
Safety Gaps filling of a Partial Networking
Coordinator, developed in AUTOSAR
Application Layer, as Safety Element

out-of-Context

Giovanni Pinti
s261005@studenti.polito.it,

Politecnico di Torino

Computer Engineering - Embedded Systems

a.a. 2020-2021

Supervisor: Massimo Violante, DAUIN-Politecnico di Torino

I warmest thanks to:

My parents and my brother

My grandmothers

My grandfathers Vittorio and Giovanni, my uncle Mimmo and my aunt Silvia
(in memoriam)

My uncles, aunts, my cousins and their partners and children

Mary

All my friends, colleagues, team-mates and home-mates

Professor Violante for the precious support

ETAS guys for the precious support

Thanks a lot to everyone

1

Contents

1 Introduction 1
1.1 Computer Systems application in Automotive and consecutive problems . . 1
1.2 Road vehicles Functional Safety . 2

1.2.1 Safety Critical Systems . 2
1.2.2 ISO 26262 - Road Vehicle Functional Safety 3

1.3 MISRA C . 8
1.4 AUTOSAR . 9

1.4.1 General Overview . 9
1.4.2 Functional safety related AUTOSAR parts 13

1.5 Partial Networking in Automotive . 13
1.6 Real-Time Application - Partial Networking Coordinator development by

ETAS . 19

2 Reading of Standard, Initial analysis and Requirement Engineering 21
2.1 ISO 26262 parts in scope to SEooC development 21
2.2 Requirement Engineering: Assumptions on Safety Requirements 28

3 Design and Implementation 34
3.1 Briefly overview on V-Model . 34
3.2 Tricks on Modelling and Programming Language 35
3.3 Software Architecture . 39
3.4 Software Units Design and Implementation 46

4 Verification of implementation by analysis and formal methods 56
4.1 Verification Plan . 56
4.2 Verification of requirements: Traceability 57
4.3 Verification of Software Architecture . 74
4.4 Verification of Software Unit . 82
4.5 Testing of Software Units . 84

5 Additional Work Products for safety and Conclusions 89
5.1 Failure Mode and Effects Analysis . 89
5.2 Safety Manual . 93
5.3 Conclusion . 95

6 Additional 96
6.1 Acronyms and Abbreviations . 96

2

List of Tables

1.1 CAN properties with wake-up implementation [5] 17

2.1 Specification of SSR in safety manual . 32

3.1 Example of error masking using Forwarding Recovery 47

4.1 example of tagging traceability structure 61
4.2 Embedded Tracker vs Dedicated source . 69
4.3 Truth Table for Correct FSM . 78
4.4 Truth Table for Correct FSM (optimized) 78
4.5 Table for MC/DC evaluation . 86
4.6 Results of unit tests for introducing software unit implement safety mechanism 88

3

List of Figures

1.1 Reasonable risk curve . 5
1.2 AR layered architecture by NXP . 10
1.3 ECU autosar block diagram (logical architecture) 12
1.4 MCU autosar block diagram (logical architecture) 12
1.5 Can High-Speed bus node and physical layer (ISO 11898) 15
1.6 Can Transceiver(CanTx) for High Speed) 16
1.7 Global Wake-up CAN bus system from [5] 17
1.8 Partial Networking CAN bus system from from [5] 18
1.9 Complex CAN transceiver . 18

2.1 V-model process as suggested by ISO 26262 22
2.2 Class diagram to identify element definition 22
2.3 system as considered by ISO 26262 . 23
2.4 assumption as specified by ISO 26262 . 24
2.5 SEooC process flow (AR specification) . 25
2.6 Example of Cross-matrix for risk evaluation 30
2.7 References between Safety Goals and HLSR 33

3.1 Other View of V-model . 34
3.3 Not-compliant C code: Dynamic Memory Allocation (3.2b), recursion for

free pointers (actual) . 38
3.4 Robust software unit for computation of a SUM to detect overflow and

permanent faults . 38
3.5 Conceptual model of SDD by IEEE 1016 v2009 40
3.7 Example of encapsulation of structure FSM in header (.h) 44
3.8 definition of structure FSMType in component source (.c) and private functions 44
3.9 Definition of public functions FSM Init in component source (.c) 45
3.10 Definition of public functions FSM Init in component source (.c) 45
3.11 Forwarding recovery example (Tri-Module Redundancy in the specific case)

[10] . 47
3.12 Definition of Majority value in activation sensor 48
3.13 Classification of sensor value: count the sensor value to TRUE 48
3.14 evaluation of value that has reach majority value (if does) 48
3.15 safety mechanism in PNC configuration set by AR scheme 49
3.16 Recovery block representation [9] . 50
3.17 Division software units API . 50
3.18 Safe Software Unit for division switching (recovery blocks mechanism) . . . 50
3.19 Safety Div method 1 . 52

4

LIST OF FIGURES

3.20 Safety Div method 2 . 53
3.21 example of state-flow for control flow checking 54
3.22 Definition of private global variable number of state 54
3.23 Generation of actual mask software unit (cyclomatic complexity is 2) . . . 55
3.24 Employment of control flow checking by dynamic mask and static signature

in stub FSM . 55

4.1 AUTOSAR scheme for requirements tracking (Specification of safety exten-
sion) . 58

4.2 Parallel Traceability . 60
4.3 Simulink traceability . 62
4.4 Doxygen workflow for current case . 63
4.5 SPI API AR-compliant code . 63
4.6 SPI API AR-compliant code . 64
4.7 Doxygen comment style in API for functional description (ETAS Confi-

dential) . 65
4.8 Produced Code Documentation (Implementation) 66
4.9 Traceability matrix for implementation (generated) 67
4.10 Opened section of safety manual using generated documentation link . . . 67
4.11 Internal Statement tracking for specific requirmenet (ETAS Confidential) 68
4.12 Verification Matrix Traceability generated 70
4.13 Cantata Test Report . 71
4.14 Documentation of a Test Unit using doxygen 71
4.15 Definition of a TSR in AR scheme . 72
4.16 reference to a TSR from a SWC . 73
4.17 work-flow to implement dynamic traceability of an arxml file 73
4.18 Traceability documentation for arxml file 74
4.19 work product with tracking id . 75
4.20 Erroneous Finite State Machine . 77
4.21 Correct Finite State Machine . 78
4.22 Implementation of FSM . 79
4.23 FSM with transition cardinality . 80
4.24 MISRAC compliant code . 80
4.25 Uninitialized variable . 81
4.26 Mandatory else to assign variable value . 81
4.27 Optimized cases . 81
4.28 Example of equivalence class partitioning and boundaries 85

5.1 Example of FMEA on PNC . 90
5.2 Risk evaluation on PNC beta version . 91
5.3 Risk evaluation on safety PNC . 92
5.4 Table for Software Unit evaluation in Safety Manual (ETAS Confidential) . 94
5.5 Table for Software Unit evaluation in Safety Manual (ETAS Confidential) . 95

5

Abstract

Automotive Industry is a field where Embedded Systems are widely employed.
Modern vehicles can contain up to 80 microprocessor-based systems, called
Electronic Control Unit or ECU, they run millions of Lines of Code and they
can represent the up to 80% of vehicle innovation. An important aspect, in
terms of innovation, is the power saving. Some studies have proved that the
power saving can have a positive impact on several parameters like the emis-
sions: reducing the power consumption is possible to reduce the emissions by
a Mathematical formula. One of solution to implement the power saving at ve-
hicle context is to adopt the Partial Networking at communication level among
ECUs.
The design and development of an Embedded System for a vehicle shall be
done considering the safety-critical nature of Automotive products and so they
shall meet several regulations and normative to ensure the State-of-Art. ETAS
GmbH (Bosch Group) is an AUTOSAR premium partner it develops several
application, tools and services for Automotive solutions. On of these is a Par-
tial Networking Coordinator it manages the Basic Software Services as a cen-
tral node in application layer, for each application software component that
is mapped in Partial Networks, using a CAN bus system. The nature of the
software component forces to identify it as a Safety Element out-of-Context
(SEooC) and therefore its design and development, compliant to ISO 26262,
requires a certain level of tailoring in safety activities. The following paper will
analyse all aspect related to ISO 26262 for SEooC development and it will try
to produce a solution in order to get compliance of ETAS Partial Networking
Coordinator with ISO 26262 in all its parts that are considered in scope, using
language subset as MISRA C to improve the safety too.

Chapter 1

Introduction

1.1 Computer Systems application in Automotive and

consecutive problems

As early as 1983 a GM engineer wrote in an article about the ”Transactions on Indus-
trial Electronics” that software would represented the most important aspect, within new
development engineering products [2]. Some years ago, an expert professor at Munich Uni-
versity has estimated that 80% of a car innovation is done by on-board computer and their
development can arrive to be worth until the 50% of the total car cost for conventional
vehicle, and up to 80% for the electric and hybrid ones (up now).
Nowadays, almost the totality of road vehicles are equipped over to 70 microprocessor-
based Electronic Control Units (ECU) they run Embedded SW like RTOS (Real-Time
Operating Systems). In 2009 and 2010 Several Researches ([2]) reported that ”probably”,
the embedded software in a generic car has been developed over 100 millions of LoC (Line
of Code), going near 200 ones in the next future, versus 5.7 millions LoC of a F-22 Joint
Strike Fighter (scheduled for 2010). The size of the LoC in a vehicle probably does not
always reach that value but, considering the large number of ECU within a vehicle context,
it is a reasonable value; Over the years, even more systems in a vehicle will be under the
Software Control. It is not so rash to assert that in a next future (or already now) there
will be a Software routine for each vehicle component with a consistent increasing of LOC
size and so on, software complexity.
For example the Brake Control Module (often identified by acronym BCM) is one of the
most diffused Software controlled-system in car. This module can also embed more sub-
systems, like ABS (Anti-Blocking System) and ESC(Electronic Stability Control). Specifi-
cally, ABS is a system that prevents wheels blocking in the case of an immediate braking,
activating an air-pumping mechanisms, to transform a continuous long braking into a series
of short ones (impulsive). This solution avoids loss of vehicle controllability and it reduces
the risk of crashes. From a functional point of view the embedded software shall harvest
much information as: actual wheel speed, braking entity and grip status; all these allow
to evaluate car situation and take a decision about anti-blocking activation. Only using
logic reason, it is possible to imagine that software shall access to several speed sensors in
a well-defined time; for sure, more than one measure shall be considered, maybe from more
types of sensor. Once this has been checked, it is necessary to actuate the software decision
by mechatronic systems as an air pump with valves manager. The entire process (from

1

1.2. ROAD VEHICLES FUNCTIONAL SAFETY

data collection to physical actuation, passing for evaluation phase) shall be done in a short
period (range of tenths milliseconds); to have a more concrete look to a real case: In some
cases, the wheel blocking can happen just in front or rear wheels. This fact can involve
itself in a fatal situation for motorcycles, due to the high probability of a fall down for the
loss of controllability. To avoid similar situations it is possible to combine ABS with CBS
system. This last is not an electronic system but it uses the braking force that is actuated
on front wheel, to active an adjusting pressure pump, forwarding braking force on the rear
wheel; this system combines an non-electronic solution with an electronic one, increasing
the complexity of the control system that shall manage a large amount of parameters and
algorithms to take the right decision.

The overall high complexity of the previous system, especially on software view, is rewarded
in decreasing of car crashes, economic damages, injuries and fatalities. Since 2014-2015,
several global researches have shown how the ABS, integrated in motorcycles (over 125cc)
has reduced the injury crashes of 29% and the fatality ones of 34%, reducing the overall
crashes numbers where motorcycles were involved of 22%(Data about Spain w.r.t. the pre-
vious years). In Italy data are very similar with a decrease of injury crashes of 24% with
an overall reduction of 27% [3]. The importance of these data is also greater considering
the global unit production of vehicle (110 millions of new units per year will be reached
from 2025 [1]).

On the base of previous consideration, the real problem is to ensure that an embedded
systems implements the right safety mechanisms in the right ways
Automotive software products are characterized by a high complexity, a big amount of
LoC and a big number of use-cases. Therefore, ensuring that in millions LOC that de-
scribes routines there are not misbehaviours (or potential cases for), that might involve in
Hardware faults and then in software failures, is far from to be simple: When a design is
able to prove this, then the State-of-Art is reached. Such evidences can be provided only:
sticking very strictly to several rules and requirements as indicated in specific
standards and regulations that will be exposed later.

1.2 Road vehicles Functional Safety

1.2.1 Safety Critical Systems

Computer systems within a vehicle are considered Safety-critical ones i.e. very sensible
to errors occurrences; each of them can potentially cause human casualties. Therefore
software complexity becomes an essential features and it can be managed by requirements
engineering models and model-based design. This does not mean that only software is af-
fected by defects: ECU is a microprocessor-based system that is built by hardware elements
and software components; so a defect might impact both the dominions with different ef-
fects and causes: In a Microcontroller Unit there will be hardware parts that are subjected
to failure over the ageing while software does not; At the same time it is not possible to
consider software behaviour as linear: if a functionality is asserted with an input pattern,
then it will work forever with that but the same functionality might not work with all
input patterns it should!
First common ”defending line” can be the software testing, to discover errors. When a

2

1.2. ROAD VEHICLES FUNCTIONAL SAFETY

software is developed, the possibility to test it shall be always feasible. However, its com-
plexity might not allow an exhaustive testing phase i.e. applying the entire set of possible
input combinations; an academic example is to consider for testing 2 inputs both on 32
bits: a complete test requires 264 patterns (more than the cube of 106) that is not feasible.
So the software test shall be done with a subsequence of patterns ”enough exhaustive” to
reach the right safety level.
Note that by a safety point of view, it does not matter very strictly if a functionality meets
its requirement; that is reliability aspect. The real focus of safety is: to avoid the possibility
that an unintended behaviour can increase the risk of failure. In other words a component
can fail as long as its failure is handled and system is able to accordingly react, remaining
in a safe state.

1.2.2 ISO 26262 - Road Vehicle Functional Safety

ISO 26262 is a standard normative for Automotive Industries. It drives the entire designing
process for products that are built by hardware and software together. Process is divided
in several (and mostly mandatory) activities they defines the safety measures. These will
be evaluated and applied in order to obtain the functional safety. The last version has
been released in 2018 with the extension to all road vehicles including the motorcycles.
The main scope of ISO 26262 is to standardize:

A) the design process for ”fault prevention” and

B) the development activities and methods for fault detection and mitigation;

Its activities are described within 12 parts (or chapters) for second release, where anyone
focuses itself on a specific part (planning, Requirements, development, etcetera...). Each
chapters is divided in sections (clauses) that in turn contains ISO requirements. At the
end of each clause there is a section that specifies which work products shall be produced
to satisfy clauses’ requirements and so the compliance to ISO 26262. The set of the whole
work products that have been developed defines the Safety Case.

Safety can be defined as an intrinsic property of a safe product. An exhaustive exam-
ple can be the following:

Let’s consider a crossroad: there is a reasonable risk of vehicles

crash therefore the environment cannot be considered as Safe without

a mechanism that is able to reduce as much as possible this risk: the

safety level will be obtained with respect to functionality of this

system (in the specific case it can be a traffic light); in summary:

the safety will depend by the correct operating of the safety system

to its input stimuli. When it will work correctly then the probability

of risk is reduced until a "reasonable level". [4]

For ISO 26262 ”risk” is intended as probability of damage occurrence; greater this risk
will be, better the design of safety mechanism will have to be. The source of damage is
called Hazard and it is produced by malfunctions what a time are dependent from Fail-
ures(missing capacity of an element or more to fulfil its/their tasks). Failures can be

3

1.2. ROAD VEHICLES FUNCTIONAL SAFETY

caused by Physical defects called faults. Measure of risk is done according to definition
of ASIL(Automotive Safety Integrity Level) that is defined in the scope of the normative.
ASIL measure is in a domain of four values: A (min), B, C, D (max); they are obtained
by a matrix it defines them as the result of crossing between three others parameters:

❼ Severity(S): entity of harm (injury on physical person);

– minimum S0: No injuries;

– Maximum S3: survival uncertain or impossible;

❼ Controllability(C): possibility to avoid damage or harm by timing reaction of
person;

– minimum C0 : In general Controllable

– Maximum C3: Uncontrollable

❼ Exposure(E): probability where a failure involves in an Hazard;

– minimum E0: Incredible;

– Maximum E4: High probability;

This measure will be directly assigned to the source of damage i.e. Hazard; Accord-
ing to it, the design will implement the safety functions to decrease it until the level of
QM (reasonable risk).
A risk analysis to assign ASIL value can be formulated according with this mathematical
model:

Risk(S,P(C,E)) < RiskTh

where S, E and C are described in the previous, while P is the probability function of risk
occurrence and RiskTh is the threshold of tolerable risk (in the following Reasonable risk
and tolerable risk are used as synonymous).
In the graph plot Reasonable Risk Curve[1.1], the blue line represent the Tolerable
risks. Let’s consider Risk is exactly the Tolerable one as constant: this means that if
Risk(S,P(C,E)) = const. Now let’s consider again Risk function like the product of S
and P(C,E) (inverse relationship between them). The target is to implement mechanism
it can move the result of the relationship among S, C and E values on tolerable risk curve
or in the below region (it is reasonable risk region); this means that if the S value is short,
then a greater probability of Hazard can be accepted; by other hand, if the Severity is very
high (Values from 7 to 10 can represents S3) the probability of hazard shall be very low
(this means low loss of controllability and low probability of exposure). This consideration
shall be done because sometimes, the determination of ASIL value has a very high impact
on the production cost too.

By a very simple point of view, the ISO 26262 activities might be grouped into four macro
phases:

❼ Planning and Concept phase;

4

1.2. ROAD VEHICLES FUNCTIONAL SAFETY

2 4 6 8 10

0.2

0.4

0.6

0.8

1

S

P
(C

,
E

)

Reasonable risk curve (random data)

Figure 1.1: Reasonable risk curve

❼ Development at several product levels;

❼ Production, Service and decommissioning;

❼ guidelines, specific cases and supporting activities;

The overall design approach will start from a pure functional description at high-level, for
going down to more detailed low-levels where activities will be strongly technical. Each
software tool that will be used as supporter, it shall be qualified by ISO certification.
Planning and Concept phase can be considered as a Requirement Engineering one. The
planning phase consists in the development of the safety plan, i.e. a document that will
contain all aspects related to the team that is developing a product (roles, responsibilities,
tasks) and planning of safety activities that will be adopted. Concept phase starts defining
a top level entity that is called item; its formal definition can be: ”a combination of systems
(Hardware and Software) they are designed to meet specific functionalities within a vehicle
context”. This definition shall be done by a purely functional description. Then these will
be analysed in order to discover possible Hazards thanks to the Hazard Analysis and Risk
Assessment or HARA. Its result aims to define the Safety Goals i.e. the target to achieve
in order to reduce the risk that Hazards occurrence; at the same time Hazard occurrence
containment shall be considered (ISO 26262 adopts prevention and impediment). Safety
goals will have a double utility:

❼ Identify the ASIL value;

❼ Define the Functional Safety Requirements (FSR);

These last describe what shall be done to achieve safety goal. Their description is still
functional, in fact they do not consider any implementing technology. The next phase con-
sists in the allocation of these in a ”primordial” system architecture by their formulation
in by technological point of view.

