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Abstract

Visual Place Recognition (VPR) is the task of recognizing what place is
represented in a given image. This task, which is being studied for decades,
is rich of challenges and margins for improvement.
The main purpose of this thesis has been to study techniques to improve the
scalability of VPR algorithms without penalizing their accuracy. This work
contains many experiments that show which improvements can be achieved
by applying similar architectures and what their limitations are. In this re-
gard, by trying to overcome some of these limitations, we also experimented
with different Domain Adaptation techniques and reported their results.
Moreover, a software made up by APIs back-end calls and a user-friendly
front-end, was developed to potentially allow every user to perform searches
on country scale in just a matter of seconds. The software also offers fea-
tures like user roles, authentication, high performance and flexibility by de-
sign. The Flask API allows a more scalable deployment. Furthermore, we
described how a VPR pipeline can be designed and deployed in a large scale
environment by showing all the steps required for the implementation of a
similar system.
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Chapter 1

Background

1.1 Problem Statement
One of the most popular tools of the modern age, known as camera, allows
us to capture images of each spot on earth. Computer vision, a branch of the
more generic Machine Learning, emerged to try to understand the images
taken by cameras to extract and process such data. Another widespread
creation of modern technology is the GPS, used to identify the geographical
position in almost every place.

Even if they look dissimilar, these different devices have an hidden still
strong relation represented by the combination of both visual and space in-
formation. In other words, it’s always legit to ask: Where was this picture
taken?

Geo-localization finds numerous applications like organizing photo collec-
tions and robotics. The geographical location where an image or video was
taken is a key aspect of many different tasks like:

• Geo-tagging photos Association of a location for a given image often
showed in a map form (i.e. old photos, holiday photos)

• Visual information retrieval The task used to extract visual infor-
mation from an image (i.e. to search for similar photos, to obtain infor-
mation about the environment)

• Self-driving vehicle In autonomous driving visual place recognition is
used for loop closure detection, in SLAM [2] [3], but is also relevant for
localization.
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1 – Background

Figure 1.1. On the left the distinction between the gallery and the query;
on the right an example of a VPR task.

• AR Augmented Reality has some really interesting applications like a
step by step guide or providing additional information about the pointed
object.

• Interactive VR In a similar way the Virtual Reality needs also the
spatial information to work in an interactive way.

The research exposed in this work investigates how to automatically derive
geo-information from a photo. In particular, it embraces the challenge of
estimating the longitude and latitude location of an image based only on its
visual content. The goal of this thesis was to develop a scalable VPR system
for images and to study the possibilities for improvement in both accuracy
and performance.

In this work, we start by providing a comprehensive evolution of the state
of the art in large scale visual VPR and discuss the main trends in this
area. The thesis makes also other different contributions. The first being
the design and implementation of a scalable, reliable and flexible framework
and the second being the optimization of specific components in both the
network and the pipeline. Based on the results presented in this thesis, we
propose some directions where additional studies can be conducted. Thus,
this research involved three key concepts whose definitions are given as follow:

Image retrieval Task that aims to find similar images to a query
image among an image dataset (sometimes named gallery or database).

Large Scale - Involving large numbers or a large area.
(Of a map or model) made to a scale large enough to show certain
features in detail.
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1.2 – High Level Pipeline

Visual Place Recognition : The task of matching a view of a
place with a different view of the same place taken at a different
time.

Although these concepts are different they also tend to overlap because
Visual Place Recognition is often approached as an Image Retrieval task and
we usually want it to work on a Large Scale.

1.2 High Level Pipeline

Figure 1.2. Overall steps for retrieval based architectures.

A VPR pipeline, independently from the specific architecture, can be
thought as composed of the following steps:

• Represent the world by using a set of geo-tagged images

• Given a query image, find the best matching image according to some
criteria

• Transfer the geo-tag of the best matching image to the query

17



1 – Background

The first point clarifies the need of a dataset of some sort. Ideally we
would need a dataset containing at least one picture for every location to be
recognized. The limitations and the difficulties involved will be clarified in
the next section.

The other points highlight the need of two entities which have to be defined
for the whole system to work. The first one is some sort of representation that
should be used to encode the visual features into a compact and meaningful
representation, procedure usually known as feature extraction. The second
one is a method of finding the most similar images in the feature space.

By looking at the high level pipeline, shown in Figure 1.2, we can introduce
some components of the system.
We can distinguish two kinds of image set: the query and the gallery.

The query and the gallery The images used to represent the world are
commonly known as gallery or database. In particular, this can be thought
as the set of images that are used to perform the search (hence the name).
It should also be clear that these are the images from which the geo-tag is
transferred to the query.
On the other side, the images for which the location should be discovered
are called queries. For each query the system will estimate the location by
searching the closest match into the gallery. The Figure 1.1 should clarify
the distinctions between the two.

Preprocessing The gallery itself is just a bunch of images and metadata,
like the geo-tag, and can’t be used in its original form. In other words, we
usually need to adopt some preprocessing techniques like cropping.

Feature extraction When the images are in a suitable format the next
step is the extraction of features for each preprocessed image in the gallery.
Both the preprocessing and the extraction of the features are performed
only once in a while by saving the computed features to disk. Specific data
structures and algorithms can be used to improve the searching process.

The query and the search process Let’s go back to the query. When
a query is given as input, at first we need to compute its descriptor, as
previously done with all the images in the gallery. Then we need to perform
a similarity search (i.e. k-NN) to compare the query image to all the images
in the gallery to find the closest match. Since the comparison isn’t made

18
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between the raw image representations (RGB) but between their computed
descriptors, we call it similarity search in the feature space.

The last step usually consists of an algorithm chosen to rank the different
predictions returned from the similarity search.

1.3 Challenges
Although VPR has already been studied for decades, the challenge of esti-
mating the image location from its visual content remains notable. This is
particularly true when tackling VPR on a large scale both because of the
great amount of image samples involved and because of the scalability and
accuracy constraints to be respected. We can identify four main issues when
dealing with VPR :

• Sources of geotagged images

• Temporal sparseness

• Spatial sparseness

• Large scale and scalability

The aforementioned challenges are particularly hard to solve in a large
scale environment because even if we would like to have as many samples
as possible, this would entail two more issues. The first being where to get,
how to store and how to process a so big dataset and the second being an
increased sparsity because of the bigger scale and dataset.

Moreover, as this subject has been studied by different communities, namely
computer vision, robotics and machine learning, who often share their re-
sults in separate scientific outlets, there is an increased complexity for new
researchers on the field [19].

The results reported in this thesis want to encourage the research commu-
nity in pursuing this challenge.

1.3.1 Sources of geotagged images
The first step is to collect images for building the ground-truth database.
Here comes the first issue: What can be the source of images needed to com-
pose the gallery?
Such a dataset should be big enough to contain at least a sample per loca-
tion to be recognized. At the same time, a dataset with more samples per
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1 – Background

location is highly recommended because it improves the generalization ca-
pabilities of the network, thus allowing to easily recognize a place when the
photo is taken under different lighting condition and with a different point
of view with respect to the samples in the gallery.

Generally, a similar dataset can be obtained by two different sources:

• Photo-community site (i.e. Flickr) Similar collections have the
advantage of being continuously and fast growing but the images aren’t
equally distributed (they concentrate on landmarks like the Eiffel Tower
in Paris). Samples belonging to this category are also characterized by
noisy tag and visual content (i.e. artistic photos).

• Interactive Panoramas (i.e. StreetView) Such collections usually
cover almost every street (with limitations in some countries) and the
position is more accurate. The downside is that these images are seldom
updated because of the high resources and cost involved. Moreover, the
samples provided in this dataset are usually available in a pano format
(from which a perspective cutout can always be generated [16],[15]).

In this work all the used datasets fall in the second category and for the
dataset built from StreetView a perspective cutout is generated. In par-
ticular, a Google Streetview panorama is in the form of an equirectangular
projection. The panorama, in its original form, can’t be used right away to
compose the gallery, because all the samples are distorted and a retrieval
NN can lead to poor accuracy when images come from different domains.
A panorama also contains a lot of information that is neither unique nor
relevant for the image, like the sky (on the top) and the street (on the bot-
tom). A solution for the last issue is to cutout only the relevant parts of the
panorama by preserving only a predefined horizontal band. Moreover, the
perspective cutouts need to be converted to an undistorted image to avoid
incorrect matching. This process is formally known as gnomonic projection
and it represents the projection of the surface of the sphere from its centre
onto a tangent plane.

1.3.2 Temporal sparseness
The environment changes with time and it’s hard to think that two different
pictures have been taken at the same place and at the same time. Further-
more, if this were the case, the problem could be solved with just an image
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retrieval approach by performing a similarity research. Dealing with sam-
ples distributed over a period of time can be lead to a temporal sparseness
problem. Thus, time influences photos because of different factors:

• Lighting condition (day/night/golden hour)

• Structure (advertisement poster, work in progress building, new build-
ings, ..)

• Season (winter/summer/autumn)

• Weather (sunny/rainy/snowy)

• Dynamic object (vehicles, pedestrian)

The geolocalization task is highly related to the dynamic nature of our
world. Images of a place could contain moving elements such as pedestrians
and vehicles that might add noise or even occlude relevant portions of the
scene. The appearance of a place itself changes continuously and would be
impossible each time to have a fresh image for a given query. Other major
points are lighting/weather conditions and seasons. All that can make the
same place appear totally different.

There aren’t fully working solutions to overcome all the aforementioned
challenges, but different ideas have been introduced with the intent of mit-
igating these issues. Of course, having a big and high quality dataset can
improve the generalization capabilities of the model. One of the approaches is
to adopt some Domain Adaptation or Generalization tasks in order to find a
representation, on the feature space, that is as much as possible independent
from these factors.

1.3.3 Spatial sparseness
Data is not only sparse on the temporal dimension but also in the spatial
dimension. It would be wrong to think that all the photos taken in a given
location have been taken exactly from the same position and with the same
camera orientation. We can identify several sources of spatial sparseness:

• Occlusions An occlusion can be defined as an element that covers some
interesting portion of the image. An example of occlusions is a person
(i.e. in a selfie) or a bus parked in front of a building and so on.
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• Viewpoints Another source of spatial sparseness is represented by the
different viewpoints.

• Recurrent patterns Another challenge to be addressed are the recur-
rent architectonics patterns. In totally different locations a common
pattern can be found (i.e. bridges, skyscrapers, ...).

In regards to the occlusions there isn’t so much that can be done. What
really matters is the size of the occlusion and the portion of relevant in-
formation it covers. Different experiments propose semantic segmentation
approaches in order to identify some of the occlusions to help the network.

Another typical issue with VPR is the viewpoint mismatch between the
query and the most relevant database picture. For example the Eiffel Tower
is visible from many different locations.

To mitigate this issue different techniques can be used like exploiting 3D
information or making usage of a big dataset in which the robustness, in
relation to the viewpoints, can be learned in an autonomous way by the
neural network.

Lastly, it is common to be affected by repetitive patterns that increase
similarity among different places. Various solutions [15] have been studied
to approach this problem like the introduction of an attention module that
helps to focus only on relevant parts of the image[8].

