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Abstract

Autonomous flying vehicles represent an innovative solution for various service
robotics scenarios. In particular, the capability of acting in formation opens to
new opportunities in a multiplicity of different fields. One of the many advantages
of having multiple Unmanned Aerial Vehicles (UAVs) operating collaboratively is
the possibility to sense the relative distances from an object and localize it with
respect to their position in space. The case analyzed in this document consists of a
reference body, be it terrestrial or aerial, autonomous or human-controlled, that
operates in a GNSS-denied environment: computing its position at all times is a
fundamental challenge, that is overcome thanks to the information exchanged with
a fleet of drones. This work aims to study and implement techniques to perform
two combined tasks: maintaining a steady formation of the UAVs and tracking
the trajectory of the considered reference body. In particular, a potential-based
decentralized algorithm was deployed for the swarming task, while a centralized
approach was chosen to fulfill the tracking requirement. The studied procedures
make use of the GNSS position of the swarm anchors, and the relative distance
between each couple of vehicles, given by the Ultra-WideBand (UWB) sensors
mounted on every machine. The achievement of the described objectives, and the
data provided by the sensors onboard every vehicle, give the possibility to easily
localize the reference body in space, via a multilateration approach. The results of
the performed simulations show good tracking capability, while successfully keeping
a stable group flight configuration in all tested conditions.
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Chapter 1

Mobile robotics and UAVs

Robotics is one of the most active research subjects in the field of engineering, due
to the relatively young age of this branch and to the countless applications that it
offers. The main goal of robotics is to study and develop machines that can provide
a service by carrying out acts usually made by humans, working either with or in
place of them: the term robot itself comes from the Czech word "robota", which
can be translated as "heavy work".

Since the invention and manufacturing of the first robots, they have been used
mainly in the industrial world, where they are known as manipulators, and can
be employed to perform tasks that would be difficult for human workers. The
intensified utilization of automatic machinery gave an enormous boost to the
industrial revolution, as robots allowed to decrease the cost and increase the
efficiency of production lines. Indeed, beyond being much cheaper than human
manpower, robots were faster and more precise, especially for repetitive tasks.
While in the first years of their deployment robots were thought to substitute
individuals in performing a well-defined task or set of actions, thanks to the
improvement of the field over the years, robotic systems can be smart enough to
complete non-standardized chores. This does not necessarily mean that robots
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1 – Mobile robotics and UAVs

will substitute human labor: automated systems could help make it even more
productive, operating alongside the workers[1].

As time passed by, thanks to research and technological progress, more and
more applications were found for robots in a large range of fields other than the
industrial one, from military to agriculture, from medicine to the so-called service
robotics. Service robotics consists of assisting people in some specific situations of
their everyday life, including household chores. According to the standard ISO8373,
a service robot is defined as a robot «that performs useful tasks for humans or
equipment excluding industrial automation applications»[2]. The official definition
is fairly general: service robotics includes cleaning robots, drones, mobile ground
robots, and so on. The technological evolution allowed a dramatic increase in
the diffusion of these kinds of robots, guaranteeing affordable prices for the items
despite their growing complexity.

A fundamental aspect, that allowed many of the usages of robots that we know
today, is mobility: mobile robots’ main feature is the presence of a mobile base,
that allows them to move freely in the environment, be it terrestrial, underwater,
or aerial. This analysis will focus mainly on flying autonomous vehicles and their
cooperation towards a common goal.

1.1 Unmanned Aerial Vehicles (UAVs)

An Unmanned Aerial Vehicle (UAV), commonly known as a drone, is a flying
robot whose defining feature is the absence of a human pilot on board. All of its
operations, from takeoff to landing, are entirely carried on remotely either by a
pilot or by software specifically designed for the task. Ideated and first studied in
the past century for military reasons, UAVs appeared in the civil scenario in the
last few years with rapid growth. They can be equipped with various devices and
sensors allowing them to take on very different tasks, like monitoring, search and
rescue, data collection, aerial photography, and so on. For applications that need
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1.1 – Unmanned Aerial Vehicles (UAVs)

neither high speed nor the transportation of heavy bodies, the so-called quadcopters
are the most common solution.
A quadcopter, also known as a quadrotor, is a flying vehicle with four rotors, as
represented in figure 1.1. Its structure is very simple, as its motion is commanded
directly by controlling the angular velocity of the four rotors[3]. Since it can be
extremely small and lightweight, and hence have low inertia, it represents the ideal
solution in many situations that make use either of a single drone or multiple
quadcopters cooperating amongst each other.

Figure 1.1: The structure of a simple quadcopter with the forces and the torques
acting on its body.

The design of the quadcopter provides for two couples of rotors spinning in
opposite directions, usually driven by an electric engine that is powered by a battery.
The motion of each propeller generates both lift and torque about its center and
drag opposite to the drone’s direction of motion. This configuration implies that,
when all the rotors have the same angular velocity, the net aerodynamic torque
about the yaw axis (zB in figure 1.1) would be null. The rotation about the yaw
axis is controlled by tuning the angular velocity of two opposite propellers in the
same way, as shown in figure 1.2.
Pitch and roll, instead, are generated by modifying the angular speed of each rotor.
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1 – Mobile robotics and UAVs

Figure 1.2: The angular speed differential between the two couples of opposite
rotors generate a rotation about the yaw axis[4].

Linear motion can be achieved by getting a suitable spatial configuration of the
quadcopter, that is combining the rotors’ speed to obtain the needed yaw, pitch,
and roll angles, as it is exemplified in figure 1.3.

Figure 1.3: The pictured configuration of the rotors’ angular speed generates a
lateral linear motion[4].

The dynamic model of such a vehicle will not be further analyzed in the current
work, as it is handled at a lower level by the drone autopilot, which will instead be
treated in the following section.
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1.2 – The PX4 autopilot

1.2 The PX4 autopilot

The autopilot used in this project is PX4, a system thought for low-cost autonomous
floating robots. Started in 2009, the project was and currently is, developed at
Computer Vision and Geometry Lab of ETH Zurich (Swiss Federal Institute of
Technology). «PX4 is an open-source flight control software for drones and other
unmanned vehicles. The project provides a flexible set of tools for drone developers
to share technologies to create tailored solutions for drone applications. PX4
provides a standard to deliver drone hardware support and software stack, allowing
an ecosystem to build and maintain hardware and software in a scalable way»[5].
Its main characteristics are:

• modular architecture, both concerning hardware and software, which means
that components may be added to the system without influencing the existing
modules;

• open source, so that the system can be developed by an extended community,
and hence satisfy the needs of a wide range of users, from universities to
industry;

• configurability, as it supplies APIs for developers working with integrations,
and hence allowing features to be easy to deploy and reconfigure;

• autonomy stack, which makes it ideal to operate with embedded computers
for autonomous functionalities[5].

The PX4 autopilot mainly consists of two layers: the flight stack and the middleware.

1.2.1 Flight stack

«The flight stack is a collection of guidance, navigation and control algorithms for
autonomous drones»[6]. As it is shown in figure 1.4, the flight stack includes all the
blocks that compose the drone and make the proper functioning possible.

5



1 – Mobile robotics and UAVs

Figure 1.4: An overview of the building blocks of the flight stack[6].

An estimator block takes data from the sensors as input and, starting from them,
computes the vehicle state. The controller, in the figure divided into position and
attitude blocks, receives a setpoint state either from the navigator or the Radio
Control (RC), and the output of the estimator: its algorithm is able to compute the
forces needed to suitably correct the state to match the desired setpoint. The mixer
block should translate the raw input received from the controller into commands
understandable by the hardware: in particular, it has to keep into consideration
the specific structure of the drone since the translation is strictly tied to it.

1.2.2 Middleware

The middleware includes mainly the drivers for the sensors, the code dedicated
to the communication with the external world, and the uORB publish-subscribe
message bus. Moreover, the so-called "simulation layer" included in the middleware
is of primary importance: it gives the possibility to run the PX4 code in a simulated
environment, simplifying the testing process.

1.2.3 MAVLink messaging protocol

MAVLink is a lightweight messaging protocol used in the communication between
drones and internally between their components. It works following a publish-
subscribe design: the messages, defined as XML files, are placed in data streams
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1.3 – Global Navigation Satellite System (GNSS)

that are published as topics. This protocol results very efficient, as each packet
has just a few bytes of overhead (8 or 14 depending on the used version), and
hence it is perfectly suitable and suggested for applications that cope with narrow
communication bandwidth. Moreover, it is very reliable, as it has been used since
2009 in many different situations, and it offers valid solutions for possible problems,
like packet drop detection, corruption, and authentication[7]. MAVLink is used
by the PX4 autopilot to communicate with QGroundControl (QGC) and other
ground stations, as well as to exchange messages with components connected to
the drone, like companion computers, enabled cameras, and so on[8].

1.3 Global Navigation Satellite System (GNSS)

All vehicles, especially the ones operating automatically, need a continuous flow of
information about themselves and the external world. The sensors onboard play
an essential role in the correct execution of the machines’ tasks.

The acronym GNSS generically refers to the system used to perform global
localization of user devices. It indicates a set of satellites transmitting data to
receivers, allowing them to univocally compute their own position with a certain
accuracy. Some examples of GNSSs are Europe’s Galileo, USA’s GPS, Russia’s
GLONASS, and China’s BeiDou[9].

1.3.1 GNSS architecture and operation

A GNSS consists of a collection of artificial satellites, called constellation, orbiting
around the Earth, at a distance of about 20000 kilometers from the planet’s
surface. Each satellite follows a precise trajectory and mounts an accurate clock on
board, crucial for the success of the operation. Every member of the constellation
continuously broadcasts identifiable data, which, after being read and analyzed
by the ground stations, are used to send orbit corrections to the satellites and
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maintain the system’s precision as high as possible.

Figure 1.5: GNSS multilateration with four satellites[10].

The position computation is based on a methodology known as multilateration.
Such a strategy relies on the fact that it is possible to have an extremely accurate
estimate of the location of the satellites. Among the other transmitted data, they
communicate the timestamp of the instant the message is broadcast. Knowing
that the signal travels at the speed of light, the receivers can easily derive their
distance from the transmitter, via the law of linear motion. Then, the receptor
certainly knows to be located somewhere on the sphere of such radius centered in
the considered satellite. Repeating the same steps for a second transmitter, the
possible position is known to be at the intersection of the two obtained spheres. A
third and fourth satellite would generate two more spheres crossing the previous
ones in a single point, representing the searched location.
Unfortunately, the described situation is ideal and unfeasible in a real scenario,
with errors and equipment inaccuracies. In this case, a higher number of satellites
is exploited, and the problem is solved approximately: via optimization methods,
such as least square, the closest solution to the obtained data is found and used.

