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Summary

In the last few decades, the world has faced a plethora of challenges related to
energy sustainability, availability, and security. Since the negative effects on the
environment and the economy are too heavy, conventional energy sources are coming
under huge political and economical pressure. These circumstances have led to an
increased interest in developing alternative and more sustainable energy sources,
like solar photovoltaic, solar thermal, geothermal, tidal waves, wind power, and
biomass. New challenges related to these energy sources have recently motivated
the use of machine learning algorithms to support better management of energy
generation and consumption. The formulation of well informed energy policies
that help to determine important parameters can be facilitated by forecasting
both short and medium term demand, at least for a power grid with renewable
energy sources contributing a considerable amount of energy supply. This work
investigated the problem of predicting renewable energy generation focusing on
wind and solar energy. Modern deep learning techniques have been applied, and
they were tested and compared on different locations and time resolutions, hence
to detect and understand any patterns behind the physical phenomenons.
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Chapter 1

Introduction

In the last few decades, the world has been faced with a plethora of challenges
related to energy sustainability, availability, and security. Since the negative effects
on the environment and the economy are too heavy, conventional energy sources —
which include natural gas, crude oil, and coal — are coming under huge political
(and subsequently, economical) pressure. Our present era of fossil-fueled economies,
societies and civilizations has given rise to an anomalous and dangerous moment
for contemporary humanity and our shared biosphere as well [1]. The accelerating
trends of planetary warming evidenced through storms and ice melts,droughts and
hunger, unrest and migration, increasingly compel a heightened sense of urgency
regarding the need to rapidly end the age of fossil fuels. A growing consensus
now views the transition to renewable energy systems, frequently understood as a
process of fuel substitution, as a key strategy to address the climate crisis.

These circumstances have led to an increased interest in developing alternative
and more sustainable energy sources, like solar photovoltaic, solar thermal, geother-
mal, tidal waves, wind power, and biomass [2]. In fact, it is worth to notice that
many countries and companies have been seeking to diversify their energy mix by
increasing the share of renewables. For instance, the share of renewable energy in
gross final energy use in the EU has doubled since 2005. It reached 17.6% in 2017
and increased further to 18.0% in 2018, according to the early estimates from the
European Environment Agency (EEA). Moreover, renewable energy now accounts
for 30.7% of gross final electricity consumption, 19.5% of energy consumption for
heating and cooling, and 7.6% of transport fuel consumption in the whole EU. Fig.
1.1 from the 2016 Renewable Energy Data Book shows how this increase in share
similarly affected the US market.

The need for developing sustainable energy sources also calls for a more modern
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Figure 1.1: All renewables total nameplate capacity and generation in the United
States over the years. Sources: EIA, LBNL, SEIA/GTM.

and efficient way of deploying this energy. In this sense, the definition of “Smart
Grid” (SG) acquired more and more consensus and popularity. Indeed, many see
SGs as an unprecedented opportunity to move the energy industry into a new era
of reliability, availability, and efficiency that will contribute to our economic and
environmental health. In short, a smart grid is defined in the TEN-E Regulation as
an electricity network that can integrate in a cost efficient manner the behaviour
and actions of all users connected to it, including generators, consumers and those
that both generate and consume, in order to ensure an economically efficient and
sustainable power system with low losses and high levels of quality, security of
supply and safety.

In conventional energy generation processes, energy production depends on the
energy demand from the users, and the stability of the power grid relies on the
equilibrium of energy demand and supply. When this equilibrium is not achieved,
a number of things can occur. For instance, when the demand is lower than the
supply, energy is lost and wastage incurs unnecessary costs. On the other hand,
when the energy demand surpasses the supply, the power grid becomes destabilized
and this results in quality degradation and eventual blackouts in some parts of the
grid. Thus, it is crucial to produce the right amount of energy at the right time,
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both for the smooth running of the grid and for achieving economic benefits [3].

The main problem with renewable energy resources like wind, solar light, and
solar heat is that they are highly variable in their fluctuations, so that the generation
capacity can result in an instability in the power grid. Also, we cannot underestimate
the fact the renewable energy power plants are subject to marked daily and annual
cycles (e.g., solar energy is only available during the day). Consequently, it is
necessary to generate power when resources are available and be able to store it for
later use. In this scenario, conventional sources like gas plants are only employed to
cover the electricity shortfall whenever the generation capacity of natural resources
are insufficient to meet demand.

The aforementioned challenges have recently motivated the use of machine
learning algorithms to support better management of energy generation and con-
sumption. The formulation of well informed energy policies that help to determine
important parameters (e.g., spinning reserve levels) can be facilitated by forecasting
both short and medium term demand, at least for a power grid with renewable
energy sources contributing a considerable amount of energy supply. It is also
necessary to forecast the energy output from power plants, since this output de-
pends on many environmental factors that cannot be controlled. Other areas for
the application of machine learning methods in this context concern the overall
operations and management of the smart grid — issues including fault detection,
control, and so forth. These methods have also been used in determining the
optimal location, size, and configuration of renewable power plants: indeed, factors
like local climatic fluctuations, terrain, and proximity to population centers strongly
affect this decision.

The objective of this thesis is to provide a machine learning framework based
on neural networks and deep learning to predict the generation of energy from
renewable sources, with an accent on wind and solar energy. Indeed, this prediction
can be extremely useful to prevent instability in a SG, as we could potentially store
eventual excesses for later use and employ them whenever the prediction yields
a shortfall in meeting demand. In order to validate our models, we experiment
with different geolocations, time resolutions, prediction horizons, and training
approaches. Chapter 2 introduces the dataset used for this analysis and the data
processing techniques. Chapter 3 focuses on neural networks and deep learning
from a theoretical point of view, and how their tuning can have an impact on the
prediction. Chapter 4 is the core of the thesis, in which all the achieved results are
gathered and discussed. In the end, Chapter 5 follows the conclusions and possible
applications.
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Figure 1.2: An overview of a power grid with integration of renewable sources
and how machine learning techniques can be used at different steps of the process
for performance improvements and overall better management. Conventional power
plants are involved to guarantee the balance of demand and supply of energy and
to ensure adequate power quality.

1.1 Machine Learning applications in literature

In research, a number of machine learning applications in energy-related scenarios
have succeeded in achieving impactful results. For instance, ML has been applied
to forecast traffic in the context of telecommunication networks — in particular,
radio access networks [4]. The considered scenario comprises a network operation
that was decided based on traffic. Energy generation predictions were derived
from algorithms trained with past traffic and energy production patterns. The
estimation of traffic represents a crucial step: if it is underestimated, the activation
of base stations may lead to quality-of-service deterioration, while in case the traffic
is overestimated, the energy saving would be suboptimal.

Other research has been focused on how energy efficiency techniques could apply
to 5G networks [5]. By its nature, the 5G technology is remarkably different from
the others in terms of reliability, network availability, latency, data rate, and so
forth. The operational sustainability of such a diverse service support reckons
on underlying network architecture that possesses a green nature, captured in its
capability to well adapt the energy consumption to actual network traffic. For a
network to be green, designers need to consider sustainability along a very broad
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range of prospects. For example, we need to consider that even at zero load,
network equipment still consume a fixed amount of energy, since that is used to
guarantee that the network is, effectively, operational.

Cloud radio access networks (C-RANs) also provide a scenario in which energy
cooperation techniques can be applied to improve the system performance with
recent advances in smart grids. Long-term energy efficiency optimization can be
achieved by considering both the instantaneous QoS and time-averaged limits.
C-RANs are regarded as a key technical architecture for 5G networks, where base-
band processing is operated in a centralized pool of units that handle requests from
user equipment in a centralized and collaborative manner. Resource sharing in such
cloud-based centralized pools has been shown to reduce power consumption, thus
cutting down capital and operating expenditure. Compared with the traditional
radio access network, C-RAN has more potential in boosting the transmission
performance, whereas the coordination and allocation of radio resources has proven
to be challenging [6].

Forecasting power output from a renewable energy power plant is crucial as this
depends on many non-human-controllable factors such as environmental parameters.
Depending on the energy source it uses, the power plant can exhibit various
characteristics that enable the use of machine learning techniques for prediction
purposes. In this thesis, we will focus solely on wind power generation prediction,
although most of the employed methods can be easily generalized to work with
other sources, like solar and hydro power.

Wind power generation depends on many characteristics and the power output
from a wind turbine can be computed using Eq. 1.1, where A stands for the area
that is covered by the wind turbine blades (a circle with radius r), ρ is the air
density, V is the wind speed, and Cp is an efficiency factor usually imposed by the
manufacturer.

P = 1
2AρV 3Cp (1.1)

In this equation, the wind speed is a significant factor as the power output is
proportional to the wind speed. It is also worth to notice that there is a cutoff
speed where the power output is steady after that speed has been reached (so as to
ensure the safety of the turbine). Other factors such as humidity and temperature
also affect the density of the air, which in turn affects the power generation. Thus,
it is necessary to forecast these factors and ultimately the final power output in a
wind farm.

Wind forecasting plays an important role when it comes to clearing day ahead
market scenarios. Given there is a market situation to be cleared, an accurate
wind forecasting scheme is particularly helpful in such situations. Wind forecasting
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Figure 1.3: Top 10 countries by cumulative wind electricity capacity in 2016.
Includes offshore wind. Sources: LBNL, REN21.

schemes can be roughly categorized in weather-based prediction methods and
statistical-based prediction methods [7]. While we consider weather-based prediction
models, the wind forecast accuracy strongly depends on the topology of the
land where the wind turbines are erected. Wind speed measurements at an
appropriate height from the land, the temperature of the ambient air, air pressure
etc. hold important factors to take into account for the prediction. On the other
hand, statistical (also knows as time series) methods solely depend on the past
measurements of the wind to predict future values.

Wind forecasting applications lie majorly in the area of electricity market clearing,
economic load dispatch and scheduling, and sometimes to provide ancillary support.
Thus, a proper classification based on the prediction horizon — i.e. the duration of
prediction — becomes important for various transmission system operators (TSOs).

In [8], experiments were conducted using an LSTM-based RNN to predict
generated wind power in Sotavento, a wind farm in Spain. The main objective
was to measure how the accuracy of the prediction changes when the prediction
horizon enlarges. The accuracy of the models over the test set was validated using
NRMSE. The authors observed that 1 hour-ahead forecasts produced a NRMSE of
4.23%, 3 hours-ahead 5.46%, up to a NRMSE value of 10.43% when predicting 24
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hours-ahead.

Auto-regressive moving average (ARMA) and auto-regressive integrated moving
average (ARIMA) models have been studied in [9] for wind speed forecasting and
then wind power forecasting by analyzing the time-series data. Comparison of
the ARIMA and artificial neural networks (ANNs) models for wind forecasting
has been conducted in [10]. The analysis showed that the seasonal ARIMA model
outperformed the ANN model, although limitations of the study have been identified
in the poor number of training vectors.