1.3.4 Large Scale and Scalability
Large Scale As already mentioned this work is focused on large scale so-
lutions for the geolocalization task. As a consequence other challenges need
to be solved:

• Representation We need a compact but meaningful representation.
We want to have a representation that is as small as possible to reduce
both memory and time complexity. This also opens the door to other
post processing techniques that can be further introduced in the pipeline
with a small overhead. At the same time the features should be mean-
ingful so that two images taken in a near location should be as similar
as possible while images taken in different places should be as distant as
possible on the feature space even if they are really close in the visual
domain. The representation should also be robust (noise, sparseness, ...)
and possibly fast to compute.
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Figure 1.3. Sparseness examples. A real dataset is affected by both sparsity.

• Performance In a large scale environment, performance plays a key
role. When talking about performance we are referring to both time
and space complexity. In fact, just by intuition, geolocation indoors,
like inside a museum, rather than on a countrywide, is totally different
in terms of performance. More details about this point will be given in
the following chapters.

• Dataset A dataset of a certain size and with a full coverage of places
is required and it represents one of the biggest concerns in regards to
the memory complexity because of the great amount of samples (tens of
millions) involved.

Scalability Scalability can be considered as one of the current bottleneck
for VPR architectures. Ideally, the system should be highly scalable so that a
larger scale is always possible to be achieved by providing the system enough
resources. For example, the architecture should support increasing numbers
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of queries and numbers of places involved in the place recognition process
without loosing in both accuracy and performance. In practice this is really
hard to accomplish because of the several factors involved such as:

• The number of concurrent queries involved The system should
also work under the condition in which many queries are given as input
at the same time.

• The number of places The system should scale with respect to the
geographical size of the places in the gallery.

• The dataset size. The architecture should be able to use millions of
images.

• Modularity A good modular design should allow both vertical and
horizontal scaling.

• Flexibility Components of the system should be defined as optional.
Other components should be available according to the context.

1.3.5 Domain Adaptation
We have seen that approaching VPR on such a large scale requires to deal
with different kinds of challenges, one of them being the several visual do-
mains to which a photo can belong.

As we have already mentioned, it’s legit to assume that the system could
be fed with images taken in a sunny or snowy day, at night or during daytime
and so on. Moreover, a picture taken at the same place but in a different
time can appear so much different because of several factors. This phenomena
can lead the network to bad performance because of its inability to generalize
across different visual domains. When dealing with large scale environment,
this becomes a serious issue, since both the gallery and the queries can often
belong to different domains. For example let think of a street-view image
taken at daytime compared to a query image taken by a smartphone at night.

One way to tackle this challenge is by using a domain adaptation approach.
We can define the domain adaptation as the task of adapting models across
different (but related) domains. We can distinguish between the source do-
main and the target domain.

With domain adaptation the goal is to access to both source and target
samples to make it possible to build a robust representation that correctly
fits both.
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Figure 1.4. Two images from the Oxford RobotCar dataset. On the left
a picture taken at daytime; on the right a photo at night. On the bottom
their related histograms. You can see how the distribution of RGB pixels
highly differs between the two.

Looking at the previous example, we want to find a descriptor that allows
us to correctly represent both the day images in the gallery (source domain)
and the night (target domain) query, in order to be able to correctly find a
match between the two. From an analytic point of view, different domains
mean data with a mismatched distribution. Domain adaptation aims to
correct this distribution misalignment and to narrow down the distribution
discrepancy. For an intuitive explanation, as you can see by looking at night
and day samples from Oxford RobotCar dataset and their relative histograms
(Figure 1.4), you should be able to see how night and day images differ and
how their RGB distributions appear.
The literature contains several approaches to perform domain adaptation
such as:

• Semi-supervised DA

• Weakly-Supervised DA

• Zero-shot DA
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• One-shot DA

• Few-shot DA

For each of them, different solutions have been provided by researchers
over the time. In this work, after presenting and showing the results for
several architectures we will also present the results obtained by applying
different techniques of domain adaptation to see if it’s worth considering for
geo-localization tasks and what margin of improvements can be achieved.
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Chapter 2

Related work

Figure 2.1. Evolution of VPR SotA techniques over the time.

2.1 Introduction
The VPR topic has been considered of high interest for decades. This inter-
est is motivated by both the relevance that visual place recognition has for
many applications and its related challenges.
For instance, in computer vision VPR is often studied as the task of rec-
ognizing the location of a single image. In the autonomous vehicle, there
are usually multiple sensors providing heterogeneous data, thus VPR algo-
rithms can exploit 3D information (i.e. lidar), sequences of photos to exploit
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the time dimension, or some knowledge about the actions or movement per-
formed by such robot.
Another distinction can be made about the definition of a correct identified
place. In other words, how is a valid match defined?
The answer can be different from application to application. Depending on
the dataset and on the context, an acceptable result could be to find a match
with the right city. In other applications, a match could be a POI (Point of
Interest) or a location within a radius of 20 meters or even predicting the
camera position and orientation.

Furthermore, in some cases, the algorithm needs to return just one location
that has to be correct, whereas for other purposes, predicting the correct
result in the top N suggestions could already be considered enough accurate.
By experimenting with such architectures, these requirements need to be
known, in order for the system to be designed and evaluated accordingly.

Visual place recognition is usually tackled as an image retrieval task. This
approach is characterized by a collection of images (database) that contains
all the places of interest. For each image in the database a geo-tag, represent-
ing the corresponding place, is associated i.e. a GPS coordinate. When an
image is given as input (query), the system extracts a meaningful represen-
tation and searches for the closest match on the feature space. This involves
the definition of a feature extractor which should produce a representation
that has to meet the properties described in the previous section.

In the first decade the features were hand-crafted (i.e. DoG, SIFT, PHOW).
In the last decade, thanks to the achieved progresses in the computer vision
field and in CNN, the commonly approach has been to use a CNN as feature
extractor. This approach allows to obtain a more powerful and generalized
representation and opens the door to different improvements.

In addition we would like to highlight a subtle difference when talking
about features and representation. Features, sometimes called descriptors,
are information extracted from images in the form of numerical values and
therefore incomprehensible to humans. Basically there are two main types of
features based on the application. We distinguish the so called local features
from the global features.

The first ones are used for object recognition/identification while the latter
are usually used in image retrieval, object detection and classification. Local
features are used to extract all possible local information. Some examples
are SIFT, RootSIFT, SURF, BRISK, FAST, ORB.

On the other side, the purpose of global features is to describe the image as
a whole and try to generalize the entire image whereas the local features try
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to describe just a portion of the image (or key points in the image). Compared
to the representation based on local descriptors, global descriptors are less
robust to viewpoint changes, clutters and occlusions [19].
Furthermore, a global descriptor can be obtained both directly (i.e. think
about the whole raw image as a global descriptor itself) and indirectly by
using local features as starting point, by chaining a step of aggregation by
which the local features are aggregated and reduced in size. Sometimes an
hybrid approach is chosen [18], [17].

This concept is particularly relevant because both the local descriptors
and the aggregation process represent a critical step in the VPR pipeline.
Some of the approaches proposed over the years will be described in the next
section.

Figure 2.2. Two examples of local (hand crafted) features and global
features obtained by aggregation.

Mining

Whenever VPR is approached as a metric learning problem, as in the case of
contrastive loss or triplet loss, we need to define correct matches (positives)
and false matches (negatives) examples for each training image.
The process of finding such positive and negative examples is called mining.
The importance of this process should not be undervalued: if the samples
are too easy the network will learn a sub-optimal solution. In a similar way,
if the samples are too difficult this can lead to over-fitting and bad local
minima [19].

Other crucial aspects about mining are performance and scalability. A
first idea could be to extract the features for all the negative images but this
would require inference for all the images in the gallery. Furthermore, this
would represent a big waste in terms of computational resources for those
images that wouldn’t be chosen. The common approach is to use different
strategies to tackle these challenges, such as:
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• Sampling Only a subset of negative samples is selected and used to
compute the loss. Each iteration can reuse the hardest negatives mined
in the last iteration.

• Caching The idea is not to compute the representation each time but
only after a well defined number of iteration. That can be thought as a
caching mechanism where the cache is invalidated and recomputed after
N iterations. As a side note this value should be updated according to
the learning rate.

• Clustering Queries are organized in clusters. Queries in the same clus-
ter share the same negatives.

2.2 Evolution of SotA descriptors

2.2.1 BoW
One of the oldest approach for aggregation and global features generation
is the Bag of Words, also known as Bag of Visual Words (BoVW) or more
generically as Bag of Features (BoF). In the natural language processing
(NLP) the bag-of-words model is an intuitive representation used in infor-
mation retrieval, sentiment analysys, etc. In this model, a text (sentence or a
document) is represented as the bag (set) of its words but keeping multiplic-
ity. Going back to geolocalization, the proposed solution borrows the idea
from the NLP domain and associates a vector whose dimension equals the
size of the dictionary that contains the visual word frequency, or the related
TF-IDF representation, for a specific image[1]. In this way, the similarity

Figure 2.3. Representation of the BoVW approach.
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among the global descriptor vectors can be easily computed by a simple in-
ner product of their respective visual word vectors. The dimensionality of
the features is the same as the number k of the defined clusters. Usually the
clusters (visual words) are defined by performing k-means clustering.

Thus, the BoW representation can be seen as the histogram which cor-
relates the number of occurrences to visual words. So, it produces a k-
dimensional vector, which is then normalized. There are several ways to
normalize the histogram that proved to be helpful. If seen as an empirical
distribution, the BoF vector is normalized by using the Manhattan distance.
Another common choice is to first use the L2 normalization and then weigh
the vector with IDF (inverse document frequency)[9].

2.2.2 VLAD
A further step from the BoVW approach is performed with the introduction
of VLAD (Vector of Locally Aggregated Descriptors) [4]. The idea takes the
old approach as a starting point, but it is based on the questionsWhy to store
just the presence information? Could be useful to store not just the presence
in the cluster but the distance vector from its cluster center too? Thus, the
idea proposed by VLAD, involves a new method of aggregation that is not
merely based on the presence but also on the distance from the center of the
cluster.

Formally, VLAD computes and stores the sum of residuals (difference vec-
tor between the descriptor and its corresponding cluster centre) for each
visual word. So, given N D-dimensional local image descriptors xi as input,
and K cluster centres ck as VLAD parameters, the output VLAD represen-
tation V is KD-dimensional. We write V as a K × D matrix, then, after
normalization, used as the image representation. The (j, k) element of V is
computed as follows:

V (j, k) =
NØ
i=1

ak(xi)(xi(j)− ck(j))

where xi(j) and ck(j) are the j-th dimensions of the i-th descriptor and
k-th cluster centre, respectively. ak(xi) represents the membership of the
descriptor xi to k-th visual word, i.e. it is 1 if cluster ck is the closest
cluster to descriptor xi and 0 otherwise. Intuitively, each D-dimensional
column k of V contains the sum of residuals (xi − ck) of descriptors which
are assigned to cluster ck. The matrix V is then L2-normalized column-wise
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(intra-normalization [10]), converted into a vector, and finally L2-normalized
in its entirety [4].

