
POLITECNICO DI TORINO

Master Degree Course in Computer Engineering

Master Thesis

LIS2SPEECH
LIS translation in written text and spoken language

Supervisor
prof. Maurizio Morisio

Candidate
Giuseppe Mercurio

Company Tutor
ORBYTA Tech
Eng. Carla Melia

Academic Year 2020-2021

This work is subject to the Creative Commons Licence

Abstract

Deaf and hard-of-hearing people can communicate with each other using Sign Lan-
guage, but they may have difficulties in connecting with the rest of society. Sign
Language Recognition is a field of study that started to be analysed back in 1983,
but only in the last decade this task gained more attention. Most of the published
works are related to American, Chinese and German sign languages. On the other
hand, the number of studies on the Italian Sign Language (LIS) is still scarce.
Thus, this work aims to offer a novel mechanism to translate isolated LIS signs into
Italian written text and speech.

In order to solve the expressed problem, Neural Networks, Deep Learning and
Computer Vision have been exploited to create an application, called LIS2Speech
(LIS2S), capable of returning the Italian translation of a LIS sign, performed within
a recorded video. The method relies on hands, body and face skeletal features
extracted from RGB videos without the need for any additional equipment, such as
colour gloves. Since the goal is to embrace as many people as possible, LIS2S has
been developed as a Progressive Web App, which is able to be run on any device,
being it a computer or a smartphone, equipped with a camera.

The results obtained with the described approach are in line with those obtained
by automatic tools that have been developed for other sign languages, allowing
the model to correctly understand and discriminate between signs belonging to
a vocabulary of 50 words, which is in accord with the size of other corpora for
isolated sign language recognition. In addition, a new dataset for Continuous Sign
Language Recognition (CSLR) has been created and is being constantly expanded,
to create a publicly available benchmark for this kind of task.

Finally, although the conducted experiments yielded promising results, this work
has just scratched the surface of the problem. The need for a corpus able to tackle
CSLR tasks has emerged, since the proposed solution can translate only a single
sign at a time. Other future works may examine the possibility of performing
sentence segmentation, so that the obtained isolated signs can be translated by the
actual model; moreover, to produce a very useful application for real-life purposes,
it is necessary to convert the present prototypes into real-time instruments. Finally,
another improvement concerns the extension of the number of signs the proposed
design can translate, to enlarge the application fields of LIS2S.

3

Acknowledgements

I would like to offer my special thanks to the entire ORBYTA development team,
whose help and support during the writing of this work have been really much
appreciated.

I am particularly grateful for the assistance given by my company tutor, Eng.
Carla Melia, for her patient guidance, enthusiastic encouragement and extremely
useful suggestions for this research work.

Finally, I wish to thank my family and friends for their support and inspiration
throughout my study.

4

Contents

List of Figures 7

1 Related work and technologies 11
1.1 State of the art . 11

1.1.1 Type of input data . 13
1.1.2 Sign language parameters 15
1.1.3 Analysis by sign language 16

1.2 Technologies overview . 18
1.2.1 Progressive Web Apps . 18
1.2.2 Ionic Framework . 20
1.2.3 Firebase . 22
1.2.4 Git . 23
1.2.5 Python . 24
1.2.6 Docker . 30

2 LIS2Speech architecture 33
2.1 Dataset and Database . 33
2.2 Description of the proposed application 35

2.2.1 Front-End . 36
2.2.2 Back-End . 38

2.3 Pipeline for Sign Recognition . 40
2.3.1 From videos to skeletal data 42
2.3.2 From skeletal data to gloss 45
2.3.3 From glosses to sentences . 49
2.3.4 From LIS to proper Italian 49

3 Experiments and results 53
3.1 Implementation details . 53
3.2 Overfitting and Regularization . 55

3.2.1 K-Fold Cross Validation . 57
3.2.2 Avoid Overfitting . 58
3.2.3 Text mining techniques . 63

5

3.3 Feature selection . 64
3.4 Training and testing results . 66

3.4.1 Discussion about timing . 69

A Listing of CI instructions in gitlab-ci.yml 75

B Listing of Python script for hyper-parameters tuning 77

Bibliography 79

6

List of Figures

1.1 Overview of SLR categories . 12
1.2 SLR studies in time . 12
1.3 SLR studies by vocabulary size . 13
1.4 Native vs. Web vs. PWA . 19
1.5 Object detection using MediaPipe 26
1.6 Three solutions from MediaPipe . 27

2.1 The “silence” position . 34
2.2 The “diffusion” sign . 35
2.3 The LIS2S architecture diagram . 36
2.4 Application UI . 37
2.5 UI mock-up for performance monitoring 38
2.6 QlikSense dashboard . 39
2.7 Database organization on Microsoft Azure SQL 41
2.8 Database organization on QlikSense 41
2.9 Example of skeletal data extraction 43
2.10 LIS2S Neural Network . 46

3.1 Overfitting, underfitting and ideal models 56
3.2 Accuracies over epochs for overfitting model 59
3.3 Dropout example . 61
3.4 Data Augmentation example on the “Torino” sign 63
3.5 Example of graph with connected components 65
3.6 Accuracy envelops over train and validation sets 68
3.7 Categorical Cross-Entropy Loss . 68
3.8 Loss envelops over train and validation sets 69

7

Introduction

Spoken languages and sign languages are different in a number of important ways:
the former make use of the “vocal - auditory” channel, since the sound is produced
with the mouth and perceived with the ear; the latter instead use the “corporal -
visual” channel, signs are produced with the body (hands, arms, facial expressions)
and perceived with the eyes.

There are several flavours of sign languages, due to the fact that they are not in-
ternational, and even inside a national sign language different dialects are present.
They are natural languages, since they evolved spontaneously wherever commu-
nities of deaf people had the possibility of communicating mutually, and are not
derived from spoken languages, because they have their own vocabulary and gram-
matical structures [1].

The fundamental building block of a sign language is a gloss, which combines
manual and non-manual features and represents the closest meaning of a sign [2].
Based on the context, a specific feature can be the most important factor in the
interpretation of a gloss: it may change the meaning of a verb, provide spatial or
temporal information and discriminate between objects or people.

As known, there is an intrinsic difficulty in the communication between the deaf
community and the rest of the society (according to ANSA, in 2018 there were
more than 72 million people all over the world using sign languages), so the design
of robust systems for automatic sign language recognition would largely reduce this
gap.

The definition of Sign Language Recognition (SLR) can be expressed as the
task of deducing glosses performed by a signer from video recordings. It can be
considered some way related to human action or gesture recognition, but automatic
SLR exhibits the following key additional challenges:

• The interpretation of sign language is highly affected by the exact position
in the surrounding space and context. For example, there are no personal
pronouns (e.g., “he”, “she” etc.), because the signer points directly to any
involved actor.

• Many glosses are only discernible by their component non-manual features and
they are usually difficult to be detected [3].

8

• Based on the execution speed of a given gloss, it may have a different meaning.
For instance, signers would not use two glosses to express “run quickly”, but
they would simply accelerate the execution of the involved signs [3].

Machine Learning (ML) and Deep Learning (DL) mechanisms are the base of
the so-called Computer Vision (CV); it is an interdisciplinary scientific field that
deals with how computers can gain high-level understanding from digital images
or videos. SLR is a task extremely related to CV; it takes advantage from the
significant improvement in performance gained by many video-related tasks, thanks
to the rise of deep networks.

In this work, a new approach to the Italian Sign Language (LIS - Lingua Ital-
iana dei Segni) is proposed; the goal is to produce a tool useful for improving the
integration of deaf people with the rest of the society; this tool should be easily
accessible by anyone, and this is why the choice of developing an application able to
be run on laptop or even smartphones has been taken. The name of the application
described in this dissertation is LIS2Speech (LIS2S).

The main contributions of this work can be summarized as follows:

• An improved version of the A3LIS-147 dataset [4]; this dataset has been used
as the initial training dataset for the neural network which is the core of LIS2S
application, but then it has been expanded with lots of new words and videos.

• A new pipeline to extract meaningful information from videos of people using
LIS; in particular, the Mediapipe framework [5] and its Python implementation
have been used to extract 3D coordinates of hands [6], face [7] and pose [8].

• An improved implementation of the neural network that has been proposed by
the DeepGRU project [9], whose focus was to obtain an easy to train neural
network capable of analysing temporal sequences of data; the main element of
this architecture is the Gated Recurrent Unit (GRU) [10], a gating mechanism
used in Recurrent Neural Networks (RNN) [11].

• A complete Progressive Web Application (PWA), created from scratch, that
can be used to interface with the neural network briefly introduced previously.
This application is intended to support deaf people in communicating with
hearing people, producing a vocal and textual interpretation of the signs which
have been executed by the user.

In order to ease the reading of this work, this is how it is organized: in chapter 1
the state-of-the-art and the related works are exposed, together with an introduc-
tion to the PWAs and the technologies adopted in the project. In the chapter 2,
first the dataset structure is explained; subsequently, the selected pipeline for the
final application is described, together with the trained models exploited to accom-
plish the sign recognition. Then, in chapter 3 interpretations and insights of the

9

conducted experiments are discussed. Finally, conclusions are drawn and future
research directions are highlighted.

10

Chapter 1

Related work and
technologies

In the following sections, a summary of the main findings, together with a brief
overview of the technologies used in the work correlated to this dissertation, are
provided. First, the related works are exposed in order to set a starting point for
this research; then follows a general introduction to used tools and frameworks, so
that the successive chapters can be easily read and understood.

1.1 State of the art
The past decade has seen the rapid expansion of DL techniques in many applications
involving spatio-temporal inputs. The CV is an incredible promising research area,
with ample room for improvement; in fact video-related tasks such as human action
recognition [12], gesture recognition [13], motion capturing [14] etc. have seen
considerable progress in their development and performance. SLR is extremely
related to CV, since it requires the analysis and processing of video chunks or
sequences to extract meaningful information; this is the reason most approaches
tackling SLR have adjusted to this direction.

SLR can play an important role in addressing the issue of deaf people integration
with the rest of the society. The attention paid by the international community to
this particular problem has been growing during the last years; the number of pub-
lished studies, but also the quantity of available data sets is increasing. There are
different automatic SLR tasks, depending on the detail level of the modelling and
the subsequent recognition step; these can be approximately divided in (Figure 1.1):

• Isolated SLR: in this category, most of the methods aim to address video
segment classification tasks, given the fundamental assumption that a single
gloss is present [15], [16], [17].

11

Related work and technologies

Figure 1.1: Overview of SLR categories

Adapted from [26].

• Sign detection in continuous streams: the objective of these approaches is to
recognize a set of predefined glosses in a continuous video flow [18], [19], [20].

• Continuous SLR (CSLR): the goal of this methods is to identify the sequence
of glosses present in a continuous or non-segmented video sequence [21], [22],
[23]. The characteristics of this particular category of mechanisms are most
suitable for the requirements of real-life SLR applications [24].

This distinction is necessary to understand the different kinds of problems present
for each task; historically, before the advent of the deep learning methods, the focus
was on identifying isolated glosses and gesture spotting, so this is why studies on
isolated SLR are more common. In Figure 1.2 the trend of isolated and continuous
recognition studies can be observed in blocks of five years up until 2020; the growth
looks exponential for isolated studies, while it is close to linear for continuous stud-
ies. This can reflect the difficulty of the continuous recognition scenario and the
scarcity of available training datasets. In fact, on average it can be observed that
there are at least twice as many studies published using isolated sign language data.

Figure 1.2: SLR studies in time

Showing the number of published recognition results between 1983 and 2020. Adapted from [27].

12

1.1 – State of the art

In terms of vocabulary size, the majority of isolated SLR works model a very
limited amount of signs (i.e., below 50 signs), while this is not the case when
comparing CSLR, where the overall studies are more or less evenly spread across
all sign vocabularies. This trend can be observed in Figure 1.3.

1.1.1 Type of input data
There are different kinds of input data used in the literature; these data are con-
sumed by the recognition algorithms to extract features and perform computation.
Table 1.1 presents an overview of the input data: as can be seen from the table,
RGB is the most popular type of input data both for small and larger scale vocab-
ulary ranges. Coloured and Electronic Gloves have been applied only to small and
medium vocabulary tasks and did never get significant attention over the years.
The Depth input data became popular only after the release of the Kinect sensor
[25] in 2010.

Input data could be aggregated into “non-intrusive” and “intrusive” categories,
meaning that in the intrusive methods the recognition subject needs to be mod-
ified to perform body pose estimation and general feature extraction. This said,
“RGB” and “Depth” are non-intrusive capturing methods, while “Colour Glove”,
“Electronic Glove”, and “Motion Capturing” are intrusive techniques. Focusing on
the temporal evolution of the studies, it can be seen in Table 1.2 that there is a
clear paradigm shift after 2005, when the dominating intrusive capturing methods
started to be less and less used: in fact, their adoption trend decreased from around
70% to less than 30% and it is going to constantly reduce over time, thanks to the
notable improvements of Deep Learning techniques.

Considering the number of recognition results per sign language and employed

Figure 1.3: SLR studies by vocabulary size

Showing the number of published results between 1983 and 2020 and the size of their modelled
sign vocabulary. Adapted from [27].

13

Related work and technologies

Vocabulary RGB Depth Colour Glove Elect. Glove Motion Capt.
> 1000 85 4 0 17 13

500 - 1000 93 41 0 4 4
200 - 500 77 23 6 12 12
50 - 200 73 11 6 16 15
0 - 50 72 24 13 10 8

Table 1.1: Shows the fraction in [%] of published SLR results that make use of a specific input
data type (e.g. “RGB”, “Depth”, etc.) relative to all published results that fall in the same
modelled vocabulary range. E.g. this table reads like: “85% of all results with a modelled
vocabulary above 1000 signs employ RGB input data”.

type of input data, it is worth noting that, as depicted in Table 1.3, experiments
recognizing American Sign Language (ASL) are dominated by RGB data; Chinese
Sign Language (CSL), instead, may count on a larger number of results involv-
ing RGB-D (colour with depth) data, together with just RGB data. German Sign
Language (Deutsche Gebärdensprache) (DSG) and most other sign languages focus
mainly on RGB based recognition. In this work a new approach for LIS recogni-
tion will be introduced, based on 3D skeletal data, which are supposed to require
less computational power than NN involving convolutional operations over images
and frames. However, as we will see later on, few studies have investigated LIS
recognition in any systematic way; this may reflect the different perception of the
problem from the Italian society with respect to other ones, like USA or China,
which started to tackle SLR difficulties years ago.

Years non-Intrusive Intrusive
> 2015 89 11

2010 - 2015 87 13
2005 - 2010 72 28
2000 - 2005 30 70
1995 - 2000 27 73
1990 - 1995 29 71

< 1990 50 50

Table 1.2: Shows the fraction in [%] of published SLR results that make use of non-intrusive
data input capturing methods (i.e. “RGB” or “Depth”) and those that are intrusive (i.e. “Color
Glove”, “Elect. Glove” or “Motion Capt.”) relative to a year range.

14

1.1 – State of the art

Input Data ASL CSL DGS LIS
RGB 93 53 59 4
Depth 14 38 3 0

Colour Glove 4 1 4 0
Elect. Glove 16 17 1 1
Motion Capt. 14 15 0 0

Table 1.3: Shows the number of published SLR results per sign language and type of input data.

1.1.2 Sign language parameters
The previous section has analysed the different kinds of input data used for SLR.
The following one will investigate the sign language parameters and features that
are extracted based on the input data. A distinction can be made between manual
parameters, such as hand shape, movement, location and orientation; and non-
manual parameters, for example, head, mouth, eyes and eyebrows. In the majority
of studies on SLR, the hand shape is the most covered parameter, while location
and movement are the next popular ones across all vocabulary sizes below 1000
signs. However, using recent DL based feature extractors, it is possible to infer
hand posture and orientation parameters starting only from the hand shape.