A Kalman filter model using the wind speed as the state variable has been used
in [11]. The authors suggested that this model is suitable for online forecasting of
wind speed and generated power. Online forecasting of power generation can be
crucial to provide the most recent and updated future forecasting to be used for
power grid management. A recurrent multi-layer perceptron model which employs
Kalman filter-based back-propagation has also been proposed in [12]. The proposed
method performed well in long-term power generation prediction, while it failed in
short-term prediction.
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Chapter 2

Dataset and Data
Processing

Energy system databases employ data methods to collect, clean, and republish
energy-related datasets to be used for statistical analysis and for building numerical
energy system models. In this chapter, we will focus on the Open Power System
Data (OPSD) project database and describe data processing techniques to facilitate
the analysis procedure.

2.1 Open Power System Data

The Open Power System Data project seeks to characterize the German and western
European power plant fleets, their associated transmission network, and related
information and to make the data available to energy modelers and analysts [13].

The original implementation of the platform is by the University of Flensburg
(Berlin), the Technical University of Berlin, and the energy economics consultancy
Neon Neue Energieökonomik, all from Germany. Developers collate and harmonize
data from a range of government, regulatory, and industry sources throughout
Europe. The project offers the following packages, for Germany and most other
European countries:

• details, including geolocation, of conventional power plants and renewable
energy power plants

• aggregated generation capacity by technology and country
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• hourly time series covering electrical load, day-ahead electricity spot prices,
and wind and solar resources

• NASA MERRA-2 satellite weather data

• electricity demand and self-generation time series for representative south
German households

• simulated photovoltaic and wind generation capacity factor time series for
Europe

Figure 2.1: Procedural high-level schema. The first step after having acquired the
raw data from OPSD is to normalize the data in order to reduce the intrinsic high
variance and facilitate the training process of neural networks. We then perform
Principal Component Analysis (PCA) to reduce the number of features of the
dataset and project the data into a lower dimensional space, as to avoid the curse of
dimensionality. Training and validation follows, during which our network “learns”
from the data and is validated at the end of each epoch (see Sec. 3.6). Lastly, the
testing phase concludes the process.

In order to facilitate analysis, the data is aggregated into large structured
files (in .csv format), and loaded into data packages with standardized machine-
readable metadata. The project also engages with energy data providers, such as
transmission system operators (TSOs), and the European Network of Transmission
System Operators (ENTSO-E). The data is available under an open license (Creative
Commons), whereas the scripts deployed for data processing carry an MIT license.

In our analysis, we focus only on the time series package, as it contains different
kinds of data relevant for power system modelling. The data is aggregated either
by country (32 European countries are present), by control area or bidding zone.
Where original data is available in higher resolution (half-hourly or quarter-hourly),
like for Germany (DE), separate files are provided.

The package version we used is the 2019-06-05, which contains solely data
provided by TSOs and power exchanges via ENTSO-E Transparency. Although
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the package covers the period 2015-mid 2019, we only use the three-year span from
Jan 1st, 2016 to Dec 31st, 2018, since the number of missing values is zero when
we consider this period. Also, although the package also comprises solar power
generation and capacities data, we will not consider them in our initial analysis —
only in Sec. 4.4 the solar track will be used alongside wind in a hybrid scenario.

Table 2.1 shows the features of a sample dataset drawn from the hourly resolution
time series with data belonging to Germany (DE), along with the respective
timestamp (in UTC and CET time). The goal of our analysis it to try and predict
the wind generation (target). It is worth to notice that the actual wind generation
in megawatts is the sum of two components, namely the onshore and offshore actual
wind generation. Fig. 2.2a and Fig. 2.2b show respectively the total wind energy
generation in megawatts in January 2018 and the onshore and offshore components
for the DE geographic zone.

2.2 Data processing

We normalized the dataset before feeding it to our learning algorithms in order to
reduce the high internal variance, making data more regular. This transformation
is often used as an alternative to zero mean, unit variance scaling. In particular,
we transformed each feature individually such that it is scaled to a given range —
in our case between 0 and 1 — using the following equation:

xstd = x− xmin
xmax − xmin

(2.1)

xscaled = xstd × (M −m) + m (2.2)

where x is the feature value, xmax and xmin are respectively the maximum and
minimum value that feature occurs, and M and m represent the desired range of
the transformed data (so we have M = 1 and m = 0).

It is crucial to normalize data before performing Principal Component Analysis
(PCA), as explained in Sec. 2.3. If some variables have a large variance while others
have a low one, performing PCA will load on the large variances. For example, if
we scale one variable from “km” to “cm” (increasing its variance), it may go from
having little impact to dominating the first principal component. Since we want
PCA to be independent of such rescaling, normalizing the features will do that.

Fig. 2.3 shows the bivariate correlation matrix of the variables of our dataset.
For obvious reasons, the timestamps were not included in the computation of the
matrix. The Pearson correlation coefficient was used to compute the value of the
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(a)

(b)

Figure 2.2: (a) Total wind generation in megawatts in Germany in January 2018
taken with hourly resolution. (b) As for (a), but onshore and offshore components
are shown.

correlation. Values that are close to 1 reflect positive linear correlation, while 0
means no linear correlation between variables. For instance, we can see that the
actual wind generation has a higher correlation with the onshore generation (0.99)
than with the offshore generation (0.74), while having little to no linear correlation
with the onshore (0.18) and the offshore (0.21) capacity.

2.3 Principal Component Analysis

Principal Component Analysis, or PCA, is a dimensionality-reduction method that
is often used to reduce the dimensionality of large data sets, by transforming a

11



Dataset and Data Processing

Figure 2.3: Correlation matrix heatmap between the features of the DE hourly
resolution dataset. Some variable pairs share high correlation values, like the total
wind generation and the onshore generation. This comes from the fact that onshore
generation represents most of the total wind generation, as we can see from Fig.
2.2b.

large set of variables into a smaller one that still contains most of the information
in the large set. Thus, the main goal of performing PCA is to reduce the number
of variables of a dataset, while preserving as much information as possible.

Reducing the number of variables of a data set naturally comes at the expense
of accuracy, but the trick in dimensionality reduction is to trade a little accuracy
for simplicity. Since smaller data sets are easier to explore and visualize, this makes
analyzing data much easier and faster for machine learning algorithms, without
having to deal with redundancy and superfluous information. As for the number of
significant components, it has to be determined, e.g. by cross-validation [14].
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Figure 2.4: Plot showing pairwise relationships in the DE dataset. The order of
the features is the same as in Fig. 2.3.

There are several ways of performing PCA on a given data matrix An×d. The
one discussed here addresses the use of a matrix factorization technique called the
Singular Value Decomposition (or SVD) of A.

A = UΣV T (2.3)

Here Σ is a n× p rectangular diagonal matrix (i.e., a matrix in which the entries
outside the main diagonal are all zero) of positive numbers σ(k), called the singular
values of A; U is a n× n matrix, and its columns are orthogonal unit vectors of
length n called the left singular vectors of A; lastly, V is a p × p matrix whose
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columns are orthogonal unit vectors of length p and called the right singular vectors
of A.

In terms of this factorization, the matrix ATA can be written

ATA = V ΣTUTUΣV T (2.4)
= V ΣTΣV T (2.5)
= V Σ̂2V T (2.6)

where Σ̂ is the square diagonal matrix with the singular values of A and the excess
zeros chopped off that satisfies

Σ̂2 = ΣTΣ (2.7)

The right singular vectors V of A are equivalent to the eigenvectors of ATA,
while the singular values σ(k) of A are equal to the square-root of the eigenvalues
λ(k) of ATA. Fig. 2.5 illustrates how the decomposition of the data matrix A via
SVD is performed.

Figure 2.5: Schematic representation of the Singular Value Decomposition for a
generic matrix An×d.

As with other matrix factorization techniques, a truncated version of the SVD
can be obtained by considering only the L < p largest singular values and their
respective singular vectors. In this way, we produce a truncated matrix that is the
nearest possible matrix of rank L to the original matrix, such that the difference
between the two has the smallest possible Frobenius norm.

Fig. 2.6 shows the explained variance ratio of each principal component selected
when implementing SVD on the dataset. We can see that the first 3 components
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already explain more than 80% of the total variance, with the first component
accounting for nearly 50%. Although PCA may not be useful for every high-
dimensional dataset, it still offers a straightforward and efficient path to gain insight
into high-dimensional data and to understanding the intrinsic dimensionality of the
data. In our case, we select 5 components — which explain 93% of the variance —
as a good tradeoff to keep the number of components low (and avoid the “curse
of dimensionality”) while still holding on to most of the information held in the
unprocessed dataset.

Figure 2.6: PCA Explained Variance Ratio, i.e., the percentage of variance that
is attributed by each of the selected components. Ideally, we want to choose a
number of components such that their explained variance ratio is above 80-90% to
avoid overfitting.

When applied to time series, PCA is often called “Functional PCA” (or FPCA).
Thus, FPCA refers to the situations when each of the n observations is a time
series (i.e. a “function”) observed at t time points. The point of FPCA is to find
several eigenvectors of the covariance matrix, that would describe the “typical”
shape of the observed time series. In [15], for instance, FPCA was used to
investigate a high-dimensional surface water temperature dataset of Lake Victoria,
both for univariate and bivariate functions, proving to be extremely efficient for
dimensionality reduction as well as pattern detection.

In the following chapters, we assume that PCA has been performed on the data,
that exactly 5 components have been selected, and that the explained variance
ratio of these components is at least 90%.
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Chapter 3

Neural networks

Artificial neural networks can be most adequately depicted as ‘computational
models’ with particular properties such as the ability to adapt, learn, and generalize.
Nonetheless, most of the aforementioned properties can be attributed also to non-
neural models, so that the question is to which extent the neural approach proves
to be suitable for certain applications than other models.

Neural networks fall in the category of supervised learning algorithms. This
means that the neural network learns a function that maps an input to an output
based on example input-output pairs. It infers a function from labeled training
data consisting of a set of training examples (i.e., the “training set”). In supervised
learning, each sample is a pair consisting of an input object (typically a vector) and
a desired output value. Supervised learning algorithms analyze the training data
and produce an inferred function, which can be used for mapping new examples.
After this function has been inferred, the “test set” is used to assess the model’s
accuracy, according to specifics metrics. “Overfitting” is a common phenomenon
that occurs in supervised learning algorithms when the model follows too closely
the training data and fails at generalizing on new inputs, expressly performing
poorly on the test set. Roughly speaking, overfitting is what we call when a model
begins to “memorize” training data rather than “learning” to generalize from a
trend.

A plethora of different architectures have been proposed over the last decades
for neural networks. In our work, we focus on feedforward (FFNN) and recurrent
(RNN) neural networks. In the former, better discussed in Sec. 3.2, the connections
between the nodes of the graph defined by the network do not form a cycle. In
the latter, extensions are added to the model to include feedback connections, i.e.,
outputs of the model are fed back into itself. RNNs are explained in Sec. 3.3.
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If the supervised learning task is used to identify to which of a set of categories
a new observation belongs, then we call that a “classification” task. Examples are
assigning a given email to the "spam" or "non-spam" class (binary classification),
or designating the proper species to a given plant (multi-class classification). On
the other hand, if we have to predict a continuous variable, we call that task a
“regression task”. For instance, predicting house prices is a regression task, since
we want to estimate a number.