In this way we create a trade-off between the global descriptor size and
the granularity of the stored information. In other words, the VLAD solu-
tion increases slightly the memory complexity because we need to store the
VLAD vectors and not just a BoF but this allows us to have a more de-
tailed information in the descriptor. In particular, the size of features can be
formalized as K ∗D where usually K = 64 is chosen.

Since the memory complexity increases, for this method to be scalable,
a further dimensional reduction technique should be used. One of the most
common choice is the PCA (Principal Component Analysis). The usage of
PCA partially solves the memory complexity by reducing the size of the
features. However, this raises new issues. In a large scale system, it’s safe
to assume that a big gallery is involved and for each image in the gallery we
need to compute its VLAD representation and then apply PCA to reduce the
dimension. Thus, the addition of the features reduction technique increases
the complexity of both the overall pipeline and the time.

2.2.3 NetVLAD

A few years later since the introduction of VLAD, a new improvement has
been proposed [5]. The authors define a new layer called NetVLAD. The
idea behind this altered version of VLAD is based on making the VLAD
layer differentiable so that a full end-to-end training can be performed. In
fact, in standard VLAD, the anchor is chosen as the cluster centre. With
NetVLAD it is possible to learn a better anchor which causes the scalar
product between the new residuals to be small. The new approach not only
improves the SotA performance but also allows us for an end to end training
of the whole architecture. Thus, the layer is readily pluggable into any CNN
architecture and amenable to training via back-propagation. The proposed
architecture and training procedure significantly outperform non-learnt im-
age representations and off-the-shelf CNN descriptors on challenging place
recognition and image retrieval benchmarks.

The first step to create a vlad differentiable layer was to identify the source
of discontinuity in VLAD. Intuitively, the hard assignment ak(xi) of descrip-
tors to clusters centres is such an issue. So, they replaced it with soft assign-
ment of descriptors to multiple clusters by assigning the weight of descriptor
xi to cluster ck proportionally to their distance. Formally they defined the
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Figure 2.4. CNN architecture with the NetVLAD layer. The net can
be implemented using standard CNN layers (convolutions, softmax, L2-
normalization) and one easy-to-implement aggregation layer to perform
aggregation joined up in a directed acyclic graph. Parameters are shown
in brackets.

new task ak(xi) as:

ak(xi) = e−α||xi−ck||q
kÍ e−α||xi−ckÍ ||

By expanding the square and by defining wk = 2αck and the scalar quan-
tity bk = α||ck||2, the above equation can be rewritten as:

ak(xi) = ew
T
k xi+bkq

kÍ ew
T
kÍxi+bkÍ

The final form of the NetVLAD layer is obtained by plugging the soft-
assignment above into the VLAD descriptor (as defined in the previous sec-
tion) resulting in:

V (j, k) =
NØ
i=1

ew
T
k xi+bkq

kÍ ew
T
k xi+bkÍ

(xi(j)− ck(j))

You can easily note that wk, bk and ck are sets of trainable parameters.
So, the NetVLAD layer is characterized by three independent sets of pa-
rameters, compared to the only one already present in the original VLAD
(ck). According to the authors, this helps to increase the flexibility of the
architecture.

Although NetVLAD can help in increasing accuracy, it suffers from the
same scalability issue of VLAD because the extracted features are still the
same size.
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2.2.4 GeM
Just a couple of years ago, a new idea was provided in [6] to generate a com-
pact descriptor. They proposed a novel trainable Generalized-Mean (GeM)
pooling layer that generalizes max and average pooling and showed that it
can even boost retrieval performance.

Figure 2.5. CNN architecture with the NetVLAD layer. The layer
can be implemented using standard CNN layers (convolutions, softmax,
L2-normalization) and one easy-to-implement aggregation layer to perform
aggregation. Parameters are shown in brackets.

Generalized Mean Pooling (GeM) computes the generalized mean of each
channel in a tensor. Formally GeM can be defined as:

e =


 1
|Ω|

Ø
u∈Ω

xpc


1
p


c=1,··· ,C

where p is a parameter. Setting this exponent as p > 1 increases the contrast
of the pooled feature map and focuses on the salient features of the image.
The idea behind GeM is the generalization of the average pooling commonly
used in classification networks (p = 1) and of spatial max-pooling layer (p =
∞). The proposed pooling layer not only performs on pair with other SotA
architectures but it reduces the features dimensionality of more than one
order of magnitude.

2.3 Other approaches
The task can also be solved as a classification task [7]. In Figure 2.7 the
region clustering proposed in the PlaNet paper.
Tackling geo-localization with a classification approach allows to have more
sample for a given label and reduce the time complexity because no mining
is required.
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Figure 2.6. GeM compared with max and average pooling.

Figure 2.7. PlaNet: a classification approach.

Other proposed approaches are also based on:

• MAC/R-MAC [11]

• Fisher Vector [12]

• 3D Point cloud

• Exploit depth information

• Combine aerial and ground taken images

• Use satellite images
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• Landmark classes [13]

• Use of sequence of image to exploit the temporal dimension

• Multimodal exploitation[14]

The list is endless and many other approaches are continuously being
studied.
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Chapter 3

Data and evaluation

3.1 Dataset

3.1.1 Introduction
A wide range of different datasets are available but they present differences
according to the task they were produced for. We can distinguish them
among various categories like robotic and non-robotic dataset, landmark
dataset, streetview like dataset. Robotic datasets are usually made up of
sequences of images, landmark datasets contain photographs of points of in-
terest and their names. StreetView like datasets can be considered similar
to the robotic ones in terms of viewpoints (usually a camera is put in the
front/rear of the vehicle) but not organized as a sequence.

Almost all experiments listed in this work were performed with Pitts30k
and SVOX dataset. Both datasets fall in the StreetView/Robotic category
and each image is labeled with its relative GPS coordinates.

Furthermore a new gallery dataset, based on streetview, containing al-
most every street of all the regional capitals was adopted as gallery for the
developed software.

3.1.2 Research dataset
The datasets Pittsburg30k and SVOX have been used to try out different
architectures.

In regards to Pitts30k it was pruned from all the images that had no
gallery within a 10 meters radius. The gallery of each set (train, test, val) is
composed of 10 thousands samples and the database of about 7 thousands.
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SVOX is a dataset composed of 384x512 pixels images. The dataset con-
tains samples taken from both Oxford RobotCar and StreetView. Thus, the
dataset contains a subset of pictures taken in different conditions:

• Sun

• Snow

• Rain

• Night

• Overcast

In details, for all the experiments but the domain adaptation ones, the shown
results will be related to the model trained and tested only on sunny pictures.
For the domain adaptation experiments on SVOX the train set was the same
but testing was performed on both sunny and night domain. The Figure 3.1
shows the dataset composition.

All the images fall in the geographical patch identified by the following
coordinates (51.72, -1.28) ; (51.77, -1.195).

Figure 3.1. SVOX composition showed on map.
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For what concerns the streetview samples, the panos from 2012 are used
in the gallery, while the panos from 2014 are used as queries. Furthermore,
for each pano at a given location, just two crops (front and rear) have been
taken to mantain consistency with the photos sampled from RobotCar. Each
sample is labeled according to the utm coordinates where the picture was
taken.

3.1.3 Development dataset
Although the research dataset can be useful to compare results with different
architectures and perform benchmarks, this kind of dataset is limited for the
development of a real geo-localization software.
The first and easiest reason is that the gallery set should contain samples
within the area to be localized. For this reason a new gallery dataset was
defined for a whole country: Italy.
The dataset contains samples for all the regional capitals in Italy. As a source
for our data we leveraged Google Street View samples. Google Streetview
images are taken by cars equipped with a 360◦ camera that takes a picture
every few meters. Each Streetview Panorama is an image that provides
a full 360 degree view from a single location (equirectangular projection).
Each image contains the exact GPS location1 of where it has been taken
and some other information like the timestamp. All the images have been
taken during daylight hours, and cover almost every street. Furthermore,
images taken over a few years period are used to improve the robustness and
generalization capabilities of the model.

The pipeline adopted to create a similar dataset was the following:

• Download each pano and its metadata for all the places inside a given
zone of interest (i.e. Italy, Rome, Sicily)

• Cut the region of interest as horizontal band (512x3584) and define Nc

number of crops2 (in our case Nc = 7).

• Save each undistorted crop and associate its label (its geo-tag)

• Organize the samples in a structured format

1Note that current GPS technologies usually provides an accuracy within a 3 meters
radius.

2Our crop are defined so that they are not overlapping.
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3.1.4 Domain Adaptation dataset
As discussed earlier in Section 1.3.5, the challenge of domain adaptation is to
try to find a representation that fits both a source and a target set. The first
issue in this regard is that we need to have (or a way to generate) samples
from both domains.

In the following chapter we will describe three different approaches used to
perform domain adaptation. We should anticipate that for these approaches
to work we require a method that allows us to perform a domain shift from
day lighting to night. So, how can a daytime image shifted to night for a
given sample?
There are different approaches useful in that regard like an auto encoder,
a GAN or other techniques. In our experiments we have chosen two recent
methods for doing that:

• FDA (Fourier Domain Adaptation for Semantic Segmentation) [29]: Do-
main adaptation via style transfer made easy using Fourier Transform.

• CUT (Contrastive Learning for Unpaired Image-to-Image Translation)[30]:
a GAN architecture which aims to generate images so that each patch
in the output should reflect the content of the corresponding patch in
the input, regardless of the domain. In our task this is extremely useful
because the goal is to change the lighting condition while preserving the
structural information.

FDA One of the biggest advantage of this architecture is that involves no
adversarial training. This is a really interesting property in our large scale
context. The idea is to perform domain adaptation via style transfer by using
Fourier Transform to shift the spectrum of the source image to the target
one. The method can be applied by following three steps:

• Apply FFT to both source and target samples.

• Replace the low frequency part of the source amplitude with that from
the target.

• Apply inverse FFT to the modified source spectrum.

CUT Because of some artifacts in the images generated with FDA, we
wanted to try an alternative method based on GAN. This approach even if it

40



3.1 – Dataset

Figure 3.2. FDA diagram[29].

isn’t as fast as FDA and need an adversarial training, it is still highly efficient
with respect to other GANs. Moreover, we haven’t used the whole CUT but
its optimized and reduced variation called FastCUT. The reasoning behind
is the low memory and computation footprint. The FastCUT network was
trained in more stages on 2 different datasets:

• KAIST[31]

• Oxford RobotCar[32]

Moreover, apart from the good performance and high efficient of the net-
work, CUT idea is really a good fit for our use case because of its working
principle.

Quoting the authors:

In image-to-image translation, each patch in the output should re-
flect the content of the corresponding patch in the input, regardless
of the domain. We propose a straightforward method for doing so
– maximizing mutual information between the two, using a frame-
work based on contrastive learning. The method encourages two
elements (corresponding patches) to map to a similar point in a
learned feature space, relative to other elements (other patches) in
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the dataset, referred to as negatives [..]. Notably, we use a multi-
layer, patch-based approach, rather than operate on entire images.
Furthermore, we draw negatives from within the input image itself,
rather than from the rest of the dataset. [30]

In other words, this approach try to enforce some constraints on the struc-
tural shapes of the images, thus avoiding any deformation of the photo. Other
GANs don’t show such behaviour and can be used to generate deformed sam-
ples (i.e. GANs for face generation).