5

1.2. ROAD VEHICLES FUNCTIONAL SAFETY

product development at system level starts to analyse technical concepts. It considers
several aspects, as the separation between Hardware and Software tasks they will developed
in different processes (in the most in parallel) and their meeting point (Hardware-Software
Interfacing). The Functional Safety Requirements allocation defines the Technical Safety
Requirements (TSR) and, it will complete the ”Safety Concept”. As mentioned, the prod-
uct development at system level shall consider the separation between hardware and Soft-
ware, so these TSR will be forwarded to the correct domain, for next development phase
(in the case of Software they will take the name of SSR - Software Safety Requirements).
The system architecture design shall include also its verification phase. the definition of
TSR in System product and its Verification phase defines the upper vertex of the V-model
that ISO 26262 defines for the development phase of lower level (Components and Units).
Development phase can be split in Hardware Development and Software one. This last
case is directly considered in this paper. The goal is to implement what has been described
in the concept phase in software solutions. ISO 26262 defines a specific chapter (6) for
the development at software level. The chapter contains several methods for the imple-
mentation of a software product in hierarchical way, covering also some aspects about the
correctness of modelling for model-based software design and the choice of programming
language. Actually the most of Automotive software products are developed in C, C++ and
their derivations. Chapter actually explains all nodes they build the V-model for develop-
ment processes. The V can be divided into two symmetrical parts by a middle vertical line:
the left side will represent the implementation of requirements derived by concept phase,
while the second (right side) will be the verification by testing of the implementation. In
the implementing process of V-model, a series of methods are explained for each clauses
(V nodes): in general they cover implementation and then a verification. Methods are
contained within tables with a specific level of recommendation for each ASIL that have
been identified and they can be applied sequentially or alternatively, according to their
identification (number addresses sequentially, different characters for the same number the
alternative). If the verification of a process fails, then it requires to fix the actual work
products or to trace back to higher hierarchical level and fix it. The process will explore
the entire hierarchy of a software product until the software units, i.e. the elementary
building of a components. The Unit design and implementation will represent the left base
of the V-model. The respective activity on the right branch will be the unit testing. From
this one, the tracing back on V starts. Each node will test the respective level on the left
branch. If testing of one hierarchical level fails, the process will return to the respective
level of the implementation branch; then it will be necessary to perform again all activities
for each node of implementation, starting for reached one until the right vertex will not be
reached. When the top right node of V-model is reached, the development of the software
product can be considered as complete and so all work products can be included in safety
case.
Production, Services and Decommissioning: The main scopes of these activities
are to provide: a production process, including the maintainability of each safety-related
elements or items and the necessary informations for users. The focus are the product
parameters; they are divided into two categories: process ones and configuration. Briefly
this phase explains how a good user manuals can be drafted on the base of development
environment for Hardware, software and product development at system level. In some
cases, the user manual shall be considered together to Safety Manual. This work product
is well-explained in IEC 61508 and it has been adapted by ISO 26262 in order to meet
special field requirements but maintaining the main features of IEC requirements. The

6

1.2. ROAD VEHICLES FUNCTIONAL SAFETY

scope of the safety manual is to organize all identified safety requirements from concept
phase or similar, to report all result about: safety analysis, safety mechanisms, and diag-
nostic aspects. In other words, it should specify the product features in terms of safety
that have been developed in compliance with ISO specification. Besides it considers all
aspect related to the production of a configurable product as calibration parameters and
measures, in order to grant the right developed and functional safety assessment. One of
these measures are related to the traceability that will be deeply analysed as active part
of the work in the next chapters. Last goal of current phase is to evaluate the impact of
changes on production flow in terms of technical aspects and employing time.
Supporting processes: The supporting processes contain useful information in terms
of definition and management of ISO work products. One of these processes reports the
mandatory informations that shall be contained in the documentation and how an exhaus-
tive and complete one can be drafted. Another one explains how requirements should be
defined and documented, including the mandatory attributes of them. At the scope of
Safety Element out-of-Context it explains the change management in the case of missing
qualification from integrators i.e. validation of assumptions fails and it is necessary to
develop again, coming back to a concept phase. Verification reports and other information
about tool qualification are also considered. The main ISO 26262 chapter that considered
supporting activities is the number 8. Chapter 9 can be integrated in this macro aspect
too: it contains all information about the analysis that can be done for obtaining evidence
in favour of safety achievement or to identify possible hazards or weakness. At the end, a
specific section is related to how it is possible to perform an ASIL decomposition within a
item or an element.
Safety Element out-of-Context (SEooC) The definition of the SEooC is contained in
ISO 26262 version 2018, chapter 10 clause 9. This one is entirely dedicated to the analysis
of this element. The necessity to define a SEooC is strongly related to the heterogeneity of
Automotive Industry: all the previous description in the current introduction of ISO 26262
considers the development of an item; the ISO activities usually are applied on an item i.e.
a set of systems that works together at scope to solve a specific application well-defined
within a vehicle context (e.g. ABS, Air-Bags, Parking Assistant, Light-Wiper automatic
controller, etcetera). In the most of the cases the development of an item is strictly bond to
a specific vehicles gamma. A product can be also developed to meet specific functionalities
without a complete knowledge about its context in a vehicle, as for example others systems
or components with which it will interact. This kind of element is developed once and po-
tentially used in more vehicle contexts without a complete (or even without) redefinition
for each one of them. At the same time, it shall meet safety aspects for road vehicle and
so ISO 26262 requirements. In this case the product can be developed as a generic element
(System, Component or Unit) called Safety Element out-of-Context. Due to its nature, it
cannot be developed applying the whole safety life-cycle, how it has been defined by ISO
26262 for item development, and therefore it requires a dynamic level of tailoring in the
safety activities. ISO 26262 explains which activities can be tailored for its development,
it provides guidelines about how they can be tailored and it explains how the functional
safety assessment can be done and especially who shall do what. The tailored activities
and how they have been conduced for the Partial Networking Coordinator (element that
has been developed at the scope of this paper) are well-detailed in the next chapters.

7

1.3. MISRA C

1.3 MISRA C

MISRA(Motor Industry Software Reliability Association) drives across the entire process
of software production. It extends some standard requirements to ensure a high quality,
in terms of safety, beyond the ordinary one. Software design can have large flexibility and
capability to be changed and adapted without manufacturing variation. At the same time
there is not possibility it involves in errors that are caused by ageing; in addition, Software
products can manage very complex aspects, abstracting the physical components in lines
of code (many and many).
The development of embedded software is always done for special purpose. This means,
it shall meet specific requirements and quality aspects. In most of cases it shall reach the
state-of-art. Product goal can be the optimization of computation, the power consumption
or the information security. Embedded software that is developed for automotive industry
has four main emphasis aspect:

❼ Data;

❼ Parameters;

❼ Adaptive controls;

❼ Diagnostic aspects;

Data are processed according to specific algorithms. In a safety-critical system, as ve-
hicle one, it is important to ensure a continuous stream processing. Data are collected by
sensors, computed by processor and then used to control actuators. This means that a wide
amount of data of several nature shall be managed. In a software layered architecture as
AUTOSAR, data types are defined according to the specific layers. Flexibility of software
routine shall be ensured, to allow a big variety of data handling without specialized code
for each of them.

Parameters : The high complexity of software is managed using model-based designing
approaches. This means that systems are described using abstracted models they are able
to capture system functionalities. This one can be described as the capability to produce
certain outputs value at specific input value application. The inputs set is built by param-
eters and they shall be combined in order to obtain the maximization or minimization.

Adaptive Controls : the laws are subject to change with high frequency. Sometimes
they can involve important upheavals in a design aspect. The normative on CO2 emission
is a very powerful example: the reduction of emission is a complex aspect that impacts on
several components and processes, from mechatronic actuation until software controllers.
At the same time during a single vehicle trip, the health status of each component can
consider large scenarios as fuel level, battery state-of-charges and sensor ageing, until road
surface status and weather conditions. Due to this is necessary to develop embedded soft-
ware in order to get it adaptable to several dynamic condition.

8

1.4. AUTOSAR

Diagnostic the health status of vehicle system improves very much the safety condi-
tions. Embedded software is forced to ensure the continuous system functionality also in
presence of faults during a vehicle life-cycle; the reasonable risk level is not obtained only
reducing fault occurrence but also preventing its possibility to involve into hazards. Due to
this is necessary to design an on-boarding diagnostic system (hardware and/or software)
to harvest data, ensure data integrity and operate in case of malfunction.

Software are developed by specific programming languages and each of them has its own
features starting from type: Compiler one (C, C++, ...) or interpretive (Java, JS, Python,
...). A Standardized integrity level, called SIL (Software Integrity Level) is defined for the
evaluation of the controllability that is measured on four levels: less controllability means
less acceptable failure rate until SIL 0 for Quality Systems (ISO 9001) [8]. SIL level will
filter the features of language and compiler to get compliance and the requiring testing
level. MISRA drives the software processes according to specific language that is used for
software development and in specific case for C with emphasis on language weaknesses:

❼ Language Syntax and type checking;

❼ runtime error handling;

❼ formatting constraints;

The focusing concept is: ”if something can happen then it will”. Therefore MISRA C
focuses itself to avoid the reliance to ”it does not happen anyway”, managing as much
possible situation. At the same time, MISRA aims to meet developer needs for specific
cases cataloguing its requirements as Required or Advisory.

1.4 AUTOSAR

1.4.1 General Overview

AUTomotive Open System ARchitecture or AUTOSAR was born as worldwide develop-
ment partnership, among OEM, TIER and Service Providers, to standardize Electronic
Control Unit Software architecture, at the beginning of 21TH century. Electronic Control
Unit or ECU are microprocessor-based systems they are able to run embedded software as
Real-time Operating Systems (RTOS). The main goal of this standard is to improve re-
usability and ex-changeability of software modules, avoiding troubles among product
Stakeholders. Besides the adoption of a worldwide standards has reduced the Time-To-
Market and the relative Software development costs. The re-usability problem is solved by
increasing software abstraction from hardware platforms; this allows to build the AR struc-
ture as a software layered architecture similar to embedded operating system stacks. AR
layers can be divided into 3 types: Application Layer (Highest), Run-Time Environment
(Middle), Basic Software Layer (Lowest, above Hardware Platform). This last one can be
divided in turn into three others sub-layers plus a global one: Basic Software Service layer
(highest), ECU Abstraction layer (middle), Microcontroller Abstraction Layer (lowest);
the global one takes the entire basic software layer without an additional sub-layering and

9

1.4. AUTOSAR

it is called Complex Drivers.
AR introduces an own workflow it provides specific work products as it is explained in

Figure 1.2: AR layered architecture by NXP

the following. AR workflow aims to operate on three milestones:

❼ ARCHITECTURE: it is the structural platform for hardware and software applica-
tion;

❼ METHODOLOGY: it defines the data exchange formats and the templates for the
configurations;

❼ APPLICATION AND INTERFACES: it defines the syntax and the semantics for
ECU software and its dependencies.

The work products that are derived by this workflow, can be grouped in five topics:

1. Abstraction of System Design;

2. Virtual Functional Bus or VFB;

3. Software Component Description and system design;

4. Basic Software Modules Configuration and Integration;

When all work products are obtained, exactly in the previous order, it will be possible to
obtain code (C or C++) that can be integrated within an ECU as runnable program.
Data exchange is a very important aspect: AR specification defines an own schema it
allows to define and to describe (or configure): system constraints, Software Components

10

1.4. AUTOSAR

and ECU resources as Artefacts in XML files, with the special format of ARXML. An
artefact is the tangible form in which work products are provided. The AR-schema is in
relationship with the AR Meta-model that is the UML, by class-definition, using xml. The
mandatory works products for AUTOSAR design are:

Abstraction design This work product defines a functions-based architecture, express-
ing the vehicle functionalities in an abstracting view. The mapping of ECU functionalities
is not necessary in this phase. The key point is to define each application and to iden-
tify communication among us. The abstraction design is contained in Abstract System
Description artefact;

Virtual Functional Bus and software component description When abstracting
design is done, the application are mapped within atomic unit called Application Software
Components (Application layer). Their description is documented by AR specification.
Each software component is described in an artefact according to AR specification and
they are built by:

❼ Ports: they implement interfaces. These last are described in arxml artefacts, ac-
cording to AR specification and they shall be related to data types which interfaces
can be fed. AR ports have:

– Types: Sender-Receiver, Client-Server, Switch-Mode, ecc..;

– Direction: P(out), R(in);

❼ Internal Behaviour: it defines the interaction between Software Component and RTE
and it contains

– runnable entities or C functions;

– Events;

– Data access definition;

– Exclusive Areas

The RTE will use the software component descriptions to implement the virtual communi-
cation. This phase is important for the generation of software Component API in header
(.h) files. The software component PI will contain function prototypes, constant and data
structure will be used by software component source code

System Description Once the description of software component(s) is complete it is
possible to design the system. A system is a set of more components they communicate
among them in a Request-Provide way. To describe a system is then necessary to have:

A) A complete software components descriptions;

B) A complete network topology i.e.:

b.1) topology between ECUs;

b.2) software components mapping into the relative ECUs

C) The definition of a communication matrix in terms of active communication nodes,
source and drain and typologies of CAN PDUs

This phase will produce a scheme called SystemDescription.arxml

11

1.4. AUTOSAR

Basic Software Component Description The basic software description consists in
the configuration of basic software modules 1.2. Basic Software Modules are able to con-
figure the Hardware resources for obtaining a dynamic code. The ECU abstraction layer
can be considered as a ”Hardware Interfaces” provider from Service layer while, Micro-
controller Abstraction Layer has the scope to define the drivers of the hardware platform.
This because AUTOSAR considers the ECU as figure 1.3.

Figure 1.3: ECU autosar block diagram (logical architecture)

Instead Microcontroller is defined as a single device embeds several resources (look figure
1.4). AR allows the configurations of hardware platform, specifying APIs for each module.

Figure 1.4: MCU autosar block diagram (logical architecture)

RTE code is finally generated by AUTOSAR Authoritative Tools as ISOLAR or DaVinci

When RTE code or dynamic code is generated, it is done for a single ECU it maps several
application software Components. System description contains all software Components
for all ECUs and so it is necessary to obtain another system description (actually a sub-
system) it contains only Software Components that shall be mapped within a specific ECU
or a group. Therefore, to generate a specific RTE code it is not necessary to provide the
whole system description. A single ECU view is obtained by the ECU Extract description
or configuration (the two terms are exchangeable) from overall System Configuration. It
just consists in an arxml scheme that can be used by AAT. The ECU extract description
has the property to be flat i.e. it does not contain nested software compositions. To sum-

12

1.5. PARTIAL NETWORKING IN AUTOMOTIVE

marize the generation of dynamic code process for an ECU, the following list reports all
steps that are necessary:

1. Generate overall System description/configuration;

1.A If necessary, the extract system description is generated and provided (Virtual
View);

2. Extract ECU description from overall system or an extract from virtual view, with
SW-C instances, to obtain a Flatted View ;

3. Generate RTE dynamic code for the specific ECU;

1.4.2 Functional safety related AUTOSAR parts

To complete the introduction to AUTOSAR it is necessary to specify it is not born to meet
directly ISO 26262 requirements for Functional Safety; however AUTOSAR specification
contains several chapters they deal the argument. In particular the Software architec-
ture defined by AUTOSAR already meets some ISO 26262 requirements, especially for
implementing Spatial, Temporal and Communication separation among Tasks and there-
fore avoiding the propagation of errors. This aspect is very important because in intrinsic
manner it ensures the Freedom From Interference it is an aspect that is requested by ISO
26262 (chapters 6: ”Product Development at Software Level”).
AUTOSAR documentation is divided into two main parts:

❼ Standard documentation and

❼ Auxiliary

The most of documents that are related to functional safety is labelled as auxiliary. Some
of them provides several example about application of ISO 26262 for the development of
a software component or more in general items using AUTOSAR as software architecture.
Safety is an increasing aspect in AUTOSAR documentation and in the latest releases,
especially in adaptive platform documentation is possible to find many chapters related to
it.

1.5 Partial Networking in Automotive

How it has been reported in the introduction section, the number of ECUs in vehicle
system is increasing across the years. Several studies have shown the relationship between
the increasing of ECUs number and the power consumption. Another aspect is also the
quantitative relationship between the power consumption and the fuel efficiency; It has been
proved that a high power consumption has a very bad impact on fuel injection and then in
CO2 emission. In 2015 a scientific paper that was written by researchers of Sungkyunkwan
University(South Korea) reported that in European Union, the target of CO2 emissions
was fixed to 130g/(Km ∗ passenger) as average value [5]. Considering the increasing laws
on environment protection, it is reasonable to imagine that target level of emissions will
be reduced across the years; in fact, target CO2 emissions in 2020, in European Union,
it was fixed to 95g/(Km ∗ passenger). The general optimization in power consumption

13

1.5. PARTIAL NETWORKING IN AUTOMOTIVE

is not a new topic in academic and industrial fields. Especially in embedded systems,
the studies about energy efficiency and reduction in power consumption are getting more
and more popular. This because, embedded systems are delivered for long life time in a
varied set of environments, with very short shutting-down periods. Sometimes, they shall
harvest a continuous amount of data and information, using several protocols like in the
case of IoT. The apparent simplicity that an Embedded System can have with respect
to a general purpose computer, is involving in an higher complexity in order to meet
the profile requirements for the delivering. Therefore, the power resources are increasing
also for these systems and strategies to optimize their usage become a necessity. The
methodologies range over from design aspects in order to implement ad-hoc solutions, to
optimization in existent designs without drastic impacts on the original structure. Possible
power optimization methods can be:

❼ Processor power states as:

– Run;

– Idles;

– Sleep;

– Stand-by;

– ecc...

❼ ISA optimization;

❼ transistor technologies:

– HVT cells;

– LVT cells

– ecc...

❼ Communication protocol and bus encoding;

❼ RF and Network protocols;

❼ Memory addressing and partitioning;

❼ OS-based power saving mechanism:

– IEM (ARM);

– ACPI;

– Microsoft OnNow;

– ecc...

❼ Sensors and actuators algorithms

Partial Networking is a communication protocol that has been introduced in automotive
Industries, around 2010, as solution for the power saving. It involves into two topic of the
previous list, i.e. the processor power state and the communication protocol on bus. In
automotive industries, the bus system can be implemented by three main types:

14

1.5. PARTIAL NETWORKING IN AUTOMOTIVE

❼ CAN (Control Area Network): most common, used in safety-critical communi-
cation among ECUs;

❼ LIN (Local Interconnect Network): is used as extension of CAN buses they can
connect them, for sensors and actuator connections in a centralized control system

❼ FlexRay: it is faster and more reliable than CAN but more expensive;

To reduce the power consumption, for all of them, there is the possibility to implement the
”Global Wake-up”; in the following only the CAN bus system is considered and analysed
because it is in scope to the current paper.
CAN is a multicast, serial-data, communication protocol that has been introduced by
Robert Bosch in 80s for Automotive applications. The big advantage using CAN bus,
is in its capability to be applied at each environment condition, including ones they are
affected by high electromagnetic disturbance. At the same time, it is possible to maintain
a good transmission speed also on great distances (125Kb/s up to 500m). The tolerance to
electromagnetic fields is obtained thanks to a transmission line with a voltage differential
between terminals that can be used also in twisted pair to improve its immunity. CAN
bus is standardized by ISO 11898 where it is described at data-link layer (with sublayers
LLC and MAC) and at physical layer. The CAN communication packet is called Frame.
Actually exists four type of frame but their differences are out of paper’s scope and so they
will not be analysed. The encoding for transmission is based on sequence of recessive and
dominant bits (respectively 1 and 0). Each element that is connected to CAN bus, is called
CAN Node. Single node shall be capable to send and receive messages or frames but not
at the same time; these frames contain:

❼ Data Identifier which identifies the priority;

❼ One byte of Data;

❼ Overhead part it contains CRC, acknowledge slot and other information

A node shall integrate a microcontroller, it in turn integrates the CAN controller too
and CAN Transceiver that represents the interface between microcontroller and bus line.
CAN Node can interface with any other type of device of an embedded system by a simple
digital logic, FPGA, PLD up to an Embedded computer it runs software. The general
structures of Can Nodes connection to a bus line is shown in figure 1.5:

Figure 1.5: Can High-Speed bus node and physical layer (ISO 11898)

In the case of no dominant transmission, lines are put in recessive state and so VCANH ≤
VCANL with a nominal voltage difference of 0V. The low speed CAN can use a second

15

1.5. PARTIAL NETWORKING IN AUTOMOTIVE

bus structure besides the linear one: star or multiple star buses. Also in this variant, the
sub-structures shall be connected themselves by a linear bus with two resistors at each
node terminals. These ones have a different value with respect to the first case (order
of 100Ω). In this structure, the dominant bit is transmitted driving the VCANH=VCC

(supply voltage) and VCANL=0V (dominant state). Lines are put in recessive state when
the previous values are inverted i.e. VCANH=0V and VCANL=VCC .

Figure 1.6: Can Transceiver(CanTx) for High Speed)

Basic version of CAN keeps each node always active, also in the case there are no mes-
sage that are addressed to it. Each node shall check the frames data on CAN network at
the same time. If more nodes are transmitting, they transmit until a bitwise collision (it
happens when a node transmit a certain bit and it receives the opposite); at that point,
the dominant bit transceiver wins the control on bus terminating its transmission, while
the recessive will quit from bus controlling and it will attempt a new retransmission after
a certain clock bits. In this way, basic CAN network is in a theoretical idle only when
continuous recessive bits are transmitted and for all higher-priority message is ensured the
transmissions without additional delays that are caused by collisions. This feature gets
CAN protocol very suitable for real-time communication systems. At the same time is
evident how basic CAN is not thought to be adapted for low power consumption system.
In fact the communication between two end-point cannot be established at physical layer;
each node will receive transmitted frame on network and if it is not addressed for it, there
will be discharged by higher layers (that are activated anywhere).
Therefore, CAN bus has been modified over the years, in order to implement mechanisms
they are able to wake-up nodes only when a transmission occurs. One of the first imple-
mentation of ”selective” communication mechanism on CAN bus, it belongs to GM with
GMLANS: it has implemented a system it was able to support the selective sleep on CAN
bus and a global Wake-up. According to this mechanism, all receiving nodes were in a
sleep state. When a frame was transmitted on network they were waked-up simultane-
ously. In this way the power consumptions were decreased but nodes they are not involved
in communication were again waked up without reasons. The main features of CAN with
the implementation of wake-up mechanisms are shown in the table 1.1.
The next idea has been to modify the CAN node at physical layer in order to introduce

a filter it was able to understand if the sleeping node was involved in a communication
or not; if it was, then node could be waked and it could receive the message, otherwise it
could remain in a sleep state, decreasing the power consumption. In this configuration only

16

1.5. PARTIAL NETWORKING IN AUTOMOTIVE

CAN Buses

Type
Data
Rate

Standard Wake-up capabilities

High
Speed

1Mbps ISO 11898-1 ISO 11898-2/5 Active Bus (Global)

Low
Speed

125Kbps ISO 11898-1 ISO 11898-3 Active Bus (Global)

Signal
Wire

83Kbps GMLAN
Higher Supplier Volt-
age (Global)

Table 1.1: CAN properties with wake-up implementation [5]

active modules were: the bus master and the filers of each node they belong to Network.
this method is called ”Selective wake-up” and CAN networks they implement it are called
”Partial Networks”; within them, network nodes can be simultaneously in a sleep state
or active state, reducing the power consumption to the necessary. The main operating
difference that are described, between a global wake-up bus system as the GMLAN and
the Partial Networking can be seen in the figures 1.7 and 1.8

Figure 1.7: Global Wake-up CAN bus system from [5]

The key point is to understand how the physic modules have been modified in order to
implement the scenario of figure 1.8: The basic idea has been to implement a logic mask
it was able to understand at physical level if the node was involved in the actual commu-
nication. ”Complex CAN transceiver” are nodes that are able to implement this filtering
mechanism. The first new module shall be a configurable frame it addresses the wake-up
sequence to receive. This wakeup frame can be configured using the SPI (Serial Protocol
Interface). The network frame is received by the original CAN Receiver and it is decoded
by a decoder that is timed by an own in-module oscillator. At this point, wakeup configured
frame and received one can be matched by filtering algorithm. A simplified block diagram
(based on TJA1145 by NXP [7]) for implementation of the previous description can be
seen in figure 1.9. The wake-up frame will be configured in order to consider a fixed-length
sequence of bits called ID and another for Data. In the first one, some bits are ranked as
”Care” and the remaining as ”Don’t Care” and a value between 1 and 0 is assigned to each

17

1.5. PARTIAL NETWORKING IN AUTOMOTIVE

Figure 1.8: Partial Networking CAN bus system from from [5]

of them. At the same time, is configured a portion of data frame with a specific value.
When a frame is received, filter will match the value in the ID configured frame and if the
”Care” bits correspond to the respective the node is involved in the actual message. At the
same time, filter checks the integrity part of data message: if at least one recessive bit in
the configured frame will match in data field the message will be considered as integrated
and node can be activated. This mechanism is related in special way to Complex CAN
transceiver TJA1145 but the basic idea to match a configured identifier with frame values
and the integrity of the data is common to each complex Can transceiver.