8



1.3 – Global Navigation Satellite System (GNSS)

1.3.2 Errors and their propagation

As we said, the distances computed by the receivers always carry an error, which
can be relatively large and depends on many external factors. In particular, the
calculated distance is affected by atmospheric stratification, multipath effect, and
clock inaccuracy.

• The composition of the Earth’s atmosphere depends on the altitude with
respect to the planet’s surface and other factors. This implies that assuming
the velocity of the signal to be always equal to the speed of light introduces
an imprecision. Such a problem is attenuated via specific techniques which
consider a precise model of the atmosphere’s composition, and how it affects
the signals at various frequencies.

• Most of the time, the GNSS receivers are not located in an optimal environment,
which would keep the error low. The presence of mountains, tall buildings, or
other natural and artificial structures, influences the signal sent by the satellites:
indeed, bouncing on these surfaces makes the trajectory of the electromagnetic
waves not straight, and consequently, the data may be misinterpreted.

• The clocks mounted on the satellites and the ground control stations are
extremely precise, but the GNSS receiver’s one is not synchronized with them,
so it contributes to the localization error. Because of this difference, the
considered time of flight of the signal is not the actual one, and the computed
distance from each satellite is affected by a mistake.

Due to the analyzed errors and to others that contribute to the localization loss
of accuracy, the imaginary spheres centered in the satellites should be considered
to have a radius ranging from ri − ∆r to ri + ∆r. Hence, taking into consideration
multiple satellites, the intersection is not anymore between the boundaries of the
spheres, but between the spherical shells. Figure 1.6 shows an example of what is
known as the Dilution Of Precision (DOP) problem in two dimensions: the smaller
is the relative distance between the satellites, the wider is the uncertainty area
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1 – Mobile robotics and UAVs

generated. For this reason, since all the satellites of a constellation orbit at similar
altitudes, the GNSS accuracy on the z axis, radial to the Earth surface, is lower
than the horizontal one.

(a) Low dilution of precision. (b) High dilution of precision.

Figure 1.6: Dilution of precision according to satellites’ geometry.

An efficient way to improve the performance of the localization system is to
exploit a technique called Real-Time Kinematics (RTK). Such a methodology
makes use of a base station, fixed, which through a survey process gets precise and
continuously improving data about its position. Then, after suitable processing, it
uses the information to send corrections to the enabled receivers, allowing them
to improve their accuracy. If the RTK base station is given enough time for the
survey process, and it is in an environment with good satellite visibility, then the
localization error can fall below the millimeters order of magnitude.

1.4 Ultra-WideBand (UWB)

Ultra-WideBand technology is a digital data transmission protocol for short-distance
wireless communication. It operates through radio waves at high frequencies, but,
unlike Bluetooth and Wi-Fi, it uses a wide portion of the frequency spectrum
in the GHz range. In figure 1.7, the difference from other known technologies is
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well visible: while occupying the bandwidth going from 3.1 GHz to 10.6 GHz, the
needed power spectral density is much lower.

Figure 1.7: UWB frequencies range compared to other wireless communication
technologies.

UWB technology is well-suited for capturing very precise spatial and directional
information, due to the following specific characteristics.

• It provides very good performance in multipath situations. The problem
already described for the GNSS heavily shows up for indoor signals, due to
the numerous obstacles which can deviate the electromagnetic wave. Since
UWB transmits short pulses over a large bandwidth, it copes well with this
issue.

• It has good capability of obstacle penetration. The fact that the low frequen-
cies of the spectrum have large wavelengths, makes UWB communication
appropriate for non-line-of-sight scenarios.

• It does not disturb the other wireless communication technologies. The signals’
low power spectral density, spread across the large bandwidth, makes them
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very difficult to intercept, and able to coexist with other wireless transmission
techniques.

• It has good accuracy for ranging operations. Measuring very precisely the
generated short pulses, and the time of flight of the messages, it is possible to
localize a tag with precision in the order of centimeters.

Because of the listed features, UWB is used in accurate indoor positioning systems,
radar-like applications, and it has been expanding widely in the past few years[11][12].

1.5 Organization of the work

After this short introduction, the thesis is organized as follows. Chapters 2 and 3
treat the state of the art of swarming and tracking techniques respectively, chapter
4 analyzes the methodologies and algorithms used in this project, chapter 5 shows
the obtained results, and chapter 6 concludes the work, defining some possible
following steps.
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Chapter 2

Swarming techniques

Among the others, one of the strengths of UAVs is the capability of collaborating
towards a common goal. A swarm, or fleet, of drones, is a multi-robot system
consisting of a relatively large number of autonomous flying devices. The idea of
implementing such an approach was born observing the animal world, taking as
examples swarms of bees, flocks of birds, and schools of fish. The basic notion on
which autonomous swarms are based is that the involved entities make their own
decisions thanks to the information shared with each other, exactly as it happens
with animals.

2.1 Swarm flight applications

Just as most of the studies on new promising technologies, its first purpose was
tied to military applications, but drone swarming later attracted more and more
attention also for civilian usage. The following are examples of situations in which
the swarming technique is applied.
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Monitoring and surveillance As in warlike context UAVs were often used for
surveillance missions, in nonmilitary situations they can be employed for monitoring
in various fields, like geophysics and agriculture. Another situation in which flying
swarms could be extremely useful is the surveillance of a large facility, which would
otherwise require many staff members and hence a much bigger economic effort.

Smart cities and civil protection Like a factory or a company plant, swarming
technology could be used also in larger environments, for example in the context
of a smart city. The range of feasible applications in this field is extremely wide,
as it varies from urban surveillance to weather monitoring, from traffic control to
package delivery.

Environmental mapping A swarm of drones could be equipped with the nec-
essary sensors and artificial intelligence to carry on the mapping of a certain area,
a task that would be important in the fields of cartography and archaeology.

Precision agriculture This is a field in which it is fundamental to have detailed
and precise information about large areas, for example in the context of weather
conditions monitoring. The deployment of swarms of UAVs could be useful to
get data and be able to analyze them in real-time, reducing the amount of time
necessary to put in place the needed corrective actions.

Disaster management In situations that are dangerous for human operators,
UAVs can reach the affected areas in a completely safe way and help, for example
through cameras or other sensors, the rescuers to analyze the environment and study
the needed countermeasures. This is the case of natural disasters, like wildfires,
earthquakes, landslides, avalanches, and other situations that would represent a
huge risk for people.

Search and Rescue (S&R) Strictly tied to disaster management, in S&R
situations coordinated drones can help locate the position of an individual in need
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of assistance without putting in danger the life of the rescuers. For example, a
drone equipped with a first aid medical kit could be sent to search and bring help
to hurt people, significatively increasing the rescue’s success chances.

Entertainment On a much lighter note, swarms of flying robots may be ex-
ploited for shows and performances, as it already happens in many cities around
the world. A very close example is the celebration for the feast of "San Giovanni"
in Turin, which has proposed now for two years in a row a spectacle with 200
illuminated drones instead of the traditional fireworks[13][14].

The ones here presented are just a few of the many possible applications of swarms
of drones. In addition to these, continuous technological advances will provide new
opportunities in a field of engineering that is expected to grow further in the next
future.

2.2 Control architecture

There are various approaches to get the desired swarming performance and possibly
maintain a stable formation for the whole time of flight. First of all, the architec-
ture of the control could be implemented fundamentally in three different ways:
centralized, decentralized, or distributed. The listed logical patterns differ from
each other by their specific characteristics, like points of failure, fault tolerance,
scalability, and ease of development. In the following sections, we will discuss the
various approaches analyzing their proper features.

2.2.1 Centralized control

A centralized architecture provides for a single hub that is responsible for all the
needed operations. This master node collects data from every agent involved in
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the system, it uses them as input of the control algorithm, and it gives as output
the different commands for each component of the network. Despite being easy
to maintain, this structure is very fragile due to the presence of a single point of
failure: this means that if the central node gets damaged, then the whole system
stops working. Networks that use the centralized topology should not be too large,
or the traffic of data would be unsustainable for the controller. The development
of centralized systems is relatively fast, as they are conceptually rather simple and
straightforward.

Figure 2.1: The representation of a centralized control architecture.

2.2.2 Decentralized control

In a decentralized architecture, the control intelligence is not concentrated in a
single hub, but it is shared between a few nodes, each of which is in turn the
master node of a smaller group of agents participating in the system. Essentially, a
decentralized control strategy could be defined as a collection of smaller centralized
arrangements. Due to their structure, decentralized schemes have a few points of
failures (the master nodes of each subsystem), but a malfunctioning would cause
just limited damages: indeed, only the actors directly tied to the faulty hub would
be affected, while the rest of the network could carry on normally. The scalability
of such architecture is surely better than that of the centralized one, because of its
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natural subdivision into smaller clusters. Implementing a decentralized network
is significatively more complex than realizing its centralized equivalent since the
structure is not as plain.

Figure 2.2: The representation of a decentralized control architecture.

2.2.3 Distributed control

The distributed architecture is undoubtedly the most complex of the ones ana-
lyzed, but it often guarantees advantages that overcome the project challenges. In
such a situation, all the nodes are equivalent, and each one of them can produce
the necessary output command exploiting only the information provided by its
neighbors. As shown in figure 2.3, the structure of a distributed system reminds
the one of a net, in which every node is well connected to the ones close to itself.
Due to the numerous connections of each joint, distributed architectures are the
most stable ones, because the failures of nodes and links are naturally bypassed
through other communication routes. On the other side, maintenance is one of the
most critical issues of this type of system: indeed, a simple change in a node could
start a waterfall effect exposing a large number of other problems. Despite the
obvious design challenges, a distributed system would have unlimited scalability,
considering that no nodes would ever be overloaded, even adding new joints[15].
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Figure 2.3: The representation of a distributed control architecture.