To train the CUT model we used two datasets which already contain
samples belonging to both domains: Oxford RobotCar[32] and KAIST[31].
In particular, for RobotCar we used only 2 subsets in the training set: images
taken with night and daytime lighting.
For the KAIST dataset we used the split suggested by the authors named
train-day-02 and train-night-02. Both datasets contain unaligned samples
from day and night domains, in other words we haven’t a night match for
each daytime sample but we have just a bunch of night and day images which
the network can learn from.

3.2 Evaluation
The performance is measured on two publicly available image retrieval datasets:
Pittsburg30k and SVOX. For both, a set of predefined queries with relative
ground truth is used. Typically, both mean average precision (mAP) and
recall are often used to perform retrieval benchmark.
We choose to perform evaluation by recall.

3.2.1 Recall
The recall is formally defined by:

R = Tp
Tp + Fn

where Tp indicates the true positives and Fn represents the false negatives.
In particular, we choose to measure the retrieval performance in terms of

recalls at k: R@1, R@5, R@10, R@20.
The usage of recall at k is justified by the task we want to accomplish.

The idea is that the final system to be developed should provide as output
the top-k predictions and not just one. Note also that, in some deployment
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Figure 3.3. Comparison between precision and recall.

setup, multiple years/crop of the the same locations could be in the gallery
and so also different outcomes should be considered as correct. In other
words, the recall at k is the proportion of relevant items found in the top-k
results.

The recall at N can be defined in an intuitive way as:

R@k = Number of relevant items found at k
Total number of relevant items

A perfect model has recall equal to 1.
For instance, suppose we want to compute the recall at 5 (R@5). Given

that 4 out 5 results are considered as correct and that we have a total of
5 relevant photos in the gallery, then R@5 = 4

5 . The Figure 3.3 visually
describes the recall.

3.2.2 Model selection
For each presented architecture the results that are shown should be intended
as the ones optimizing the recall at 5. Of course, the recall is computed on
the test set once the training process is totally completed. In other words,
the model selection procedure used in the training process, after each epoch,
works as follows:

• Compute recall at 5 (R@5) with the new model on validation set

• If the R@5 is better than the previous best model, then define this as
the new best model and save its recall at 5.
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In addition, for every model used as feature extractor, a comparison in
terms of both size and time complexity is also provided.
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Chapter 4

Architectures and
benchmarks

4.1 Architectures
4.1.1 Overview

Figure 4.1. High Level Component for a generic VPR architecture.

Before diving into the networks details let’s summarize the components
that can be considered critical for the task, as described in Figure 4.1. In
short, we can identify six key components:

• Mining Mining is needed every time a pair of positive and negative is
required. Mining solves the issue of finding good negatives.
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• Preprocessing / DA Usually images are not fed into the network
directly (i.e. resize, crop, normalization, ..). During the training we can
also apply some Data Augmentation techniques to further improve the
generalization capabilities of the model.

• Backbone This represents the first real NN component. Usually a SotA
ANN truncated at the last convolutional layer is chosen.

• Aggregation or Pooling layer The layer chosen to reduce the size of
the descriptor given as output of the backbone.

• Loss The loss can be considered as part of the architecture.

• Postprocessing / Ranking As the last step, we can also adopt some
post processing techniques to filter, rank and improve the results.

Not all the aforementioned components should be present or altered among
different architectures. Before introducing all the configurations one by one,
in this section, we want to provide a summary that describes the components
used in all the experiments.

4.1.2 Mining
Mining is the process that aims to find, for each sample, positives (correct
matches) and negatives (wrong matches). The mining process dramatically
affects the training process. For example if the mining isn’t able to find
negatives images that are hard to identify, the model will learn a sub-optimal
solution.

The chosen mining implementation was based on the approach suggested
by the authors of NetVLAD [5].

To generate the positives for a given query, we select all the images within
a radius of 10 meters from the location of the query.

The mining of negatives is slightly more complex. We start by defining a
negative as any image further away more than 25 meters. Although it would
be possible to train the model by choosing every negative for a given query,
this should be considered a naive approach because it would be easy for the
network to distinguish among totally different images. For this reason we
define the hard negatives as all the negatives that are similar to the query.

In regards to the challenge of selecting hard negatives to improve the
learning process, as we have just seen, we can’t just pick random negatives
to have a good set of hard negatives. Thus, the mining can be performed by:
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• Random sampling 1000 random negatives.

• Stacking them with the hard negatives generated in the previous epoch.
Now we have a set of 1010 negatives.

• Searching for the 10 closest negatives on the feature space in the whole
negative set.

According to [5], remembering the previous hard negatives adds stability
to the training process. Although the proposed approach would work, it is
not feasible or fast enough. In particular, to get the most similar images on
the feature space we would need to compute the descriptor for each of the
1010 negatives. In practice, more than 1010 forward passes into the net to
process each training tuple would be required.

For this reason, a common approach is to compute, once in a while, the de-
scriptors for the whole query and gallery set. This approach is usually known
as caching. Caching allows us to perform the mining without computing the
image representation on the fly, just by using the cached descriptor. As a
consequence we need to perform both backward and forward pass to the net-
work only for the 10 hard negatives that have just been found. Of course to
choose how often the cache has to be refreshed, we need to find a trade-off
between epoch duration, convergence and quality of the solution. In this
regard, we confirm that refreshing the cache every 500/1000 queries allows
us to reach a good trade-off.

4.1.3 Backbones
Another key component of the architecture is represented by the backbone.
This corresponds to our local feature extractor. As already mentioned, the
oldest approaches were characterized by using some handcrafted features,
but, today, thanks to the progress in the CV field, it has been proved that
CNNs as feature extractors are usually a better choice for a good variety of
applications.

The proposed architectures leverage two state of the art networks, trun-
cated at their last convolutional layer, as local feature extractor: ResNet and
EfficientNet.

It’s worth mentioning that, relatively to the VPR task and according to our
experiments, we found out that a deeper backbone doesn’t always improve
the performance of the overall architecture. Moreover all the models used
as backbones were preloaded with weights trained on ImageNet[24], concept
that is usually known as transfer learning.
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ResNet A residual neural network (ResNet) is an artificial neural network
(ANN) inspired by pyramidal cells in the cerebral cortex. For this reason,
residual neural networks introduce skip connections, or shortcuts to jump
over some layers.
One of the biggest motivations behind is to tackle the problem of vanishing
gradients affecting deep ANN that makes usage of gradient-based learning
methods and backpropagation. It’s worth mentioning that ResNet won the

Figure 4.2. Residual and standard blocks compared.

1st place on the ILSVRC (Imagenet Large Scale Visual Recognition Chal-
lenge) 2015 taken by a good margin over the second. ResNet is composed of
peculiar blocks, usually known as residual blocks. The difference between a
residual block and a standard block is the presence of the skipping connec-
tion as shown in Figure 4.2. In short, the output of a layer is added to the
output of the previous one before feeding it to the next layer. Of course, the
authors need to find a solution when the size of the output of different layers
mismatches, as usually happens when using convolutional layers.

To better understand the improvements that ResNet was able to introduce,
we want to recall some basic concepts about how neural networks training
works.

To train a Deep Neural Network we need a training loss, a training algo-
rithm like the backpropagation and an optimization method.
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Loss The loss is required to measure how wrong is the network at doing
predictions.

Backpropagation The backpropagation computes the gradient of the loss
function with respect to the weights of the network for a given input-output
pair, in an efficient way, by applying the chain rule.

The gradients can be seen as a measure of how much each weight con-
tributed to the loss, so that we can change the weight accordingly and reduce
such error.

Optimizer We also need an optimizer that should update the weights of
the model according to the previously computed gradients. In other words,
the goal of the optimizer is to find the parameters (weights and bias) of the
network that minimize the loss function.

Vanishing gradient When dealing with deep neural networks that use
backpropagation and gradient-based learning algorithm, the problem known
as vanishing gradient can be encountered. In particular, the weights of the
network are updated proportionally to the partial derivative of the error
function with respect to the current weight. Deeper the network higher the
probability of having a vanishingly small gradient, in particular for the first
layers.

In conclusion, ResNet allows training of networks that are substantially
deeper than those used before. The authors provide empirical results to
show that this kind of networks can be easily optimized, and can exploit
depth to gain accuracy[21]. The authors present networks of different depth
obtained as combination of residual blocks. We have both small networks like
ResNet18 and ResNet34 and big ones like ResNet50, ResNet101, ResNet152.

EfficientNet In their ICML 2019 paper, the authors propose a novel archi-
tecture designed to scale in a structured manner. The older approaches scale
network dimensions, such as width, depth and resolution, while the proposed
method scales proportionally each dimension with a predefined set of scaling
coefficients.

They designed and proposed a family of models, called EfficientNet, which
improves SotA accuracy with up to 10x better efficiency (smaller and faster)[22].
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Figure 4.3. ResNet architecture.

Figure 4.4. Scaling approaches. (a) baseline network example; (b)-(d) are
conventional scaling that only increases one dimension of network width,
depth, or resolution. (e) is the proposed scaling method that uniformly scales
all three dimensions with a fixed ratio. Figure from [22].

4.1.4 Pooling layer
We used three different global descriptors:

• NetVLAD

• GeM

• CMAP

The first pair of pooling layers were already described in 2.2, when we
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talked about the SotA descriptors. But we also introduced a novel pooling
layer.

CMAP Motivated by the same observation made by the GeM’s authors,
we experimented and designed a new pooling layer called CMAP (Chained
Max and Average Pooling). The intuition behind is really simple: What
about chaining max and average pooling, instead of generalizing them?

Figure 4.5. CMAP based architecture.

Anyway we want to clarify that the idea of mixing different pooling layers
is not a novelty in the CV field[23].

The Figure 4.5 shows a whole feature extractor module with CMAP.

4.1.5 Loss
In all of our experiments we always used the same loss that is a slightly
different variant of the Triplet Loss as described in [5]. They call it Weakly
supervised triplet ranking loss. Two photos taken in the same location could
depict different scenes and objects since the orientation of the camera could
be different or occlusions could happen. For this reason, for each training
query q, the localization information can only be used to define:

• potential positives {pqi}: images close to the query

• definitive negatives {nqj}: images geographically far from the query

In the training process we aim to learn a representation fθ to improve the
VPR performance.

Given a query q, we want to rank higher an image in the database that is
geographically close to the query (I∗

i ) with respect to all the other far away
pictures in the gallery (Ii). Formally, for that to happen, we need to force
the Euclidean distance dθ(q, I∗

i ) between the query q and the closer image I∗
i
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to be less than the distance dθ(q, Ii) to the images Ii in the database that
are far away from the query.
Let’s consider a training dataset composed of triplets (q, {pqi}, {n

q
j}) that

associate every query q to a set of potential positives and a set of definite
negatives. At first, we wish to find, among all the potential positives, the
best matching one. This can be done by looking at the most similar image
for each training tuple and by defining the best match pqi∗ as:

pqi∗ = arg min
pq

i

dθ(q, pqi )

To impose that the distance to the best match should be lesser than the
distance to the negatives we can formally write the distance constraint as:

dθ(q, pqi∗) ≤ dθ(q, nqj),∀j

From here, we can finally define the weakly supervised triplet ranking loss:

L =
Ø
j

hl(minid
2(q, pqi ) + m− d2(q, nqj))

where hl is the hingeloss
hl = max(x, 0)

and m represents a margin. The last equation says that the overall loss can
be computed as the sum of the hinge losses relative to each negative. Given
a negative, the hinge loss returns zero if the distance between the query and
the negative is greater than the distance to the best positive by a margin
m. On the contrary, if the condition isn’t met, it will assume a value greater
than zero by a quantity proportional to the violation.

