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Abstract

The aim of this project is to provide a proxy service to the Internet for any nodes in
the DTN network. As a starting infrastructure we used Aether that is an applica-
tion that tries to reproduce a DTN (Delay tolerant network) and that implements
the bundle protocol which was designed for networks such as challenged networks.
Basically Aether provides all the functionality via API, so any device can interact
with the DTN using some calls provided by Aether. We started by analyzing the
existing proxy projects, then we chose one of them to make it compliant with the
bundle protocol and "attach" it transparently to Aether. We then studied the types
of proxies that exist and three cases emerged: the forwarding proxy, the reverse
proxy and the open proxy. The forwarding proxy has the objective of providing
greater security within a network locare ensuring a single point of access to the
Internet and controlling access and traffic passing through it. Reverse proxy allows
users to connect indirectly to a remote server. Open proxy is a forwarding proxy
that is accessible by any user in the network. In general, proxies are used as fire-
walls between the user and the Internet, as in the case of forwarding proxy, which
replace the user’s IP with a unique IP that is the same for all, which "hides" the
local network. Proxies that act as firewalls are distinguished in two cases, according
to where they are in the OSI protocol stack; in fact we speak of application-firewall
proxy in the case in which each application protocol requires its own dedicated fire-
wall. Much more efficient is the firewall that is working in the session layer, which
therefore has a blurry view of which application is being used but which manages
connections as sessions and therefore has a view that can optimally manage each
TCP/UDP connection. So you could have an SMPT request on port 80 without
any further control on the application protocol used. Today one of the most reliable
and used protocols to create a session-layer firewall is SOCKS. SOCKS is referred
to as a generic proxy protocol for TCP/IP based network applications. SOCKS,
short for "SOCKETS", consists of two components: A SOCKS client and a SOCKS
server. The fundamental purpose of the protocol is to enable hosts on one side
of a SOCKS server to access hosts on the other side of a SOCKS server, without
requiring direct "IP reachability". The socks protocol performs some action, such
as making connection requests, setting up proxy circuits, relaying application data
and performing user authentication. The proxy keeps a table of all sessions and
connections. It maps the IP addresses and port numbers from inside to a single IP
address and the corresponding port number. This function is called NAT (Network
Address Translation). The protocol has some phases, firstly the Client contacts



proxy instead of the originally addressed server, the the proxy evaluates client re-
quest and decides which to pass or which to reject. If the proxy accepted the
request, it transfers request to originally addressed server on behalf of client. Then
the Server answers to proxy without knowing about client behind At the end the
proxy passes answer to requesting client. The client, on the other hand, has to run
socksified, that is it has to send the requests via SOCKS protocol. In a nutshell,
the socks client wraps all network-related system calls made by a host with their
own calls to the socket so that the host network calls are sent to the socks server
on a designated port (as said before, the port 1080). After a careful review of some
projects, 3Proxy was chosen. 3Proxy is a combination of many specific application
proxies, then in general it can be considered a general server proxy. It is possible
to use every proxy as a standalone program (socks, proxy, tcppm, udppm, pop3p)
or use combined program. In fact, 3Proxy is a shim-layer proxy that accepts con-
nections on different port. In our case of study, 3Proxy will be mostly used as a
SOCKS server and will wait on port 1080 for incoming connections and will use
only this port to communicate with the client applications. 3proxy is implemented
as multithread application. Server model is implemented as “one connection – one
thread”. It means, for every client connection new thread is created. The program
starts with the main thread, that has the aim to read and parse the configuration
file. Each command of the configuration file, starts a new thread, called service
thread. The service thread loops waiting for requests from the client, and spawn a
new thread, the client thread. The last one, has the to perform the SOCKS hand-
shake and to relay the connection. One focus on the fact that SOCKS can handle
whatever application, while the other services are specialized and oriented only to
one application. To hack into 3Proxy was used a plugin. 3Proxy plugin is any
dynamic/shared library. There is no specific requirement for plugin, actually you
can load any dynamic library with ‘plugin’ command. No linking with any libraries
are required. However, to interoperate with 3proxy dynamic library must have an
export function 3proxy may call to pass the structure with required information.
Because there is no linking between 3proxy and plugin, all 3proxy functions and
structures are passed with a special structure called Pluginlink. Pluginlink is ac-
tually a collection of pointers to 3proxy internal structures and functions. One
insight was to put all the pointers to functions in that structures to allow the plu-
gin to interact with the original workflow of the project. With a simple call of this
functions inside 3Proxy was possible to switch in the bundle context and execute
commands and actions that interact with Aether in such a way that 3Proxy was
not involved and was not aware of this context switch. Besides not only pointers
were stored inside that collection but also data structures and variables useful for
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the bundle plugin. There are three actors involved: the client node making the
request, the intermediate nodes and the gateway node that has the router role. As
we have seen, there is the DTN layer that allow the connection between the two
sides. It is worth to know that the Aether boxes are the application that runs over
each device and that there are more than one connection instantiated between the
nodes and Aether. The task of Aether is to route packets to the correct destina-
tion, send and receive data in bundle format and provide the application data to
the proxy. From now on we call 3Proxy2Bundle the original 3Proxy project plus all
the modifications and plugins, that are essential to the proxy to "talk" the bundle
protocol. Basically, the original architecture of 3Proxy is modified in such a way
that the socks server is splitted in two sides, client and server’s. The client side
provides the function to accept connections of the clients and to send the requests
to the gateway. Therefore, it relays the connection between the client and the
gateway. As we can see in the figure below, the client application establishes a
connection with 3Proxy2Bundle listening on port 1080. Since on the server side, all
connections were flowing to a single node listening on the DTN, it was necessary
to create a nating table to map all connections. In this case, the remote EID was
used to trace back to whom the packets had to be delivered once the response from
the server was obtained. Various tests were performed to verify the performance
of the solution. The protocol used to test the application were FTP and HTTP.
The former, using FileZilla gives a more detailed look at the real performance of
the proxy service. It is possible to obtain the average speed of the downloads and
uploads and so on. In the latter case it is possible to see how many connections
are really established and closed correctly. Following a particular study is carried
on the former which a focus was taken on the throughput and performance. It
was noticed that to the high number of requests, it is possible that Aether cannot
keep up with all of them. This brings the system, on both side, in a state that is
not guaranteed stable downloads. As soon as the load becames less, the downloads
rocket up to the maximum speed possible. This behaviour is justified from the
fact that, on the overload situation, there is a congestion in delivering the packets;
this results in slowing down the speed of the download and in some cases also the
interruption of it. Generally the performance have suffered a drop due to the com-
putational expanse of Aether intermediation. It was possible to notice a decrease of
5 times with respect to the normal speed of the proxy running alone. It is accept-
able considering that the plugin has to listen on 2 sockets more, generate packets
and send them. Moreover, in the case that there is a lot of packets to deliver, there
is a congestion phase that tends to drastically reduce the overall throughput. In
general, 3Proxy2Bundle works correctly and efficently. In some cases, there might
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be problems with the reordering of packages or security issues. Future work could
focus on understanding and improving the fact that sometimes the connection goes
down and the download doesn’t terminate correctly. Performance could also be
improved analysing the congestion problem in Aether.
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Chapter 1

Introduction

The increasing spread of IoT devices, in conjunction with the rapid evolution of
wireless communication technologies, introduces a number of new networking chal-
lenges. It is increasingly common to encounter contexts in which entities involved
in communication are constantly on the move and characterised by limited hard-
ware resources (Industrial IoT). In these contexts, the devices involved may be
fleets of vehicles, machinery, or even sensors for precision agriculture, which may
not always rely on stable WAN connections (e.g. via 3G network) and traditional
communication paradigms. [13] These scenarios are identified as "challenged net-
works". On the Internet, communications are based on the assumption that, at
all times, at least one end-to-end route between the source and destination of the
traffic is guaranteed. Moreover, connections between two network devices tend to
be stable. However, this cannot be guaranteed in the context of a challenged net-
work, where devices have only short range wireless communication channels (e.g.,
WiFi, Bluetooth), characterised by continuous interruptions or even lack of con-
nectivity for indefinite periods. This does not ensure stable paths between source
and destination. In addition to device mobility, intermittent connectivity may re-
sult from factors intrinsic to the environment in which the challenged network is
located, such as the presence of obstacles between devices, or the occurrence of ad-
verse atmospheric and environmental phenomena. Intermittent connectivity brings
with it a number of additional problems, such as network partitioning, long and/or
variable delays, high information loss rates, which make communication even more
complex. The scenarios subject to such problems are many and range from military
to interplanetary, sensor networks in areas without any telecommunication infras-
tructure, such as building sites, agricultural or livestock farming, in mountainous or
rural areas. Most existing IoT applications assume that they operate on connected
networks with minimal or at least negligible delays. Modifying such applications to
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allow them to operate on challenging networks would require considerable effort. A
more viable alternative approach is to introduce a network framework common to
all nodes in the network, acting as a sort of interface, to meet all the typical needs
of challenged networks in a transparent manner.