To conclude this analysis, a system must be carefully examined to be certain
to choose the most suitable architecture for the requirements. In the case of a
relatively small number of agents, it may be better to use a centralized control
design, because the advantages of a decentralized or distributed one would not
be enough to justify the higher project effort. Most certainly, it is fundamental
to take the needed precautions to avoid or solve the problems that a fault in the
system may cause. As we stated before, indeed, a simple defect could be fatal
for the whole network. Instead, if we already know that the system will expand
in the future, it would be more beneficial to implement a decentralized, or even
better a distributed architecture. It is the only way to ensure that the growing
network would not overburden the control nodes and the system would have a
higher tolerance to joints and communication failures.

2.3 Swarming algorithms

Many different strategies have been implemented in the last few years, with the
ultimate goal of guaranteeing the best possible performance, in terms of formation
keeping, of a swarm of UAVs. Zhang and Mehrjerdi [16] perform a detailed analysis
of various methodologies of coordinated control of flying vehicles. According to such
a study, the most common algorithms are based on six main techniques: virtual
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structure, behavior-based, leader-follower, artificial potential, graph-based, and
intelligent control. In the following section, we will summarize these ideas and
present some examples of existing algorithms.

2.3.1 Virtual structure

By definition, «a virtual structure is a collection of elements, e.g. robots, which
maintain a (semi-) rigid geometric relationship to each other and to a frame of
reference»[17]. The idea behind this methodology is to treat the entire formation
as a single body. The expected motion profile is passed as input to the virtual
structure, which is, in turn, able to compute the movement of each component
of the swarm. The main upside of such a technique is its simplicity, while on the
other side, the downside is its strongly centralized architecture, which introduces a
single point of failure in the system. The virtual structure scheme is said to have
a bidirectional flow of control: it means that the position of the virtual structure
commands the position of the robots, which in turn influences the whole system.

Lewis and Tan [17] give a general explanation of such a technique. Assuming
a virtual structure to be composed of as many points as the number of robots
to be controlled, the first step of this method is the definition of the univocal
mapping between each robot and the corresponding point of the virtual structure.
It is now possible to define an objective function, whose role is to quantify the
positioning error of the robots with respect to the virtual structure. Such a function
computes the sum of the distances between each component of the arrangement and
its assigned virtual structure point. Then, minimizing the value of the objective
function, we get the best possible configuration of the initialized virtual structure.
The following phase would be the planning of the movement, both linear and angular,
of the virtual structure. It is important to notice that, if the set displacement is
not within the reach of the robots, an error will be surely introduced. Hence, the
physical limitations of the hardware should be always taken into account to reduce
the inaccuracy of the system. Then, knowing the exact position and attitude to be
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reached, it is sufficient to compute the desired trajectory and consequently translate
it into lower-level commands to be input to the motors of each robot.

Algorithm Virtual structure
1: initialize the virtual structure
2: while true do
3: align the virtual structure with the current robot positions
4: move the virtual structure by ∆x and ∆θ
5: for all robots do
6: compute the trajectory to move it to the desired virtual structure point
7: adjust the velocity to follow the desired trajectory
8: end for
9: end while

Table 2.1: Virtual structure formation control algorithm[17].

2.3.2 Behavior-based approach

Behavior-based control is a branch of engineering that makes use of animal systems
as an example. Instead of trying to set up a complex model of the environment,
which would require quite a lot of time and resources, the intelligent performance
is obtained by combining in a constructive way many simple behaviors running
simultaneously. A behavior could be defined as the sequence of operations needed
to accomplish the desired result. For example, if the goal is to follow a certain
object, the behavior would consist of the actions of detecting it, setting the right
orientation, and moving towards the objective. Usually, a behavior-based system
is also reactive, which means that instead of modeling the world it is operating
in, the robot reacts directly to the data coming from its sensors. Combining an
initial set of predefined behaviors with the capability of learning from previous
experiences, the ability to perform the desired operations is obtained[18].

Xu et al. [19] study a behavior-based control to make a swarm of robots keep
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a predefined formation. As explained before, the total behavior is obtained as
the combination of various sub-behaviors: in this case, such conducts are moving
towards the goal, avoiding obstacles, wall-following, avoiding robots and formation-
keeping. It is possible to represent the behavior mathematically as a vector product,
in this specific case as

vdirection = [f1 f2 f3 f4 f5]


vgoal

vobstacle
vwall

vavoidance
vformation

 , (2.1)

where {f1, f2, f3, f4, f5} are the weighting factors of the different behaviors.
While the first three components of the column vector in equation 2.1 are part
of the tracking task of the system, the last two directly influence the formation
control.
When two robots get too close to each other, the behavior that manages the
avoidance between swarm components comes into play. Assuming the formation
to be lying on a plane parallel to the xy plane, we could set (xi, yi) to be the
position of robot Ri and (xj, yj) the one of robot Rj . Then, the behavior could be
computed as

vavoidance = 1ñ
(xj − xi)2 + (yj − yi)2

C
± (xj − xi)
± (yj − yi)

D
. (2.2)

The corresponding weighting parameter is defined as

f4 (dr) =
0, br ∈ (br,+∞)

ardr, br ∈ [2r0, br]
, (2.3)

where dr is the distance between the two bodies, r0 is the physical radius of the
robots, ar and br are tunable factors, and in particular br represents the threshold
distance that enables this behavior.
To keep a fixed formation, each robot of the swarm should keep a predefined angle
and distance with respect to the others. If the robot Rj uses its neighbor Ri as a
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reference, then its ideal position could be defined asC
xj,id
yj,id

D
=
C
xi + dr cos (αij + θ)
yi + dr sin (αij + θ)

D
, (2.4)

where θ is the direction of the motion of the formation, and αij is the angle that
such a direction makes with the line connecting the two robots. Hence, the behavior
is set as

vformation = 1ñ
(xj,id − xj)2 + (yj,id − yj)2

C
xj,id − xj
yj,id − yj

D
. (2.5)

The weighting parameter related to the formation-keeping behavior is described as

f5 (df ) =
0, df ∈ (0, Ô)

afdf , df ∈ [Ô,+∞)
, (2.6)

where df is the distance between the position of the robot and its ideal location
in the formation, af is a tunable factor, and Ô is the threshold value of df that
activates the behavior.

In this simplified case with no tracking action, the combination of robot-avoidance
and formation-keeping capabilities grants that the swarm is able to maintain its
structure, ensuring no collision between its members.

2.3.3 Leader-follower strategy

The leader-follower architecture assumes that one robot is identified as the leader
of the swarm, while the others, which are said followers, should react to its moves.
In particular, concerning formation control, each follower should maintain a fixed
relative position with respect to the leader of the swarm. The strengths of such
a methodology are its intuitiveness and simplicity, but it lacks feedback from the
followers to the leader, and that is one of the most evident drawbacks of this
control architecture. Moreover, in case of failure of the leader (e.g. crash or loss
of communication with the rest of the swarm) the formation control would stop
working completely[20].
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Choi et al. [21] analyze and implement a formation control based on the leader-
follower architecture: the method used is the so-called separation-bearing, also
known as (d, ϕ)-control. Such an approach relies on the fact that, in order to keep a
compact formation, the followers should maintain the desired values of this couple
of states with respect to the swarm leader. The first step of the algorithm is the
implementation of exact formation control, that is the ability of keeping d = dref

and ϕ = ϕref . Assuming that Rl is the leader robot and Rf is the follower, it is

vf = vl
cos

1
β − ϕref

2
cos (ϕref ) (2.7)

ωf = vl
sin (β)

dref cos (ϕref ) , (2.8)

where β is the angular difference between the direction of the leader and the one of
the follower, ϕref is the reference value of the angle between the direction of the
Rf and the virtual line connecting it to Rl, and dref is the reference value of the
distance between the leader and the follower.

Figure 2.4: The scheme of the described leader-follower architecture.

The second step is an adjustment of equations 2.7 and 2.8 to make the position
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error disappear at steady state. First of all, it is possible to decompose the error
into its components parallel to the x and y axes of the follower reference system, as

ex = d cos (ϕ) − dref cos
1
ϕref

2
(2.9)

ey = d sin (ϕ) − dref sin
1
ϕref

2
, (2.10)

where d is the distance between the leader and the follower and ϕ is the angular
difference between the direction of Rf and the virtual line connecting it to Rl.
Notice that the total error is computed as e =

ñ
e2
x + e2

y.
Knowing the error, it is feasible to perform a correction to the target linear and
angular velocities computed in equations 2.7 and 2.8 and set

vf = vl
cos

1
β − ϕref

2
cos (ϕref ) + kvex (2.11)

ωf = vl
sin (β)

dref cos (ϕref ) + kωey, (2.12)

where kv and kω are tunable parameters.
What was explained for just a single follower could be extended to larger

swarms. As stated before, the problem of such a structure is the lack of feedback
communication from the followers to the leader. Moreover, each follower drone
only has knowledge about the leader of the formation, but it has no information
about the position and the state of its peers in the swarm.

2.3.4 Artificial potential

A very interesting method to control the shaping and keeping of a formation of
UAVs is based on the concept of artificial potential.

Definition[22]. A scalar function V (x) : Ω → R is an artificial potential field

defined at each point x ∈ Ω, where Ω is a subset of Rm.

The gradient ∇xV (x) of a potential field V (x) is defined as

∇xV (x) =
5
∂V

∂x1

∂V

∂x2
· · · ∂V

∂xm

6T
, (2.13)
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and it determines a vector field in Ω, which is the starting point of the algorithm.
Howard et al. [23] study a system using a potential-based architecture to handle

the autonomous distribution of a set of sensors with motion capability into a
building. The presence of an artificial potential field U means that each body in
the scheme experiences the effect of a force F , derived as the gradient of the scalar
field U , that is

F = −∇U. (2.14)

It is convenient to consider an analogy with an environment with N nodes carrying
an electric charge each: the resulting electric potential field at the position of node
i would be

Ui = k
NØ
j=1
j /=i

A
1

ërijë

B
, (2.15)

where k is a constant value indicating the intensity of the potential field, and rij is
the vector going to node i from node j.
The gradient of the artificial potential field can be rewritten and solved using the
chain rule, as

Fi = −dUi
dx

=

= −
NØ
j=1
j /=i

A
dUi

dërijë
· dërijë

dx

B
=

= −k
NØ
j=1
j /=i

A
1

ërijë2 · rij
ërijë

B
.