In Table 1.4 the hand location, movement, shape and orientation are aggregated
into manual parameters; head, mouth, eyes and eyebrows are instead indicated as
non-manual parameters. In addition to these parameters, other kind of information
can be extracted from the entire RGB image, for example, body joints or motion
estimation: these are referred to as global features. What is interesting in this
table is the shifting from manual to global features when considering larger modeled
vocabularies: while the former usage is dominant for vocabularies of up to 50 signs,
the latter takes the lead for large vocabularies above 1000 signs. The increasing
trend of global features may have two reasons:

• The availability of body joints and full depth image features with the realise
of the Kinect sensor in 2010.

• The shift towards DL techniques, which allowed to input fullframes images
and videos instead of manual feature engineering.

Both hypotheses can be confirmed by looking at the Table 1.5: global features, in
fact, started to stand out just after 2010 (when Kinect sensor was released) and also
coincides with the took off of DL for SLR, which is traced back to 2015. According
to [27], the ASL has the most published results overall, but non-manual parameters
are most frequently included in studies on DGS. In addition, despite the fact that
CSL is the second most frequently researched sign language, there is only a single
study that includes non-manual parameters like the face [28]. Eye and specifically

15

Related work and technologies

Vocabulary Manual non-Manual Global
> 1000 49 15 64

500 - 1000 67 0 62
200 - 500 77 23 52
50 - 200 74 7 35
0 - 50 90 7 20

Table 1.4: Shows the fraction in [%] of published sign language recognition results that employ
manual, non-manual or global features relative to all published results that fall in the same
vocabulary range. E.g. this table reads like: “49% of all results with a modeled vocabulary above
1000 signs include manual parameters”.

eyebrows have only been tackled in few studies [29], [30], [31], [32], [33], [34], [35],
while eye gaze or eye blinks have not being taken under account for SLR until now.
In this work, both manual, non-manual and global parameters have been considered:
in fact, the 3D skeletal data which was introduced in the previous section are
a combination of coordinates extracted from hands, head, mouth, eyebrows and
body joints.

Vocabulary Manual non-Manual Global
> 2015 47 8 66

2010 - 2015 100 17 37
2005 - 2010 99 13 1
2000 - 2005 100 0 0
1995 - 2000 100 5 0
1990 - 1995 100 0 0

< 1990 100 0 0

Table 1.5: Shows the fraction in [%] of published sign language recognition results that employ
manual, non-manual or global features relative to all published results that fall in the same
range of years. E.g. this table reads like: “47% of all results released after 2015 include manual
parameters”.

1.1.3 Analysis by sign language
Having discussed the different kind of input data, lets now consider the results
divided by sign language over time and per vocabulary range. Standing to [27],
ASL has usually been the language with the most results published; in practice
this is only true for vocabularies below 200 signs. On larger vocabularies CSL is
leading and, on vocabularies above 1000 signs, DGS has significantly more research
published; in particular, the RWTH-PHOENIX-Weather [30] dataset used for DGS

16

1.1 – State of the art

consists of a vocabulary of more than 1000 signs and represents the only resource for
large-scale CSLR worldwide. This can partly be explained by the public availability
of sign language datasets, which is extremely low for most of the sign languages.
All these information can be summarized in Table 1.6 and Table 1.7.

Year ASL CSL DGS LIS
> 2015 46 35 40 1

2010 - 2015 32 21 17 2
2005 - 2010 30 4 4 2
2000 - 2005 11 10 2 0
1995 - 2000 5 2 1 0
1990 - 1995 5 0 0 0

< 1990 1 0 0 0

Table 1.6: Shows the number of published SLR results per sign language and year. This table
reads like: “There are 46 results published after 2015 that use ASL”.

Concerning the Italian Sign Language, it is worth citing the A3LIS-147 dataset
[4], realised in 2012 from the A3Lab research group based at the Università Po-
litecnica delle Marche, Ancona. The dataset is composed of 147 isolated signs,
performed by 10 different signers; the signs have been organized in six categories,
related to different situations of the common life, as it is shown in Table 1.8. These
likely represent the domains where automatic tools for social inclusion of deaf peo-
ple could be effectively applied. Each video presents a single sign which is preceded
and succeeded by the occurrence of the “silence” sign.

The work done by A3Lab research group is commendable, but it is focused
only on isolated signs; this means it can be only used to conduct experiments on
Isolated SLR. Because of this, this dissertation concerns Isolated SLR, since the
NN described and used in this work, as explained later on, is trained based on this
dataset.

In contrast to this A3LIS-147 dataset, however, the RWTH-PHOENIX-Weather

Vocabulary ASL CSL DGS LIS
> 1000 4 11 36 0

500 - 1000 7 10 2 0
200 - 500 8 17 16 0
50 - 200 43 20 3 2
0 - 50 57 14 7 3

Table 1.7: Shows the number of published SLR results per sign language and modeled vocab-
ulary. This table reads like: “There are 4 published results of ASL that use a vocabulary bigger
than 1000 signs”.

17

Related work and technologies

Scenario Signs per scenario Vocabulary examples
Public institute 39 employee, municipality, timetable
Railway station 35 train, ticket, departure

Hospital 19 emergency, doctor, pain
Highway 8 traffic, toll booth, delays

Common life 16 water, telephone, rent
Education 30 school, teacher, exam

Table 1.8: The proposed real-life scenarios, number of signs per scenario and vocabulary exam-
ples for the A3LIS-147 dataset.

is made of videos concerning sequences of signs. This dataset required a period of
three years (from 2009 to 2011) to record daily news and weather forecast airings of
the German public TV-station PHOENIX featuring sign language interpretation.
It consists of more than 1080 different signs. In the end, only the weather fore-
casts of a subset of 386 editions have been transcribed using gloss notation. The
transcriptions have been carried out by deaf and hard-of-hearing native speakers
of DGS, and an additional translation of the glosses into spoken German has been
created to capture allowable translation variability. A structure and dataset like
this is actually missing for the LIS, and would be a remarkable step towards real-life
SLR applications usable by Italian deaf people, allowing researchers to investigate
solutions for CSLR.

1.2 Technologies overview
In the next section the most important tools used during the development of LIS2S
application will be briefly explained. Going deeper into the details, LIS2S is made
previously of two parts: on the client-side there is a Progressive Web Application
(PWA), which will be used by the admins and users to access the functionality
provided by the software; and the Back-end, which will be managed by a server
process constantly listening for requests coming from the application. Whenever
a new request is received from the server, it will run a new instance of a Docker
container: this will be in charge of processing the data coming with the request
and returning back the translation to the client.

1.2.1 Progressive Web Apps
Progressive Web Apps (PWA) are web apps that use emerging web browser APIs
and features along with traditional progressive enhancement strategies to bring
a native app-like user experience to cross-platform web applications. PWAs are
a useful design pattern, although they are not a formalized standard. The term

18

1.2 – Technologies overview

“Progressive Web App” is not a formal official name, but just a shorthand used
initially by Google for the concept of creating a flexible, adaptable app using only
web technologies. They can be thought as similar to AJAX or other similar patterns
that involve a set of application attributes, including use of specific web technologies
and techniques.

PWAs are web apps developed using a number of specific technologies and stan-
dard patterns to allow them to take advantage of both web and native app features.
For example, web apps are more discoverable than native apps; it is a lot easier
and faster to visit a website than to install an application, and it is also possible
to share web apps by sending a link. On the other hand, native apps are better
integrated with the operating system and therefore offer a more seamless experience
for the users. Native apps can be installed so that they work offline, and users love
tapping their icons to easily access their favourite apps, rather than navigating to
them using a browser. PWAs allow to create web apps that can enjoy these same
advantages, as depicted in Figure 1.4.

Reach

C
a
p
a
b
i
l
i
t
i
e
s

Figure 1.4: Native vs. Web vs. PWA

Showing capabilities vs. reach of platform-specific apps, web app, and progressive web apps.

There are some key principles a web app should try to observe to be identified
as a PWA. It should be:

• Discoverable, so the contents can be found through search engines.

• Installable, so it can be available on the device’s home screen or app launcher.

• Linkable, so that it can be shared by sending a URL.

19

Related work and technologies

• Network independent, so it works offline or with a poor network connection.

• Progressive, so it is still usable on a basic level on older browsers, but fully-
functional on the latest ones.

• Re-engageable, so it is able to send notifications whenever there is new content
available.

• Responsive, so it is usable on any device with a screen and a browser (mobile
phone, tablet, laptop, TV, etc.).

• Safe, so the connections between the user, the app, and the server are secured
against any third parties trying to get access to sensitive data.

There are many success stories of companies trying the PWA route, opting for
an enhanced website experience rather than a native app, and seeing significant
measurable benefits as a result. Examples could be Pinterest, which rebuilt their
mobile site as a PWA and observed a core engagement increase by 60%, together
with a 44% increase in user-generated ad revenue; or AliExpress PWA, which has
also seen much better results than either web or native app, with 104% increase in
conversion rates for new users.

Since the goal of the LIS2S application is to reach as many people as possible,
to help deaf and hard-of-hearing people integrating in the society, the decision to
use a PWA was taken. In this way it is possible to exploit physical and portable
devices of whatever form factor, starting from smartphones and going to laptops or
multimedia totems. With this also come all the different advantages of PWAs, such
as the security for the exchanged data and the responsiveness of the application.

1.2.2 Ionic Framework
The PWA is the core concept of the client-side application, but what is more im-
portant for the end user is the User Interface (UI). Concerning this topic, the
Ionic Framework has been selected in order to exploit an open-source UI toolkit
for building performant, high-quality mobile and desktop apps using web technolo-
gies (HTML, CSS, and JavaScript) with integration for popular frameworks like
Angular, React and Vue.

Ionic is a cross-platform framework and its goal is to allow developers to use
technology that they already know to build apps in technology they are not so
familiar with; for example, Ionic allows to use HTML/CSS/JS to build iOS apps,
Android apps, PWAs, desktop apps, or apps for any other platform equipped with
a browser. In the same way, for instance, React Native utilizes the JS framework
React, but renders native UI elements at runtime, making it possible to build
iOS and Android apps. In general, all hybrid app development frameworks allow
access to native device functionality like the camera, biometrics, geo-localization

20

1.2 – Technologies overview

and offline storage. Still, there are some philosophical differences between these
technologies. They could be divided into two major categories: Hybrid-Native and
Hybrid-Web, whose most important differences are depicted in Table 1.9.

Hybrid-Native

React Native, along with Xamarin, NativeScript and other frameworks like Flutter,
allows to program the UI in one language that then organizes native UI controls at
runtime. In this case, cross-platform means that React Native has got JavaScript
functions that are mapped to system calls, allowing to manage the native UI for
specific mobile platforms. For example, a React Native component that renders
text on a mobile app will be converted into two different components: TextView for
Android and UIView for iOS. Thus, not components but code is shared across plat-
forms. This means that the underlying native UI component and any customization
of that component must be supported by React Native.

The amount of code reuse in React Native projects will vary depending on how
much the application will be customized at the native layer. If only fundamental
UI elements, like View, Text and Image are used, then the code will be able to run
generally on any different platform. On the other hand, if native customizations are
required, the project will need three separate codebases: two necessary to manage
Android and iOS UI, and another shared codebase where the controller code will
settle.

Finally, React Native and other Hybrid-Native frameworks are very good solu-
tions with lots of advantages: the possibility to build a real native UI using mostly
JavaScript, still being able to share a big part of the code, but at least a basic
knowledge of native specific languages and features is required to fully customize
the application.

Hybrid-Web

These kind of frameworks, among which Ionic stands, take a different stance. UI
components used in applications are actually running across all platforms, instead of
having JavaScript code that acts as a bridge between them and native IU elements.
In a mobile app, these components are executed in a web-view container; in a PWA
they run in the browser; in a desktop app they are rendered in a desktop container
like Electron.

These characteristics are important because they ensure a unique and consistent
UX across different platforms, together with the possibility to reuse a particular
component over any project. In addition, frameworks like Ionic are based on HTML,
CSS and JavaScript, allowing the UI to run on a portable and standardized layer.
Thanks to the CSS styling properties, it is easier to customize an application’s
design based on each platform. Lastly, the biggest benefit of building on the web

21

Related work and technologies

is the stability of the platform: with open web standards supported in all modern
browsers, whatever is being developed today is going to work also in the future.

Using a Hybrid-Web approach, the UI is built with HTML/CSS/JS, and native
functionalities can be accessed through portable APIs that abstract the underlying
platform dependencies. Only certain features, like the camera, depend on the
platform. This allows the app to run on any system with web support: iOS,
Android, browsers, Desktop, PWAs etc. The most important aspect is that the
UI layer can be shared between different platforms: even if the look of the app is
customized over Ionic’s default platform-specific design, the app will never be split
into multiple codebases.

Concerning performance, for the vast majority of cases, hybrid frameworks (both
Hybrid-Native and Hybrid-Web) will have similar behaviour. Nevertheless, if per-
formance is the main goal of the developed application, then a fully native approach
would be preferable: using the Native SDKs will surely be worth the trade-off in
terms of cost and development time.

In the end, the Ionic framework based on the React library, formerly known
as ReactJS or Ionic React, was chosen to build the LIS2S application, because it
satisfies the main principles of reachability and pleasantness of use needed for its
goals. Thanks to this framework, it was possible to obtain an application ready for
use both in Android and iOS devices, as well as browsers or desktops. In addition,
thanks to the ORBYTA’s team experience in React development, the final product
is designed to be as simple and powerful as possible.

1.2.3 Firebase

Firebase is the Google’s toolset intended to build, improve and grow an application.
It covers a large portion of the services that developers would normally build them-
selves, including analytics, authentication, file storage, push messaging and so on.
The services have back-end components which are fully maintained and operated
by Google, and scale with little to no effort on the part of the developer. All these
services are available through the Firebase Console associated with the developed
project.

For this particular application, Firebase Authentication and Cloud Storage have
been used: using the former, the user is able to authenticate himself in LIS2S
application, to have access to his past translation and feedback; the latter, instead,
is used as temporary storage for user uploaded videos: whenever a new translation
is required by the user, the application will upload the recorded video to Firebase
Cloud Storage and the back-end service will process it in order to return back the
translation to the user. Once the translation operation is completed, the video is
deleted.

22

1.2 – Technologies overview

Features Hybrid-Native Hybryd-Web
Performance Excellent, as there is no

web-view
Good, as it uses

web-view

Code reusability Same code for Android
and iOS apps

Same code for Android
and iOS apps, desktop

and PWA

Ease of development Learned once, written
anywhere

Written once, reused
anywhere

Learning Very few pre-developed
components

Good amount of
pre-developed and

pre-styled components

Code testing Needs emulator or
mobile device

Can be done on any
browser

Table 1.9: The most important differences between Hybrid-Native and Hybrid-Web frameworks.

1.2.4 Git
The previous sections have shown the frameworks used to build and deploy a multi-
platform application; to manage the code needed to effectively compose the project,
the development team required an easy to use platform to handle code changes and
improvements: nowadays, Git is the most used platform for this purpose.

Git is officially defined as a distributed version control system (VCS). It allows
to track the changes made to project files over time. It is possible to record project
changes and return back to a specific version of the tracked files. This system
has been developed in order to let different people efficiently work together and
collaborate on team projects: each developer can have their own version of the
project, and later on these versions can be merged and adapted into the main
version of the project.

Git is primarily used via the command-line interface (CLI), accessible using
system terminals. The basic container for a project is called repository, and it can
be either local or remote. Remote repositories are especially useful when working
in teams, since people working together will be able to share the project code, see
other people’s code and integrate it into their local version of the project.