The Delay-Tolerant Networking paradigm represents a potential solution to the
problem, able to guarantee interoperability within and between different challenged
networks, by defining an abstraction from the underlying protocols. DTN archi-
tectures aim at the creation of an "overlay" network, able to operate on existing
protocol stacks, within the most varied application contexts. In the case of the
Internet, for example, a DTN could operate on the TCP/IP suite, while, in the
case of sensor networks, it could favour the interconnection of devices using Blue-
tooth technology, or even communication protocols not yet standardised. For this
purpose, it is necessary to extend the network stack of the devices involved in the
communication, and therefore, in other words, introduce a new protocol layer: the
Bundle Layer. This layer, common to all nodes participating in the DTN network,
in combination with the Bundle Protocol, defines how and in which message for-
mat they can communicate with each other. Delay-Tolerant Networking, therefore,
meets the need to guarantee interoperability between heterogeneous networks, each
characterised by its own assumptions and protocol architectures. However, its main
objective is to guarantee, with a good probability, that a packet will arrive from
source to destination, despite the temporary lack of a complete path between them.
The pursuit of this objective is achieved through the use of an asynchronous mes-
sage forwarding mechanism, which uses an approach very similar to that adopted
for e-mail, known as store-and-forward message switching. According to this ap-
proach, a message is kept locally until it is possible to deliver it directly to its
destination, or forward it to some other intermediate node, considered a potential
next-hop to the destination.
The aim of this project is to provide a proxy service to the Internet for any nodes in
the DTN network. First of all, will be presented the current solution for forwarding
data and packets within the DTN. Secondly, it is described all the kinds of proxies
presently used and a focus is addressed to the SOCKS protocol, that is the most
common solution to design a general proxy server. Thirdly, it will be presented
the initial project over all the work spawned from, the workflow and the structures
whose the project is made of. The core of the work is the implementation of the
project and all the artifacts that were done to let the original project accomplish
the requirements of communicating with the Aether and the DTN. Lastly,
some test were performed to analyze the performance of the final project and also
is discussed some room for improvements of the project.
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Chapter 2

IBR-DTN

2.1 Delay/Disruption Tolerant Network
.

The Delay/Disruption Tolerant Network (DTN) define an end-to-end architec-
ture capable of providing connectivity in the so called Challenged networks". These
networks are characterised by intermittent connectivity, heterogeneous nodes and
very different network conditions. The concept of Delay Tolerant Networking was
born in the field of interplanetary communications, but currently finds many appli-
cations in the commercial, scientific, military and public service fields. Traditional
Internet protocols are not able to provide communication efficiently, because the
assumptions on which they are based are not valid for this particular type of net-
work. Nowadays, in fact, it is increasingly common to come up against application
scenarios where the devices that have to communicate are in motion and operate
at limited power, this can lead to the interruption of a connection due to the pres-
ence of an obstacle, or, in certain situations, the interruption of the physical link
in order to preserve energy. The consequence of these phenomena of intermittent
connectivity is a natural partitioning of the network.

In such scenarios, communication via IP-based protocols is particularly ineffi-
cient. The IP protocol is based on the idea that at any given moment there is an
end-to-end path linking source and destination of a packet. This is not at all con-
ceivable in a "challenged network", which is instead characterised by intermittent
connectivity, long and/or variable delays, high error rate and transmission asym-
metry. Just think of TCP/IP, its use to communicate within an unstable network
would cause a significant amount of lost data. In fact, in the case of a packet that
cannot be forwarded immediately, TCP will assume network congestion, discard
the packet and try to retransmit it by gradually lowering the retransmission speed
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IBR-DTN

until the session is closed if the intermittence is too high.

Figure 2.1: Examples of planned contacts (interplanetary communications) and
opportunistic contacts (communications on the earth’s surface).

Furthermore, when talking about intermittent connectivity, it is appropriate to
distinguish between planned and opportunistic contacts (3.2). The typical scenario
of planned or scheduled contacts is that of space, in which nodes move on predictable
orbital paths, so much so that it is possible to predict or receive the instants in which
they will occupy their future positions and therefore organise future communication
sessions. Planned contacts, therefore, require the time synchronization of the entire
DTN. By opportunistic contacts, on the other hand, we mean contacts between
a transmitter and a receiver in unplanned instants. This is the case of people,
vehicles, planes or satellites who may want to exchange information when they are
close enough to communicate using their power, albeit limited.

To deal with the typical problems of "challenged networks" and benefit from
planned and/or opportunistic contacts, DTNs use the store-and-forward message
switching. According to this paradigm, similar to the mechanism used for e-mail,
entire messages or fragments of them are moved from the storage of one node
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to another, along a path that potentially leads to the destination. When a node
receives a packet, it is forwarded immediately if possible, or stored locally for future
transmission. For this reason, each DTN router must have a medium that allows
messages to be stored indefinitely (a hard disk, for example), guaranteeing the
persistence of the information. This is in contrast to what happens in IP routers,
which use memory buffers to queue packets waiting to be forwarded, guaranteeing
a persistence in the order of milliseconds. Storage must be persistent because some
communication links may not be available for long periods of time, in situations
where retransmission of a message is required or in the case of a node that transmits
and/or receives data much faster than a neighbour.

Figure 2.2: Comparison between an Internet stack (left) and a DTN stack (right).

The DTN creates an overlay network by introducing a new abstraction layer, the
Bundle Layer, which extends the network stack of nodes participating in the DTN
by placing itself between the application layer and the transport layer. The main
objective of this layer is to make application programs agnostic with respect to the
transport layers used, favouring the creation of heterogeneous networks. Two nodes
that want to establish communication will interact with the Bundle Layer, without
worrying about the nature of the protocols used in the lower layers. The bundle
layer will be responsible for routing these messages, called Bundle, from source to
destination. DTNs use an asynchronous non-conversational model, in contrast to
the typical TCP/IP family’s request/response communication mechanism. Con-
versational protocols, such as TCP, involve long RTTs and often fail. The Bundle
Layer communicates via a non-conversational protocol that minimizes the round
trips needed to confirm transmissions, making acknowledgments optional.
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The unique feature of positioning between the transport layer and the applica-
tion layer allows DTN to be used to create application proxies.

Figure 2.3: DTN network overlay on another type of network.

Take as an example applications running on TCP/IP, they typically use the
Berkeley socket API, and have no access to DTN services. Furthermore, if they
wanted to use them, they would have to be written in a way that would be tolerant
of interruptions and delays, and they may need numerous message exchanges to
perform their operations, such as SMTP. Rewriting applications to take advantage
of the API would require changes to all applications. The other use we can assume of
DTN is to create an Application Layer Gateway. It would be a protocol terminator,
and it would take the information needed to recreate the same dialogue as the client,
so that it could be re-submitted to the server and get the desired response.[16].

2.2 Bundle Protocol
The Bundle Protocol[17] is an experimental protocol, corresponding to the DTN ar-
chitecture BundleLayer, developed within the Delay Tolerant Networking Research
Group (DTNRG) of the IRTF.

2.2.1 Architecture
In the context of DTNs, the term bundle node refers to an entity capable of receiving
and transmitting bundles. According to the specifications of the Bundle Protocol,
a bundle node is conceptually made up of three basic components:
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• Bundle Protocol Agent (BPA): is the service provider of the bundle pro-
tocol. The way in which these services are offered depends on its imple-
mentation. In fact, the BPA can be implemented in hardware, as a shared
library between multiple nodes on a single machine, as a process (a daemon)
with which nodes on one or more machines can interact through communica-
tion mechanisms between processes or network communication (e.g. Socket
Berkeley).

• Application Agent (AA): uses the bundle layer services to communicate.
The AA is generally composed of two elements, an administrative one and an
application one. The administrative element builds and requires the trans-
mission of administrative records (status reports and custody signals) and
processes the custody signals received from the node. Typically it is inte-
grated in the implementation of the BPA. The application element, instead,
builds, transmits and processes the actual application data and can be im-
plemented in software or hardware. Communication between the application
element of the AA and the BPA takes place via the service interface displayed
by the latter. A node that only has a "router" function may not have any
application element.

The main services that a BPA should provide to the AA of a node are the
following:

• recording of a node at an endpoint;

• termination of the recording;

• transmission of a bundle to a specific endpoint;

• cancellation of transmission;

• delivery of a received bundle.

2.2.2 Encapsulation
The Bundle Protocol extends the hierarchy of encapsulation achieved by Internet
protocols by simply encapsulating them without altering the data. Figure 2.4 shows
an example of encapsulation of TCP/IP protocols. In the case of bundles that are
too large, the bundle layer should be able to split messages into several fragments,
quite similar to how the IP layer fragments its packets. In the case of fragmentation,
it’s up to the destination node to reassemble the fragments in the correct order to
get the original bundle.

14



IBR-DTN

Figure 2.4: Encapsulation of TCP/IP protocols in the Bundle Protocol.

2.2.3 Fragmentation

To ensure that contact volumes are used to the full and to prevent retransmission of
partially submitted bundles, DTN offers a fragmentation mechanism. Two types of
fragmentation are provided by DTN: proactive and reactive. proactive fragmenta-
tion is arbitrarily chosen by a node forwarding the Bundle, then the node, or nodes,
to which the fragments are sent will reassemble them. Reactive fragmentation oc-
curs as a result of the incomplete transfer of a bundle to a node. The receiving
node will decide to treat the received portion as if it were a fragment, and the
sender to send the remaining portion as if it were a second fragment, either directly
to the recipient or by passing through other nodes if the topology changes. Only
proactive fragmentation is mandatory. Fragmentation at the Protocol Bundle level
is supported using a header that indicates the length and offset of the fragment
from the original bundle, using a mechanism similar to that used in IP. Fragments
originating from the same bundle will be identified by source, destination, and cre-
ation time. For a bundle, you can also request non-fragmentation via one of the

15



IBR-DTN

Control Flags in the primary block. In addition, all blocks before the payload are
placed in the minor offset fragment, and those after the payload block are placed
in the major offset fragment.

2.2.4 Addressing

The source and destination of a bundle are identified by an Endpoint Identifier
(EID). Each EID complies with the Uniform Resource Identifier (URI) format and
consists of two parts: <scheme-name>:<scheme-specific part (SSP)>. The length
of both fields must not exceed 1023 bytes. The representation schemes proposed
for the EID are multiple, but conventionally schemes conforming to the URI (Uni-
fied Resource Identifier) scheme are used, and characterized by a <scheme-specific
part> divided into two portions: the first indicating the node, the second the
demux-token, i.e. a single application. One of the most common schemes is the one
identified by the string dtn, which takes the form dtn://node/demux-token.
While the presence of the node is mandatory, the demux-token may also not be
present, as in the case of administrative bundles directed to the node’s BPA. An
EID typically represents a single node (or rather an application on a single node)
and is called a Singleton, but it can also represent a group of DTN, "multicast" or
"anycast" nodes, groups containing several nodes.

2.2.5 Bundle format

Each bundle consists of the concatenation of at least two blocks. The first block
in the sequence, or primary block, contains information similar to an IP header
that is needed to route the bundle to its destination. Each bundle can only have
one primary block, but can be followed by a series of blocks to support protocol
extensions, such as the Bundle Security Protocol (BSP). It can exist in blocks
following the first, at most one payload block. Most fields have variable lengths
and use a compact notation called self-delimiting numerical values. (SDNVs) (ref.),
scalable for a variety of network protocols and payload sizes.