(2.16)

Once the forces acting on each node have been defined, a suitable model to describe
the motion is used. In particular, the chosen equation is

ẍi = Fi − νẋi

mi

, (2.17)

where ẍi represents the acceleration of vehicle i, ẋi is its velocity, mi denotes its
mass and ν is the viscous friction coefficient.
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Starting from a situation in which a certain velocity v is commanded to the vehicle
at time t, then the goal of the control is to get the corrective value ∆v to modify
the velocity input at time t+ ∆t. Applying the stated idea to equation 2.17, and
assuming the considered time interval to be small enough, it is

∆vi = Fi − νẋi

mi

· ∆t. (2.18)

According to the physical limitations imposed by the structure of the vehicle, it is
possible, if necessary, to saturate the computed acceleration to the desired value.
In particular, it is

∆vi =


∆vi, ë∆vië ≤ amax

∆vi
ë∆vië

amax, ë∆vië > amax
. (2.19)

Following the definition of a suitable acceleration value, the correction is applied
to the velocity command as

vt+∆t
i = vti + ∆vi. (2.20)

As it was done for the acceleration, the velocity needs to be saturated to a maximum
value, specific for each vehicle:

vi =


vi, ëvië ≤ vmax

vi
ëvië

vmax, ëvië > vmax
. (2.21)

As usual, the computed velocity command is then sent to the lower-level controller,
that in turn translates it into a message understandable by the vehicle motors.

An architecture based on the notion of artificial potentials is conceptually a
strong control scheme. First of all, it is naturally oriented towards a distributed
control strategy, and hence it is suitable also for large systems. Moreover, the
idea implemented for the formation keeping task could be easily extended to other
situations, for example obstacle avoidance, exploiting the data perceived by the
sensors onboard.
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Algorithm Artificial potential
1: while true do
2: read the distances from all other robots
3: compute the resulting virtual force
4: calculate the needed velocity variation ∆v
5: if ë∆vë > amax then
6: saturate the velocity variation
7: end if
8: compute the new theoretical velocity command
9: if ëvë > vmax then

10: saturate the velocity
11: end if
12: send the command to the lower-level control
13: end while

Table 2.2: Artificial potential formation control algorithm[23].

2.3.5 Graph-based algorithm

Graph theory is the branch of mathematics that studies graphs.

Definition. A graph G is a pair of finite sets (V, E). The elements of V =

{v1, v2, . . . , vn} are called the vertices (or nodes) of G, while the elements of E =

{e1, e2, . . . , em} are called the edges (or arcs) of G. Moreover, each edge e ∈ E is a

set of two distinct nodes, usually denoted by e = (v, w) with v, w ∈ V .

Control theory is one of the various fields of application of the study of graphs. In
particular, graphs are ideal to model and represent the complex structures that
can be found in the analysis of multi-vehicular systems.

Marjovi et al. [24] deploy a control system whose goal is to make a group of
vehicles keep a predefined formation on a highway. Although studied for a very
specific scenario, this algorithm could be extended to a wider set of situations,
including UAV’s swarming.
Keeping into consideration N vehicles randomly placed in space, their position
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could be indicated with the undirected graph G = (V,E), where the vertices V
correspond to the vehicles, and the edges E represent the communication links. A
first solution to the initial problem is given by

ẋ = − (L ⊗ I2) (x − b) , (2.22)

where L = I · W · IT is the Laplacian matrix, I is the incidence matrix defining
the edges of G, W is a weight matrix, I2 is the identity matrix, x includes the
position of each vehicle and b indicates the desired offset of each vehicle from the
center of the formation[25].
Although its proven stability, such a control algorithm is limited by the fact that
it is static: this means that it is not able to properly react to a vehicle joining or
leaving the formation after a certain time. The listed capabilities are added by
implementing a second dynamic control algorithm.
The local neighborhood ND of a node defines the vehicles close to itself according
to the concept of topological distance instead of the classic euclidean one. For
example, N1 denotes all the vehicles in the first layer around the reference, while
N2 includes also the ones in the second tier, as depicted in figure 2.5. Each drone

Figure 2.5: A vehicles’ formation and the neighborhood definition.
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denotes the others by a couple of values indicating the topological position with
respect to itself, plus a global identifier, unique to each vehicle. Assuming that all
the agents of the formation are capable of measuring the distance em,n and the
angle αm,n to the other elements of a certain local neighborhood, the following
dynamic control algorithm can be designed:

C
ẋ
ẏ

D
=


Ø

(m,n)∈ND

wm,n ·
A
em,n cos (αm,n) −m ·

A
bx
2

BB
Ø

(m,n)∈ND

wm,n · (em,n sin (αm,n) − n · by)

 , (2.23)

where (m,n) indicates the topological position of the considered UAV, wm,n is a
tunable parameter, and bx and by are the desired offset distances on the x and y
axes respectively.

If compared to the previously proposed static algorithm, this one presents some
fundamental advantages. First of all, it is based only on the relative position of
the vehicles with respect to each other, hence it is not GNSS-dependent. Moreover,
each vehicle establishes a communication only with the machines in its local
neighborhood, without being influenced by possible changes happening in the rest
of the structure. This feature makes the control algorithm fully decentralized,
meaning that each vehicle computes its velocity command based only on the
information coming from its own sensors. For this reason, the control is scalable to
large formations of vehicles, possibly with dynamic changes.

2.3.6 Intelligent control

Intelligent control relies on the idea of emulating the human way of reasoning to
bring the system to the desired state of stable equilibrium, and to be able to keep
such a situation in time. Imitating the human brain means being able to adapt
to situations even in the case of large uncertainties, learn from experience, and
manage big sets of data to handle complex systems[26].

Rezaee et al. [27] implement a leader-follower fuzzy algorithm to control the
formation flight of multiple UAVs. Fuzzy logic is opposed to traditional boolean
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logic: the latter considers a variable to be either true or false (1 or 0), while the
former accepts also intermediate values, which means a variable can be partially
true or false. One of the biggest advantages of fuzzy controllers with respect to
traditional ones is the usage of linguistic variables, which make the project more
human-readable and relatively easy to implement even in case of partial knowledge
of the system model.
Each UAV in the system is modeled as

ẋ = V cos (γ) cos (ψ)

ẏ = V cos (γ) sin (ψ)

ż = V sin (γ)

V̇ = T −D

m
− g sin (γ)

ψ̇ = ay
V cos (γ)

γ̇ = −g cos (γ)
V

+ ap
V
,

(2.24)

where (x, y, z) indicate the position of the vehicle, V is the longitudinal speed, γ
and ψ represent the pitch and yaw angles, T is the thrust, m denotes the mass of
the UAV, g is the gravitational acceleration, D indicates the drag effect, and ap
and ay are the pitch and yaw accelerations. Moreover, l and f subscripts are used
to denote leader and followers.
The desired position of the follower vehicle with respect to the leader of the
formation is defined as

xfl = −r cos (ζ + γl) cos (χ+ ψl)

yfl = −r cos (ζ + γl) sin (χ+ ψl)

zfl = −r sin (ζ + γl) ,

(2.25)

where r is the reference distance between the leader and the follower, ζ represents
the angle between the xy plane of the follower and the virtual line connecting it to
the leader, and χ is the angle between the xz plane of the follower and that same
virtual line.
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Consequently, to keep the wanted position, the velocity command of the follower is
determined to be

vx = λ (xf − xl − xfl) + ẋl + ẋfl

vy = λ (yf − yl − yfl) + ẏl + ẏfl

vz = λ (zf − zl − zfl) + żl + żfl,

(2.26)

where λ is a tunable parameter.
From equations 2.26, it is possible to define the desired values of the control outputs
as

Vfd =
ñ
v2
x + v2

y + v2
z

ψfd = arctan2 (vy, vx)

γfd = arctan2
 vzñ

v2
x + v2

y

 ,
(2.27)

and hence the errors of the state variables as
eV = Vf − Vfd

eψ = ψf − ψfd

eγ = γf − γfd.

(2.28)

The studied fuzzy algorithm is designed to have four inputs (eV , eψ, eγ, and Vf)
coming from the previously described model, and three outputs (Tf , ayf , and apf )
that are then sent to the actuators of the vehicle. The following step consists
in the definition of the membership functions of the specified variables, that are
illustrated in figures 2.6, 2.7, and 2.8.
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Figure 2.6: Membership function of eV , eψ, eγ and Tf [27].
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Figure 2.7: Membership function of Vf [27].
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Figure 2.8: Membership function of ayf and apf [27].

Then, the algorithm is designed to give a suitable linguistic value of the output
depending on the analyzed inputs, following the logic rules defined in tables 2.3,
2.4, and 2.5. Notice that NS stands for negative small, N for negative, NB for
negative big, Z for zero, non-Z for non-zero, PS for positive small, P for positive,
and PB for positive big.

eV

Vf Z non-Z

P N N
N P P
Z Z Z

Table 2.3: Fuzzy rules for Tf [27].
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eψ

Vf Z non-Z

P NB N
N PB P
Z Z Z

Table 2.4: Fuzzy rules for ayf [27].

eγ

Vf Z non-Z

P NB N
N PB P
Z Z Z

Table 2.5: Fuzzy rules for apf [27].

The last step of the studied control algorithm is the so-called defuzzification, that is
the process of translating the linguistic values previously obtained into quantifiable
data, according to some conversion scale specific for each application.

The used methodology is relatively easy, as it could be noticed by analyzing
the straightforward logic behind the used fuzzy rules. Moreover, it has the major
advantage of being computationally not expensive, and such a peculiarity would
guarantee good performances even for bigger swarms. On the other side, the
leader-follower architecture specific of this study introduces the typical limits that
have been described in section 2.3.3.
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Chapter 3

Tracking techniques

Trajectory tracking is a central topic in the discussion about potential applications
of autonomous drones, and more in general mobile vehicles. This capability is
present also in some commercial drones, which use various techniques to detect
the objective and follow its motion. The different approaches strongly depend
on the available information coming from the onboard sensors, in addition to the
number of UAVs working collaboratively to chase the same reference. The possible
applications of such a feature are countless, ranging from recreational scopes to
military reasons.

3.1 Tracking algorithms

In this section, some of the procedures to get tracking ability already present in the
state of the art will be analyzed. In particular, some details will be discussed about
multilateration techniques, visual-based algorithms, and iterative approaches.
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3.1.1 Multilateration

True-range multilateration indicates a procedure used to compute the position of a
reference body by exploiting the geometry of the system. This approach is built
on the knowledge of the absolute distance to the object to be localized from N

anchors, whose position is well-known[28]. Once the localization issue is solved,
then the tracking command can be easily obtained via various control techniques,
the simplest of which is a proportional control on the position.