4.1.6 Domain Adaptation
We have already highlighted the different domains to which an image can
belong, different lighting condition and places are a serious challenge on
large scale environment. One of the way to help the network to deal with
such differences is to use domain adaptation. Domain adaptation can help
both in increasing the overall generalizing capabilities of the network by
learning domain-independent features and in increasing accuracy for samples
belonging to the target domain.

To study the effect of domain adaptation in a VPR context we designed
two architectures. Both are equal except for the way in which the image
is shifted from day to night. We present several architectures that were
explored and show the results.
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First approach

The first idea was to try one of the easier approach such as the domain
adaptation with Data Augmentation. We tried to feed the network with 2
triplets. One being the standard triplet that we have already described in
the mining section, the other being the same triplet but with altered images
for the query and the gallery. The images were altered by shifting them from
daytime to night. We have also redefined the loss to reduce the contribution
for the altered images with the introduction of a weight λ. The images were
altered by using the FDA approach described in Subsection 3.1.4.
On a high level, this can be considered similar to a self-supervised domain
adaptation in which a pretext task is in charge of guessing whether an altered
pair of images chosen among all the positives, the queries and the negatives,
had been taken in the same location or not. By defining a new loss we don’t
need anything more to accomplish the task, since we can reuse the triplet
margin loss and the already described mining process to accomplish the task.
We only need to perform inference with the altered images and compute the
loss accordingly, as shown in Algorithm 1.

Algorithm 1 Domain Adaptation training algorithm 1
Triplet from dataset
T = {(xtpi , xtqi , X tn

i )}Nt
i=1

procedure Training(T ,S)

foreach iteration do
Load triplet T
Forward to get descriptors of query, positive and negatives
Compute main loss Lm
Shift with a probability pq the query to night
Shift with a probability pp the positive to night
Forward to get descriptors of the (eventually) altered query and posi-

tive
Compute loss Lp
Compute total loss L and update weights from ∇L

end procedure
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Loss

For these experiments, we trained the network to minimize the loss function

L = λmLm + λpLp

The m or p indicates whether the function is referred to the main task or to
the chosen variation. Both Lm and Lp are based on the triplet loss function.
More exactly:

Lm =
Ø
j

hl(minid
2(q, pqi ) + m− d2(q, nqj))

and:
Lp =

Ø
j

hl(minid
2(q̄, p̄qi ) + m− d2(q̄, n̄qj))

where the terms with upper bar in the Lp loss equation denotes the joined
features obtained by the combination of the descriptors of both untouched
and shifted pairs. The λ weight was introduced to tune each contribution
accordingly.

Second approach

In the second approach we wanted to investigate other domain shifting tech-
niques and we decided to replace FDA with FastCUT, described in Subsec-
tion 3.1.4. This resulted in more detailed and more appealing images from a
human perspective and you can look at a sample image in Figure 4.8.

Third approach

To further study the effects of domain adaptation on VPR we decided to
try a third architecture based on the reverse gradient. Even if this is not a
recent approach [33], the idea behind is as simple as it is clever. The figure
4.6 shows a RevGrad based architecture and how it works.

The proposed architecture is made up of a feature extractor (green)
and a deep classifier (blue). Unsupervised domain adaptation is
achieved by adding a domain classifier (red) connected to the feature
extractor via a gradient reversal layer that multiplies the gradient
by a certain negative constant during the back-propagation based
training. Otherwise, the training proceeds in a standard way and

54



4.1 – Architectures

Figure 4.6. A generic RevGrad based architecture [33].

minimizes the label prediction loss (for source examples) and the
domain classification loss (for all samples). Gradient reversal en-
sures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier),
thus resulting in the domain-invariant features.[33]

To do that, we defined a new classifier which aims to guess if a given image
has been taken at day or night. We defined the new head by adding a fully
connected layer, just after the pooling, with 1 output class.

In regards to the loss, it can be formally described by the following equa-
tion:

L = λmLm + λ̄pL̄p

with λ̄p weighting factor for the reverse gradient and L̄p a binary cross-
entropy loss, formally:

L̄p = ü(x, y) = {l1, . . . , lN}Û, ln = −wn [yn · log xn + (1− yn) · log(1− xn)]

The training algorithm for this approach is shown as pseudo-code in Al-
gorithm 2.
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Algorithm 2 Domain Adaptation training algorithm 2.
Triplet from dataset
T = {(xtpi , xtqi , X tn

i )}Nt
i=1

procedure Training(T ,S)

foreach iteration do
Load triplet T
Forward to common backbone to get descriptors of query, positive and

negatives
Compute (Triplet) loss Lm
Shift the query to night qn

Forward the transformed query (qn) to get its descriptor and then
forward to the pre-text classification head.

Compute (BCE) loss L̄pp
Shift the positive to night pn

Forward the transformed positive (pn) to get its descriptor and then
forward to the pre-text classification head.

Compute (BCE) loss L̄pq
Compute loss L̄p = L̄pp + L̄pq
Compute total loss L and update weights from ∇L

end procedure

4.1.7 Finetuning
When a good architecture and some good hyperparameters are found is al-
ways possible to apply some finetuning techniques to improve by a limited
amount its performance. Some techniques we experimented with are:

• Data Augmentation: ColorHue, Saturation, Horizontal/Vertical Flip

• Whitening: Fully Connected layer

• Normalization: L1, L2

• Regularization: Batch Normalization, Drop Out
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The obtained results are reported and discussed in the following section.

4.2 Results and discussion
4.2.1 Overview
Before starting to present the results for each architecture, we provide in
Table 4.1 a summary describing the composition of each configuration.

# Category Backbone Pooling Loss
1 Retrieval ResNet NetVLAD Triplet
2 Retrieval ResNet GeM Triplet
3 Retrieval ResNet CMAP Triplet
4 Retrieval EfficientNet GeM Triplet
5 Retrieval EfficientNet CMAP Triplet
6 Classification EfficientNet - ArcFace
7 Retrieval + DA(FDA) ResNet GeM Triplet
8 Retrieval + DA(FastCUT) ResNet GeM Triplet
9 Retrieval + DA(RevGrad) ResNet GeM Tr. + BCE

Table 4.1. Summary of the experimented architectures.

In the next section we introduce them and the obtained results.

57



4 – Architectures and benchmarks

4.2.2 ResNet based architectures
The first set of architectures is characterized by the use of ResNet as local
feature extractor. As already mentioned, we want to remark that all the
models used as backbone are truncated at the last convolutional layer.

ResNet-18

In the first experiments we used ResNet 18 as backbone and the Table 4.3
and Table 4.4 show the designed configurations and their relative results.

All the experiments were performed with both some fixed hyper-parameters
and variable ones.

Hyper-parameters The fixed hyper-parameters used to compare the dif-
ferent pooling layers on ResNet-18 are:

• Batch Size: 4

• Cache Batch Size: 24

• Queries/Epoch: 5000

• Negatives per query: 10

• Deterministic: True

• Freezed before: 3rd set of layers 1.

On the other hand, the tuned hyper-parameters are:

• Learning Rate: [10−7,10−3]

• Whitening: Pre/Post/None/Both

• Normalization: Pre/Post/None/Both

• Num Clusters: {40, 64, 100}2.

1We used the ResNet model as provided by the PyTorch framework. They define the
whole architecture as made up by sequential layers. The first three sequential layers were
freezed by setting requires_grad=False

2This parameter applies only to NetVLAD.
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• Dropout3: [10, 20]%

In the first set of experiments we wanted to (i) study whether a small
network like ResNet18 can lead to good results or not; (ii) which parameters
and techniques highly affect the results and (iii) perform a first comparison
between the aggregation layers.

Dataset Whitening #Epochs Margin R@1 R@5 R@10 R@20
Pitts30k Test Both 2 0.1 69,9 85,7 90,4 93,2
Pitts30k Test Pre 1 0.1 65,7 83,4 89,2 93,1
Pitts30k Test Post 1 0.1 70,4 86 90,9 94,1
Pitts30k Test None 11 0.1 76 88,6 92,4 95,1
Pitts30k Test None 22 0.01 76,5 90 92,9 95,3

Table 4.2. Results of ResNet18 architecture on Pitts30k (L2 norm + whitening).

Results The overall results, shown in Table 4.3 and Table 4.4, answer the
first question and allow us to consider ResNet18 good enough to reach a fair
accuracy. This is particularly true when a bigger dataset is used, as can be
seen by looking at the different results between SVOX and Pitts30k.

Dataset Pool #Epochs R@1 R@5 R@10 R@20
Pitts30k Test NetVLAD 5 85,6 92,5 94,5 96
Pitts30k Val NetVLAD 5 87,8 95,7 97,1 98,1
Pitts30k Test GeM 22 76,5 90 92,9 95,3
Pitts30k Val GeM 22 78,4 91,6 94,8 97
Pitts30k Test CMAP 30 86,5 93,2 95 96,3
Pitts30k Val CMAP 30 83 91,7 93,8 95,4

Table 4.3. Comparison of top results among aggregation layers with
ResNet18 as backbone on Pitts30k.

Many researchers (i.e. [19]) propose whitening techniques to improve the
accuracy. More specifically, in [6], the authors suggest the usage of a fully
connected layer to apply whitening.

3The dropout layer was inserted just before the aggregation layer.
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Dataset Pool #Epochs R@1 R@5 R@10 R@20
Oxford60k Test NetVLAD 45 94,4 97 97,6 98,2
Oxford60k Val NetVLAD 45 93 96,3 97,1 97,7
Oxford60k Test GeM 12 87,3 93,5 95,2 96,6
Oxford60k Val GeM 12 83,5 91,4 93,5 95,2
Oxford60k Test CMAP 15 86,5 93,2 95 96,3
Oxford60k Val CMAP 15 83 91,7 93,8 95,4

Table 4.4. Top results comparison between aggregation layers with
ResNet18 as backbone on SVOX.

Furthermore, whitening can be performed both before and after the aggrega-
tion layer and we will refer to them as Pre Whitening and Post Whitening. In
regards to whitening, we have got discordant results. Wherever it is applied,
it leads to a loss in the accuracy (±5%) and doesn’t show any other benefit.
It’s worth mentioning that to perform whitening we used a fully connected
layer with its default initialization4.

Dataset Whitening R@1 R@5 R@10 R@20
Pitts30k Test Post 66,1 84,2 89,5 93,2
Pitts30k Test Pre 63,3 80,2 86,1 90,7
Pitts30k Test Both 57 78,2 84,5 89,8
Pitts30k Test None 70,4 86,5 91,2 94,2

Table 4.5. Results with ResNet18 as backbone and gem as pooling layer,
without normalization on Pitts30k.