From a theoretical point of view, keeping nodes in a low power state for as much as

Figure 1.9: Complex CAN transceiver

possible should reduce the overall power consumption but it is necessary to understand
how power can be saved increasing the complexity of the communication modules. Before
looking some results about simulation of a target environment, it is necessary to specify
that by software point of view, the introduction of Partial Networking introduces two trou-
bles:

18

1.6. REAL-TIME APPLICATION - PARTIAL NETWORKING COORDINATOR DEVELOPMENT

BY ETAS

1. The transition between power states in a microcontroller-based system that runs
software is not a atomic unit operation in terms of time and so it can affect the
real-time operating system deterministic nature;

2. Considering topic 1), is strongly not recommended to map system they implement
time-based safety functions in a Partial network;

This means that not the whole set of ECUs in a vehicle can be in sleep state for long
time; some ECUs cannot be in a low power state. Therefore, the real power saving using
the partial networking strongly depends from the mapping criteria used for identifying
partial networks. Based on these criteria, in a Korean research [5], a vehicle context has
been simulated using CAN bus with Partial Networking. Simulated target was built by 40
ECUs with the 30% of them could be mapped in PN. The network was built considering
12 ECUs that could be activated by activating ECUs; each of them could activate at
maximum 3 ECUs in its own Partial network. At the end, simulation considered each
ECU could consume at average value of 200mA if active and 0 if in sleep state. With these
values, all Partial networks have been activated within the same simulation, using their
operating sequence and showing a reduction of power consumption of 1.4A with respect to
the basic CAN network, with a power saving of 17.88%. According to previous researches,
the relationship between current consumption and CO2 emission is of 0.35g/(Km*A). This
means that according with the actual simulation, the adoption of Partial Networking has
reduced the CO2 emission of:

Reduction(CO2) = 0.35
g

Km ∗ A
∗ 1.4A = 0.49g/Km

1.6 Real-Time Application - Partial Networking Co-

ordinator development by ETAS

ETAS Company is an AUTOSAR Premium partner that joins in BOSCH Group. As
Premium partner, it is a provider of ”Tool and Services” and Applications for Embedded
Systems that are deployed for Automotive Industry. One of the first product portfolio of
ETAS has been tools for Model Based-software design. The reaching of the state-of-art
for Company products in automotive ones is ensured, meeting the requirements of several
standards and in particular ISO 26262. Actually, ETAS portfolio covers the following fields:

❼ Software Engineering;

❼ Testing and Validation;

❼ Measurements, Calibration and Diagnostic;

❼ Real Time application;

❼ Cyber-security protection;

19

1.6. REAL-TIME APPLICATION - PARTIAL NETWORKING COORDINATOR DEVELOPMENT

BY ETAS

Partial Networking in complex system, with a high number of ECUs ,requires the imple-
mentation of a coordinator. The development of the Partial Networking Coordinator, in
ETAS, is linked to a series of developed products that are called SUM (Standardized Util-
ity Module). ETAS has started to develop these products for General Motors for its own
software platform. Since November of 2020, the SUMs have entered in ETAS products
with name of RTA-SUM, where RTA prefix addresses all ETAS embedded products for
Real-time application deployment. Considering the AUTOSAR Layered structure, SUMs
are developed as a sort of lower sub-layers of Application Layer. Their task is to manage
all services from Basic Software Layers for specific functionalities. Therefore the main task
of the PNC (Partial Networking Coordinator) is to manage all services related to Par-
tial networking in AUTOSAR application layer. The concept of ”getting transparent” is
strongly related to obtain a high level of flexibility and abstraction in application layer.
The concept is to develop a product to be reused in each design type. ETAS has identified
PNC as Safety Element Out-of Context as specified by ISO 26262:2018 chapter 10 clause
9. Company goal is to implement the Partial Networking Coordinator with the highest
ASIL value (D) for covering all possible use case scenarios of own customers. According
to this, the necessity is oriented to get compliance of the initial beta version of module,
that has started as a functional implementation, without too much concerns about safety
aspects, with ISO 26262.

20

Chapter 2

Reading of Standard, Initial analysis
and Requirement Engineering

2.1 ISO 26262 parts in scope to SEooC development

The development of a Safety Element out-of-Context requires an ISO 26262 analysis, start-
ing from its definition in chapter 10, clause 9 until the identification of mandatory require-
ments (that cannot be omitted) and others they can be tailored.
First of all, ISO specifies the difference between a Safety Element out-of-Context and a
Qualification of Software component development and it requires the correct identification
of the product within this classification. Their differences are not so immediate, especially
in the case of Partial Networking Coordinator; in particular, the early released beta ver-
sions met in many topics the definition of qualification software, because PNC was not
developed under ISO 26262 standard but potentially it could be used, as existing soft-
ware, for a ISO 26262 item development. Besides, SUMs are developed under functional
requirements specification that are provided by Customers (GM). The real reason, it forces
the identification of this module like a SEooC, is the necessity to develop it as reusable
software component with a high level of flexibility.
The development of a SEooC is based on assumptions. These ones will be validated dur-
ing integration phase and in this specific case by Integrator engineers; the validation of
assumption will represent the Qualification of the software Component. Identification of
assumptions shall consider the following aspects:

❼ Starting Design Hierarchical Level;

❼ External Interfaces of software component according to its scope;

Design Hierarchical Level The hierarchical levels of a software element are described
by the V-model.
To understand the right design level for partial networking coordinator, is necessary to in-

terpret the meaning of element in ISO 26262 scope. In software engineering, The ”element”
definition can identify a generic software product it might belong to several architectural
layers and for identifying something of similar to an item but that is not developed within
a specific vehicle functionality (in Automotive context). The definition of element can be
obtained looking the following diagram:

21

2.1. ISO 26262 PARTS IN SCOPE TO SEOOC DEVELOPMENT

Figure 2.1: V-model process as suggested by ISO 26262

Figure 2.2: Class diagram to identify element definition

The Partial Networking Coordinator is actually a software module i.e. a logical parti-

tioning of functionalities that once it has been divided, its results in no more
modules entities but they can maintain modular properties. Instead a software
component is built by Units. Components interaction defines a system with a certain
architecture and when a component is divided, the result will be always sub-
components.
The goal of a component is to implement a group of functionalities. Therefore it is possible
to say that one or more components implement the logic functionalities that are parti-
tioned into a module,by several software Unit. Let’s imagine the following example: an

22

2.1. ISO 26262 PARTS IN SCOPE TO SEOOC DEVELOPMENT

ALU (Arithmetic-Logic Unit) groups all system functionalities related to arithmetic and
logic operations or more in general the ”computational” functionalities of a system. So
an ALU can be considered like a Module. At this point let’s imagine to split ”computa-
tional” functionalities into two parts: one for arithmetic operations and another for logic
ones. Now, there will be a sub-set of software units for implementation of arithmetic op-
erations and another one for logic. The software Components will be source code files and
their related headers, they contains these software units that are grouped according to the
implementing functionality type.
For each module is possible to define specific ports they implement interfaces. By these
last one is the possible to define communication channel that are based on specific proto-
cols and they allow to define a System; ISO 26262 considers it as an interaction among at
least three hardware components, with their related software definition where it is possible,
they play roles of: sensor, processor and actuator. Each system implements more than one
physical component (or device) but less than three can be considered as an element.
One that these terms and their definitions have been clarified, it is necessary to identify

Figure 2.3: system as considered by ISO 26262

the PNC nature; From functional specification a partial networking coordinator shall eval-
uate criteria, in order to activate the Application software components that are involved in
that specific partial network or it shall request the activation of a Partial Network by Basic
Software Services. The inter communication requires a communication based on signals
and frames (they can be seen as the ”actuators” of PNC). If the Partial Networking Coor-
dinator is considered with sensors or actuators embedded in the module (mixing hardware
and software products), it may be developed as Safety Element out-of-Context at System
Level. In the case where Coordinator implements only the control part, how in the current
case, it will be implemented at component level and so all higher level in hierarchy will be
just assumed in the definition of safety requirements.

External Interface The external design interfaces are related to module (and in turn
its building software components) boundaries. These are the borderlines of component
functionalities and relative implementation. In the development of a Safety Element out-
of-Context is a very important aspect because it shall contain interfaces related to external
modules they implement communication mechanism for in-vehicle functionalities. For ex-
ample, several components run routines that are able to detect an error at unit or compo-
nent level but they are not able to mitigate or managed it at system level to allow system
keeps running. In this case, component shall implement an interface to another one it can
manage error occurrence.

23

2.1. ISO 26262 PARTS IN SCOPE TO SEOOC DEVELOPMENT

When the external interfaces have been also defined it is necessary to define the assump-
tions on safety requirements. These shall provide higher-level safety requirements with
respect to component level, and in particular they are already oriented to Technical Safety
ones. Requirements, once they will be allocated to the right product type, represents the
starting point of the implementation.
Figure 2.4 summarizes the concepts that are expressed in the previous paragraphs. The

Figure 2.4: assumption as specified by ISO 26262

”SEooC Design” represents the development following V-model structure.
Although the specification of assumptions on safety requirements is central part of this
initial phase, the guidelines on SEooC development specify all safety activities that must
be considered too. The nature of design plays a fundamental role: clauses and require-
ments they are suggested in chapter 10, clause 9.2.4 can be tailored or at the same time
not-applied. All supporting processes to main flow (described by chapters 7, 8 and 9)
should be applied according to safety plan. Besides from this description it is possible to
understand how much Documentation will matter: the compliance of a Software Com-
ponent , developed as SEooC, with the standard can be evaluated like positive only if all
assumptions and tailoring activities, including the omitted ones, will be documented with
a good rationale about design choice; in summary is necessary to document that every
activity in safety plan has been performed and it has been done in compliance with series
of standard; everything it has not been applied, it could not be done due to project nature.

This last paragraph will be oriented to understand better the meaning of Assumption.
They depends from the nature of element. In the case of a Software Component they can
be split within two types:

Scope This includes a series of consideration. Within scope mean: software architecture,
target environment, boundaries, functionalities and properties. All of these topics will be
useful to derive the nature of software and at the same time its global features. From
them it will be possible to draw a first view of the software architecture. Let’s take the
partial networking coordinator case: it is developed in AUTOSAR and this means that
it will belong to a layered software architecture, in particular to the Application one. Its
interfaces shall meet AUTOSAR model and behaviour specification. All aspect related
to error detection will be compliant with AUTOSAR models or related to good-coding

24

2.1. ISO 26262 PARTS IN SCOPE TO SEOOC DEVELOPMENT

practise, implementing specific units. Boundaries will be defined according to AUTOSAR
specification too, in order to ensure the avoiding of fault propagation among components.
The target environment can be considered like an ECU where it will be integrated. For
sure the ECU will be used for a vehicle with an high number of them and that is able
to implement a CAN complex Transceiver for Partial Network supporting. Really, the
last part can be omitted in assumption scope because it will be considered in deep in
the Hardware-Software Interfacing (HSI) clause of chapter 4. In the development of
a SEooC the HSI will be identified in the safety manual document for integration guidelines.

Safety Requirement These assumptions aim to replace the classic concept phase that
cannot be applied in the case of a SEooC. The assumed Higher-level Safety Requirements
already consider allocation in the system architecture where element is placed, so they
can be considered as Technical Safety Requirements or TSR. The main purpose of
these assumptions is to derive from TSR the Software Safety Requirements (SSR)
to implement the Safety Goal of Software Component. figure 2.5 is shown the SEooC pro-
cess flow, how it is considered by AUTOSAR specification and in AUTOSAR document
Specification of Safety Extensions , in figure 3.1, the representation of it with respect to the
block view of a system

Figure 2.5: SEooC process flow (AR specification)

In this phase is strictly necessary to consider the ASIL value of the software component

25

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_SafetyExtensions.pdf

2.1. ISO 26262 PARTS IN SCOPE TO SEOOC DEVELOPMENT

because it has a high impact on the definition of SSR. The identification of SSR shall
be done according to Higher-level Safety Requirements they involve element tasks, as the
monitoring and the verification of PN status (and eventually the request to change it),
communicating with the Basic Software Modules; In a similar case it is necessary to con-
sider the possibility of errors: the coordinator operates in a system architecture, therefore
it is able to communicate by interfaces with internal system component and external re-
sources. In some cases, an error might arrive from outside, in others it might be caused
by a component within the same system. So Safety requirements shall grant it will not
propagate itself among other components with respect to which has generated it. This is
valid for coordinator too: it shall be able to prevent the propagation of its errors. Coor-
dinator shall not be able to manage all possible error they might occur inside the system
but only ones are in its-scope.Let’s imagine another component causes a malfunction in
a basic software service that is used by the coordinator; this last shall be able only to
handle an error, checking an integrity attribute on the data or the expecting result with
the received one (just for example). Actually it might not able to know which component
has generated that error and system reaction might be out-of-scope. Therefore the only
thing it can do is to generate a return value to feed an interface for another component
it can inform the system about the faulty status. Software Safety requirements might not
be only derived by TSR: in the specific case of the Partial Networking Coordinator, the
functional requirements are provided in a specific way by GM Company. The most of them
are related to component functionalities therefore they are marked as ”functional”. In this
case SSR can be derived performing a sort of validation on providing requirements. To be
clearer, let’s imagine the following simile example:

1. Coordinator shall activate PN

"X" in a defined time;

2. If the activation will fail,

it will attempt until state

is successful;

3. The entire activation process

(request, activation,

acknowledge) shall be performed

at max. in a certain time

(Worst Case Execution time);

The previous requirements are affected by a safety Gap: their contents address that a
Coordinator shall perform a set of operation they will move the PN state from an inactive
one to active in a specified time, probably measured by a timer. If time expires and PN
state remains the same, the operation shall be repeated. This case will take time and if
the system is affected by a persistent error, the activation will fail again. The requirement
specifies that process shall be repeated until its successful exiting, omitting the maximum
number of attempts that can be done. The scenarios can revealed are the following:

❼ The coordinator tries to activate PN until it will do.

– A persistent error affects the communication protocol at lower layer;

– PN will never be activated (Deadlock of Coordinator);

26

2.1. ISO 26262 PARTS IN SCOPE TO SEOOC DEVELOPMENT

❼ The coordinator tries to activate PN for a certain numbers of attempts.

– Each attempt will take time. PN is finally activated;

– attempts ”wasted” time will involve in missing deadline for ack reception or
state transition;

– PN Status is uncertain or PN is active but it is detected as inactive (Failure,
not deterministic behaviour, Performance Penalties);

In the development of SEooC these Safety Gaps can be filled by Assumptions on safety
requirements. Looking the previous example, Safety requirement shall consider several
aspects. First of all can be related to the number of attempts: considering single operations
time with respect to the overall worst case execution time, it is possible to compute the
maximum number of attempts as in the following:

TWCE ≥ (TReq + TActiv + TAck)

Let’s Assume that the sum of times is never equal to Worst Case execution time (TWCE).
This means that difference between The worst case and sum of them will be greater than 0.
Therefore that time can be used to perform other request and activation routine attempts
as the following formula specifies:

AttemptNum =
TWCE − (TReq + TAct + TAck)

TReq + TAct

This means that if the Worst Case Execution time for activation is 200ms, and requesting,
activation and acknowledge are respectively 10ms, 30ms and 5ms, the number of addi-
tional attempts will be equal to 3.875 i.e. 3.
If no attempt has been able to activate the PN they can set an error code for returning
value at the expiration of time slot. This error code can be sent by interface to another
component or for requesting to the Basic Software a diagnostic of the resource. After that
assumption are formulated within a dedicated document, in general the Safety Manual, it
is possible to proceed with the development according to ISO 26262:2018 chapter 6 clauses
and requirements.

From ISO 26262 parts that is related to the definition and identification of Safety Element
out-of-Context and ISO chapter in-scope to its development, it is necessary to identify the
work products that Development Company shall provide and it shall plan their as activi-
ties. Again this list is not unique for the development of each Software Component it follows
the SEooC design flow and each Development team can choice how to implement them in
tailored manner. It is very important to produce work products that can be exhaustive in
terms understandability, readability, traceability and maintainability characteristics and,
at the same time, complete in terms of compliance with the series of standards. According
to element nature, different processes might be applied but the real important aspect is
to follow a common approach: let’s look ISO 26262 required processes for a SEooC like
grouped in the following macro step (excluding safety management activities):

1. Identification of Technical Safety Concept and Technical Safety Requirements;

27

2.2. REQUIREMENT ENGINEERING: ASSUMPTIONS ON SAFETY REQUIREMENTS

2. Development according to SSR;

3. Functional Safety Assessment;

4. Qualification

This list already provides a better view on which information need to be documented to as-
sess the compliance. In particular topic 4 cannot be executed totally by development team:
the only possible qualification in development phase is related to the verification of what
has been developed. In other terms Qualification can be considered as Validation phase
and this can be done only by integrator with respect to supplier developer assumptions.
According to previous description the following list, related to the identification of work
products for the Partial Networking Coordinator developed by ETAS, shall be considered
as exhaustive for the specific element development or in a certain sense as specific ”safety
case” even if it is not really correct to speak about safety case for the development of an
out-of-context product. According to the previous analysis, the provided work product for
Partial Networking Coordinator have identified in this list:

❼ Safety Plan (compliance with ”Safety Management” part of ISO 26262);

❼ Software (Functional) Requirement Document (provided by GM);

❼ Software Design Document or SDD (compliance with ”Product development at soft-
ware level” part of ISO 26262);

❼ Software Verification Plan (compliance with a series of chapters of ISO 26262);

❼ Safety Manual to replace the Safety case in item development;

❼ Failure Mode and Effects Analysis or FMEA at System Level (series of chapter of
ISO 26262);

❼ Functional Safety Assessment;

The next sections will analysed in a detailed manner each requiring work product, safety-
related, that has been presented for the development of Partial Networking Coordinator,
excluding the template creation for safety plan that is provided by Company.

2.2 Requirement Engineering: Assumptions on Safety

Requirements

When the safety-life cycle is applied to the development of an item, the first step aims to
define it considering:

❼ Scope of the item by a functional point of view;

❼ Its Boundaries;

❼ Its building Elements functionalities and architectures;

28

2.2. REQUIREMENT ENGINEERING: ASSUMPTIONS ON SAFETY REQUIREMENTS

A good way to identify item functionalities is to define them as state operation of specific
system modes or operating states. This enforces the determinism of item (or of a generic
element too) behaviour. Operating states are defined by each considerable combination of
elements parameters, they assume each value in its own dominion. ”Considerable” means
each value of a specific parameters it concurs to define the operating state that really af-
fects the item functionalities. For example: an Item is developed for Parking Assistance in
reverse (limited visibility), therefore it shall consider the actual gear of the vehicle; Gear
values dominion can be {R, 1, 2, 3, 4, 5} but only the case where Gear is R concurs for
a real Operating States at Item scope. After that it is possible to identify the Hazard
operations by HARA; at this scope some supporting processes can be conduced as for ex-
ample a FMEA. A good methods might be to analysed each building element, going down
as much as possible in its structure (also if it is a ”virtual” one because described by a
functional point of view) and to find each: parameter value, combination, event or element
boundaries that might have a negative impact on Item functionalities. In the most of the
case, they can identified as the remaining combination of elements parameters does not
identify an Operating State (note that, for being an Operating State, item shall work fine).
A cross matrix is able to help in the assignment of the right ASIL level at each Hazard
Operation with respect to each Operating Sates (figure 2.6). Once it has been done it is a
good practise to merge Hazards how it is possible, according to ASIL value too, in order
to define the Safety Goals and their relative Functional Safety Requirements (FSR).