Primary Block

The Primary Block (Figure 2.5), in addition to version, block length, source, and
destination, contains a number of typical Bundle Protocol information.
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Figure 2.5: Format of the primary block.

Bundle Processing Control Flag

Processing Control Flags bundles are a string of bits useful for processing the bun-
dle. They are divided into 3 categories:

• General [0-6]: specify general information about the bundle, e.g. whether it is
regular or administrative, the state of fragmentation, whether the destination
is a singleton EID, whether acknowledgement or custody transfer is required.

• Class of Service [7-13]: specify the priority of the bundle, where a high value
indicates a high priority, and other information useful for the routing of the
bundle.

• Status Report [14-20]: specify the reports required for this bundle, e.g. if a
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delivery report, forwarding report, custody acceptance report, etc. is required.

Priority

Two "Class of Service" bits are used to define the priority of the Bundle. Typically,
this applies only between bundles with the same source, and may not apply to
bundles with a different source.

Three values have been used so far:

• Bulk: means bundles that must be shipped with minimum effort, delivered
only at the end of delivery of all bundles with the same source and destination.

• Normal: for bundles that are shipped before Bulk priority bundles.

• Expedited: for bundles with higher priority, to be shipped before Normal and
Bulk priority bundles.

Endpoints

The primary block includes four EIDs of variable length, each encoded via a pair of
offsets: one for the scheme, the other for the SSP. These offsets are nothing more
than pointers to the strings representing the EIDs stored within the dictionary later
placed in the block.

• Source: contains the endpoint from which the bundle comes,

• Destination: is the destination endpoint of the bundle,

• Report-to: indicates the node to send status reports to for events involving
the bundle,

• Custodian: identifies the last node that accepted the custody of the bundle.

Since EIDs make up most of the overhead bytes due to the Bundle Protocol,
the dictionary is a mechanism for reducing the amount of space required for their
storage. For example, if the source and report-to EIDs coincide, two references to
that EID will appear, but only one string within the dictionary.
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Time

Other significant information for the elaboration of a bundle are the creation times-
tamp and the lifetime. The creation timestamp indicates the bundle creation time,
expressed as the number of seconds since the beginning of the year 2000 in the UTC
time zone. This value is calculated at the instant the BPA receives the transmission
request. The lifetime, on the other hand, represents the life time of the bundle,
expressed as an offset to the creation time. Using lifetime allows you to eliminate
excess bundles within the network, as each time a node receives a bundle that has
finished its life time, it discards it. Since both the creation timestamp and the
lifetime use real time, the nodes participating in the DTN need to be synchronised,
albeit coarsely.

Other blocks

In addition to the Primary Block within a bundle, several other blocks can be
inserted. As you can see in Figure 2.6, each of these blocks is identified by the
Block Type, an 8-bit string. The value ’1’ indicates a payload block and a bundle
can contain a maximum of one, values between 192 and 255 are for experimental
and private use, while the rest are reserved for future use. All blocks other than
the primary block and the payload are called extension blocks. Then there are
the block control flags, which give directions on how the block should be handled.
Finally, the leotard and their length complete the block. It’s also possible to insert
a reference to some EIDs contained in the dictionary. A counter will trace them
and two pointers, one at the beginning of the pattern and one at the beginning of
the SSP in the dictionary for each entry.

Block Processing Control Flag

The Block Processing Control Flags are a string of bits useful for block processing.
It is an SDNV field currently made up of 7 bits, indicating some special features
on the block. For example, you can replicate the block in each fragment (in case of
fragmentation), indicate to discard the block or the whole bundle, or send a report
if you are unable to process the block, if it contains EID-References, and especially
the flag indicating if it is the last block in the Bundle. The replication bit in the
fragments, however, cannot be set to one on the blocks following the payload block.
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Figure 2.6: Generic format of a secondary block of a bundle.

2.2.6 Transmission reliability

DTNs support mechanisms for retransmission of lost and/or corrupted data at both
the transport protocol and the Bundle Protocol level. However, since DTNs typi-
cally have a heterogeneity in the transport protocols used by nodes, reliability must
be achieved at the Bundle Protocol level, through a node-to-node retransmission
mechanism called transfer to custody. Basically, when the current custodian of a
bundle needs to forward it, it requires custody transfer and triggers a retransmis-
sion timer. If the BPA of the receiving node decides to accept custody, it sends an
acknowledgement to the sender. If no acknowledgement is received before the timer
expires, the bundle is retransmitted. The value of the retransmission timer can be
distributed to the nodes along with the routing information or calculated locally
by the nodes themselves, depending on their past experience. The current care-
taker of a bundle is then the node responsible for keeping the bundle in persistent
memory until it is received by a new caretaker. A DTN node does not necessarily
have to offer the custodian transfer service. A node may, for example, refuse a
custody transfer request due to a lack of available resources, policy or implemen-
tation issues. However, in a context of minimising the number of losses, it would
be appropriate for all nodes to use custody transfer, provided that the necessary
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storage resources are available and that the frequency of bundle generation does
not exceed that of delivery, as well as the buffering capacity of the network. Thus,
the custody transfer mechanism, combined with the use of persistent storage on the
intermediate nodes, makes it possible to delegate responsibility for reliable transfers
to portions of the network rather than to the sender of the bundle. Unfortunately,
this is not enough to guarantee the reliability of the transmissions, but only to
improve them. A further step can be taken by using the return receipt, a message
confirming the delivery of a bundle to the sender of the bundle. However, too many
bundles or fragments of bundles can lead to over-consumption of available storage
resources and congestion of DTN. In the event of congestion, a node may adopt
several strategies: remove from storage copies of bundles that have run out of life,
which should be undertaken regularly anyway; transfer bundles to others; not ac-
cept bundles with transfer to custody, rather than regular bundles; delete bundles
that have not expired, even if the node is the custodian. The use of the latter
option is strongly discouraged as it is clearly contradictory to the core principles of
the DTN.

2.3 IBR-DTN Node

2.3.1 Introduction

IBR-DTN is the application chosen for the creation of a DTN infrastructure that,
once installed on devices, allows its insertion in the network and manages com-
munication via bundle. Modular and lightweight IBR-DTN was created by the
DTN research group of the Technische Universität Braunschweig. Designed to be
installed on embedded systems it provides the developer with a framework to create
DTN applications [15].

2.3.2 The architecture

The version of IBR-DTN for traditional operating systems has been developed in
C++. As can be seen in figure 2.7, the implementation of the IBR-DTN bundle
protocol is characterised by a highly modular organisation, allowing developers to
extend the software in a simple and non-invasive way. The Protocol Agent Bundle is
implemented as a daemon process and exposes a socket-based API that applications
can contact to interact with the Layer Bundle. By default, the API is available on
TCP port 4550 in text and binary format. You can refer to the documentation[11]
for more information on the features exposed.
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Figure 2.7: IBR-DTN Architecture

Event Switch

The modules are connected flexibly and communicate with each other via an event-
based mechanism, making the Event Switch, responsible for entrusting the manage-
ment of individual events to the corresponding sub-modules, essential. All modules
can receive or trigger events to communicate with other parts of the software. A
series of events are integrated in the current implementation to notify storage op-
erations, the presence and disappearance of nodes in the neighbourhood, bundle
routing operations, etc.

Discovery Agent

Another important component is the Discovery Agent, responsible for discovering
nodes in the neighbourhood. Under the assumption that it wants IP nodes to
communicate, IBR-DTN uses a module that implements the DTN IP Neighbor
Discovery (IPND)[6]. This module listens to small UDP datagrams called beacon,
used by nodes to announce their presence to neighbours, and periodically announces
itself through the same datagrams. The beacons are sent to a known multicast IP
address (and can be specified in configuration) and contain the sender’s EID, to
allow the receiver to bind the EID to the IP address of the neighbour.

Connection Manager and Convergence Layer

The module Connection Manager is responsible for managing connections with
neighbouring nodes and for sending and receiving bundles. The Connection Man-
ager in turn uses different convergence layer for the implementation of the informa-
tion transfer. As described by RFC 5050 on the Delay Tolerant Network, it is the
reconvergence layer that handles communication between two nodes. Each defines
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an interface to the underlying transport layer, allowing bundles to be transferred
from the lower layer protocols. The convergence layers used are specified in the dae-
mon configuration. Currently, IBR-DTN offers convergence layers for TCP/IP[5],
UDP/IP, HTTP, Bluethooth, IEEE 802.15.4 LoWPAN, and thanks to this thesis
work, for V2X. There is also an extension of TCP/IP CL for TLS support.

Bundle Storage

Since DTNs are based on the store-and-forward paradigm, each node must be able
to store bundles for a certain period of time. In IBR-DTN storage interaction
is managed by the Bundle Storage, a module that provides primitives for read-
ing, deleting and storing bundles to/from storage. Several storage mechanisms are
supported: in RAM memory, on disk (file-system) and on SQLite databases.

Base Router

The routing of bundles is carried out by the Base Router module, which manages
the forwarding of the bundles in charge. The Base Router divides its work between
the different routing modules. Each of them implements a specific DTN routing
algorithm and is attached to the Base Router as a sort of plugin. All routing mod-
ules are notified by the Discovery Agent when neighborhood events occur and by
the Bundle Storage when a new bundle arrives at the daemon. The routing module
that will be responsible for forwarding the bundle will then contact the Connection
Manager to activate the appropriate convergence layer. IBR-DTN features modules
for static, epidemic and PRoPHET and MaxProp routing support.

API Server

Interaction with IBR-DTN is obtained via the server API. The server API exposes
on a socket interface, configurable via config file, a textual protocol with which to
make requests to the application core. The commands to be sent must follow the
specific logic and syntax of the action to be executed, when a command is sent and
all the information it requires is entered, you always receive a response format like
<status-code> <message> [Additional data], as shown in Figure 2.8.

Service Discovery

It is a module created to propagate the services present on each node, within
the DTN network. By services we mean the description of the capabilities of an
application, resident on the node, that can use the DTN network to send and/or
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Figure 2.8: Interaction API Server.

receive data. Service Discovery allows all nodes to know about this service thanks
to multicast messages sent to a group DTN address. Thanks to Service Discovery,
applications can select the DTN node that comes closest to their requests and start
sending packets to it.

