
POLITECNICO DI TORINO

MASTER’s Degree in COMPUTER ENGINEERING

MASTER’s Degree Thesis

Cross Architecture Edit Similarity Join
for DNA Data Storage Using oneAPI

Supervisors

Prof. PAOLO GARZA

Prof. RAJA APPUSWAMY

Candidate

EUGENIO MARINELLI

APRIL 2021

A mamma e papà.

Abstract

The amount of data gathered by enterprises is expected to increase significantly
in next years. The main problem related to the growth of data is represented
by the cost-effective archival of such data. This is due to the physical limitation
presented by the magnetic media currently used for data storage. An alternative
to the contemporary magnetic media is represented by synthetic DNA, still under
study, but that presents some interesting properties - in terms of durability and
high density - that makes it very promising. However, the process of retrieving data
from DNA is limited by the read consensus stage whose objective is to identify
millions unique strings among hundreds millions of noisy copies. This involves
similarity join algorithms that are not able to scale to such dataset because of both
the complexity of the metric used - edit distance - and for their single-threaded
design.

In this thesis, we present OneJoin, a cross-architecture edit similarity join that
can exploit multicore CPUs, integrated GPUs, and multi-vendor discrete GPUs
using a single code base. OneJoin is implemented with oneAPI - an open, standards-
based unified programming model for achieving portable data parallelism. In this
work we present the main aspects of oneAPI and we describe the design choice of
our algorithm. Moreover, we present an end-to-end DNA data decoding pipeline
based on OneJoin and the experimental evaluation of our algorithm compared with
the existing solutions. We will show that OneJoin can achieve up to 21× speed-up
over the other state-of-the-art algorithm, reducing the DNA data decoding time
from several hours to a few minutes.

i

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1

2 Background 6
2.1 CGK Embedding . 6
2.2 LSH for Hamming Distance . 8
2.3 EmbedJoin . 10
2.4 oneAPI and Data-Parallel C++ . 12

3 Design and Implementation 20
3.1 Data-Parallel Edit Similarity with OneJoin 20
3.2 OneJoin: Full Example . 33
3.3 Read Consensus with OneJoin . 34

4 Evaluation 41
4.1 Experimental Setup . 42
4.2 Portable Parallelism . 43
4.3 Cross-architecture Fork . 47
4.4 Cross-platform parallelism: OneJoin on Discrete GPU 49
4.5 Comparison with State-of-the-art Joins 51
4.6 OneJoin for DNA Data Storage . 52

5 Conclusion 55

ii

Bibliography 57

iii

List of Tables

2.1 Example of embedding procedure. 9

3.1 Reference strings that our algorithm has to infer. 37
3.2 Noisy duplication for the first reference strings. 38
3.3 Example of output pairs computed by OneJoin 38
3.4 Example of one cluster produced by DBSCAN and consensus proce-

dure applied within the cluster. 39

4.1 Parameters of datasets used in this work. 42
4.2 Performance and accuracy of OneJoin-based read consensus and

starcode. 52

iv

List of Figures

1.1 DNA data storage pipeline. 2
1.2 Volumetric information density of different storage media. 3
1.3 Execution time break down of EmbedJoin vs OneJoin for computing

edit similarity over a dataset of 450k strings. 4

2.1 Execution space for a 2D-kernel implementing matrix addition. . . . 14
2.2 Work-items and work-groups mapping for matrix multiplication. . . 16

3.1 Execution space for embedding kernel 22
3.2 Embedded dataset layout . 23
3.3 Fork-Join execution model applied to our algorithm 29
3.4 Call tree for recursive edit distance function 31
3.5 Example of edit distance computation between two strings 32
3.6 Full example of OneJoin main steps. 33
3.7 End-to-end data restoration pipeline. 34

4.1 Execution time of EmbedJoin and OneJoin under GEN-470KS
dataset at various edit distance thresholds. 43

4.2 Embedding Phase . 44
4.3 LSH Phase . 44
4.4 Verification Phase . 45
4.5 Embedding execution time of OneJoin with and without cross-

architecture fork . 47
4.6 Total execution time of OneJoin vs EmbedJoin with and without

cross-architecture fork . 48

v

4.7 Total execution time of OneJoin with discrete GPUs 49
4.8 Execution time breakdown of OneJoin with discrete GPUs 49
4.9 Execution time of join algorithms at various distance thresholds (K) 54

vi

vii

Chapter 1

Introduction

With the advance of AI and analytics, the amount of data produced and gathered
by enterprises saw an enormous increase, reaching the 160 Zetta byte Global
Datasphere by 2025 [1]. According analysts, only a small minority (20%) of the
total can be defined hot data, while the so called cold [2, 3] data account for
the 80% of the total. We define cold, the data accessed rarely. This data are
characterized by having the highest growth rate and a longest lifetime with a
retention period of 50-60 years [4].

With the current technology, this data are stored in NAND flash, HDD, or
tape. The main issues of these technologies are the density and the durability -
characteristics that makes difficult the cost-effective storage and management of
cold data.

For this reason, the research in this sector investigated on alternative technology
that could improve both these properties. They found the perfect replacement
of the current technology in the Deoxyribo Nucleic Acid, a.k.a. DNA. The DNA
is a macro-molecular made by 4 smaller molecules called nucleotides: Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T). DNA used for data storage
is a single-stranded sequence of these nucleotides, called oligonucleotide (oligo).
Figure 1.1 shows the key steps performed in order to use DNA as a storage media.
The first is to use an encoder to map the digital data into sequences of oligos.
These oligonucleotide sequences are used to synthesize physically, through chemical
processes, the DNA one basis at time. Because of physical limitation, the DNA

1

Introduction

sequence cannot be longer than a few hundreds nucleotides. This implies storing
data by using millions of small sequences.

After the DNA is synthesized, the reverse process starts: retrieving data from
the DNA. It starts with the sequencing, a process consisting in reading the original
oligos and producing a very high number of copies called reads. Because of the
physical limit of this procedure, these reads presents some errors, such as insertion,
deletion and/or modification. However, the noise introduced in this step is not a
problem if we use a consensus algorithm to infer the original oligos. In the end
original digital data are read back starting from the consensus results - the oligos
inferred - by using a decoder. Basically consensus consists in infer position-wise
the original nucleotides by a majority among all noisy copies. More details about
the consensus procedure are given in the Section 3.3.

Consensus Sequencing

Oligoarchive

Synthesis1 CODD 0.1

2 GRAY 0.2
Encoding ACTGATGTGATGCGTA

ATCGTGCATAGTCAGT

Original
oligos

Original
database

ACTGATGTGATCC - TA
ATCGTGCATAGTCAGT
ACTGATGTGATGCGTA

…

ATCGTGCATAGTCTGT
ACTGATGTGATGCGTCA

ACTGATGTGATGCGTA
ATCGTGCATAGTCAGT

Inferred
oligos

Decoding1 CODD 0.1

2 GRAY 0.2

Restored
database Noisy

reads

Figure 1.1: DNA data storage pipeline.

Figure 1.2 [5] compares the storage density between different DNA and currently
adopted storage media. As we can see, the DNA capacity is estimated being seven
orders of magnitude higher than the best expectation for a tape. Also, it has the
advantage of a potential longevity of several millennia.

Although the consensus procedure is pretty straightforward if we already know
all noisy copies of the original oligos, in practice we need to compute all similar
reads. This configures consensus as a large scale similarity join problem. Given
a collection of strings (reads in our case) we need to find all string pairs that are
similar according a certain distance function. This makes the consensus steps the
computational bottleneck in the DNA data archival pipeline. Since the errors
introduced during the sequencing can be insertion, deletion or substitution, it is
necessary to use the Levenshtein, a.k.a. edit distance. The main issue related

2

Introduction

0ROHFXODU�PHGLD�RƪHUV�IDU�JUHDWHU�SRWHQWLDO�IRU�VFDOLQJ�

exponentially, e.g. 107�DERYH�WKH�EHVW�H[SHFWDWLRQV�IRU�ƮDVK�

or magnetic storage �)LJXUH�����. DNA can store information

stably at room temperature for hundreds of years with zero

power requirements, making it an excellent candidate for

large-scale archival storage [8].

During 2016 and 2017, Intelligence Advanced Research

Projects Activity (IARPA) and the Semiconductor Research

Corporation (SRC) organized two workshops that assembled

international stakeholders from academia and the biotech,

semiconductor and information technology industries to

roadmap clear and achievable engineering optimizations

that would be necessary to develop scalable MIST systems.

In 2018, IARPA announced a MIST program that seeks to put

this roadmap into practice by assembling a multidisciplinary

community around the shared goal of developing compact

and scalable molecular information storage technologies to

support real-world “big data” use cases [1]. This roadmap is

consistent with the goals of the MIST program. It is expected

that both small & medium-sized enterprises as well as large

companies will participate in MIST developments.

���.H\�FKDOOHQJHV
A number of recent studies have shown that DNA can support

scalable, random-access and error-free information storage

>�@s>��@��&XUUHQW�'1$�VWRUDJH�ZRUNƮRZV�WDNH�ZHHNV�WR�

write and then read data due to reliance on life sciences

technologies that were not designed for use in the same

V\VWHP��7KH�FXUUHQW�ZRUNƮRZV�DUH�WRR�VORZ�DQG�FRVWO\�WR�

support exascale archival data storage. Solving this problem

ZLOO�UHTXLUH���L��6XEVWDQWLDO�UHGXFWLRQV�LQ�WKH�FRVW�RI�'1$�

synthesis and sequencing, and (ii) Deployment of these

WHFKQRORJLHV�LQ�D�IXOO\�DXWRPDWHG�HQG�WR�HQG�ZRUNƮRZ�

In summary, the two major categories of technical challenges

LQFOXGH�

D���3K\VLFDO�0HGLD��,PSURYLQJ�VFDOH��VSHHG��DQG�FRVW�RI�

synthesis and sequencing technologies.

E���2SHUDWLQJ�6\VWHP��&UHDWLQJ�VFDODEOH�LQGH[LQJ��UDQGRP�

access and search capabilities.

���.H\�7HFKQLFDO�$UHDV
3.1. Storage

The 2019-2022 goal of this technical area is to demonstrate

a fully automated storage system capable of writing

information to the polymer media with a high throughput,

low cost, and writing accuracy that enable subsequent

UDQGRP�DFFHVV�DQG�HUURU�IUHH�GHFRGLQJ�RI�ƬOHV��3RVVLEOH�

storage media include, but are not limited to, DNA, peptides,

or synthetic polymers. The projected storage capacity trend

for MIST is shown in)LJXUH����.

Information has been the
social-economic growth engine
of civilization since the very
beginning, and information
production correlates with social
well-being and economic growth.

*
EL
W�
P
P

�

����(���

����(���

����(���

����(���

����(���

����(���

����(���

����(���

����(���

����(���

����(���

2SWLFDO +'' 7DSH)ODVK '1$

)LJXUH������7KH�YROXPHWULF�LQIRUPDWLRQ�GHQVLW\��
RI�FRQYHQWLRQDO�VWRUDJH�PHGLD�YV��'1$

����(���

����(���

7RGD\ 3URMHFWLRQ /LPLW

3RWHQWLDO�RI�'1$�
����LPSURYHPHQW

4

SemiSynBio Roadmap

Figure 1.2: Volumetric information density of different storage media.

to this metric is its complexity - since it has no sub-quadratic solution - and this
complexity is unacceptable when involves millions of strings.

This metric issue can be addressed by changing the space in which strings are
represented, trading accuracy for complexity. By using randomized algorithms
we can transform the original strings in an embedded representation such that
the edit distance is approximable with the Hamming distance. Although it is an
approximation, using the Hamming distance makes easier the problem.

EmbedJoin is a strings similarity join algorithm that exploits the edit-to-
Hamming embedding together with the Locality Sensitive Hashing to filter pairs
that are not similar for sure by limiting the exact edit distance computation to the
only pairs that pass thorough the selection phase. Despite the approximation of
the exact similarity join algorithm, EmbedJoin showed to have high accuracy also

3

Introduction

Ti
m

e
(s

)

0

100

200

300

400

500

600

EmbedJoin OneJoin-Gen9+Xeon

Embedding LSH Verification

Figure 1.3: Execution time break down of EmbedJoin vs OneJoin for computing
edit similarity over a dataset of 450k strings.

for high edit distance thresholds and outperforms the state-of-the-art. Specifically,
the paper [6] shows that in all their experiments the algorithm can find above 90%
of all similar strings found by the exact algorithm; moreover, in the majority of the
cases the figure reaches the 99% of all pairs. This makes this algorithm the perfect
candidate to read clustering in DNA storage. However, it still has limitations: it
cannot scale over the millions of strings characterizing the DNA storage problem
because of its single-threaded nature that limits the execution on one CPU only.