The process of estimating energy generation is clearly a regression task. The
variable we want to estimate is also called “target”. For this purpose, and for the
sake of clarity, we will use the following notation:

– yi refers to the actual value the target feature takes at timestamp i;

– ŷi is the output of our prediction model for the i-th sample, i.e., the predict
value at timestamp i;

– ȳ is the mean of the real values considering a time period of N timestamps.

Figure 3.1: Schematic representation of the perceptron algorithm.

From a mathematical standpoint, an artificial neural network is a model capable
of approximating any functional form with a certain level of precision. For instance,
the first proposed artificial neuron — the so called perceptron [16] — takes several
input signals x1, x2, . . . , xn and summed weights them with W1, W2, . . . , Wn (the
weights, i.e., real numbers indicating the importance of the different inputs). The
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output (a) is a binary value: if the sum (z) is greater than a certain threshold (b),
then (a) is 1, otherwise (a) is 0. (Fig. 3.1).

a =
0, if qn

i=1 xiWi ≤ b

1, if qn
i=1 xiWi > b

(3.1)

The choice of the activation function σ is crucial for improving the accuracy
of the neural network. A good characteristic for σ is the differentiability, which
makes the backpropagation of the error during the training phase possible. Several
activation functions have been used in research. A non-exhaustive list is reported
below.

• Sigmoid (σ):

σ(x) = 1
1 + e−x (3.2)

Historically, the sigmoid activation function has only been used in the output
layers for binary classification problems, since it is not centred in zero and
tends to saturate, causing the vanishing gradient problem.

• Hyperbolic tangent (tanh):

tanh(x) = ex − e−x

ex + e−x (3.3)

Similar to the sigmoid activation function, but centred in zero. It still suffers
from the vanishing gradient problem.

• Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x) (3.4)

ReLU is the most used activation function, as it does not saturate. However,
it suffers from the ‘dying ReLU‘ problem, i.e., the gradient is equal to zero for
all negative values of x.

• Leaky ReLU (LReLU):

LReLU(x) = max(αx, x) (3.5)

Leaky ReLU is a variation of ReLU that does not suffer from the null gradient
problem of ReLU. α is a parameter that usually takes small values, e.g., 1/10.
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• Exponential Linear Unit (ELU):

ELU(x) =
x x > 0

α(ex − 1) otherwise
(3.6)

ELU makes the mean activations closer to zero, which speeds up learning.
It has been shown that ELUs can obtain higher classification accuracy than
ReLUs.

Figure 3.2: Graph visualization of activation functions.

The choice of the activation function is crucial for maximing the model’s accuracy.
Also, it has been shown that some activation functions perform better in some tasks,
while failing in achieving the same results in other tasks. For instance, the sigmoid
activation function is well suited for binary classification, although it performs
poorly when it comes to regression. On the other hand, linear activation functions
are usually the best alternative when it comes to regression.

3.1 Metrics

There are a variety of different metrics that are historically employed in a regression
problem. A non-exhaustive list is reported below.

20



Neural networks

• Mean Squared Error (MSE):

MSE = 1
N

NØ
i=1

(yi − ŷi)2 (3.7)

• Root Mean Squared Error (RMSE):

RMSE =

öõõô 1
N

NØ
i=1

(yi − ŷi)2 (3.8)

• Normalized Root Mean Squared Error (NRMSE):

NRMSE =

öõõô 1
N

qN
i=1(yi − ŷi)2

ȳ
(3.9)

• Mean Absolute Error (MAE):

MAE = 1
N

NØ
i=1
|yi − ŷi| (3.10)

• Mean Absolute Percentage Error (MAPE):

MAPE = 1
N

NØ
i=1

-----yi − ŷi
yi

----- (3.11)

3.2 Feedforward neural networks

Feedforward neural networks (sometimes called multilayer perceptrons, in analogy
with the perceptron) are the quintessential deep learning models. The goal of a
feedforward network is to approximate some function f ∗. For instance, if we have
a classification task, y = f ∗(x) maps an input x to a category y. A feedforward
network defines a mapping y = f(x; ) and learns the value of the parameters θ that
result in the best function approximation.

As stated before, these models are called feedforward because information
flows through the function being evaluated from x, through some intermediate
computations, and finally to the output y. The connections between the nodes of
the graph defined by the network do not form a cycle — there are no feedback
connections in which outputs of the model are fed back into itself (see Fig. 3.3).
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Figure 3.3: Schematic representation of a generic architecture of a feedforward
neural network.

The first layer of a FFNN is the ‘input layer’. No computation is involved with
this layer, in fact, it just contains the inputs x1, x2, . . . , xn of the neural network.
Thus, the number of neurons in this layer matches the number of input features.
Conversely, the last layer is called the ‘output layer’. The number of neurons in this
layer is determined by the number of elements of the output vector. For instance,
in a general multiclass classification scenario, the number of neurons of the output
layer is usually set equal to the number of classes involved in the classification.

Between the input and output layers stand a number of ‘hidden layers’, which
also contain a number of neurons. Networks containing exactly one hidden layer
are generally called ‘shallow’, in contrast to ‘deep’ networks, which contain more
than one hidden layer. The number of layers and the number of neurons contained
in each hidden layer represent important hyperparameters, since they can greatly
affect the function approximation, as well the training process. Fig. 3.3 shows a
schematic representation of the architecture of a feedforward network.

The training phase implies modifying the weights and the biases of the neurons
as to minimize the error we make on the training samples that are fed into the
network.

During training, the forward propagation of the input x to the hidden units up
to the output layer produces a scalar cost. One of the most effective algorithms used
for changing the weights of the neurons in a network in response to its output values
is ‘backpropagation’ [17]. Often simply called backprop, it allows the information
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from the cost to then flow backward through the network in order to compute the
gradient.

Backprop uses the chain rule of calculus to compute the derivatives of functions
formed by composing other functions whose derivatives are known. Once we have
the error derivatives for one layer, we can use them to compute the error derivatives
for the neurons in the previous layers.

For supervised learning, we choose a loss function L that is computed in terms
of the target (the correct outputs of the training set), and the output vector of
the network. Since the output vector depends on the input vector x and all the
weights and biases of the neurons w, we can write:

L = L(yÍ, y(x, w)) (3.12)

In order to propagate the correction backwards, we need to compute the partial
derivatives of the loss function with respect to the weights and biases:

∂L(w)
∂wk

i,j

(3.13)

where k indicates the layer to which the neuron belongs, i refers to the number of
the neuron of this layer (i.e., the one that receives the input), and j the number of
the neuron of the previous layer whose output is the input to the current neuron.
It is useful to introduce δkj , that by definition is the local gradient of the jth neuron
in the kth layer. This represents the partial derivative of the loss function with
respect to the input zkj of the activation function of the considered neuron.

δkj := ∂L(w)
∂zkj

(3.14)

The partial derivative can be easily computed using the chain rule. For instance,
in the output layer:

∂Lj(w)
∂wout

j,i

= ∂Lj

∂yj

∂yj
∂wout

j,i

(3.15)

Backpropagation is a quite simple algorithm, although for neural networks with
many neurons and layers it may become computationally expensive. There are
many techniques that have been employed to make the learning process faster, like
stochastic gradient descent and adaptive learning rate.

Weight initialisation is also crucial for effectively training FFNNs: the initial
weights must break the symmetry of the system. In fact, if two hidden neurons with
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the same activation function are connected to the same input they are updated
accordingly, so that redundancy is introduced in the system.

Heuristics suggest that it is convenient to initialise the weights randomly with
a distribution centred in zero. The most common distributions adopted for this
purpose are the uniform distribution or the Gaussian distribution.

3.3 Recurrent neural networks

Recurrent neural networks are a family of neural networks used for processing
sequential data. RNNs ccan scale to longer sequences than would be practical for
networks without sequence-based specialization, like FFNNs. Also, the majority of
recurrent networks are able to process sequences of variable length.

Within our work, we use RNNs to operate on sequences that contain vectors x(t)

with the time step index t ranging from 1 to τ . The time step index reflects the
passage of time in the real world (and not only the position in the sequence). The
main idea behind the development of RNNs is to include cycles in the computational
graph. These cycles represent the influence of the past values of the time series on
its own value at the current time step.

A computational graph is a formal way of defining the structure of a set of
computations, such as the ones involved in mapping inputs and parameters to
outputs and loss in FFNNs. The intuition of chaining events and/or data into a
computational graph that has a repetitive structure is called unfolding.

For instance, we consider the classical form of a dynamical system:

s(t) = f(s(t−1); θ) (3.16)

where s(t) is called the state of the system. We say that Eq. 3.16 is recurrent
because the definition of s at a certain timestamp t depends on the same definition
at time t− 1.

For a finite number of steps τ , we can unfold the graph by applying the definition
exactly t− 1 times. For instance, for τ = 3 time steps:

s(3) = f(s(2); θ) (3.17)
= f(f(s(1); θ); θ) (3.18)

By repeatedly unfolding the equation using the definition, we have yielded an
expression that does not involve recurrence. The expression can be represented by
a traditional directed acyclic graph, as illustrated in Fig. 3.4.
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Figure 3.4: The classical dynamical system described by Eq. 3.16 illustrated as
an unfolded computational graph. The function f maps the state at time t to the
state at t + 1.

Now we consider the more general case of a dynamical system driven by an
external signal x(t). Usually, recurrent neural networks use a variable h to compute
the values of their hidden units, which represent their state. It is computed as:

h(t) = f(h(t−1), x(t); θ) (3.19)

While the RNN is trained to predict the future state from the past, the network
typically learns to use h(t) as a lossy summary of the task-relevant aspects of the
past sequence of inputs up to t. Depending on the training criterion, the summary
might selectively keep some aspects of the past sequence and discard others. For
instance, in the context of language modelling, in order to predict the next word
given previous words, it may not be necessary to store all of the information in
the input sequence, but rather only enough information to predict the rest of the
sequence. Fig. 3.5 depicts a recurrent network that processes information from the
input x by incorporating it into the state h that is passed through time.

Figure 3.5: (Left) Circuit diagram of a recurrent network with no outputs, where
the black square indicates a delay of 1 time step. (Right) The same network seen
as an unfolded computational graph. Each node is associated with a single time
instance.
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3.3.1 Long Short-Term Memory

One of the appeals of RNNs is the idea that they might be able to connect previous
information to the present task, such as using previous video frames might inform
the understanding of the present frame. Sometimes, we only need to look at recent
information to perform the present task. For example, consider a language model
trying to predict the next word based on the previous ones. If we are trying to
predict the last word in “the clouds are in the sky" we don’t need any further
context – it’s pretty obvious the next word is going to be sky. In such cases, where
the gap between the relevant information and the place that it’s needed is small,
RNNs can learn to use the past information.

But there are also cases where we need more context. If we try to predict the
last word in the text “I grew up in France, so I speak fluent French". Recent
information suggests that the next word is probably the name of a language, but
if we want to narrow down which language, we need the context of France, from
further back. It’s entirely possible for the gap between the relevant information
and the point where it is needed to become very large. Unfortunately, as that gap
grows, RNNs become unable to learn to connect the information. The problem has
been explored in depth in [18] and in [19].