This procedure cannot be applied, exactly how it is described, to the ”concept phase” of
a SEooC. In particular, to be very strict, for a SEooC the concept phase does not exist
or at least, it cannot have the same meaning. The scope of the current phase is to report
how the SEooC equivalent Safety Concept has been defined for the Partial Networking
Coordinator and which work products will contain it. Starting from this last one, in the
development of a SEooC each assumption shall be reported inside the Safety Manual (look
5.2). ISO 26262 makes a precise separation among System, Hardware Element or Software
Component that are developed as SEooC. When a Software module shall be developed
as SEooC at component level, it is not possible to consider the safety aspects that are
related to Software Component without consideration about the hierarchy where it will be
integrated (this is mandatory). For this reason the starting point for the assumption on
safety, about the Partial Networking Coordinator, shall be the system level. Fortunately,
GM has defined The PNC like a member of a specific software Platform and so it is
possible to derive important information about it and software module interaction. The
identification of the interactions with others elements build the assumptions about the
External Interfaces. They involve the safety aspects of the PNC because:

A) It shall evaluates the correctness of data that are requested on interfaces from other
elements;

B) It shall ensure the correctness of data it provides to other elements by interfaces;

The correctness of data must be ensured and for this, several redundant mechanisms shall
be specified in the safety Requirements. Having more knowledges about platform, the
usage of the FMEA as supporting process for a ”simile-HARA” is strongly recommended.
In fact, safety analysis allows to identify a possible Safety mechanism for each software
component, avoiding the propagation of a fault; once it has been identified and formalized
as a Safety Requirement it will be implemented at Unit level. One big difference with

29

2.2. REQUIREMENT ENGINEERING: ASSUMPTIONS ON SAFETY REQUIREMENTS

Figure 2.6: Example of Cross-matrix for risk evaluation

the concept phase in Item development is that the SEooC is developed according to an
assumed ASIL value too. This means when Hazard and Operating States are identified,
it is not necessary to create the cross-reference matrix but at the same time, each hazards
shall be ”covered” by a Safety Requirement that defines a safety goal.
For PNC, assumption have been started from product development at System level. The
identification of the TSR allows to define the HSI (Hardware Software Interfacing) and in
turn the SSR for the PNC. The functional description of the System is useful to proceed
to assumptions how in the case of the item development. All these information will be
contained in the Safety Manual. The ”concept phase” for the PNC has been solved as in
the next paragraphs:

Approach with respect to Component scope and Target System : Usually the
Partial Networking is a solution that is used for optimizing the power saving in a vehicle
with a large number of ECUs. Some of these implements functionalities that are rarely
requested during a single vehicle life-cycle. Besides, how it has been specified in Partial
Networking, The partial networking performance might be strongly related to the start-up
sequence duration and the duration of a Microcontroller wake-up. The combination of the

30

2.2. REQUIREMENT ENGINEERING: ASSUMPTIONS ON SAFETY REQUIREMENTS

previous considerations should be enough to prove the impropriety of mapping a safety
application on a Partial Network, because of not nondeterministic aspects. By the other
side, several safety applications absolve their scope in rare cases and therefore they might
be mapped in a Partial Network to save power; rationally these should not have an high
ASIL value anyway, allowing the risk reduction with the caution of the driver. For this
reason two possible conclusions have been evaluated as possible:

A - Safety Strongly Oriented: because of the possibility to map safety applications in
Partial Network, the coordinator active the PN at the minimum perceived intention;

B - Performance Oriented: The module goal is dominant (saving power); the PN is
activated only if the intention of activation is certain beyond each reasonable doubt;

This choice is very important considering the product nature. The final decision has been
taken, performing a trade-off between the previous possibilities.
The first approach has been already adopted in the assignment of ASIL value: Partial
Networking Coordinator meets ASIL D. The reason is related to ensure the FFI (Free-
dom From Interference) in the case of ASIL decomposition within system where PNC
is employed. Basically this problem can occur in system where elements with different
ASIL value coexist: potentially if an ASIL D element requires resource to an ASIL B one,
lower level of safety of provider might cause problems to ASIL D element. Instead, if
an element with ASIL B requires a resource from ASIL D, there are not safety problem
because requester receives an ”overheading” safety resource that does not impact on its
operations. The PNC is considered an Utility Modules and for a generic Software Com-
ponent in AUTOSAR application layer, it will be considered a service provider. At the
same time, considering the previous considerations, the most important thing is that PNC
meets its scope; if a strong approach about safety is adopted, it might request the PN
activation or deactivation at each minimal variation in its sensors, decreasing the power
saving. Therefore the safety requirements will aim to ensure data integrity and consistency
on its interfaces, according to ASIL D methods. In this manner, PNC will be able to take
an indisputable decision about the activation or deactivation of Partial Network.

Assumptions on Higher-Level Safety Requirement (equivalent TSR) : This
phase is actually composed by two sub-phases. The first one makes assumptions about
Target Environment i.e. at vehicle level, System nature and/or related software architec-
ture; for example, several assumptions can be done about the availability of AUTOSAR
services and modules on target environment. Then, considering elements scope, it is nec-
essary to identify:

❼ Functionalities and Properties;

❼ Boundaries that are represented by external interfaces;

Let’s note that some aspects are equal to previous description. To be clear, the previous
discussed approaching phase is not effectively described as an integrating part of ISO 26262
but for the actual experience it has been found a very useful activities. The assumptions
on functionalities and properties allow the identification of specific tasks that can be im-
plemented by TSR. Properties can consider AUTOSAR safety aspects that are implicit to
architecture but that requires attention: ISO 26262 specifies very well that a solution shall

31

2.2. REQUIREMENT ENGINEERING: ASSUMPTIONS ON SAFETY REQUIREMENTS

be adopted with knowledge also if it belongs to product nature. From them it is possible
to proceed to assumption on safety requirements at system level (they called by ISO 26262
Higher-Level Safety Requirements (version 2018, chapter 10, clause 9: ”development
of software component as SEooC”). How ISO explains, they can be derived in order to
obtain a final technical formalization of safety-relevant aspects. In general, Higher level
Safety Requirements can be considered as TSR and so they shall bear in mind the allo-
cation to the right dominion (Software or Hardware). Each assumed Safety Requirements
shall be covered at least by one assuming HSI topic and then allocated. This phase should
allow a faster allocation of TSR within SSR than item relative case.
The identifying Safety Goals and SSR related to assumptions on PNC cover the following
aspects:

❼ Ensure the error masking on input signals from sensors by Forward Recovery, in order
to avoid unintentional activation or deactivation of a Partial Network;

❼ Ensure the error handling (detection and mitigation)on arithmetic operation for crit-
ical resource;

❼ Ensure the Control Flow Monitoring among Software Unit;

❼ Define a Safe State to avoid the occurrence of Hazards once an error has been detected
in a software unit;

❼ Ensure FFI developing the Module with the highest ASIL and using AUTOSAR
features and properties;

To improve the traceability and a verification on the quality of assumptions, in the safety
manual there are several cross-matrix that are able to map the Assumed High-Level Safety
Requirement with respect to identified Safety Goal at component level. This will help the
integrator in the process of Qualification, according to ISO 26262, when assumptions will
be effectively validated. The scope of ETAS is just to trace each assumption at several
level, in order to verify the correct implementation of the requirements, starting from their
source (more detail about traceability in Verification chapter).
Let’s note that the Assumed Safety Goal at component level, aims to define which safety
mechanisms and aspects can provide the component with respect to system; ISO 26262
explains a mapping should exists between TSR and SSR but to decrease the number of
relationships multiplicity, The assumed TSR are assigned, considering the Safety Goals
that in turn will contain Software Safety Requirements. In figure 2.7 is possible to see how
the cross-matrix has been implemented within the safety manual and how the assumed
SSR contains reference to the Safety Goal (table 2.1)

Id Tag Description Realizes

Number of Re-
quirement

Identifier used
for traceability
and identifica-
tion

Requirement
specification

Tag of realized
safety goal

Table 2.1: Specification of SSR in safety manual

32

2.2. REQUIREMENT ENGINEERING: ASSUMPTIONS ON SAFETY REQUIREMENTS

Figure 2.7: References between Safety Goals and HLSR

33

Chapter 3

Design and Implementation

3.1 Briefly overview on V-Model

Figure 3.1: Other View of V-model

Figure 3.1 shows another view about activities they shall be executed for the development
of a software product according to V-model. Each circle represents the development of
a specific software hierarchical level, according to ISO 26262 requirements and methods.
Activities for HL1 have been already analysed in the last section of the previous chapter
i.e. assumptions on safety requirements that shall be implemented. The identification of
the transition between Hierarchical Levels (up or down) will be subjected to the result of
verification methods, that are identified and discussed in Verification chapter and that are
represented by loops (look figure). Verification in implementation branch (left one) should
prevent as much as possible the case of failure in definition, designing and implementation,
otherwise a failure in respective Testing phase (right branch), on the same Hierarchical

34

3.2. TRICKS ON MODELLING AND PROGRAMMING LANGUAGE

Level (Ver HLxx), will force the process to come back again on implementation branch
and repeat it.

3.2 Tricks on Modelling and Programming Language

This phase is not represented in figure 3.1 but it shall be considered totally in scope for
SEooC development. It can be seen as a global aspect, to be considered at each hierarchi-
cal level for the software development. Clause considers particular aspects of a software
development as for example the complexity by an algorithmic implementation, program-
ming paradigms and concurrency. Besides, this clause makes mandatory MISRA C subset,
especially for products with high ASIL value.
To evaluate the complexity of a software product, a good approach is to adopt the Cy-
clomatic complexity. This one uses the Control Flow Graph to measure the number of
paths that are linearly independent. A good reason to adopt this measure is its applicabil-
ity to classes, methods and functions in an independent way. The cyclomatic complexity
for a program, a method or a function increases according to the number of constructs that
are able to fork a path, i.e. those nodes they have more than one outputs (if, for, while,
switch, etcetera...) called decision blocks. An easy way measure a function complexity
consists in counting the number of the previous cited constructs and adding a 1 i.e.

CC = db+ 1

Where CC is the Cyclomatic complexity of the software unit and db is the amount of
decision blocks in software unit. This computation and this software measure have been
defined by Thomas McCabe [14] and they are valid only in the case where the Control Flow
Graph has not strongly connected component i.e. the ending node of CFG is not connected
to the starting one. At the same time, a single entry point and a single return one shall
be present according to MISRA C requirements (structured software). The lowest value of
this measure is 1 i.e. an unit with a single path and so no if or iterations. This is very
rare in an embedded software, especially considering, that safety measures often require
redundancy and related matching among values. This consideration will be discussed in
the following when the implementation of software Unit and an example regarding the
development of PNC will be reported.
One of the most famous application of this software measure is to use it for assigning an
upper bound value for software unit complexity equals to 10 (NIST suggested practise).
When a software unit goes up the threshold a good practise might be to split it in more
units; this shall be done considering that in embedded software might be not very correct,
because each unit corresponds to a mode or a particular state; therefore another deriving
idea might be to group specific statements, that are repeated in several units, in order to
create a simpler one as a private function that can be accessed by component’s units. The
advantages are also related to the correlation that exists between number of defects and
cyclomatic complexity: although studies have not been able to prove that a low value of
McCabe’s measures actually reduces the defects occurrence, it also has been proved that
cyclomatic complexity might have a positive impact on program size (amount of LoC),
especially considering the previous grouping method; By the way, a larger program in
terms of LoC will have a major probability to contain errors.
The last remarkable feature is the possibility to use the cyclomatic complexity for evaluating
the number of test cases that will be necessary to verify a software unit; in particular the

35

3.2. TRICKS ON MODELLING AND PROGRAMMING LANGUAGE

cyclomatic complexity can be used to obtain the lower-bound number of test cases that are
necessary, for obtaining an appropriate coverage in white-box testing. Specifically, McCabe
has provided a inequality where the cyclomatic complexity is the middle value between the
number of test cases that are necessity to obtain the 100% of Branch Coverage and the
ones for obtaining the 100% of Path Coverage.

TCBC ≤ CC ≤ TCPC

where CC is the cyclomatic complexity, TCBC is the number of test cases to obtain the
maximum of Branch coverage and TCPC is the number of test cases to obtain the maxi-
mum of Path Coverage. At scope of ISO 26262, for code coverage, according to ASIL D,
both Branch Coverage and MC/DC can be chosen. If the first one will be adopted, the
identification of cyclomatic complexity for software unit can address the upper number
of test cases they shall be written to obtain the 100% and at the same time, how NIST
suggests, it is a good practise to write, for a software unit, at least a number of test cases
equal to cyclomatic complexity. Instead, using the MC/DC like code coverage, this value
might lose validity.

The second important aspect is to develop code according to MISRA C. This reduces
language features to a simpler subset that can be asserted as safe. Mainly the following
features shall be prevented:

* Dynamic Memory Allocation;

* Recursive programming;

Beyond of usage of language subset, it is important to consider the security aspects. Often
the defensive approaches improve the security of the unit or component but they might
have a negative impact on the safety aspect, reducing the capability for testing. Two
examples can be:

❼ Abstract Data Type (ADT);

❼ Use of software safety mechanism to detect and prevent permanent faults;

First one aims to implement private struct. In this way is possible to make C very similar
to concept of private attributes like C++ and Java. Therefore each component or module
that includes the resource’s header typically a test program with a main or a client) will
be able to access only by pointer to the struct type without actually knowing its internal
records; in this manner it cannot modify directly it but only calling the dedicating software
unit. This aspect also enforces the encapsulation but for sure it makes more difficult to
test. At the same time it might require dynamic memory allocation, calling malloc function
and recursion algorithm to free memory (figure 3.2b, 3.3).
For explaining the second topic it is possible to consider a specific example: the detection
of permanent hardware fault by a software safety mechanism; permanent hardware faults
they affect a specific hardware module can involve in software failures, for this reason the
achievement of functional safety requires , in addition to error prevention, error detection
and mitigation. The problem is the implemented source code shall be tested on a general
purpose computer by software unit testing.

36

3.2. TRICKS ON MODELLING AND PROGRAMMING LANGUAGE

(a) Header with pointer to Abstract Data Type

(b) Implementation of software units for management of ADT Queue

37

3.2. TRICKS ON MODELLING AND PROGRAMMING LANGUAGE

Figure 3.3: Not-compliant C code: Dynamic Memory Allocation (3.2b), recursion for free
pointers (actual)

For this reason might be not possible to test exactly the code that will be employed on a
target system, because that hardware fault never might verify, reducing the obtained test
coverage; To perform unit test, adopting a Fault injection method, might be necessary to
modify the code, in order to allow the execution of a dummy wrong routine for software

Figure 3.4: Robust software unit for computation of a SUM to detect overflow and perma-
nent faults

38

3.3. SOFTWARE ARCHITECTURE

unit that simulates the behaviour of a permanent hardware fault in a certain resource An
example is shown in figure 3.4: a dummy unit is obtained replacing consciously the oper-
ation with a wrong one in a mirroring unit.
Actually two others important methods can be the usage of particular representation for
data organization and software architectural description in order to be uniquely under-
stood: AUTOSAR scheme and UML sequential diagram, class diagram, context one are
an example. second can be the definition of coding styles, guidelines and conventions on
software data naming. for this last item an example can be a variable to contain a physical
value: to avoid possibility of safety gap, the variable name can include the unit measure of
data value (e.g. actual speed Fan radpsec or actual motor temp celsius); another example
is related to AUTOSAR RTE code: when AAT generates RTE code, it is a good practise
define the name of a port in order to understand if it is a Provider or a Receiver and a
Sender-Receiver or a Client-Server or type of data point. for example:

Let’s consider runnable that has

1) Receive Point (Read);

2) Port XXX (receiver);

3) Interface Data Prototype DDD;

The Rte functions to access to that variable might be generated as:

Rte Read RXXX DDD(...);

3.3 Software Architecture

"The Software Architectural design aims to describe the architectural

elements and their interaction in a hierarchical structure" (ISO 26262

chapter 6, clause 7.2)

This is the general definition provided by ISO about the software architecture. A generic
architecture for Embedded Software is the stack one. In this manner, each layer is able
to manage and implement specific features, properties and functionality, communicating,
directly with the components on the same level, using lower layer components services
and providing services at higher level. The highest one will be represented by Application
layer i.e. implementation of functionalities or better applications with an high level of
abstraction by hardware resource. The advantages of this kind of structure are various;
first of all the separation among layer to avoid error propagation, second one the possibility
to standardize each layer. AUTOSAR is exactly this: a standardized stack for software it
runs on ECU.
Following the design flow, software architectural shall define the specific aspects (static
and dynamic) that will implement the SSR and the HSI. This last will represent the
joining point between software product and hardware one and in particular case, it will
specify which services, interfaces and driver shall be configured in AUTOSAR basic software
layer. The design of a software architecture shall be done very well in order to conduct the
development of software unit as lowest level of implementation. The Software Architectural
Design is in general specified in Software Design Document or SDD. The guidelines for the
drafting of this document are provided by ISO 26262 and IEEE 1016 that structures it
with an high level of categorization:

39

3.3. SOFTWARE ARCHITECTURE

Figure 3.5: Conceptual model of SDD by IEEE 1016 v2009

Let’s consider that software architecture still have not really implemented a part of func-
tionality in scope to component but however it shall be designed in order to meet feasibility,
maintainability and verifiability (by formal methods and testing). The following descrip-
tion addresses main design choices that have been done in order to meet ISO 26262 for
PNC software architecture. Hierarchy design and complexity can be seen as the big two
aspect of software architecture design.

Hierarchy : This concept can be bond to several feature. First of all the component
shall be developed according to AUTOSAR specification. Therefore the component will
be defined according to:

A- Ports for Provide/Receive data to/from other Application SW-C and/or BSW Mod-
ules and that implement interfaces with ad-hoc Application Data Types;

B- Internal Behaviour

– Runnable Entities that will become public functions;

– Access point for Data, Server, Parameters, modes and so on;

– Events (Time-based for OS scheduler, Operation Invoked and so on);

At Hierarchy scope, it is also necessary to specify the differences between static aspect and
dynamic one. Static aspect can be seen as implementation choices. Actually the static
code for an ECU software is considered the source code for a SW-C implementation. This
can be obtained by hand (i.e. hand-written) or by Model-based approach with the usage
of an Embedded Coder. The dynamic aspect for software architectural are related to the
execution of software i.e. all aspects that cannot be planned at priori but depend from

40

3.3. SOFTWARE ARCHITECTURE

specific run-time case. To dynamic aspect it also related the RTE code because it strongly
depends from the configuration of the AUTOSAR stack e.g communication, operating
modes, accessing resource, etcetera and it is usually generated by Embedded coder of the
AAT, starting from the AUTOSAR schemes (arxml). At the scope of the current paper,
software design and implementation will be considered with an higher attention the static
aspect of the PNC(manually developed). For this reason it will not be discussed the
aspects related to safety of a configurable software that requires the application of Annex
C of chapter 6 (ISO 26262 version 2018). Instead safety analysis will be described in detail
in the dedicated section (chapter 5) as fundamental activity.
Hierarchy can impact also development aspects as library inclusion: when code is developed
in C or C++, the modularity is obtained, defining source files and headers. Generally
Headers contains structure, classes, public variable and functions declaration while source
ones their definition. A module can be defined as the set of one or more source files. The
inclusion of another component library in header or source files of an actual component,
actually defines a dependency. MISRA C requires caution in header inclusion in order
to respect the hierarchical constraints. This means that a component shall include only
libraries they can provide services that are implemented at lower layer or at the same layer,
if and only if:

❼ Lower Layer resources are requested by actual component;

❼ Transversal communication between same-layer components is allowed in specific
case;

In this way the software architecture prevents the occurrence of Interference Failures among
layers of the same one. The inclusion of libraries shall be done in order to avoid a multiple
inclusion at least specific rules they allow it and the inclusion of software units, directly in
source files bypassing header. The first case means that keyword include with the name
of a specific header shall be present just once in a source file at least specific case as the
Memory mapping for spatial isolation. The second one aspect is about the C keyword
extern. It can be used to include a software unit in a component that does declare it.
MISRA (version 2009) prevents the usage of extern outside a header file. The correct way
to implement the previous clauses are described in figures 3.6a and 3.6b (next page)

Complexity and Sizing This paragraph aims to analyse the design of a software ar-
chitecture that is able to achieve a fine level of complexity and sizing. How it has been
specified in the previous section, a good complexity measure for embedded software is the
cyclomatic one. For sure it will make easier the control flow analysis of a software unit
(and so the complexity is reduced), and reducing in turn the complexity of the component.
As collateral effect, it might increase the number of software units and therefore the code
size. The number of interfaces might play another important role in the evaluation of a
complexity. For example PNC shall manage all basic software services regarding the par-
tial networks in application layer and then it shall notify the result of evaluation to other
application software components. For this reason it is not so much possible to reduce the
complexity, reducing the size of interfaces. Then the reduction of interfaces sizing cannot
be adopted. The high number of calibration parameters increase the static complexity of
the architectural design too. What ISO 26262 requires to software architectural design is:

❼ Capability to be tested, in order to obtain a specific measure of coverage;

41

3.3. SOFTWARE ARCHITECTURE

(a) Include a unit function from a lower layer

(b) Include a unit function from same layer

42

3.3. SOFTWARE ARCHITECTURE

❼ Implementation of safety aspects they shall handle errors;

A not required complexity, due to low modularity or encapsulation etcetera, might have a
negative impact on it. Another way to reduce the complexity is to define groups. This
one have a double value:

1. Prevent the possibility to allocate an asymmetric number of requirements among
software units;

2. Enforce cohesion among software components;

3. Prevent the definition of unintended redundancy that is not define at scope of error
detection and mitigation;

The first topic can be easily understood in the case of a FSM (as current case). A large
number of embedded systems are modelled as FSM because they allow the management of
complex scenarios with a certain determinism and reducing the complexity. Usually each
state is defined in order to satisfy a requirements or more than one and at implementation
level, each state is coded with a software unit that evaluates inputs to identify transitions
and produces output, according to state operations. Another view might be deeper related
to the development of robust code: let’s imagine that more software units shall perform a
sum between two variables; the result might be affected by two main errors: an overflow or
a permanent faults in hardware module. For this reason every time that a sum is executed
a duplicated variable and operation shall be checked with the original one (look figure 3.4).
The occurrence of the same piece of code in more units will cause only a code explosion
increasing cyclomatic complexity and test cases. Therefore all software unit shall do a safe
sum can use another software unit that is able to do. This consideration can be applied
at components level too. Strong cohesion between components and loose coupling are
two other milestones. The good designing for one of these implies the achievement for
the second too. The strong cohesion aims to obtain a strong dependency between data
and functions that modify or use them (an example can be getters and setter methods
for private attributes). Functions within the same component shall have a great level
of dependencies in the computation of data, while they must minimize the access to their
private data for other component instance and always by the usage of component functions
(access point). Aggregation of code statements that implement the same routine in the
many software units as a dedicated software unit is a measure of strong cohesion. Instead,
loose coupling can be related to the definition of encapsulation. This means that a client
or a generic software element cannot directly access to the internal record a defining data
type as for example C-struct one; it can access by pointer to an hide (or better abstract data
type) structure. Each interfacing is allowed only by pointer. This solution is very common
for Objected-Oriented Programming as Java and C++ they implement constructor and
destructor. For C it is a little different, however it is possible to implement , increasing
complexity and pointers usage. Let’s remember, this does not allow the usage of functions
as malloc for pointer memory allocation. Several dummy examples are provided in-line
with the architecture of the PNC.
In figure 3.7 FSMType and FSM are abstract data because actually, they are not defined in
header file and so a client cannot know the internal definition of them. The two functions
without keyword ”extern”, represent the public functions that can be called by other

43

3.3. SOFTWARE ARCHITECTURE

Figure 3.7: Example of encapsulation of structure FSM in header (.h)

Figure 3.8: definition of structure FSMType in component source (.c) and private functions

elements, including the actual header. Let’s note they work only on pointers of data type
as returned value and parameters (Code contains AUTOSAR Macros).
Figure 3.8 shows the definition of the structure FSMType with internal fields. All the
following functions declarations address private ones, i.e. they can be invoked by current
module but cannot by a client (at least they are not declared in header with extern).
States are encode with an enum type that is also private. No MISRA violation in this
definition (PRQA tool analysis according to GM severity definition for MISRA advisories
and directives).
Figure 3.9 shows the definition of the initializing functions. It simply updates a FSM
variable (static) records and it is returned as a FSM pointer. No MISRA violation is
present in this definition according to analysis with the same PRQA tool.
The figure 3.10 is a public function that might be periodically invoked as a task. It ba-

44

3.3. SOFTWARE ARCHITECTURE

Figure 3.9: Definition of public functions FSM Init in component source (.c)

Figure 3.10: Definition of public functions FSM Init in component source (.c)

sically evaluate a field of structure and it calls state operations functions. This definition
contains some MISRA warnings. However they are considered as warnings with a severity
level equal to 2 in a scale from 1 up to 9(The function is not completed because it is not
important at discussion scope). This code has been developed only for providing another
PNC simile version for evaluation, according to MISRA C, that might improve the aspects
of encapsulation, replacing the definition of the structure PNC in header file.
The software architecture shall also evaluate the necessity for interrupts. The extended
usage of Interrupts has the advantages to save circuity in terms of stress, because only
when an information is really present routine is triggered and at the same time it saves

45

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

the software to waste resources. However, interrupt usage might have a negative impact
on dynamic aspects of the software architecture: first of all it increases the complexity
of the architecture due to the interrupt handling (jump to routine, clear pending request,
management of priority etcetera), and configuration. Second negative impact is related
to scheduling: interrupt requires context switching and if the scheduler is not properly
configured to manage a large set of cases it might occur in several missing of deadline.
This forces the configuration of a Watchdog that might be not available for each customer
target. For this reason PNC uses polling: the element shall only check criteria values from
a Sensor but that is actually a software sensor. Besides for each time-based transition or
evaluation is possible to implement software counters that decrease a constant value based
on the periodicity of task execution from initial value which it is initialised, using dedicated
software unit. The same consideration can be applied to shared resources: for safety rea-
son it is necessary to implement spatial, temporal and communication separation by safety
mechanisms (ad-hoc) and memory mapping. The separation to avoid interference is an
intrinsic AUTOSAR features mapping runnable entities in tasks. These last are actually
mapped within OS-Application (more tasks can belong to a single OS-Application) that is
mapped with a multiplicity 1-to-1 in a partitions [15]. Let’s note that how it is specified
in AUTOSAR documentation, the partitioning by OS-Application ensures the Freedom
From Interference only between partitions and not for tasks that are mapped within the
same one. For sure the partitioning requires the assumption in HSI of a MMU (Memory
Management Unit).
As last note, ISO 26262 suggests some methods for implementing the safety mechanism
and redundancy as multiple storages is one of these. The entire process starts from defi-
nition until the implementation of the safety mechanisms by redundancy requires a good
evaluation that is generally based on trade-off. In fact, they can be expensive methods
sometimes both in terms of resources and spent time. A resource evaluation and a Worst
Case Execution Time (WCET) identification might be very useful to understand how to
define this trade-off, considering as main parameter the ASIL value.

3.4 Software Units Design and Implementation

The current section aims to report a safe implementation in C of software units, in order
to satisfy the safety requirement that have been assumed. For the software unit design
and implementation it is possible to assert that the entire ISO 26262 methods are totally
based on MISRA contents. The real state-of-art of implementation has been obtained,
analysing the implemented source code with a specific tool that is called PRQA for a
quantitative identification of MISRA violations. In beta versions the static code software
units have been developed in order to implement the functionality of a State-Flow. This one
has been used by Customers (specification designers) to describe the functional behaviour
of the PNC. Initially the PNC component contained almost 40 software units (in a set
of private and public ones). The safety functions have been designed, in order to meet
functional cohesion features and at the same time to respect the features of Basic Software
Modules APIs (Application Program Interfaces), according to AUTOSAR specification.
The implementation of the safety requirements have requested some changes in existing
software units and ex-novo definition for others. In the following, only the safety functions
implementation will be considered. The definition of safety requirements categories are in
section 2.2.

46

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

Activation Sensor The activation sensor is a private functions it provides the criteria
that shall be evaluated for the activation of a Partial Network. It shall be considered
as a software component that provides some information via RTE. Using configuration
parameters in AUTOSAR scheme it is possible to configure the number of ”sensors” they
provide the criteria for a single Partial Network activation. For this reason, according to
ISO 26262 requirement 7.12 in chapters 6, it has been chosen to assign a minimal number
of 3 ”sensors” per PN (lower-bound). Provided criteria are boolean values: each sensor
provides it value in range of False or True; the assigned value will be that one will reach
the majority level i.e.

MajorityV aluePN = 0.5 ∗NumberOfSensorPN + 1

This mechanism is based on forwarding recovery (figure 3.11) or passive redundancy
(there are several papers and academic books they speak about it). The minimal number
mitigates the case in which, sensors provide two opposite values for 50% of cases, preventing
the possibility to mask the faulty sensors. To be clearer it is possible to see the next example
(3.1):

Figure 3.11: Forwarding recovery example (Tri-Module Redundancy in the specific case)
[10]

Sensor 1 Sensor 2 Sensor 3
Majority
Value (2)

False False False False
False False True False
False True False False
False True True True
True False False False
True False True True
True True False True
True True True True

Table 3.1: Example of error masking using Forwarding Recovery

This method can also work with a larger number of sensors and so the function shall be
implemented in order to work with an arbitrary number of them. The majority value has

47

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

no problem in the identification of the majority value for the evaluation when the number of
sensors is odd. Problems can occur when their number is even because potentially, no one
might reaches the majority (example of 4 sensor that provides True, True, False, False).
For this reason, it has been assumed that if the majority is not reached then value will
be assigned to default False. This implementation is purely in software, so it is possible
to assume that no error occurs in the voter it determines majority result. Let’s consider
there is no way to detect error, especially if the majority number of sensors are faulty.
For sure if the number of sensors is equal to 0 is already possible to set criteria to False.
Cyclomatic complexity is less than 10. Code is shown in figures 3.12, 3.13 and 3.14. The
PRQA analysis has produced 7 warnings for MISRA rules but with a very low severity (2).
Some of them are related to Stub definition for software unit testing.

Figure 3.12: Definition of Majority value in activation sensor

Figure 3.13: Classification of sensor value: count the sensor value to TRUE

Figure 3.14: evaluation of value that has reach majority value (if does)

Permanent Faults or Computational Errors The computational errors are related to
hardware and software aspects. Basically the most common form or computational errors
are related to overflow aspects. An example can be the multiplication between two variable
on 8 bits they produce a result greater than 0xFFHex: let’s imagine to have 0x80 times by
0x02 without sign: the result will be 0x100 that cannot be encoded on 8 bits. The specific

48

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

case for PNC regards a division. This is used to set the right value of a software counters
by pre-scaling that produces an output when reaches the alarm value. For a division it
is necessary to check (first of all) that the entity of division is not 0 (math error). If this
operand is derived by a configuration parameter it is possible to set its minimum value to
1 in AUTOSAR scheme (figure 3.15). Second aspect is related to presence of a permanent
faults in division module. For this reason it is not enough to detect the error but it is also
necessary to mitigate it to reduce criticality. The software unit design aims to solve:

Figure 3.15: safety mechanism in PNC configuration set by AR scheme

1. Error Detection: This is possible duplicating the result variables and checking if
they have obtained the same result. The division software unit will return a boolean
value to inform the caller if the result is valid or not. The final result will be stored
in a variable that is passed by reference to the software unit with the operands. If an
error occurred, then result value will be placed to full-scale one, according to type of
variable (unsigned short). The redundant checking variable will perform the inverse
operation with the local obtained value, in order to check if the original operand value
is matched or simply it will perform the operation implementing a parallel algorithm;

2. Error Mitigation: This has been done implementing a Recovery Block System
(figure 3.16), using an array that contains a constant number of function pointers
(&Names of Functions). Each pointer will address an implementation of the same
operation with different algorithm. The array allows the selection of a non-faulty
software unit by an array identifier, starting from 0 until Number of implementing
redundant software units minus one. A switch function will decide which software
unit shall be selected, on the base of error status returned by that unit and it returns
the result of the operation. If the software units are all faulty, then a global variable
is set to True and it shall be evaluated in system architecture before calling again

49

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

switch function. Code is in figures 3.17 (declaration of software units and definition
of software unit pointer used as array to switch between them by index) and 3.18
(switching mechanism)

Figure 3.16: Recovery block representation [9]

Figure 3.17: Division software units API

Figure 3.18: Safe Software Unit for division switching (recovery blocks mechanism)

The division operation has been obtained in two ways (let’s consider the operation C =
A/B)

1. The first method consist in the evaluation of the reminder between A and multipli-
cation of B by an increasing value that starts from 0. When the reminder is less than

50

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

B, the quotient has been reached. The value will be checked performing the classic
division operation, i.e. invoking /. The obtained results shall match themselves. The
definition by a code point of view can be observed in figure 3.19

2. The second method considers the basic definition of the division: it is an iterative
subtraction from A by B while the results is greater than B. The counting of the
iteration will represent the quotient (hardware-based algorithm). The value will be
checked considering the local quotient as loc q and applying the following formula:

A == ((B ∗ loc q) +Module(A,B)))

The definition by a code point of view can be observed in figure 3.20

The software units should be designed and implemented in order to have many similar
features as for example WCET (at least by an initial analysis) and structure in terms of
input variable and returned type (this does not mean that is a homogeneous redundancy).
The features have been considered as similar maintaining the same complexity in terms of
number of iterations and cyclomatic one. Besides to avoid the possibility of error in the
checking operations, the validity of the result is done using two different methods. For
both methods the cyclomatic complexity is 6. Only 2 PRQA warnings have been produced
with low severity (2).

Control Flow Actually this has been the last implemented safety mechanisms. It aims
to detect run-time errors due to unexpected behaviours. This can be very useful when the
software is implemented, to meet the definition of a state-flow model where at each input
will respond transition to another state. The actual control flow mechanism has been done
completely in software static code. AUTOSAR architecture allows the configuration of a
watchdog to perform the Logic monitoring i.e. the control flow. ETAS develops the PNC
from Application layer until Service Layer (Basic software) therefore potentially at least the
Watchdog Manager could be configured. The reason why the control flow has been done
in a static way is related to the very strict specifications of requirements that are provided
by customer. They leave an high level of freedom for the implementation of static code
but very low in terms of AUTOSAR Basic software configuration. This because the PNC
shall run on not-ETAS Hardware platform (ECU Abstraction Layer and Micro-Controller
Abstraction Layer). Therefore it is necessary to be aligned on the work products. However
a test for configuring the watchdog manager, defining parameters and providing values for
description (AUTOSAR schemes) has been done to evaluate the RTE code generation and
the possibility to use the 11 Watchdog APIs but it is not reported at the scope of this
paper.
For static implementation of control flow, a ECCA approach has been used. It consists in
the definition of an unique signature for each Basic Block of Control Flow Graph (i.e. code
blocks within a software unit that does not contains branches); this one is then asserted
in order to verify that the actual control block has been reached by a legal one. At the
moment, the control flow is implemented only at states level i.e. it controls just if the
actual state has been reached by a legal transition with respect to the previous state. If
not, nothing is executed, outputs are invalidated and the FSM is forced to reach as next
state the safe one. The state signature is constant and unique for each state: it is a
number that encodes each state that can reach the actual, value 1, and a 0 otherwise. The
signature will contain many bits as the number of states are (fixed). This control word

51

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

Figure 3.19: Safety Div method 1

shall be defined within state software unit by developer and it requires to be redefined at
each changes in the state-flow model. The encoding let’s consider that PNC states are
defined with an enum type starting from 0x00. The State encoded with 0x00 (first one)
will be the most significant bit in the signature: if state 0x00 can reach the actual state
then the most significant bit will be 1, otherwise it will be 0. This will be done also for
the current state itself according with the state-flow. At this point another software unit
will generate a dynamic mask according to the value of the previous PNC state: it is done
shifting on left a 1 for each position as much as the value of the previous state: for example
if there are 4 states (S0 = 0, S1 = 1, S2 = 2, S3 = 3), and the previous state is S0, then
the mask will be generated shifting a 1 by

NumberOfStates− (Previous+ 1)

i.e. 3 and obtaining a control word on binary encoding 1000. Once that dynamic mask has
been generated it shall be compared with the actual signature. Code for mask generation
is in figure 3.23. Let’s imagine that the state-flow is represented in figure 3.21 and that
the actual state is S1
Then the actual signature will be the following

ControlF lowSignatureS1(S0, S1, S2, S3) = 1011bin = 0x0Bhex (3.1)

52

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

Figure 3.20: Safety Div method 2

The actual checking will be performed by an bitwise and between the state constant
signature and the dynamic mask. Let’s imagine that mask is the same of the previous
example and that control flow signature is the just computed one. The result will be:

ControlF lowSignatureS1 ·maskS0 = 1011 · 1000 = 1000

In the previous example is possible to see that if the state transition is permitted, then the
checking result will produce exactly the mask value. In fact in figure 3.21, it is possible to
see that transition S0−− >S1 actually exists. In the case where transition is not allowed
(for instance S0−− >S3) the situation will be the following:

ControlF lowSignatureS3 ·maskS0 = 0111 · 1000 = 0000

This means that transition is illegal. The safe state in the PNC case, it is defined as a
global restoring of PNC values as an initialization function. Safe State does not perform
any kind of checking for the moment but a good idea for future might be to allow it to
communicate with a diagnostic component by API, to understand why this violation has
occurred. Safe State can be reached by any state less the initial one and it can reach only
the initial state. No MISRA errors or warnings have been produced by generation mask
software unit according to GM requirements. An example of employment of control flow is

53

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

Figure 3.21: example of state-flow for control flow checking

done with respect to software architecture description about encapsulation. In particular
in figure 3.24 is shown the definition of private function for S1 state operation checking
the previous transition. In figure it is assumed that error state has code 0xFF and it is
reached in case where the transition is not legal, otherwise normal state operation setting
output value is performed. This example has been used to evaluate the effect that is might
be have on PNC code. All MISRA violation that have been obtained (warning with at
maximum severity equals to 6) have been related to Stub nature of the component.

Figure 3.22: Definition of private global variable number of state

Freedom From Interference has been actually met only implementing the PNC with
the highest ASIL value and respecting the AUTOSAR specification for the software com-
ponent implementation in application layer i.e. mapping the runnable entities in task in
order to give them a specific partition in memory. Besides each critical resource as timer
has been developed in order to be private in PNC source code component.

54

3.4. SOFTWARE UNITS DESIGN AND IMPLEMENTATION

Figure 3.23: Generation of actual mask software unit (cyclomatic complexity is 2)

Figure 3.24: Employment of control flow checking by dynamic mask and static signature
in stub FSM

55

Chapter 4

Verification of implementation by
analysis and formal methods

4.1 Verification Plan

Verification is a process aims to prove if implementation is consistent with the spec-
ification. Its can be done by formal methods and testing activities (look V-model). How
it has been specified in the introduction, the testing phase is already a way to increase
the safety of the product. The real problem is in its feasibility: for testing a product,
there is the necessity to allocate resources,to spend time and to adopt strategies to make
it feasible. In some cases testing phase for a product can be longer that the development
one. The testing methodology shall be appropriated to the target system: testing hard-
ware is different to test software; at the same time, test methodologies can be different
also for testing same dominion, as in the case of model-based software design. In this
case the verification plan might include methodologies to verify the model and generated
code, running the development part in a target system. For it is possible to use ”in-the-
loop” methodologies (Model-in-the-loop, software-in-the-loop, hardware-in-the-loop and
process-in-the-loop) applying testing method Back-to-Back. The verification methods are
identified according to ASIL value too. for clauses 6-6 (”Specification of Software Safety
Requirements”), 6-7 (”Software Architectural Design”) and 6-8 (”Software Unit Design
and Implementation”), ISO lists several methodologies to verify the implementation and
the specification; this phase should reduce the number of bugs that will be discovered by
testing. In ETAS work products, Verification plan is contained inside the safety plan as
an unique document. The main contents are the following:

A. mapping of ISO 26262 methodologies to apply for Software Component Verification;

a.1 - Requirements traceability;

a.3 - Testing methodology and Test case derivation one;

B. Time plan for verification processes;

At the moment ETAS is executing some tests also at system level, including software
modules that are developed by Company itself with the employment of several own tools, to
simulate a virtual ECU. Let’s consider that Partial Networking Coordinator is AUTOSAR
compliant. This means the software component will be developed according to a system

56

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

description and ECU description using AR-Schema. How it has been explained in software
Unit Implementation and Design, the development of this component it is made by static
and dynamic code. This last is generated using ETAS tool ISOLAR-A with a RTE code
generator and it is strictly dependent from Basic Software configurations. To explain in a
better way, the definition and the configuration of basic software
ISOLAR-A is certified by ISO 26262, therefore generated code can be considered as safe, but
the artefact might be an error source because it has been written according to requirement
specification. So Verification Plan shall consider also AUTOSAR verification requirements
and a way to perform ISO 26262 verification methodologies on .arxml schemas.

4.2 Verification of requirements: Traceability

The traceability is a method aims to verify the development process by SSR implementa-
tion. Its scope is to create a connection or (better) a network of links (as a graph of links)
”for measuring the relationship degree among predecessor and successor processes” [11] in
hierarchical designs, considering their work products. Let’s imagine the specification of
SSR: they are derived by TSR once that design phase moves itself from product devel-
opment at system level to product development at software level; if TSR have been not
identified, it is not possible to define SSR. In this case the system level specification is the
predecessor phase of Software level one and its work products, shall be used as input for the
successor phase in turn. Traceability shall prove consequentiality of these processes. This
mechanism can be implemented according to ISO 26262 methods of Table 2 in chapter
6 where there are two methods marked as mandatory(++) for ASIL D. The important
thing, leaving aside which method will be adopted, is that from each node of this network
is always possible to find a path until its root (in general the Safety Goal) and its leaf (in
general the software units and test scripts). This case defines the bidirectional trace-
ability. Let’s consider that when a project is developed according to ISO 26262 series of
standard, the classes of requirements and associating specification (considering only safety
part of a design), that shall be traced, are not less than the following listed ones:

A - Functional Safety and Non-Functional Safety Requirements or Assumptions(in case
of SEooC);

B - Technical Safety Requirements;

b.1 - Hardware Safety Requirements;

b.2 - Software Safety Requirements;

b.3 - Hardware-Software Interfacing specification;

C - Verification Unit specification;

The traceability shall be able to trace at least each one of the previous topic and it shall be
able to do that, among different types of work products: let’s remember that work products
include specification and implementation; in the case of software product, the specification
can be considered as the documentation, while implementation consists in source code,
libraries, scripts and AR-schemes. The different nature of these work products shall not be
an obstacle by the adopted traceability method. This last can be implemented in form of

57

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

documentation or interactive tool as a program; indeed it also permits the automatic gen-
eration of tacking documentation using models, so long as the qualification of the adopted
tool has been validated according to ISO 26262 requirements. Within AUTOSAR speci-
fication is possible to find a graphical way to implement the traceability of requirements.
This one is directly obtained from ISO 26262 schemas but it can be useful only to track
from Functional Safety Requirements until Software Safety Requirements(figure 4.1).