Once a repository is initialized, it’s possible to modify the project it contains by
staging and committing code:

• Committing is the process in which the changes are “officially” added to the

23

Related work and technologies

Git repository;

• Staging, instead, consists in adding the changes made to project files into the
staging area: initially, it is necessary to start tracking a file; then, once it is
modified, Git will consider that file as something that should be added to the
next commit.

It’s possible to monitor the files that have been modified by checking the status
of the repository. Git also allows to move or delete files. The peculiar thing of using
a distributed VCS is that it allows to move back and forth from a commit to another
one, like a time machine; in addition, it’s also possible to create new branches, which
can be interpreted as an individual timeline of the projects commits. Many of these
alternative environments can be created, so this means that different versions of
the project code can exist and be tracked in parallel. Exploiting this mechanism,
Git allows to add new features in separate branches, without touching the stable
version of the project, which is usually kept in the master branch. Once changes
done in a particular branch are satisfactory, it can be merged into a different one,
for example the master branch.

During the work carried out for this dissertation, particular attention was paid
to versioning, making the best of Git in order to efficiently collaborate.

1.2.5 Python
Moving on towards the back-end section of the LIS2S application, the core of the
translation mechanism is performed by the processing of the received videos. This
particular task has been realized exploiting the potentiality of the Python program-
ming language, which offers a complete set of tools and libraries extremely useful
for Computer Vision and data manipulation.

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level built-in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid Application De-
velopment, as well as for use as a scripting or glue language to connect existing
components together. Python’s simple, easy to learn syntax emphasizes readability
and therefore reduces the cost of program maintenance. Python supports modules
and packages, which encourages program modularity and code reuse. The Python
interpreter and the extensive standard library are available in source or binary form
without charge for all major platforms, and can be freely distributed.

Often, programmers prefer using Python because of the increased productivity it
provides. Since there is no compilation step, the edit-test-debug cycle is incredibly
fast. Debugging Python programs is easy: a bug or bad input will never cause a
segmentation fault. Instead, when the interpreter discovers an error, it raises an
exception. When the program doesn’t catch the exception, the interpreter prints a
stack trace. A source level debugger allows inspection of local and global variables,

24

1.2 – Technologies overview

evaluation of arbitrary expressions, setting breakpoints, stepping through the code
a single line at a time, and so on. The debugger is written in Python itself, testifying
to Python’s introspective power. On the other hand, the quickest way to debug a
program is to add a few print statements to the source: the fast edit-test-debug
cycle makes this simple approach very effective.

During the development of the LIS2S application, lots of packages and libraries
have been used to achieve the final translation goal. In the following sections, a
brief overview of the most important modules follows.

Open CV

OpenCV is a cross-platform library that can be used to develop real-time com-
puter vision applications. It mostly focuses on image processing, video capture and
analysis including features like face detection and object detection.

First, an introduction to CV is needed. It explains how to reconstruct and
understand a 3D scene from its 2D images, in terms of the properties of the structure
present in the scene. It deals with modelling and replicating human vision using
computer software and hardware. It can also be intended as the construction of
explicit, meaningful descriptions of physical objects from their image. The output
of computer vision is a description or an interpretation of structures in 3D scenes.
CV is heavily used in the most disparate domains, such as robotics, medicine,
security and so on.

Using the OpenCV library, it is possible to read and write images, capture and
save videos, process images (filter or transform them), perform feature detection,
detect specific objects such as faces, eyes etc. in videos or images and further
more. This library was originally developed in C++; in addition, Python and Java
bindings were later provided. It can run on different Operating Systems such as
Windows, Linux, FreeBSD and so on.

In particular, OpenCV was used during the development of the LIS2S application
in order to manipulate videos of people using LIS. During the training phase, that
will be later covered, this module is the key element for the feature extraction from
videos; in addition, it is used to process the videos received by the users in the final
implementation of the application.

MediaPipe

MediaPipe is a framework which offers cross-platform, customizable ML solutions
for live and streaming media. As reported in [5], with MediaPipe a perception
pipeline can be built as a graph of modular components, including model inference,
media processing algorithms and data transformations. Sensory data such as au-
dio and video streams enter the graph, and perceived descriptions such as object-
localization and face-landmark streams exit the graph. An example is shown in
Figure 1.5.

25

Related work and technologies

Figure 1.5: Object detection using MediaPipe

The transparent boxes represent computation nodes (calculators) in a MediaPipe graph, solid
boxes represent external input/output to the graph, and the lines entering the top and exiting
the bottom of the nodes represent the input and output streams respectively. Adapted from [5].

MediaPipe can exploit build-in fast ML inference and processing accelerated
even on common hardware, such as smartphones and tablets; since it is a cross-
platform framework, it allows to build once and deploy anywhere: unified solutions
are available, working across Android, iOS, desktop/cloud, web and IoT. At the
time of writing, there are multiple ready-to-use solutions, cutting-edge ML projects
demonstrating the full power of the framework. Finally, MediaPipe is free and open
source, it is fully extensible and customizable.

MediaPipe offers customizable Python solutions as a prebuilt Python package.
It also provides tools for users to build their own solutions. MediaPipe on the
Web is an effort to run the same ML solutions built for mobile and desktop also in
web browsers; the project is constantly evolving, and a JavaScript version is being
developed at a sustained pace.

For the purpose of LIS2S, the Python implementation of some solutions has
been used; these particular solutions are the Hands, Face Mesh and Pose solution;
examples of what is possible to do with these solutions are provided in Figure 1.6.

These solutions are particularly helpful for the developed application goal, since
they allow to extracts important information by images and videos in near real-
time; the information extracted are skeletal data, which will be used by the NN to

26

1.2 – Technologies overview

train and understand what kind of sign has been performed by the user.

(a) Face mesh

(b) Pose

(c) Hand crops

Figure 1.6: Three solutions from MediaPipe

Numpy

Going deeper into the video processing task, attention shifts from original videos to
the features extracted from them. In order to manipulate all these numbers, arrays
and values, the Numpy package has been included in the developed Python scripts
used by LIS2S application.

NumPy is the fundamental package for scientific computing in Python. It is
a Python library that provides a multidimensional array object, various derived
objects (such as masked arrays and matrices), and an assortment of routines for fast
operations on arrays, including mathematical, logical, shape manipulation, sorting,
selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical
operations, random simulation and much more.

27

Related work and technologies

At the core of the NumPy package, is the ndarray object. This encapsulates
n-dimensional arrays of homogeneous data types, with many operations being per-
formed in the compiled code for performance. NumPy arrays facilitate advanced
mathematical and other types of operations on large amounts of data. Typically,
such operations are executed more efficiently and with less code than is possible
using Python’s built-in sequences.

The points about sequence size and speed are particularly important in scientific
computing. Consider the case of multiplying each element in a 1-D sequence with
the corresponding element in another sequence of the same length: if the two se-
quences contain millions of numbers, the time needed to accomplish the calculation
will not be negligible, due to the inefficiencies of looping in Python. Exploiting
Numpy, instead, element-by-element operations are speedily executed by precom-
piled C code. The power of Numpy is in the vectorization: it describes the absence
of any explicit looping, indexing etc. in the code, and has many advantages (it is
more concise, needs fewer lines of code etc.).

Pandas

The data extracted during the previous phases of video processing need to be saved
in reliable data structures for further manipulation and analysis, in particular to be
used in Neural Network training. This is the reason the Pandas package has been
used: it provides fast, flexible, and expressive data structures designed to make
working with “relational” or “labelled” data both easy and intuitive. It aims to
be the fundamental high-level building block for doing practical, real-world data
analysis in Python.

Pandas is well suited for many kinds of data, such as tabular data with hetero-
geneously typed columns, as in an SQL table or Excel spreadsheet, ordered and
unordered (not necessarily fixed-frequency) time series data etc.; for all these rea-
sons, it is the perfect package to be used in LIS2S application to manage and save
the time series features extracted from video processing into an SQL database,
based on Microsoft Azure.

The two primary data structures of pandas, Series (1-dimensional) and DataFrame
(2-dimensional), handle the vast majority of typical use cases in finance, statistics,
social science, and many areas of engineering. Pandas is built on top of NumPy
and is intended to integrate well within a scientific computing environment with
many other 3rd party libraries.

PyTorch

The core of the LIS2S application stands in the ability of recognizing the sign per-
formed by the user in his video. To accomplish this not trivial goal, Deep Learning
(DL) mechanisms and methodologies need to be used; DL is part of a broader fam-
ily of machine learning methods based on Artificial Neural Networks (ANNs). This

28

1.2 – Technologies overview

kind of structures was inspired by information processing and distributed commu-
nication nodes in biological systems (hence the name “Neural Network”), but there
are various differences between these two systems. The adjective “deep” in DL
refers to the use of multiple layers in a single network. Historically, the first type of
classifier was the linear perceptron [36], but early work showed that it cannot be a
universal classifier, while a network with a non-polynomial activation function with
one hidden layer of unbounded width can on the other hand so be. Deep learning
is a modern variation which is concerned with an unbounded number of layers of
bounded size, which permits practical application and optimized implementation,
while retaining theoretical universality under mild conditions.

As the years go on, DL improvements allowed to build technologies that previ-
ously were not even imaginable. To make use of these technologies, several frame-
works have been developed: among them, the most known are Keras1, PyTorch2

and TensorFlow3.
For many scientists, engineers and developers, TensorFlow was their first DL

framework, released back in 2017 but not so user friendly. The difficulties in the
usage of this framework are due to the complexity of TensorFlow Execution Engine,
in which the actual graph of the NN needs to be compiled first, together with
concepts such as Variable scoping, placeholders and sessions, which would lead to
boilerplate code.

Over the past couple of years, the two major DL libraries that have gained
massive popularity, mainly due to how much easier to use they are over TensorFlow,
are Keras and Pytorch. Keras is not a framework on its own, but actually a
high-level API that stands on top of other DL frameworks (currently it supports
TensorFlow, for instance); its main strength is the ease of use, since it is considered
the easiest framework to get up and running fast. Defining NNs is intuitive, thanks
to its Functional API which allows to define layers of NNs as functions. PyTorch
is per se a DL framework, developed by Facebook’s AI research group. Like Keras,
it also abstracts away much of the messy parts of programming deep networks.
PyTorch lies somewhere between Keras and TensorFlow, since it allows a greater
level of flexibility than the former, but at the same time it is not so blundering like
the latter. The main differences between these two frameworks are:

• Classes vs. Functions for defining models: Keras exploits the Functional API
to create models as a set of sequential functions, applied one after the other;
in PyTorch, instead, networks are defined as classes and layers are defined as
attributes of the class;

1www.keras.io
2www.pytorch.org
3www.tensorflow.org

29

www.keras.io
www.pytorch.org
www.tensorflow.org

Related work and technologies

• Tensors vs. standard arrays: a tensor is a multi-dimensional matrix containing
elements of a single data type; it differs from a Numpy array because it is
immutable and can reside in accelerator’s memory (like GPUs). In PyTorch
it is very easy to move back and forth between tensors and arrays, thanks to
built-in methods, while in Keras it is a little more tricky, since it requires the
programmer to have a solid understanding of TensorFlow sessions.

• Training models: in Keras it is possible to train a model by simply calling the
fit method on it; in PyTorch, instead, there are some steps that need to be
executed (initialise gradients, run forward and backward pass, compute loss
and update weights);

• Controlling CPU and GPU mode: in Keras all the computations will be ex-
ecuted on the GPU by default, while in PyTorch it is required to explicitly
specify on which device to execute the code; this can be a bit error prone
if it is needed to move back and forth between CPU and GPU for different
operations.

In general, the advice is to start with Keras, but for this dissertation PyTorch
has been chosen, since it provides a perfect balance between ease of use and control
over the model training and testing.

1.2.6 Docker
In the course of the LIS2S development, the possibilities offered by the Docker
platform have been exploited to generate programs able to run in a separated
environment; some of these processes, for example, required to be executed on an
OS different from the one actually used for the development, which is Windows
10. For instance, at the beginning of the project, the MediaPipe library for Python
was only available on macOs and Linux: this is the reason the feature extraction
process was executed in a Docker container which was based on a Linux image.

Docker is an open platform for developing, shipping, and running applications.
It allows to separate applications from the underlying infrastructure so that the
software can be quickly delivered. Taking advantage of Docker’s methodology for
shipping, testing and deploying code, it is possible to greatly reduce the delay
between writing the code and running it in production.

Docker provides the ability to package and run an application in a loosely iso-
lated environment called a container. The isolation and security allow to run many
containers simultaneously on a given host. Docker provides tools and a mecha-
nisms to manage the lifecycle of containers; once the application is ready, it can be
deployed in the production environment as a container.

The core of Docker technology is the Docker Engine; it is a client-server appli-
cation with these major components:

30

1.2 – Technologies overview

• A server which is a type of long-running program called a daemon process;

• A REST API which specifies interfaces that programs can use to talk to the
daemon and instruct it what to do.

• A command line interface (CLI) client (docker command).

The CLI uses the Docker REST API to control or interact with the Docker daemon
through scripting or direct CLI commands. Docker speeds up the development
lifecycle by allowing developers to work in standardized environments using local
containers which provide applications and services. Containers are great for con-
tinuous integration and continuous delivery (CI/CD) workflows; in fact, they were
combined with the pipeline offered by GitLab to create a new Docker image each
time a modification was committed on the remote repository.

Docker’s container-based platform allows for highly portable workloads. Con-
tainers can run on a developer’s local laptop, on physical or virtual machines in
a data centre, on cloud providers, or in a mixture of environments. Basically, the
idea was to execute the containers on developer’s machines during the prototyping
of LIS2S, and then move them to cloud providers once the application was ready
for production.

Docker’s portability and lightweight nature also make it easy to dynamically
manage workloads, scaling up or tearing down applications and services as business
needs dictate in near real time. This feature is essential for the purpose of this
project, since the application should be easily reachable by anyone who requests it
at any time.

An image is a read-only template with instructions for creating a Docker con-
tainer. Often, an image is based on another image, with some additional customiza-
tion. For example, it is possible to build an image which is based on the ubuntu
image, but installs the Apache web server and the developed application, as well
as the configuration details needed to make the application run.

A container is a runnable instance of an image. It is possible to create, start,
stop, move or delete a container using the Docker API or CLI. By default, a con-
tainer is relatively well isolated from other containers and its host machine. A
container is defined by its image as well as any configuration option which comes
with it when it is created or started. When a container is removed, any changes to
its state that are not stored in persistent storage disappear.

Finally, this chapter has described the technologies and related works which
characterize the SLR, in particular focusing on the isolated SLR and all the tools
used to face its difficulties.

The next chapter will describe more in the details the dataset used for NN
training, together with the pipeline exploited to extract features from videos, feed
them to the NN and obtain, given a video, the prediction of the LIS sign which has
been performed by the signer.

31

32

Chapter 2

LIS2Speech architecture

In the current chapter, the procedures and methods used in this investigation will
be presented. First, the complete dataset used for the sign recognition task is going
to be described, introducing the improvements applied to the initial corpus; then,
the proposed pipeline will be illustrated, explaining how to start from raw videos,
extract meaningful information and then feed them to the Neural Network, which
is the core element of the sign recognition task.

2.1 Dataset and Database
The main goal of the LIS2S application is the creation of a signer-independent
automatic sign recognition system, exploiting the technologies and tools exposed
in the previous chapter. For this purpose, a suitable corpus for training the NN
responsible for this automatic recognition is needed. Since this is an isolated sign
recognition task, the corpus should contain videos with many different signs exe-
cuted by multiple signers.