Long Short-Term Memory networks — usually called “LSTMs" — are a special
kind of RNNs that are capable of learning long-term dependencies, as they are
explicitly designed to avoid the long-term dependency problem. Introduced by
Hochreiter and Schmidhuber (1997) [20], they were refined and popularized by
many people in following works. They work tremendously well on a large variety
of problems, and are now widely used.

All recurrent neural networks have the form of a chain of repeating modules
of neural network. In standard RNNs, as we can see in Fig. 3.6a, this repeating
module will have a very simple structure, such as a single tanh layer. The key
to LSTMs is the cell state, the horizontal line running through the top of the
diagram in Fig. 3.6b. The cell state is kind of like a conveyor belt. It runs straight
down the entire chain, with only some minor linear interactions. It’s very easy
for information to just flow along it unchanged. The LSTM module does have
the ability to remove or add information to the cell state, carefully regulated by
structures called gates. Gates are a way to optionally let information through.
They are composed of a sigmoid neural net layer and a pointwise multiplication
operation.

First, we have the “forget gate”. This gate decides what information should be
thrown away or kept. Information from the previous hidden state — that contains
information on previous inputs — and information from the current input is passed

26



Neural networks

(a)

(b)

Figure 3.6: (a) The repeating module in a standard RNN, which usually contains a
single layer. (b) The repeating module in an LSTM, which contains four interacting
layers.

through the sigmoid function. Values come out between 0 and 1. The closer to 0
means to forget, and the closer to 1 means to keep.

To update the cell state, we have the “input gate”. First, we pass the previous
hidden state and current input into a sigmoid function. That decides which values
are updated by transforming the values to be between 0 and 1, where ‘0’ means
not important, and ‘1’ means important. The cell state gets pointwise multiplied
by the forget vector. This has a possibility of dropping values in the cell state if it
gets multiplied by values near 0. Then, we take the output from the input gate
and do a pointwise addition which updates the cell state to new values that give
us our new cell state.

Last we have the “output gate”. The output gate decides what the next hidden
state should be. First, we pass the previous hidden state and the current input
into a sigmoid function. Then we pass the newly modified cell state to the tanh

27



Neural networks

function. We multiply the tanh output with the sigmoid output to decide what
information the hidden state should carry. The new cell state and the new hidden
is then carried over to the next time step.

3.4 Gradient-based optimization

Gradient descent is one of the most popular algorithms to perform optimization
and by far the most common way to optimize neural networks. Its main usage is
in the training phase of neural networks, where it is employed to minimize the loss
function, i.e., the function in charge of evaluating a candidate model. In general,
gradient descent is a way to minimize an objective function J(θ) parameterized by
a model’s parameters θ ∈ Rd by updating the parameters in the opposite direction
of the gradient of the objective function ∇θJ(θ) w.r.t. to the parameters. Indeed,
we can interpret the gradient vector as the “direction” of fastest increase of the loss
function. Since we want to minimize the loss function, the “-” sign will do that
(as in Eq. 3.20). The learning rate η determines the size of the steps we take to
reach a (local) minimum. In other words, we follow the direction of the slope of
the surface created by the objective function (the loss function) downhill until we
reach a valley.

There are several variants of gradient descent, which differ in how much data we
use to compute the gradient of the objective function. Depending on the amount
of data, we make a tradeoff between the accuracy of the parameter update and the
time it takes to perform an update.

Vanilla gradient descent, also known as batch gradient descent, computes the
gradient of the cost function with respect to the parameters θ of the network
(weights and biases) for the entire training set:

θ = θ − η∇θJ(θ) (3.20)

As we need to calculate the gradients for the whole dataset to perform just one
update, batch gradient descent can be very slow and is intractable for datasets
that don’t fit in memory. Also, batch gradient descent does not allow us to update
our model online, i.e., with new examples on-the-fly. Using this method, we update
our parameters in the opposite direction of the gradients with the learning rate
determining how big of an update we perform. Batch gradient descent is guaranteed
to converge to the global minimum for convex error surfaces and to a local minimum
for non-convex surfaces.

Stochastic Gradient Descent (SGD) in contrast performs a parameter update
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for each training sample x(i) and target y(i):

θ = θ − η∇θJ(θ; x(i); y(i)) (3.21)

Batch gradient descent performs redundant computations for large datasets,
as it recomputes gradients for similar examples before each parameter update.
SGD does away with this redundancy by performing one update at a time. It is
therefore usually much faster and can also be used to learn online. While batch
gradient descent converges to the minimum of the basin the parameters are placed
in, SGD’s fluctuation, on the other hand, enables it to jump to new and potentially
better local minima. On the other hand, this ultimately complicates convergence
to the exact minimum, as SGD will keep overshooting. However, it has been shown
that when we slowly decrease the learning rate, SGD shows the same convergence
behaviour as batch gradient descent, almost certainly converging to a local or the
global minimum for non-convex and convex optimization respectively.

Mini-batch gradient descent finally takes the best of both worlds and performs
an update for every mini-batch of n training samples:

θ = θ − η∇θJ(θ; x(i:i+n); y(i:i+n)) (3.22)

Despite this, vanilla mini-batch gradient descent, however, does not guarantee
good convergence, but offers a few challenges that need to be addressed. These
include, for instance:

• Choosing a proper learning rate. A learning rate that is too small leads to
painfully slow convergence, while a learning rate that is too large can hinder
convergence and cause the loss function to fluctuate around the minimum or
even to diverge.

• Deciding a good learning rate schedule by e.g. annealing, thus reducing
the learning rate according to a pre-defined schedule or when the change
in objective between epochs falls below a threshold. These schedules and
thresholds, however, have to be defined in advance and are thus unable to
adapt to a dataset’s characteristics.

• The same learning rate applies to all parameter updates. If our data is sparse
and our features have very different frequencies, we might not want to update
all of them to the same extent, but perform a larger update for rarely occurring
features.

To overcome these problems, a bunch of gradient descent optimization algorithms
have been proposed in recent years. Among these algorithms, Adam [21] has stood
out for being extremely powerful in optimizing deep neural networks.
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Adam is an adaptive learning rate method, which means, it computes individual
learning rates for different parameters. Its name is derived from adaptive moment
estimation, and the reason it’s called that is because Adam uses estimations of first
and second moments of gradient to adapt the learning rate for each weight of the
neural network.

Indeed, Adam computes two estimates of the first moment (the mean) and
the second moment (the uncentered variance) of the gradients. Since they are
initialized as vectors of 0s (then biased towards zero), we counteract the bias by
computing bias-corrected first and second moment estimates. We finally use these
two values to update the parameters θ.

Alg. 1 portraits the details of the Adam optimization algorithm. As proposed
by the authors of Adam, default values of 0.9 for β1, 0.999 for β2, and 10−8 for Ô
are used. These values empirically showed how Adam compares favorably to other
adaptive learning algorithms.

3.5 Regularization strategies

A central problem in machine learning is how to make an algorithm that performs
well on the training data as well as the testing data — namely new inputs. Many
techniques known collectively as ‘regularization’ are designed to reduce the test
error (i.e., the error on the test set) possibly at the expense of increased training
error (i.e., the error on the training set). Thus, we define regularization as any
modification to a learning algorithm that is intended to reduce its generalization
error and to prevent overfitting.

There are a lot of different regularization strategies. Some put extra constraints
on a machine learning model, such as adding restrictions on the parameter values.
If chosen carefully, these extra constraints and penalties can lead to improve per-
formance on the test set. Sometimes these constraints and penalties are introduced
to encode specific kinds of prior knowledge, or to express a generic preference for a
simpler model class in order to promote generalization. Other forms of regulariza-
tion, known as ensemble methods, combine multiple hypotheses that explain the
training data.

In the context of deep learning and neural networks, most regularization strate-
gies are based on regularizing estimators, so that it works by trading increased bias
for reduced variance. What this means is that controlling the complexity of the
model is not a simple matter of finding the model of the right size, with the right
number of parameters, but of finding that the best fitting model — in the sense
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Algorithm 1 Adam optimizer algorithm. All operations are element-wise, even
powers.

1: procedure Adam(α, β1, β2, J, θ0)
2: ó α is the stepsize
3: ó β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ó J (θ) is the objective function to optimize
5: ó θ0 is the initial vector of parameters which will be optimized
6: ó Initialization
7: m0 ← 0 ó First moment estimate vector set to 0
8: v0 ← 0 ó Second moment estimate vector set to 0
9: t← 0 ó Timestep set to 0

10: ó Execution
11: while θt not converged do
12: t← t + 1 ó Update timestep
13: ó Gradients are computed w.r.t the parameters to optimize
14: ó using the value of the objective function
15: ó at the previous timestep
16: gt ← ∇θJ (θt−1)
17: ó Update of first-moment and second-moment estimates using
18: ó previous value and new gradients, biased
19: mt ← β1 ·mt−1 + (1− β1) · gt
20: vt ← β2 · vt−1 + (1− β2) · g2

t

21: ó Bias-correction of estimates
22: m̂t ←

mt

1− βt1
23: v̂t ←

vt
1− βt2

24: θt ← θt−1 − α · m̂t√
v̂t + Ô

ó Update parameters
25: end while
26: return θt ó Optimized parameters are returned
27: end procedure
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of minimizing generalization error — is a large model that has been regularized
appropriately.

3.5.1 Batch Normalization

Batch normalization is a first method of performing regularization. Specifically,
batch norm is used to make the training process of artificial neural networks faster
and more stable through normalization of the input layer by re-centering and
re-scaling [22].

In fact, each layer of a neural network has inputs with a corresponding distri-
bution, which is affected during the training process by the randomness in the
parameter initialization and the input data. The effect of these sources of random-
ness on the distribution of the inputs to internal layers during training is described
as internal covariate shift.

Batch norm was thus initially proposed to mitigate this phenomenon. During
the training stage of networks, as the parameters of the preceding layers change, the
distribution of inputs to the current layer changes accordingly, such that the current
layer needs to constantly readjust to new distribution. This problem is especially
severe for deep networks, because small changes in shallower hidden layers will be
amplified as they propagate within the network, resulting in significant shift in
deeper hidden layers. Therefore, the method of batch normalization is proposed to
reduce these unwanted shifts to speed up training and to produce more reliable
models.

If we use B to denote a mini-batch of size m of the entire training set, we can
denote the empirical mean and variance of B as:

µB = 1
m

mØ
i=1

xi (3.23)

σ2
B = 1

m

mØ
i=1

(xi − µB)2 (3.24)

For a layer of the network with d-dimensional input, x = (x(1), . . . , x(d)), each
dimension of its input is then normalized (i.e., re-centered and re-scaled) separately:

x̂
(k)
i = x

(k)
i − µ

(k)
Bñ

σ
(k)2

B + Ô
(3.25)

where k ∈ [1, d], i ∈ [1, m], and µ
(k)
B and σ

(k)2

B are the per-dimension mean and
variance, respectively.
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Ô is added in the denominator for numerical stability and is an arbitrarily small
constant. The resulting normalized activation x̂(k) have zero mean and unit variance,
if Ô is not taken into account. To restore the representation power of the network,
a transformation step then follows as:

y
(k)
i = γ(k)x̂

(k)
i + β(k) (3.26)

where the parameters γ(k) and β(k) are subsequently learned in the optimization
process.