Figure 1.3 shows the execution time of EmbedJoin under a dataset of 470000
strings of length 5000. We will show details about the experiment in the Chapter 4;
however, it is important to do two observations that will motivate all the following
study. The first point is that the execution time is about 10 minutes for 470000
strings, that is far from the millions strings we have to deal with in the DNA use
case. The second is that EmbedJoin minimize effectively the edit distance impact
in the total time: the latter contributes only for the 5%, while the most of time
is spent in the filtering phase made by embedding and LSH that is - for design
choice - sequential. Thus, while for small dataset this algorithm is best choice, it is

4

Introduction

unsuitable to deal with the DNA reads.
The major contributions of this thesis are the following.

• We introduce OneJoin - the first cross-architecture, database join operator
implemented using oneAPI - an open, standards-based unified programming
model for achieving portable data parallelism. We shows various design
aspects that led to transform the EmbedJoin, single-threaded CPU-based
algorithm, into OneJoin, oneAPI-based data parallel algorithm that is able to
execute on CPU, integrated GPU and PCIe-attached discrete GPU. A first
comparison between EmbedJoin and OneJoin is shown in Figure 1.3. The
OneJoin algorithm, run by using the 6-cores of Xeon CPU, demonstrate being
15× faster than EmbedJoin, providing a 30× speed-up in embedding time,
a 10× speed-up in LSH phase and a 6× speed-up in verification time, by
processing 470000 strings in less than half a minute.

• We present an efficient algorithm to address the DNA consensus problem, that
overcome the bottleneck of identifying similar reads by using OneJoin, solving
the consensus problem in few minutes on a commodity server.

• Using both a real-world experimental and synthetic data, we evaluate OneJoin
algorithm to address the following points: (i) analyze design trade offs in using
DPC++ and oneAPI for developing OneJoin, (ii) compare the performance and
scalability of OneJoin with state-of-the-art similarity joins, and the OneJoin-
based read consensus solution with other alternative solutions, (iii) analyze
OneJoin performances under several processor architectures.

The rest of the thesis is organized as follows. Chapter 2 illustrates both
algorithmic and systems background relevant to this work. Chapter 3 details
the design choices and the implementation of OneJoin; moreover it is presented
the end-to-end DNA decoding pipeline based on OneJoin. Chapter 4, shows the
experimental evaluation. Finally, we conclude with a discussion of future work in
Chapter 5.

5

Chapter 2

Background

This chapter is conceptually divided into two parts. In the first part, we present
the main algorithmic tools EmbedJoin uses to perform the edit similarity join, i.e.
CGK Embedding and Locality-Sensitive Hashing for Hamming distance, and the
EmbedJoin algorithm itself. In the second part, we show the system background
represented by OneAPI and DPC++, highlighting the salient features in order to
better understand the following design choices.

2.1 CGK Embedding

The edit distance between two strings x and y is defined as the minimum number
of edit operation i.e. insertions, deletions and substitutions, necessary to transform
x in y. On the other hand, Hamming distance takes in account only the number of
mismatch between the two strings or in other words the number of substitution to
transform x in y.

For example, given the two strings ACACT and GACAC, their Hamming
distance is 5 since there are no matches, but edit distance is 2 since it suffices to
add G and remove T

From these definitions, we can make two observations: Edit Distance keep in
account also information about the ordering of characters and capture the best
alignment between the two strings. However, the Hamming distance has complexity
that is linear with the string length, while the edit distance has complexity that

6

Background

is in the best case quadratic.Given the complexity of this metric, we can rely on
metric embedding technique.

Metric embedding techniques are methods consisting in mapping a complex
metric space into a simpler one. One of these techniques, widely adopted to handle
the edit distance, is CGK-embedding algorithm, recently proposed by Chakraborthy
et al.[7]. It is a randomized algorithm that maps a string x in the edit distance
space into a string x′ in the Hamming space.

Given two strings x, y of length N taken from an alphabet ∑ such that dE(x, y)
- the edit distance between x and y - is less than K and an embedding function f :∑N → ∑3N , then CGK-embedding assures that with probability at least 0.99 the
related Hamming distance dH(f(x), f(y)) is bounded by K2 when dE(x, y) < K.
This implies that the distortion D, defined as the ratio D(x, y) = dH(f(x),f(y))

dE(x,y) , is
at most K. Notice that all pair of strings having dH(f(x), f(y)) < K2 includes all
strings having dE(x, y) < K. Thus, as long as the distortion is small, the number
of false positive is small. This allows to reduce the time for the exact edit distance
verification [6].

Algorithm 1 CGK-embedding
Input: A string S ∈ {A,C,G, T}N , a random string R ∈ {0, 1}3N and a char for

padding P = 0
Output: The embedded string S ′ ∈ ∑3N

1: i← 0
2: for j = 0→ 3N − 1 do
3: if i < N then
4: S

′
j ← Si

5: else
6: S

′
j ← P

7: end if
8: i← i+Rj

9: end for
10: return S

′

The pseudo-code of embedding algorithm is shown in Algorithm 1. In this case
the procedure is applied to all strings of length N made by only the character
A,C,G, T , representing the DNA reads.

The algorithm - given an input string - builds the corresponding embedded

7

Background

representation appending to the output string (initially empty) one character at
time taken from the input string. The character appended can be the repetition of
previous character or the next character in the input string according to the value
of a binary random string. In other words, the pointer of the current character in
the input string increases or remains the same depending on the random string
value, that can be 0 or 1. When the pointer to the input string goes out of the
string length, the embedded string is padded with a special character P . In general,
P can be any character that is not included in the set of characters making our
input dataset S. For sake of simplicity, in Algorithm 1 we use 0 for padding.

What we get is an output string made by input characters that can appear
unique or repeated.

Table 2.1 shows the embedding procedure applied to a simple string S, for a
given random bit-string R. It shows all values for the two indexes i and j. We
report also the corresponding value for R and S according to the related i and
j values. Thus, when j = 3 and i = 2, S[i] is the character to append to the
embedded string - C in our example; while R[j] is the value to sum to i, and since
it is 0, then i remain the same. Consequently, the next char to append in the next
iteration will be the same just appended, i.e. C.

2.2 LSH for Hamming Distance

One of the main advantages of moving from edit distance space to the Hamming
space is the having available some useful algorithms that are valid in the Hamming
space only and instead not applicable to edit distance. One of the algorithmic
tools is the Locality Sensitive Hashing, or LSH. EmbedJoin uses this algorithm to
identify similar strings without analyse all possible pairs. We provide an overview
of LSH [8] here.

We call a family H of functions (d1, d2, p1, p2)-sensitive for a distance function
D if for any p, q ∈ U (where U is the item universe):

• if D(p, q) ≤ d1 then P[h(p) = h(q)] ≥ p1, that is, if p and q are close, the
probability of a hash collision is high;

• if D(p, q) ≥ d2 then P[h(p) = h(q)] ≤ p2, that is, if p and q are far, the

8

Background

Input string S := AGCTCAA

Random string R := 011001110111001

Iteration j R[j] i S[i] Embedded String
0 − − 0 A A
1 0 0 0 A AA
2 1 1 1 G AAG
3 2 1 2 C AAGC
4 3 0 2 C AAGCC
5 4 0 2 C AAGCCC
6 5 1 3 T AAGCCCT
7 6 1 4 C AAGCCCTC
8 7 1 5 A AAGCCCTCA
9 8 0 5 A AAGCCCTCAA
10 9 1 6 A AAGCCCTCAAA
11 10 1 7 0 AAGCCCTCAAA0
12 11 1 8 0 AAGCCCTCAAA00
13 12 0 9 0 AAGCCCTCAAA000
14 13 0 10 0 AAGCCCTCAAA0000
15 14 1 11 0 AAGCCCTCAAA00000

Table 2.1: Example of embedding procedure.

probability of a hash collision is low;

where h ∈r H are hash functions randomly sampled from the family of hash
functions H

Let’s given two bit-string p and q of length N. In the Hamming distance case
the hash function is defined as the ith bit of these strings. Thus, if their Hamming
distance is dH(p, q), i.e. the number of bit-wise different bits in the two strings,
then the probability of taking a string bit in a random position that is the same in
both strings (i.e. there is a collision) is 1− dH(p,q)

N
. At this point we can define the

bit-sampling LSH family for Hamming distance as:

HN = {hi : hi(b1...bN)) = bi | i ∈ [N]}

that is
(
d1, d2, 1− d1

N
, 1− d2

N

)
-sensitive for the two Hamming distances d1 < d2.

Notice that, playing with probabilities, the algorithm introduces both false positive
and false negative, that means dissimilar string are grouped together in the same

9

Background

hash bucket while similar strings are not identified because they go in different
hash buckets. One way to reduce the false positive and negative rate is using
the AND-OR construction. The AND construction consists in concatenating m
bit-sampling hash functions, and using these bit to put a string in a bucket. The
OR construction consists in repeating the bucketization of multiple m-bit groups,
such that if two string end up in the same bucket for at least a certain number of
these hash groups, then they can be considered being similar.

To be more formal, we define the AND construction as

f = h1 ◦ h2 ◦ ... ◦ hm, where∀i ∈ [m], hi ∈r H (2.1)

such that for x ∈ U , f(x) = (h1(x)h2(x)...hm(x)) is a vector of m bits.
Then multiple f(x) are grouped together as

g = f1 ∨ f2 ∨ ... ∨ fz, where∀j ∈ [z], fj ∈r F(m)

such that for x, y ∈ U, g(x) = g(y) if and only if there is at least one j ∈ [z] for
which fj(x) = fj(y). It has been shown that g(x) is (d1, d2, 1− (1− (d1/N)m)z, 1−
(1− (d2/N)m)z-sensitive. By playing with m and z we can increase the gap between
the two probabilities and reduce the misclassification rates.

2.3 EmbedJoin

EmbedJoin is a similarity join algorithm based on edit distance. The purpose of
the algorithm is to find all pairs whose edit distance is lower than a given threshold.
EmbedJoin uses both the algorithmic tools defined above, i.e. CGK-embedding and
LSH in order to limit the search in the space of all possible pairs. The pseudocode
in Algorithm 2 describes a simplified version of algorithm. We can identify 4 main
phases: initialization, CGK-embedding, filtering, and verification.

At the beginning, we have a set of input strings, and some parameters: the
threshold K for the edit distance, the number of hash functions z, each of them
made up of m bits.

In the initialization phase, the input dataset is sorted at first according to
the strings length and then alphabetically (lines 1-2). Afterwards, all hash functions
are initialized. They are stored in form of a matrix D made by random numbers.

10

Background

Each matrix cell corresponds to a bit in the embedded string. In particular, each
column correspond to the m bit-sampling hash function hi of the AND-construction,
while the rows represent the set of all the fj function of the OR-construction (lines
3-4). At this point, the CGK-embedding phase can start. In this phase (line 6), it
is applied the previously described Algorithm 1. Having mapped all input strings
in the Hamming space by means of CGK-embedding phase, we enter in the filtering
stage. The filtering phase is designed to process sequentially one string at
time. Each input string si is put in a hash bucket (line 9). In particular, the fj

function is applied to the embedded version ti of the strings si. This is repeated
z times, i.e. once for each hash function fj defined during the initialization (line
8). When a string si is put in a hash bucket according the hash functions (line
9), it is compared against all strings sl already present in that bucket (line 10).
At this point two operations are performed: (1) the length of the two original
strings are compared; (2) the hash bits of the two embedded strings are compared
to check if they actually are equal (line 14). The first condition is used to avoid
unnecessary further comparisons. Indeed, if the difference of lengths is greater than
the edit threshold K, then it is impossible that the edit distance is lower than K.
Moreover, being all strings in the bucket sorted by length, we can remove sl

from the bucket because all next si will have for sure a length difference greater
than K. The second condition is to manage the "collisions". Recall that fj is made
up of m bit-sampling hash function in AND construction. This correspond to the
m chars in the embedded string. However, we can obtain the same hash buckets,
also if chars are different. However, in order to consider two strings as candidates,
all bits of fj(t) must be equal. If the second condition is met, that pair is added to
the candidate set (line 15). Finally, given the OR-construction, the same pairs can
appear in multiple buckets. Thus, a duplicate reduction is performed.

At last stage - verification phase - each candidate pair is verified as having
distance lower than K by computing the exact edit distance (lines 21-25).