Moreover, we wanted to see what the impact of normalization, if applied,
before and after the aggregation layers is. The best results were recorded by
using a L2 Norm applied at both positions. It’s worth mentioning that GeM
was the most affected in this regard and the observed difference in terms of
recall was ±4% as can be seen by comparing the Table 4.2 with the Table
4.5.

In addition, according to our experimental results and as suggested by
many, a value of k = NumCluster = 64 leads to the best performance.

4We used the PyTorch framework that, by default, initialize linears layers with He
initialization, as proposed in [27]
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In conclusion, the first experiments lead to different results such as:

• Normalization is highly recommended and has the greatest impact on
some layers.

• Whitening5 doesn’t show any benefit to us even if it is applied in different
positions and combinations.

• Although ResNet18 is small and lightweight it can still lead to interesting
results.

• In accordance to the literature, NumCluster = 64 recorded the best
results.

• The NetVLAD aggregation layer seems to perform the best when using
small backbones like ResNet-18.

• The CMAP aggregation layer was the slowest to converge.

ResNet50

After some experiments backed by ResNet18, we wanted to analyze the im-
pact of other hyper-parameters without having to worry about the possible
limitation introduced by a network with limited capacity like ResNet18. For
this reason, we moved on and a second set of experiments was performed
with ResNet50 as backbone.

Hyper-parameters Below is the list of the fixed parameters used to train
the model:

• Cach Refresh Rate: 1000

• Cache Batch Size: 24

• Queries/Epoch: 5000

• Negatives per query: 10

• Deterministic: True

• Normalization: L2 Norm applied both pre and post aggregation.

5We applied it with a fully connected layer
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As can be seen from the above list, we decided to always apply the L2 nor-
malization because of the previously obtained results. Moreover, we decided
to give whitening another chance and performed different experiments to see
if it could lead to any improvement.
The hyper-parameters search-space for this set of experiments was:

• Learning Rate: [10−6,10−5]

• Freezed before: [0,3]

• Batch Size: [1,4]

• Whitening: Pre/Post/None/Both

• Loss margin: [0.001, 0.9]

• Dropout: [10, 20]%

Figure 4.7. Comparison of different aggregation layers with a ResNet50
based architecture on Pitts30k (left) and SVOX (right).
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Dataset Pool #Epochs R@1 R@5 R@10 R@20
Pitts30k Test NetVLAD 2 75,9 87,9 91,4 94,1
Pitts30k Val NetVLAD 2 78,5 89,9 92,8 95,4
Pitts30k Test GeM 2 81,2 90,9 93,9 95,9
Pitts30k Val GeM 2 83,1 92,3 94,8 96,2
Pitts30k Test CMAP 6 79,7 90,8 93,5 95,2
Pitts30k Val CMAP 6 81,7 92 94,7 97,0

Table 4.6. Comparison of top results among aggregation layers with
ResNet50 as backbone on Pitts30k.

Dataset Pool #Epochs R@1 R@5 R@10 R@20
Oxford60k Test NetVLAD 8 88,9 94,4 95,1 96,3
Oxford60k Val NetVLAD 8 88,7 93,8 95,1 96,2
Oxford60k Test GeM 12 93,6 96,8 97,6 98,1
Oxford60k Val GeM 12 91,2 95,4 96,6 97,4
Oxford60k Test CMAP 25 94 96,8 97,5 98,1
Oxford60k Val CMAP 25 92,2 95,9 96,8 97,7

Table 4.7. Comparison of top results among aggregation layers with
ResNet50 as backbone on SVOX.

Results By looking at the results, shown in the Tables 4.6 and 4.7, we can
easily see that the changes in the backbone were useful to gain some points
in the accuracy. But this comes with a cost: the network is slower to train
and the extracted features are bigger in size.
Furthermore, if NetVLAD performed the best when paired with ResNet18,
with a deeper backbone this is no longer the case and both GeM and CMAP
outperform NetVLAD.
When using transfer learning, it is often useful to freeze some of the first
layers so that their weights are not updated during the learning process.
The idea comes from the fact that the first layers can be seen as low level
features and we can assume them to be the same also among different tasks
(i.e. first layers can be thought as circular shape detectors, edges detectors
and similar). In other words, it’s legit to assume that the notion of circular
shapes can be useful both to identify a car and a motorbike and so it makes
sense to freeze this layer and preserve their parameters.
Under these assumptions we tried to train both the full network (freezed
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before = 0 ) and to freeze just the first few layers. The best accuracy was
observed with the freezed before parameter set to a value of 2. In addition,
according to all our experiments, the best learning rate was lr = 10−5, inde-
pendently by the chosen configuration. It’s worth mentioning that a learning
rate above 10−4 led to divergence for some models.

Moreover, we confirm that whitening doesn’t bring any advantage accord-
ing to our results. That’s why we won’t further investigate it in the following
experiments.

Besides the hyper-parameters of the architecture, we have got interesting
results by tuning the margin m of the Triplet Margin Loss. In particular, the
configurations that make use of CMAP and GeM, gained +2% accuracy for
m = 0.02 compared to the results obtained with m = 0.1.

Dataset NetVLAD GeM CMAP
Pitts30k 4,6GB 69MB 138MB

Oxford60k 9GB 134MB 268MB

Table 4.8. Comparison of cache sizes over different aggregation layers.

Moreover, we report in Table 4.8 the size of the cache6 on disk during
training for the different aggregations layers. The displayed sizes have differ-
ent magnitude of order and this highlights the importance of the descriptor
size from a large scale perspective. This is particularly true for NetVLAD:
because of its notable size it would be impossible to use the NetVLAD de-
scriptors right away in the search process and a further step of dimensional
reduction (like PCA) is required, thus increasing the time and the easiness
of the computation of the offline features for the gallery and the query.

It’s worth mentioning that the addition of a dropout layer with p = 10%
increased the accuracy up to +0.7%7. At the same time, the addition of a
batch normalization layer between the local feature extractor and the pooling
layer led to poorer performance. One likely reason for that, could be the
batch size because in our experiments we have never exceed a value of 4, too
small to allow any benefit that comes with batch normalization. We have
also tried to use a variation of the triplet loss by applying the distance swap
as described in [28] but just a slightly decrease in the accuracy was observed.

6The cache is saved in the HDF5 data format.
7CMAP configuration on Pitts30k
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ResNet-101

To check whether ResNet50 was limiting the accuracy we ended up replacing
it with the bigger ResNet101.
The results show negligible differences in the performance and highlight the
limitations, in terms of memory complexity, of the NetVLAD descriptor.
In fact, while the experiments with the other pooling layers gave the same
top-results shown for ResNet50, we couldn’t ever try out with NetVLAD
(BatchSize = 1) because we ran Out Of Memory8.
In conclusion, a deeper model as ResNet101 didn’t show any improvement
with respect to ResNet50, suggesting that the capacity of the latter can be
considered enough for our dataset and task.

4.2.3 EfficientNet based architectures
A second set of experiments was performed with architectures backed by Ef-
ficientNet, a novel architecture introduced in the previous chapter. The idea
behind is to analyze how much the architecture can be improved in terms of
efficiency, scalability and accuracy.

Hyper-parameters

• Cach Refresh Rate: 1000

• Cache Batch Size: 24

• Queries/Epoch: 5000

• Negatives per query: 10

• Deterministic: True

• Normalization: L2 Norm applied both pre and post aggregation.

The results shown in the following paragraph show the top results for each
configuration, relatively to the following hyper-parameters.

• Freezed: [0,25]%

8We tried to run the model on a Nvidia RTX 2080 Ti, resulting in 11 GB of VRAM
available.
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• Batch Size: [1,2]

• Loss margin: [0.001, 0.9]

Results The results show that replacing ResNet50 with EfficientNet0 led,
after a proper tuning, to comparable results on SVOX. On the other side,
when using Pitts30k, EfficientNet-B0 seems to improve the accuracy by a few
points. The results in Table 4.9 and 4.10 suggest that both EfficientNet and
ResNet are suitable backbone for the task. It’s hard to pick a clear winner,
depending on the chosen capacity of the network, dataset and pooling layer,
the architectures show similar performances.

Dataset Pool #Epochs R@1 R@5 R@10 R@20
Pitts30k Test GeM 7 88,1 93,9 95,3 96,6
Pitts30k Val GeM 7 86,4 93 94,6 95,9
Pitts30k Test CMAP 12 81,7 92,4 94,8 96,4
Pitts30k Val CMAP 12 83,3 95 97,2 98,3

Table 4.9. Comparison of top results among aggregation layers with
Eff-B0 as backbone on Pitts.

Dataset Pool #Epochs R@1 R@5 R@10 R@20
Oxford60k Test GeM 20 90,9 95,7 97 97,9
Oxford60k Val GeM 20 89 94,6 95,9 97,1
Oxford60k Test CMAP 25 92,6 96,4 97,4 98,1
Oxford60k Val CMAP 25 90,9 95,6 96,7 97,6

Table 4.10. Comparison of top results among aggregation layers with
Eff-B0 as backbone on SVOX.

4.2.4 Classification approach
A different experiment was performed by tackling VPR with a classification
approach. The tested architecture was composed by EfficientNet as backbone
and the ArcFace loss. The experiments performed with such configuration,
whose results will be shown later, were run on a different dataset made up
from StreetView panoramas sampled from Milan, Turin and Naples. Al-
though the network was trained on a different dataset, the model was tested
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against the Pitts30k and SVOX dataset. The reasoning behind the different
dataset is manly justified by the different format needed for the classification
task and this should be taken into account when comparing the results. The
architecture works by decomposing the map into a grid in which each cell
has an area of M ∗M . To avoid potential issues at the margin of each cell,
we chose to define different sub-dataset to train the network, defined in such
a way that each of them had no cells confining with an other.

In particular, we defined another parameter D indicating how many cells
are in between two cells of the same dataset.

Another parameter, classes per bucket, defines how many classes should
be considered inside a cell.

Hyper-parameters Following is a list of the fixed parameters used to train
the model:

• D: 4

• Cache Batch Size: 24

• Min panos per bucket: 10

The results show the top accuracy for each configuration, relatively to the
following range of hyper-parameters:

• M : [10,20]%

• Class per bucket: [2,6]

• Learning rate: [0.01, 0.001]

• Freezed: [30, 50]

• RYO: [20, 400]

• Batch size: [64, 256]

We used Stochastic Gradient Descent as optimizer.

Results Even if the results can’t be fairly compared with the other experi-
ments because of the different overall architectures and training dataset, the
results show that the classification approach is a suitable choice in VPR. The
model has a really good generalization capabilities as can be seen from the
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Dataset Backbone R@1 R@5 R@10 R@20
Pitts30k Test EfficientNet0 86.7 95.4 97.1 98.4
Pitts30k Test EfficientNet4 88.4 97.2 98.2 99.1
Pitts30k Test EfficientNet7 89.1 97.0 98.2 99.0

Table 4.11. Top results with the classification approach on Pitts30k.

Table 4.11 and performs well with EfficientNet-B0. Furthermore, the size is
comparable to the descriptor’s size produced by using GeM or CMAP.