3.5.2 Dropout

Dropout is a computationally inexpensive but powerful method of regularizing a
broad family of models. Dropout has the effect of making the training process noisy,
forcing nodes within a layer to take on more or less responsibility for the inputs,
simulating a sparse activation from a given layer. Roughly speaking, dropout
can be thought as a method of making bagging practical for ensembles of very
large neural networks. Bagging involves training multiple models, and evaluating
multiple models on each test sample.

Specifically, dropout trains the ensemble consisting of all sub-networks that
can be formed by removing non-output units from an underlying base network, as
illustrated in Fig. 3.7. In modern neural networks, we can effectively remove a unit
from a network by multiplying its output value by zero.

In order to learn with bagging, we define k different models, construct k different
datasets by sampling from the training set with replacement, and then train model
i on dataset i. Dropout aims to approximate this process, but with an exponentially
large number of neural networks. Specifically, to train with dropout, we use a
minibatch-based learning algorithm: each time we load a sample into a minibatch,
we randomly sample a different binary mask to apply to all of the input and hidden
units in the network. The mask for each individual unit is sampled independently
from all of the others. We can tune the hyperparameter of the probability of
sampling a mask value of one — although empirical evidence suggests that a value
of 0.8 for input units and 0.5 for hidden units is most of the times a good choice
[23].

Although the cost per-step of applying dropout to a specific model is negligible,
it reduces the effective capacity of a model. Indeed, the optimal validation set
error is typically lower when using dropout, but this comes at the cost of a much
larger model and many more iterations of the training algorithm. For extremely
large datasets, regularization confers little reduction in generalization error. In
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these cases, the computational cost of using dropout may outweigh the benefit of
regularization.

Figure 3.7: On the left, a sample network with 2 input neurons, 2 hidden neurons,
and 1 output neuron. On the right, all the possible configurations of the same
network after applying a binary mask to all non-output units.

3.6 Training approach

The training phase is by far the most crucial when it comes to minimizing the
error in prediction, since even small changes in some hyperparameter can have an
enormous impact on the performance of the trained model. For this purpose, we
use validation to compute the error of the model on the validation set at the end
of each epoch. In this section, we dig into the optimization of the training phase,
as well as into the design choices that best suit our needs.

As we discussed in Sec. 3.2, a first important parameter of every neural network
is the number of neuron units:

• Input layer. In the input layer, the choice of the number of neurons is quite
straightforward. Since we applied a 5-component PCA to our dataset, we also
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choose 5 units in this layer as to match the input vector size.

• Hidden layers. For selecting the number of hidden layers, as well as the
number of neurons for each hidden layer, we trained models with different
configurations and chose the one that minimized the MSE in the loss function.
In the end, 3 hidden layers were selected, with the 1st and 3rd one containing
20 neurons each, and the 2nd one containing 40 neurons.

• Output layer. As for the output layer, in light of the fact that ours is a
regression task which has to produce a single real number, we use only one
neuron.

The FFNN-based model uses this very configuration, while the RNN-based only
adds an LSTM module before the input layer. Batch normalization and dropout
are added right after every non-output layer. LReLU with α = 0.1 is used as
an activation function. Moreover, the loss function employs the MSE metric to
compute the error. Other important parameters include:

• the number of epochs, which was set to 100;

• the learning rate η, which was set to 10−4;

• the batch size, which was set to 128.

When not specified, we use the so called “yearly training”, i.e., the models are
trained and tested with data from all the months. In Sec. 4.1.4, we compare
the yearly training with the “monthly training”: in monthly training, we train 12
different models, each one on a different month, on a two-year span, and evaluate
them on the same month in the test set, in order to see if any chance of improvement
is there. In short, one model is fed with January data from the training set, and
evaluated on the January data from the test set. This is repeated for each month,
so 12 different predictors are to be trained and evaluated.

In the next chapter, we discuss the results obtained using the dataset described
in Sec. 2 and the FFNN and RNN-based networks here defined, along with the
chosen hyperparameters. The year 2016 is chosen as the split of the training set,
while 2017 and 2018 serve respectively as the validation and test set. In Sec. 4.2, we
explore the possibility of forecasting wind power generation at different prediction
horizons, in order to determine how much difference in prediction accuracy we can
get. As for the forecast approach, we implement the same strategies used in [24] to
manage resources in a Base Station (BS) activation and deactivation, aiming at
reducing energy consumption. For our prediction horizon, we use 6 hours. Thus,
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we make use of the following approaches, using both a feedforward and a recurrent
model:

– 1 NN-6 outputs. A single neural network is used. At time t, the model outputs
the prediction for wind power generation at time slots t + 1, . . . , t + 6;

– 1 NN-1 output. A single neural network is used. The model is trained to
predict the generated power at the next time slot, i.e., t + 1, and it is used in
cascade to predict also the five future samples at time t + 2, . . . , t + 6. This
means that the neural network produces the prediction at time t + 1, namely
ŷt+1, using in input the generation at the previous time slot t, as well as the
generation at times t− 1, t− 2, . . . ; once the value ŷt+1 has been computed,
for predicting the power at time t + 2, the same network is used but it receives
as input the prediction ŷt+1 instead of the real value yt+1 that is unknown.
Similarly, for predictions at time t + 3 and t + 4, predictions are used instead
of the samples for the unknown values of the input;

– 6 NN-1 output. Six different neural networks are used. Each network is
dedicated to the prediction of the generated wind power at a given time
lag. This means that the 6 future samples are separately predicted, using 6
different network, but the inputs are as in the previous case: predictions are
used instead of missing samples whenever needed.
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Chapter 4

Discussion of results

The following is a discussion of the results of our experiments made with the
training approaches specified in Sec. 3.6. All the results, except for the ones
described in Sec. 4.1.4, make use of the yearly training approach, i.e., a single
predictor is trained over the entire training set. In Sec. 4.1.4, on the other hand,
we make a comparison between the yearly and monthly approach. In the latter, a
different predictor is trained for each month in the training set and evaluated on
the corresponding month in the test set.

When not specified, we use data from Germany taken with hourly resolution
from 2016 to 2018. Other data used in the following include the same data but
with quarter-hourly resolution, and data from the United Kingdom taken with
hourly granularity. The main difference between DE and UK data is the maximum
and minimum values. In particular the maximum value registered in Germany is
greater than twice the maximum value in the UK, while the median value in the
latter is almost three times less than the median value in the former.

4.1 Base results

Once the design phase of our neural network models has ended, we test them using
a variety of methods. First of all, we compare how FFNN and RNN perform on our
base dataset (i.e., DE data with hourly resolution) using the metrics defined in Sec.
3.1 and figures to visualize the data. Then, we compare the results obtained by
drawing the data from the same geographic location, but with different resolution
(namely, hourly and quarter-hourly granularity). Similarly, we draw a comparison
between countries, i.e., DE and UK. We also take into account how these results
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can vary according to the month, so that a different prediction accuracy can be
achieved by pointing out the month in which the prediction actually takes place.

4.1.1 Comparing FFNN and RNN

In this section, we make a simple comparison between the FFNN and RNN models
by training them with our base dataset, i.e., DE data with hourly resolution (from
Jan 1st, 2016 to Dec 31st, 2018). We train them using 2016 data, while we test
them with the last year, 2018. The 2017 data is reserved as a validation set, so
that it provides an unbiased evaluation of a model fit on the training dataset while
tuning the model’s hyperparameters.

Fig. 4.1 and Fig. 4.2 show respectively the training loss (MSE) for FFNN and
RNN. Although we train them both for 100 epochs, additional tests were made
using a larger number of epochs. Nonetheless, we did not notice a significant
reduction in terms of training or validation loss, nor in accuracy on the test set for
both models. We notice a slight difference between the two concerning the pace of
training. Indeed, the RNN-based predictor is able to learn faster with respect to
FFNN, although this difference becomes negligible as the epochs go by.

Both models keep their training and validation error more or less constant after
a number of epochs, which is higher for the FFNN. Despite this, the order of error
is the same — with FFNN showing a slightly larger difference between training
and validation error in all epochs and a slightly larger validation error overall than
RNN. For both models, the training error exceeds the validation error only in the
first few iterations, while in further epochs the latter error is always lower than
the former. Nevertheless, no increase in validation error was detected during each
experiment, suggesting that no overfitting occurs and the early stopping technique
did not impact the training of our models.

Fig. 4.3a and Fig. 4.4a show the predictions obtained with, respectively, the
FFNN and RNN models in a 72-hour stretch, randomly selected in the part
of the test set, which corresponds to January 2018. Also in this case, we see no
significant difference between the two approaches. Both models tend to overestimate
local maxima and underestimate local minima. Nevertheless, it is evident that
RNN performs better than FFNN when these levels of production occur. This
is undoubtedly due to the memory mechanism, which characterizes the RNN,
explained in Sec. 3.3.1.

Overall, both models perform very well on the test set. Tab. 4.1 sums up the
results in terms of MAE and MAPE achieved by FFNN and RNN, showing the
variation of these errors in each month.
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Figure 4.1: Training and validation loss (MSE) of the FFNN-based model, using
DE data with hourly resolution.

Figure 4.2: Training and validation loss (MSE) of the RNN-based model, using
DE data with hourly resolution.
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(a)

(b)

Figure 4.3: (a) FFNN prediction in actual wind generation compared to ground
truth in a 72-hour stretch drawn from the test set (b) The resulting Bland-Altman
plot considering all the test set.
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(a)

(b)

Figure 4.4: (a) RNN prediction in actual wind generation compared to ground
truth in a 72-hour stretch drawn from the test set (b) The resulting Bland-Altman
plot considering all the test set.
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FFNN RNN
Month MAE MAPE MAE MAPE
January 8022.5 24.4 6970.4 19.8
February 7645.4 23.9 6259.6 19.1
March 7015.0 20.6 5534.2 17.2
April 7128.9 20.8 5698.4 17.6
May 5861.2 18.5 4997.5 15.0
June 6005.9 19.0 4295.5 13.2
July 4208.7 12.4 2987.0 10.4

August 4877.3 14.6 3073.8 11.2
September 5208.8 16.7 3833.9 13.4
October 5644.5 18.3 4932.6 15.8
November 6567.2 19.9 5201.5 16.7
December 7440.1 22.0 6187.5 19.4

5984.2 18.9 4566.1 14.2

Table 4.1: Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) by FFNN and RNN on the test set, with monthly granularity.