Sang et al. [29] explore one possible way to solve multilateration problems
for UWB-based positioning systems. In an ideal situation, localizing an object
univocally would require intersecting three circles in 2D, and four spheres in 3D.
Though, since each ranging measurement comes with an error, an exact unique
solution to the proposed system is very unlikely to be found. Then, to overcome
the issue, the goal becomes finding the solution that better approximates the real
one. For this reason, the more anchors are included in the architecture, the more
the localization algorithm gains precision and accuracy.
Considering a local reference system, let us define the unknown position of the
objective, that is the UWB tag, as (xt, yt, zt). Then, the spheres centered in every
anchor, whose radii are the distances from the tag, can be denoted analytically as

r2
i = (xi − xt)2 + (yi − yt)2 + (zi − zt)2 , (3.1)

where i is an indicator of the considered anchor, and ri is the range between station
i and the tag.
Taking into account two of the system anchors, it is possible to linearize the equation
by subtracting equation 3.1 referred to i to the same considering j:

(xj − xi)xt + (yj − yi) yt + (zj − zi) zt =

= 1
2
è
r2
i − r2

j +
1
x2
j + y2

j + z2
j

2
−
1
x2
i + y2

i + z2
i

2é (3.2)

Repeating this subtraction for each couple of anchors, the resulting equations could
be grouped to form a matrix equation:

Ax = b, (3.3)
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where

A =



x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0
x3 − x0 y3 − y0 z3 − z0

... ... ...
xN−1 − x0 yN−1 − y0 zN−1 − z0

 , x =

xtyt
zt

 ,

b = 1
2



r2
0 − r2

1 + (x2
1 + y2

1 + z2
1) − (x2

0 + y2
0 + z2

0)
r2

0 − r2
2 + (x2

2 + y2
2 + z2

2) − (x2
0 + y2

0 + z2
0)

r2
0 − r2

3 + (x2
3 + y2

3 + z2
3) − (x2

0 + y2
0 + z2

0)
...

r2
0 − r2

N−1 +
1
x2
N−1 + y2

N−1 + z2
N−1

2
− (x2

0 + y2
0 + z2

0)

 .

Figure 3.1: Localization of a tag using 4-anchor multilateration[29].

Once the problem is set, it is possible to find the best possible solution, keeping into
consideration the Gaussian errors that affect the ranging measurements. The only
condition to be verified is the invertibility of the matrix ATA, and it is done by
evaluating the column rank of matrix A. In particular, the problem has a solution
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if the anchors do not lie on the same line in 2D, and if they are not on the same
plane in 3D. Then, the best possible solution is found applying the least-squares
method, that is

x =
1
ATA

2−1
ATb. (3.4)

Usually, to improve the quality of the performed localization, some weighting and
filtering techniques are used, to remove the outliers and get better and coherent
results.

3.1.2 Visual-based method

Another tracking methodology relies on the data coming from a camera to find and
follow the objective. Cameras are often already present on many drones, because
they are useful to carry on lots of different tasks. Images, if analyzed properly,
provide more than enough information to solve the tracking issue. To reduce the
burden on the onboard computational unit, a detail that stands out and is easily
recognizable can be used to characterize the reference body: some examples are
peculiar shapes, QR codes, or other particular stickers.

Sato [30] implements a system to control the motion of a UAV, according to
what is filmed by an onboard camera. The pictures taken by the drone are sent via
ROS to a ground station, where they are analyzed by a computer running OpenCV.
After correcting the image distortion, the first goal is to detect the recognizable
features of the chased body. Then, supposing that the ideal situation is to have
the found feature in the center of the picture, it is possible to define the errors on
the x and y axes of the image, measured in pixels, as

ex = xc − xf (3.5)

ey = yc − yf , (3.6)

where (xc, yc) is the center of the image, and (xf , yf ) are the coordinates of the
characteristic feature, as pictured in figure 3.2.
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Concerning the z axis, the objective is to keep a fixed reference altitude rz, hence
the vertical error is defined as

er = rz − zf , (3.7)

where zf is the altitude of the drone with respect to the ground, measured by an
ultrasound sensor.

Figure 3.2: The captured image with the coordinates of the recognizable feature
on the reference body.

The following step is the conversion of the distances from pixels to metric units, that
is done experimentally, by moving the reference horizontally of regular intervals in
the x and y directions. Then, from the obtained couples of values in pixels and
metric units, a mathematical relationship is extrapolated via least-squares method.
At this point, the control law can be defined as a function of the introduced errors:

ux (t) = kPxex (t) − kDx

dxf (t)
dt

uy (t) = kPyey (t) − kDy

dyf (t)
dt

uz (t) = kPzez (t) ,

(3.8)

where kPx , kDx , kPy , kDy , and kPz are tunable parameters.
The computed commands are then sent to the autopilot of the drone, that will
automatically transform them into suitable motor inputs.
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The analyzed methodology, though, presents some disadvantages if compared
to the others. Since it is based on images, it works only if a clear line of sight is
available between the UAV and its objective. Moreover, image processing requires
a discrete amount of computational power, which in the analyzed case is overcome
by sending the data to a ground station. Considering multiple anchors, sending all
the data to the same computing station would introduce a dangerous single point
of failure in the system. If possible, this situation should always be avoided.
The algorithm is summarized in table 3.1.

Algorithm Visual-based tracking
1: estimate the relationship between a pixel in the image and the equivalent in

the real world
2: while true do
3: take a picture from the drone
4: correct the image distortion
5: detect the recognizable feature of the target
6: compute the x and y errors from the image (in pixels)
7: compute the z error from the ultrasound sensor (in meters)
8: convert the x and y errors to meters
9: apply the control law

10: end while

Table 3.1: Visual-based tracking control algorithm[30].

3.1.3 Iterative approach

In situations with multiple chasing vehicles acting collaboratively towards the same
goal, it is possible to exploit distance data coming from different locations in space.
Starting from a scenario very similar to the one presented when introducing the
multilateration approach, it is possible to get a solution via successive iterations.

Jiang et al. [31] propose a localization algorithm that relies on iterative estima-
tion of the centroid of the anchors. Let us consider N known nodes, each of which
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is in position (xi, yi, zi), and one unknown target to be located, denoted with
(x, y, z). With the described information, it is possible to analytically compute
the center of the swarm, that is the first step of the algorithm, as

xO1 = 1
N

NØ
i=1

xi

yO1 = 1
N

NØ
i=1

yi

zO1 = 1
N

NØ
i=1

zi.

(3.9)

The distance between the found centroid and the target could be indicated by

dO1 =
ñ

(xO1 − x)2 + (yO1 − y)2 + (zO1 − z)2, (3.10)

which through some mathematical passages simplifies to

dO1 =

öõõõô 1
N

NØ
i=1

(di)2 − 1
N2

N−1Ø
i=1

NØ
j=i+1

(dij)2, (3.11)

where di denotes the distance between anchor i and the target, and dij is the
distance from node i to node j.
It is immediate to prove that there exists at least one anchor that is further away
from the target than the computed centroid. Then, the same passage is repeated
after substituting the node with the biggest di with a virtual node in position On.
The successive goal is the definition of a stopping criterion, to univocally set a
condition for the algorithm to stop iterating. In particular, the analyzed study
derives it by comparing two successive centroids obtained via iteration, and setting a
suitable threshold. When such a condition is fulfilled, the point On is a sufficiently
good approximation of the position of the tracked body. Hence, the stopping
criterion is defined as

d2
On−1 − d2

On
< Ô, (3.12)

where Ô is the tunable threshold.
Once the position of the target is found with enough accuracy, it is not difficult to
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(a) 1st iteration.

(b) 2nd iteration.

(c) 3rd iteration.

Figure 3.3: The first three iterations of the iterative localization algorithm.

define a simple control architecture to compute the commands in the x, y, and z
directions.
This study was realized thinking about the localization of a target moving inside
the space delimited by the sensors. Although very accurate and efficient in the
standard situation, it does not work correctly if the objective body leaves that
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space. The reason is not difficult to verify intuitively: indeed, the centroid that
approximates the searched position can never be outside of the space delimited by
the anchors.
The algorithm is summarized in table 3.2.

Algorithm Iterative tracking
1: define a stopping criterion
2: while true do
3: read the anchors’ position
4: read the distances between the anchors
5: read the distance between the anchors and the target
6: repeat
7: compute the centroid of the swarm
8: compute the distance of the centroid from the target
9: substitute the further node with the centroid

10: until the stopping criterion is not fulfilled
11: apply a simple control law on the position
12: end while

Table 3.2: Iterative tracking control algorithm[31].
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Chapter 4

Project development

This project was developed at PoliTO Interdepartmental Centre for Service Robotics
(PIC4SeR). PIC4SeR is a research center whose goal is the integration of researchers
with different fields of expertise to carry on studies on service robotics and innovative
applications.

The work of the current thesis aims at studying, implementing, and simulating
a system to successfully perform formation flight of a small number of UAVs.
The first goal of the project is to test the capability of the drones to maintain a
compact formation while moving towards a desired GNSS location. The subsequent
challenge of the swarm is to chase the trajectory of a reference body, which could
be either terrestrial or aerial, whose global position is unknown. The only available
information is the GNSS location of the drones, also denoted as anchors, and the
output of the UWB sensors mounted on each vehicle involved in the system, which
give the distance between each couple of bodies.
Possible applications of such a system include deploying a set of autonomous drones
to follow a reference entity that operates in GNSS-denied environments. Moreover,
having a sufficient number of anchors, they could operate conceptually like satellites,
allowing to compute the position of the followed body via multilateration or other

45



4 – Project development

localization techniques.

4.1 Control architecture

After evaluating various possibilities, analyzing the current state of the art, we
chose to implement a partially decentralized velocity control to succeed in the
fulfillment of the described objectives.
The algorithm is conceptually subdivided into two parts: the first one has the goal
of formation-keeping, the second one instead aims at guaranteeing stable tracking
of the reference, be it a GNSS position or a physical body. The output of each of
the two pieces of the algorithm is a velocity vector: by summing the two obtained
velocities, a fully functioning control is obtained as

v = vswarm + vtrack, (4.1)

where vswarm and vtrack will be better defined in sections 4.2 and 4.3 respectively.
The swarming part of the algorithm is implemented in a decentralized fashion:
after receiving all the needed data from the other anchors, each UAV computes
on-board its own velocity command. On the other side, the tracking algorithm is
naturally oriented towards a centralized structure. Since the tracking velocity is
the same for each component of the formation, it is computed only once by the
ground station, and then provided to each anchor, which will apply equation 4.1
and transmit the command to the lower-level controllers.