2.3.3 Setup and startup
This paragraph explains the steps required to install and start the IBR-DTN dae-
mon. The procedures used are valid for Linux,Debian and derivative (Raspbian)
distributions.

Setup

The first step is to install the necessary libraries. Actually, the installation of some
of the libraries listed below is optional, as they are useful when adding optional
modules.

The installation and activation/deactivation of the optional modules of IBR-
DTN involves the use of CMAKE. After creating the build folder in /ibrdtn/ibrdtn,
you will launch the command cmake .. with the option to activate all modules
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your operating system can support. Then, after cloning the repository, you will
configure, compile, and install the sources:

If you want to have a more specific control of the options, just use the cmake
variables

Details of all possible options can be found in the CMakeList.txt file inside the
/ibrdtn/ibrdtn folder in the repository.

Start-up

After completing the installation, you can start the IBR-DTN daemon using the
dtnd command. This command, invoked without options, starts the daemon using
the default configuration. You can use the -i option to specify the network interface
to associate the daemon process with, or -v to enable printing of log messages, -d
to choose the log level that will be printed, etc. An example of the command:

With this combination of parameters we will have binding on the network in-
terface textiteth0 and log on the console for the main information. For a complete
list of available options use the -h flag. Once started, the IBR-DTN daemon will
automatically detect the presence of daemons running on machines directly acces-
sible via the Neighbor Discovery IP module and simultaneously announce its local
EID to be discovered by others. In the default configuration, this EID uses the
DTN scheme and local machine name as SSP, in the form dtn://hostname.
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2.3.4 Configuration
To change the daemon’s default behaviour you need to specify the parameters to use
within a configuration file. An example configuration file can be found at the path
ibrdtn/daemon/etc/ibrdtnd.conf, within the repository used for installation,
or at the address [12]. The most significant parts are illustrated below.

allows you to customize the local EID, if not specified IBR-DTN will create one
for us according to the standard formatting of URI dtn dtn://hostname.

Defines how to save bundles until the TTL expires. In volatile memory (RAM)
or on disk if a save path is specified.

1 #a list( separated by spaces ) of names
2 #for convergence layer instances .
3 net_interfaces = lan1 lan0
4
5 # configuration for a convergence layer named lan0
6
7 net_lan0_type = tcp # we want to use TCP as protocol
8 net_lan0_interface = eth0 # listen on interface wlan0
9 net_lan0_port = 4556 # with port 4556 ( default )

10
11 # configuration for a convergence layer named lan1
12
13 net_lan1_type = tcp # we want to use UDP as protocol
14 net_lan1_interface = eth1 # listen on interface eth0
15 net_lan1_port = 4557 # with port 4556 ( default )
16
17 # configuration for a convergence layer named blue0
18
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19 # net_hci0_type = bluetooth # use bluetooth as protocol
20 net_hci0_interface = hci0 # listen on interface
21 net_hci0_port = 10 # with RFCOMM channel
22
23 # configuration for a convergence layer named v2x0
24
25 net_v2x0_type = v2x # we want to use v2x as protocol
26 net_v2x0_interface = eth0 # listen on interface
27 net_v2x0_port = 0 # with no channel

Having different convergence layers available, it is possible to list all the inter-
faces available on the device in the configuration file. IBR-DTN will, therefore, try
to bind the chosen protocols, thus allowing communication on bundles.

specifies the routing algorithm to be used by choosing from the options shown
in the comments.

enables/disables the node to forward bundles.

enables/disables the direct forwarding of a bundle to its destination if it can be
reached directly.

2.3.5 Configuration of the time synchronization
Time synchronisation is a critical point in the configuration of IBR-DTN. When
using real devices, which do not have the possibility to have a clock always syn-
chronized with the rest of the world, it is necessary to deactivate it.
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Activating time synchronization means having the possibility to discard bundles
on arrival if they are too old and therefore considered useless, but this is a behaviour
that can lead to the impossibility of communication between DTN devices. The
DTN network as such does not foresee that the nodes inside have perpetual access to
an external time synchronization service such as NTP and it is in no way guaranteed
that the devices have the internal clock set within a certain delay. The possible
example is that of a device with only a bluetooth connection that is used for a
few hours and then switched on again much later. The system clock of the latter
will never be synchronized with the rest of the network, so if time synchronization
is activated the device will never create valid bundles within the network. It is
therefore advisable to deactivate this behaviour.

2.3.6 Interactive applications with IBR-DTN
In order to experience the use of the DTN Bundle Protocol, in addition to the
daemon process, the IBR-DTN software provides a number of command line tools.
dtnping sends bundles to a specific destination EID and waits for responses, mea-
suring the return time. dtnsend and dtnrecv allow files to be transferred between
DTN nodes. If you want to test the text API exposed by the daemon, you can use
tools like telnet or netcat, as in the following example:

In this example, after connecting to the IBR-DTN daemon running locally on
port 4550, you invoke the protocol management command to access the Man-
agement API. You can request the list of DTN nodes adjacent to the local node
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using the neighbor list command, as shown in the example, or send commands
to manage bundles.
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Chapter 3

Proxies and state of art

3.1 Proxy servers

A proxy server is a machine which acts as an intermediary between the computers
of a local area network (sometimes using protocols other than TCP/IP) and the
Internet. The basic working principle of a proxy server is quite simple: it is a
server that acts as a ’proxy’ for an application by making a request on the Internet
in its place. In this way, each time a user connects to the Internet using a client
application configured to use a proxy server, the application will firstly connect
to the proxy server and give it its query. The proxy server then connects to the
server to which the client application wishes to connect and sends the request to
that server. The server then provides its response to the proxy, which then sends
it to the client application. Most of the time the proxy server is used for the web,
and when it is, it’s an HTTP proxy. However, there can be proxy servers for every
application protocol (FTP, SMTP, etc..). [14]
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Figure 3.1: Proxy architecture

3.1.1 Types of proxy server
• Forward Proxy:

A forwarding proxy provides proxy services to a client or group of clients. Often
these clients belong to a common internal network. When one of these clients
makes an attempt to connect to that Internet file transfer server, its requests must
first pass through the forwarding proxy. Depending on the settings of the
forwarding proxy, it is possible to allow or deny a request. If allowed, the
request is forwarded to the firewall and then to the file transfer server. From the
file transfer server’s point of view, it is the proxy server that issued the request,
not the client. So, when the server responds, it directs its response to the proxy.
But then, when the forwarding proxy receives the response, it recognises it as a
response to the request that was previously made. And so it in turn sends that
response to the client that made the request. Since proxy servers can keep track of
requests, responses, their origins and destinations, different clients can send several
requests to different servers via the forwarding proxy, and the proxy will act as an
intermediary for all of them. Again, some requests will be allowed, while others
will be refused. As you can see, the proxy can act as a single point of access
and control, simplifying the application of security policies. A forwarding proxy is
typically used in conjunction with a firewall to improve the security of an internal
network by controlling traffic from clients on the internal network to hosts on the
Internet. Therefore, from a security perspective, a forwarding proxy’s main
purpose is to enforce security on client computers in the internal network. [10]
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Figure 3.2: Forward proxy

• Open Proxy:

An open proxy is a forwarding proxy server accessible by any Internet user.
Usually, a proxy server only enables users within a network group (i.e. a closed
proxy) to store and forward Internet services such as DNS or web pages to reduce
and control the bandwidth used by the group. With an open proxy, however, any
user on the Internet is able to use this forwarding service.

Figure 3.3: Open proxy

• Reverse Proxy:

A reverse proxy is a proxy server that appears to clients as a normal server.
Requests are forwarded to one or multiple origin servers handling the request. The
response is returned as if it came directly from the proxy server. A reverse proxy is
a "backward" proxy cache server; is a proxy server that, instead of allowing internal
users to access the Internet, allows Internet users to indirectly access certain
internal servers. The reverse proxy server is used as an intermediary by Internet
users who wish to access an internal website by indirectly sending it requests. With
a reverse proxy, the web server is protected from direct external attacks, which
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increases the strength of the internal network. Also, the cache function of a reverse
proxy can reduce the workload if the server is assigned, which is why it is sometimes
called a server accelerator. Finally, with improved algorithms, the reverse proxy
can distribute the workload by redirecting requests to other similar servers; this
process is called load balancing. [3]

Figure 3.4: Reverse proxy

3.1.2 Proxy server as firewall

The proxy server is placed between a user’s machine and the Internet. It can act as
a firewall to provide protection and as a cache area to speed up Web page viewing.
A firewall mechanism that replaces the IP address of a host on the internal (pro-
tected) network with its own IP address for all traffic passing through it. A software
agent that acts on behalf of a user, typical proxies accept a connection from a user,
decide whether or not the user or client IP address is allowed to use the proxy, per-
haps perform additional authentication, and then complete a connection on behalf
of the user to a remote destination. [3] An application level firewall examines the
requested session to determine whether or not it should be allowed based on the
source of the session requests and the purpose of the requested sessions. Such fire-
walls are created with the help of proxy servers. For true application-level firewalls,
a separate firewall is needed for each different type of service. For instance, you
would need separate firewalls for HTTP, FTP, SMTP and so on. Such firewalls are
basically access control statements embedded in the applications themselves. As a
network administrator, you place such declarations in the configuration files of the
application server. A more efficient alternative is to use a protocol between the
application layer and the transport layer - this is sometimes called the shim layer,
to intercept application layer calls from intranet clients to connect to servers on the
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Internet. Using a shim layer protocol, a proxy server can monitor all the session
requests that are routed through it in an application-independent way to check
the request sessions for their legitimacy. In this way, only the proxy server, acting
as a firewall, would require direct connectivity to the Internet and the local intranet
can "hide" behind the proxy server. Computers on the Internet at the large would
not even know of the existence of your machine in the local intranet behind the
firewall. [9]

Since shim-layer proxy servers have the characteristic of being independent of
the application protocol, it was decided to go for this type of proxy. The most
commonly used protocol for designing shim layer proxy servers is the SOCKS
protocol (RFC 1928) [18].
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Chapter 4

SOCKS protocol

4.1 Introduction

The use of network firewalls, systems that effectively isolate an organizations in-
ternal network structure from an exterior network, such as the INTERNET is
becoming increasingly popular. These firewall systems typically act as application-
layer gateways between networks, usually offering controlled TELNET, FTP, and
SMTP access. With the emergence of more sophisticated application layer protocols
designed to facilitate global information discovery, there exists a need to provide
a general framework for these protocols to transparently and securely traverse a
firewall. There is also the need to authenticate the clients so this protocol, if is
required, provides authentication. The protocol described here is designed to pro-
vide a framework for client-server applications in both the TCP and UDP domains
to conveniently and securely use the services of a network firewall. The protocol
stands between the application layer and the transport layer.
SOCKS is referred to as a generic proxy protocol for TCP/IP based net-
work applications. SOCKS, short for "SOCKETS", consists of two components:
ASOCKS client and a SOCKS server. It is the socks client that is imple-
mented between the application layer and the transport layer; the socks server is
implemented entirely at the session layer(shim-layer).
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Figure 4.1: Protocol stack in the SOCKS context

The fundamental purpose of the protocol is to enable hosts on one side of a
SOCKS server to access hosts on the other side of a SOCKS server, without re-
quiring direct "IP reachability". The previous version is SOCKS version 4 that
provides unsecured traversal for TCP-based client-server applications. The ver-
sion 5 extends the framework and provides strong authentication and extends the
addressing scheme in such a way to comprise domain-name and IPv6. The imple-
mentation of the SOCKS protocol typically involves the recompilation or relinking
of TCP-based client applications to use the appropriate encapsulation routines in
the SOCKS library.