Figure 4.1: AUTOSAR scheme for requirements tracking (Specification of safety extension)

The big advantages of this kind of representation is the clarity, the understandability and
the readability. The big issues can be due to the number of requirements to be traced: let’s
imagine that a safety analysis identifies 5 Safety Goal. Each one contains at least three
FSR. Let’s remember the multiplicity between FSR and TSR is not strictly 1-to-1. In
the case, whether it will be applied to the development of a Safety Element out-of-Context,
the tree might explode, considering all assumptions that have been made at system level to
derive the TSR and all assumptions on software component, again considering its Safety
Goal with respect to the system ones and its SSR. Let’s consider that traceability method
shall be chosen during the first phases of the system development and it will play a con-
sistent role in the quality of design and for sure, it cannot be a bottleneck in terms of
time. Graphical method for traceability might be too long for implementation and to be
maintained. Therefore the graphical tree can be excluded. At the same time, also the
traceability that is implemented by Data Base can be excluded because it might require
too much time to be designed and no each stakeholders might have the right level of skill-
s/knowledges for using a DBMS. For sure this solution is not always to discharged because
it might require time for the first implementation but it allows a good maintainability and
it allows to structure complex relationships.
ISO 26262 requires bidirectional traceability for high ASIL value. The bidirectional trace-
ability is well-defined in ”Bidirectional Requirements Traceability” paper by Linda West-
fall [11], where it is defined the union of the following tracking approaches :

❼ Forward tracking;

❼ Backward tracking;

58

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

The first one is used to track the health of the product evolution or it is possible to say it
evaluates the rightness of a product development with respect to theory sources. Forward
tracking is very useful when it is necessary to develop a product it shall respond to spe-
cific theoretical aspects as for example mathematical models, electronic systems, physic
applications and business model, following a top-down approach. Forward tracking can
evaluate the impact of a source change on the whole design. For this reason, it is perfectly
compliant with the development of a product according to ISO 26262 standard. The second
one (Backward tracking) is useful to ensure the consistent implementation of requirements.
In particular it can detect missing in implementation and prevention of the gold plating
i.e. implementation of something it does not belong to product specification. Due to the
nature of the SEooC, there might be a significant possibility to implement something that
has not been considered as a tailored activity and consecutively to miss its documentation;
the common effect of a missing specification can be the lack of test cases to ensure the
rightness. If a failure is nested within untracked requirement in source code, it will be very
difficult to be discovered. This will have a bad impact on safety achievement and in some
scenario, missing implementation or wrong one, can be discovered only once it will cause a
damage in a vehicle-context with the possibility of major injuries. Therefore the backward
tracking will be very useful in many contexts, including the development of a SEooC based
on assumption and tailored activities that should (actually must) be documented. The
backward tracking uses a bottom-up approach.
A common method for traceability implementation is the Traceability Matrix; it identi-
fies the main work products and their associated requirements type. For this is necessary
to define an unique key that is able to identify a requirement type. In general they are:

❼ SRS : Software Requirements Specification;

❼ SDS : Software Design Specification;

❼ UTS : Unit Test Specification (which unit is tested);

❼ STS : Software Test Specification (Test Cases);

❼ Assumption : for Safety manual in case of SEooC;

In some cases it is possible to track Functional Requirements and Safety ones in different
manners. This can be very useful, especially when functional specification is provided by a
customer, while safety-related work products are required in toto to service and application
provider. This separation can be very useful in the case where ISO safety-life cycle is not
applied to the first product version but on beta ones. Besides the parallelism can improve
the maintainability of the functional part on one side and the definition and implementation
of the safety part on the other one. The result will be something of similar to figure 4.2
In the specific case, the functional block will aim to track GM requirements in the design
specification and implementation, while Safety part will be tracked by ETAS after the
assumptions on Safety. How it has been said in previous, the nature or format of work
products shall not be an obstacle for traceability. The nature of ETAS software components
will wander from documentation (LaTex, html, word, markdown, excel) until source codes
(AR-scheme, .c, .h, .cpp, .xpt, .ext, ecc...). For sure, Static and Dynamic code, with
relative models, represent the most interesting part for an ETAS’s customer. Therefore an
idea is to find a way to provide the most of the documentation already embedded within
the code. The main advantages to reach this aspect are:

59

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

Figure 4.2: Parallel Traceability

A. Better portability of the work products;

B. Better understandability of code;

C. Good maintainability and identification of requirements implementation;

The main idea content wants to specify the requirements in code with particular syntax and
semantic, that can be used to generate a portable documentation, with all the requiring
information for a complete traceability; the generated documentation is linked to all sup-
porting specification and implementation. In this way each time a requirement is changed
within the specification and in turn its implementation requires different statement or a
new software unit, it will be enough to change the identifier structure in code and to run
again a generator for updating. The traceability Matrix is directly implemented in code
documentation, avoiding the necessity to keep it in a separate document and solving its
natural trouble about the maintainability. Another important one is the granularity: The
matrix considers stakeholder and requirements, that are derived by theoretical aspects, as
input keys and it tracks at work product level. To make an example, let’s consider an ABS
case (totally dummy by technical point of view):

Math Model

F (t) = K ∗m ∗ dv(t)

dt
∗ µ(s) (4.1)

s = 1−R ∗ ω
v

(4.2)

Mω = T −RF (4.3)

[SRS_00]:

The Braking Force to be

applied on wheel, shall be computed

on the base of:

1) actual speed;

2) Vehicle mass

3) Wheel Radius

60

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

It is possible to see how SRS is directly derived by Math source; for traceability matrix
they will be an instance of identifier key (two attributes, one key). At this point, for these
entries, matrix will consider the High-level system architectural point of view defining HSI,
and the relative requirements (TSR or directly SSR as Low-Level design aspect):

High Level Design:

[4.1 Speed Meter]

[4.4 Pressure Pump]

Low Level Design:

[3.7 Constant Parameters]

[4.1.5 Read Speed API]

[4.2.2 Pressure Actuator API]

Until this point the traceability matrix is able to consider aspects in its completeness. After
the identification of the API is necessary to track the software unit that is able to define
the API declaration. This tracking will be strongly dependent from the implementation
choices. Due to matrix structure, the tracking at unit level becomes difficult, especially if
external facilities, as third-part libraries are used. Many times, a specific functionality is
implemented by a specific software unit (that is a good approach, strongly recommended
for embedded software) while software unit are being tracked without any reference about
code lines or directly piece of code but just with component name that contains them.
This can be a great trouble, especially speaking about Automotive code since it is able to
reach ten thousands of LoC for single software component.
This aspect enforces ”tracking-in-the-code” method. To implement it in a very useful man-
ner, it is possible to adopt also a second method for traceability that is used in Backward
tracking and that can be merged with Traceability Matrix, to enforce the portability, avail-
ability and readability: the Tagging.
This method is originally used for traceability in the documentation, referencing the re-
quirements and assumptions specification by an own unique identifiers called tag. To make
an example, remaining on the previous ABS case, the Tagging uses to implement tables
within documentation with the following pattern:

Tag Description Source

SDD 05
The speed measurement is possible at
software level calling ReadActSpeed()
function by API

SRS 00

SDD 06
Vehicle constants as wheel radius are
available as configuration parameter on
32-unsigned bits

SRS 00

Table 4.1: example of tagging traceability structure

In this way is easy to track back specification about SRS for evaluation of missing or
gold plating. For the scope of embedded Traceability documentation is possible to merge
Tagging with Traceability Matrix i.e. using a matrix to contain Tags of requirements.
Once it has been done, when documentation is generated, it will contain a series of link
to the requirement specification according to their own and unique tag; This link will help
providing an interaction with the final user that can refer requirement specification directly

61

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

clicking on it, while it is reading code implementation. Note that this allows a certain level
of dynamism in the sense that:

❼ If the content of a requirement changes then it is enough to keep the tag to
maintain the trace in source code with the updating content;

❼ if the implementation changes is only necessary to move the tag trace to the
new one respecting the semantic and syntax and generated again the documentation
using the specific tool;

A similar solution has been adopted by Matlab&Simulink too: in Smulink it is possible to
define a model, for example a state-flow diagram, and to generate its static code (i.e. that
implements only the model in self) and dynamic, specifying a target system as a board
or simply a processor type (ARM, Intel, ecc...). The embedded coder in Simulink, at the
end of generation phase, will provide source code and its related documentation. This one
will contain a part for requirement specification and another one for its traceability. In
this case the documentation is provided in html format to allow hyperlinking among pages.
an example of final traceability specification, obtained by Simulink embedded coder is in
figure 4.3.

Figure 4.3: Simulink traceability

How it can be seen, the objects are tracked within code in terms of lines. Objects represent
each model construct as state, sub-state and transitions. The idea of ”traceability-in-the-
code” is something of similar to simulink results. This method can be implemented using
an open source application called Doxygen. Basically this one allows the documentation
generation, reading comments in source code with a specific format that can be customized
thanks to the writing of configuration file with specific keyword. The usage of this tool is
widely thanks to the supporting of the main programming languages as C, C++ with Qt
extension, Java (Although for it is preferable Javadoc), Python, VHDL, C# and others.
The produced documentation can embed html syntax or markdown. The end format can
be chosen by several extensions, the main three are UNIX man, html and LaTex. At the
same time, the documentation can also contain diagrams as UML class diagram, sequence
diagrams and state-flow using Graphviz and plantUML syntax in source code comments
and a good way to define hyperlinking through supporting documentation as the original
idea foresaw (look figure 4.4).
ETAS code generator for RTE already comments the code with Doxygen comment styles,
while for static code this has been done manually. Each software unit has been documented
at least for general information like the data structures. The documentation has been
generated in html and latex version considering the cross-reference to source codes. Each
AR-scheme or script contains requirement implementation has been previously converted
in a html page and then linked to Doxygen generated documentation. Let’s consider that

62

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

Figure 4.4: Doxygen workflow for current case

AR C code it is developed considering AR compiler abstraction Specification of Compiler
Abstraction [12] and therefore it might be different by ”common” C code that is written
for general purpose application or for some embedded systems’ firmwares. To make an
example, it is possible to see figure 4.5 where an AR compliant code is shown. This is

Figure 4.5: SPI API AR-compliant code

an important aspect to consider, especially when a Company develops memory mapping,

63

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

module source files and documents for a customer. The previous work products shall be
considered as a single package that shall contain in addition the Compiler Cfg.h API; it is a
very important element for an integrator. The native C API code, with respect Spi Buffer
in code 4.5, will be something of similar to code in figure 4.6.

Figure 4.6: SPI API AR-compliant code

Just to remark, it is possible to see in AR-compliant code the definition of Compiler Cfg.h.
Let’s consider that this is only an example that has been in part extracted by another one
AR specification and so it shall not be considered as exhaustive.
Let’s consider that Doxygen is not able to recognize AR-compliant C code by default;
due to this is necessary to operate on Doxygen configuration file, in order to document
the code in clearer manner; in the specific case it has been chosen to document C code
with the syntax that can be compiled by GNU-GCC compiler. In the following will be
analysed a safety function, implemented in SUM PNC, with the necessary comments for
the generation of the documentation.
The configuration file shall be written in order to consider software safety requirements
that are globally implemented by a Software Unit and those are implemented by specific
statements within the same Software Unit. Besides the generated documentation shall
describe the main features of a single unit according to safety manual and software design
document (SDD) for the functional part. To meet all requirements, the adopted solution
has been the following:

A) The functional specification about software Units implementation are described within
SDD

– The design and implementation of software units are always done according to
ISO 26262 high recommended methods;

– The traceability of functional requirements is done by tracking tag insertion in
each interested work product;

– A specific ETAS ”home-made” tool is able to parse work-products searching
tags and generating traceability documentation (bidirectional);

B) The Safety specifications are represented, from Concept phase work-products until
SSR (chapters 3, 4, 6), by Safety Manual

– The design and implementation of software units shall be consistent with SDD
and safety manual;

– the safe states and Safety mechanisms are specified within SSR and allocated
to software Units;

64

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

– Each SSR refines at least one Component Safety Goal. These are in turn derived
by higher level safety assumptions (equivalence to TSR);

– Each Assumption, goal and requirement is defined by a linkable unique identifier
(tag) for internal document browsing and external hyperlinking;

– tags are inserted in source code comment, using markdown, to describe them
in a matrix format. Each tag is defined with a customized Doxygen command
that is configured in order to link itself to specification in safety manual.

To reduce the side effect of the overhead size for comments, due to the complex structure
they shall represent in final documentation, it is possible to insert the functional description
in Header file before unit declaration (i.e. comment is associated to API) and the safety
traceability matrix before unit definition. This is a necessary operating mode due to
Doxygen capacity up to 99999 lines of code that can be parsed for each component. An
example of functional description as comment in API is shown in figure 4.7.

Figure 4.7: Doxygen comment style in API for functional description (ETAS Confiden-
tial)

How it has been specified in previous paragraphs the matrix shall implement a bidirectional
traceability and therefore it is not enough to trace only the SSR in source code but also
the assumed Safety Requirements at system level, the refined Safety Goal, the test case
specification and the test cause implementation and result. Actually in code documenta-
tion there will be one matrix for safety requirements implementation and another one for
verification. The contents will be respectively:

Requirement Implementation

C1- SSR Tag;

C2- Internal or Global Implementation i.e. it explains if the requirement is implemented
by an internal specific statement, or with ”global” if it is implemented by the whole
software unit r a global variable;

C3- Safety Goal (SG) Tag that is refined;

65

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

C4- Assumed Higher-level safety requirement Tag;

Verification

C1- SSR Tag;

C2- Test Case specification Tag;

C3- test script name

C4- Id of the test unit;

Once code has been commented and the Doxygen configuration file has been refined, its
compiler will be able to generate the documentation. For that of Partial Networking
Coordinator, it has been decided, as previously mentioned, to document the code expanding
AUTOSAR Macros. The comments contain customized commands in order to implement
the hyperlinking to related specification as Software Design Document and Safety Manual,
verification report and test case specification. In figure 4.8 it is shown the produced HTML
documentation with respect to function Activation Sensor (API in figure 4.7)

Figure 4.8: Produced Code Documentation (Implementation)

How it is possible to observe, the function name does not contain AUTOSAR macro FUNC
but directly the function returned type. Each Software Unit is documented within a
package graphical symbol. In documentation is also possible to see the tracking tag for
functional specification that Actually is not done by Doxygen. The previous figure actually
shows the documentation of comment block in .h file (4.7). The last row is ”Traceability
of Safety Requirements”. From that point, the documentation is produced on the base of
comment block in source file with the same Doxygen style. The scope is to produce the
traceability matrix for implementation of safety requirements using the markdown syntax.
The result is shown in figure 4.9. Let’s consider each word that is written with blue or light
blue font, in produced documentation, is a link. This means that clicking on it another
document will be opened. The hyperlinking for implementation of requirements aims to
show:

66

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

* Requirements specification;

* Safety Goal;

* Internal statement implementation (tracked);

* Specific software unit or global variables;

Figure 4.9: Traceability matrix for implementation (generated)

Clicking on one link in traceability matrix, the browser will open the safety manual exactly
to the paragraph where that requirement is explained. For instance, let’s imagine to click
on link 7.4 in SSR column. The result will be like in figure 4.10 (CONFIDENTIAL)
The Internal tracking requires some additional explanation. Clicking on it, the view will
be addressed to a specific page where it is possible to see the internal function statements.
Some of them, directly implement the safety Requirements. To track The code statements,
particular structures in comment block shall be defined; they are called Trackers. Actually

Figure 4.10: Opened section of safety manual using generated documentation link

67

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

they are able to track specific statements and to associate them to a SSR implementation
but to do this, they shall be implemented by the definition of a keyword. It is necessary
to specify that once a code statement or a piece are updated, it is not necessary to change
the tracker, because it is able to find specific keywords inside the code. The only necessary
update is for trackers: there must be one for each time it is invoked in code.
At this point there might be a problem: how it has been specified Trackers are just comment
blocks in C code, so they have not an impact on the program functionalities but they have
on the code size, increasing the comment overheading. In figure 4.7 is possible to see
that for definition of a functional description, it is necessary to write tenths of LOC:
they take up space reducing code capabilities for Doxygen compiler Boundaries and they
increase a file size with not functionalities implementation; to generate The entire unit
documentation (traceability Matrix and others information) might necessary more than 60
LOCs. This number can increases itself according to documentation structure complexity.
A file with a big size it is difficult to maintain and this aspect is very important for ISO
26262 requirements, especially considering the development of a SEooC. For this reason the
Trackers will be implemented in an additional C file. This will be provided as a member
of work product by actually it shall not be compiled or tested. It just shall be parsed
by Doxygen compiler to create internal tracking in dedicated documentation page. At the
same time, the usage of dedicated file source will decrease the complexity in maintainability
of that same Trackers in case of change, replacement and updating. Table 4.2 summarizes
all positive and negative aspects of the dedicated source file for traceability versus the
embedded ones in an unique source code. In figure 4.11 it is possible to observe the
produced documentation for a tracker for requirements SSR 7.4

Figure 4.11: Internal Statement tracking for specific requirmenet (ETAS Confidential)

Last part of the traceability in C code is the tracking of the verification specification and
the testing unit. At the scope of this paper, the verification plan aims to perform unit
testing, i.e. the base of the V-model. Unit test has been performed using QA-Systems
Cantata. Once test are launched, Cantata produces several work products. The most
important are:

68

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

Tracker
place

Compiling
Code
source

Increasing
Work
Product

Increasing
code size

decrease
Maintain-
ability

decrease
under-
standabil-
ity

Source
code

Yes No Yes Yes Yes

Dedicated
source

No Yes No No no

Table 4.2: Embedded Tracker vs Dedicated source

A) Verification Report it contains:

a.1) Test cases description;

a.2) Test case report according to rule coverages that have been defined;

B) Test Summary Report: Consider the overall testing result according to coverage rules;

Cantata reports are in html format. This allows to modify them, in order to create iden-
tifiers for allowing the hyperlinking of documentation. In this way a specific tag can be
added in the traceability matrix that is related to verification part. At the same time it
is possible to use Doxygen for documenting the test script unit functions. For the specific
case, in the test unit documentation will be described:

A) The test case which test unit is referred;

B) Partial Network which is referred;

C) Interesting Input values

D) expected output

The traceability matrix shall be capable to create a link to each of the previous information.
The produced tracking structure for the verification can be seen in figure 4.12.
Let’s consider SSR 7.4: it is related to 4 test cases. Clicking on TC with tag 2, The result
will be the same of figure 4.13.

Each Test case is inserted in traceability matrix by a mapping between a numerical identifier
and test unit. Clicking on the name of test unit, under the bold text ”See also”, it is possible
to consult its documentation that has been generated by Doxygen; otherwise clicking on
the name of test script, it is possible to consult the documentation related to all test units
that are defined within it. Just for instance, it is possible to see that Test Unit named
test Activation Sensor 2 tests the implementation of SSR 7.4 (figure 4.12); clicking on the
name of the test unit the view will be moved to the documentation of it as reported in
figure 4.14. Let’s note the final line of the figure: it contains the cross-reference line to the
source code. Clicking on word sensor.c it is possible to open the whole source code that
has been written to test at unit level the sensor, while clicking on the number it is possible
to open the source code to the specific line, where the implementation of sensor software
unit starts.