Two observation are now necessary. Using the CGK-embedding and LSH
reduces drastically the running time. This make EmbedJoin outperforming all
other existing algorithms. However, the optimization in the buckets updating and
buckets searching operations takes the 90% of the running time (see Figure 1.3) and
while it proves to be efficient for small dataset having strings of different lengths it

11

Background

is certainly inefficient to scale over hundreds of millions to billions of strings having
all same length as in the DNA reads clustering problem.

Algorithm 2 EmbedJoin
Input: A set of strings S = {s1, s2, ...sn}, distance threshold K, parameters z,m
Output: O ← (si, sj) | si, sj ∈ S; i /= j;ED(si, sj) ≤ K
1: C ← ∅
2: Sort S by string length and then by alphabetical order
3: for each j ∈ [z] do
4: Initialize hash table Dj by generating a random hash function fj ∈ F(m),

where F(m) is the set of Hamming hash functions defined by the AND
construction.

5: end for
6: T ← CGK-Embedding(S, z,m, r), where T is the embedded dataset
7: for each si ∈ S(sorted) do
8: for each j ∈ [z] do
9: Store si in the fj(ti)-th bucket of Dj

10: for each string sl, i /= l already in the fj(ti)-th bucket of table Dj do
11: if | si | − | sl |≥ K then
12: Remove sl from Dj

13: else
14: if fj(ti) = fj(tl) ∀ bits of fj then
15: C ← C ∪ (sl, si)
16: end if
17: end if
18: end for
19: end for
20: Remove duplicate pairs in C
21: for each x, y ∈ C do
22: if ED(x, y) ≤ K then
23: O ← O ∪ (x, y)
24: end if
25: end for
26: end for

2.4 oneAPI and Data-Parallel C++

Modern computing systems are characterised by being heterogeneous, presenting a
mix of scalar, vector, matrix and spatial architectures deployed on multiple

12

Background

types of devices such as CPU, GPU, FPGA and AI accelerators. One of the objective
of this thesis is to redesign the main steps of EmbedJoin in order to make it able to
run on multiple hardware accelerators. In particular, we will focus on the parallel
execution on CPU and GPU. The lack of a common programming languages and
APIs, as well as supporting tools and the presence of proprietary solutions led
developers to have to adapt their software to different contexts.

OneAPI is an open, standards-based unified programming model that overcomes
these problems making the software development independent from the accelerator
architecture. The main component of oneAPI is the programming language Data
Parallel C++, a.k.a. DPC++, an open-source implementation of SYCL standard.
SYCL is an industry standardization effort with the objective of extending C++
programming language with the support for a cross-platform data parallelism.
DPC++ relies on Clang and LLVM compilers and implements all data-parallel
constructs defined in the SYCL standard with some Intel specific extension. In this
chapter we provide an overview of the main DPC++ features. For further details
on oneAPI, please refers to the Data Parallel C++ handbook [9].

Listing 2.1 shows a simple DPC++ example, that highlights the key aspects of
the programming language that are relevant for OneJoin design. As it is a C++
extension, we can basically use all standard C++ features, to define variables,
data-structures, etc. However, DPC++ introduces some other constructs unknown
to the standard C++. The first observation is that as all other accelerators
programming model, also DPC++ distinguish between a host and a device. The
host usually is the CPU, although the standard does not put any limit about
it except that the host has to support the full C++17; while the device can be
the CPU, GPU and/or other hardware accelerators. Notice that CPU can be
both host and device. The host is in charge of commanding all devices. It is
responsible of submitting data-parallel tasks, gathering results from devices and
synchronize jobs between different devices. The host commands devices by means
of queues. Each queues is associated to one device and although each device can
be controlled by multiple queues, one queue can be associated with only one device.
A queue contains all tasks the host submits to the device and that are ready to
be executed. The device is connected to a queue by means of a device selector,
that is passed as constructor parameter of the queue object. Both queue and device

13

Background

selector are shown at line 4. Devices run kernels. In general a kernel is the code -
implementing a data-parallel task - that is executed on a certain device. In DPC++
there are several constructs that implement different forms of kernels, with their
own syntax and execution model. In particular, we present two types of kernels,
namely Basic Data-Parallel Kernel and Explicit ND-Range Kernel.

Basic data-parallel kernel is expressed with the parallel_for function, as shown
at lines 14, 23, 32. This kernel is characterized by an execution space called range
and the function to be executed. The execution space defines the number of the
kernel instances - also called work-item - and it can be 1, 2 or 3 dimensional. A
work-item can be seen as a thread executed in parallel with other threads. During
the kernel execution a single work-item is identified by an id object - a sort of
coordinate in the execution space. The dimensionality of the kernel can be chosen
in such a way that it matches the dimensionality of the data.

+=

Work Item with id (1,3)

range [1]

ra
ng

e
[0

]

0 1 2 3 4

0

1

2

3

4

Figure 2.1: Execution space for a 2D-kernel implementing matrix addition.

Figure 2.1 shows the execution space for a 2D basic kernel implementing a matrix
addition. Let’s assume we want to perform a simple parallel addition between two
5× 5 matrix. This operation can be decomposed in 25 sum operations between all
element in the two matrix. As these operations are independent, each of them can
be easily computed by a different thread. This can be done designing a parallel_for

14

Background

having a 2-dimensional range whose dimensions match the matrix dimensions. This
led to create 25 work-items - organized according to the cells of a 5× 5 matrix -
such that given a thread identified by the id(i,j), that thread takes the element in
position (i,j) in the two input matrix and assign that sum to the (i,j) position in the
output matrix. This kernel form does not guarantee any synchronization between
work-items, and the execution of work-items can happens in any order. Moreover
does not provide to developers any support to force the execution order or any form
of synchronization. That makes this kernel simple and suitable for problems that
are embarrassingly parallel, i.e. in which there is no relation between operations
carried out by different kernel instances. If we want to force synchronization at
work-item level, we need to rely on more advanced kernel forms.

The explicit ND-Range kernel is a more advanced kernel form, that provides
more control over the memory accesses and synchronization among work-items.
But just because it is a more advanced kernel, it does not mean that it is suitable
for any case. In general it is useful when we want exploit the data locality in our
kernel. As for the basic kernel, also this one is implemented with a parallel_for
construct. However, in this case it requires two n-dimensional execution range.
The first one expresses the global execution range - as in the basic kernel case;
the second one defines the local range. The local range tells us how gather all
work-items - defined in the global range - in work-groups. A work-group is a set
of work-items presenting certain properties. All work-items within a work-group
are scheduled concurrently; they can communicate with each other while this is
not allowed between work-items in different groups; they can access a their own
local memory, that in some devices is implemented with a dedicated fast memory;
work-items within a groups can be synchronized by means of group barriers, that
guarantees that at a certain point in the kernel all work-items are done with all
operations preceding the barrier before continuing the execution. Notice that
work-group execution can happen in any order.

These concepts are explained better with an example. Figure 2.2 shows how
work-item and work-groups are mapped in a matrix multiplication case. In the
example, the execution space of the kernel is made by 6×6 global range and a 3×3
local range. Each generic cell represent a work-item, while the red cells represent
the work-items belonging to the same work-group. Thus, the kernel will execute

15

Background

x=

Work Item Work Group

gl
ob

al
 m

em
 a

cc
es

s

local mem access

Figure 2.2: Work-items and work-groups mapping for matrix multiplication.

6× 6 work-items divided into four groups, each containing 3× 3 work-item. As it
is an operation involving many times the same data, it can benefits from the use of
some caching mechanism. Generally, kernels works with two different memories, a
global memory and a local memory. How this memory are actually implemented is
device specific. Local memory is faster than global memory, so we can see it as a
sort of cache. For this reason we can use the local memory to reduce the latency in
accessing data during our operations. Notice that local memory can be accessed
explicitly only when we use the advanced kernel form, and each work group has an
its own local memory.

Sticking with our previous example, as we know a matrix multiplication is
performed considering all element in a row for the first operand and all element
in a column for the second operand. Now, if we consider, for example, the first
three adjacent elements in the first row of result matrix, each of them is computed
considering three times the blue row in the first matrix and the three violet columns
in the second matrix. For this reason, if we load the first row in the local memory
we reduce significantly the access time for the first operand, since we perform for
the first operand one memory access to the global memory and three accesses to
the local memory rather than three accesses to the global memory. Notice that
local memory is a limited resources, so we cannot store all rows and columns; for

16

Background

this reason we limit the local memory usage to the first operand only.
OneAPI provides also another kernel form, called hierarchical kernel. It presents

the same characteristics provided by the nd-range kernel, but expressed with a
different syntax and with a top-down approach against the bottom-up programming
style provided by the kernels described above.

The one used in this project is the basic kernel form, since algorithms imple-
mented within each kernel do not require any synchronization or do not present
any locality worth exploiting the local memory. However, this does not exclude a
further algorithm redesign that takes in account, where possible, these features as
future work.

Another key aspect of DPC++ is the memory management. Devices have a
their on-chip memory that is different from the host memory. OneAPI and DPC++
provide two way to manage memory: Unified Shared Memory (USM) and buffer
objects (line 8 of Listing 2.1). The USM allows to allocate in C malloc-fashion
memory for data, and this allocation can happen in host memory, device memory of
in a section of memory shared by both host and devices. It makes easier to integrate
existing C++ code with the DPC++. For example, if there are functions accepting
pointers as parameters, this function are usable without any change. USM is not
used in our project, thus for further detail please refer to the book [9]. Our design
exploit buffers object for data allocation. Buffers provide an abstraction over the
memory management, since they represent data object rather than specific memory
addresses. One of the advantages of using buffers is the automatic management
of data movement host ←→ device. Data - initially allocated in the host memory
as vector of C++ standard library or any other data structure - are moved by the
runtime in the device memory in a way completely transparent to the developer.
To allocate a buffer and fill it with data already present in the host, it is sufficient
to pass to the buffer constructor the starting pointer of data and their size; then
data will be automatically copied in the buffer. Buffers only are not sufficient. In
order to access data in the buffer we need to pass through an Accessor object -
lines 13,22,30,31 of Listing 2.1. Accessors are associated to one buffer only and they
can have an access mode, such as read, write and read_write. Accessor objects
have a key role in tracing data dependency across all kernels. Indeed, thanks to
accessors the runtime is able to track all data dependencies by building Directed

17

Background

Listing 2.1: DPC++ code listing
1 i n t main () {
2 // Crea te a d e v i c e queue f o r GPU
3 g p u _ s e l e c t o r g s e l e c t o r ;
4 queue Q(g s e l e c t o r) ;
5

6 // Crea te B u f f e r s A and B
7 auto R = range <1>{ 16 } ;
8 b u f f e r <in t > A{ R } , B{ R } ;
9

10 // Submit Ke rne l 1
11 Q. submit ([&] (h a n d l e r& h) {
12 // Acce s so r f o r b u f f e r A
13 a c c e s s o r out (A, h , w r i t e _ o n l y) ;
14 h . p a r a l l e l _ f o r (R ,
15 [=] (id <1> i d x) { out [i d x] = i d x [0] ; }
16) ;
17 }) ;
18

19 // Submit Ke rne l 2
20 Q. submit ([&] (h a n d l e r& h) {
21 // Acce s so r f o r B u f f e r B
22 a c c e s s o r out (B, h , w r i t e _ o n l y) ;
23 h . p a r a l l e l _ f o r (R ,
24 [=] (id <1> i d x) { out [i d x] = i d x [0] ; }
25) ;
26 }) ;
27

28 // Submit t a s k 3
29 Q. submit ([&] (h a n d l e r& h) {
30 a c c e s s o r i n (A, h , r ead_on ly) ;
31 a c c e s s o r i n o u t (B, h) ;
32 h . p a r a l l e l _ f o r (R ,
33 [=] (id <1> i d x) { i n o u t [i d x] ∗= i n [i d x] ; }
34) ;
35 }) ;
36

37 // Get r e s u l t back to hos t
38 ho s t_ac c e s s o r r e s u l t (B, r ead_on ly) ;
39 f o r (i n t i =0; i <16; ++i)
40 s t d : : cout << r e s u l t [i] << "\n" ;
41 r e t u r n 0 ;
42 }

18

Background

Acyclic Graph a.k.a. the task graph and force the execution of all submitted tasks
in the right order. That is a first form of synchronization between kernels, but it is
not always sufficient. In some case we need to coordinate the execution between
host and devices as well.