4.2 Swarming control

Due to the structure of the tracking algorithm, based on the partial information
that the robots have about the system, the formation-keeping task is fundamental,
not only to avoid collisions but also to guarantee the correct pursuit of the objective.
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First of all, each anchor should collect the needed information, either from its
own sensors, or from the networks connecting it to the other agents. In particular,
it should receive the GNSS position of all the other anchors, that will be used
to compute the direction unit vectors between itself and its peers. Knowing the
position of every anchor, the following step consists in the computation of the
compass angle between itself and every other UAV. It is determined as

θij = arctan2
λi − λj, log

 tan
1
ϕi

2 + π
4

2
tan

1
ϕj

2 + π
4

2
 , (4.2)

where ϕ and λ denote latitude and longitude respectively, and the subscript i
denotes the anchor on which the swarming algorithm is running.
Once computed the angle θij, it is possible to compute the unit vector in the
direction that goes from vehicle i to vehicle j, that is

uij =

sin (θij)
cos (θij)

0

 , (4.3)

where the first term of the vector represents the component in the east direction,
and the second represents the north direction.
Moreover, to improve the performance of the algorithm even in the case of low
GNSS precision, we use the data from the UWB sensors to compute the distance
norm. Since the goal of this project is to maintain a planar formation, what we
actually need is the horizontal distance between each couple of UAVs. To correct
the absolute distance coming from the UWB sensor, the best solution is to avoid
using the GNSS altitude data, which has usually lower precision than the latitude
and longitude ones. For this reason, a laser sensor pointing downwards is used to
get the relative altitude of the drone, and the horizontal distance between any two
bodies is computed as

dhor,ij =
ñ

(dUWB,ij)2 − (dlaser,i − dlaser,j)2, (4.4)

assuming a planar ground surface.
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Concerning this part of the algorithm, we opted for a control based on the
concept of artificial potential, in particular applying a slightly modified version
of what was studied by de Vries and Subbarao in [32]. The potential function is
chosen to have a quadratic attractive part and an exponential repulsive part, as

Ji =
NØ
j=1
j /=i

1
2a (dhor,ij)2 + bc

2 e
−

(dhor,ij)2

c

 , (4.5)

where N is the number of members of the formation, and a, b, and c are positive
tunable parameters[33].
Consequently, the velocity command is obtained by differentiating the artificial
potential function 4.5, obtaining

vswarmhor,i = −∇Ji = −
NØ
j=1
j /=i

dhor,ij
a− be−

(dhor,ij)2

c

uij

 . (4.6)

In the described velocity command, it is possible to distinguish between a linear
attractive component and an exponential repulsive part. Such a design choice was
made to guarantee higher reactivity in case of two drones getting too close to each
other, with respect to the situation of a couple of UAVs incrementing too much
their relative distance. Indeed, the primary goal is to avoid collisions that would
cause structural damages to the vehicles.

Since the previously described control algorithm commands only the horizontal
velocity of the anchors, it is necessary to implement a mechanism to maintain the
desired swarming altitude. To reach such a goal, we used a simple proportional
controller: the vertical command is defined as

vswarmz,i = kh (hdes − dlaser,i) , (4.7)

where kh is a tunable parameter, and hdes is the desired swarming altitude.
Hence, the swarming velocity vector is finally defined as

vswarmi = vswarmhor,i +

 0
0

vswarmz,i

 . (4.8)

The analyzed steps are summarized in table 4.1.
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Algorithm Swarming
1: while true do ó The following algorithm runs on each anchor
2: read the current GNSS position and relative altitude
3: read the GNSS position and relative altitude of every anchor
4: derive the direction unit vectors between itself and every other anchor
5: read the distance between itself and every other anchor
6: compute the horizontal distance between itself and every other anchor
7: apply the horizontal swarming velocity algorithm
8: compute the vertical velocity
9: send the command to the lower-level control

10: end while

Table 4.1: Algorithm for collision-free formation hovering.

4.2.1 Equilibrium distance

In the simple case of N = 2, it is possible to compute the equilibrium distance
between the vehicles by finding the value for which equation 4.6 goes to zero.
Solving the equation, we obtain

deq,2 =

öõõôc log
A
b

a

B
. (4.9)

Instead, assuming to have N = 4 drones being part of the formation, which is
the situation we studied and simulated, we can compute the side of the regular
polygon that the UAVs will maintain over time. This value will be useful later
on to evaluate the performance of the swarming algorithm in the simulation and
testing phases.

Proof. The side of the square will be computed by solving the velocity algorithm

for the vehicle laying on the positive side of the y axis, but a similar proof could

be done for the other drones.

Due to the symmetry of the formation, it is clear that vx = 0 for all possible values
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Figure 4.1: Swarm velocity function with N = 2, a = 0.1, b = 1.5, and c = 50.

Figure 4.2: The stable structure of the formation of UAVs.

of the side of the square. Instead, concerning the velocity in the y direction, it is

vy = d4√
2

A
a− be−

d2
4
c

B
ü ûú ý

UAV 2

+ 2 d4√
2

a− be−

1
2 d4√

2

22

c
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ü ûú ý

UAV 3

+ d4√
2

A
a− be−

d2
4
c

B
ü ûú ý

UAV 4

=
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=
√

2d4

A
a− be−

d2
4
c

B
+

√
2d4

A
a− be−

2d2
4

c

B
=

=
√

2d4

C
2a− b

A
e−

d2
4
c + e−

2d2
4

c
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.

Then, setting vy = 0, we get
√

2deq,4
C
2a− b

A
e−

d2
eq,4
c + e−

2d2
eq,4
c

BD
= 0 =⇒ deq,4 = 0, unfeasible

e−
d2

eq,4
c + e−

2d2
eq,4
c = 2a

b
.

Substituting γ = e−
d2

eq,4
c into the previous equation, it is

bγ2 + bγ − 2a = 0

γ = −b±
√
b2 + 8ab

2b .

Discarding the negative solution and substituting back, we obtain

−
d2
eq,4

c
= log

A
−b+

√
b2 + 8ab

2b

B

deq,4 = ±

öõõô−c log
A

−b+
√
b2 + 8ab

2b

B
.

Discarding also in this case the negative solution, it is

deq,4 =

öõõôc log
A

2b√
b2 + 8ab− b

B
. (4.10)

4.3 Tracking control

The second part of the algorithm consists of a subtask running on a central node,
possibly on a ground station or on a companion computer mounted on the physical
followed reference. For what regards the tracking, it is necessary to distinguish
between two situations: traveling in formation towards a known GNSS goal, or
chasing the trajectory of a moving body, without information about its global
position.
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4.3.1 GNSS position tracking

The situation that we are going to describe in this section is conceptually the easier
of the two. Since the position of all the members of the formation is known, it is
possible to compute the geographic angular coordinates of the center of the swarm,
as

ϕc = 1
N

NØ
i=1

ϕi (4.11)

λc = 1
N

NØ
i=1

λi, (4.12)

where ϕ and λ denote latitude and longitude respectively.
Knowing both the start and destination positions, it is possible to compute the
direction unit vector between the two, using equations 4.2 and 4.3. It is worth
noticing that the third component of the vector, that represents the z axis radial
to the Earth surface, is always null because the altitude control is handled onboard
by the swarming algorithm.
Then, the distance between the current position of the center of the swarm
and the destination point is determined using the Inverse function, from the
geographiclib.geodesic library[34].
Having all the information that is needed, a simple proportional control on the
distance to be covered is implemented, determining the east and north components
of the required velocity. Mathematically, the control is denoted as

vtrack = kpdcducd, (4.13)

where kp is a tunable parameter, and dcd is the distance to the destination as
computed in the previous step, and ucd indicates the direction to be followed.
Notice that, for big values of dcd in equation 4.13, the presented algorithm outputs
a proportionally big value of the command velocity. Although, the input to the
rotors is automatically saturated to a maximum value by lower-level controllers,
always guaranteeing a suitable input to the engines, as shown in figure 4.3.
The analyzed steps are summarized in table 4.2.
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Figure 4.3: Tracking velocity function with kp = 0.05, and ëvëmax = 5 m/s.

Algorithm GNSS position tracking
1: read the GNSS position to be reached
2: if no destination has been received then
3: set the current position as destination
4: end if
5: while the position is not reached do
6: read the GNSS position of every anchor
7: compute the coordinates of the swarm center
8: calculate the route compass angle
9: derive the direction unit vector

10: compute the distance to be traveled
11: calculate the tracking velocity vector
12: send the command to each anchor
13: end while

Table 4.2: Algorithm for GNSS position tracking.

4.3.2 UWB target tracking

Tracking a moving reference, instead, requires a more complex algorithm, in
particular if the condition imposes to perform the tracking operation without
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knowing the GNSS position of the body. In addition to the information about
the global position of the UAVs, their relative distance, and their altitude with
respect to the ground, we should consider to have the absolute distance between
each anchor and the vehicle to be followed, given by the UWB sensors. The first
step, hence, is to collect all the data from the drones’ sensors and compute the
direction unit vectors using equations 4.2 and 4.3.

The tracking algorithm that we implemented is based on the assumption that a
specific formation is maintained. In our case, such an assumption is valid, because
the previously described swarming algorithm ensures the stability of the formation
at steady state. Considering these conditions, the examined situation is similar
to the one described in figure 4.4, analyzing the scenario with four anchors in
the swarm. The desired action is the motion of the center of the swarm towards

Figure 4.4: The structure of the swarm that deploys the tracking algorithm on
the xy plane.

the projection of the reference position on the formation plane. Before moving
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to an analytical description, we will try in the following paragraph to explain the
intuitive reasoning behind the implemented tracking algorithm.
Considering the simplest case pictured in figure 4.5, which is a formation of two
drones, we could track the position of the reference body only if it moves on the
line connecting the anchors. In such a case, it is sufficient to compare the distance
of each UAV from the followed body to understand the direction of motion to
be commanded. If the distance from vehicle i is smaller than the distance from
vehicle j, then the center should move towards the position of vehicle i, otherwise,
the opposite should happen. The extension to four anchors allows to chase the
reference in the three-dimensional space, following the presented basic idea: each
couple of UAVs is considered, and the vectorial sum of the obtained components
gives a command that is proportional to the velocity to be followed, as will be
proved later.