In the past decade, only the A3Lab tried to lay the foundations of a dataset like
this, creating from scratch the A3LIS-147 database. This corpus is freely available1

and has been presented in [4]. As previously exposed, it consists of 147 distinct
isolated signs executed by 10 different people (7 males and 3 females). Each signer
executed all the 147 signs, for a total of 1470 recorded videos. The ENS2 (“Ente
Nazionale Sordi’ ’) supported the authors of that work to suitably pre-train the
subjects and to choose a meaningful and unambiguous set of signs to be executed.
In each of these videos, the person executes a single sign, preceded and ensued
by the “silence” sign shown in Figure 2.1. This sign represents a common “rest”
position in every-day conversations, thus it has been chosen for this reason.

1www.a3lab.dii.univpm.it/projects/a3lis
2www.ens.it

33

www.a3lab.dii.univpm.it/projects/a3lis
www.ens.it

LIS2Speech architecture

Figure 2.1: The “silence” position

An example of a sign of the A3LIS-147 dataset. Adapted from [4]

In addition to this egregious work, the Analytics team at ORBYTA’s Area 51
software house started to collect new videos to expand the pre-existing A3LIS-147
database. This process was necessary in order to increase as much as possible the
performance and accuracies of the proposed model, but also to take some steps
toward a new approach for the Italian SLR: in fact, not only videos containing
isolated signs have been gathered, but also samples containing phrases. These new
videos will be extremely useful in future works, because the aim is to create a
database which resembles the RWTH-PHOENIX-Weather one, described in [30].
This means that progress towards CSLR mechanisms are being done for the Italian
Sign Language, so that a real-time translation application could be developed in
future.

Particular attention has been paid to inserting commonly used phrases in the
expanded database, together with phrases which contained signs similar to the ones
included in the initial dataset. Each phrase has been subdivided in glosses, little
portions of the initial video, each one associated with its meaning. An example
can be found in Figure 2.2 For the purpose of this dissertation, only these isolated
glosses have been used, but they would be really helpful for further researches and

34

2.2 – Description of the proposed application

experimentation in CSLR field.

Figure 2.2: The “diffusion” sign

An example of a sign added to the A3LIS-147 dataset.

Moving on towards the actual implementation of the sign recognition mecha-
nisms, an approach similar to the “isolated word recognition” task in speech recog-
nition has been used, so the final system will perform isolated sign recognition; this
means that it recognizes a single sign present in an input video. To accomplish this
task, the LIS2S application will follow a specific pipeline, studied so that features
can be extracted from videos and fed to a Neural Network, which will perform the
actual Sign Recognition. In the following sections, the steps taken for training this
network will be extensively illustrated.

2.2 Description of the proposed application

The wide field of study this particular project belongs to is extremely volatile and
different technologies are released very often. For this reason the final application
developed together with this dissertation will provide a Proof of Concept (PoC),
in order to prove that steps towards deaf and hard-of-hearing are becoming to be
taken. In the previous chapter, a brief introduction to the main technologies used
in the project was given. Now let’s concentrate on how they have been used and
how they work together. In Figure 2.3 a diagram showing the main components of
the application is provided.

35

LIS2Speech architecture

Figure 2.3: The LIS2S architecture diagram

2.2.1 Front-End
As previously mentioned, LIS2S application has been thought as a PWA, specifically
taking advantage of the reachability and flexibility of Ionic React framework.

The UI allows for different activities depending on the type of user: general
users can record a new video and get the translation of the performed sign, while
admins can also insert new sign language videos, to increase the number of samples
belonging to the dataset used by the network, and, in addition, they can access a
specific dashboard to monitor the performance of the application.

An example of the proposed interface is depicted in Figure 2.4. The different
operations that can be executed once the app is used are:

• Select right-handed/left-handed mode: LIS is really dependant on the orienta-
tion of the executed sign, so the user, before executing any kind of operation,
should select whether he is left or right handed; if this is not specified, the
algorithm could get confuse and return wrong translations (e.g. “16” instead
of “61”), so the other voices of the UI would be not accessible to the user.

• LIS2Speech: this option starts a new video translation session; initially, the
application will inform the user to place the camera at the correct distance,
in order to fit correctly inside the recording space. Subsequently, the user can
start the video recording session by clicking the button: a countdown will be
shown to the user, so that he can take position and understand when the record
has been started. To stop the recording, a specific sign has to be executed
(usually, the “silence” sign would work perfectly): this has been decided to

36

2.2 – Description of the proposed application

Figure 2.4: Application UI

On the left side, the options that will be available in the main section of the application. On the
right side, an example of the UI during video recording.

avoid recording also video chunks in which no sign has been executed, and in
addition this would assimilate the new video to the ones already present in the
original database (which are executed and then followed by the “silence” sign).
Once the video has been processed by the back-end process, composed by the
neural network, the proposed translation will be printed on the screen. Finally,
the user will be prompted to provide a feedback, if willing so, describing his
experience using the application.

• Add new video: this option will only be available for admins; in this part of
the application the process will be the same as for video translation, but, at
the end of the recording, instead of receiving the translation of the video, the
admin can insert the meaning of the sign he performed and save or cancel the
operation. Then, a pop-up message will appear to confirm the chosen action.

• Performance info: also this option will only be available for admins, that can
access the dashboard to obtain information about the status and performance
of the application; the dashboard of the application is designed using QlikSense
software, and it shows details about the current dataset (number of videos in
the current dataset, dimension of the vocabulary etc.) and the performance of
the translation process (accuracy, errors etc.). A mock-up of this dashboard

37

LIS2Speech architecture

for the smartphone version is presented in Figure 2.5; instead, a web version
of the application dashboard is provided in Figure 2.6.

Figure 2.5: UI mock-up for performance monitoring

On the right side, a mock-up of the dashboard inside the application.

2.2.2 Back-End
In the computer world, the “back-end” refers to any part of a website or software
program that users do not see. It contrasts with the front-end, which refers to a
program’s or website’s UI. In programming terminology, the back-end is the “data
access layer”, while the front-end is the “presentation layer”.

For what concerns the LIS2S application, the back-end has been developed ex-
ploiting the Python programming language, its flexibility and the great quantity of
modules ready to be used (such as Numpy, OpenCV and so on); in particular, Vi-
sual Studio was used as Integrated Development Environment (IDE), thanks to its
integration with Git, which has been used for software versioning. Specifically, the
development team has made use of the GitLab DevOps platform to manage both
software versioning and Continuous Integration/Continuous Deployment (CI/CD).
This particular mechanism embodies a culture, a set of operating principles and
collection of practices that enable application development teams to deliver code
changes more frequently and reliably.

38

2.2 – Description of the proposed application

Information about videos and signs

Figure 2.6: QlikSense dashboard

CI/CD

Continuous integration is a coding philosophy and set of practices that drive de-
velopment teams to implement small changes and check in code to version control
repository frequently. Because most modern applications require developing code
in different platforms and tools, the team needs a mechanism to integrate and vali-
date its changes. The technical goal of CI is to establish a consisted and automated
way to build, package and test applications.

Continuous delivery picks up where CI ends. CD automates the delivery of ap-
plications to selected infrastructure environments. Most teams work with multiple
environments other than the production, such as development and testing envi-
ronments, and CD ensures there is an automated way to push code changes to
them.

In particular, the software deployment is obtained using Docker; a Dockerfile is
defined in the project, containing the commands a user could call on the command
line to assemble an image, executing several command line instructions in succes-
sion. In the Docker image also a context is present, containing the set of files at
the specified location path or URL.

The GitLab platform allows to create a pipeline for CI/CD and has an inte-
grated Container registry which can contain the images created by the continuous
integration. Specifically, the pipeline is implemented using an YAML file contain-
ing the instructions that need to be executed in order to create the image and save
it onto the GitLab Container registry. The list of instructions contained in the
YAML file, which is called gitlab-ci.yml, can be found in Appendix A. What is

39

LIS2Speech architecture

done in practice is: whenever a new commit is received by GitLab, the platform
will log into the Container Registry associated with that particular repository, will
read the Dockerfile that will be found in the ./LIS2Speech folder, build the image
defined inside it and then push the image on the Container Registry, so that it can
be used and deployed on external services (like Kubernetes).

Data storage

To manage the videos collected (both from the A3LIS-147 corpus and selected by
the development team), their processing and all the information associated with
them, the Microsoft Azure SQL combined with a proprietary Orbyta’s NAS have
been used. The actual videos are stored in the NAS drive, while the information
extracted by processing videos (number of signs in the vocabulary, number of videos
etc.) has been stored in the Azure database.

Multiple tables where necessary to successfully manage and organize the data
needed to perform the neural network training and to monitor the performance of
the application. In Figure 2.7 a diagram of the database organization is provided.
The videos making part of the used dataset are stored only for reference or for
future improvements, since they are not necessary any more once they have been
processed and the information have been stored on the Azure database. In this way,
the development team can manage a considerably lower amount of data, because,
as known, videos are much more relevant in terms of disk space with respect to
numbers and strings extracted from videos.

As we can see from Figure 2.7, a great number of tables was necessary to cor-
rectly manage the elements which are part of the dataset. In order to make the
organization clearer and the application more responsive, using QlikSense it is also
possible to reorganize the structure of the Database: by doing so, it is easier to
read and the performance are better, because a well done data model is able to
fulfill the requested query in a smaller amount of time; in fact, the difference can
be seen in Figure 2.8, allowing to better understand the dependencies between the
different tables present in the database.

2.3 Pipeline for Sign Recognition

Moving on towards the actual Sign Language recognition, the development team,
after an accurate analysis, highlighted the need for four different models. Actually,
the developed prototype focuses only on the first two models, which deal with
the extraction of skeletal data and the isolated sign recognition; the last two are
reported to give indications for future improvements, in order to expand the use
cases to which this application could be applied.

40

2.3 – Pipeline for Sign Recognition

Figure 2.7: Database organization on Microsoft Azure SQL

Figure 2.8: Database organization on QlikSense

41

LIS2Speech architecture

2.3.1 From videos to skeletal data
Initially, the idea was to start building a new dataset from scratch exploiting the
possibilities offered by the Kinect sensor: it would have allowed to extract skeletal
data and depth information from captured videos. Subsequently, it was decided to
use the A3LIS-147 dataset as a starting basis and expand it to be future-proof. This
decision was due to the reduced time availability to complete this study, together
with the difficulties of importing a new Kinect sensor in Italy, since it is not directly
available for our market.

However, the willingness to use skeletal data persisted, instead of using videos
directly: this was decided in order to reduce the dimensionality of the data to ma-
nipulate, and to demonstrate that using only lighter data like skeletal data it is
possible to obtain state-of-the-art results. To extract these information from the
videos, a first model has been implemented; its main goal was to extract these
skeletal data to obtain the coordinates of the principal joints of the human body.
In particular, as previously seen in the related works, the most important infor-
mation for SLR are contained in hands, face and upper body, so the extraction
of coordinates mainly focuses on these three areas. Thus, the MediaPipe Python
library has been used to extract:

• 3D coordinates of 21 joints for each hand;

• 2D coordinates of 25 joints for the upper body;

• 3D coordinates of 22 joints for the face mesh.

As it can be noticed, only the upper body landmarks are two-dimensional, and
this is due to the fact that the Pose solution model [8] is not fully trained to predict
depth, but this is something on the roadmap of the MediaPipe team; anyway, the
third dimension of upper body joints is zero-padded (filled with zeros) only to
obtain three-dimensional matrices that can later be combined.

In total, the number of coordinates extracted is given by the number of land-
marks, which is 89, multiplied by 3 dimensions; so in the end, for each frame of
a single video, 267 numerical values (features) are extracted. At the beginning of
the development, the number of values extracted was much greater, because the
number of joints that are detected exploiting the Face Mesh solution of MediaPipe
[7] is equal to 468. The development team decided to reduce the number of con-
sidered landmarks, since this would have led to a disproportion in the relationship
between joints belonging to hands and upper body and joints belonging to the face
mesh; in addition, this imbalance could have led the network to focus mainly on
the information held in face mesh joints and ignore the broader picture of the situ-
ation, since the most important information can be extracted only considering all
movements made by the signer.

42

2.3 – Pipeline for Sign Recognition

Finally, only 22 joints were considered out of the initial 468; these joints describe
the mouth, eyes and eyebrows inclination and position, and are considered the most
relevant since it is still possible to extract meaningful information only by these
points, as proved by different studies [37], [38]. An example of the coordinates
extracted in this process is provided in Figure 2.9.

Figure 2.9: Example of skeletal data extraction

The sign that is performed in this video is “Torino”.

It is important noticing that the precision obtained using this system is com-
parable, but not at the same level of the accuracy that can be obtained using the
Kinect sensor. In fact, the MediaPipe framework has been developed with mo-
bile platforms in mind, so it needs to be extremely portable and power efficient; a
trade-off between accuracy and performance was made, but the results are still quite
impressive, considering that these solutions are able to run at optimal frame rates
even on not so updated smartphones. In addition, also browsers are supported, so
this is really important in terms of reachability.

43

LIS2Speech architecture

Nevertheless, the tracking and detecting accuracy can be tweaked for hands, face
mesh and pose. Thanks to implementation choices, it is possible to set a minimum
detection confidence and also a minimum tracking confidence: these are float values,
between 0.0 and 1.0, which specify, respectively, the minimum value from the hand,
face or pose detection model for the detection to be considered successful, and
the minimum value from the landmark-tracking model for the hand, face or pose
landmarks to be considered tracked successfully. Setting these values to higher
values can increase the robustness of the solution, avoiding errors in detection and
tracking, but at the cost of higher latency, so worse performance. The default values
are 0.5 for both; during our processing, instead, the minimum detection confidence
was set to 0.7 to avoid errors detecting hands, face or upper body joints and obtain
a more reliable system.

Another important point to highlight is that the Hands MediaPipe solution offers
a multi handedness option which allows to keep track of both hands, understanding,
in the meantime, which one is the right hand and the left hand. This is extremely
important for sign recognition, since the meaning of a gesture may change accord-
ing to how it is performed. Specifying the multi-handedness option, the solution
returns, for each frame, the predicted label for the detected hand (i.e., if it is a
left or right hand) together with the score, which is the estimated probability of
the predicted handedness: this value is always greater than or equal to 0.5, but
sometimes the model may wrongly detect two left hands or two right hands; this
is not possible, since the processed videos always contain a single subject, and this
means that the detected hands should always be right and left.

In order to overcome this problem, a simple algorithm has been developed so
that, for each frame, it is always guaranteed to obtain data for left and right
hands. The algorithm is based on the score of each hand: if two equal hands are
detected, the one with the highest score is supposed to be the correct one, while the
remaining one will be considered as the opposite of the previous one. Finally, if no
hand has been detected, or if only a single hand has been detected, the algorithm
will accordingly return some coordinates which are averaged from the coordinates
of previous time frames. A possible case of study could be considering to return
zero-filled arrays in case one or both hands have not been detected.

Once all these information are collected, the coordinates of hands, face and
pose are stacked together in a single array, and this element, which represents the
coordinates extracted from the ith frame, is added to the numpy array containing
all the frames relative to the actual processed video. Summing up, if a video is
composed of t frames, the associated array would have shape (t, 267), where 267 is
the number of features extracted for a single frame. These information, together
with the sign performed in the video, will be stored in the Azure database, in the
RAW_DATASET table to which t rows will be added.

In the next section, these features will be fed to the neural network, which is
the core of the SLR. The model of the network will be discussed and illustrated.

44

2.3 – Pipeline for Sign Recognition

2.3.2 From skeletal data to gloss

In the proposed architecture, after the features extraction it is possible to find the
actual neural network, which is in charge of understanding the temporal information
held inside features it is fed with, and return the predicted sign.