4.2 Procedure
The SOCKS protocol performs four functions:

• Making connection requests

• Setting up proxy circuits

• Relaying application data

• Performing user authentication (optional).

When an application client needs to connect to an application server, the client
machine connects to a SOCKS proxy server. [20] The proxy server connects to
the application server on behalf of the client, and relays data between the client
and the application server. The SOCKS service is conventionally located on TCP
port 1080. If the connection request succeeds, the client enters a negotiation for
the authentication method to be used, authenticates with the chosen method,
then sends a relay request. The SOCKS server evaluates the request, and either
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establishes the appropriate connection or denies it.
Let’s see all the steps more in detail. The client connects to the server, and sends
a version identifier/method selection message:

Figure 4.2: Client hello

with the one-byte VER devoted to the version number (SOCKS4 or SOCKS5),
the one-byte NMETHOD devoted to the number of methods that will be listed
subsequently for client-server authentication, and, finally, a listing of those methods
by their ID numbers, with each ID number as a one-byte integer value.
For the scope of the project any connection is set with no method for the
authentication. If the socks proxy server accepts the client packet, it responds
back with a two-byte “Server Negotiation” packet:

Figure 4.3: Server negotiation

where the METHOD field is the authentication method that the server wishes
to use. The socks server then proceeds to authenticate the LAN client using the
specified method.

Once the method-dependent sub-negotiation has completed, the client sends the
request details indicating which service it wants and which address on the
Internet and on which port. If the negotiated method includes encapsulation for
purposes of integrity checking and/or confidentiality, these requests must be encap-
sulated in the method dependent encapsulation. The message of the client, called
the "Client Request" message, consists of the following fields:
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Figure 4.4: Client request

where the 1-byte CMD field contains one of three possible values: 0x01 for
“CONNECT”, 0x02 for “BIND”, 0x03 for “UDP Associate”. The ATYP field stands
for the “Address Type” field. It takes one of three possible values: 0x01 for IPv4
address, 0x02 for domain name, and 0x03 for IPv6 address. As you’d expect, the
length of the target address that is stored in the DST.ADDR field depends on what
address type is stored in the ATYP field.
An IPv4 address is 4 bytes long; on the other hand, an IPv6 address 8 bytes
long. Finally, the DST.PORT fields stores the the port number at the destination
address. The RSV field means “Reserved for future use". The client always sends
a CONNECT (value of the 1-byte CMD field) request to the socks proxy server
after the client-server authentication is complete. However, for services such as
FTP, a CONNECT request is followed by a BIND request. The BIND request
means that the client expects the remote Internet server to establish a connection
with the client. Under normal circumstances for a direct FTP service, a client first
makes a so-called control connection with the remote FTP server and then expects
the FTP server to establish a separate data connection with the client for the actual
transfer of the file requested by the client. When the client establishes the control
connection with the FTP server, it informs the server as to the address and port
on which the client expects to receive the data file.
After receiving the “Client Request” packet, the proxy server evaluates the request
taking into account the address of the client on the LAN side, the target of the
remote host on the internet side and other access control rules typical of firewalls.
If the client is not allowed the type of access requested, the proxy server will
terminate the connection to the client. Otherwise, the proxy server sends one or
two replies to the client socks. These replies, different in the value of the REP field
(and possibly other fields depending on the success or failure of the connection with
the remote server) are called the “Server Reply” are according to the following
format:
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Figure 4.5: Server reply

where the BND.ADDR is the internet-side IP address of the socks proxy server;
it is this address that the remote server will communicate with. Similarly, BND.PORT
is the port on the proxy server machine that the remote server sends the information
to. The REP field can take one of the following ten different values:

Figure 4.6: Response code of the SOCKS server

If the connection between the proxy server and the remote server is successful,
the proxy server forwards all the data received from the remote server to the socks
client and vice versa for the duration of the session.
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4.3 Normal Scenario

Figure 4.7: Standard scenario of a SOCKS connection

• 1) Client contacts proxy instead of the originally addressed server

• 2) Proxy evaluates client request and decides which to pass or which to reject

• 3) Proxy transfers request to originally addressed server on behalf of client

• 4) Server answers to proxy without knowing about client behind

• 5) Proxy passes answer to requesting client

Clients cannot decide whether to communicate to a server directly or via a
proxy. They are forced to use the proxy by means of configuration in the cor-
responding application. On the other hand the application server only knows
about the proxy and is supposed to only communicate with it. Proxies are also
used as a kind of firewall because they protect the clients against contacts from
outside. Clients to the left of the proxy are unknown to hosts on the right side
(see drawing). This fact can be used to reduce the requirement of official IP
addresses. When using a proxy server one single official IP address is theoreti-
cally sufficient to access the Internet for a whole company. The proxy keeps a
table of all sessions and connections. It maps the IP addresses and port num-
bers from inside to a single IP address and the corresponding port number. This
function is called NAT (Network Address Translation). A proxy server that
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automates this process is called transparent proxy. Because proxy servers handle
all network communication, they can log a lot. For HTTP proxies this includes
requested URL’s. For FTP proxies this includes every file that is transferred. They
can even filter out "inappropriate" words and block sites from which the URL was
retrieved or scan for viruses.

There are two major types of proxy servers. The first one is called dedicated
or application level proxy and the other one generic or circuit level proxy.
Dedicated proxies are specialized on one or a small amount of protocols. They know
in detail about the mechanism of the proxied service and can check the contents
of the packets. The name application level indicates that the proxy can work on
the application layer of the TCP/IP stack. Generic proxies are more general
proxies. In contrary to their specialized colleagues they can be called all-rounder.
They cannot look beyond the port number. This means they blindly trust the
destination port number of a packet. When there is something addressed to the
HTTP port 80, the generic proxies treats it like a HTTP request without further
checking. This may also be a disadvantage. Generic proxies can easily be faked.
You can send SMTP traffic via port 80 and the proxy will pass it although smtp is
not allowed. There are some more complex protocols like FTP that don’t function
in combination with generic proxies because they need special treatment.

4.3.1 Socks Proxy Server

The socks proxy server is a generic proxy and supports nearly every appli-
cation. It only requires the application to run socksified.

The socks server checks the session request made by the socksified LAN client for
its authenticity and then relays the request to the server on the Internet. Any replies
received back from the server is forwarded to the LAN client. If a request does not
violate any security policies set in the proxy server, the proxy server forwards the
request to the Internet. Otherwise, the request is blocked. This property of a proxy
server to receive its incoming LAN-side requests for different types of services on
a single port and then forward the forward Internet requests to specific ports on
specific Internet hosts is referred to as port forwarding. Port forwarding is also
referred to as tunnelling. The proxy server replaces the source IP address in the
connection requests coming from the LAN side with its its own IP address.(figure
4.8).

Now it is possible to pass a name to the socks server that resolves it on
behalf of the client. The socks server then asks his name server. Prior to Version 5
UDP packets were not supported, this means they were dropped. Now applications
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based on UDP like i.e. DNS and NFS can communicate through socks proxy server.
As the following drawing illustrates a socks server listens by default on port 1080.
Applications that want to use the socks server have to be socksified. The socks
client wraps the original request into a socks request. This means all outbound
traffic is redirected to the socks server at the listening port. The source address
will be replaced by the socks servers own and the source port will be randomly
chosen by an available high port of the socks server.

Figure 4.8: Socksification process

On the security of data communication between the socks server and the remote
service provider, note that since then socks works independently of application-
level protocols, it can easily host applications that use encryption to protect their
traffic. To give a good example, regarding the socks server is concerned, there is no
difference between an HTTP session and an HTTPS session. Since then,
after establishing a connection, a Socks proxy server does not care about the
nature of the data that moves back and forth between a client and the remote
host on the Internet, such a proxy server is also referred to as a circuit-level proxy.

4.3.2 Socks Client
The socks customer wraps all network-related system calls made by a host with their
own calls to the socket so that the host network calls are sent to the socks server on
a designated port (as said before, the port 1080). This step is usually referred to
as socksifying the customer call. An application doesn’t connect automatically to
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a socks server. The operating system or the application itself has to be modified to
use socks. This can be achieved in two general ways. The application has to be
compiled against the socks libraries or a socks library has to be made available at
runtime. To run an application socksified means to redirect standard network
calls to the corresponding programs provided by the socks library. There are a lot
of possibilities in doing so. Socks-capable applications such as web browsers, FTP,
Citrix or IRC clients have an optional socks functionality. When selecting this
option the socks server address and the port number socks is listening to, has to be
provided. The socks libraries are included in these applications. Following a sketch
of how to socksify firefox.