In DPC++ jobs submissions is asynchronous, so the control is returned imme-
diately to the host that continues the execution regardless of the jobs submitted.
How can we force the host to wait after the submission? A smooth way is provided
by the buffer class. As well as the buffer constructor acquires data during the
buffer initialization, so the buffer destructor is in charge of moving back data from
the buffer to the original host memory address specified in constructor phase. The
destructor is called automatically when the host goes out of the scope in which
the object is declared. However, it is implemented in such a way that the data
movement does not start till all jobs using that buffer are done. This makes the
host stuck in the object destructor. Notice that this form of synchronization is
possible only if we need to retrieve data from devices. If we do not need to destructs
the object, but only wait for the jobs, we can simply call the wait() function, that
forces the host to wait for all jobs submitted till that point and the data remain on
the device.

The DPC++ program is compiled with the dpcpp compiler and the binary
generated is called fat binary since it contains all the compiled and intermediate
code to run on heterogeneous machine. Unlike other data-parallel programming
languages, in DPC++ the host and devices code can coexist in the same file. This
enables the single-source compilation that allows the compiler to optimize also the
devices code across the entire program without distinguish between host code and
kernels.

Overall using DPC++ to express data-paralleling computation has the main
advantage of implementing an open standard and providing an high level program-
ming model in contrast with other data parallel programming languages that are
proprietary such as CUDA or low level such as OpenCL. Moreover, it increase the
portability of applications over multiple architectures or over devices of different
vendors. Indeed it is enough to change device-selector to switch the execution of
the same code on CPU rather than GPU or FPGA, or change the backend compiler
to make the code runnable on CUDA devices.

19

Chapter 3

Design and Implementation

OneJoin is a redesign of EmbedJoin - the sequential algorithm. Conceptually, it
implements the same high-level structure as EmbedJoin, consisting in embedding,
LSH, and verification. However, OneJoin is made as a collection of data-parallel
steps, that makes the algorithm able to exploit the heterogeneous parallelism
characterizing the modern servers. The data-parallel steps differ each other both
for the parallelism granularity and computational resources required. Given the
heterogeneity on algorithmic, workload, and hardware front that OneJoin aims to
achieve, it is implemented completely by using DPC++. The chapter is organized
as follows. At first we describe the different data-parallel stages. Then, we present
the runtime cost estimation and cross-architecture fork–join execution model used
by OneJoin to divide the workload such that it can exploit CPUs and GPUs. In
the end, we describe in detail how OneJoin implements the end-to-end DNA data
decoding pipeline.

3.1 Data-Parallel Edit Similarity with OneJoin

Data-parallel Embedding.

The first data-parallel stage is the Embedding stage. For sake of simplicity we
presented in Algorithm 2 a simplified version of the CGK-embedding algorithm,
in which each input string is embedded once according to one random bit-string
only. However, it can happen that a random bit-string fails to embed with a low

20

Design and Implementation

distortion. It has been proven that one way to reduce the impact of this problem
is to embed each string multiple times. The paper [6] showed that increasing the
number of random bit-strings effectively reduce the distortion rate, and a good
distortion implies a lower number of false positive and false negative. We refers to
r as the number of random bit-strings.

The embedding stage is implemented as basic data-parallel kernel using the
parallel_for function. The construct take two parameters: a range and the
function that each work-item has to execute. Both these parameters depends
on different aspects such as data organization and synchronization level required
between work-items. As showed in Algorithm 1, a single embedding procedure
is sequential in nature. This implies that if we split this task across multiple
threads, it would be required a synchronization among all threads, each one waiting
for the previous ones. This would reduce drastically performances. Thus, the
solution adopted is to move the parallelism at an higher level, parallelizing rather
than the single embedding procedure, the embedding procedure across multiple
strings. In other words, given n input strings and r random strings, there will be
r × n threads (or work-items), each of them performing the embedding for one of
{input_string, random_string} combination. This led to design a parallel_for
having a range with two dimensions: the first one giving the index of the input
strings and the second one the index of the random bit-string. Thus, conceptually
the first r work-item will embed the first string using a different random bit-string.
The second set of r work-item will embed the second string, and so on.

Figure 3.1 shows a representation of the execution space of the embedding kernel.
Having defined a 2-dimensional kernel, work-items will results arranged in form of
matrix whose dimensions are the same of the range. Given a work-item id, we can
easily retrieves the parameters we need for the embedding procedure; in Figure 3.1
the work-item having id(1,2) will embed the string 1 by using the random string
with index 2. All data structures in OneJoin are stored in a different DPC++
buffer. However buffer objects are limited in size and this limitation depends
on the device. It could happen that for large dataset, we cannot create a single
buffer capable of containing all data. This is especially true for the input dataset
and the embedded dataset that are some of the most expensive data structure of
the program in terms of space requirement. For this reason we organize the input

21

Design and Implementation

Work-Item with id (1,2)

range [1]

ra
ng

e
[0

]

0 1 2 3 R

0

N

Input Dataset

I0 A C C G T
I1 C G A A T
I2 T A T C G

…
IN G C G G T

Random Strings

r0 0 1 0 0 1 0

r1 0 0 1 1 0 1

r2 1 0 1 0 0 … 0
… 1

rR 1 1 1 0 0 0

1

Figure 3.1: Execution space for embedding kernel

strings in batches. The batch size is chosen such that all the embedded strings
for a given batch of input strings fit in one buffer. Although the Figure 3.1 shows
input strings organized as a matrix of strings, the actual layout is different. Indeed,
it can happen that a dataset have strings with various lengths. This makes the
matrix organization inconvenient since we should allocate a matrix having rows
with same length of the maximum length in the dataset. To overcome this problem
we arranged the input strings in a 1-dimensional array. The embedded dataset
follows the same structure. Although the access in the array is straightforward
within an embedded batch since all embedded strings have same length, in the
input strings case, we need an additional vector keeping track of their starting
index.

The results of embedding stage is the embedded dataset, that will become the
input for the next stage, i.e. LSH. If we think about how LSH works, we can make
two observations. The first observation is that there is no need of storing all chars
for an embedded string. Indeed, among all the 3N characters whose an embedded
string is made, the character that will be effectively used are the ones sampled by
the m bit-sampling hash functions in AND construction. Since there are z of such
hash functions, it is enough to keep only z ×m characters, that usually are much

22

Design and Implementation

lower than the total 3N characters.

HASH TABLE
0 1 2 3

0 1 19 8 14
1 3 11 17 4
2 5 1 13 18

Full Embedded Dataset
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S0 A C C G T A A C G T T A G C C A A T G C
S1 C G A A T C C G C A A A T T A C G A T T
S2 T A T C G C A T G T A G C A T A A A C G
S3 G C G G T A G T T G C A C G C T A G G A

Final Embedded Dataset
A G C C G T A T C A C G

C C A T A T A A G C T T

T G T G C G G A A C A C

G T C A G T A G C A G G

Figure 3.2: Embedded dataset layout

The second observation concerns the ordering of all hash bits selected. This
z×m bits - since represent random positions in the embedded strings - can appear
in any order. As we will describe later, each work-item in the LSH stage will be
in charge of computing an hash id multiplying all m bits of one hash function
only. What could happen is that each thread fetches data in memory locations
very distant according the character position. This lead to an increase of cache
misses that decrease performances. So what we do in the embedding stage is to
reorganize all characters, such that all m bits for one of z hash functions are stored
together in sequential positions in the embedded strings. This ensures that in the
following stage, a thread can retrieve all data needed in a lower number of memory
transactions. The embedded dataset layout is showed in Figure 3.2.

Once all data structures are initialized, the host submits kernels for processing
one batch after the other asynchronously. At the end of submission, the host wait
to gather all results before continuing, by calling the wait() function.

23

Design and Implementation

Data-parallel LSH.

Data-parallel LSH implements the sequential LSH filtering stage of EmbedJoin in
parallel. It is made internally by two data-parallel kernels, namely bucketization
and candidate generation.

Bucketization. The LSH filtering purpose is to hash the embedded strings in
hash buckets such that strings similar are grouped together while dissimilar strings
end up in different buckets. At this stage, the input data is the embedded dataset
produced by the previous embedding stage. The embedded dataset contains r
different embeddings for the same input string. Strings are clustered in buckets if
embedded strings generated by a given random string produces the same hash id
for any of z hash functions. The hash id for a z-hash functions is computed by
considering its m bits. As we know, the m bits represent the character sampled
along the entire embedded string. Thus, at first this m character are mapped in a
vector u of ASCII-equivalent integers. Then, given a random vector v ∈ 0,1..., P − 1,
the hash id is computed as < u · v > modP , where P is a large prime number and
< u · v > is the inner product. This is the same two-level hashing implementation
of LSH used by EmbedJoin [6].

The hash id computation is the first data-parallel kernel OneJoin implements in
the LSH stage. The kernel is implemented as a 2-dimensional parallel_for where
each work-item computes one hash id using the m bits of one hash function only.
Thus, the total number of work-item is n× r × z, where n is the total number of
input strings while r and z the number of random bit-strings used in embedded
and the number of hash functions in OR construction, respectively. Notice that
also in this case a different parallelism granularity are allowed. For example we
can decide to assign to a work-item the hash id computation of all the z hash
functions or even the computations for all random strings. However, we opted for
a finer granularity in order to expose more parallelism. In general, there is always
a trade-off between the overhead due to the threads creations and the amount of
operations a single thread performs. Finer granularity often implies few operations
performed and consequently that the device is not fully utilized because spent the
most of time to deal with the threads creation, memory accesses and context switch
between a lot of threads. However, a coarser granularity implies a lot of operations

24

Design and Implementation

performed sequentially by a thread, that can lead to total computation time closer
to the sequential execution. Empirically, in this case we noticed that assigning one
hash computation to each thread assure better performances than the other case.

Once all hash ids are computed we need to concretely groups the strings together
into hash buckets. The first way to do that is to create r× z hash tables and inside
these hash tables identify the buckets by using the hash ids computed. All this can
be easily realized in standard C++ by using a 2-D vector of map objects. However,
these are dynamic data structures that are not optimal for devices. A map object
do not need to contains all possible values of hash ids and it adds an entry every
time a new element is met. This solution is not suitable given the data-parallel
design of OneJoin. The problems are mainly two. The first one is that multiple
threads require synchronization to update buckets, leading down performances.
The second is that - although the number of the hash tables is known and fixed, the
number of hash buckets are dynamically determined at runtime according the hash
ids. Since in GPU devices dynamic memory allocation is not allowed we cannot add
and delete elements in buckets. Thus we should estimate the worst case memory
requirement, and allocate in advance the right amount of memory. However,the
max memory size to allocate would be given by the max hash id we can have,
i.e. P - where P is a large prime number - for each hash table. This is unfeasible
for many computing systems. The second way is the solutions we preferred. It
consists in using a 1D vector of four-tuples < t, k, id, i >, where t ∈ [0, r] is the
index identifying the random bitstring, k ∈ [0, z] in the index identifying the hash
function, the id ∈ [0, P − 1] is the hash id computed in the kernel and i ∈ [0, N] is
the index of a string in the initial dataset. However in this case we do not need to
pre-allocate the entire range P for all r random strings and z hash functions. Each
tuple is assigned to one work-item for the hash id computation, and the vector is
sorted in the host such that all element having the same tuple < t, k, id > - values
identifying the hash buckets - are adjacent in the vector. Notice that the vector
size is fixed and automatically determined.

Disadvantage of this solution is not knowing where a bucket start and where
it ends. After the kernel execution, the entire vector is scanned and all possible
pairs are added in a vector. This procedure is easy to parallelize as well, however
we noticed in all our experiments that also sequentially this sub-step take less

25

Design and Implementation

than 1 second and that is more efficient to perform it sequentially than paying the
overhead of buffers creation kernel launch.

Candidate generation. The main issue related to the hash id is the fact that
multiple strings can generate the same hash id also if characters at the mth

i position
are different. Thus, in order to be sure that two strings ended up in the same
buckets because their embedded strings have the same m bits, it is necessary a
further validation step. It consists in comparing the two embedded strings identified
as potential candidates before marking them as such. We called this validation
step generate candidates and it is the second data-parallel kernel in the LSH
stage. The kernel purpose is to validate all intra-buckets strings pairs, with a
bit-wise comparison. The actual kernel is preceded by a small initialization stage
and followed by post-processing step. The initialization step purpose is retrieving
the list of all candidates pairs to validate and allocate the memory for all data
structures the kernel requires. The list of candidates is obtained by means of two
operations. Having flattened all buckets entries in a 1-D vector implies losing the
direct access to the begin and the end of all buckets. Therefore, at first we compute
the boundaries for each bucket, and store the starting index and the size of each
buckets into an auxiliary vector. Then, passing through this vector we count the
number of strings within each buckets and compute the exact number of candidates
as C = ∑B

b=1
nb×(nb−1)

2 , where nb denotes the number of candidates per bucket. This
value is a worst case estimation, since it takes in account all possible combinations
of strings for each buckets; however some of them may be filtered out after the
bit-wise validation. At this point, we scan one more time the buckets vector to get
the string indexes for each pair, making them directly available during the kernel
execution.