Moreover, applying some Data Augmentation9 techniques, led to a slightly
improvement in the accuracy as can be seen from the Table 4.12.

Dataset Backbone DA R@1 R@5 R@10 R@20
Pitts30k Test EfficientNet4 No 88.1 96.7 98.1 99.0
Pitts30k Test EfficientNet4 Yes 88.4 97.2 98.2 99.1

Table 4.12. EfficientNet accuracy with and without Data Augmentation.

4.2.5 Domain Adaptation

As discussed earlier, domain adaptation can help to improve the generaliza-
tion capabilities of a network. In this section we show the results obtained
with different approaches.

Baseline

Here we report all the results of our Domain Adaptation experiments applied
to the best ResNet50 architecture we have previously reported. The results
are shown only for SVOX and the related RobotCar scenarios, since Pitts30k
is entirely made up of images taken at daytime.

In Table 4.13 you can look at the recall of the baseline on the target set.

9The techniques that returned good results were: Saturation, ColorJit, RandPerspec-
tive, RandRot
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Figure 4.8. On the left a picture from Oxford RobotCar taken at daytime.
On the right the same picture shifted to night domain thanks to FastCUT.

Dataset Arch #Epochs R@1 R@5 R@10 R@20
SourceTest GeM 10 93,6 96,8 97,6 98,1
TargetTest Gem 10 0 0,4 1,4 3,5

Table 4.13. ResNet50 Domain Adaptation baseline.

First approach

Hyper-parameters

• Cach Refresh Rate: 1000

• Cache Batch Size: 24

• Freezed: 2

• Queries/Epoch: 5000

• Negatives per query: 10

• Deterministic: True
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• Normalization: L2 Norm applied both pre and post aggregation.

The results shown in Table 4.14 show the top results for each configuration,
relatively to the following search space.

• Batch Size: [1,2]

• Pdropout: [0,20]%

• Loss margin: {0.001, 0.02}

• λp: [0.001, 1.5]

• λm: [0.8, 1]

• Pq: [0, 1]

• Pp: [0, 1]

• FDA L: [0, 1]

ResNet50 Results The table below shows the results of the FDA based
approach applied to the best performing ResNet50 architecture.

Dataset Arch #Epochs R@1 R@5 R@10 R@20
SourceTest GeM 13 92,1 95,8 96,8 97,6
TargetTest Gem 13 1,7 5,7 7,7 11,3

Table 4.14. FDA based DA.

Second approach

Hyper-parameters

• Cach Refresh Rate: 1000

• Cache Batch Size: 24

• Freezed: 2

• Queries/Epoch: 5000

• Negatives per query: 10
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• Deterministic: True

• Normalization: L2 Norm applied both pre and post aggregation.

The results in Table 4.15 show the top recall for each configuration, relatively
to the following search space.

• Batch Size: [1,2]

• Pdropout: [0,20]%

• Loss margin: {0.001, 0.02}

• λp: [0.001, 1.5]

• λm: [0.8, 1]

• Pq: [0, 1]

• Pp: [0, 1]

We used Stochastic Gradient Descent as optimizer.
To train FastCUT we used the following training procedure:

1. 50 epochs on KAIST with lr = 10−5

2. 136 epochs on Oxford RobotCar with beta1 = 0.55 and lr = 0.001

3. 30 epochs on Oxford RobotCar with beta1 = 0.55 and lr = 0.0005

Dataset Arch #Epochs R@1 R@5 R@10 R@20
SourceTest GeM 6 84,7 91,7 93,7 95,4
TargetTest Gem 6 2,9 8 12 15,8

Table 4.15. FastCUT based DA.

Results
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Third approach

Hyper-parameters

• Cach Refresh Rate: 1000

• Cache Batch Size: 24

• Queries/Epoch: 5000

• Negatives per query: 10

• Deterministic: True

• Freezed: 2

• Normalization: L2 Norm applied both pre and post aggregation.

The results in Table 4.16 show the top recalls for each configuration, relatively
to the following search space.

• Batch Size: [1,2]

• Pdropout: [8,20]%

• Loss margin: {0.001, 0.02}

• λ̄p: [0.001, 1.5]

• λ̄m: [0.8, 1]

• Pq: [0, 1]

• Pp: [0, 1]

Dataset Arch #Epochs R@1 R@5 R@10 R@20
SourceTest GeM 6 90,8 95,2 96,4 97,3
TargetTest Gem 6 0,7 2,3 8,9 12,6

Table 4.16. RevGrad approach.

Results
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Comparison and conclusion

Figure 4.9. Comparison of results for domain adaptation on target
set (night condition).

By looking at the Figure 4.9 we can see that all the techniques helped in
increasing the accuracy on the target set by a tangible margin. Furthermore,
the improvements on the target set only slightly decreased the accuracy on
the source set. Moreover, we confirm that FDA is a really interesting method
for domain adaptation that doesn’t require any training and is really easy to
tune and to use also if you need an online solution. We can also conclude
that using GANs as data augmentation technique is useful in a VPR context.
We also confirm the hardness of domain generalization in VPR, a network
with a high precision on a specific domain can be totally wrong on a different
one.
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Chapter 5

Software

Figure 5.1. Time requirements for each step in our pipeline.

After researching and experimenting we can finally select a model. But
how can this model be deployed in order to obtain a useful and working soft-
ware out of it? Actually, an architecture can be seen as a sequence of layers
and the trained model as the weights and bias that should be loaded.
In this chapter we discuss the pipeline needed for the software to run, its
architecture and features.
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5.1 Overview
Before being able to perform a search for a query, several one-time steps
are required, we have in order metadata retrieval, features generation, index
creation. In particular, all these steps should be re-executed only in special
cases:

• There is the need for a new gallery (or some samples should be added
to it).

• We want to use a different model as feature extractor. In this scenario
all the steps, except the first one, should be run again.

In regards to the first point it’s worth mentioning that the current imple-
mentation allows a cumulative update of the gallery. Thus, if new images
are added to include a previously uncovered location, it’s possible to quickly
compute the features only for the missing ones.
Now, let’s describe each step in the pipeline and clarify how it works.

Metadata Retrieval At first, we start by collecting all the images and
their relative metadata by calling the StreetView APIs offered by Google.
This step can take up to several days for big cities (i.e. Rome) and it requires
a great amount of space on disk. In particular, this step can be considered
as made up of different sub-steps:

• Download all the metadata for a given territory.

• Download all the panoramas for a given location.

• Process the panoramas and generate 7 undistorted crop from each of
them.

• Save the images and the metadata in a structured format to be easily
accessed.

Moreover, the software module in charge of this task is highly efficient
and fault-tolerant. In practice, it makes usage of multi-thread and it is able
to restore its execution status if terminated early or if any error occurs (i.e.
network issues).
For reference, performing this step on Turin with a gigabit connection and
40 concurrent thread took 5 days to end.
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Features generation When all the images and metadata are in a suitable
format, the next step is the extraction of features for all the preprocessed
images in the gallery. This is done by performing inference for each image of
the database and writing to disk the returned representation.
In case the descriptor is big in size like NetVLAD, a further step of dimen-
sionality reduction is applied right after the extraction of features.
To further remark the importance of scalability, we should mention that
applying a similar technique like PCA, requires dozens of days to be accom-
plished. For this reason, even if this step is performed only rarely, NetVLAD
is highly penalized by this perspective. The feature extraction process with-
out PCA took 100 hours to be completed.

Index creation As we have already mentioned, the search process consists
of finding the closer images on the features space. One way to reach such
result is to perform a k-NN to look at the nearest k neighbors and predict
accordingly to the results.
Unfortunately, using the k-NN algorithm is not efficient and would lead to
unacceptable time performance and that’s why we leveraged the faiss library.
Faiss is designed around an index type that stores a set of vectors, and
provides a function to search in them with L2 and/or dot product vector
comparison. Some index types are simple baselines, such as exact search.
Most of the available indexing structures correspond to various trade-offs
with respect to search time, search quality, memory used per index vector,
training time [25] [26].
We chose the IndexFlatL2 index. It is an exact search index that encodes
the vectors into fixed-size codes that compares the L2 (euclidean) distance
between vectors and returns the top-k similar vectors. During the search,
all the indexed vectors are decoded sequentially and compared to the vector
whose nearest neighbours are being calculated. This vector is also called the
query vector. For comparison, this is not like doing a common similarity
search (i.e. with Scikit-learn), as we have to choose the measure of similarity
and select the index accordingly. Furthermore, the library stores the indexes
in memory or disk by using a tree data structure to hugely reduce the search
time.
For reference, the generation of all the required indexes for the city of Turin
took about 1 hour.

Search process After having described all the configuration steps, we can
finally have a look at the search process.
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For each query given as input, the search process involves in:

• Pre-processing the image

• Computing the descriptor for the query

• Searching the closest neighbours in the feature domain

• Ranking the results

In regards to the first point, the image given as input is usually resized or
cropped before feeding it into the net for computing its descriptor. When
the descriptor is available, we can perform a fast and efficient search thanks
to the previously generated faiss index. As result, a list of the closest gallery
samples is returned. After that we can choose the ranking order. We tried
out two different ideas:

• Ranking by the closest distance In other words, it means ranking
by similarity in feature space.

• Ranking by crop voting A number N of crops is generated from the
query. Different predictions are computed for each crop and the final
predictions are obtained as the most voted gallery samples.

According to our dataset and experiments the first approach worked as well
as the second, however the first should be preferred for the sake of simplicity.
In regards to the time complexity, the time required to run a search for 5
different queries over the whole Italian capitals took less than 5 secs.

5.2 Requirements
Dealing with a large scale context involves analysing the requirements needed
for a software to run. In this section we want to discuss the time and memory
complexity and what has been done.
First, we need to consider how much space is required to store the gallery
dataset and their descriptors on disk. The size of the gallery and its stats
are reported in the Appendix A 7.1.

We want to draw attention in regards to the size of the descriptors because
this represents one of the most relevant bottlenecks. In particular, to perform
the similarity search for a given query and to avoid the overhead introduced
by reading from disk, we need to load them in RAM. That highlights the
importance of a compact representation.

78



5.3 – Design and features

The size of the descriptors highly depends on the chosen architecture, as
shown in the comparative Table 4.8.

On the other hand, both the CPU and the GPU don’t represent a bot-
tleneck for the application at test time, since the first is really needed only
to run an efficient similarity search algorithm and the latter is used just to
extract the descriptor from the query image.

5.3 Design and features
Running mode The software is characterized by 2 modalities, namely
the deployment and the maintenance/update modality. The software must
run in deployment in order to run searches for its users, it must be in the
maintenance execution each time the one-time steps have to be run again.
In deployment, the software can run in different modes:

• As a python module to be imported.

• As a script from the CLI.

• As a website for an easy remote access and a better UX.

• As an API endpoint.

To implement persistance, the software offers compatibility for both SQLite
and MySQL database and the choice can be specified in the config.json file.

Technologies and dependencies The software was mostly written in
python and has just a few dependencies like faiss, PyTorch, PIL, SKLearn,
h5py. The GUI was build with PHP/HTML/CSS + Bootstrap and LeafletJS
and was deployed on a XAMP stack.