FFNN achieved an average MAE of 5984.2 and a MAPE of 18.9. RNN, on the
other hand, achieved a MAE of 4566.1 and a MAPE of 14.2 — thus, the RNN
model sees a decrease of the median absolute error of around 30%, which trades
with the larger number of trainable parameters. Both FFNN and RNN perform
around twice as better in the summer months with respect to the winter months,
with a minimum MAPE of 10.4 in July (RNN) and a maximum MAPE of 24.4
in January (FFNN). Also, the median error for both FFNN and RNN is actually
close to the MAE. For FFNN, the median error was 6015.6 (compared to a MAE
of 5984.2), while for RNN it was 4377.1 (compared to 4566.1). This points out
that the prediction is not biased towards an overestimation or an underestimation
of wind power generation.

We can state that the results clearly show an advantage in using RNN with
respect to FFNN, as we would expect in this kind of scenario. Nonetheless, we had
to take into account the increase in the number of trainable parameters (≈ 20% in
our case), which also leads to a slight increase in terms of training time (around
10%). Overall, we still consider using the RNN approach as the more suitable,
especially in winter months when the difference in terms of MAE is larger than in
summer5. Moreover, RNN seems to be more conservative when we have to predict
very high or very low values of power, so that the error when an overestimation (or
underestimation) takes place is slighly lower with respect to FFNN.
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4.1.2 Comparing hourly and quarter-hourly resolutions

In this section, we compare the results we get using the dataset described in
Sec. 4.1.1 and the same dataset but taken with quarter-hourly resolution. As for
the model selection, we still implement both the feed-forward and the recurrent
networks.

The choice of the time resolution — which, in our case, also matches the
prediction horizon — can be critical in most systems, as different sampling rates
can enable more or less accurate wind power forecasting. Although literature
categorizes both hourly and quarter-hourly prediction horizons as short-term
(opposed to medium-term and long-term, whose ranges span respectively from
approximately 6 hours to 1 day, and from 1 day up to even a month), research
[25] has suggested that even small changes in the metholodogy or the temporal
resolutions can yield significant performance improvements.

We compare the train and validation losses obtained with quarter-hourly res-
olution with those with hourly resolution, with FFNN and RNN. Figs. 4.5 and
4.6 report the losses with FFNN and RNN methods, respectively, for the training
(blue) and the validation (orange) sets. From these figures, it is evident that the
curves are smoother and more regular, particularly in the first 5 to 10 epochs. Also,
both the training and validation error at the end of the 100 iterations is slightly
lower for both FFNN and RNN.

Fig. 4.7a and 4.8a show the predictions made using FFNN and RNN, respectively.
For simplicity and comparison purposes, we still plot only a 72-hour stretch
excluding intermediate values (i.e., contemplating only full hours). Although most
of the aforementioned considerations are still valid in this experiment, we underline
that the FFNN-based model trained with quarter-hourly resolution data achieved
an interesting 16.3% MAPE (compared to 18.9). RNN also improved by a margin
of almost 2% (14.2% down to 12.5%). This indicates that, although negligible,
some improvements can be made if we are able to gather data with higher and
higher resolution.

Last but not least, we want to point out that models trained with quarter-hourly
resolution data perform fine when tested on hourly-resolution data. For instance,
training an RNN-based model with quarter-hourly resolution data from 2016 and
2017 yields a MAPE of 12.7% when tested on 2018 data with hourly resolution.
This means that higher-resolution data can help neural networks to capture more
information and to detect patterns. The contrary is not necessarily true: in fact,
when training an RNN with hourly-resolution data from 2016 and 2017 and testing
it on quarter-hourly resolution data from 2018, we get a MAPE of 15.9% — hence,
a slight deterioration in performance.
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Figure 4.5: Training and validation loss (MSE) of the FFNN-based model, using
DE data with quarter-hourly resolution.

Figure 4.6: Training and validation loss (MSE) of the RNN-based model, using
DE data with quarter-hourly resolution.
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(a)

(b)

Figure 4.7: (a) FFNN prediction in actual wind generation compared to ground
truth in a 72-hour stretch drawn from the test set, considering DE data with
quarter-hourly resolution (b) The resulting Bland-Altman plot considering all the
test set.
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(a)

(b)

Figure 4.8: (a) RNN prediction in actual wind generation compared to ground
truth in a 72-hour stretch drawn from the test set, considering DE data with
quarter-hourly resolution (b) The resulting Bland-Altman plot considering all the
test set.
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4.1.3 Comparing Germany and United Kingdom

In this section, we want to test if the same architecture and training approach used
in Sec. 4.1.1 to predict wind power generation in Germany can still yield effective
results when we contemplate data with different characteristics, e.g., from different
geographic locations. In this case, we gather wind data from the United Kingdom
(UK) in the same exact time period (2016-2018).

The features are precisely the same as with DE data, and the preprocessing of
the data is the same as well. As for the DE case, we normalize every feature into
the range (0, 1), then we perform PCA with 5 components. In the UK scenario,
these components explain 91% of the variance of the original dataset, so slightly
less than the 93% we got with Germany. As explained at the beginning of this
chapter, DE and UK data offer different characteristics, especially in the range of
values, as well as the average and median value.

Fig. 4.9 and Fig. 4.10 show the training and validation losses for the FFNN
and RNN, respectively. With respect to what we observed in Sec. 4.1.1 when
comparing losses, in this case there is almost no difference in number of epochs to
converge between the two models, while this difference was very noticeable with
DE data. Also in this case, we have a slightly lower training and validation error
with RNN, and no early stopping was required to avoid overfitting the data.

The predictions shown in Fig. 4.11a and in Fig. 4.12a confirm most of the
statements we shared while dealing with DE data. The RNN model has an edge
when it comes to predicting rapidly changing values, as well as in overall accuracy.
Indeed, RNN achieved a MAPE of 15.5, while FFNN is less accurate with a MAPE
of 18.7. This means that, with UK data, the difference between the accuracy of
RNN and FFNN is less pronounced than the one we obtained with Germany (14.2
and 18.9). It is also worth to notice that the difference between winter and summer
is less pronounced as well: for example, with RNN, we have a maximum MAPE
of 18.2 in December and a minimum MAPE of 11.6 in July. In Germany, with
the same model, the maximum and minimum values were respectively 19.8 and
10.4 (see Tab. 4.1). Overall, we can say that our model architectures are able to
generalize well when fed with data with different geographic sources and that offer
separate characteristics.
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Figure 4.9: Training and validation loss (MSE) of the FFNN-based model, using
UK data with hourly resolution.

Figure 4.10: Training and validation loss (MSE) of the RNN-based model, using
UK data with hourly resolution.
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(a)

(b)

Figure 4.11: (a) FFNN prediction in actual wind generation compared to ground
truth in a 72-hour stretch drawn from the test set, considering UK data with hourly
resolution. (b) The resulting Bland-Altman plot considering all the test set.
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(a)

(b)

Figure 4.12: (a) RNN prediction in actual wind generation compared to ground
truth in a 72-hour stretch drawn from the test set, considering UK data with hourly
resolution. (b) The resulting Bland-Altman plot considering all the test set.
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4.1.4 Comparing yearly and monthly training

The monthly training, defined in Sec. 4.1.1, consists of training a neural network
with all the same months in the training set and testing it with the same month
of the test set. This means that 12 different predictors are to be trained, one per
each month. In our case, each predictor (e.g., the one for January) is fed with data
from 2016 and 2017 and is tested on the same month of the year 2018.

The main problem that arises in this scenario is overfitting, since the training
samples are extremely limited. The weak point of this approach, indeed, is that 3
years of data actually correspond to 3 months of data, since every predictor only
takes its “slice”. Moreover, if the model overfits the training data, it is possible that
the performance deteriorates as the epochs go by. In our experiment, we notice
that the best performing model (for both FFNN and RNN) is around the 30th
epoch, after which the prediction accuracy begins to decrease slowly.

Yearly Monthly
Month FFNN RNN FFNN RNN
January 24.4 19.8 23.7 19.1
February 23.9 19.1 23.4 18.5
March 20.6 17.2 20.6 16.4
April 20.8 17.6 17.9 16.7
May 18.5 15.0 17.9 14.0
June 19.0 13.2 17.1 12.1
July 12.4 10.4 11.0 9.9

August 14.6 11.2 14.1 9.8
September 16.7 13.4 16.8 12.8
October 18.3 15.8 17.7 16.3
November 19.9 16.7 19.6 17.6
December 22.0 19.4 25.0 21.4

18.9 14.2 17.0 13.8

Table 4.2: Mean Absolute Percentage Error (MAPE) with FFNN and RNN, using
the yearly and monthly training strategy, with monthly granularity.

The results are shown in Tab. 4.2. We can see that the monthly training yields,
on average, a slightly lower error in prediction. In particular, for both FFNN and
RNN, the monthly training approach seems to be beneficial in the summer months,
while in the winter this is not true, or at least it is not for all the months. Moreover,
the FFNN-based predictor lowers the average MAPE from 18.9 to 17.0 (thus, a
non-negligible margin). The same cannot be said for RNN, which only gains a
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0.4% in average MAPE (from 14.2 down to 13.8). In the end, training a different
model for each month seems to be only moderately beneficial, especially because it
comes at a cost of training time, lack of generalization, and overfitting problems.

4.2 Hours-ahead forecast

Short-term wind power forecasting is an extremely important field of research for
the energy sector, as the system operators must handle an important amount of
fluctuating power from the increasing installed wind power capacity. The time
scales concerning short-term prediction are in the order of some days for the forecast
horizon and from minutes to hours for the time-step [26].

In this section, we explore the possibility of forecasting wind power generation at
different prediction horizons in order to determine how much difference in prediction
accuracy we can get. For obvious reasons, we expect the accuracy to decrease
as the forecast horizon increases. For details about the difference approaches in
hours-ahead forecast, see Sec. 3.6.

Hours-ahead 1 FFNN-6 outputs 1 FFNN-1 output 6 FFNN-1 output
t+1 18.9 18.9 18.9
t+2 36.0 35.9 34.2
t+3 39.5 38.6 36.4
t+4 45.8 42.2 39.0
t+5 47.7 44.3 39.9
t+6 49.4 45.6 40.4

Table 4.3: Mean Absolute Percentage Error (MAPE) on the DE dataset, with
the different approaches at different time lags implemented using a FFNN.

Hours-ahead 1 RNN-6 outputs 1 RNN-1 output 6 RNN-1 output
t+1 14.2 14.2 14.2
t+2 22.7 22.4 22.4
t+3 28.8 27.8 27.5
t+4 34.2 33.5 32.8
t+5 38.8 36.1 35.0
t+6 39.4 37.4 35.9

Table 4.4: Mean Absolute Percentage Error (MAPE) on the DE dataset, with
the different approaches at different time lags implemented using a RNN.
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As we can see from Tab. 4.3 and Tab. 4.4, the last approach is the more suited
for predicting wind power generation in a long prediction horizon. As a matter
of fact, all methods perform very similar with a 2 or 3 hours-ahead forecast, as
expected. In this case, the 6 NN-1 output approach only has a slight edge over the
other two approaches, while this gap extends rapidly when the prediction horizon
goes up to 5-6 hours. Nonetheless, the accuracy decreases rapidly for both FFNN
and RNN, meaning that the prediction becomes less and less reliable as the horizon
becomes larger.