To do so, first let introduce Recurrent Neural Networks: these are particular
networks which are designed to take a series of input with no predetermined limit
on size; in this way, the input is considered as a series of information, which can held
additional meaning to what the network is training on. A single input item from
the series is related to others and likely will have an influence on its neighbours;
RNNs are able to capture this relationship across inputs meaningfully. In fact, they
are able to “remember” the past and take decisions based on what they have learnt
from the past. In particular, they can remember the information learnt from prior
input(s) while generating output(s). RNNs can take one or more input vectors and
produce one or more output vectors, and the output(s) will be influenced not just
by weights applied on inputs like a regular NN, but also by a hidden state vector
representing the context based on prior input(s)/output(s). In other words, the
same input could produce a different output depending on the previous inputs in
the series.

In addition, RNNs can also be bidirectional: this means that they can extract
information from past and also future temporal information held in the series. For
example, in speech recognition and handwriting recognition tasks, where there could
be considerable ambiguity given just one part of the input, it is often needed to
know what is coming next to better understand the context and detect the present.

In the literature, there are different works that use RNNs for action and gesture
recognition, for example, in [39] Shahroudy et al. showed the power of recurrent
architectures and long short-term memory (LSTM) units [40] for large-scale gesture
recognition; Liu et al. [41] incorporated the spatio-temporal and contextual depen-
dencies to recognize actions from 3D skeletons. In contrast, the model proposed
for the sign recognition task is based on GRU (Gated Recurrent Units) [10]. GRUs
have been preferred because they are faster to train and produce better results.
The chosen method, in addition, is designed to be general and not specific to a
particular device, gesture modality or feature representation.

Previously, it was outlined the importance of the information held inside tempo-
ral sequences; anyway, the sub-parts of a temporal sequence may not all be equally
important: some subsequences may be more useful for the task at hand than oth-
ers. Thus, it is considered useful to learn a representation that can identify these
important subsequences and leverage them to deal with the subject matter. This
is the key intuition behind the attention model [42]. Even though the attention
model was initially proposed for neural machine translation, it has been adapted
to the task of gesture, action and sign recognition [43].

For the network architecture, we took inspiration from DeepGru [9], VGG-16

45

LIS2Speech architecture

[44] and the attention models [42]. The model, depicted in Figure 2.10, is made of
three main components: an encoder network, the attention model and two fully-
connected (FC) layers fed to softmax producing the probability distribution of the
class labels.

Figure 2.10: LIS2S Neural Network

The proposed recurrent model consists of an encoder network of stacked gated recurrent units
(GRU), the attention module and the classification layers. The input x = (x0, x1, . . . , xL−1) is a
sequence of vector data of fixed length (100 time frames) and the output is the predicted class
label ŷ. The number of the hidden units for each layer is displayed next to every component.

Input Data

The input data for the network is obtained from the features extracted by the
previous model, represented as a temporal sequence of the underlying sign data
(3D joint positions). At the time step t, the input data is the row vector x|t ∈ RN ,
where N is the dimensionality of the feature vector. Thus, the input data of the
entire temporal sequence of a single gesture sample is the matrix x ∈ RL×N , where
L is the length of the sequence of time steps.

The dimensionality N depends on the device that generated the data and how
the data was represented. In the previous section it was described how the extracted
data had a dimensionality (t, 267), since the number of features of each time frame
is equal to 267; anyway, this is a fixed value only for this particular use case: if

46

2.3 – Pipeline for Sign Recognition

the features were extracted with a different mechanism, the model would have been
agnostic about to the input representation, and would have accepted any kind of
dimensionality. Later on, it will be shown how the number of features fed to the
model is smaller than the actual 267, since this high value of features would bring
with it a whole series of problem, that will be tackled in the next chapter.

In addition, note that various input example sequences could have different
number of time steps. During the development of the model it was decided to
perform the subsampling of the input data, so that each sample would have the same
number of time steps, which is 100. The original model offered the possibility to use
the temporal sequences as-is, without subsampling or clipping, but the development
team decided to perform subsample in order to equalize the samples which compose
the dataset. When training on mini-batches, so, the ith mini-batch is represented
as the tensor Xi ∈ RB×L×N , where B is the mini-batch size and L is set equal to
100.

Encoder Network

The encoder network in the depicted model is fed with data from the training
samples and serves as the feature extractor. The encoder network consists of five
stacked unidirectional GRUs. Although LSTMs units are more prevalent in the
literature, the development team decided to use GRUs since they have a smaller
number of parameters, so these units are simpler to utilize, generally faster to train
and less prone to overfitting. At time step t, given an input vector xt and the
hidden state vector of the previous time step ht−1, a GRU computes ht, the hidden
output at time step t, as ht = Γ(xt, h(t−1)) using the following transition equations:

rt = σ
31
W r
xxt + brx

2
+
1
W r
hh(t−1) + brh

24
ut = σ

31
Wxuxt + bux

2
+
1
W u
h h(t−1) + buh

24
ct = tanh

31
W c
xxt + bcx

2
+ rt

1
W c
hh(t−1) + bch

24
ht = ut ◦ h(t−1) +

3
1− ut

4
◦ ct

(2.1)

where σ is the sigmoid function, ◦ denotes the Hadamard product, rt, ut and ct
are reset, update and candidate gates respectively and W q

p and bqp are the trainable
weights and biases. In the encoder network, h0 of all the GRUs are initialized to
zero.

Given a gesture example x ∈ RL×N , the encoder network uses Equation 2.1 to
output h̄ ∈ R100×384, where h̄ is the result of the concatenation h̄ = [h0;h1; · · · ;hL−1].
This output, which is a compact encoding of the input matrix x, is then fed to the
attention module.

47

LIS2Speech architecture

Attention Module

The output of the the encoder network, which is a compressed representation of the
input sign sample, can provide a plausible set of features to perform classification.
During the development of the network, it was decided also to refine this set of
features by extracting the most informative parts of the sequence using the attention
model. A proper adaptation of the global attention model [42], suitable for the sign
recognition task, has been developed.

Given all the hidden states h̄ of the encoder network, the attention module
computes the attentional context vector c ∈ R384 using the trainable parameters
Wc as:

c = h̄

 exp(h|L−1Wch̄)qL−1
t=0 exp(h|L−1Wcht)

 (2.2)

The hidden states of the encoder network are used only to compute the attentional
context vector, as can be seen in Equation 2.2. The main component in the context
computation and attentional output is the the hidden state of the last time step
hL−1 of the encoder network (the yellow arrow in Figure 2.10); this is because hL−1
can capture a great amount of information from the entire gesture sample sequence.
The concatenation [c;hL−1] has been used to form the contextual feature vector and
perform classification; in the original project, the inputs to the network could have
arbitrary lengths, while in the analysed case the inputs have been resampled so
that they all have the same temporal length of 100 time frames. In this way, the
amount of information that is captured by hL−1 should not differ among sequences
which may have different length, thus the model is not considered susceptible to
variations in sequence lengths. Summing up, the attention model relies only on the
hidden state of the last time step hL−1, which reduces complexity.

Classification

The final layers of the model are composed by two FC layers (F1 and F2) with
ReLU activation functions that take the attention module’s output and produce
the probability distribution of the class labels using a softmax classifier:

ŷ = softmax
F2

A
ReLU

3
F1
1
oattn

24B (2.3)

The batch normalization [45] followed by dropout [46] are used on the input of
both F1 and F2 in Equation Equation 2.3. During training, the cross-entropy loss
in minimized to reduce the difference between the predicted class labels ŷ and the
ground truth labels y.

More implementation details are discussed shortly in chapter 3.

48

2.3 – Pipeline for Sign Recognition

2.3.3 From glosses to sentences
The network depicted in the previous section, still being very interesting, has some
limitations; the most important one is that the input must be segmented, although
adding support for unsegmented data is straightforward, requiring a change in the
training protocol as demonstrated in [47].

In general, this work will not try to solve the problem of translating sign lan-
guage sentences, but, as previously written, is focused on isolated sign language
recognition. Nevertheless, during the development of the project, another model
has been considered, to effectively switch from isolated to continuous sign language
recognition. This model will hopefully be developed in the future, or can be an
inspiration for future works.

Specifically, what the third model should perform is the sign segmentation of sign
language sentences; defining when a sign starts and finishes is a quite complicated
task, considering the scarcity of corpus for the Italian Sign Language and also the
complexity of the sign language itself. Detecting when a sign ends and another one
starts is not a trivial operation, but there are some solutions that may be considered
and that can be useful to solve this task.

A first solution could be to actually divide a given video, containing a sign
language sentence, into subvideos which are made of a single sign; in order to
understand when a sign ends and another one starts, different techniques can be
used. For instance, in [48] the greedy similarity measure is used to segment long
spatial-temporal video sequences; first, a principal curve of the motion region along
the frames of a video sequence is constructed to represent the trajectory; then from
the constructed principal curves, Hidden Markov Models (HMMs) are applied to
model gestures, or signs in this case.

Another solution to overcome this issue and to get a sort of real-time, step-by-
step classification, could be the usage of non-overlapping short time windows. The
recognition model would emit a classification of the gesture data inside each win-
dow. Finally, the use of an objective function such as the Connectionist Temporal
Classification Loss (CTC) [49] could allow an alignment of the classes obtained
from the time windows with the desired (actual) ones.

Nevertheless, these solutions are to be intended as possible improvements for
this work, and do will be briefly summarized in the conclusions.

2.3.4 From LIS to proper Italian
In this section, another model will be quickly described. This model is considered
not so essential, but can be very helpful during translation from LIS to Italian. The
grammar and the structure of sentences in LIS and in Italian are strongly different.

For instance, lets consider a simple sentence which is present in the constructed
LIS2S dataset: in LIS, in order to say “Oggi c’è il sole”, which translates to English
“Today it is sunny”, the signer will perform, in sequence, the signs oggi sole c’è,

49

LIS2Speech architecture

which translates to English today sunny it is. As evident, the order of subjects
and verbs is different from correct Italian, because, generally, in LIS the verbs are
placed at the end of the sentence.

Another example could be the expression “Ciao a tutti, il mio nome è Chiara”,
which translates to English “Hi everybody, my name is Chiara”: in this case, the
signer will perform, in sequence, the signs ciao tutti nome mio Chiara, which trans-
lates to English hello everybody name my Chiara. Moreover, here it is possible to
notice how the structure of the sequence is different, with the possessive adjective
immediately following the subject it is referred to.

In order to make the translation more readable by non-deaf users, the model that
has been thought as the final one should perform a type of rephrasing, manipulating
the raw translation and converting it into a correct Italian sentence. Furthermore,
this model is not faced in this work, but just reported for completeness and to be
considered as a starting point for further improvements of this application.

This kind of operations should fall back in the Natural Language Processing
(NLP) field [50], which has very ancient roots in Computer Science history, starting
from Alan Turing back in 1950s up to the present days. To return complete and
meaningful translation, the model should be able to understand the language syntax
and structure.

In NLP, there is an interesting technique which is called Part of Speech (PoS)
Tagging: words can be grouped into classes referred to as PoS or morphological
classes (noun, verb, adjective, preposition, adverb, conjunction etc.); the word PoS
provides crucial information to determine the roles of the word itself and of the
words close to it in the sentence: knowing if a word is a personal pronoun or a
possessive pronoun allows a more accurate selection of the most probable words
that appear in its neighbourhood (the syntactic rules are often based on the PoS
words).

In addition, language models can be very useful to solve the addressed problem,
since they represent the probability distribution over sequences of words: given
a sequence of length m, the language model assigns P (w1, . . . , wm) to the whole
sequence. The language model provides context to distinguish between words and
phrases that sound similar; estimating the relative likelihood of different phrases is
useful in many NLP applications, especially those that generate text as an output.

For what concerns this work, it would be useful to find a simple text corpus
for the Italian language, better if it has been tagged with PoS tags; exploiting this
corpus, it would be possible to learn a language model, either on the basis of the
words or on the basis of words and PoS tags. Once the raw translation has been
returned by the previous model, the actual one would generate all possible sequences
of the target words and use the language model to compute the probabilities of all
those sequences. In the end, the model would pick the sequence with the highest
probability, which hopefully would have the correct grammar order.

50

2.3 – Pipeline for Sign Recognition

Finally, another hint could be the possibility to add conjunctions and prepo-
sitions to improve the quality and correctness of the output sentence. All these
possible improvements will be recalled in the conclusions of this dissertation, to
give some ideas for next works starting from this project.

This chapter began by describing the dataset and database used in this appli-
cation; it went on to report the different elements which are part of the project,
the front-end, the back-end and the different models which are vital for the correct
working of the application itself. In the next chapter more precise implementation
details will be provided, together with an extensive overview of the experiments
that was conducted and the results that have been obtained.

51

52

Chapter 3

Experiments and results

The following part of this dissertation moves on to describe in greater detail the
experiments that have been performed. Firstly, the implementation details of the
adopted solution will be listed; then, there follows an overview about the different
techniques utilized to select the most useful and meaningful set of features coming
from the skeletal data. In the subsequent sections, the problem of overfitting will be
discussed and investigated. Finally, the training and testing results of the network
involved in the LIS2S application will be disclosed.

3.1 Implementation details
The network structure which was depicted in the previous chapter has been imple-
mented using the PyTorch [51] framework. To understand which were the best pos-
sible hyper-parameters to use on the LIS2S dataset, the Optuna1 hyper-parameter
optimization framework has been used. Optuna is framework agnostic, so it can
be used with any machine learning or deep learning framework, such as Tensor-
Flow or Keras, and needs only little effort to work: an objective function needs
to be defined, and that will be the function to be optimized; then it is possible
to suggest the hyper-parameter values to try using the trial object. Finally, a
study object must be created and the optimize method needs to be invoked on
it, defining the number of trials to execute. The code which has been produced
for LIS2S application can be found in Appendix B: the objective function is called
hyperparams_tuning and the suggested hyper-parameter values are explained later
on.

For what concerns the purposes of this dissertation, the hyper-parameters that
have been tuned are:

1www.optuna.org

53

www.optuna.org

Experiments and results

• The learning rate, which in an optimization algorithm determines the step
size at each iteration while moving toward a minimum of a loss function (the
loss function measures how wrong the final predictions are). Since it influ-
ences to what extent newly acquired information overrides old information,
it metaphorically represents the speed at which a machine learning model
“learns”. In setting the learning rate, there is a trade-off between the rate of
convergence and overshooting. While the descent direction is usually deter-
mined from the gradient of the loss function, the learning rate determines how
big a step is taken in that direction. A too high learning rate will make the
learning jump over minima but a too low learning rate will either take too long
to converge or get stuck in an undesirable local minimum. During the hyper-
parameters tuning, the learning rate is sampled from [1× 10−4, 1× 10−2[in
the log domain, as it can be seen in Appendix B at row 13.

• The optimizer, which shape the model into its most accurate possible form by
tweaking and changing the parameters (weights) of the model itself in order
to minimize the loss function. So, the loss function specify to the optimizer
when it is moving in the right or wrong direction. During the tuning of hyper-
parameters, the considered optimizers are the Stochastic Gradient Descent
(SGD) [52], the RMSProp [53] and the Adam [54] optimizer, as it can bee seen
in Appendix B at row 15.

• The weight decay, which is an additional term in the weight update rule that
causes the weights to exponentially decay to zero, if no other update is sched-
uled, in order to limit the complexity of the network. This argument will be
better discussed later on, talking about overfitting in section 3.2. As described
in Appendix B at row 18, the weight decay value is sampled from [0, 1× 10−1[
in the log domain.

• The model itself has been evaluated with the same model structure, but with
LSTM cells instead of GRU ones.

At the end of the hyper-parameter optimization process, the best initial learning
rate was found to be 5× 10−4, the best optimizer is Adam (β1 = 0.9, β2 = 0.999),
the selected model was based on GRU cells and the weight decay was set to 2× 10−3.