Finally, we compare bits for all pairs using a data-parallel kernel. The kernel
takes as input two embedded strings and compare position-wise the embedded
strings considering only the character for one hash function. Remember that
embedded strings contains only the character sampled by the hash functions. One
limitation of some devices such as GPU is that data structure modifications are not
supported. Thus, we cannot add or remove element from a vector during the kernel
execution. Thus, we store the candidates list retrieved during initialization in the

26

Design and Implementation

output vector, and together with the ids, we hold further information about the
validation results. This allows to postpone the filtering in the host, by removing all
not valid candidates pairs. We filter out candidates from the output vector based
on two criteria. The first one takes in account the length of the original strings 1.
Indeed two strings having length greater than the edit distance threshold K, can
generate embedded strings that are hashed in the same buckets. However, if two
strings have length difference greater than K automatically have edit distance
greater than K since it would require at least K insertion to change the first in
the second one. Thus, filtering also based on K helps to further reduce the number
of candidates. This step is performed also in EmbedJoin. However, in EmbedJoin,
this strategy lead to further improvement. Indeed, since strings are sorted by
length, if the condition on the lengths is not met, the original algorithm can remove
all the remaining strings in the buckets avoiding in this way further comparison.
OneJoin cannot do the same - i.e. removing the strings from the buckets - since we
do not have inside the kernels dynamic data structure and we need to performs all
comparison anyway. In OneJoin case, filtering by length difference just helps to
reduce the candidates number to save verification time. The second criteria takes
in account the matching between all bits stored in the two strings composing a
candidate pair. In order to be a valid candidates the embedded strings must have
the same bits in the same order.

In order to filter based on these two information, during the kernel execution
we compute and store them together with the strings ids. We compute the length
difference between the two strings and we keep a bit that can assume 0/1 value
depending on the outcome of the bitwise comparison between the two embedded
strings. Both this information allow to postpone the filtering of candidates - that
did not pass the validation - after the kernel execution in the host.

Cross-architecture fork–join execution.

So far we showed the main data-parallel stage composing the OneJoin algorithm,
namely embedding, bucketization, and candidate generation. Between each of

1We mean by original string the ones in the initial input dataset

27

Design and Implementation

these three kernels there are some data-parallel operations such as sorting, reduc-
tion, duplicate eliminations responsible of reorganizing the intermediate results
of OneJoin. These operations are implemented by using functions provided by
the OneAPI library - a.k.a. OneDPL (Data Parallel Library) - and/or OneTBB
library. OneDPL provides common functions executable in parallel on any devices
while OneTBB provides a set of functions optimized for multi-threading on CPU.
An evaluation of performances of using these two libraries will be discussed in
Chapter4.

As we mentioned, one of the objectives of OneJoin is to fully exploit the hardware
available. This can be done by using the appropriate device selector, a DPC++
object associated to any of devices available on the platform. Thanks to DPC++,
the three data-parallel stage illustrated above are able to run on different devices
by specifying a different device selector. However, multiple devices can be used
in the same program as well. OneJoin enable the execution on multiple devices
by implementing a cross-architecture fork-join execution model. Fork-join based
parallelism consists in having a master thread that forks the execution of a task
across multiple computing units. Once tasks are done, all parallel threads are
joined in the master. OneJoin implements this model as showed in Figure 3.3. The
master thread coincides with the host thread, and we use in this project only two
devices: CPU and GPU. In correspondence of a data-parallel stage, input data are
split and kernels are lunched simultaneously on all devices available implementing
in this way the fork stage. After execution ends, results are gathered by the host
and the program continue on the master thread only. This is the join stage. In
practice, the model can be realized in DPC++ by exploiting the fact that job
submission is asynchronous. This allows the host of not waiting for any jobs before
the next submission. Thus, we do not need to explicitly create multiple threads,
but just make the master submitting all jobs on all devices and then waiting for all
of them.

The two main issue related to this solution is the variability of the execution
time which depends on the device characteristics. In order to keep all devices
equally busy, we introduced a sampling-based cost estimation model based on
which host divides the workload proportionally to device performances.

The cost estimation strategy consists in using a small sample of data to measure

28

Design and Implementation

Initialization

GPU CPU

Host

Gather results

Sorting

Sorting and
filtering

Verification
(ED)

Embedding

Bucketization

Generate
Candidates

Embedding

Bucketization

Generate
Candidates

Figure 3.3: Fork-Join execution model applied to our algorithm

29

Design and Implementation

execution time on all devices available, and using this estimation to derive the
amount of data to assign to each device. Thanks to this simple strategy, kernels
on all devices are able to finish their work in roughly the same amount of time.
Moreover, the estimation phase is executed sequentially one device after the other;
this means that in order gain in performances, it is necessary that the profiling
phase is much lower than the actual computation that is executed in parallel.

Edit distance verification.

At the end of LSH stage we obtain a list of candidates among all input pairs. This
list is the starting point for the last stage, i.e. the verification. At this point of the
program we want to remove all false positive pairs that have passed the filtering
stage, on in other words we want to be sure that the candidates in the list have
exact edit distance lower than the given threshold. We shows a brief example in
which we illustrate the main idea behind the algorithm used to compute it. We
can summarize the solution with the following expression.

Given two string S1 and S2, where X and Y are generic chars into S1 and S2

respectively; and a and b the prefixes of the strings S1 and S2 till the characters
X and Y. Then, we can compute the Levenshtein distance between S1 and S2 as:

ED(X,Y) = min


ED(a, b) +match(X, Y)

ED(aX, b) + 1

ED(a, bY) + 1
We can interpret the expression above in the following way. The first case means

that distance between two generic strings aX and bY is equal to the minimum edit
distance needed to turn the prefix a into b plus one or zero substitution according
to the equality check result between their last character. The second case can be
seen as the number of operations we have to perform in order to turn the string a
concatenated with X plus one insertion. The last case is symmetric to the second
one. This expression can be computed starting from the string with length 0, i.e.
the empty string till considering the whole strings. In practice this solution can be
implemented as a recursive function that performs the same computation among
all prefixes. Specifically, the recursive function call itself three times for different
prefixes (by taking off one character); and this is repeated until it reaches the

30

Design and Implementation

empty string. Figure 3.4 shows the recursive tree of this function. We can see
that each node (except the leaves) has three children nodes, representing the three
recursive calls. At this point the complexity is easy to estimate: the three height is
min(m,n), where m and n are the lengths of the two strings (that in this example
are the same); each nodes has 3 children nodes. Thus, it recurs O

(
3min(n,m)

)
.

Notice that the red nodes represent the same sub-problem: edit distance between
"AC" and "AG". If we compute the full three we can see that this is not the only
case.

“ACT”, “AGC”

“ACT”, “AG”

“ACT”, “A” “AC”, “A”

“AC”, “AGC”

“AC”, “AG”

“AC”, “AG”

Figure 3.4: Call tree for recursive edit distance function

For this reason the solution is computational expensive, especially if we consider
that the edit distance for a certain pair of prefixes is computed many times. In
other words, the function try to solve a sub-problem that probably it was already
solved in a previous step.

Given the complexity of a recursive algorithm, we can change approach. We can
rewrite the solution in form of matrix. We arrange the two strings along the axis of
a matrix, and each matrix cell correspond to the last char of the two strings prefixes.
At this point we can scan the matrix and fill each cell by using the results computed
and stored at previous iterations, basically applying the expression described above.

31

Design and Implementation

“” A T C G T A C G

“” 0 1 2 3 4 5 6 7 8

A 1 0 1 2 3 4 5 6 7

T 2 1 0 1 2 3 4 5 6

G 3 2 1 1 1 2 3 4 5

C 4 3 2

A 5

2 + {0 if "T" = "C"
1 if "T" ≠ "C"3 + 1 1 + 1

Figure 3.5: Example of edit distance computation between two strings

In other words we are trading space for time. The complexity of this solution is
polynomial. Indeed we scan a n×m matrix, so the time complexity is O(n×m).
However, in this case we pay a larger space complexity, due to the allocation of
n×m matrix, while in the recursive solution no auxiliary space was needed.

Figure 3.5 shows a simple example of dynamic programming for computing
Levenshtein distance. Each cell of the matrix contains or will contains the edit
distance between the prefixes made by the all previous rows and columns. We
added also the empty strings as first row and column, since the empty string is a
prefix of the strings itself. Notice that we can fill directly the whole first row and
first column since the edit distance between the empty string and another string is
the length of the string itself.

In the example we consider the cell (4,3). In this case, we are considering the
edit distance between the two substrings "AT" and "ATG". The prefix a is just
"A", while b is "AT"; at the same way X is "T" and Y is "G". The values in the
considered cell is given by the minimum of the three cells highlighted plus a value.
This value is always 1 but in case the minimum comes from the cell in the left
corner. In this case we sum 0 if the last character are equal or 1 if the character

32

Design and Implementation

are different. The value to add can also be weighted according the importance we
give to the substitution,insertion and deletion operations. In this simple case we
give the same weight to all the operation, i.e. we always add 1. This algorithmic
technique is called Dynamic Programming. It consists of dividing a problem in
sub-problems, as well as the recursion technique does, but it stores the solutions to
this sub-problems the first time a sub-problem is met. In this way we can build
the solution starting from the smaller problems results, without recomputing them
when they are equal.

Returning to our algorithm, as in the sequential EmbedJoin, this stage takes
a small percentage of the total time (about 5%, as showed by figure 1.3) we
parallelise this stage on CPU only, assign one edit distance computation to each
thread.

3.2 OneJoin: Full Example

1. ACCTTTGGTTTTTGTGA…
3. AACCCCTTGAAATTTTC…

2. AAATTCGGGTAAACAA…
4. AAAATTTCCGTTGAAAA…
5. AACCTTGGGAATGGGTA…

1. ACCTTTGGTTTTTGT…
3. AACCCCTTGAAATTT…

2. AAATTCGGGTAAACA…
4. AAAATTTCCGTTGAA…

2. AAATTCGGGTAAACA…
5. AACCTTGGGAATGGG…

4. AAAATTTCCGTTGAA…
5. AACCTTGGGAATGGG…

1. ACTGTTGTGATCC - TA
3. ACTGATGTGATTCAAA

2. ATCGTACATAATCAGT
4. ATCGTGAATAGCCTGT

Output Dataset

1. ACCTTTGGTTTTTGTGA…
2. AAATTCGGGTAAACAA…
3. AACCCCTTGAAATTTTC…
…
4. AAAATTTCCGTTGAAAA…
5. AACCTTGGGAATGGGTA…

Embedded Dataset
1. ACTGTTGTGATCC - TA
2. ATCGTACATAATCAGT
3. ACTGATGTGATTCAAA
…
4. ATCGTGAATAGCCTGT
5. ACTGAATGTATGAGTCA

Noisy Reads

CGK-Embedding

Bucketization

Candidate Generation

(and validation)

Edit Distance

LSH

Figure 3.6: Full example of OneJoin main steps.

In this subsection, we present a small example applying to a toy dataset all steps
described above. Figure 3.6 shows the main OneJoin stages and the transformations

33

Design and Implementation

ACTGATGTGATCC – TA
ACTGATGTGATGCGTA

ACTGATGTGATCC – TA
ACTGATGTGATGCGTA

ACTGATGTGATGCGTA
ACTGATGTGATGCGCTA

…

ATCGTGCATAGTCAGT
ATCGTGCATAGTCTGT

DecodingACTGATGTGATGCGTA
ATCGTGCATAGTCAGT

ACTGATGTGATCC - TA
ATCGTGCATAGTCAGT
ACTGATGTGATGCGTA

…

ATCGTGCATAGTCTGT
ACTGATGTGATGCGTCA

OneJoin

1 CODD 0.1

2 GRAY 0.2

Sequencing
Clustering

&
consensus

Noisy reads

Join Result

Inferred
oligos

Restored
database

Figure 3.7: End-to-end data restoration pipeline.

applied to the input dataset. The input dataset in made by all noisy reads obtained
with the sequencer. The first algorithm step consist in transforming the input
dataset in the embedded dataset passing throughout the embedding procedure.
We obtain a dataset whose strings have the 3 times the input strings length, and
the embedding procedure can be repeated multiple times in order to obtain a
good distortion rate. At this point, we are ready to apply the LSH filtering. At
first, we separate all embedded strings in buckets; then, going over all buckets,
we make all candidate pairs with the strings in each bucket and these candidates
are validated with a bit-wise comparison. Notice that indexes in input dataset
and embedded dataset are linked, so we can move between the two dataset easily.
That is important because the validation of candidates is applied to the embedded
dataset, while the verification to the input dataset. The candidate pair who pass
the validation is added to the final dataset. The latter is the verified by exact edit
distance computation.