Figure 4.5: The structure of the swarm that deploys the tracking algorithm.

The formal definition of what was intuitively described in the previous paragraph
is

vtrackp = 1
β

NØ
i=1


NØ
j=1
j /=i

(dri − drj) uji

 , (4.14)

where β is a tuning parameter, N is the number of vehicles in the swarm, dri is the
euclidean distance between the reference and drone i, drj is the euclidean distance
between the reference and drone j, and uji is the unit vector going from drone i to
drone j.

Proof. Assuming to have N = 4 drones in the swarm, which is the scenario shown

in figure 4.4, they will position themselves to form a square formation. It is then
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possible to decompose the tracking velocity into its x and y components.

vx = (dr1 − dr2) · cos (−45°) + (dr1 − dr3) · cos (−90°)

+ (dr1 − dr4) · cos (−135°) + (dr2 − dr1) · cos (135°)

+ (dr2 − dr3) · cos (−135°) + (dr2 − dr4) · cos (180°)

+ (dr3 − dr1) · cos (90°) + (dr3 − dr2) · cos (45°)

+ (dr3 − dr4) · cos (135°) + (dr4 − dr1) · cos (45°)

+ (dr4 − dr2) · cos (0°) + (dr4 − dr3) · cos (−45°) =

=
√

2 (dr1 − dr2) −
√

2 (dr1 − dr4) −
√

2 (dr2 − dr3) − 2 (dr2 − dr4)

−
√

2 (dr3 − dr4) =

= −2
1√

2 + 1
2
dr2 + 2

1√
2 + 1

2
dr4 =

= 2
1√

2 + 1
2

(dr4 − dr2)

vy = (dr1 − dr2) · sin (−45°) + (dr1 − dr3) · sin (−90°)

+ (dr1 − dr4) · sin (−135°) + (dr2 − dr1) · sin (135°)

+ (dr2 − dr3) · sin (−135°) + (dr2 − dr4) · sin (180°)

+ (dr3 − dr1) · sin (90°) + (dr3 − dr2) · sin (45°)

+ (dr3 − dr4) · sin (135°) + (dr4 − dr1) · sin (45°)

+ (dr4 − dr2) · sin (0°) + (dr4 − dr3) · sin (−45°) =

=
√

2 (dr1 − dr2) − 2 (dr1 − dr3) −
√

2 (dr1 − dr4) −
√

2 (dr2 − dr3)

+
√

2 (dr3 − dr4) =

= −2
1√

2 + 1
2
dr1 + 2

1√
2 + 1

2
dr3 =

= 2
1√

2 + 1
2

(dr3 − dr1)

Let us denote with m the horizontal distance from each anchor to the center of the

swarm, with h the vertical distance between the reference and the center of the
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formation, and with the couple (xr, yr) the position of the reference with respect

to the origin.

ëvë2 = v2
x + v2

y =

=
è
2
1√

2 + 1
2

(dr4 − dr2)
é2

+
è
2
1√

2 + 1
2

(dr3 − dr1)
é2

=

= 4
1√

2 + 1
22 è

(dr4 − dr2)2 + (dr1 − dr3)2
é

=

= 4
1√

2 + 1
22
; 5ñ

(−m− xr)2 + y2
r + h2 −

ñ
(m− xr)2 + y2

r + h2
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+
5ñ

x2
r + (m− yr)2 + h2 −

ñ
x2
r + (−m− yr)2 + h2

62 <
≈

Performing the 4th order Taylor expansion of the obtained equation around the

origin, that is the center of the swarm, we get

≈ 4
1√

2 + 1
22 4m2

m2 + h2

1
x2
r + y2

r

2
=

=
16m2

1√
2 + 1

22

m2 + h2

1
x2
r + y2

r

2
To get the norm of the velocity, it is sufficient to compute the square root of the

previous equation, obtaining

ëvë ≈
4m

1√
2 + 1

2
√
m2 + h2

ñ
x2
r + y2

r

This proves that, if the goal is well inside the square formed by the moving

anchors, the norm of the computed velocity is directly proportional to its distance

from the center of the formation.

∠v = arctan2 {vy, vx} =

= arctan2 {dr3 − dr1, dr4 − dr2} =

= arctan2
;ñ

x2
r + (−m− yr)2 + h2 −

ñ
x2
r + (m− yr)2 + h2,ñ

(−m− xr)2 + y2
r + h2 −

ñ
(m− xr)2 + y2

r + h2
<

≈ õ
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4 – Project development

Performing the 3rd order Taylor expansion of vx and vy around the origin, it is

vx ≈ 2m√
m2 + h2

xr vy ≈ 2m√
m2 + h2

yr

õ ≈ arctan 2
I

2m√
m2 + h2

yr,
2m√
m2 + h2

xr

J
=

= arctan2 {yr, xr}

It means that the direction of the vector going from the center of the formation

to the position of the reference is well approximated by the algorithm if the goal is

sufficiently close to the center of the swarm.

From a practical point of view, the error introduced by the tracking algorithm
is small enough that, when the reference body is close to the center of the swarm
compared to the size of the formation polygon, the system acts as a proportional
control on the position. As pictured in figure 4.6, considering m = 10, h = 15, and
a circle of radius equal to 1 meter around the origin, then the magnitude error is
always lower than 7 millimeters. With the same data, figure 4.7 shows that the
angle error is at most 0.007°: moreover, it is experimentally proved that this error
never exceeds 0.7°, even if the reference is far away from the swarm, meaning that
the formation is always able to reach the objective.
Besides, the more the inter-anchors distance and the vertical swarm altitude
with respect to the reference increase, the more the tracking algorithm is precise.
Figures 4.8 and 4.9 show the maximum value of the magnitude and angular errors
respectively, when the reference lays inside a circle with a unitary radius. Analyzing
the graphs, it is evident how increasing m and h drastically helps to improve the
algorithm performances.

In order to guarantee the convergence to zero of the tracking error at steady state,
though, algorithm 4.14 is not sufficient. For such a reason, an integral component
(mathematically represented as a sum, since we consider to be in discrete time) is
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4.3 – Tracking control

Figure 4.6: The magnitude error introduced by the tracking algorithm for m = 10
and h = 15.

Figure 4.7: The angle error introduced by the tracking algorithm for m = 10 and
h = 15.
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4 – Project development

Figure 4.8: The maximum value of the magnitude error introduced by the tracking
algorithm for (xr, yr) inside a circle of radius equal to 1 meter.

Figure 4.9: The maximum value of the angular error introduced by the tracking
algorithm for (xr, yr) inside a circle of radius equal to 1 meter.
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introduced: the complete algorithm, then, becomes

vtrack (t) = 1
β

NØ
i=1


NØ
j=1
j /=i

(dri − drj) uji

+ 1
γ

t−1Ø
τ=0

vtrack (τ) , (4.15)

where γ is a tuning parameter.
The analyzed steps are summarized in table 4.3.

Algorithm Reference tracking
1: while true do
2: read the GNSS position of every anchor
3: compute the direction unit vectors
4: read the UWB data from every sensor
5: apply the tracking algorithm
6: send the command to each anchor
7: end while

Table 4.3: Algorithm for reference tracking.

4.4 Attitude control

Since the vehicles used in this work are quadcopters, they do not have a preferred
direction of motion on the xy plane. Due to their structure, indeed, they can move
with the same effort in all the possible ways on a plane. Although, also considering
future applications and improvements of the system, we implemented an attitude
controller. Looking at the prospect of mounting a camera on the UAVs, it would
be convenient to have the possibility to automatically adjust the orientation of the
drones as desired. Due to the lack of precise indications about the requirements of
the control, in this project, we implemented it in such a way that each drone is
oriented in the direction of the tracking velocity.

The information needed to perform the described attitude control is the same
that is output by the tracking algorithm. Once the tracking velocity vector vtrack
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is known, it is sufficient to compute the desired compass angle as

θdes = arctan2
î
vtracky , vtrackx

ï
. (4.16)

Then, the yaw error is computed by comparing the desired value to the orientation
θ given by the compass mounted onboard, as

eθ = θdes − θ. (4.17)

If it is necessary, the yaw error should be corrected by adding or subtracting 360°, in
such a way that it is always included in the interval −180° < eθ ≤ 180°. Moreover,
an ulterior check is needed on the tracking velocity. Indeed, to avoid undesired
rotations of the UAVs, a threshold value is introduced to enable or disable the
attitude control:

ωz =


0,

...vtrack... < vth

−ρ · eθ,
...vtrack... ≥ vth

, (4.18)

where ρ and vth are tunable parameters.

Algorithm Attitude control
1: while true do
2: read the tracking velocity vector
3: compute the tracking velocity angle
4: read the onboard compass data
5: compute the compass error
6: if the error is out of (−180°, 180°] then
7: add or subtract 360° to correct it
8: end if
9: if the tracking velocity is above the threshold then

10: compute the rotational velocity
11: send the command to the lower-level control
12: end if
13: end while

Table 4.4: Algorithm for attitude control.
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4.4 – Attitude control

The threshold should be adjusted in such a way that, when the swarm reaches
a stable position above an unmoving reference, a small corrective value of the
tracking velocity would not trigger an attitude change.
The analyzed steps are summarized in table 4.4.
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Chapter 5

Simulations

The following step is to set up a simulation environment to verify the correct
functioning of the system, tune the parameters, and evaluate the overall performance
of the used algorithm. Everything is implemented using the Robot Operating
System (ROS), a set of frameworks suitable for the development and programming of
robots. Each UAV runs a ROS node, that is a function executing at a given rate, able
to read the needed data, perform the desired computations, and output the correct
control command. The ROS nodes communicate with each other via publishing
and subscribing to topics, which are data channels dedicated to predefined subjects.
On every UAV, it is mounted a PX4 autopilot that communicates with the drone
(including motors, sensors, and so on), using a very lightweight messaging protocol,
called MAVLink[35]. The way these messages can be caught also by the ROS
nodes, is through a package named MAVROS, that «is the “official” supported
bridge between ROS and the MAVLink protocol. It enables MAVLink extendable
communication between computers running ROS, MAVLink enabled autopilots,
and MAVLink enabled ground control stations»[36]. The last fundamental element
to set up the simulation is Gazebo, a common simulation interface, that allows to
visually evaluate the time evolution of the tested events[37].
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5 – Simulations

5.1 Sensors and parameters

For simplicity reasons, the simulations were performed by substituting the UWB
and laser sensors with a ROS node, which geometrically computes the distance
between two points starting from their GNSS positions. Anyway, this modification
does not improve the performance of the system, because the precision of the
simulated GNSS sensor is lower than the one of the UWB.