Another important parameter to set is the mini-batch size: using the gradient
descent optimization algorithm, the current state of the model will be used to
make predictions, compare them to the expected values and use the difference as
an estimate of the error gradient, which will be then used to update the model
weights; the process is then repeated. The error gradient is a statistical estimate:
the more training examples are used in the estimate, the more accurate the estimate
will be and the more likely that the weights of the network will be adjusted in a
way that will improve the performance of the model. This comes at the cost of
computation and time, since the model needs to make many predictions before the

54

3.2 – Overfitting and Regularization

estimate can be calculated. On the other hand, using fewer examples results in
a less accurate estimate of the error gradient, which is highly dependent on the
specific training examples used, so the results can lead to a noisy estimate and
noisy updates.

The number of training examples used in the estimate of the error gradient is
called the batch size: a batch size of 32 means that 32 samples from the training
dataset will be used to estimate the error gradient before the model weights are
updated. Historically, there are three distinctions about the training algorithm:

• It is called Batch Gradient Descent if the batch size is set to the total number
of examples in the training set.

• It can be the Stochastic Gradient Descent if the batch size is composed by one
single sample.

• Finally, it may be the Mini-batch Gradient Descent if the batch size is set to
more than one and less than the total number of examples in the training set.

Usually, smaller batch sizes are used because they are noisy and offer a regular-
izing effect and lower generalization error, and because the smaller size makes it
easier to fit one batch worth of training data in memory (i.e. when using a GPU).
For this project, the batch size is set to 64. This is also due to the available amount
of memory on the GPU used for training, which is limited. Training has been done
on a machine equipped with an NVIDIA GeForce GTX 1650 Super GPU, having
4 GB of VRAM, AMD Ryzen 5 2600X processor and 16 GB of RAM.

Finally, the training of the network is maintained for 150 epochs, but early
stopping mechanism has been implemented and will be examined in depth later
on when talking about overfitting. The number of epochs defines the number of
times the learning algorithm will work through the training dataset: on a single
epoch, the samples belonging to a particular batch will be used by the optimization
algorithm to update the internal model parameters and minimize the loss function.
The number of epochs is traditionally large, often hundreds or thousands, allowing
the learning algorithm to run until the error of the model has been sufficiently
minimized.

3.2 Overfitting and Regularization
Supervised machine learning algorithms, like classification, can be considered as
models trying to approximate a target function f that maps input variables X
to an output variable Y : Y = f(X). A critical factor when learning the target
function from the training data is how well the model generalizes to new data.

In machine learning, the inferring of a target function from training data is
described as inductive learning. Supervised machine learning models try to learn

55

Experiments and results

general concepts from specific examples, and this is exactly the induction mecha-
nism. It is different from deduction, which seeks to learn specific concepts from
general rules. Generalization refers to how well the concepts learnt by a machine
learning model apply to examples not yet seen by the model. The goal of a good
machine learning model is to successfully generalize from the training data to any
data from the problem domain. This allows to make future predictions on data
the model has never seen. When talking about how well a machine learning model
learns and generalizes to new data, overfitting and underfitting come into play: poor
performance of machine learning algorithms is typically due to these phenomena.
Examples of overfitting, underfitting and ideal models are provided in Figure 3.1.

Figure 3.1: Overfitting, underfitting and ideal models

While the green line best follows the training data, it is too dependent on that data and it is likely
to have a higher error rate on unseen data, compared to the red line. The orange line, instead,
is not able to model the data in the right way, and will have poor performance both on training
and test set.

Overfitting concerns neural networks that model the training data too well. It
happens when a model learns useless details and noise held in the training data.
Usually, this will negatively impact the performance of the model on unseen data.
The noise or random fluctuations in the training data are learnt as something rele-
vant for the model. These concepts do not apply to new data and negatively impact
the model ability to generalize. Overfitting is more likely with non-parametric and
non-linear models that have more flexibility when learning a target function. As
such, there are different techniques to limit and constraint how many details the
model learns.

56

3.2 – Overfitting and Regularization

Underfitting, instead, refers to a model that is not able to correctly model the
training data, and in addition cannot generalize to new data. An underfit machine
learning model is not a suitable model: it will have poor performance on the training
data, and, as a consequence, it will perform even more poorly on the test set.
Underfitting is often not discussed as it is easy to detect, given a good performance
metric. As a remedy, it is possible to try alternative machine learning algorithms
or modify the existing models to create more complex ones.

Ideally, the best model lays at the sweet spot between underfitting and overfit-
ting. To understand the real performance of the model, it is possible to check, over
different epochs, both the accuracy and loss over the training and the test set. Over
time, as the algorithm learns, the error on the training data should decrease, and
so does the error on the test set. If the model trains for too long, the performance
on the training dataset will increase indefinitely, because the model is learning all
irrelevant details and noise in the training dataset. At the same time, the error on
the test set will grow up, while the model’s generalization skills will get worse. The
best model can be found just before the error on the test dataset starts to increase;
at that time the model has good skill on both the training set and the unseen test
set.

3.2.1 K-Fold Cross Validation
One of the most used techniques used to tackle overfitting is the K-Fold Cross
Validation: this mechanism can allow to train and test the model k times on
different subsets of training data and build up an estimate of the performance of
a machine learning model on unseen data. The procedure has a single parameter
called k that refers to the number of groups that a given dataset is to be split into.
This technique has been used in the development of the LIS2S application, setting
the value of k to 5, so defining 5 different folds. The general procedure works as
follows:

• Shuffle the dataset randomly;

• Split the dataset into k groups;

• For each unique group i:

– Take the ith group as the validation set
– Take the remaining groups as training set
– Fit the model in the training set and evaluate it over the validation set
– Retain the evaluation score and discard the model

• Summarize the skill of the model using the sample of model evaluation scores.

57

Experiments and results

Importantly, each observation in the data sample is assigned to an individual
group and stays in that group for the duration of the procedure. This means that
each sample is given the opportunity to be used in the validation set 1 time and
used to train the model k − 1 times. It is also important that any preparation of
the data prior to fitting the model will occur on the CV-assigned training dataset
within the loop rather than on the broader dataset. A failure to perform these
operations within the loop may result in data leakage and an optimistic estimate of
the model skill. The results of a K-Fold Cross Validation run are often summarized
with the mean of the model skill scores.

3.2.2 Avoid Overfitting
The goal of neural networks is to obtain a final model capable of gaining good
performance both on the data that have been used to train it, which compose
the training set, and on the unseen data on which the model will be tested to
make predictions. The ability to perform well on previously unobserved inputs is
called generalization. The model needs to learn from known examples, extracting
meaningful information that can help it generalize to new samples in the future.
There are different methods, like train-test split or k-fold cross validation, that can
be used to estimate how the model is able to generalize to new data.

Learning and generalizing to new cases is not trivial: if the learning phase is not
performed correctly, the model will have poor performance on the training dataset
and on new data, so it will underfit the problem. On the other hand, if the model
learns too much it will perform well on the training dataset but poorly on new data,
and this means that it will overfit. In both cases, the model is not able to generalize
well. To do so, the system needs to be sufficiently powerful to approximate the
target function. Usually, underfitting can be addressed by increasing the capacity
of the model, which means improving the ability of the model to fit a larger set
of functions: change the architecture of the model, add more layers or even more
nodes to layers.

While an underfit model is really easy to be addressed, it is more common to
have an overfit model. A model like this is easily recognizable by monitoring the
performance of the model during training. The most effective mechanism consists
in evaluating the model on both the training dataset and an holdout validation
dataset. An easy way to check if the model is overfitting is to plot the accuracy
or loss curves over these datasets, because they are good indicators of the model
performance. An example of these curves for an overfitting model is provided in
Figure 3.2.

Typically, there are two main approaches to an overfitting model: training the
network with more examples, if possible, or changing the complexity of the network.
An essential advantage of deep neural networks is that their performance improves
by using larger datasets. A model with a near-infinite number of examples will

58

3.2 – Overfitting and Regularization

Figure 3.2: Accuracies over epochs for overfitting model

The red line specifies the training set accuracy, while the blue one points out the test set accuracy.
As evident, over a certain number of epochs, the model performance on the test set starts to
degrade and the error, instead, increase. The Early Stopping Epoch is the epoch in which the
model get the best performance on the test set, so the training can be stopped.

eventually stabilize in terms of what the capacity of the network is capable of
learning.

Focusing on the complexity of the network, a model can overfit a training dataset
because it is powerful enough to do so. To reduce the probability of the model
overfitting the training dataset, the capacity of the model can be diminished. The
complexity of a neural network model defines its capacity, and it is delineated by
the nodes and layers composing the model, but also by the parameters (weights)
which are part of these nodes. Therefore, to limit overfitting, the complexity of
the neural network can be reduced in two ways: changing the network structure
(number of weights) or changing the network parameters (values of weights).

The structure of the model can be tuned using a grid search, trying different num-
ber of nodes and/or layers to reduce or remove overfitting. Alternately, nodes can
be removed until the model achieves suitable performance on a validation dataset.
However, the most common mechanism consists in ensuring that the parameters
(weights) of the model remain small. This will lead to a less complex and, in turn, a
more stable model that is less affected by statistical fluctuations in the input data.

Techniques that try to reduce overfitting (and the generalization error) by keep-
ing network weights small are known as regularization methods.

59

Experiments and results

Weight Decay

The simplest and perhaps most common regularization method is to add a penalty
to the loss function in proportion to the size of the weights in the model. This is
the weight decay which has been introduced in the previous sections: it consists in
penalizing the model during training based on the magnitude of the weights. This
will encourage the model to map the inputs to the outputs of the training dataset
in such a way that the weights of the model are kept small.

For instance, if the loss function is L(w), where w are the weights of our model,
the gradient descent mechanism specifies how to modify these weights in the direc-
tion of steepest descent in L:

wi ← wi − η
∂L

∂wi
(3.1)

where η is the learning rate, wi is the ith weight of the model and ← indicates
the assignment statement. In general, if the learning rate is too big, it follows
also a large modification of the weights w. To effectively limit the number of free
parameters in the model, it is possible to apply regularization to the cost function.
Essentially, the model becomes too much complex and is not able to correctly
classify unseen data. To apply regularization, usually a zero mean Gaussian prior
is introduced over the weights, and this is equivalent to changing the loss function
to Ẽ(w) = E(w)λ2 w2. In practice, this penalizes large weights and effectively limits
the freedom of the model. The regularization parameter λ determines the trade-
off between the original loss function L and large weight penalization. Applying
gradient descent to this new loss function results in:

wi ← wi − η
∂L

∂wi
− ηλwi (3.2)

where the new term −ηλwi, coming from the regularization, causes the weights to
decay in proportion to their size. This approach has proven to be very effective for
decades both for simpler linear models and neural networks.

Dropout

As previously introduced, a large neural network can overfit when they are trained
on relatively small datasets. In this case, the model will learn the intrinsic sta-
tistical noise present in the training data, resulting in poor performance when the
model is evaluated on new data. To reduce overfitting, once a well-defined archi-
tecture has been chosen, an effective method could be to consider different neural
networks, obtained by a combination of the nodes and layers present in the initial
structure, and train them on the same dataset . Then, the average performance
of the starting model would be given by the predictions mean from each model.

60

3.2 – Overfitting and Regularization

This is not feasible in practice and can be approximated using a small collection
of different models, called an ensemble. Even with the ensemble approximation,
anyway, multiple models need to be fit and stored, and this can be a problem if the
models are large, requiring days or weeks to train and tune.

Dropout is a regularization method by which the training of a large number
of neural networks with different architectures is approximated. During training,
some number of layer outputs are randomly ignored or “dropped out”. An example
can be seen in Figure 3.3. In this way, the layer will look like and will be treated
like a layer with a different number of nodes and connectivity to the previous layer.

Figure 3.3: Dropout example

The mechanism of Dropout has the effect of making the training process noisy,
forcing network layers to collaborate to correct mistakes coming from previous
layers, in turn making the model more robust. Since the outputs of a layer under
dropout are randomly reduced, this leads to a consequent reduction of the network
capacity during training.

Dropout can be applied independently to each layer inside a neural network.
This means that a new hyper-parameter is introduced: it specifies the probability
of a layer node to be dropped out. The most common value is a probability of
0.5, which has been used also for this project. During the testing phase, Dropout
is not used, so that the network can be exploited to its full potential. Like other
regularization methods, dropout is more effective when there is a limited amount
of training data, such as the case described in this dissertation.

Early Stopping

Another important aspect in training neural networks concerns how long to train
them. If the model is not trained enough, then it will underfit the train and the test
sets. Instead, training it too much means that the model will overfit the training

61

Experiments and results

dataset and perform poorly on the test set. The sweet spot in this case consists
in training the model on the training set and stopping the process whenever the
performance on the validation dataset starts to degrade. This simple, effective, and
largely used approach is called early stopping.

After each epoch, the model is evaluated on a holdout validation dataset. If the
performance of the model on the validation set starts to degrade (e.g., loss increases
or accuracy decreases), then the training process is stopped. At the time of stop,
the model will be saved and then used for final testing, because it should have good
generalization performance.

To implement the early stopping mechanism, a particular metric needs to be
monitored during training and a trigger for stopping the training process must
be defined. Once a certain threshold is reached, or once the performance on the
validation set decreases with respect to the previous epochs, the training is stopped.
In this project, the metrics that can trigger the early stopping are the accuracy and
loss on the validation set: if the loss does not decrease or if the accuracy does not
improve for a certain number of epochs, then the training is stopped.

Data Augmentation

The last method adopted in this project to tackle the overfitting problem is the Data
Augmentation technique. Previously, it has been said that there are two approaches
to face an overfitting model: the previous sections explained the more common
methods to reduce or limit the complexity of the network. Data Augmentation,
instead, focuses on the other approach, which consists on training the network
with more examples. It can be used to artificially expand the size of a training
dataset by creating modified versions of images or videos in the dataset.

Training deep learning neural network models on more data can result in more
skilful models, and the augmentation techniques can create variations of the videos
that can improve the ability of the fit models to generalize what they have learned
to new samples. Image data augmentation is perhaps the most well-known type
of data augmentation and involves creating transformed versions of images in the
training dataset that belong to the same class as the original image. For videos
the argument is more complicated, but substantially what has been done for this
project is to apply the techniques available for image data augmentation on the
different frames of the videos in the dataset.

Going more into the details, four different data augmentation transformations
have been applied: random rotate, translate, centre crop and horizontal flip. An
example of these different techniques is available in Figure 3.4. The intent is to
expand the training dataset with new, plausible examples. This means variations
of the training set images that are likely to be seen by the model. These transfor-
mations have been selected to help the model to better generalize and because the
original dataset was not large enough to accomplish the goal fixed for this project.

62

3.2 – Overfitting and Regularization

(a) Original frame (b) Horizontal transformation

(c) Rotate transformation (d) Translate transformation

Figure 3.4: Data Augmentation example on the “Torino” sign

For instance, a vertical flip does not make sense and would probably not be appro-
priate given that the model is very unlikely to see a video which is recorded upside
down.

3.2.3 Text mining techniques
During the extraction of new word samples from videos which are not part of the
original A3LIS-147 dataset, it was noticed that a relevant number of words have a
common root, but a different final form. For this reason, text mining mechanisms
need to be used to reduce these words to their common roots and assign these new
samples to their correct labels.

For doing so, the NTLK Python package has been used. It provides a set
of diverse natural language algorithms such as tokenizing, part-of-speech tagging,
stemming, sentiment analysis and so on. NLTK helps the computer to analysis,
preprocess and understand the written text.