Figure 4.9: Socks configuration in firefox

Single windows applications can be socksified by means of programs like SocksCap
from NEC. It intercepts the networking calls from winsock applications and redi-
rects them through the socks server. In the SocksCap setup the socks server has to
be defined. To run a single program socksified it has to be inserted in the SocksCap
program list and started from there. A whole windows client can be socksified by
manipulating the TCP stack. This is usually done by a socksify program or more
common called a socks client. It replaces parts of the TCP stack or introduces an
additional layer to the stack. When an application requests a network connection
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the destination IP address is checked against the socks client’s configuration. If an
entry is found the request will be redirected to the corresponding socks gateway. In
the Linux/Unix environment socks libraries are available for free. To make an ap-
plication socks capable it has to be run with the according socks libs. You can
either recompile the application against the shared libraries or load these libraries
at runtime by starting the application with programs like socksify or runsocks.

To accomplish our project was selected a already existing generic proxy server,
and after a careful review of some projects, 3Proxy was chosen.
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Chapter 5

Understanding 3Proxy

5.1 Introduction

3Proxy is a combination of many specific application proxies, then in general it
can be considered a general server proxy. You can use every proxy as a stan-
dalone program (socks, proxy, tcppm, udppm, pop3p) or use combined pro-
gram (3proxy). Combined proxy additionally supports features like access control,
bandwidth limiting, limiting daily/weekly/monthly traffic amount, proxy chaining,
log rotation, syslog and ODBC logging, etc.

5.2 Architecture

The architecture reflects what was described before. In fact, 3Proxy is a shim-
layer proxy that accepts connections on different port. In our case of study,
3Proxy will be mostly used as a SOCKS server and will wait on port 1080 for
incoming connections and will use only this port to communicate with the client
applications. 3proxy is implemented as multithread application. Server model is
implemented as “one connection – one thread”. It means, for every client
connection new thread is created. Below an architecture’s sketch:
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Figure 5.1: 3Proxy architecture

The program starts with the main thread, that has the aim to read and parse
the configuration file. Each command of the configuration file, starts a new thread,
called service thread. The service thread loops waiting for requests from the
client, and spawn a new thread, the client thread. The last one, has the to
perform the SOCKS handshake and to relay the connection. One focus on
the fact that SOCKS can handle whatever application, while the other services
are specialized and oriented only to one application.

5.2.1 Main thread
3proxy begins with main thread. This thread parses configuration file and starts
main loop. During configuration file parsing struct extaparam conf; structure is
filled and service threads are started. [1]

Main loop cycle takes approximately 1 second and does these tasks:

• re-reads configuration file, if necessary

• performs scheduled tasks

• monitors files (‘monitor’ command), approximately once in a minute

• rotates main log file

• dumps counters to file, approximately once in a minute

• performs termination, if required
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It’s guaranteed every configuration and schedule command is executed from the
same thread. Main thread is implemented in 3proxy.c.

5.2.2 Service thread
Service threads are started immediately, than service command (e.g. ‘proxy’ or
‘socks’) are found during configuration file parsing. Each command creates new
thread. Thread does these tasks:

• parses service command arguments and fills the structures with default client
configuration

• initializes filters

• creates and initializes listening service socket

• enters into service loop

• terminates filters

service loop:

• checks for configuration reload (approximately every second), thread exits if
configuration reloaded or 3proxy is in terminating state.

• accepts client connection and creates the new client structure for the
connection with client configuration

• creates/checks client filters

• creates client thread with newly created data structure

service threads are implemented in proxymain.c

5.2.3 Client thread
Client threads are started from service thread. Client thread:

• reads client request with authentication information and request headers
(if any).

• filters request (if any)

• filters headers (if any)

47



Understanding 3Proxy

• performs authentication and authorization

• establishes connection with server

• sends request to server

• filters server headers (if any)

• maps client end server sockets to transmit data between client and server

• logs request. Global counters are also updated on this operation

• clears client filters

• frees all the client data structures

In some point client thread may loop to process few client requests from the
same connection (e.g. HTTP ‘established’ connection in ‘proxy’).

Socket mapping does:

• caches data in internal client and server buffers

• delays data transmit to limit bandwidth

• performs data filtering

client threads are implemented in proxy.c, socks.c, pop3p.c etc.

5.3 Hack into 3Proxy with plugins
3Proxy plugin is any dynamic/shared library. There is no specific requirement
for plugin, actually you can load any dynamic library with ‘plugin’ command. No
linking with any libraries are required. However, to interoperate with 3proxy
dynamic library must have an export function 3proxy may call to pass the
structure with required information.

typedef int (*PLUGINFUNC) (struct pluginlink *pluginlink, int argc, char** argv)

struct pluginlink is a structure with export information, argc and argv are ar-
gument counter and array of arguments of “plugin” command. Plugin should re-
port it’s status with integer return value. 0 is success, positive value indicates
non-recoverable error, 3proxy do not parse rest of configuration and enters into ter-
mination state, negative value indicates recoverable value, 3proxy logs warning (if
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possible). In case of C++, all 3proxy functions/structures must be extern “C”. All
3proxy structures/functions descriptions are located in structures.h Because there
is no linking between 3proxy and plugin, all 3proxy functions and structures are
passed with pluginlink structure. Pluginlink is actually a collection of pointers
to 3proxy internal structures and functions. One insight was to put all the
pointers to functions in that structures to allow the plugin to interact with the orig-
inal workflow of the project. With a simple call of this functions inside 3Proxy was
possible to switch in the bundle context and execute commands and actions
that interact with Aether in such a way that 3Proxy was not involved and was
not aware of this context switch. Besides not only pointers were stored inside
that collection but also data structures and variables useful for the bundle plugin.
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Chapter 6

3Proxy2Bundle

This chapter considers the design and implementation of the work. In a first step
will be discussed the architecture of the work and the workflow of a single connec-
tion. After will be showed the crucial point of the implementation.

6.1 Architecture
There are three actors involved: the client node making the request, the interme-
diate nodes and the gateway node that has the router role. As we have seen, there
is the DTN layer that allow the connection between the two sides.

Figure 6.1: 3Proxy2Bundle architecture
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It is worth to know that the Aether boxes are the application that runs over each
device and that there are more than one connection instantiated between the nodes
and Aether. The task of Aether is to route packets to the correct destination,
send and receive data in bundle format and provide the application data to the
proxy. From now on we call 3Proxy2Bundle the original 3Proxy project plus all the
modifications and plugins, that are essential to the proxy to "talk" the bundle
protocol. Basically, the original architecture of 3Proxy is modified in such a way
that the socks server is splitted in two sides, client and server’s. The client side
provides the function to accept connections of the clients and to send the requests
to the gateway. Therefore, it relays the connection between the client and the
gateway. As we can see in the figure below, the client application establishes a
connection with 3Proxy2Bundle listening on port 1080.

Figure 6.2: Client-side workflow

The client sends the socksified request to the proxy (1). The SOCKS hand-
shake is performed (2a), the proxy sends everything it receives from the client in
bundle format to the gateway (2b). The proxy then waits to receive the actual
request from the client (3). The client in turn waits for the outcome of the hand-
shake. If the latter is successful, the client sends the application request to the
proxy (4). The proxy, which has entered the relay phase, is therefore waiting to
both receive and send bundles (6). Once it receives the request, it forwards it
via DTN and from here on the connection occurs automatically, in relay mode.
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The server side provides the connectivity to the internet and send back
the answers to the client side. The server side workflow is shown below.

Figure 6.3: Server-side workflow

On the server side once that the application is entered, it creates a thread that
listens on the DTN node (i.e. dtn://acer/3Proxy). As soon as the node receives
a bundle notification (1), the proxy parses the message and retrieves the client
Endpoint ID (EID). The proxy has a map that contains all the combinations
between client EID and the socket that has been created to communicate with
the remote server. For example an entry could be "dtn://rasp/«random string» ->
4", where the "4" is the open socket connected to the remote server. Then, after
obtained the EID, the proxy checks if is already present in the table (2). In case
that is the first message that the client node sends to the gateway, is obvious that
there isn’t an entry in the table. So the app will create a new socket connected
to Aether, that has the aim to receive new messages from the client node and
to send messages from the remote server to the client node (3a). After the socket
creation, the proxy will enqueue the bundle in the queue of bundles that have
to be nextly consumed. A new thread is created and as the client side the SOCKS
handshake is performed. This time, anyway, it is a fake handshake performed to
do not modify the original workflow (5). Once that the proxy has got the address
or DNS name, it can establish a connection with the remote server. After that, the
thread enters in the relay mode, in which it listens both sockets for new messages
and sends/receives data from the remote socket and the DTN node. In the case
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that the entry was already present in the table, it means that a connection has
already been established, then the proxy will only enqueue the bundle in the queue
(3b) and will loop to receive another notification (4b).

6.2 FTP example
An example of how to use the application can be using the FTP protocol thanks
the FileZilla client. FileZilla can connect to the Socks proxy on the port 1080.
3Proxy2Bundle is running a thread waiting on that port for connections. At this
point a new thread is spawned and the connection is taken in account. A initial
handshake is instantiated between the app and the client. After that a socket to
the Aether is generated and all the requests are redirected to the 3Proxy2Bundle
router node waiting in the DTN network. At this point the 3Proxy2Bundle server
side has already created a thread waiting on the DTN socket for some requests.
As soon as a notification arrived, the request is taken in account and a dummy
handshake is performed between the DTN node and app. At that point the server
connects to the remote server and send the original request. After that the server
receives the answers by the remote one and generating a temporary socket for the
connection sends through DTN the packets. After that point on, all the connection
is relayed on this 2 sockets on the edge of the DTN and Filezilla can demand for
any file in the directory listing.

6.3 Configuration

6.3.1 Configuration file
3Proxy has originally a own configuration file to set up some options and behaviours.
In this work has been chosen to use that file with some insertions and modifications.

