fig.4.2.2.3:	Total	Cost	&	Proactive	Relocation	Cost	of	new	proactive	relocation	with	respect	to	the	number	of	
vehicles.	Curves	show	the	performance	with	different	number	of	relocation	workers.	

	
		Last	 but	 not	 least,	 profits	 are	 shown	 in	 Figure	 4.2.2.4.	 Profits	 are	 in	 a	
reverse	order	compared	with	revenues.	No	proactive	relocation	scenario	
gets	the	highest	profit.	The	more	relocation	workers	employed,	the	lower	
profit	system	performs.	It’s	not	difficult	to	find	out	the	reason.	Although	
proactive	relocation	improves	the	system	performance,	which	means	more	
requests	are	satisfied	 thus	brings	more	revenue,	both	relocation	worker	
cost	and	energy	cost	are	not	evitable	increasing	at	the	same	time.	Profits	
should	be	influenced	not	only	by	the	revenue,	but	also	by	the	cost.	In	this	
case,	relocation	operation	costs	more	than	the	extra	revenue	it	can	bring	
for	 the	whole	 system.	What’s	more,	 extra	 cost	with	more	 vehicles	 also	
exceeds	the	extra	revenue	more	vehicles	can	bring.	In	consequence,	profits	
show	a	downward	trend	with	the	number	of	vehicles	increases.	
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Fig	4.2.2.4:	Profits	of	new	proactive	relocation	with	respect	to	the	number	of	vehicles.	Curves	show	the	

performance	with	different	number	of	relocation	workers.	

	
		In	order	to	show	the	above	conclusion	more	clearly,	I	have	drawn	Figure	
4.2.2.5.	 Given	 two	 scenarios	 of	 no	 proactive	 relocation	 and	 proactive	
relocations	with	three	relocation	workers.	I	calculated	the	extra	revenues	
relocation	operation	brings	and	extra	cost	it	needed.	We	can	see	that	extra	
revenue	 is	 far	 less	 that	 extra	 cost	 that	 relocation	 operation.	 Improving	
system	performance	comes	at	the	cost	of	additional	overhead.	
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Fig	4.2.2.5:	Cost	Gap	and	Revenue	Gap	with	respect	to	the	number	of	vehicles.	
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Chapter 5	
	

Conclusions and Future Work 
	
		The	main	content	of	the	thesis	is	that	modify	and	run	the	simulation	based	
on	previous	e3f2s	work.	Both	reactive	and	proactive	relocation	strategies	
have	 been	 implemented.	 The	 simulation	 model	 has	 a	 number	 of	 input	
parameters	that	allow	for	the	evaluation	of	numerous	scenarios.	By	using	
the	 simulation	 in	 the	 case	 of	 Turin,	 I	 focus	 on	 plotting	 the	 results	 and	
digging	 out	 the	 hidden	 reason	 under	 the	 system	 performance	 and	
economic	performance	by	 changing	 fleet	 size,	 the	number	of	 relocation	
workers,	 the	 number	 of	 charging	 poles	 and	 varying	 different	 relocation	
strategies.	In	the	result	of	Turin,	it	was	found	that	when	considering	post	
charge	relocation	strategy,	closest-free	has	the	overall	best	performance	
whereas	closest-queueing	is	worse	considered	with	the	other	two.	When	
it	 comes	 to	 proactive	 relocation,	 it	 improves	 the	 system	 performance	
however	 it	 leads	 to	 extra	 cost.	 With	 the	 more	 number	 of	 relocation	
operations,	the	more	requests	can	be	satisfied.	Among	different	relocation	
strategies,	 delta	 performed	 best	 in	 proactive	 relocation	 scenario.	 The	
balance	 between	 more	 cost	 and	 more	 earnings	 should	 be	 considered	
carefully.	
		There	are	still	many	things	that	can	be	considered	besides	the	thesis:	
• Improve	economic	performance	 in	proactive	strategy,	 for	example,	

add	relocation	operations	frequency.	
• Implement	other	kinds	of	reactive	relocation	strategy,	for	example,	

add	relocation	scenario	besides	charging	relocation.	
• Implement	other	kinds	of	proactive	relocation	strategy,	for	example	,	

add	relocation	operations	strategy	using	machine	learning		.	
• Add	more	meaningful	metrics	for	system	and	economic	analysis.	
• Expand	the	simulation	scenarios	in	other	cities	and	make	comparison	

among	cities.	
• Improve	 the	 simulation	 with	 hybrid	 energy	 transportation.	 For	

example,	 add	 scooter,	 oil	 cars	 in	 the	 simulation.	 Consider	 more	
complex	scenarios.	
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