Since the sign performed in a single video is just a single one, the tokenization
mechanism, which is usually the first step in text analytics and consists in the
process of breaking down a text paragraph into smaller chunks such as words or

63

Experiments and results

sentences, is not needed. Instead, lexicon normalization is really helpful for the
proposed task, since it reduces derivationally related forms of a word to a common
root word. In particular, the stemming technique has been used: it is a process
of linguistic normalization which reduces words to their word root or chops off the
derivational affixes. For example, connection, connected, connecting words can be
reduced to a single common word, connect.

3.3 Feature selection
The dimensionality of the data fed to a neural network during training is a critical
factor for the correct resolution of the problem. Usually, the higher the dimension-
ality, the higher will be the computational cost of modelling, and in some cases the
model could suffer from this abundance of features, learning irrelevant information
which can deteriorate its generalization capabilities. For this set of reasons, the fea-
ture selection technique is really helpful and can be crucial for the proper training
of the model.

Feature selection methods have been developed to decrease the dimensionality
of input variables. The goal is to choose only those elements which are the most
useful for the model, so that it is able to correctly predict the target variable. As
said in [55]: ‘Feature selection is primarily focused on removing non-informative or
redundant predictors from the model’. Since the system on which the model has
been trained has a limited amount of memory, this sort of technique is twice useful,
because in this way less resources are required and, in addition, the performance
of the model will increase, since it will not be affected by input elements that are
not relevant to the target variable.

The feature selection mechanisms that have been used in this project use sta-
tistical techniques, like correlation, to evaluate the relationship between each input
feature and the target variable. These values are then used to make decisions and
filter those input features that will be used by the neural network.

Feature selection and dimensionality reduction are related, but they are not the
same. Both are based on the concept of retaining fewer input features starting from
the original ones, but the difference stands in the methodology: feature selection
chooses the features to keep or remove from the dataset, while dimensionality re-
duction creates a projection of the data onto a lower-dimensional feature space, and
this results in a whole new set of input features. This is why they are considered
as alternatives.

Usually, correlation type statistical measures between input and output are used
to filter the features fed to the network. The choice of which kind of statistical
measure to consider is highly dependent on the data type under analysis. The
most common data types are numerical (integer or float) and categorical (labels,
for instance). The input features are provided to the model, and they are the
target to be reduced in feature selection mechanisms. Output variables, instead,

64

3.3 – Feature selection

are going to be predicted by the model, and their type determines the kind of
predictive modelling problem being performed. For instance, if the model tries to
predict numerical values, then it is a regression problem, while a categorical output
variable indicates a classification task. The case considered in this dissertation, as
said, is part of this last problem family.

Figure 3.5: Example of graph with connected components

Based on the type of input and output features, different feature selection tech-
niques can be chosen. For the classification task, which considers numerical in-
puts and categorical outputs, the most common methods are based on correlation.
Among them, the ANOVA correlation coefficient and the Kendall’s rank coefficient
are some of the most used tools for feature selection. In general, a correlation co-
efficient is a numerical measure of a type of correlation, which means that there is
a statistical relationship between two variables.

In this work, however, it was decided not to rely on this general coefficient, but
to manage a correlation analysis based on graph theory. The graph theory is the
study of graphs, which are defined as mathematical structures to model pairwise
relations between distinct elements. In general, a graph (or network) G is a pair of
elements (V,E), where V is a finite set whose elements are called vertices (or nodes)
and E is a subset whose elements, called edges (or links), are couples of elements
belonging to V . The edge which goes from vertex i to vertex j is indicated with
(i, j).

Routes can be defined in a graph, selecting a starting node (source), a destina-
tion node (destination) and a set of edges capable of connecting them, eventually
through intermediate nodes. A network is a directed graph (or digraph) if it con-
tains at least one oriented link, which is an edge characterized by an orientation,
thus it cannot be traversed in the opposite direction. Otherwise, the graph is
undirected.

A subgraph of a graph G is composed by a set of vertices which is a subset of G

65

Experiments and results

ones, and whose adjacency relation is a subset of that of G restricted to this subset.
Finally, a connected component of an undirected graph is a subgraph in which any
two vertices are connected to each other by paths, and which is connected to no
additional vertices in the rest of the graph. An example of a graph with three
connected components can be found in Figure 3.5.

An ensemble of nodes which are part of a connected component is characterized
by an high correlation coefficient, so these elements are greatly connected and de-
pend on each other. For this reason, the connected component tool has been used
to find the features that retain the biggest amount of correlation. First, groups
of highly correlated variables have been found and they have been considered as
nodes in a graph; then, their correlation has been calculated, and, if the value
of correlation between two nodes was higher than 0.8, then it was considered as
an undirectional link between those two elements. Subsequently, the connected
components of the graph have been found, that are groups of features highly corre-
lated. Finally, for each connected component, the feature with the highest variance
has been retained, considering it to be the most representative for that group of
connected components.

By using the previously exposed methodologies, starting from 238 features char-
acterizing each single temporal frame, the development team extracted only 38
features which are the most important and most representative of the information
contained inside each video sample. Applying this kind of technique allows the
network to not focus on irrelevant data and to better generalize, obtaining better
overall results for the proposed goal.

3.4 Training and testing results
At the very beginning of the training process, the whole A3LIS-147 dataset was
used to tune the neural network presented in the previous sections. The results
obtained, without applying any kind of hyper-parameter tuning or technique to
avoid overfitting and considering the complete ensemble of features, where not
satisfying, since the model reached to obtain an acceptable accuracy only on the
training set, but behaved very poorly on unseen data, with a final accuracy of more
or less 20%.

Given this situation, the development team started to apply the techniques and
methods depicted earlier in this work, to obtain better results and find a sweet spot
in which the neural network was able not to focus on irrelevant information, but to
really understand the temporal information included in the input data.

A relevant amount of time is needed to reach an acceptable level of performance,
since, as it is known from experience, when dealing with neural networks, it is
mainly a question of trying and trying again with slightly different changes in
parameters, to find an adequate solution.

66

3.4 – Training and testing results

Together with these techniques, the team also decided to reduce the number
of signs which would be recognized by the neural network; to enlarge the original
dataset, a great number of different signs was added to the vocabulary, reaching
more than a thousand words. This great amount of different classes was not feasible
to understand for a relatively simple neural network architecture like the one used
for this application, so the decision of shrinking the vocabulary to 100 or 50 different
signs was taken.

The team decided to focus mainly on words relative to a specific domain, mainly
regarding the instruction field, so signs like “school”, “exam” or “diploma” were
maintained inside the vocabulary. This decision leads to a significant improvement
in performance, since the network needs only to focus on understanding information
to discriminate between a lower number of classes.

In each of the different training process which were executed on the network,
the model was always able to obtain an overall accuracy greater than 80% on the
validation set, as can be observed in Figure 3.6. In the previous chapters, it was said
that K-Fold Cross Validation technique was used for the training, and the figure
shows only one of the different folds, as an example. As visible in the indicated
figure, the accuracy value over the train set almost reaches the maximum value
after approximately 100 epochs, and after the same amount of computation, the
validation accuracy is able to settle on its best value, around 80%.

Instead, concerning the loss function, the Categorical Cross-Entropy Loss is the
one used by the algorithm to measure and reduce the error. It is also called Softmax
Loss, since it requires a Softmax activation plus a Cross-Entropy loss. Using this
kind of loss, the neural network will be trained to output a probability over the C
classes for each sign; it is used for multi-classification. In Figure 3.7 it is possible to
see an explanation of how it is computed. In particular, ti and si are, respectively,
the ground-truth and the neural network score for each class i in C.

As can be expected for this kind of task, the loss, both for train and validation,
starts at a very high value and quickly decrements, until it reaches its best and
lower value — remember that the goal of the neural network is to minimize the loss
function on the train set, and hopefully this will lead to a minimization also on the
validation set, if overfitting has been avoided. An example of the envelop of losses
on train and validation datasets is provided in Figure 3.8.

As can be seen in the loss envelops, the train loss could still decrease, considering
to run the training task longer, but the validation loss reaches its best and lower
value after more or less 100 epochs. Later on, it starts to slightly increase due to
the overfitting phenomenon, so this is why the early stopping mechanism has been
implemented.

Considering the results that have been obtained in the literature, it is worth
considering the first Italian sign language recognition work, proposed by [56]. The
mentioned framework deals with a continuous sign case study, using a vocabulary of
40 signs. No specific distinction is made among the signers which are involved in the

67

Experiments and results

(a) Accuracy on train set

(b) Accuracy on validation set

Figure 3.6: Accuracy envelops over train and validation sets

training and testing of the network, in contrast to the proposed approach; anyway,
the accuracy for correct translated sentences refers to two different datasets: in
the first, the test set is composed of 30 sentences with 20 distinct signs, with an
accuracy of 83.30%. In the second, the test set is composed of 80 sentences and 40
distinct signs, and the accuracy value is 82.50%. As said, the obtained results of
the current work are in line with the state of the art results.

In other international works, such as [57] and [58], coloured gloves were used and
frames were deleted whenever hand tracking was lost; the accuracy obtained in this
manner is really high, but the method used is still based on an intrusive capture

Figure 3.7: Categorical Cross-Entropy Loss

68

3.4 – Training and testing results

(a) Loss on train set

(b) Loss on validation set

Figure 3.8: Loss envelops over train and validation sets

methodology, which is not in line with the arguments discussed in this thesis. In
general, the takeout from these works is that this kind of systems are able to
perform well when they are restricted by grammatical rules. These kind of studies
show that the use of grammar notions in sign language recognition can be really
helpful, and this is why a modern and complete new vocabulary for continuous sign
language recognition is being formed by the ORBYTA team.

3.4.1 Discussion about timing
Unfortunately, the development team was not able to carry out a complete exper-
iment flow, meaning that there is still work to do to obtain a successfully usable
application. Thus, the experiments that have been executed would not allow to
make meaningful observations on the time needed by the application to translate
a single sign.

At the actual prototype stage, anyway, the application needs to receive a com-
plete video to start the translation process. This means that, once the video has
been recorded, it has to be sent to the server, which will process the entire video and
then send back the response to the application. This workflow clearly introduces
some latency, which is to be mainly attributed to the video processing mechanism:

69

Experiments and results

extracting the coordinates of hands, face and upper body is really a computational
expensive task, and actually the work is completely in charge of the CPU. Indeed,
parallelizing the process using GPU would lead to great improvements, but at the
actual stage this is not available on the MediaPipe Python implementation. Then,
the coordinates need to be fed to the neural network, which in the end will pro-
duce the translation. Furthermore, this mechanism has an high computational cost,
which translates to an increased execution time.

As previously said, at the moment the coordinates extraction task is performed
on the server side, but it could be implemented on the client side: by doing so, the
server computational workload would be greatly reduced (considering also scalabil-
ity problems, since it should serve different clients at the same time) and the time
needed to obtain the translation would sharply decrease, since half of the work is
already done by the client-side application. This is an essential and helpful future
improvement that can be a game-changer for this particular application. After
having recorded the video, the time needed to process it, extracting coordinates
and obtaining the translation, is slightly equal to the the duration of the video
itself. This makes the processing time too long for a daily usage of the application
and may return the feeling of an unresponsive software. To improve the user ex-
perience and overall satisfaction, these problems are actually being tackled by the
development team and are considered as essential future improvements.

To conclude this chapter, the conducted experiments show how the proposed
novel mechanism is in line with the state-of-the-art results, obtaining an overall
accuracy on the selected training and validation sets which is always greater than
80%. The novelty of the proposed architecture is that it is completely independent
from the recording system used to capture the video that will be processed, and in
practice this makes the application easily accessible by anyone, especially people
with accessibility needs. The aim of the application is to embrace as many people
as possible, to reduce the gap between deaf people and the rest of the society, and
at the actual stage it can be said that it could have been completely fulfilled.

70

Conclusions

A novel application to approach sign language recognition has been exposed in
this work. The main goal of the current study was to develop an application
capable of helping deaf and hard-of-hearing people in relating with the rest of the
society. Throughout this dissertation, different aspects of the development process
have been reported: the difference between continuous and isolated sign language
recognition is the most important one, stating the principal limitation of this work,
that is, it is not meant to be a real-life, ready-to-use application, but rather a
prototype which settles the groundwork for future researches.

This study has shown that it is possible to obtain a good accuracy sign recog-
nition mechanism starting from a relatively small dataset of signs performed by
different signers, reaching the state-of-the-art performance. This sign recognition
tool could be used in any context, from school to hospitals, in video conferences
and so on, because it needs only a simple camera to work, and so it should be easily
accessible by a very good turnout. This was the second aim of the work, which is
to embrace as many people as possible in a simple, yet effective way.

The second major finding was that a new dataset for continuous sign language
recognition is needed to produce a real-life and real-time application. Isolated
sign language recognition can be considered as a starting point, while the real-
time translation of sign language should be the final goal. On the example of the
German sign language vocabulary [30], a similar process has been started by the
ORBYTA R&D team, in order to obtain a ready-to-use continuous language recog-
nition dataset that could also be used as an international benchmark for testing
other automatic recognition systems.

The results of this research support the idea that a real and effective inclusion
of deaf and hard-of-hearing is possible, but there is still a great amount of work to
do. There are several possible improvements of this work: first of all, it could be
extended and become a continuous sign language recognition system implementing
the two extra models that have been previously introduced. The first model consists
in an automatic segmentation software, based on neural network and deep learning:
given a video containing a sign language sentence, it should be able to precisely
segment the video into glosses, containing a single sign. By doing so, the obtained
glosses could be subsequently passed to the network already analyzed in this work,

71

Conclusions

which would return the translation of the sign. In the end, the sentence translation
should be returned, but, as seen in the last chapter, applying also grammatical
constraints to the model it should perform better, so also this aspect could be
implemented as a future improvement.

Another limitation of the proposed study, even with the segmentation model,
consists in the final translation: even constraining the overall model with sign
language grammar rules, the returned sentence would not satisfy the Italian gram-
matical rules, due to the fact that they are different from LIS ones. For this reason
the fourth and last model has been recognised as necessary: it should consist in a
network capable of taking a LIS sentence and convert it into a correct Italian phrase.
This last model could be implemented by taking advantage of the improvements
obtained in Natural Language Recognition processes.

Finally, another problem of the proposed architecture could be inherent to the
time needed to process videos and return the correct translation. As shown in
the previous chapter, most of the work is handled on the server side: both the
coordinates extraction and the translation processes are performed by the server,
but this is only feasible in the prototype phase. It is not imaginable to put a system
like this in production for obvious scalability issues, and so a further improvement
could consist in moving some of the computation to the client side: it should
be possible to perform the coordinates extraction process on the client (usually
a smartphone or PC), since the MediaPipe project has been developed with the
aim of exploiting mobile resources in the most effective way. In this way, the total
amount of time needed to obtain the final translation should be definitely reduced,
if not halved.

Notwithstanding the relatively limited prototype that has been developed, this
work offers valuable insights into the automatic sign recognition field of study. A
natural progression of this work is to analyse which results can be achieved by
increasing the size of the dataset and of the vocabulary; this should be done hand
in hand with an extension of the neural network used to translate signs, since
increasing the number of words of the vocabulary also increases the computational
workload on the network itself.

A further study could assess the possibility of transforming the proposed archi-
tecture into a real-time application: firstly, at the current state, the input needs to
be segmented, but adding support for unsegmented data should be straightforward,
requiring a change in the training protocol as demonstrated in [47]. Finally, since
the system only works on complete sequences, to get a real-time, step by step, clas-
sification, the usage of non-overlapping short time windows could be helpful. As
stated in [59], the recognition model can emit a classification of the sign performed
inside each window; then, the use of an objective function, such as the Connection-
ist Temporal Classification Loss (CTC) [49] could allow an alignment of the classes
obtained from the time windows with the desired (actual) ones.