Features The software has several capabilities and optimizations. For ex-
ample all the faiss indexes are stored on disk but they are loaded in RAM
only when they are really needed. This allows to avoid wasting too much
RAM and improves the time efficiency. In regards to the authentication, the
software distinguishes admin and user roles. The admin user is able to see
registered users and create new ones.
Moreover, the software is capable to perform optimized searches for locations
within a user-defined radius. In other words, it’s possible to specify a center
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point and a radius on a map and search for results only within that geo-
graphical region. That leads to two advantages: the first being the increased
accuracy because of the lesser number of false-positives and the second be-
ing the increased performances because only some images in the gallery are
considered as candidates (in practice, only some faiss indexes are used to
search).

Figure 5.2. A screenshot of the GUI showing the authentication feature.

A summary with the main capabilities of the software is given as follow:

• Index lazy loading

• Memory and time efficiency

• Multi-OS support

• Scalability and modularity

• Easy maintenance

• Simple setup and configuration

• Authentication and user roles

• Logging
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• Flexibility

• Support for multiple queries

• Parameters

• Geographical filter

It’s worth mentioning that even if the software offers a full compatibility
among all the common operative systems like OS-X, Windows, Linux it still
needs faiss as dependence. Unfortunately, faiss authors don’t offer Windows
compatibility when using GPU acceleration and for this reason it’s required
to make some changes and compile it by hand.1

5.3.1 Efficiency
Time and memory efficiency are key factors when dealing with large scale
data. To improve the time efficiency we have chosen to use the faiss library.
As defined by the creators "faiss is a library for efficient similarity search
and clustering of dense vectors. It contains algorithms that search in sets of
vectors of any size, up to ones that possibly do not fit in RAM"[25].
The library implements a fast approximation for the nearest neighbor search
and is built around an index type that stores a set of vectors, and provides
a function to search in them with L2 or dot product vector comparison[20].

Faiss helps a lot but still requires its index files to be stored in RAM! So,
we used a lazy loading pre-initialization.
In other words, every time a new query is given as input, the software will
search whether the indexes and other required structures can be read directly
from RAM or if they should be read from disk.

5.4 Results and performance
The performance depends on different factors like the chosen architecture,
the parameters, the number of queries, however performing a search on large
scale in matters of seconds can be considered an accomplished goal.

In addition, a documentation covering the setup, the configuration and
the usage of the software, both by API calls and the GUI, was produced.

1We successfully compiled faiss under windows and reached to run the software with
faiss with GPU acceleration enabled.
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Furthermore, all the architectures that produce small sized features, will
be faster because there is no need to compute PCA.

GUI Let’s look at how the software GUI works from a user point of view.
At first, the user needs to authenticate himself by using his username and
password. After a successful authentication, the user is redirected to the
homepage, as shown in Figure 5.3, and can navigate to the search page.

Figure 5.3. Home page of a logged in user.

The user is asked to select the images he wants to search for and is invited
to set different parameters and filters as can be seen from Figure 5.4.

After having selected the search criteria, he can submit the form, the
search process starts and a loading page appears. After few seconds, the
results for each query are displayed in both tabular form and map, as can
be seen in the page results attached in the Appendix C. When using the
software via the GUI, for security reason, the user will be automatically
logged off after a period of inactivity (5 min).
Furthermore, the UI development was led by the design of a good UX. Some
examples are:

• The drag and drop to select the images and the ability to remove selected
files if a wrong choice has been made.
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Figure 5.4. The search page. The filters and parameters available
can be easily spotted.

• The search bar on the map for an easier and faster navigation.

• The loading page.

API The software also exposes an API method that can be called to per-
form research from remote for automation purpose. As of now, the API
exposes only one public method named uploadAndProcessSet. In particular,
it can be called for a given image and returns a json response with the pre-
dictions. The method has different parameters, some of which are optional.
There are only four required parameters useful to specify the input images
and perform authentication:

• files[]=[binary] Query image to be sent. The API allows this paramter
to be repeated to execute a batch search.

• num_preds_to_save=[integer] Number of predictions to be saved
on remote disk. If set to zero, the parameter num_preds_per_query
should be specified.

• uid=[integer] A valid user ID.
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• APIKey=[string] API Secret Key for a naive authentication.

Moreover, several other parameters can be specified to customize the
search process. A list of the available optional parameters follows:

• num_preds_per_query=[integer] To be specified when num_preds_to_save
is equal to zero. It represents the number of predictions that should be
returned for each query.

• precision=[integer] This argument can be set in the range [0,5]. They
are just preset parameters for the faiss search. A small number will
prioritize the time at the cost of memory and, in rare cases, precision.

• center_lat=[float] Latitude of the central search point.

• center_lng=[float] Longitude of the central search point.

• radius=[integer] Geographical radius of search. This will be ignored
if center_lat and center_lng aren’t set.

If the request has been correctly formatted, a successful response will be
returned. A successful response, as shown in the Appendix B 7.2, contains
information about the input queries and an array containing the predictions
for each query. A successful response contains, for each prediction of every
query, the following fields:

• city The predicted city.

• confidence The confidence of the result in the range [0, 100].

• cropped_index The index of the crop in the range [0,6] related to the
portion of panorama for which a match was found.

• date The date when the panorama was taken.

• knn_d The distance from the similar image in the gallery returned by
faiss.

• lat The predicted latitude.

• lng The predicted longitude.

• metro The nearest metro stop.

• pano_id A unique ID identifying each image in the gallery.

• pano_path The URI pointing at the predicted image in the gallery.
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5.5 Improvements
The software could be further improved on different fronts such as security
and accuracy. In regards to security the static API Key or the password
based authentication could be replaced with a JWT (JSON Web Token)
based system. In addition, it could be interesting to propose an auto-update
feature to autonomously update the gallery to include fresh panoramas. In
regards to accuracy, there is always some margin of improvements and many
different ideas could be considered:

• Try other recent backbones as ResNet-RS[34] or EfficientNet v2[35]

• Usage of Data Augmentation

• Further study on Domain Adaptation

• Attention based methods or other solution to handle bigger occlusions.

• Post processing techniques (i.e. post-pruning some unrelated results like
a photo of a truck or taken in suburban areas)

In this regard, the system is more prone to bad predictions when a big oc-
clusion occurs or under extreme lighting conditions (i.e. night). You can
look at some predictions of the models in the Appendix D 7.4. Other inter-
esting features could be adding some more administrative capabilities such
as showing the last searches performed by user or editing the password of a
given user or invalidating its API key.

The development dataset could also be improved by pruning all the indoors
panoramas or suburbs zone.
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Chapter 6

Conclusion

The goal of this thesis was to investigate efficient and scalable visual place
recognition architectures and to develop a software to accomplish this task.
At first, we described the main challenges related to high scalable VPR sys-
tems and we analyzed what techniques have been proposed over the years.
Then, we demonstrated that many architectures can be employed in order
to develop such a system.

We included many experiments useful to perform comparisons between
the different solutions and described their strengths and weaknesses. The
experiments highlighted the key role of the aggregation layer, particularly in
regards to the scalability, and revealed what the main edge cases and limita-
tions for similar networks are. Furthermore, we proved that other aggregation
layers could be researched and employed and we also confirmed that tackling
VPR as a classification task is a suitable approach and can lead to SotA
performance. In the process, we tried to justify our choices and to suggest
which improvements and limitations apply. We also showed that different
domains are a real challenge for geo-localization networks and reported the
results after experimenting with several domain adaptation techniques. In
this regard, we noticed that, even if simple techniques can help in achiev-
ing better performance on the target set, they aren’t enough to improve the
overall generalization capabilities of the network.

Moreover, we discussed some implementation details about the developed
software. We defined its architecture, its components and the available fea-
tures. To the best of our knowledge, this is the first work to tackle VPR
from such a large scale perspective and to describe its overall design, its key
components and its pipeline.

In conclusion, this work has successfully achieved the previously defined
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goals and wants to be an incentive for further research in this area.
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Appendix

7.1 Appendix A: Development Gallery

City Approx. Lat,Lng Size On Disk #Panoramas
Roma (41, 12), (42,12) 1,1T ; 36G 3624126
Napoli (40, 14) 268G 955844
Torino (45, 07) 383G 1205070
Milano (45, 09) 515G 1719752
Bologna (44, 11) 162G 529306
Firenze (43, 11) 138G 462626
Palermo (38, 13) 161G 526655
Venezia (45, 12) 118G 416548
Bari (41, 16), (41, 17) 111G 355015
Perugia (43, 12) 105G 345092
Cagliari (39, 9) 73G 287902
Ancona (43, 13) 62G 207469
Trento (45, 11), (46, 11) 61G 199374
Trieste (45, 13) 68G 202116
L aquila (42, 13) 59G 196141
Potenza (40, 15) 48G 117601
Genova (44, 8), (44, 09) 18G 102629
Catanzaro (38, 16) 28G 109573
Campobasso (41, 14) 23G 77330
Aosta (45, 7) 11G 36160
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7.2 Appendix B: API Example
Example of an API request with curl:

Listing 7.1. API call example
curl --location --request \
POST ’https :// localhost /api/v1/ searchengine /search/
uploadAndProcessSet ? center_lat =& center_lng =& radius =50000
& precision =0& uid =3& tot_q =7& num_predictions =10? apiKey=’ \
--header ’Content -Type: application /x-www -form - urlencoded ’ \
--form ’file []=@/path/to/file ’

An example of a response:
Listing 7.2. API Response

[
{

" predictions ": [
{

" pano_path ": "p1.jpg",
" cropped_index ": 5,
"url": " predictions /3 _2021 -02 -02_11 -04 -17/ p1@.jpg",
"lat": " 45.06864 ",
"lng": " 07.69252 ",
" pano_id ": "1234",
"year": "2016 -09",
"date": "2016 -09",
"knn_d": "55.364",
" confidence ": 36,
"metro": "Porta Nuova a 1.25 Km"

},
{

" pano_path ": "p2.jpg",
" cropped_index ": 5,
"url": "p2.jpg",
"lat": " 45.06872 ",
"lng": " 07.69259 ",
" pano_id ": "1235",
"year": "2016 -09",
"date": "2016 -09",
"knn_d": "56.551",

90



7.2 – Appendix B: API Example

" confidence ": 35,
"metro": "Porta Nuova a 1.26 Km"

},
...
,
{

" pano_path ": "p10@.jpg",
" cropped_index ": 5,
"url": " predictions /3 _2021 -02 -02_11 -04 -17/ p10@.jpg",
"lat": " 45.06889 ",
"lng": " 07.69465 ",
" pano_id ": "5415",
"year": "2018 -09",
"date": "2018 -09",
"knn_d": "62.989",
" confidence ": 31,
"metro": "Porta Nuova a 1.41 Km"

}
],
"query": {

"url": " queries /3 _2021 -02 -02_11 -04 -17/ moleq.jpg",
"id": 0

}
}

]
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7.3 Appendix C: GUI results page

Figure 7.1. Results page relative to a search with a query and
NumPredictions=10.
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7.4 Appendix D: Results example

Figure 7.2. On the top two search results in Turin. On the bottom the
results relative to a search in Palermo; At the bottom right corner a wrong
prediction due to a big occlusion.
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