Referring to the notation introduced in chapter 4, the performed parameters
tuning process yielded

Parameter Value
N 4
a 0.1
b 1.5
c 50
kh 1
hdes 5
kp 0.05
β 4
γ 50
ρ 1
vth 0.5

Table 5.1: Simulation parameters.

where N is the number of anchors in the swarm, a, b, c are the parameters of the
swarming algorithm, kh is the proportional factor of the altitude control, hdes is the
desired swarming altitude, kp is the proportional multiplier in the GNSS tracking
algorithm, β and γ are the reciprocal of the proportional and integral factors in
the reference tracking algorithm, ρ is the proportional parameter in the attitude
controller, and vth is the threshold velocity to activate the attitude control.
Applying equation 4.10 with the data of table 5.1, we get that the side of the
formation square, in equilibrium conditions, is

deq,4 ≈ 10.31 meters,
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and hence the distance of two anchors lying on opposite corners, that is the diagonal
of the square, is

√
2deq,4 ≈ 14.59 meters.

5.2 Results

In the next pages, some significant results of the performed simulations will be
depicted and analyzed. We combined different motion profiles of the reference
body, with different starting configurations of the anchors. In particular, about the
motion of the reference, we considered hovering, motion along a straight line, a
broken line, according to pseudo-random velocities, and following a circular path.
About the initial position of the anchors, instead, we placed them to form a square
around the reference, a line close to the objective, and relatively distant from it.

5.2.1 Hovering

Figure 5.1: Local trajectories of the hovering drones.

This simulation is useful to evaluate the performance of the swarming algorithm.
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Indeed, there is no reference body to be followed, and no objective GNSS position
is given. Hence, the only goal of the anchors is to form the swarm and maintain a
stable formation in time. In this case, the anchors, start from a square configuration.
In figure 5.1, it is possible to appreciate the motion of the UAVs, and we can notice
that they slightly drift. Though, figure 5.2 shows that, after a short adjustment
phase in the first seconds after the takeoff, the distance between each couple of
vehicles reaches and keeps the expected equilibrium value, with good precision and
excellent stability.

Figure 5.2: Relative distances between the UAVs.

5.2.2 Straight line

This simulation includes the reference body, hence it gives the possibility to evaluate
also the tracking algorithm. It takes into consideration the simplest reference motion,
that is at constant velocity along a straight trajectory.
Figure 5.4 shows that, after an initial time interval for adjustments, the equilibrium
values for the inter-UAVs distances are reached. In figure 5.5, we could notice
that the tracking error goes to 0 at steady state, verifying what was expected by
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5.2 – Results

Figure 5.3: Trajectories of the anchors in the local reference system.

Figure 5.4: Relative distances between each couple of UAVs.

the trajectory tracking algorithm. Moreover, the correct operation of the attitude
controller is confirmed by the curves depicted in figure 5.6, which represent the
heading errors tending to 0 after the takeoff phase. Complexively, in this very
simple scenario, the overall system behaves as it was theoretically analyzed in
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chapter 4.

Figure 5.5: Reference tracking error.

Figure 5.6: Heading error of each anchor.
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5.2.3 Broken line

The following simulation introduces a new term of complexity, which is a sudden
change of trajectory in the motion of the reference body.

Figure 5.7: Anchors’ path in the local reference system.

Figure 5.8: Formation inter-drones distances.
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Figure 5.9: Objective tracking error.

Figure 5.10: Attitude error of every formation member.

As it can be seen in figure 5.7, every 10 seconds, the reference body changes both
the direction and the norm of its velocity, generating a sequence of straight lines.
The curve depicted in figure 5.9 well represents this motion: indeed, when the
reference changes its trajectory, the tracking error rapidly increases until the swarm
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reacts to what happened and gets to the correct location. It is worth noticing that
the tracking error always stays below 1 meter: considering the square diagonal
value of 14.59 meters computed before, the reference is well inside the formation,
as desired. The same behavior occurs to the attitude control, as pictured in figure
5.10.

5.2.4 Random movement

In this configuration, both the horizontal direction and the magnitude of the
velocity are updated every time the autopilot receives a new command. In the
current case, the frequency at which the ROS nodes run is equal to 20 Hz, hence
the motion of the reference body randomly changes every 50 milliseconds.

Figure 5.11: Local random trajectory of the system components.

Figure 5.13 shows that also in this case, the tracking algorithm guarantees the
expected behavior of the swarm with respect to the reference to be chased. The
random movement makes it impossible to bring to 0 the tracking error, but the
simulation proves that the horizontal distance between the center of the swarm
and the reference remains small compared to the size of the anchors’ formation.
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From figure 5.14, it is noticeable that also in the case of the attitude control, the
heading can not get permanently to the desired value, anyway it swings around it
as expected.

Figure 5.12: Length of sides and diagonals of the polygon generated by the
drones.

Figure 5.13: Tracking error of a randomly moving object.
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Figure 5.14: Orientation error of the UAVs.

5.2.5 Circular path

The last analyzed simulation takes into account a circular trajectory of the objective,
as is evident by figure 5.15.

Figure 5.15: System’s bodies trajectories with respect to a local origin.
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Taking off from an advantageous configuration, the anchors need very little adjust-
ments to create the correct formation, and there are no complications in getting to
the right distances from one to another, as illustrated in figure 5.16.

Figure 5.16: Relative spacing between each pair of anchors.

Figure 5.17: Circular path’s tracking error.

Looking at the behavior of the tracking error in figure 5.17, it is immediate to
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notice that we are only able to lower it to a certain extent. This occurs because of
the lack of a derivative component in the control algorithm. Although, we made
such a choice because the oscillations of the GNSS and UWB data would make
it extremely difficult, if not impossible, to obtain a helpful contribution from a
derivative control. Notice that, considering the swarm square to have the computed
14.59 meters diagonal, the value of the error does not represent a problematic
situation for the system capabilities. The same issue is present also in the attitude
control, as depicted in figure 5.18.

Figure 5.18: Direction error of every drone.

5.3 Hardware configuration

The very last phase of the work included the first steps towards the testing process:
mounting and configuring the drones and the onboard sensors needed to correctly
run the swarming and tracking algorithms.
We decided to use four quadcopters, choosing in particular the DJI F450 airframe[38].
Connected through a Holybro PM02 power module[39], each arm hosts a RCS TRX
400 brushless motor, which rotates an APC 10×4.7 propeller[40], able to guarantee
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Figure 5.19: Bottom view of the mounted drone.

Figure 5.20: Side view of the UAV.

enough thrust to lift the drone. The quadrotors are equipped with a Pixhawk 4
autopilot[41], designed and produced by Holybro in collaboration with the PX4
team. The autopilot receives the information it needs from various sensors added
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5.3 – Hardware configuration

Figure 5.21: Top view of the assembled vehicle.

to the configuration: in our case, the most important ones are the H-RTK F9P
Rover Lite GNSS receiver[42], and the TeraRanger Evo 60m distance sensor[43].
The Holybro Transceiver Telemetry Radio V3 433MHz [44] mountend onboard has a
crucial role within the system: it communicates with a paired transceiver connected
to the ground station, allowing the transmission of RTK corrections, and the
capability to monitor the state of the vehicle from a proper software (for example
QGroundControl). A FrSKY S8R radio receiver[45] is added in order to have the
possibility to control the UAV manually, via a FrSKY Taranis X9D Plus radio
transmitter[46], for safety reasons, in case of necessity. The final main component of
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the vehicle we put together is a Raspberry Pi 4 [47], an onboard computational unit,
able to communicate both to the ground station via wi-fi, and to the autopilot
via the configured pins. Such a computer, used with the Ubuntu Server 18.04.5
operating system[48], ROS Melodic Morenia[49], and MAVROS[50], is able to perform
the needed computations, and send the high-level control commands directly to the
autopilot. The vehicle and all its components are powered by a FullPower Li-Po
3S 11.1 V / 5200 mAh high discharge battery.

The described configuration should allow to run the swarming and tracking
algorithms, and perform some tests necessary to verify that what works in the
simulation is also correct for the hardware.
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Chapter 6

Conclusions

The presented work introduced the state of the art of formation keeping and target
tracking techniques, currently used for autonomous mobile vehicles. In the project,
we then developed a methodology to maintain a stable swarm of drones using a
potential-based algorithm, exploiting their GNSS information, and improving it
with the UWB distance data. The algorithm was subsequently completed by adding
a second component, whose goal is to derive the velocity necessary to successfully
follow the trajectory of an ulterior reference body. Such a tracking algorithm, based
only on the GNSS location of the anchors and on their absolute UWB distance
from the target, was analytically proved to converge towards the correct solution.
Moreover, a simple attitude control was inserted to keep the front of the vehicle
always in the direction of its motion, but different configurations could be easily
implemented.
The simulations, conducted in the Gazebo environment, show good performance of
the swarm of quadcopters in carrying out its tasks. First, we verified the ability
to successfully reach and maintain a stable spatial configuration, taking off from
non-specific positions. Then, various motion profiles of the target were simulated,
to tune the control parameters, monitor the expected behavior of the system,
and improve as much as possible its performance. In general, the results were
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satisfactory, exhibiting excellent tracking capability, even in the case of irregular
random motion of the reference body.
The last part of the work consisted of putting together four quadrotors, equipped
with the components needed for the correct functioning of the system.

6.1 Future work

The following step would be to test what was implemented on the physical bodies.
After checking experimentally the correctness of the algorithms via simulation tools,
it is fundamental to check if the obtained parameters are valid also for the chosen
hardware. Most likely, an ulterior fine-tuning phase would be needed, in order to
get the best possible performance of the overall system.
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Glossary and acronyms

API Application Programming Interface

DOP Dilution Of Precision

GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

MAVLink Micro Air Vehicle communication protocol

MAVROS MAVLink to ROS bridge

OpenCV Open Source Computer Vision Library

PIC4SeR PoliTO Interdepartmental Centre for Service Robotics

PX4 Open source autopilot

QGC QGroundControl

QR Quick Response

RC Radio Control

ROS Robot Operating System
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Glossary and acronyms

RTK Real-Time Kinematics

S&R Search and Rescue

UAV Unmanned Aerial Vehicle

UWB Ultra-WideBand

XML eXtensible Markup Language
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