69

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

Figure 4.12: Verification Matrix Traceability generated

AR allows to trace the safety requirements using its artefact too. The specification are
available in Specification of Safety Extension in AR specification. This method can have
different advantages: first of all it is standardized because it requires specific classes de-
scriptors to be defined. Besides it allows the tracking at several product development level
(System, Components or elements) and then they can be linked using AUTOSAR refer-
ences classes. Its usage allows a faster requirement definition and a good maintainability
especially in the case where safety mechanism, for error handling, are in scope of facilities
as watchdog, E2E protection, Memory services and so on; then it is useful to allocate and
then track the safety requirements for dynamic code. In this case, it is possible to link
the safety mechanism in specific AR basic software module. The usage of Doxygen, for C
code, has been preferred in this case because it requires a standardization in the structure
of the documentation that can be decided by developers in according to specific cases.
just for comparing, of course Doxygen allows a good level of customization that can help
in the verification of a good implementation a big amount of stakeholders. In other words,
to read Doxygen documentation and then verify the correctness and the completeness of
requirement implementation, with respect to other work products, it is not necessary to
know AR schemes and to read a big mole of Specification (AR is not famous to have
very short specifications). Besides the traceability of requirements using AR scheme it
is allowed only starting from version 4.3.1. Nowadays there are Companies still develop
products with version 4.2.2. Therefore Doxygen solves versioning problems because it re-
quires only an enough updated browser as Chrome or Firefox or a generic html viewer
it can support hyperlinking. At the same time, Doxygen can be used also to document
dynamic code with the same comment blocks that are used to document traceability for
static code (traceability matrix in code documentation has been based on AR specification

70

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_SafetyExtensions.pdf

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

Figure 4.13: Cantata Test Report

Figure 4.14: Documentation of a Test Unit using doxygen

71

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

for multi-level traceability).
In the following is specified how a TSR can be defined for a SEooC using AR classes:

Figure 4.15: Definition of a TSR in AR scheme

How it is possible to see, the Technical Safety Requirements can be defined with category
Safety Technical but they cannot be linked, or better Traced, to an upper link because
it would be a FSR that does not exist in the development of SEooC. The actual TSR
is specified with unique Identifier, using class SHORT-NAME and it can contain a brief
description and a more detailed one within AR scheme. Status attribute and ASIL value
are specified in order to meet all ISO 26262 requirements for the specification of a safety
requirement (chapter 8). At this point TSR is defined but it shall be linked to a component
to define all interaction. In the following case it is shown a software component in the
application layer with a link to the TSR defined in figure 4.15. The name of Software
component is Component and it belongs to AR-package RTA. The xml scheme for these
is shown in figure 4.16

During the current section it has been said that a good traceability method shall be able to
trace a requirement through different work products. This means that a single method shall
be applied to a source code file and to an AUTOSAR scheme without major troubles. For
the first application, it has been chosen to use Doxygen to generate documentation from
comment in C code. For the second one is however possible to use Doxygen for tracking
the requirements in .arxml files and for the generation of a readable documentation but
this requires an additional operation because Doxygen does not support parsing of xml file
for documentation but it supports markdown and html.
This means that files with these extensions can be included in the documentation that is
produced by Doxygen. The original idea was to generate the traceability documentation

72

4.2. VERIFICATION OF REQUIREMENTS: TRACEABILITY

Figure 4.16: reference to a TSR from a SWC

Figure 4.17: work-flow to implement dynamic traceability of an arxml file

for all work products that was not C files or Cpp ones in an automatic way. Actually this
part has been partially covered because it is still required a manual operation that forces
the exporting from MarkDown to html by a Markdown editor. This is necessary to obtain
a final html page that implements some trackers, maintaining its original style.
A future implementation might be to define an own .css to allow to an html file the
containment of a xml scheme as reporting code. Figures 4.17 reports the flow and the
operation that are requested in order to include the traceability of the an arxml in Doxygen
documentation. The final page organization, exlporing from index html is in figure 4.18
while the work product will be shown in figure 4.19 (figure shows a test result)

73

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

Figure 4.18: Traceability documentation for arxml file

4.3 Verification of Software Architecture

The software architecture will be built by static design aspect and dynamic ones as re-
ported in section 3.3. How it has been explained, the software architecture shall be defined
according to specific requirements and it is implemented according to features and proper-
ties of selecting programming language. Verification of Software architecture shall ensure
the allocation of SSR in the designed one.
ISO 26262 defines a series of methods for that. How for the other methods, they shall be
chosen according to the specific case, Company policies and mostly ASIL value (D). Each
method can be applied to model or others products as documentation and code. In the
first case the mostly activities can be done on model, reducing the number of products to
be directly verified.
A good method for the verification of software architecture can be done by Inspection.
This method allows a review of the whole work products, searching defects. Inspection has
not the only effect to find defects in work products but also to improve the maintainability
and to comply the work products to the Quality Assessment (QA). The review process
that is executed on the Partial Networking Coordinator is a Change-based code review
that it involves among all engineers of the software development team; generally, change-
based review is done only of code samples that have been affected by changes according to
the opening of a specific ticket, using FMEA as guideline to understand which units may
be implicitly affected by an unit changes. In particular this kind of verification aims to

74

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

Figure 4.19: work product with tracking id

discover three kind of defects:

❼ Missing of consistence between source code and documentation;

❼ Missing requirement implementation from Traceability;

❼ Bugs, safety gaps and vulnerabilities in source code implementation to be fixed or
improved;

An important point is that, in general, the development and the inspection shall not be
performed by the same person to be effective.
One common defect in automotive application codes can be related to the abstraction of
the physical units in software data: let’s consider that AUTOSAR implements three types
of data:

A - Application data;

I - Implementation data;

B - Base type;

75

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

B type, is the basic data can be defined by C programming language. Basically they define
boundary values for each kind of data according to the number of bits they can encode
a real value. The safety definition and usage of a base type with C is defined in MISRA
C and additional Company Coding style guidelines. For instance, if there is the necessity
to define a variable for the actual vehicle speed (variable name is actual speed value) it
can be defined from unsigned char. This defines a value on 8 bits without sign (so it is
not considered in 2-C). The actual speed value will be measure between 0 and 255. At
Implementation level, it is possible to define a data type that will be able to contain a
value encoding on a specific number of bits according to actual platform. In C this can
be done in this way: typedef unsigned char unsigInt8. Therefore an I type named un-
sigInt8 has been mapped with a base type (unsigned char). Let’s note that by a Software
point of view the measuring units have not sense because the data types define boundaries
(in terms of encoding bits) and algebraic sets; by a physical point of view, a speed value
needs measuring units to get sense (120Km/h is different from 120Mph). For this reason
is necessary to define an Application data type, that can be used by application software
component, to define data they can abstract the physical values; for example the appli-
cation data type Speed Kmph is defined to measure a speed value in Km/h. Now, let’s
consider that an OEM wants to limit the maximum speed to 230Km/h. In this case the
application data type upper boundary is such as to be represented by unsigInt8 (Imple-
mentation type) therefore Speed Kmph can be mapped in this implementation type with a
specific Computational method that is able to convert one in another.
In Automotive software, considering the case of a long supply-chain, it is not so strange that
Speed Kmph data type is used for measuring an actual speed in Mph (Miles per Hours).
This can cause several problems, from boundaries point of view and threshold actuation
response too. A similar directive is also contained in MISRA C, where it suggests to define
an unique variable, identified by name, for each virtual measuring unit i.e. each variable
shall be declared for a specific scope. In the inspection of PNC code a bug has been dis-
covered: in the activation sensor software unit, an index has been confused, allowing to
measure both a flag for the processing of PN permission and actual sensors value: this
might cause a boundary problem, because for the multiplicity of the design, a PN can have
a different actual or maximum numbers of activation sensors and calibration parameter for
PN processing. Another important aspect in terms of safety is the boundaries of the for
indexes: the size in terms of encoding bits for a index shall be at least equal to the size of
the actual counted value.

In addition to the Inspection others method have been applied. Let’s note that in several
case, embedded software for application component is modelled as a Finite State Machine
or using state flow diagram. This because, generally, an embedded Systems shall produce
an output according to specific input and this output is related to an operating mode of
the system or the component. Therefore the modelling phase, that can be used to develop
source code, using embedded coders or manually, shall define the states of a component,
with the related operations they produce the output values and the inputs they will define
the conditions for transition among them. In complex systems, the number of modes (and
so the related combination of input conditions) can be very large and so it might be very
difficult to manage all of them. For this reason the input conditions can be defined using
Don’t Care conditions. These last can cause a problem that is called Overlapping. An
overlapping is a condition where a input combination can define a transition to more states,
starting from another one. In this case the system deterministic behaviour is negative af-

76

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

fected, because the states are defined in order to be unique operating modes. To solve it,
there is the possibility to use the Control Flow Analysis. It is a static code analysis
aims to discover possible overlapping that might cause losses of decidability and halting
problem. The Control flow Analysis is widely adopted in safety-critical system design due
to particular advantages:

1. It can be performed only on safety related parts of the system or component;

2. It can be executed by Automated tools;

ETAS has an own tool, called SCODE, that is able to analyse the Control System com-
pleteness, determinism and predictability. At the same time the software tool is able to
optimize the state definition and the transition using formal verification and it has a good
level of integrability on common products as Eclipse and Matlab/Simulink. Tool is already
qualified by ISO 26262 and so it does not request additional safety activities. In the fol-
lowing will be analysed an simile case of trouble that has been found, very similar, on the
PNC. Let’s imagine to have a Finite State Machine like figure 4.20

Figure 4.20: Erroneous Finite State Machine

Basically the Finite State Machine defines three states: The first (Init) is reached when
control system is turn on or reset. Its scope is to prepare each resource shall be used
by other state operation in order to produce the right output. Neglecting the produced
output, the Control System will evaluate 3 inputs: a, b and c. This means that the input
combinations will produce 8 possible cases to be evaluated. State A will be reached if the
a input is true, considering the others apparently don’t care; at the same time, B will be
reached when b is false and c is true considering a, apparently don’t care. In this case is
very simple to note a problem about decidability: if the three input assume respectively
values true, false, true both edges conditions are satisfied. In this case both transitions
are possible but just only one should be executed. The Control Flow Analysis shall be
able to consider the implementation of the following model as potentially vulnerable. A
solution to solve this vulnerability is to specify better the condition, or assigning them a
well-defined priority. Considering this last one and giving to a evaluation an higher priority
the situation will be very similar to figure 4.21 while Table 4.3 showing the actual situation
with respect to the actual consideration.

Now let’s consider b and c as don’t care for the transition Init-A because they are evaluated
only once a is asserted as false. At the same time, in verification phase it is possible to

77

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

Figure 4.21: Correct Finite State Machine

a b c Actual Sate Next State
F F F Init Init
F F T Init B
F T F Init Init
F T T Init Init
T F F Init A
T F T Init A
T T F Init A
T T T Init A

Table 4.3: Truth Table for Correct FSM

assert if Init state will not execute any kind of transition simply evaluating conditions:
(a == false) and (c == false) or (a == false) and (b == true). This will modify
the truth table as following:

a b c Actual Sate Next State
F - F Init Init
F F T Init B
F T - Init Init
T - - Init A

Table 4.4: Truth Table for Correct FSM (optimized)

Now only 4 combinations are enough to evaluate the FSM behaviour in its completeness.
Let’s note that from this description is also easier to implement the respective C code
and in this case it will be also robuster because it does not show vulnerability in terms of
transition evaluation. In figure 4.22 it is possible to see an example for the implementation
of considered FSM according to the last Truth Table.
How it has been described, the Control Flow analysis shall help the developer in the
identification of the input condition in order to implement the previous code. Let’s note
that Software Unit does not contain any kind of control. In fact this part shall not be
confused with the implementation of the software unit where Error Handling mechanism
for controlling the transition, can be implemented.
The definition of priority is also used in model-based software design: for example Simulink
allows the definition of a model by state-flow and it assigns a specific priority to each state

78

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

Figure 4.22: Implementation of FSM

transition. These priorities will be used for code generation using embedded coder. This is
very useful especially when nested If (or commonly If-else-if) statements are used: the
transition cardinality can avoid the necessity to specify the values for each single condition
that impacts on the decision. In this case the FSM will be something of similar to figure
4.23. The cardinality is expressed within square brackets therefore transition from Init to
A state is considered first of any other.
This aspect can help in the expression of conditions, considering that how in the case of
the real PNC, the number of conditions might be very large to specify and check in an
if condition. The implementing C code of FSM in figure 4.23 will be the same of figure
4.22; in the case transition Init-B was ranked with an higher cardinality than Init-A, the
implementing code would require just a change of evaluation i.e. the first if would evaluate
c and b while the second a. To summarize, the usage of model-based software design can
improve the design phase of a FSM, providing some facilities for the design phase but

79

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

Figure 4.23: FSM with transition cardinality

however a Control Flow Analysis is necessary or it might be replaced by a Simulation of
the model; By the way, the low software complexity is always suggested to make easier its
verification too.
A final note shall be done for code inspection with respect to the previous presented code:
MISRA C requires an else statement for each if one. for this reason the previous code
can be implemented with an intuitive variant but that potentially might avoid the usage
definition of a final else but actually it shall maintain as an empty node” (figure 4.24)

Figure 4.24: MISRAC compliant code

The presence of an else for each if can ensure the value assignment to a variable in any case.
Let’s remember that some safety problem can be present when a compiler has too much
freedom in compiling the source code. Therefore the declaration of variables in bss or data
segments shall not be done assuming how compiler might interpret it. The verification of
software architecture by Control flow analysis shall also check these aspects. An example
is provided in figure 4.25
In figure 4.25, the missing of mandatory else can cause a safety gap, because it leaves
the assignment of default value to a variable to compiler (variable is enable). Figure 4.26
shows a safety implementation of a software unit with the declaration of an uninitialized
variable. At the end Control flow analysis allows to discover an optimization too: observing
the conditions, it is possible to note that the second if check an not useful condition: if
first condition is false then return value will be false anywhere. for this reason the second
if is not useful and so it can be removed. The advantages are: reduction of cyclomatic

80

4.3. VERIFICATION OF SOFTWARE ARCHITECTURE

Figure 4.25: Uninitialized variable

Figure 4.26: Mandatory else to assign variable value

complexity to 2 and reduction of test Case to obtain code coverage. The actual code will
be shown in figure 4.27

Figure 4.27: Optimized cases

81

4.4. VERIFICATION OF SOFTWARE UNIT

4.4 Verification of Software Unit

How the higher levels, software unit shall be verified by some methods before being tested.
This section explores the main activities and methodologies that have been adopted to
test the software units developed for the Partial Networking Coordinator. Again a good
starting method can be the Inspection such as the verification of software architecture
design.
for SEooC, in general, it is very difficult to execute an evaluation of used resources
and at the same time it might be not so useful, therefore is not an useful verification
method in this case. Even if ISO does not explain directly this, it is reasonable to adopt
verification methods that is aligned with the implementation methods: for example the
resource evaluation might be useful, to be consecutive to a scheduling analysis, in order to
understand the resources that shall be adopted for a certain operation for meeting dynamic
software execution. The adoption of the redundancy for Error detection and Handling is
an example because, potentially for a certain operation dedicated resource shall be at least
duplicated. Another example is related to the execution of parallel as in the concurrent
units. However, in several cases, including the current, the resources evaluation can be
replaced by other analysis.
The verification of the software unit has been done, dividing the activities into two logical
sub-verification:

A) Methods for Verification by Analysis;

B) Methods for deriving test strategies;

Basically for topic A) the situation is very similar to the previous verification (software
architecture): software units nature depends from many factors, first of all the program-
ming language that is used. For example, considering the nature of the partial Networking
Coordinator as unique AUTOSAR Component the Software Units are considered like C
functions.
Data Flow Analysis can verify software unit design and implementation, considering the
C functions as white box. Basically the verification by Data Flow Analysis might dis-
cover inconsistencies in data values, due to wrong scheduling of computation, or wrong
computation on a static/global variable it survives for the entire program life-cycle. The
base of Analysis is the definition of a DFG (Data Flow Graph) for each software unit
at function level; graph nodes are actually Basic Blocks i.e. a series of code statements
without branches (except first and last) that aims to identify which variables are modified
and which variables are used for their computation within it. The analysis of data depen-
dencies by Data flow analysis, are also done by compilers to optimize the source code of
a program but in this case, even if they are the same things by concept, they shall not be
confused: the data flow analysis at scope of verification is done to verify the correctness
of data flow, for avoiding possible missing of consistence. This analysis is divided into two
types: forward and backward. The nature and theory is the same for both of them but
they focus themselves on different aspects:

❼ Forward Analysis : aims to identify reaching definition i.e. dependencies among vari-
ables in order to identify which one is used to modify the other values;

82

4.4. VERIFICATION OF SOFTWARE UNIT

❼ Backward Analysis : aims to identify live variable analysis and dead code elimination
i.e. respectively:

– variable that maintains its value in current program execution point and there-
fore it might be used to compute an output variable or read before being written
again;

– variable it does not influence execution, because it is not accessed and therefore
it can be eliminated

Code optimization is an active effect of this analysis. In fact the key point, to improve the
safety at source code level is to give as little as possible freedom to compilers: in
several case, safety problems on data are caused due to assumptions on compiler behaviour
or leaving the a large optimization choice to it (this can be observed also analysing MISRA
directives). Data Flow Analysis can be performed by tools as Static Code Analysis and
this aspect has increased its popularity. However it requires several resources allocation:
for example, the execution of a Data Flow Analyses in a software unit where there are
cycles can be very expensive, using tools too. The reason why this analysis is described in
this section is for focusing on three main aspects:

1. When ASIL value is high, mostly there is the necessity to apply more than one ISO
26262 methods even if they are alternative and not sequentially;

2. Data Flow and Control Flow analysis are complementary: a certain flow can have an
impact on variable assignment as data have impact on the path that is executed;

3. Data and Control flow analysis can be executed by Automated tools as Static Code
analysis in order to highlight bugs, warnings and issues and at the same time to
optimize the program reducing compiles impact;

Topic B) The adopted methods provides an answer to question ”What shall be tested in
a software unit?”. The importance of testing activities and their related feasibility have
been described in the introduction sections. At this point is necessary to define a feasible
an exhaustive strategy to test the software units of the Partial Networking Coordinator.
Again it is important to remember that ISO 26262 activities have been applied in the
development of PNC starting from its beta versions; this aspect has forced to define the
safety activities like parallel to the functional development and so the main task of the
unit testing will be to provide evidence in favour of the correct implementation of software
safety requirements. How it has been explained in 2.2 , the safety key point of the PNC is
to ensure data integrity and consistency and the right control flow. The previous
paragraph has specified, how it is possible to ensure, by software that an unit implements
in a correct way the data-flow; but this is not enough because it is also necessary to ensure
that a value of a variable is correctly obtained, operations produces the right result and
the level of robustness of code is appropriate.
From specification is reported that PNC shall manage several information from Service
Layer in Basic Software and it shall communicate with other software components in ap-
plication layer and so ports will be defined and it will implement AUTOSAR interfaces.
Considering that PNC is a communication coordinator, it will have to use resources as
timers or counters too; In particular they can be implemented using software solutions,

83

4.5. TESTING OF SOFTWARE UNITS

i.e. they will use the periodicity of tasks to compute deadline achievement or counting
expiration. For this reason is necessary to ensure a certain level of robustness in the arith-
metical/logic operations as safety mechanisms.
According to the previous description is possible to define methods for identifying software
unit tests. Let’s note that to identify what shall be tested does not mean to derive auto-
matically test cases. This concept will be in scope to the next section. The software unit
verification by testing aims to test:

❼ Requirement implementation;

❼ Interfaces values and

❼ Code robustness to presence of faults (permanent)by reaction to fault injection

In the case of a model-based approach (not in scope for PNC because static code is de-
veloped manually) might be a good method for high ASIL value, to adopt a Back-to-Back
comparison between model and code.

4.5 Testing of Software Units

Once that Verification of the software unit design and implementation has completed and
it does not show issues, it is possible to move on the right part of the V-model for rising on.
The software unit test aims to prove the correct implementation of software units launching
them in a controlled environment. What shall be tested in a software unit is identified in
the verification of software units methods that has been named as topic B). ISO 26262
chapter 6 clause 9 provides a series of methods that can be used, according to ASIL value
of the element, for adopting strategies they can produce feasible test cases writing. Each
software Unit is tested by at least one test case that is contained, generally, within a test
script (a .c or .cpp file). The definition of test cases can be done following the next topics:

A) Identification of requirements implementation: the tests are based on require-
ments and their main scope is to prove the matching between requirements specifica-
tion and their implementation. Therefore is necessary to identify, using traceability
like a support, where and how requirements are implemented in software units;

B) Identification and generation of equivalence classes: this allows the reduction
of the number of test cases, grouping the inputs values according to produces output;

C) check of boundaries values: this methodologies increase a lot the number of test
cases. Although this aspect it is necessary to completely test a software unit. The
probability of an error due to the occurrence of a boundary value is not an isolated
condition;

To be clearer, the boundary values checking increases the number of test cases by a theo-
retical point of view because it requires to test the whole neighbourhood of the boundary
values; this is necessary as for the neighbourhood of a defined range as the neighbourhood
of the data type (e.g. 0-255 for unsigned char, 0-65535 for unsigned short and so on).
However it is possible to reduce the number of test cases applying the equivalence class
partitioning: it consists in the identification of boundaries values and in the generation

84

4.5. TESTING OF SOFTWARE UNITS

of partitions of equivalent values from a functional point of view. Therefore it is possi-
ble to define a single case for each equivalence class, selecting exactly the values at the
boundaries. An example can be seen in the next figure:

Figure 4.28: Example of equivalence class partitioning and boundaries

In the figure it is possible to see three partitions (Yellow, Blue and Orange); each of them
represents an equivalence class of values. Let’s assume that the ranges are applied to an
integer value, therefore two consecutive values depart ±1. The Boundary analysis will be
different in the case where the black points at partition borderlines are included in a par-
tition or in another. To make an example, let’s assume again that variable Y shall be in
the blue range, with extremes that are considered as range members (RLB ≤ Y ≤ RUB);
in this case each of the six points in the figure shall be used to analysed the boundaries
values, building at least six different test cases. Instead, using equivalence classes, without
boundary values analysis, the test cases would be three, i.e. one for each partition. This
means boundary values should be checked only where it is really useful, for example, how
it is suggested by ISO 26262, for evaluating interfaces values while for the tests that are
related to Requirements Analysis, it is possible to adopt the equivalence classes.

The quality of testing is measured by coverage measure. For programs, this is called
Code Coverage i.e. the measurement of quantity of code that is covered by execution of
test cases. There is not a single way to obtain a coverage measure; each of them will
define a specific ”quantity” that is covered. Considering the highest ASIL value for the
development of the PNC, it has been chosen to adopt the MC/DC as coverage measure.
The reason is that, obtaining the 100% of code coverage with this measure, for sure the
statement coverage and branch coverage will reach the 100% of coverage. Vice versa is
not true. MC/DC is very useful especially adopting C as programming language because
in a condition with logical operators, C stops to evaluate the condition once it has reach
the first determinant value for taking a decision. Considering the logical operators in a
conditions evaluation as only AND, OR the situation will be in table 4.5
The table exactly shows the flow that is used by C, to evaluate a logical condition: in
fact it starts evaluating the first condition and if its result is already able to establish the
decision it stops there. How it is possible to see, this strongly depends from type of logical
operator: just one False is enough to decide the entire condition for an AND, just one true
is enough to decide the entire condition true for OR. At the same time, tables already
provide the test cases to write for obtaining the 100% of MC/DC coverage: its scope is to
prove that condition is able to take a decision alone, actually done it and this for the whole
combinational stimuli are able to do it. Let’s derive the test cases for AND operator:

85

4.5. TESTING OF SOFTWARE UNITS

(a == true) AND (b == true)
a b Decision
False - False
True False False
True True True

(a == true) OR (b == true)
a b Decision
True - True
False True True
False False False

Table 4.5: Table for MC/DC evaluation

1. with a False, the decision will be false. If b is considered in turn as False, it is
not possible to prove that decision is False due to only a value and so it shall be
considered as True. Then First Test case is

{a, b} = {False, True}

2. with b False, the only way to prove that it is the only head of decision is taking a
True, otherwise it will not be evaluated. The second Test case is

{a, b} = {True, False}

3. The last is when it is necessary to evaluate both conditions to take a decision and in
this case it consists to force the evaluation of a (True) and then the evaluation of b.
This is the only case where exchanging the order of conditions however they require
to be both evaluated for the final decision (so b is True too). Last Test case is

{a, b} = {True, True}

With the application of these three test cases it is possible to obtain the 100% of MC/DC
and at the same time also the complete code coverage branch coverage. considering PNC
nature , it will contain several multiple conditions they establish the actual state or mode
of the communications and Partial Networks status too. For this reason the most of test
cases are provided with the intention of obtain the 100% of the MC/DC coverage on func-
tional requirements and on Software Safety Requirements.
Let’s note that identification of test cases for the MC/DC is strictly dependent from the
number of decision that are involved in evaluation and the type of logic operator it merges
them. For this reason the identification of MC/DC conditions might be not so easy in
all cases like in the previous example. The Cyclomatic Complexity that is adopted in
the development phase, can be used to have an idea about how much test cases should be
produced to test each multiple conditions. This is another point in favour of developing of
software with a not so large cyclomatic complexity it makes it hard to produce a reasonable
amount of test cases.