3.3 Read Consensus with OneJoin

As mentioned in Chapter 1, the main application of OneJoin is the read consensus
task. In this section we give more details about it. We start presenting the end-to-
end DNA data restoration pipeline showed in Figure 3.7. Notice that except for
the consensus stage, all other stages of DNA data storage domain are not detailed,
since this is not the purpose of the thesis.

The DNA data restoration pipeline aims to restore DNA previously encoded in
synthetic DNA. The main issue related to this process is that the reading procedure
of the DNA sequences introduces some errors - insertion, deletion and substitution
- that can compromise the decoding of original digital data. In order to overcome

34

Design and Implementation

this problem, during the reading step, each oligos is read multiple times, producing
multiple copies of the DNA sequence in form of strings called reads; the reads
differ each other for some errors in different positions. So, assuming that we can
identify what are the similar reads, we can infer the original oligos correctly simply
by using a consensus procedure. Given a set of reads - supposedly belonging to
the same oligos - the consensus process consists in inferring the right character
of the oligo at each position, by taking the character by majority considering the
character in the same position for all reads in the set. It allows in case of errors
introduced during the sequencing in some of the reads, that the original oligo can
be retrieved anyway. The whole consensus procedure represents the mid stage of
the pipeline, and it is made by multiple sub stages. Among these sub-stages, we
introduced OneJoin algorithm. In the end, the oligos inferred are used to decodes
the original digital data.

The first pipeline stage is called sequencing. It takes as input the DNA
sequences and generate the corresponding DNA multiple noisy copies, i.e. the reads.
The sequencing stage is followed by the consensus process. This stage is made up
of multiple sub steps. Indeed, we do not actually know which read belongs to
the same oligo, and thus we do not have immediately after sequencing the sets of
similar reads, but we need to compute them. We can group all strings by means
of a clustering algorithm that uses the edit distance as similarity metric. So we
use the OneJoin algorithm to compute all similar pairs according an edit distance
threshold, and then using its result within a clustering algorithm.

We chose for clustering the well-known density-based DBSCAN [10] algorithm.
Being a density based clustering algorithm, it works well when clusters are defined
by dense regions separated by regions of low density and it can identify clusters
of arbitrary shapes. This makes DBSCAN a suitable choice for the DNA reads
dataset. However, this does not exclude alternative solutions. In this thesis we do
not take in account other clustering algorithms, but we leave it as future work.

The pseudocode of DBSCAN algorithm is showed in Algorithm 3. It consists
in scanning the input dataset - the reads in our case - and label each point as
noise point or core points, based on the number of points within a ε-range from
the considered point. The ε-range represents the maximum distance within which
a minimum number of neighbours for that point are needed in order to consider

35

Design and Implementation

Algorithm 3 DBSCAN
Input: Input dataset DB; min_pts; edit distance ε.
Output: The label vector.
1: C ← 0
2: for each point P ∈ DB do
3: if label[P] = UNDEFINED then
4: continue
5: end if
6: Neighbours N ← range_query(P,ε)
7: if Size(N) < min_pts then
8: label(P) = NOISE
9: continue
10: end if
11: C ← C + 1
12: label[P] ← C
13: S ← N \ P
14: for each point Q ∈ S do
15: if label[Q] = NOISE then
16: label[Q] ← C
17: end if
18: if label[Q] /= UNDEFINED then
19: continue
20: end if
21: label[Q] ← C
22: Neighbours N ← range_query(P,ε)
23: if Size(N) ≥ min_pts then
24: S ← S ∪ N
25: end if
26: end for
27: end for
28: return label

the point as belonging to a cluster or as noise. In our application the ε is the edit
distance threshold while the minimum threshold depends on the dataset. When a
point is added to a cluster, all its neighbours are analysed and if they are found
meeting the min-points condition, they are added to the clusters as well. The
bottleneck of the algorithm is the range query. The range query scans the whole
input dataset in order to find all points within a distance range for the considered

36

Design and Implementation

point, and this is repeated for all neighbours. Moreover, in the DNA reads case, a
further complexity is added by the metric used, i.e. the edit distance. Here it is
where the OneJoin algorithm comes in.

Before calling the clustering algorithm, we materialize all range query results by
using OneJoin algorithm in order to find for each input string, all its similar strings.
Then DBSCAN access the materialized results directly during the execution. Finally,
having executed the DBSCAN algorithm, we can applying the consensus process
within each cluster. From consensus we obtain an output dataset containing as
many strings as the number of clusters, representing the original oligos.

After clustering, there is the decoding phase. The decoding algorithm converts
the quaternary code ACGT in the original digital data.

What follows is a toy example showing data at different stages.

Reference Strings

TCCGGAAGTCACAGTTTCAATCCCACTGATCGATGCTCTCTACACCATG
TCGAGACGACCTACGCCGACTCTTGGTAAACGATACGGGGCGATCTATC
ATTCACTAAATTCGGTTAATGAATTCCCCTCGGTACCCTATATTGTACA
AACAAGGAAGCACACGTCCCTTTCGCACAGGAAGCAGTCCAGGCTGGTC
TTTCTTCTACGTGGAACTCAGTATAACGTAGGATAGCGCTGTTGATGTC
CAGTATCGATTTTGCCCAGTGCCATTGCCCCGAAAGAAAATATGCTATT
AACATCAGAGTAATGGTAGGGCTCGGCGACGTAGAATTACTAAACTCGT
TCACCTTTGGTATTCTTACCGGGTAACGCCACCTGTCAAGCTATCCAGC
ATCCACGTACTGTAGTGGAGACCTTACGCCCGAAGTTCGGTGCCAATAT
AAGAAGACTATCGATATCTCCTTAATGGACGGGAACTAAATGTTCACAA

Table 3.1: Reference strings that our algorithm has to infer.

Let’s assume that we have 10 strings synthesized as DNA strings representing
our encoded digital data, as showed in Table 3.1. These strings are not known in
advance and they represent the reference strings that we want to read out. As first
step we use the sequencing procedure to read the actual DNA strings. Each of
them is read multiple times. However, since the chemical procedure is not perfect,
we get from this procedure many noisy copies of the reference strings. We simulate
this behavior as showed in Table 3.2. The blue string in Table 3.2 is the reference

37

Design and Implementation

Noisy Strings

TCCGGAAGTCACAGTTTCAATCCCACTGATCGATGCTCTCTACACCATG

TCCGGAAGTCAAAGTTTCAATCCCACTGTTCGATGCTCTCTTCACCATG
TCCTGAAGTCAAAGTTTCAATCCCACTGATCGATGCTCTCGACACCATG
GCCGGAAGTCACAGTTGCAATCCCACTGATCGAGGCTCTCTACACCATG
TTCGGAAGTCACAGTATCAATCCCCCTGATCGATGCTCTCTACACCATG
TCCGGAAGTCACAGTGCCAATCCAACTGATCGATGCTCTCTACACCATG
TCCGGAAGTCACAGTATCAATCCCACTGCTCGATGCTCTCTCCACCATG
TCCGGAAGTCACAGTTTCAATCCCACTGATCGATTCTCTCTACACCGTG
TCCGGAAGTCGCAGTTTAAATCCCACTGATCGATTCTCTCTACACCATG
TCCGGAAGTCAAAGTTTCGATCCCACTGATCGATCCTCTCTACACCATG
TCCGGAAGTCACAGCTTGCATCCCACTGATCGATGCTCTCTACACCATG

Table 3.2: Noisy duplication for the first reference strings.

Join output pairs

1. TCCGGAAGTCACAGTGCCAATCCAACTGATCGATGCTCTCTACACCATG
42.TCCGGAAGTCAAAGTTTCAATCCCACTGTTCGATGCTCTCTTCACCATG

1. TCCGGAAGTCACAGTGCCAATCCAACTGATCGATGCTCTCTACACCATG
15.TTCGGAAGTCACAGTATCAATCCCCCTGATCGATGCTCTCTACACCATG

...

Table 3.3: Example of output pairs computed by OneJoin

string, and the black ones are its noisy copies. Indeed we can see that the ten
strings are quite identical to our reference, except for some random substitutions
of characters. Notice that the reference strings are not within the dataset, and in
general at this point all we have are their noisy versions. Table 3.2 shows the noisy
duplicate for only the first reference, however this is valid for all reference strings.
Moreover, all the noisy copies for all reference strings can appear in any order in

38

Design and Implementation

Cluster ID 1

TCCGGAAGTCAAAGTTTCAATCCCACTGTTCGATGCTCTCTTCACCATG
TCCTGAAGTCAAAGTTTCAATCCCACTGATCGATGCTCTCGACACCATG
GCCGGAAGTCACAGTTGCAATCCCACTGATCGAGGCTCTCTACACCATG
TTCGGAAGTCACAGTATCAATCCCCCTGATCGATGCTCTCTACACCATG
TCCGGAAGTCACAGTGCCAATCCAACTGATCGATGCTCTCTACACCATG
TCCGGAAGTCACAGTATCAATCCCACTGCTCGATGCTCTCTCCACCATG
TCCGGAAGTCACAGTTTCAATCCCACTGATCGATTCTCTCTACACCGTG
TCCGGAAGTCGCAGTTTAAATCCCACTGATCGATTCTCTCTACACCATG
TCCGGAAGTCAAAGTTTCGATCCCACTGATCGATCCTCTCTACACCATG
TCCGGAAGTCACAGCTTGCATCCCACTGATCGATGCTCTCTACACCATG

TCCGGAAGTCACAGTTTCAATCCCACTGATCGATGCTCTCTACACCATG

Table 3.4: Example of one cluster produced by DBSCAN and consensus procedure
applied within the cluster.

the dataset.
On the resulting noisy dataset, we apply at first the OneJoin algorithm, and results
are in the form showed in Table 3.3. Each pair is made by two similar strings and
an id that is simply the position within the input dataset2. Thus, Table 3.3 says
that string in position 1 in the dataset is similar to string 42 and 15. We store this
result grouping for each strings, all its similar strings. For example, considering the
pairs in Table 3.3, we store a map such as String 1: [String 42, String 15, ...].
This means that String 1 has String 42, String 15 as its neighbours. However,
this is not enough. We need to cluster them, and this is done by applying DBSCAN
algorithm.
As DBSCAN needs to compute all neighbours for each point (in our case a point

2The id is the index of the array of strings used to store the dataset. It allows to work with
integer to represent the pairs rather than strings but also to retrieve easily the strings when
needed.

39

Design and Implementation

is a string in the input dataset), it can easily take the list of neighbours obtained
and stored from the join algorithm. This make clustering extremely fast. The
DBSCAN results is a set of clusters; each cluster contains similar strings that are
the modified version of the reference string. In other words, we obtain something
similar to Table 3.4. The latter shows only one of clusters produced by DBSCAN.
However, we expect a number of clusters at least equal to the number of reference
strings.
Finally, we can apply the consensus procedure. We consider one cluster at time.
So for this example we consider the cluster showed in Table 3.4. We go over each
"column" of the set of strings in that cluster, and we compute the frequency of
each character. Thus, basically if we consider the first column, there is the "T"
that appear 9 times and the "G" once. From this, we deduce that first char of the
reference strings is "T". Similarly, if we consider the blue column, we see 7 times
the "G", 2 times the "T" and 1 time the "C". The reference string at this position
must have "G" as character. As you can notice, we can recover the original string
despite the number of errors introduced during the sequencing.

40

Chapter 4

Evaluation

In this chapter we present a detailed analysis of OneJoin, with the objective to
answer to three questions, that are the three contributions of the thesis.

• How does our data-parallel OneJoin perform compared to the other stat-of-
the-art similarity joins?

• Is oneAPI able to effectively exploit heterogeneous architecture? How OneJoin
performance differs executing on CPU, integrated GPU (iGPU), and a discrete
GPU (dGPU)?

• What is the contribute of OneJoin to the DNA storage problem?

The experiments are organized as follows. First, we demonstrate the portability
of OneJoin across different processor types, showing the benefit of using oneAPI
for the software development. Then, we compare OneJoin with EmbedJoin and
other popular join algorithm. Thus, we present a macrobenchmark comparing the
join algorithms under several publicly available datasets. Finally, we show the
contribution of OneJoin to the end-to-end DNA data decoding problem, comparing
it with the state-of-the-art read clustering program.