72

Conclusions

Greater efforts are needed to ensure a proper integration of deaf and hard-of-
hearing people with the rest of the society. More research and innovation are needed
to improve the quality of communications between these different, but yet linked,
worlds; and this can obviously lead to great benefits for both parties.

73

74

Appendix A

Listing of CI instructions in
gitlab-ci.yml

docker-build-master:
image: docker:latest
stage: build
services:

- docker:dind
before_script:

- docker login -u "$CI_REGISTRY_USER" -p "$CI_REGISTRY_PASSWORD"
$CI_REGISTRY

script:
- docker build --pull -t "$CI_REGISTRY_IMAGE" ./LIS2Speech
- docker push "$CI_REGISTRY_IMAGE"

only:
- master

docker-build:
image: docker:latest
stage: build
services:

- docker:dind
before_script:

- docker login -u "$CI_REGISTRY_USER" -p "$CI_REGISTRY_PASSWORD"
$CI_REGISTRY

script:
- docker build --pull -t "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG"

./LIS2Speech
- docker push "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG"

except:
- master

75

76

Appendix B

Listing of Python script for
hyper-parameters tuning

1 import torch
2 import torch.nn as nn
3 import optuna
4

5

6 def hyperparams_tuning(trial):
7 # Set the suggested hyperparams
8 cfg = {
9 "device": "cuda" if torch.cuda.is_available() else "cpu",

10 "n_epochs": 2,
11 "seed": 0,
12 "log_interval": 100,
13 "lr": trial.suggest_loguniform("lr", 1e-4, 1e-2),
14 "optimizer": trial.suggest_categorical(
15 "optimizer", [torch.optim.SGD, torch.optim.RMSprop, torch.optim.

Adam]
16),
17 "model": trial.suggest_categorical("model", [DeepGRU, DeepLSTM]),
18 "weight_decay": trial.suggest_loguniform("weight_decay", 0, 1e-1),
19 "criterion": nn.CrossEntropyLoss(),
20 }
21

22 # Load the dataset
23 log.set_dataset_name("a3lis")
24 dataset = DataFactory.instantiate(dataset_name="lis2s", num_synth=0)
25

26 torch.manual_seed(cfg["seed"])
27 train_loader, test_loader = dataset.get_data_loaders(
28 fold_idx=0, shuffle=True, random_seed=cfg["seed"], normalize=True
29)
30

77

Listing of Python script for hyper-parameters tuning

31 # Create the model with the suggested hyperparams
32 model = cfg["model"](dataset.num_features, dataset.num_classes).to(cfg["

device"])
33

34 # Set the optimizer with the suggested hyperparams
35 optimizer = cfg["optimizer"](
36 model.parameters(), lr=cfg["lr"], weight_decay=cfg["weight_decay"]
37)
38

39 # Train and compute test_accuracy, which is the goal to optimize
40 for epoch in range(1, cfg["n_epochs"] + 1):
41 train(
42 cfg["log_interval"], model, train_loader, optimizer, epoch, cfg["

criterion"]
43)
44 test_accuracy = test(model, test_loader, cfg["criterion"])
45

46 return test_accuracy
47

48

49 if __name__ == "__main__":
50 sampler = optuna.samplers.TPESampler()
51

52 # Create the study object, maximize the value returned by the objective
function

53 study = optuna.create_study(sampler=sampler, direction="maximize")
54

55 # Start the hyperparams tuning
56 study.optimize(hyperparams_tuning, n_trials=20)
57

58 # Print the best hyperparams
59 print(study.best_trial)

78

Bibliography

[1] W. Sandler and D. Lillo-Martin, “Sign language and linguistic universals,” in
Cambridge University Press, 2006

[2] Z. Yang, Z. Shi, X. Shen, and Y.-W. Tai, “Sf-net: Structured feature network for
continuous sign language recognition,” arXiv preprint arXiv:1908.01341, 2019

[3] B. Cooper and R. Bowden, “Sign language recognition,” in Visual Analysis of
Humans, pp. 539–562, 2011

[4] M. Fagiani, E. Principi, S. Squartini and F. Piazza, “A New Italian Sign Lan-
guage Database” in Advances in Brain Inspired Cognitive Systems, pp. 164–173,
2012

[5] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang,
C. Chang, M. G. Yong, J. Lee, W. Chang, W. Hua, M. Georg, M. Grundmann,
“MediaPipe: A Framework for Building Perception Pipelines,” arXiv preprint
arXiv:1906.08172, 2019

[6] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C. Chang, M.
Grundmann, “MediaPipe Hands: On-device Real-time Hand Tracking,” arXiv
preprint arXiv:2006.10214, 2020

[7] Y. Kartynnik, A. Ablavatski, I. Grishchenko, M. Grundmann, “Real-time Facial
Surface Geometry from Monocular Video on Mobile GPUs,” arXiv preprint
arXiv:1907.06724, 2019

[8] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, M. Grund-
mann, “BlazePose: On-device Real-time Body Pose tracking,” arXiv preprint
arXiv:2006.10204, 2020

[9] M. Maghoumi, J. J. LaViola Jr, “DeepGRU: Deep Gesture Recognition Utility,”
arXiv preprint arXiv:1810.12514, 2019

[10] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, Y. Bengio, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” arXiv preprint arXiv:2006.10204,
2014

[11] S. Dupond, “A thorough review on the current advance of neural network
structures,” in Annual Reviews in Control, pp. 200–230, 2019

79

Bibliography

[12] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional net-
works for visual recognition and description,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 2625–2634, 2015

[13] P. Molchanov, S. Gupta, K. Kim, and J. Kautz, “Hand gesture recogni-tion
with 3d convolutional neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pp. 1–7, 2015

[14] D. S. Alexiadis, A. Chatzitofis, N. Zioulis, O. Zoidi, G. Louizis,D. Zarpalas, and
P. Daras, “An integrated platform for live 3d human reconstruction and motion
capturing,” IEEE Transactions on Circuits and Systems for Video Technology,
v. 27, n. 4, pp. 798–813, 2016

[15] M. W. Kadouset al., “Machine recognition of auslan signs using powergloves:
Towards large-lexicon recognition of sign language,” in Proceedings of the Work-
shop on the Integration of Gesture in Languageand Speech, v. 165, 1996

[16] H. Cooper, E.-J. Ong, N. Pugeault, and R. Bowden, “Sign language recogni-
tion using sub-units,” Journal of Machine Learning Research, v. 13, n. Jul, pp.
2205–2231, 2012

[17] C. Camgoz, S. Hadfield, O. Koller, and R. Bowden, “Using convolutional 3d
neural networks for user-independent continuous gesture recognition,” in 2016
23rd International Conference on Pattern Recognition (ICPR), pp. 49–54, 2016

[18] G. D. Evangelidis, G. Singh, and R. Horaud, “Continuous gesture recogni-
tion from articulated poses,” in European Conference on Computer Vision, pp.
595–607, 2014

[19] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “Moddrop: adaptive multi-
modal gesture recognition,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, v. 38, n. 8, pp. 1692–1706, 2015

[20] D. Wu, L. Pigou, P.-J. Kindermans, N. D.-H. Le, L. Shao, J. Dambre, and
J.-M. Odobez, “Deep dynamic neural networks for multimodal gesture segmen-
tation and recognition,” IEEE transactions on pattern analysis and machine
intelligence, v. 38, n. 8, pp. 1583–1597, 2016

[21] O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition: To-
wards large vocabulary statistical recognition systems handling multiple sign-
ers,” Computer Vision and Image Understanding, v. 141, pp. 108–125, 2015

[22] O. Koller, C. Camgoz, H. Ney, and R. Bowden, “Weakly supervised learning
with multi-stream cnn-lstm-hmms to discover sequential parallelism in sign lan-
guage videos,” IEEE transactions on pattern analysis and machine intelligence,
2019

[23] R. Cui, H. Liu, and C. Zhang, “A deep neural framework for continuous sign
language recognition by iterative training,” IEEE Transactions on Multimedia,
2019

[24] D. Bragg, O. Koller, M. Bellard, L. Berke, P. Boudrealt, A. Braffort, N. Caselli,
M. Huenerfauth, H. Kacorri, T. Verhoef et al., “Sign language recognition,

80

Bibliography

generation, and translation: An interdisciplinary perspective,” arXiv preprint
arXiv:1908.08597, 2019

[25] Z. Zhang, “Microsoft Kinect Sensor and Its Effect,” in IEEE Multimedia -
IEEEMM, v. 19, pp. 4–10, 2012

[26] N. Adaloglou, T. Chatzis, I. Papastratis, A. Stergioulas, G. T. Papadopou-
los, V. Zacharopoulou, G. J. Xydopoulos, K. Atzakas, D. Papazachariou, P.
Daras, “A Comprehensive Study on Sign Language Recognition Methods,”
arXiv preprint arXiv:2007.12530v1, 2020

[27] O. Koller, “Quantitative Survey of the State of the Art in Sign Language
Recognition,” arXiv preprint arXiv:2008.09918v2, 2020

[28] H. Zhou, W. Zhou, Y. Zhou and H. Li, “Spatial-Temporal Multi-Cue Network
for Continuous Sign Language Recognition,” arXiv:2002.03187 [cs], 2020.

[29] O. Koller, H. Ney and R. Bowden, “Automatic Alignment of HamNoSys Sub-
units for Continuous Sign Language Recognition,” in LREC Workshop on the
Representation and Processing of Sign Languages, pp. 121–128, 2016

[30] O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition:
Towards large vocabulary statistical recognition systems handling multiple
signers,” in Computer Vision and Image Understanding (CVIU), v. 141, pp.
108–125, 2015

[31] O. Koller, H. Ney, and R. Bowden, “Deep Hand: How to Train a CNN on 1
Million Hand Images When Your Data Is Continuous and Weakly Labelled,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
3793–3802, 2016

[32] M. Mukushev, A. Sabyrov, A. Imashev, K. Koishybay, V. Kimmelman, and
A. Sandygulova, “Evaluation of Manual and Non-manual Components for Sign
Language Recognition,” in Proceedings of The 12th Language Resources and
Evaluation Conference, pp. 6073–6078, 2020

[33] A. Sabyrov, M. Mukushev, and V. Kimmelman, “Towards Real-time Sign Lan-
guage Interpreting Robot: Evaluation of Non-manual Components on Recog-
nition Accuracy,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 75–82, 2019

[34] H.-D. Yang and S.-W. Lee, “Combination of manual and non-manual features
for sign language recognition based on conditional random field and active ap-
pearance model,” in Int. Conf. on Machine Learning and Cybernetics (ICMLC),
v. 4, pp. 1726–1731, 2011

[35] C. Zhang, Y. Tian, and M. Huenerfauth, “Multi-modality American Sign Lan-
guage recognition,” in Proc. IEEE Int. Conf. on Image Processing (ICIP), pp.
2881–2885, 2016

[36] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain,” in Psychological Review, pp. 65–386, 1958

[37] L. Zhang, S. Chen, T. Wang, and Z. Liu, “Automatic Facial Expression Recog-
nition Based on Hybrid Features,” in Energy Procedia, v. 17, pp. 1817–1823,

81

Bibliography

2012
[38] A. J. Logan, G. E. Gordon, and G. Loffler, “Contributions of individual face

features to face discrimination,” in Vision Research, v. 137, pp. 29–39, 2017
[39] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D: A Large Scale

Dataset for 3D Human Activity Analysis,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016

[40] S. Hochreiter and J.Schmidhuber, “Long Short-Term Memory,” in Neural com-
putation, v. 9(8), pp. 1735–1780, 1997

[41] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “Spatio-Temporal LSTM with
Trust Gates for 3D Human Action Recognition,” in Computer Vision – ECCV
2016, pp. 816–833, 2016

[42] M.-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches Attention-
based Neural Machine Translation,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 2015

[43] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, “An End-to-End Spatio-
temporal Attention Model for Human Action Recognition from Skeleton Data,”
in AAAI, v. 1, pp. 4263–4270, 2017

[44] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
scale Image Recognition,” in CoRR, abs/1409.1556, 2014

[45] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” in Proceedings of the 32nd Inter-
national Conference on International Conference on Machine Learning (ICML),
v. 37, pp. 448–456, 2015

[46] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” in arXiv preprintarXiv:1207.0580, 2012

[47] F. M. Caputo, S. Burato, G. Pavan, T. Voillemin, H. Wannous, J. P. Van-
deborre, M. Maghoumi, E. M. Taranta II, A. Razmjoo, J. J. LaViola Jr., F.
Manganaro, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara, H. Nguyen, M. T.
Tran, and A. Giachetti, “Online Gesture Recognition,” in Eurographics Work-
shop on 3D Object Retrieval, 2019

[48] D. Qiulei, W. Yihong and H. Zhanyi, “Gesture Segmentation from a Video
Sequence Using Greedy Similarity Measure,” in 10.1109/ICPR.2006.608, pp.
331–334, 2006

[49] A. Graves and N. Jaitly, “Towards End-to-End Speech Recognition With Re-
current Neural Networks,” in Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pp. 1764–1772, 2014

[50] A. Torfi, R. A. Shirvani, Y. Keneshloo, N. Tavaf and E. A. Fox, “Nat-
ural Language Processing Advancements ByDeep Learning: A Survey,” in
arXiv:2003.01200, 2020

[51] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-Vito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer, “Automatic Differentiation in PyTorch,”

82

Bibliography

in NIPS-W, 2017
[52] J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of a Re-

gression Function”, in The Annals of Mathematical Statistics, v. 23, n. 3, pp.
462–466, 1952

[53] G. Hinton, N. Srivastava, and K. Swersky, “Lecture 6a: Overview of mini-batch
gradient descent”, in Neural Networks for Machine Learning, 2012

[54] D. P. Kingma and J. Ba. Adam, “Adam: A Method for Stochastic Optimiza-
tion,” in arXiv preprint arXiv:1412.6980, 2014

[55] M. Kuhn and K. Johnson, Applied Predictive Modeling, ed. 1, New York,
Springer, 2013

[56] I. Infantino, R. Rizzo, and S. Gaglio, “A framework for sign language sentence
recognition by commonsense context,” in IEEE Trans Syst Man Cybern C Appl
Rev, v. 37, pp. 1034–1039, 2007

[57] T. Starner, A. Pentland, “Real-time American Sign Language recognition from
video using hidden Markov models,” in Proceedings of the international sympo-
sium on computer vision, pp. 265–270, 1995

[58] T. Starner, J. Weaver, A. Pentland, “Real-time American Sign Language recog-
nition using desk and wearable computer based video,” in IEEE Trans Pattern
Anal Mach Intell, v. 20, pp. 1371–1375, 1998

[59] G. Devineau, W. Xi, F. Moutarde, J. Yang, “Deep Learning for Hand Gesture
Recognition on Skeletal Data,” in 13th IEEE Conference on Automatic Face
and Gesture Recognition (FG’2018), 2018

83

	List of Figures
	Related work and technologies
	State of the art
	Type of input data
	Sign language parameters
	Analysis by sign language

	Technologies overview
	Progressive Web Apps
	Ionic Framework
	Firebase
	Git
	Python
	Docker

	LIS2Speech architecture
	Dataset and Database
	Description of the proposed application
	Front-End
	Back-End

	Pipeline for Sign Recognition
	From videos to skeletal data
	From skeletal data to gloss
	From glosses to sentences
	From LIS to proper Italian

	Experiments and results
	Implementation details
	Overfitting and Regularization
	K-Fold Cross Validation
	Avoid Overfitting
	Text mining techniques

	Feature selection
	Training and testing results
	Discussion about timing

	Listing of CI instructions in gitlab-ci.yml
	Listing of Python script for hyper-parameters tuning
	Bibliography