1 #3Proxy original options
2 nscache 65536
3 nserver 8.8.8.8
4 nserver 8.8.4.4
5
6 # Timeouts for connections
7 timeouts 200000 200000 200000 200000 200000 200000 200000

200000
8
9 #Server -side plugin
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10 # plugin ./ Server .ld.so server
11
12 #Client -side plugin
13 plugin ./ Client.ld.so client
14
15 #3Proxy original options
16 config 3proxy.cfg
17 rotate 60
18
19 # Authentication is not required
20 auth none
21
22 #Allow any client to access the service
23 allow *
24
25 #Start the socks program
26 socks -p1080
27
28 #clean the option file
29 flush

Listing 6.1: Configuration file

The options above specify the functionalities of the program and the behaviour.
The first three lines derive from 3Proxy and are necessary to specify to which DNS
server the application will connect and define the dimension of the cache. The
next option defines the value of the timeouts. In the program there are different
timeout, so you define them separating each one by a space. As we have seen,
the main thread loops each second to fetch some command. In the configuration
above, there are 2 plugin commands, actually only one should be defined because
one excludes the other. The plugin ./Server.ld.so server means that a plugin
command is executed. It implies that a dynamic library is loaded, in this case
Server.ld.so, and the server function is called as an entry function. After the
server function is called the main thread exits by the plugin function and the thread
returns looping. Since that the application is a proxy, it has to be defined who has
the rights to access the service. In fact, the next two options define how to do
that. The former, establishes if authentication is required or not; for simplicity is
set to not authenticate. The latter, states if every client can connect and use the
service or there is some restriction. The last command shown above starts the
socks program with a new thread. It also defines the port on which the thread
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will listen for incoming connections.

6.3.2 Plugins
The aim of the plugin, in our case, is to initialize correctly the pointers to
functions that will called inside the 3Proxy original project. Following is reported
the Client.cpp file. Server.cpp is pretty similar to Client.cpp, for this reason is not
reported. The basic difference is that instead of the client flag is raised, in the case
of the server side, the server flag is set to 1.

1
2 #ifdef __cplusplus
3 extern "C" {
4 #endif
5
6 struct pluginlink * pl;
7
8
9 PLUGINAPI int PLUGINCALL client (struct pluginlink *

pluginlink , int argc , char** argv){
10
11 pl = pluginlink;
12 std::cout << "Hi ,␣I␣am␣3ProxyClient" << std::endl;
13
14 if (argc >1) {
15 if (! strcmp ((char *)argv[1], "debug")) {
16 fprintf(stdout , "Traffic␣correct␣

plugin:␣debug␣mode␣enabled .\n");
17 }
18 }
19
20 pl->connect_to_aether = utils :: connect_DTN;
21 pl->client = 1;
22 pl->DTN = 1;
23 pl->send_DTN = utils :: send_DTN;
24 pl->read_DTN = utils :: read_DTN;
25 pl->close_fd = utils :: closefd;
26 pl->queue_is_empty = utils :: queue_empty;
27 pl->check_and_react = utils :: checkandreact;
28 return 0;
29 }
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30
31 #ifdef __cplusplus
32 }
33 #endif

Listing 6.2: client()

According to this approach, you can call some functions that are external from
the original project, for instance, simply by calling the function as follows:

pluginlink->readDTN(parameters).

6.4 Common part
To understand more what are the functions involved in the workflow of a standard
connection, let’s see the sketch below:

Figure 6.4: Workflow of establishing a new connection

As shown in the figure above, there are some functions that are common in
both sides. For the sake of simplifying the presentation they are grouped in this
paragraph. The functions that are responsible to intermediate between the proxy
and Aether are grouped in the Utils.cpp file. Utils.cpp is a wrapper that embeds
the function calls to function in BundleServer.c and BundleClient.c. The most
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important function are the send and receive ones, that are responsible to deliver and
receive every packet or data to/from the other edge. The bundle management part
has been taken from Tinyproxy [4] and some changes have been added. Bundle.c
and network.c remained unchanged. Basically they were used as an interface to
the proxy with the bundle protocol. In the relaying phase, where the connection
has been already established, both the sides applications enter in the sockmap.c file
where the connection is relayed. With respect to the original file, some modification
have been added such as an extra timeout in the case a bundle is already available
and the functions read/send have been substitute by the readDTN and sendDTN
functions.

6.4.1 Read and write functions to DTN

The readDTN implementation is the following:

1 int readDTN(int s, unsigned char * buf , size_t len){
2 Dtnd_bundle_id *dtnd;
3
4 if(bundle_is_bundle_id_queue_empty(s)){
5 dtnd = bundle_react_to_notify(s);
6 if (dtnd != NULL)
7 bundle_enqueue_bundle_id(s, dtnd);
8 else
9 return -1;

10 }
11 if(bundle_read_header_incoming_bundle(s)){
12 fprintf(stdout ,"Errore␣read␣incoming␣

bundle !\n");
13 }
14 int ret = read_buffer(s, buf);
15
16 bundle_set_delivered(s);
17
18 return ret;
19 }

Listing 6.3: readDTN()

The basic task of this function is to check if the bundle’s queue is empty. If
yes, it will react and try to retrieve the bundle asking it to Aether. If not, it
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means that there is yet a bundle to consume. So it goes directly to the bun-
dle_read_header_incoming_bundle(s). At that point, the function have put the
bundle in the queue and it is possible to read it. The result is stored in the buffer
buf that was passed by reference. The last action is to set the bundle as delivered.
In such a way, it will be erased from the queue and from Aether.
The sendDTN implementation is the following:

1 int sendDTN(unsigned char* buf , int sock , size_t bufsize){
2 int res;
3 int connect_method =

connections[sock]. connect_method;
4 char* client_local_eid =

connections[sock]. client_local_eid;
5
6 if(bundle_get_remote_eid(sock) == NULL){
7 if(bundle_start_send(sock , client_local_eid ,

bundle_get_remote_eid(sock)) != 0)
8 return -1;
9 }

10 else{
11 if(bundle_start_send(sock , client_local_eid ,

bundle_get_remote_eid(sock)) != 0)
12 return -1;
13 }
14 res = safe_write(sock , buf , bufsize);
15 bundle_finalize_send(sock , client_local_eid);
16
17 return res;
18 }

Listing 6.4: sendDTN()

Basically, this function retrieves the receiver and the sender thanks the data struc-
ture previously filled. Once it has both them, it calls bundle_start_send that
initializes the structures for sending the bundle. Then, the socket will expect some
data and the safe_write function will write on it. At the end, to close correctly
the bundle and turn back to the correct state is called the bundle_finalize_send
function. From now on, it will be presented the different implementations that
characterise the client and server side. The main differences between the 2 sides
are shown into the BundleClient.c and BundleServer.c.

58



3Proxy2Bundle

6.5 Client implementation

The interaction with the client application is left the same of the original project,
in fact the listening thread on port 1080 is running and waiting for connections
from the client. The only modification in the proxymain.c is the connection to the
remote server. For our scope, param->remsock will point to a socket connected to
Aether. Below is shown how to get it:

1 int connect_to_aether (){
2 char* remote_eid;
3 char* server_local_eid;
4 int fd = bundle_establish_dtnd_connection ();
5 server_local_eid = bundle_get_local_endpoint_eid(fd);
6 char host [16] = "3proxy.acer.dtn";
7 remote_eid = bundle_format_server_eid(host);
8 if (remote_eid == NULL) {
9 fprintf(stdout , "Server␣EID␣is␣not␣valid ,␣

critical␣error");
10 bundle_close_fd(fd);
11 close(fd);
12 return -1;
13 }
14 bundle_set_remote_eid(fd, remote_eid);
15 connections[fd].host = host;
16 connections[fd]. remote_eid = remote_eid;
17 connections[fd]. server_local_eid = server_local_eid;
18
19 return fd;
20 }

Listing 6.5: connect_to_aether()

The value returned is the socket connected to Aether so it can be assigned to
param->remsock. After that the connection thread enters in the socks.c file, does
the handshake, sends the SOCKS request and App request to the server through
DTN and enters in the relay mode. Once the server will have answered, the
connection will proceed automatically.
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6.6 Server implementation
In the server part, the proxymain.c is a bit different from the original one. A first
difference is that the creation of the client socket (param->clisock) is done by the
following code:

1 /* create the socket */
2 sock = pluginlink.activate_server_app ();
3 sprintf ((char *)buf , "Connected␣to␣DTN␣[%d]\n",

sock);
4 (*srv.logfunc)(&defparam , buf);

It is worth nothing that, the socket, while previously was connected to the client
application, in that case is connected to Aether. The active_server_app() does
the following stuff:

1 int activate_server_app(char* name_service , char* address ,
int port){

2 dtnd_server_ipaddress = (char*)
malloc (10* sizeof(char));

3 strcpy(dtnd_server_ipaddress , address);
4 dtnd_server_port = port;
5 Dtn_service* ds;
6 ds = (Dtn_service *) malloc(sizeof(Dtn_service));
7 ds->ip_address = dtnd_server_ipaddress;
8 ds->port = dtnd_server_port;
9 ds->app_name = name_service;

10 int ret = bundle_establish_dtnd_connection ();
11 ds->app_eid = bundle_build_nodename(ret ,

ds->app_name);
12 bundle_set_service(ret , ds);
13 bundle_set_endpoint(ret , ds ->app_name);
14 return ret;
15 }

Listing 6.6: activate_server_app()

Basically, in the above code the server app will connect to Aether on address and
port provided in the configuration file. Then is defined the service, that is a name
written in the configuration file. So every node in the DTN that wants to send
bundles to the server has to set as receiver dtn://name-device/name-service.
Then the connection with Aether is established and is set the name of the service
and the name of the endpoint.
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After the structures of the bundle plugin are set, has to be shared with the node
the active service. It is done and shown in the next code snippet:

1 int register_service(int fd,char*name , char* type , float
min , float max , int osi_level , char* ext_conn , char*
unit_min , char* unit_max){

2 Dtn_service dtn_service;
3 dtn_service.app_name = name;
4 dtn_service.dtnd_description = "Test";
5 dtn_service.type = strdup(type);
6 dtn_service.min_bandwidth = min;
7 dtn_service.max_bandwidth = max;
8 dtn_service.unit_max = unit_max;
9 dtn_service.unit_min = unit_min;

10 dtn_service.max_bandwidth = max;
11 dtn_service.osi_level = osi_level;
12 dtn_service.external_connection = ext_conn;
13
14 bundle_register_to_SD(fd, &dtn_service);
15 }

Listing 6.7: register_service()

The next step is that the service thread enters in the loop and wait for
some notifications from the client app. When a new notification arrives to the
listening socket, the poll wakes up and the following code is executed:

1 new_sock = pluginlink.accept_connection(sock);
2 if (new_sock == -1)
3 continue;
4 so._setsockopt(new_sock , SOL_SOCKET , SO_LINGER ,

(char *)&lg, sizeof(lg));
5 so._setsockopt(new_sock , SOL_SOCKET , SO_OOBINLINE ,

(char *)&opt , sizeof(int));

The accept_connection references to acceptconnection that is a wrapper for the
accept_connection function. The wrapper has the function to know if a connection
has already taken place or not. If yes, the function returns -1 and the bundle
will be enqueued and the function continues the loop. Otherwise a new socket is
created calling the accept_connection function inside the wrapper.