41

Evaluation

4.1 Experimental Setup

Hardware Setup. Given the hardware needed for our experiment, we used two
servers. The first is Intel DevCloud1, a cluster of servers equipped with Intel
hardware. In particular, the cluster node we use for experiments is equipped with
a 6-core Xeon E-2146G CPU clocked at 3.7GHz, 64GB DRAM, and a Gen9 Intel
iGPU. The second is a local server equipped with a 12-core Intel Core i9-10920X
CPU clocked at 3.5GHz, 128GB DRAM, and a NVIDIA GeForce RTX 2080 Ti
dGPU.

Software Setup. OneJoin is implemented in DPC++ and compiled using
DPC++ with O3 optimization. The similarity join algorithm we chose for the
comparison are EmbedJoin, AdaptJoin[11], and QChunk[12]. These algorithm have
been chosen since they have been demonstrated to be among the best existing
algorithms for edit similarity joins [6].

Dataset n Avg. Len Min. Len Max. Len |∑ |
GEN-20KS 20001 5000 4829 5109 4

TREC 233,435 1217 80 3947 37
UNIREF 400,000 445 200 35213 25

GEN-470KS 470,492 5000 4841 5152 4

Table 4.1: Parameters of datasets used in this work.

Datasets. All benchmarks comparing the OneJoin with other join algorithms use
three publicly-available real world datasets close to the ones used in EmbedJoin
paper [6]. Table 4.1 summarizes the key characteristics of each dataset. For DNA
storage dataset, we use other two datasets. Details about the latter will be provided
in Section 4.6.
UNIREF. A dataset of UniRef90 protein sequence data from UniProt project2.
Each sequence is an array of amino acids in upper case. We kept 400,000 protein
sequences of lengths greater than 200.

1It is publicly available after free subscription
2Available at http://www.uniprot.org

42

Evaluation

Ti
m

e
(s

)

10

100

1000

Threshold (K)

50 100 150 200

EmbedJoin OneJoin-DPL-Xeon
OneJoin-DPL-Gen9 OneJoin-TBB-Xeon
OneJoin-TBB-GEN9

Figure 4.1: Execution time of EmbedJoin and OneJoin under GEN-470KS dataset
at various edit distance thresholds.

TREC. A dataset of references from Medline database consisting of titles and
abstracts from 270 medical journals3.
Genomics. Dataset based on Chromosome 20 of 50 individuals obtained from
the personal genomes project4. It is made by long DNA sequences partitioned in
5000 character long strings. The long DNA sequences are partitioned into shorter
sub-strings of length 5,000. We use two variants of this dataset, one with 470k
strings (GEN-470KS) and a smaller subset with 20k strings (GEN-20KS).

4.2 Portable Parallelism

In this section we shows the value added by DPC++ as tool to develop software
portable across multiple platforms. We start the discussion with a comparison
between EmbedJoin - used as reference - and OneJoin. The latter was executed on

3Available at http://trec.nist.gov/data/t9_filtering.html
4Available at http://personalgenomes.org/

43

Evaluation

Ti
m

e
(s

)

0

75

150

225

300

Embedjoin OneJoin-GEN9 OneJoin-Xeon

12,319,1

287,3

Figure 4.2: Embedding Phase

Ti
m

e
(s

)

0

55

110

165

220

Embedjoin OneJoin-GEN9 OneJoin-Xeon

2325

212

69
87

212

LSH DPL LSH TBB

Figure 4.3: LSH Phase

multicore CPU and on integrated Intel Gen9 GPU. The experiment evaluate the
algorithms under the Genomic dataset (Gen-470KS), our largest dataset. We use

44

Evaluation

Ti
m

e
(s

)

0

5

10

15

20

Embedjoin OneJoin-Xeon

4,3

17,7

Figure 4.4: Verification Phase

only EmbedJoin as reference, since the other join algorithm failed to execute on
our hardware given the dimension of the dataset or took more than 6 hours.
Recall that OneJoin is made by three data-parallel kernel (embedding, bucketization
and candidate generation) and several library function call for operation such as
sorting, filtering and duplicate elimination. As we mentioned in Section 3, we uses
the functions provided by the oneAPI Data Parallel Library (DPL). Since the first
version of the code evaluated builds on DPL for such operations, we refer to the first
two OneJoin variants evaluated as OneJoin-DPL-Xeon and OneJoin-DPL-GEN9.
Notice that we verified the results of our algorithm with the output produced by
EmbedJoin for different parameters setting - including the the one used in the
benchmark - and the perfect match in all cases guarantees the correctness of our
algorithm.
Figure 4.1 shows the total execution time for the algorithm. We can notice that
both versions of OneJoin provide a reduction in the total execution time compared
to EmbedJoin. In particular OneJoin-DPL-Xeon proves to be 5.5 − 6.5× faster
than the sequential algorithm, while OneJoin-DPL-GEN9 provide a 4.5 − 5.5×
speedup. Notice that the difference between the two OneJoin variants is only a

45

Evaluation

different device selector object, that can be chosen at run time. This highlights the
advantage of using DPC++ and OneAPI to achieve a portable scalability across
processors types.

To understand better the improvement provide by OneJoin, we broke the total
time showed in Figure 4.1 for K fixed to 150 in the different contributions of each
stage. The execution time per stage is presented in Figures 4.2, 4.3, 4.4. The
experiment results show that the main improvement is provided by the embedding
stage. Notice that since the verification stage is performed only on CPU only
in the GPU case, it is not reported any GPU bar for verification stage. Besides,
the improvement at this stage is linear with the number of cores. An important
observation concerns the LSH stage, that as showed it does not seem to scale as well
as the embedding phase. The explanation is the following. The LSH is made by
two data-parallel kernels, that are extremely efficient and that concur to only the
10% of the total LSH stage. The remaining part is lost in data-parallel operation,
such as sorting or filtering, making the library calls dominating for the 90% of
this phase in both CPU and GPU case. The advantage of DPL is that it is can
execute basic algorithms (the same provided by the std C++ library) on a device
just providing an execution policy coming from the device itself. Thus, changing
this execution policy, change the device on which the operation is performed -
CPU or GPU in our case. However benchmarking we notice that performances
are way worse than the same function implementation provided by another Intel
library: Thread Building Blocks (oneTBB). It is a library made exclusively for
multi-threading on CPU, and since it is elder than DPL, it showed be much more
efficient. Thus, we developed a new version of the OneJoin in which we replaced the
DPL library with oneTBB, despite we loose in this way the possibility of executing
these common functions on GPU as well. In other words, the new version presents
three kernels executing on CPU or GPU and all other operation on CPU multicore
through oneTBB functions. We end this section by showing in Figure 4.3, the
improvement led by oneTBB to the LSH stage. OneJoin-TBB-Xeon provides a
9× speedup, and OneJoin-TBB-GEN9 provides a 8× speedup over EmbedJoin for
the LSH stage. This is translated in an improvement of total time as showed by
Figure 4.1. Indeed, OneJoin-TBB-GEN9 achieves a 10.5× speedup over EmbedJoin
(versus 4.5× with OneJoin-DPL-GEN9), and OneJoin-TBB-Xeon achieves a 12.5×

46

Evaluation

speedup over EmbedJoin (versus 5.5× with OneJoin-DPL-Xeon). Given the results,
all following experiments will consider OneJoin-TBB only.

4.3 Cross-architecture Fork

Ti
m

e
(s

)

0

5

10

15

20

GEN9 Xeon Xeon + GEN9

9,5

12,3

19,1

Figure 4.5: Embedding execution time of OneJoin with and without cross-
architecture fork

The objective of this section is to show the capability of OneJoin to exploit multiple
processor units simultaneously by running kernels on multiple devices, i.e. the
cross-architecture fork described in Section 3.1. We report the results for embedding
kernel only under the Gen-470ks dataset, for a value of edit distance threshold
set at 150. The reason is that embedding kernel is one taking more time, and the
improvement is clear. Figure 4.5 show the execution time of embedding kernel
for three OneJoin configuration: OneJoin-Xeon, OneJoin-GEN9 and OneJoin-
Xeon+GEN9. The first two are the CPU-only and iGPU-only configurations as
shown in Figure 4.1, while the OneJoin-Xeon+GEN9 is the configuration taking
advantage of both devices, with allocation of workload for CPU and iGPU computed
on-the-fly. As we see from the bar chart, the cross architecture fork increase

47

Evaluation

Ti
m

e
(s

)

1

10

100

1000

EmbedJoin GEN9 Xeon Xeon + GEN9

38,941,549,6

519,8

Figure 4.6: Total execution time of OneJoin vs EmbedJoin with and without
cross-architecture fork

the speedup of the kernel, as it is 1.3×/2× faster than its CPU-only/GPU-only
counterparts.
Moving on Figure 4.6 we can see how this improvement affect the total running
time. It is evident that the simultaneously execution on the two devices further
widens the gap, leading OneJoin-Xeon+GEN9 to be 13.4× faster than EmbedJoin
compared with 10.5× speedup achieved by OneJoin-GEN9, and 12.5× speedup
achieved by OneJoin-Xeon. Despite the improvement, comparing Figure 4.5 and
Figure 4.6, we can observe that the speed-up in embedding is not completely
achieved in the total time of the algorithm as well. The reason, is that the cross
architecture fork-join optimize the three kernel only in the fork phase, while at
join stage all data parallel operation are computed on multicore CPU only by
using oneTBB, included the verification step. So the major presence of CPU in the
algorithm mitigates the impact over the total execution time. A second reason is
that the Intel Xeon CPU is much faster than the iGPU, thus during the splitting
of work, more data are assigned to the CPU to be sure that all devices are busy at
same time. This lead the running time to be more close to the GPU time. Although
the slight impact on the total running time, this experiment shows the easy with

48

Evaluation

which DPC++ allows the execution on different processor types.

4.4 Cross-platform parallelism: OneJoin on Dis-
crete GPU

Ti
m

e
(s

)

1

10

100

1000

EmbedJoin OneJoin-dGPU OneJoin-i9

21,821

490,9

Figure 4.7: Total execution time of OneJoin with discrete GPUs

Ti
m

e
(s

)

1

10

100

1000

EmbedJoin OneJoin-dGPU OneJoin-i9

5,7
2,8

238,7

(a) Embedding execution time

Ti
m

e
(s

)

1

10

100

1000

EmbedJoin OneJoin-dGPU OneJoin-i9

14,416,5

237,1

(b) LSH execution time

Figure 4.8: Execution time breakdown of OneJoin with discrete GPUs

So far, we showed the capability of OneJoin (and DPC++) to run the same code

49

Evaluation

on different devices or to exploit multiple devices simultaneously (cross architecture
parallelism). However in all experiments, both CPU and iGPU belonged to Intel
family. In this section we evaluate OneJoin on GPU of a different vendor: NVIDIA
dGPU. All results in this section come from our local server, equipped with a
12-core CPU and a PCIe-attached, NVIDIA dGPU.
NVIDIA GPU can be programmed by using CUDA. However, thanks to Code-
Play’s SYCL-for-CUDA extension5, we can compile a DPC++ program to run
on NVIDIA hardware. Notice that this requires no change in term of code, but
only a recompilation with a modified Clang++-LLVM compilation infrastructure
that supports a CUDA backend. However, the extension for cuda devices is still
in a beginning state. For this reason as on date we are not able to exploit the
cross-architecture fork in this specific case. Indeed we can chose one backend at
runtime when we lunch the code, and if we specify a backed for Intel CPU device
NVIDIA devices are not found, and vice versa. So we limit the experiment to
12-core CPU and NVIDIA dGPU separately. This however is sufficient to show the
advantages of using DPC++ to run code over hardware of different vendors. We
are confident that this limitation will be soon solved, allowing multiple backends.
Figure 4.7 compares performances of OneJoin on 12-core CPU and dGPU under
the Gen-470KS dataset. While the three kernels are executed on CPU or dGPU, in
both the configuration the join stages (of the fork-join model) uses the CPU-based
Intel oneTBB. From Figure 4.7 we can see that OneJoin-dGPU provides a 21×
speedup over EmbedJoin. We can also notice that the speedup is comparable
with improvement obtained by OneJoin-i9 executed on 12-cores CPU. Instead,
comparing dGPU performances with iGPU from the previous results, we can notice
that the dGPU is much faster despite the overhead due to the PCI data transfer.
Going further in details, we reports the breakdown across embedding and LSH
stages in Figure 4.8. We do not shows the time for verification, since it executed
always on CPU, and the improvement is in both cases 12×, as expected having
12-core. Concerning the embedding stage, we can see that using a discrete GPU
we obtain a 94× speedup compared to EmbedJoin, while a 45× improvement
with the 12-core CPU. Also in this case the impact is minimal on LSH stage that

5https://github.com/codeplaysoftware/sycl-for-cuda

50

Evaluation

shows being only 11-12× faster due to the call to the CPU-based oneTBB library.
Again, we highlight that no change in code was necessary to make the algorithm
runnable with a different backend, proving the benefit of DPC++ in providing a
cross-platform portability.