4.3 Estimating errors

In this section, we try to estimate errors and apply this estimation to predict how
much the real value is going to differ from the predicted value. As stated in Sec.
1, in traditional power plants we need to guarantee the balance of demand and
supply of energy and to ensure adequate power quality. If we are able to have some
sort of feeling of what the prediction error is going to be, then we could potentially
employ non-renewable energy sources to guarantee this equilibrium.

In this first step, we want to look at how the error is distributed across our base
results achieved in Sec. 4.1. In order to do this, we use an unsupervised outlier
detection method based on Support Vector Machines, called “OneClassSVM”. The
ν parameter of this algorithm is an upper bound on the fraction of margin errors
and a lower bound of the fraction of support vectors relative to the total number of
training examples. For example, we set it to 0.05, so we are guaranteed to find at
most 5% of our training samples being misclassified (at the cost of a small margin)
and at least 5% of our training samples being support vectors. In this case, our
training samples correspond to the prediction errors.

As we can see in Table 4.5, a large fraction of the worst predictions made by
the recurrent neural network is during the winter season, especially in January and
February. During these months, the prediction is considerably worse than in the
spring or in the summer. This is true for both DE and UK, although in the latter
it is a little less evident, as data shows.

As for the error distribution per hour, we did not notice any pattern or correlation.
Fig. 4.13 shows the error distribution per hour for the DE data. The daytime hours
accounted for roughly the 52% of the total, while the nighttime hours accounted
for the remaining 48%. Also conjugating this distribution over the single month or
season did not result in any pattern or significant correlation. Thus, we can say
that our prediction accuracy at a particular timestamp is not conditioned by the
hour at which the prediction takes place.
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% over total DE hourly DE hourly (seasonal) UK hourly DE q-hourly
January 16%

43%
12% 15%

February 15% 17% 15%
March 12% 10% 11%
April 6%

17%
8% 7%

May 7% 4% 6%
June 4% 8% 6%
July 4%

14%
2% 3%

August 7% 5% 5%
September 3% 6% 5%
October 8%

26%
9% 7%

November 9% 11% 10%
December 9% 9% 10%

Table 4.5: Prediction error distribution per month over the total prediction errors
outliers. The predictions refer to the ones made in Sec. 4.1 using the RNN best
performing model.

Figure 4.13: Prediction error distribution per hour over the total prediction errors
outliers.

Next, we perform some percentile analysis to detect whether particularly high
or particularly low target values of wind power generation could result in a loss of
prediction accuracy. In particular, we want to know if our neural networks are able
to keep the errors low when the ground truth is an anomaly or an outlier value.
In order to do this, we look at the distribution of the prediction errors over the
percentile values in the test set.
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(a)

(b) (c)

Figure 4.14: (a) Percentile analysis for the DE dataset taken with hourly resolu-
tion. (b) As for (a), but with quarter-hourly resolution. (c) As for (a) but using
UK data.

Fig. 4.14a shows that the lowest 5% values in the entire test set (DE) account
for 23% of the worst made predictions. The next 10% lowest values (i.e., the range
5-15%) also account for 14%. In a similar fashion, the predictions made for the
highest 5% values (range 95-100%) constitute a non-negligible 17%. Likewise, a
different time resolution (Fig. 4.14b) or different geolocations (Fig. 4.14c) achieved
close results. This suffices to say that the prediction accuracy heavily decreases
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when we have to predict maxima or minima of power generation. This is expected as
we employed several regularization techniques to prevent the model from overfitting
on few extreme cases. We did not try to build two models — one on the “normal”
data and one on outliers — as we are dealing with time-series data, neither we
considered removing outliers from the dataset.

At this point, we know that anomalies in the target feature can cause our models
to make bad predictions in the short-term time horizon. We investigate this aspect
even further, suggesting that if the sample to be predicted — namely, yt+1 —
differs more than a certain threshold from the samples immediately before, then
the prediction can result in a loss of accuracy.

To verify this, we use the following algorithm. We name n the number of samples
that we consider “immediately before” (yt−n+1, yt−n+2, . . . , yt) and we compute the
average of their values, that we call µt. Then, we take the upcoming value yt+1 and
compute the percentage difference with respect to µt. For instance, if µt = 100MW
and yt+1 = 115MW , the percentage difference is 15. Thus, we construct 5 different
classes, where each class contains all the samples whose percentage difference is not
greater than a certain threshold, but greater than the threshold immediately before
(we use thresholds 10, 20, 30, 40, 50). In the above example, the sample would be
put in the class with threshold 20, since 15 is greater than the first threshold 10,
but less than 20.

Once this is all set, we compute the prediction error for all the entries in a
class, and take their average value along with the standard deviation. Fig. 4.15a,
Fig. 4.15b, and Fig. 4.15c show the average error and deviation per class using
respectively n = 3, n = 5, n = 7 with the RNN architecture on the DE dataset. As
we can see, the prediction error increases almost linearly as long as the percentage
difference increases. For instance, if we take n = 3, we see that the average MAPE
made in the prediction phase when the percentage difference is not greater than
10 is 7.8%, while it goes up to 35.7% when this difference is greater than 40 and
not greater than 50. The same experiment was made on the UK data (Fig. 4.17),
showing similar results.

As a matter of fact, our models perform quite well when the data remains more
or less constant over time. Nonetheless, the performance deteriorates rapidly when
the generated wind power changes suddenly by a large margin. This behavior is
consistent with the one we discussed in Sec. 4.1, where we noticed an overestimation
of local maxima and an underestimation of local minima. Indeed, these peak values
contribute to the classes with an high percentage difference, thus resulting in an
increase of average error.
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(a)

(b)

(c)

Figure 4.15: (a) Average prediction accuracy per class where each class indicator
is the threshold percentage difference for the upcoming sample with respect to the
average of the n = 3 preceding samples (DE). (b) As for (a), but with n = 5. (c)
As for (a), but with n = 7.
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(a)

(b)

(c)

Figure 4.16: (a) Average prediction accuracy per class where each class indicator
is the threshold percentage difference for the upcoming sample with respect to the
average of the n = 3 preceding samples (UK). (b) As for (a), but with n = 5. (c)
As for (a), but with n = 7.
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4.4 Hybrid scenario: solar and wind

So far we have discussed solely about wind power generation and how its prediction
can be affected by a variety of factors. We also underlined some important
characteristics of wind power, including its extreme variability, discontinuity, and
the presence of a clear correlation with seasons. In this section, we explore the
possibility of including solar energy in the context of a power grid, and forecasting
it alongside wind power.

The main advantage of using solar energy is its extreme predictability. During
the day, in fact, the generated solar power usually follows a precise curve, while
reaching and keeping a value of 0 during the night. The production of solar energy
in the Northern Hemisphere is naturally higher in the summer than in the rest of
the months, as we can see in Fig. 4.17a. From this graph, which plots the total
solar power generation in Germany in 2018, it is evident that, aside night hours,
the solar track is almost continuous. This is especially true when we compare it to
the total wind power generation in the same period (Fig. 4.17b). The wind graph
exposes its maxima in the winter (extreme left and extreme right), while keeping
blatantly low values in the summer (center). Also, in this case we have no clear
distinction between the day and the night (see also Fig. 4.13).

The total solar and wind power generation is shown in Fig. 4.17c. The first
thing to notice is that, despite the bigger “density” in the summer, the minimum
and maximum value of each month (i.e., if we ideally divide the graph in 12
equally wide sections) is very similar. Indeed, in the winter months the wind power
generation is predominant and actually reaches its peak value, while the solar
energy production is extremely limited. Diversely, the solar energy is prevalent in
the summer. This also explains the “density”, which reflects the intermittent nature
of the solar. This translates in a sort of “balance effect”, in which the transition
between different months and seasons is almost seamless, when we consider their
aggregate. Nevertheless, it is worth to notice that the cumulative wind power
exceeds the cumulative solar power in each month, with the exception of July (Fig.
4.19).
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(a)

(b)

(c)

Figure 4.17: (a) Solar power generation (MW) in Germany in 2018. (b) Wind
power generation (MW) in Germany in 2018. (c) Total solar and wind power
generation (MW) in Germany in 2018.
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Fig. 4.18 exhibits the solar and wind tracks for each month of 2018. In January
and December, for instance, we can see that the wind generation floats between
peak values of over 40GW to rare moments when the production goes below 5GW.
In the same time period, the solar wind generation never exceeds 10GW, while also
maintaining very long periods of 0s for the entire duration of the nights, which are
longer than in the summer (since in the Northern Hemisphere nighttime is longer
in the winter).

Things start to balance out in April and May, where we can often see the
solar energy exceed the wind energy. During these months, the wind power
generation exceeds 30GW only twice, while solar generated power exceeds 20GW
in the majority of daytime. Also, the interval between between the “parabolas” of
daytime becomes tighter and tighter as nighttime duration decreases. From June
to August, we can notice that wind energy decreases and is overstepped by solar
energy in almost the totality of daytime hours. From the end of October until
December, we gradually go back to the same situation we experience in January.

The prediction of the total solar and wind power, in the context of a smart grid,
is crucial to keep the balance between demand and supply. At any point, we would
like to know the exact amount of generated power, which can be eventually stored
for later use if demand does not keep up with it. In fact, unlike traditional coal or
natural gas-fired power plants, the output of solar panels and wind turbines cannot
be quickly increased to meet demand.

In this context, we cluster data having in mind 5 different scenarios:

• Cluster 1: extremely high production, almost certainly to be partly stored;

• Cluster 2: high production, likely to be partly stored;

• Cluster 3: medium production, can be partly stored or drawn from storage;

• Cluster 4: low production, likely to partly draw from storage;

• Cluster 5: extremely low production, almost certainly to partly draw from
storage.
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Figure 4.18: Solar and wind power generation per month in Germany in 2018.
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The clustering of the data enables us to differentiate prediction accuracy in
each of the aforementioned scenarios. Fig. 4.19 depicts the distribution how the
data points are distributed among the 5 clusters in each month. As we said before,
Cluster 1 and 5 data points are present in each month, with December being the
one with the most Cluster 1 points and June being the one with the most Cluster
5 points.

As far as the prediction is concerned, we use the same methodology as in Sec.
4.1. The features concerning solar energy are already included in the original
dataset (see Tab. 2.1). The only difference with respect to wind-only prediction is
the number of PCA components to reach a minimum explained variance of 90%,
since we are dealing with a larger number of features. In this case, 8 components
are chosen, hence to explain 92% of the variance.

Again, the FFNN and RNN-based models are chosen as our default, along with
the same hyperparameters. Tab. 4.6 summarizes the results of the prediction. We
can notice that Cluster 1 and Cluster 2 data points are by far the most difficult to
predict for our models. Indeed, a lot of these points belonging to these clusters are
centered around winter months, where the production of wind energy (the hardest
to predict) outsteps the production of solar energy (the easiest to predict).

Overall, the average MAPE is considerably lower than the one we got in a
wind-only prediction in Sec. 4.1, thus we can say that the solar track in a solar
and wind scenario “softens” the difficulty of predicting only wind power.