It is important to spend some words about the tool that has been used for the defini-
tion and the execution of test cases: QA-Systems Cantata (knows also as Cantata++).
This framework is used very commonly for Unit and Integration testing for safety-critical
systems (certified by ISO 26262 [13]). It supports C and C++ as programming language for
source code and tests, using Stubs, and it can be easily integrated within Eclipse environ-
ment. The test cases are considered as unit tests that are integrated within a test script
that can be auto-generated by tool itself, using a Graphical Interface with semi-formal

86

4.5. TESTING OF SOFTWARE UNITS

notation. At the same time it is possible to execute automated testing and to obtain diag-
nostic results in several formats (in the specific case it has been chosen the html to execute
customization operation as it is explained in Traceability section). The integration testing
is also allowed for a very large target tests, configuring the right makefile and using GCC
has default compiler. The real important things to report, about Cantata advantages,
is the possibility to configure the coverage testing result (i.e. a successful coverage or a
failing) according to the ISO 26262 ASIL value that is defined for the Component Under
Test. In the PNC specific case, its value is D (how it is defined in ISO 26262 version
2011), therefore Cantata requires the following Coverages to produce a successful report,
otherwise it will be created with a failing global status:

❼ Entry Point;

❼ Statement and Decision Coverage;

❼ Boolean Operand effectiveness coverage;

In other words, the previous points that Cantata analyses in order to produce the final
report, aim to ensure that:

1. All Units in a module have been really tested;

2. Test cases have been able to produce the 100% of MC/DC coverage (let’s remember
it is the most powerful);

The checks that have been done in software unit test within test scripts aims to check:

❼ the expected returned value by a direct checking by cantata methods on

a. range;

b. type and

c. value;

❼ The function calling sequence by cantata methods;

❼ Memory checking for each structure variable or pointers in terms of value and sizing;

❼ Global Variable private and public value checking by Cantata methods;

The results of tests that have been executed, are contained in table 4.6. The legend is the
following:

❼ E: Entry point Coverage;

❼ S: Statement Coverage;

❼ D: Decision Coverage (Branch Coverage);

❼ MC/DC: Multiple conditions/ Decision Coverage;

❼ SC/DC: Single Condition/ Decision Coverage;

87

4.5. TESTING OF SOFTWARE UNITS

SW Unit
Test
Script

Coverage %
Test
Cases

E S D MC/DC SC/DC
PNC Safe Div Mul test div.c 100 90 90 100 100 3
PNC Safe Div Sub test div.c 100 90 90 100 100 3
PNC Div BlockSel test div.c 100 100 100 100 100 1
GenerateModeMask test mask.c 100 100 100 100 100 6
Activation Sensor test sensor.c 100 100 100 100 100 7

Table 4.6: Results of unit tests for introducing software unit implement safety mechanism

Let’s note that division methods have obtained the same values. The reason why they have
not reached the 100% of coverage is due to the branch that contains action to perform in
case of a permanent fault occurrence that in unit testing does not appear. To test it, in the
future, it is possible to define the same software unit with an intentional error in coding
(e.g if operation executes a/b, permanent fault can be simulated with a/(b + 1)) and test
if it works.

88

Chapter 5

Additional Work Products for safety
and Conclusions

5.1 Failure Mode and Effects Analysis

The concept phase or the assumption phase (in the case of SEooC) can be done, using
the safety analysis as supporting mechanisms. The main scope of this analysis is to map
the possibility of failure in data flow at system level or unit one. Using a well-done safety
analysis it is possible to map and to implement well-oriented safety mechanisms for error
prevention and error handling. The main scope is to identify the presence of cascading
failure to direct the Freedom From Interference safety mechanisms and Common Cause
Failures. In ISO 26262 safety analyses have a dedicated clause in chapter 9. Safety Analysis
can be executed more times during the product development; for example they can be done
as supporting material for HARA to derive safety goal, then to identify the right safety
mechanisms for implementing TSR and SSR and avoiding FFI and at the end to prove the
functional safety assessment. For this reason they can be considered as supporting data for
verification activities. Actually, when it is necessary to plan a safety analysis is necessary
to identify it by two main characteristics:

❼ Quantitative or Qualitative;

❼ Inductive (bottom-up) or Deductive (top-down);

Failure Mode and Effects Analysis is an inductive and (generally) quantitative analysis.
The main scope is to map a failure identified by a ”Mode” to a specific effect. Therefore
it starts knowing the causes they can involve in a failure and it identifies the effects. Gen-
erally, FMEA is applied to hardware elements where it is possible to provide and analyse
quantitative data as for example the failure rates with tools support. When Diagnostic
mechanisms are also known it is possible to execute another version that is called FMEDA.
However, it is also possible to apply the FMEA at software level like in the case of PNC.
In this case the analysis is mainly qualitative because it cannot provide at priori the failure
rates values, instead it aims to map the failure effect, defining failure modes at system level
by keyword, in different components they build the system itself.
The first task is to identify the fault models and then, for each of them, a series of deriving
failure causes. Then it is possible to define the failure mode at system level that shall be
based on HAZOP; for each HAZOP there will be an effect. ETAS idea is to consider each
one of the previous step on a specific level:

89

5.1. FAILURE MODE AND EFFECTS ANALYSIS

1. Failure causes at software component level

- They are actually caused by hardware faults used by software routines;

2. Failure modes at software component level (HAZOP);

3. Failure effect at integration or system level

The hierarchical level for analysis execution in the case of PNC is the Software Component
Level until units. One of the more important point is to define key word for Potential
Failure mode at module level. In fact HAZOP starts from the identification of association
between a parameter (in software case data) and a keyword they represents a typical
deviation it impacts on the same parameter. The HAZOP is done ”section-by-section”
on the system according to the reference diagram i.e. for software, the sequence Diagram
it identifies the software units that are called. For each one the scope is to understand
if a deviation can impact on the parameters that are considered by software unit. If it
does, then it is necessary to analyse its cause. This cause will be the input of FMEA for
analysing the single effect and in-chain ones. How it has been specified, FMEA can be
used for several reason; to summarize the main scopes are:

1. To execute the HARA, in order to identify hazard operations and their causes;

2. To support definition of TSR and SSR and to identify safety mechanisms;

3. To provide evidence in favour of the functional safety assessment;

In the previous list, topic 1 and topic 3 can share the same data container that can be
a Table. For topic 2, ETAS actually has a own template where data can be reported
according to specific guidelines. The current paper will analyse an alternative structure to
contain data, for FMEA on PNC. The structure of the analysis is defined by a Table that
is shown in the next figure (5.1):

Figure 5.1: Example of FMEA on PNC

This table can be considered with two separated sections: the first one, contains parameter
evaluation for the beta version of the software, while the second half will contain param-
eter evaluation for the safe product. Before starting the discussion on the two sections,
let’s specify how pseudo-quantitative measures have been defined. The three evaluation
measures are the following:

❼ P: Probability that potential failure mode happens;

90

5.1. FAILURE MODE AND EFFECTS ANALYSIS

❼ S: Severity evaluation of failure mode effect;

❼ 1-R: Loss of Reliability in Detection of failures:

* if 1 it means failure is never detected;

* if 0 it means failure has been always detected;

These measures (they shall not be confused with ASIL determination!) are applied on
software units because the analysis is conduced on component level; this means that failures
modes are analysed on single software units while effects are considered at component level.
This means that computational of a measure for a certain unit might be different by the
same for another. The major effects for PNC have been simply considered as unintended
activation/unintended deactivation. The causes are considered at software unit level
and they are focused on failure modes that can be addressed to specific routines or hardware
resources. These last one are of course only assumed considering there is not possibility to
know nothing below System services layer. At the end, the final evaluation will be done on
the base of the following formula that will provide the risk index of software unit according
with the type of failure and its effect.

Risk = P ∗ S ∗ (1−R)

The scope of the safety mechanisms will be reduce the Risk value. This can be done
decreasing one or more measures in the computation. Safety requirements define how it is
possible to reduce the risk by three main methodologies:

1. Prevention;

2. Detection;

3. Mitigation;

Discharging the prevention for this analysis, the detection allows to understand that a
generic error is occurring. For this reason, implementing a detection mechanism it is
possible to reduce the value of (1-R) (increasing detection, R value is increased and so
(1-R) is decreased); at the same time, implementing a mitigation method, the effects of a
failure is blocked or better contained and so S and P are reduced. Let’s analyse how it
has been possible to compute these values for the PNC.

Figure 5.2: Risk evaluation on PNC beta version

91

5.1. FAILURE MODE AND EFFECTS ANALYSIS

In figure 5.2 are analysed two software unit. The first one is related to the evaluation
sensor shall handle the criteria to evaluate an activation or a deactivation of a partial
network. The main failure might be related to the provided measure by sensor. If a single
signal provides this information as a False/True value, then the probability to failure
occurrence might 0.5 (50%) or more: it depends from specific features of the Software
Component and so it is considered as SeF ; the severity will be computed considering
State-flow transition: first consideration is about all coordinator modes they require the
sensor measure to evaluate the next mode. From these it will be considered all transitions
that happen due to sensor information (i.e. that are triggered by sensor measure). The
S value is computed considering all those transitions caused by a wrong value of sensor
measure with respect to use cases. In this case, sensor value can involve 5 transitions, where
3 could impact on the expected PN status in case of wrong value. Therefore value has been
computed as 0.6. At the end, no detection mechanism was present and so the value 1-R
was 1 because probability of detection R was 0. The final value is Risk = 0.6 ∗SeF . Let’s
now consider the second section of the analysis:

Figure 5.3: Risk evaluation on safety PNC

In figure 5.3 are considered the detection and the mitigation mechanism for Activation
Sensor. The implemented method is the redundancy with majority voting. By definition
this is a recovery mechanism that masks an error in a specific set of condition but it does
not allow the detection. For this reason (1-R) remains the same value. What changes is
the probability of occurrence. This because, the mitigation mechanism with redundancy
with majority voting fails in the case, where majority of sensors are affected by error. This
means if majority value is 0.5 ∗ NumSensor + 1, the failure is not mitigated when 0.5 ∗
NumSensor+ 1 measure a wrong value. Therefore the probability of failure occurrence is
SeF i.e. the probability of failure on a single sensor, times by itself until 0.5∗NumSensor+1
(the half number of sensors is approximate to lower integer value). In the case where sensors
are 3 (minimum value to implement the redundancy, known also as TMR) and SeF is 0.5,
the probability of failure occurrence is

0.5∗NumSensor+1Y
i=0

SeFi = 0.25

and actually 0.25 < 0.50. Therefore The risk index is reduced (note that this values are true
if and only if the voter is not affected by errors). Let’s note that this method works with an
odd values of sensors. How it has been explained, this measures can contain mathematical
traces about simile computation but they cannot be considered quantitative, especially at

92

5.2. SAFETY MANUAL

software level. They main scope is to prove as much as possible an assessment on the risk
reduction as in the previous case. In the case of set alarm unit, the operating flow is very
similar: the severity value is computed at the same time of previous case i.e. considering
the erroneous transitions that is caused by wrong data. This time the important parameter
is the probability of detection R: let’s note that the failure occurrence will depend from
hardware parameters (permanent fault probability due to ageing or others) and it is not
possible to operate on it. At the same time, the only possibility to mitigate it is to insert a
configuration parameter that is able to choose among several ”back-up safety values” if a
computational module is faulty (actually it is not implemented). The basic operation that
can be done is to duplicate variable and operation in order to match them and to verify
if the module is working. This might require assumptions on which kind or hardware is
used after compiling the source code and implement a code that might force to use, for
the same operation, two different resource. Again it is not possible to provide a certain
value for this case but writing a stub and performing unit testing is already reasonable to
assume, for sure it will be less than 1.
To conclude, there was another possibility in consideration, for providing an evaluation
parameter: one suggestion for unit testing is to test using fault-injection method i.e. to
test a software unit with faulty input to check its response. For this reason might be
considered a parameter for measuring the ratio between the test cases produced by faulty-
injection that have failed with respect to the total test cases that have been produced,
using faulty injection method. It is expected, implementing the safety mechanism this
value will be lower (see the next formula)

FR =
#Failed TC FaultInj

#Total TC FaultInj

5.2 Safety Manual

When ISO 26262 shall be applied for developing a SEooC, the Safety Manual is one of the
most important work product. It is well-defined in IEC 61508 for programmable hardware
and it is extended to ISO 26262. It is drafted during the entire design of an element and
it can be seen as a global container for safety features and properties. For PNC the main
scope have been identified:

❼ Contain identifier, class, status, title and author information;

❼ Contain a functional description of the element considering all hierarchical level where
it is defined by Customer, tasks an operating modes;

❼ Contain a description of possible application of the element;

❼ Contain a report about the ISO 26262 chapters and clauses that are considered in
scope.

❼ Replace the concept phase, reporting the assumptions on several levels and nature
(target environment, properties, boundaries, etcetera...);

❼ Assume the Software Safety Requirements from higher-level (substitutes of TSR);

❼ List the assumption on Hardware-Software Interfacing;

93

5.2. SAFETY MANUAL

❼ Assume safety-relevant software units that build the software component;

❼ Assume Safety Goal for software Component (if the element is a component);

❼ Assume SSR to satisfy Safety Goal;

❼ Identify Safety mechanisms for error detection and mitigation for safety-relevant units
according to SSR;

❼ Report results of Safety Analysis or specify particular features on them;

❼ Implements Requirements Traceability;

❼ Contains Legal Information;

HSI builds an interesting role, especially in the development of a SEooC. This because for
improving the safety part of a module development, external facilities might be necessary.
A safety mechanism is developed considering the possibility that an Hardware Resource
contains that module. This assumption shall be documented because such resource might
not be available in the integrator’s target and so, it must be removed after the validation
of the assumptions (watchdog and MPU are examples).
The software unit plays a role for allocation of safety mechanisms and to control the
possibility of failure propagation among them. Therefore safety analysis shall be carefully
evaluated for this phase. The actual way that has been chosen for classifying the software
units is shown in part in table 5.5

Figure 5.4: Table for Software Unit evaluation in Safety Manual (ETAS Confidential)

How it is possible to observe, there are software unit that have been already discussed.
The last note aims to identify a possible way to implement internal and external traceability
of the requirements. The fist one defined a section that contains internal document link for
a faster relocation to the section where requirement is documented; the second one aims
to define a link by identifier (unique) that can be used by external document to link to
the specific section where a requirement is specified. In particular, this last one will be
used by traceability that is implemented in source code as comments and it will be used
for generation by Doxygen to link at specific work products. The situation will be very
similar to the following figure:

94

5.3. CONCLUSION

Figure 5.5: Table for Software Unit evaluation in Safety Manual (ETAS Confidential)

5.3 Conclusion

The original scope of the current paper was to consider all aspects related to the safety
design and implementation of a AUTOSAR Application Component, according to ISO
26262 ad MISRA C. The project specifications and the flexibility in safety life-cycle that
is allowed by the element nature ahas required several analysis about how to identify the
safety requirement in scope. The theoretical safety-relevant operations have required a
trade-off that has forced to assume specific scenarios. These allowed the component to
solve its important tasks (that will have an increasing impact in the next future, especially
on electric motors) without excessive overloading or limitations due to safety mechanisms.
For sure, the suggested solutions shall not be considered as totally exhaustive; actually
they are in evaluation in ETAS as ”starting point” for implementing a more robust code,
strongly oriented to safety, for increasing the state-of-art of their product. To reach a
very high safety level, for sure more solutions will have to be considered; several safety
mechanisms will have to be analysed for dynamic aspects i.e. working on AUTOSAR basic
software modules. Other approaches for static code development as model-based one might
be considered too; this might increase the work, focusing developer attention on model
design and definition. As last conclusion, the quality of the proposed safety mechanisms
requires the complete verification phase of the V-model, performing integration testing and
test of embedded software and adding the qualification of the assumptions by customer
too.

95

Chapter 6

Additional

6.1 Acronyms and Abbreviations

❼ 2-C : 2-Complement;

❼ AAT : AUTOSAR Authoring Tool: ETAS uses its own tool called ISOLAR;

❼ AR: AUTOSAR (AUTomotive Open-System ARchitecture)

❼ A-SWC : Application Software Component (AUTOSAR Application layer);

❼ BSW : Basic Software;

❼ CFG : Control Flow Graph;

❼ DBMS : Database Management Systems;

❼ ECCA: Enhanced Control-flow Checking by Assertion;

❼ ECU : Electronic Control Unit;

❼ FSM : Finite State Machine;

❼ FSR: Functional Safety Requirements;

❼ LOC : Lines of Code;

❼ MISRA: Motor Industry Software Reliability Association;

❼ MPU : Memory Protection Unit;

❼ PN : Partial Networking;

❼ PNC : Partial Networking Coordinator;

❼ RE : Requirement Engineering;

❼ RTE : Real Time Environment (AUTOSAR middle layer);

❼ SEooC : Safety Element out-of-Context;

❼ SG : Safety Goal;

96

6.1. ACRONYMS AND ABBREVIATIONS

❼ SDD : Software Design Document;

❼ SSR: Software Safety Requirements;

❼ TSR: Technical Safety Requirements;

❼ WCET : Worst Case Execution Time;

97

Bibliography

[1] Statistics about vehicle market for road vehicles: https://www.statista.com/

topics/1487/automotive-industry/

[2] ”This car runs code” by Robert N. Charette, 01/02/2009: https://spectrum.ieee.

org/transportation/systems/this-car-runs-on-code

[3] ”Effectiveness of Motorcycle Antilock Braking Systems (ABS) in Reducing Crashes, the
First Cross-National Study” by Matteo Rizzi, Andres Kullgren, Claes Gustav Tingvall,
June 2014

[4] ”Model-Base Software Design: Introduction to Functional Safety and ISO 26262”, Mas-
simo Violante, Politecnico di Torino

[5] ”Power Saving using Partial Networking in Automotive System” by Chae Hong Yi, Jae
Wook Jeon, ”International Conference on Information and Automation”, August 2015

[6] CAN low-speed start connection image: https://www.researchgate.net/figure/

Low-speed-or-fault-tolerant-CAN-10_fig2_322161084

[7] data sheet of complex CAN transceiver TJA1145: https://www.nxp.com/docs/en/

data-sheet/TJA1145.pdf

[8] ISO 9001: Quality management system: https://www.iso.org/

iso-9001-quality-management.html

[9] ”Error Handling”, Massimo Violante, Politecnico di Torino

[10] ”Fault Tolerant Design”, Matteo Sonza Reorda, Massimo Violante, Politecnico di
Torino

[11] Bidirectional traceability definition and methods: https://web.archive.

org/web/20160305213051/http://www.compaid.com/caiinternet/ezine/

westfall-bidirectional.pdf

[12] AUTOSAR: Specification of Compiler Abstraction: https://www.

autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_

CompilerAbstraction.pdf

[13] QA-Systems Cantata Official site: https://www.qa-systems.it/strumenti/

cantata/

[14] ”A Complexity Measure” by Thomas J. McCabe

[15] ”Overview of functional safety Measure” (AUTOSAR specification)

98

https://www.statista.com/topics/1487/automotive-industry/
https://www.statista.com/topics/1487/automotive-industry/
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://www.researchgate.net/figure/Low-speed-or-fault-tolerant-CAN-10_fig2_322161084
https://www.researchgate.net/figure/Low-speed-or-fault-tolerant-CAN-10_fig2_322161084
https://www.nxp.com/docs/en/data-sheet/TJA1145.pdf
https://www.nxp.com/docs/en/data-sheet/TJA1145.pdf
https://www.iso.org/iso-9001-quality-management.html
https://www.iso.org/iso-9001-quality-management.html
https://web.archive.org/web/20160305213051/http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf
https://web.archive.org/web/20160305213051/http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf
https://web.archive.org/web/20160305213051/http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_CompilerAbstraction.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_CompilerAbstraction.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_CompilerAbstraction.pdf
https://www.qa-systems.it/strumenti/cantata/
https://www.qa-systems.it/strumenti/cantata/

	Introduction
	Computer Systems application in Automotive and consecutive problems
	Road vehicles Functional Safety
	Safety Critical Systems
	ISO 26262 - Road Vehicle Functional Safety

	MISRA C
	AUTOSAR
	General Overview
	Functional safety related AUTOSAR parts

	Partial Networking in Automotive
	Real-Time Application - Partial Networking Coordinator development by ETAS

	Reading of Standard, Initial analysis and Requirement Engineering
	ISO 26262 parts in scope to SEooC development
	Requirement Engineering: Assumptions on Safety Requirements

	Design and Implementation
	Briefly overview on V-Model
	Tricks on Modelling and Programming Language
	Software Architecture
	Software Units Design and Implementation

	Verification of implementation by analysis and formal methods
	Verification Plan
	Verification of requirements: Traceability
	Verification of Software Architecture
	Verification of Software Unit
	Testing of Software Units

	Additional Work Products for safety and Conclusions
	Failure Mode and Effects Analysis
	Safety Manual
	Conclusion

	Additional
	Acronyms and Abbreviations