4.5 Comparison with State-of-the-art Joins

So far, we demonstrated the cross-architecture and cross-platform portability of
DPC++. But how does OneJoin performs w.r.t. the other state-of-the-art join
algorithm?

In this section we shows macrobenchmark comparing OneJoin with its sequential
counterpart - EmbedJoin - and the other join algorithm mentioned in Section 4.1.
OneJoin is executed on our local server, and the configuration used is the one
exploiting the NVIDIA dGPU, being our best results. We tested the algorithm
under three dataset for various edit distance threshold: Trec, Uniref and Gen-20ks
described in Section 4.1. Observing Figure 4.9, we can make two considerations.
There is a significant difference in performance between the exact algorithm for edit
similarity join and algorithm based on the approximation explained in the previous
chapters - i.e. EmbedJoin and OneJoin. Both the latter showed to outperform other
algorithm; this is especially true for high value of edit distance threshold. This
show the effectiveness of low-distortion embedding and LSH to reduce the number
of exact edit distance computation, that is the bottleneck of the other algorithm.
Second observation is that also in this case OneJoin proves to be up to 3.5× faster
than EmbedJoin under TREC, 5.3× under UNIREF, and a 4.3× speedup under
Gen20KS. This speedup are lower than the one reported for Gen-470ks dataset,
because although this dataset push to the limit the other exact algorithm, the
computation is not enough intensive for OneJoin. In other words, the parallel parts
is extremely short due to the efficient parallelization of kernels on NVIDIA dGPU,
and the majority of the time is spent in initialization and I/O.

51

Evaluation

4.6 OneJoin for DNA Data Storage

In the last evaluation section, we demonstrate the OneJoin usefulness in the DNA
read clustering task. We use two datasets for the experiment. The first one
simulated and one obtained from real DNA sequencing. The simulated dataset
allows to compute the accuracy of our algorithm in recovering the original reads.
It is obtained by loading 1MB into a postgreSQL database. The database has
been archived and encoded into 505.783 sequences by means of a tool developed
in pg_oligo_archive [13]. Each read is 209 nucleotides long. Then using a
short-read simulator6, we emulated sequencer to generate a five million reads from
these original oligos containing substitution, insertion, and deletion errors. Finally,
we used Accel-Align [14], an accurate, scalable short-read aligner to associate each
read to the original oligos. The set of oligos covered by the reads represents for us
the ground truth. Notice that in a real-world scenario we cannot use a sequence
aligner to recover the original oligos, since the original oligos are still not available
at this phase of the recovering process but they are the final objective of the process.
We use the ground truth to compare the accuracy of OneJoin-based read consensus
solution with Starcode software. Starcode represent the state-of-the-art algorithm
for clustering based on edit distance similarity.

Execution time Accuracy (%)
OneJoin 4min 48s 98.3
Starcode 141min 41s 97.9

Table 4.2: Performance and accuracy of OneJoin-based read consensus and
starcode.

Experiment results are showed in Table 4.2. We compared the execution time
of both algorithm and accuracy, computed as number−of−oligos−detected−via−consensus

number−of−oligos−via−alignment
.

Both the program ran on our local server, with Starcode running on 12-core
CPU and OneJoin on NVIDIA dGPU. Results indicate that OneJoin outperforms
Starcode in terms of running time providing a 29.5× speedup, while both have a
comparable accuracy. This proves that OneJoin can compete with state-of-the-art.

6https://sourceforge.net/projects/bbmap/

52

Evaluation

The difference in performances comes from the fact that Starcode, although it uses
all the multicores CPU, it performes an exahustive edit distance search and it is not
able to exploit the cross-architecture parallelism - running for example on GPU.
Having demonstrate that our algorithm performs well in terms of accuracy, we now
shows how it performs in a real-world scenario. We test OneJoin-based clustering
solution with Starcode under a dataset obtained from a published experimental
study [13]. The dataset consists of 12KB postgreSQL database encoded in 404
oligos. The oligos have been synthesized in a real synthetic DNA and sequenced it
back by means of Illumina Novoseq 500 - a short-read, next-generation sequencer.
From the sequencing phase we obtained 19 million noise reads, each made by 91
nucleotides. We used the OneJoin-based read consensus solution to recover 403
oligos (out of the original 404). On further inspection we noticed that the missing
oligos was covered by only one read, thus it has been classified as noise point and
dropped. Despite this, the decoder has been able to recover back the digital data
thanks to the use of repetition code inserted during decoding. Concerning the
execution time, OneJoin-based clustering solution took only 9 minutes to compute
all similar pairs, while the consensus stage and the decoding stage complete in a
few seconds. We don’t have results for Starcode for this last experiment, since it
was not able to finish.
To sum up, we proved with these results that our clustering solution built on
OneJoin algorithm - exploiting the portable, cross-architecture parallelism provided
by DPC++ - is able to complete the end-to-end data decoding for DNA storage
in minutes on a single server compared to the hours taken by the state-of-the-art
algorithm.

53

Evaluation

Ti
m

e
(s

)

1

10

100

1000

Threshold (K)

10 20 30 40

embedjoin onejoin qchunk adaptjoin

(a) TREC

Ti
m

e
(s

)

1

10

100

1000

Threshold (K)

5 10 15 20 25

embedjoin onejoin qchunk adaptjoin

(b) UNIREF

Ti
m

e
(s

)

1

10

100

1000

10000

Threshold (K)

25 50 75 100

embedjoin onejoin qchunk adaptjoin

(c) GENOMICS 20KS

Figure 4.9: Execution time of join algorithms at various distance thresholds (K)

54

Chapter 5

Conclusion

In this thesis, we addressed the problem of the edit similarity join and its limitation
in terms of scalability when applied to large dataset, as is the DNA data storage
case. We developed OneJoin, a data-parallel join algorithm based on DPC++ and
OneAPI. We showed how OneJoin can exploit the multiple processor types available
on modern heterogeneous computing systems. We proved that our algorithm is
able to provide up to 21× speedup compared to EmbedJoin, and up to 29.5×
reduction in time in the context of DNA read consensus, enable the end-to-end
data decoding in minutes.
To our knowledge, OneJoin 1 represents also the first database operator based on
DPC++. For this reason we make the code publicly available, in order to encourage
further researches on this topic and to extend the DPC++ based implementation
to other operators for data analytic engines.
As future work, we are going to address three different points. First, we will
investigate the advanced features of DPC++ and oneAPI for kernels optimization,
such as the use of ND-Range to express the parallelism and Unified Shared Memory
(USM) for the memory management. Secondly, we will extend the portability
towards CUDA. The aim is to replace the data-parallel operations such as sorting
and reduction with the CUDA library calls, in order to enable the execution on
NVIDIA dGPU in place of CPU (oneTBB). Lastly, we will extend the evaluation

1https://github.com/Eug9/oneoligo.git

55

Conclusion

with further experiments. Specifically, we will evaluate the algorithm on the recently
announced Intel DG1 - a new Intel dGPU - and analyze the portability on spatial
architectures (FPGA); we will evaluate the capability on OneJoin in performing
read-consensus on long-read sequencer, such as Oxford Nanopore.

56

Bibliography

[1] David Reinsel, John Gantz, and John Rydning. «Data Age 2025: The Evolu-
tion of Data to Life-Critical». In: (2017) (cit. on p. 1).

[2] Intel. Cold Storage in the Cloud: Trends, Challenges, and Solutions. http:
//www.intel.com/content/dam/www/public/us/en/documents/white-
papers/cold-storage-atom-xeon-paper.pdf (cit. on p. 1).

[3] IDC. Technology Assessment: Cold Storage Is Hot Again — Finding the Frost
Point. http://www.idc.com/getdoc.jsp?containerId=246732. 2013 (cit.
on p. 1).

[4] SNIA. 100 Year Archive Requirements Survey 10 Years Later. https://www.
snia.org/sites/default/files/SDC/2018/presentations/etc/Rivera_
Thomas_SNIA_100-Year_Archive_Survey_2017.pdf. 2017 (cit. on p. 1).

[5] V.V. Zhirnov and Daniel Rasic. 2018 Semiconductor Synthetic Biology Roadmap.
Oct. 2018. doi: 10.13140/RG.2.2.34352.40960 (cit. on p. 2).

[6] Haoyu Zhang and Qin Zhang. «Embedjoin: Efficient edit similarity joins
via embeddings». In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2017, pp. 585–594
(cit. on pp. 4, 7, 21, 24, 42).

[7] Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouck. «Streaming
algorithms for embedding and computing edit distance in the low distance
regime». In: Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing. 2016, pp. 712–725 (cit. on p. 7).

57

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cold-storage-atom-xeon-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cold-storage-atom-xeon-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cold-storage-atom-xeon-paper.pdf
http://www.idc.com/getdoc.jsp?containerId=246732
https://www.snia.org/sites/default/files/SDC/2018/presentations/etc/Rivera_Thomas_SNIA_100-Year_Archive_Survey_2017.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/etc/Rivera_Thomas_SNIA_100-Year_Archive_Survey_2017.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/etc/Rivera_Thomas_SNIA_100-Year_Archive_Survey_2017.pdf
https://doi.org/10.13140/RG.2.2.34352.40960

BIBLIOGRAPHY

[8] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. «Similarity Search in
High Dimensions via Hashing». In: Proceedings of the 25th International
Conference on Very Large Data Bases. VLDB ’99. 1999, pp. 518–529 (cit. on
p. 8).

[9] James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John
Pennycook, and Xinmin Tian. Data Parallel C++. 1st. Apress Open, 2020.
isbn: 9781484255742 (cit. on pp. 13, 17).

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. «A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise». In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. KDD’96. AAAI Press, 1996, pp. 226–231 (cit. on
p. 35).

[11] Jiannan Wang, Guoliang Li, and Jianhua Feng. «Can we beat the prefix
filtering?: an adaptive framework for similarity join and search». In: Proceed-
ings of International Conference on Management of Data (SIGMOD). 2012,
pp. 85–96. url: http://doi.acm.org/10.1145/2213836.2213847 (cit. on
p. 42).

[12] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin. «Efficient
Exact Edit Similarity Query Processing with the Asymmetric Signature
Scheme». In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’11. Athens, Greece: Association for
Computing Machinery, 2011, pp. 1033–1044. isbn: 9781450306614. doi: 10.
1145 / 1989323 . 1989431. url: https : / / doi . org / 10 . 1145 / 1989323 .
1989431 (cit. on p. 42).

[13] Raja Appuswamy, Kevin Lebrigand, Pascal Barbry, Marc Antonini, Oliver
Madderson, Paul Freemont, James MacDonald, and Thomas Heinis. «OligoArchive:
Using DNA in the DBMS storage hierarchy». In: CIDR. 2019 (cit. on pp. 52,
53).

[14] Yiqing Yan, Nimisha Chaturvedi, and Raja Appuswamy. «Accel-Align: A Fast
Sequence Mapper and Aligner based on the Seed–Embed–Extend Method».
In: bioRxiv (2020). doi: 10.1101/2020.07.20.211888. url: https://www.

58

http://doi.acm.org/10.1145/2213836.2213847
https://doi.org/10.1145/1989323.1989431
https://doi.org/10.1145/1989323.1989431
https://doi.org/10.1145/1989323.1989431
https://doi.org/10.1145/1989323.1989431
https://doi.org/10.1101/2020.07.20.211888
https://www.biorxiv.org/content/early/2020/07/21/2020.07.20.211888
https://www.biorxiv.org/content/early/2020/07/21/2020.07.20.211888

BIBLIOGRAPHY

biorxiv.org/content/early/2020/07/21/2020.07.20.211888 (cit. on
p. 52).

59

https://www.biorxiv.org/content/early/2020/07/21/2020.07.20.211888
https://www.biorxiv.org/content/early/2020/07/21/2020.07.20.211888

	List of Tables
	List of Figures
	Introduction
	Background
	CGK Embedding
	LSH for Hamming Distance
	EmbedJoin
	oneAPI and Data-Parallel C++

	Design and Implementation
	Data-Parallel Edit Similarity with OneJoin
	OneJoin: Full Example
	Read Consensus with OneJoin

	Evaluation
	Experimental Setup
	Portable Parallelism
	Cross-architecture Fork
	Cross-platform parallelism: OneJoin on Discrete GPU
	Comparison with State-of-the-art Joins
	OneJoin for DNA Data Storage

	Conclusion
	Bibliography