FFNN RNN
Cluster MAE MAPE MAE MAPE
Cluster 1 9861.4 22.8 9067.0 21.5
Cluster 2 8914.7 20.3 8481.2 19.7
Cluster 3 3994.8 8.4 3338.5 7.8
Cluster 4 4765.9 11.3 4490.6 10.8
Cluster 5 7688.5 14.5 7239.4 14.0

6048.3 14.9 5110.8 11.2

Table 4.6: Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) with FFNN and RNN per cluster, while predicting total solar and wind
power generation.
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Figure 4.19: Clustered data points and cumulative solar and wind power genera-
tion in Germany in 2018.
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Chapter 5

Conclusions

The objective of the thesis was to propose a machine learning framework to develop
an accurate prediction system in the context of renewable energy sources. Machine
learning, indeed, has become a fundamental aspect of the decision process in both
the generation and the distribution of energy. For instance, in the context of smart
grids, machine learning offers opportunities to progress by providing many facilities
that are not limited to energy supply and demand balance, but to ensure providing
the quality criteria of energy and energy measurement.

Wind energy was selected as our main focus, because of its high availability and
predictability. The OPSD dataset provided us a great starting point for character-
izing European power plant fleets and their associated transmission network. Their
time-series offered us a great insight on data aggregated by country, control areas,
and bidding zones. Also, the data being available in different time granularities
enabled us to experiment with prediction time lags and horizons. After having
chosen German data as our starting point, we processed the data before the effective
training phase. In particular, we normalized the data in order to reduce the high
internal variance and we applied PCA to lower the dimensionality of the dataset,
thus allowing ourselves to deal with simpler and dense data.

We subsequently introduced the concept of neural network and deep learning,
focusing on two main architectures: the feedforward (FFNN) and recurrent (RNN).
While FFNN is generally considered the vanilla approach to machine learning,
recurrent networks — whose outputs are fed back into the network, unlike FFNN —
are usually preferred when it comes to time-series, since their “memory” mechanism
can significantly boost up their performance in prediction.

The results clearly showed an attunement with the literature, with RNN-based
models outperforming FFNN-based ones in all the experiments we conducted. The
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main problem we faced in this segment was the tendency of the models to overfit
the data and to generalize poorly on new inputs. Also, we established that higher
resolution data can help neural networks in better understanding patterns, since
using quarter-hourly data in place of hourly data resulted in an increase of accuracy.
We then wanted to test how the same architectural models generalize on data from
different countries and with other characteristics. For this purpose, we repeated
the same experiment on aggregated data from the United Kingdom which gave us
a positive result.

With these results in mind, we increased the prediction horizon up to 6 hours,
establishing a correlation between the prediction window and the overall accuracy
of the models. Further analysis was also conducted to try and estimate the errors
of the neural networks beforehand. The outcome of this examination was that
our models have their performance deteriorated when anomaly values have to be
predicted, or when consecutive samples are strongly discontinuous. Last but not
least, we probed into a hybrid scenario including both wind and solar power, in
which we noticed that our models’ performance improved when the solar power
exceeded wind power, especially in the summer.

72



References

[1] Thomas Love and Cindy Isenhour. «Energy and economy: Recognizing high-
energy modernity as a historical period». In: Economic Anthropology 3.1 (),
pp. 6–16. doi: https://doi.org/10.1002/sea2.12040 (cit. on p. 1).

[2] Phillipp Beiter, Michael Elchinger, and Tian Tian. 2016 renewable energy
data book. Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO
(United States), 2017 (cit. on p. 1).

[3] Kasun S Perera, Zeyar Aung, andWei Lee Woon. «Machine learning techniques
for supporting renewable energy generation and integration: a survey». In:
International Workshop on Data Analytics for Renewable Energy Integration.
Springer. 2014, pp. 81–96 (cit. on p. 3).

[4] G. Vallero, D. Renga, M. Meo, and M. A. Marsan. «Greener RAN Operation
Through Machine Learning». In: IEEE Transactions on Network and Service
Management 16.3 (2019), pp. 896–908. doi: 10.1109/TNSM.2019.2923881
(cit. on p. 4).

[5] Meysam Masoudi et al. «Green Mobile Networks for 5G and Beyond». In:
IEEE Access 7 (Aug. 2019), pp. 1–1. doi: 10.1109/ACCESS.2019.2932777
(cit. on p. 4).

[6] Bingqian Xu, Pengcheng Zhu, Jiamin Li, Dongming Wang, and You Xiaohu.
«Joint Long-term Energy Efficiency Optimization in C-RAN with Hybrid
Energy Supply». In: IEEE Transactions on Vehicular Technology PP (July
2020), pp. 1–1. doi: 10.1109/TVT.2020.3007825 (cit. on p. 5).

[7] Inci Okumus and Ali Dinler. «Current status of wind energy forecasting
and a hybrid method for hourly predictions». In: Energy Conversion and
Management 123 (2016), pp. 362–371. issn: 0196-8904. doi: https://doi.o
rg/10.1016/j.enconman.2016.06.053. url: http://www.sciencedirect.
com/science/article/pii/S0196890416305428 (cit. on p. 6).

73

https://doi.org/https://doi.org/10.1002/sea2.12040
https://doi.org/10.1109/TNSM.2019.2923881
https://doi.org/10.1109/ACCESS.2019.2932777
https://doi.org/10.1109/TVT.2020.3007825
https://doi.org/https://doi.org/10.1016/j.enconman.2016.06.053
https://doi.org/https://doi.org/10.1016/j.enconman.2016.06.053
http://www.sciencedirect.com/science/article/pii/S0196890416305428
http://www.sciencedirect.com/science/article/pii/S0196890416305428


REFERENCES

[8] Umit Cali and Vinayak Sharma. «Short-term wind power forecasting using
long-short term memory based recurrent neural network model and variable
selection». In: International Journal of Smart Grid and Clean Energy (Jan.
2019), pp. 103–110. doi: 10.12720/sgce.8.2.103-110 (cit. on p. 6).

[9] Peiyuan Chen, Troels Pedersen, Birgitte Bak-Jensen, and Z. Chen. «ARIMA-
Based Time Series Model of Stochastic Wind Power Generation». In: Power
Systems, IEEE Transactions on 25 (June 2010), pp. 667–676. doi: 10.1109/
TPWRS.2009.2033277 (cit. on p. 7).

[10] Thanasis Sfetsos. «A comparison of various forecasting techniques applied to
mean hourly wind speed time series». In: Renewable Energy 21 (Sept. 2000),
pp. 23–35. doi: 10.1016/S0960-1481(99)00125-1 (cit. on p. 7).

[11] M. Ding, L.-J Zhang, and Y.-C Wu. «Wind speed forecast model for wind
farms based on time series analysis». In: Electric Power Automation Equipment
25 (Jan. 2005), pp. 32–34 (cit. on p. 7).

[12] S. Li. «Wind power prediction using recurrent multilayer perceptron neural
networks». In: 2003 IEEE Power Engineering Society General Meeting (IEEE
Cat. No.03CH37491). Vol. 4. 2003, 2325–2330 Vol. 4. doi: 10.1109/PES.
2003.1270992 (cit. on p. 7).

[13] «Open Power System Data. 2020.» In: Data Package Time series. doi: https:
//doi.org/10.25832/time_series/2020-10-06 (cit. on p. 8).

[14] Svante Wold, Kim Esbensen, and Paul Geladi. «Principal component analysis».
In: Chemometrics and intelligent laboratory systems 2.1-3 (1987), pp. 37–52
(cit. on p. 12).

[15] Mengyi Gong, Claire Miller, and Marian Scott. «Functional PCA for Remotely
Sensed Lake Surface Water Temperature Data». In: Procedia Environmental
Sciences 26 (2015). Spatial Statistics conference 2015, pp. 127–130. issn:
1878-0296. doi: https://doi.org/10.1016/j.proenv.2015.05.015 (cit.
on p. 15).

[16] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65.6 (1958),
p. 386 (cit. on p. 18).

[17] Paul J Werbos. «Backpropagation through time: what it does and how to do
it». In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560 (cit. on p. 22).

[18] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 26).

[19] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. «Learning long-term
dependencies with gradient descent is difficult». In: IEEE transactions on
neural networks 5.2 (1994), pp. 157–166 (cit. on p. 26).

74

https://doi.org/10.12720/sgce.8.2.103-110
https://doi.org/10.1109/TPWRS.2009.2033277
https://doi.org/10.1109/TPWRS.2009.2033277
https://doi.org/10.1016/S0960-1481(99)00125-1
https://doi.org/10.1109/PES.2003.1270992
https://doi.org/10.1109/PES.2003.1270992
https://doi.org/https://doi.org/10.25832/time_series/2020-10-06
https://doi.org/https://doi.org/10.25832/time_series/2020-10-06
https://doi.org/https://doi.org/10.1016/j.proenv.2015.05.015


REFERENCES

[20] Sepp Hochreiter and Jürgen Schmidhuber. «LSTM can solve hard long time
lag problems». In: Advances in neural information processing systems (1997),
pp. 473–479 (cit. on p. 26).

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG] (cit. on p. 29).

[22] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.
03167 [cs.LG] (cit. on p. 32).

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html
(cit. on p. 33).

[24] Greta Vallero, Daniela Renga, Michela Meo, and Marco Ajmone Marsan.
«Processing ANN Traffic Predictions for RAN Energy Efficiency». In: Proceed-
ings of the 23rd International ACM Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems. MSWiM ’20. Alicante, Spain: As-
sociation for Computing Machinery, 2020, pp. 235–244. isbn: 9781450381178.
doi: 10 . 1145 / 3416010 . 3423222. url: https : / / doi . org / 10 . 1145 /
3416010.3423222 (cit. on p. 35).

[25] Juan Yan, Xiaodong Zhao, and Kang Li. «On temporal resolution selection
in time series wind power forecasting». In: 2016 UKACC 11th International
Conference on Control (CONTROL). IEEE, pp. 1–6 (cit. on p. 43).

[26] João Paulo da Silva Catalão, Hugo Miguel Inácio Pousinho, and Vctor Manuel
Fernandes Mendes. «An artificial neural network approach for short-term
wind power forecasting in Portugal». In: 2009 15th International Conference
on Intelligent System Applications to Power Systems. IEEE. 2009, pp. 1–5
(cit. on p. 52).

75

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1145/3416010.3423222
https://doi.org/10.1145/3416010.3423222
https://doi.org/10.1145/3416010.3423222

	Introduction
	Machine Learning applications in literature

	Dataset and Data Processing
	Open Power System Data
	Data processing
	Principal Component Analysis

	Neural networks
	Metrics
	Feedforward neural networks
	Recurrent neural networks
	Long Short-Term Memory

	Gradient-based optimization
	Regularization strategies
	Batch Normalization
	Dropout

	Training approach

	Discussion of results
	Base results
	Comparing FFNN and RNN
	Comparing hourly and quarter-hourly resolutions
	Comparing Germany and United Kingdom
	Comparing yearly and monthly training

	Hours-ahead forecast
	Estimating errors
	Hybrid scenario: solar and wind

	Conclusions
	References