1 int acceptconnection(int listenfd){
2 char buf [512];
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3 int len;
4 int connfd;
5 Dtnd_bundle_id* dtnd = react_to_notify(listenfd);
6 if (dtnd == NULL) {
7 printf("Errore␣50␣utils.cpp\n");
8 return -1;
9 }

10 std:: string client_eid = get_eid(listenfd);
11
12 std::map <std::string , int >:: iterator connection;
13 connection = get_connection(client_eid);
14
15 if (connection != connections.end()){
16 // already present -> enqueue bundle
17 enqueue_bundle(connection ->second , dtnd);
18 return -1;
19 }else{
20 connfd = accept_connection(listenfd , dtnd);
21 connections.insert(std:: make_pair(client_eid ,

connfd));
22 }
23 return connfd;
24 }

Listing 6.8: acceptconnection()

As said before, only if a connection hasn’t already been created the accept_connection
will be called. To do that, a map with all the connections is stored and updated
dynamically in the course of the program. The accept_connection function is
reported as follows:

1 int accept_connection(int listenfd , Dtnd_bundle_id*
dtnd){

2 int connfd;
3 if (dtnd != NULL) {
4 connfd = bundle_establish_dtnd_connection ();
5 bundle_copy_service(listenfd , connfd);
6 bundle_enqueue_bundle_id(connfd , dtnd);
7 bundle_set_remote_eid(connfd ,

strdup(bundle_get_remote_eid(listenfd)));
8 bundle_clear_remote_eid(listenfd);
9 int flags = fcntl (connfd , F_GETFL , 0);
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10 fcntl (connfd , F_SETFL , flags & ~O_NONBLOCK);
11 }
12 if (dtnd == NULL) {
13 usleep (10);
14 }
15 char* local_eid =

bundle_get_local_endpoint_eid(connfd);
16 connections[connfd ]. client_local_eid = local_eid;
17 return connfd;

Listing 6.9: accept_connection()

Once a connection is accepted, all the further messages will be addressed to the
connection-specific node (dtn://acer/«random-number) and not anymore to the
listening-service node (dtn://acer/3proxy). It is possible since that every time
a node receives a message, it sets up the receiver for further messages as
the sender of the last message. Then, when the node on the client side will
receive the message from the temporary socket on the server side, it will set up
the temporary node as the receiver and not anymore the "3proxy" node. So the
connection enters in the relay mode and the connection thread will enter in the
sockmap.c file and will relay the connection.

6.7 Relay mode
After a connection is established and the first notifications arrived to the gateway,
the whole system enters in the relay mode. This part of the workflow is the heart
of the connections. For instance, if the application involved is HTTPS, there will
be a lot of requests and a lot of connections. The average duration is very small
with regards to a FTP connection, since that in the latter, more data will pass
through the sockets in the relay mode, then on the same connection. The core of
the relay mode is in sockmap.c. sockmap() function has a poll with the 2 sockets,
clisock and remsock and whenever there are data for one side, after triggered a
wake up of the poll, they are sended to the destination. Since that on client side
and server side the socket are different from the native ones, respectively, remsock
and clisock, some changes were necessary to make everything working.

6.7.1 Read/Send function calls

Due to the interoperability with the bundle protocol a simple call to send became:
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1 if(pluginlink.client && pluginlink.DTN){
2 res = pluginlink.send_DTN(parameters);
3 }else{
4 res = so._sendto(parameters);
5 }

Listing 6.10: send_DTN in sockmap()

The same is done for the reading function. In such a way the sendDTN and the
readDTN are called instead of calling read and send as done by the normal flow of
the original project.

6.7.2 Handling silent bundles

Therefore, since that sometimes new bundles are silently added to the queue without
being noticed by the poll it was necessary to add a check before the poll to be sure
that no bundle is waiting in the queue to be consumed:

1 timeo = 300000;
2 if(pluginlink.client && pluginlink.DTN &&

!pluginlink.queue_is_empty(param ->remsock)){
3 timeo = 2;
4 }
5 res = so._poll(fds , 2, timeo);
6 if(res < 0){
7 if(errno != EAGAIN && errno != EINTR) return

91;
8 if(errno == EINTR) usleep(SLEEPTIME);
9 continue;

10 }
11 if(res < 1){
12 if (pluginlink.client && pluginlink.DTN &&

!pluginlink.queue_is_empty(param ->remsock))
13 fds [1]. revents |= POLLIN;
14 else{
15 return 92;
16 }
17 }

Listing 6.11: Modification to handle silent bundles
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Originally the timeout is set up on the configuration file. In this case, since every
time it is modified, timeo is always redefined. If there is no bundle that has
to be consumed, the timeout is left equal to a long timeout, in the code above is
set to 300000. In the case that there is already a bundle, the timeout is set
approximately to 0 to let trigger the timeout and go out immediately from the
poll. This change is really important for the correct workflow of the connection, if
that part would not be present, the poll will wait until the timeout expires and the
bundle will never acknowledged. After the exit from the poll, the fds.revent specific
is set in such a way that on the socket will be read data.

6.7.3 Connection closure

Having the sockets connected to the client and the remote server on a single device
ensures that when one is closed, the other is notified about the closure of the other
side and it will also close the connection. Since in this case, the sockets are on two
different machines and are intermediated by sockets connected to Aether,
the connection must be closed explicitly with text plain messages. One solution
is to send a text message to the receiver so that it detects and knows that the
connection on the other side is closed and acts accordingly, that is in turn closes
the connection. The solution chosen is shown below:

1 if (res==0 || end_connection(res , param ->srvbuf +
param ->srvinbuf)) {

2 if(pluginlink.client &&
pluginlink.DTN)

3
4 so._shutdown(param ->remsock ,

SHUT_RDWR);
5 so._closesocket(param ->remsock);
6 fds [1].fd = param ->remsock =

INVALID_SOCKET;
7 stop = 2;
8 }

Listing 6.12: Handle the closure of the connection

In a nutshell, a check is performed after receiving data from Aether; if the bytes
read are 0 or the message reports the closure of the other part, the socket immedi-
ately exits from the loop and close the connection. Specifically, if end_connection
returns 1, means that the connection on the other side is closed and it sended
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"END CONNECTION" in plain text. Below is reported the end_connection
function:

1 int end_connection(int count , unsigned char* buf){
2 char subbuff [15];
3
4 memcpy( subbuff , buf , 14);
5 subbuff [14] = ’\0’;
6
7 if(strcmp("END␣CONNECTION", subbuff) == 0)
8 return 1;
9

10 return 0;
11 }

Listing 6.13: end_connection
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Prototype validation

In this chapter, we will carry out some tests and evaluate the results. To this
end, a scenario has been configured in which two nodes are connected via a dedi-
cated Wi-Fi network. The metrics measured are throughput and the overhead
introduced by the implemented software layer.

7.1 Setup
The tests were carried out using 2 computers connected to a dedicated Wi-Fi net-
work with a 100 MBps access point. The two devices used are:

• Acer, 8 GB of RAM, i5-2410M processor with 2.3 GHz frequency and four
cores on Ubuntu 16.04 operating system.

• Dell 3550, 8 GB of RAM, i5 processor with frequency 2.7 GHz and four cores
on XUbuntu operating system.

Two of the tools offered by Aether were used to generate and receive traffic,
namely dtnsend and dtnrecv, which are launched from the terminal with the fol-
lowing commands:

1 dtnrecv --name abc

which puts the receiver node on listen; the parameter passed is the name to be
given to the application;

1 dtnsend dtn :// nodename/abc F.txt

with which the sender sends the F.txt file to the node with the corresponding dtn
name via the application of name abc. The configuration of the proxy is set to
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craft packets of 4096 bytes. This decision was taken in account because on one
side it implies that an high number of packets are created each time, but the
great advantage is that it guarantees that it is not required to resend large
packets in the case one of them is corrupted.

7.2 Throughput and network load
In this section we will analyse the throughput and latency of transmission as the
sending characteristics change. The times measured below are given in seconds.
The protocol used to test the application were FTP and HTTP. The former, using
FileZilla gives a more detailed look at the real performance of the proxy service. It
is possible to obtain the average speed of the downloads and uploads and so on.
In the latter case it is possible to see how many connections are really established
and closed correctly. Following a particular study is carried on the former which a
focus was taken on the throughput and performance.

7.2.1 Troughput
As can be seen from the following list, throughput was measured in different sce-
narios:

• receiving a single 1 MB file,

• receiving a single 10 MB file,

• receiving a single 100 MB file,

• receiving a single 1 GB file
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When receiving a single 1MB file, the average transfer time was 1.1 s. This
implies an average throughput of this implies an average throughput given by:

Throughput = 220B

1s
' 1MB/s (7.1)

The same experiment repeated with a 10MB file shows an average transfer time
of 12.3 s, with a throughput given by:

Throughput = 10× 220B

28s
' 0.35MB/s (7.2)

As can be seen, the performance in this case is lower than the previous case by
about 65%; this is due to the excessive network load and, therefore, a waiting time
for the data in transit in the network buffers.

As can be seen, the performance in this case decrease not linearly with the
dimension of the file. However, it should be noted that the larger size of the data
sent compared to the single 1MB file, the throughput in this case is worse. So the
overhead introduced for the passage from one bundle to the next allows for faster
sending, in the sense that in the 10MB case the receiver has to wait for all the
fragments to be received, reorder them and recompose the file, while by sending
smaller files the data to be ordered and rearranged is smaller, resulting in a slight
improvement in performance.

Nextly the prototype was challenged with files of 100 MB and 1 GB. In the for-
mer case, the average transfer time was is about 5 minutes; therefore the throughput
in this case is:

Throughput = 100× 220B

286s
' 349,65KB/s (7.3)

The latter was not successful, in fact after have downloaded 1 quarter of the total
file, the throughput fell down and the connection was closed by the server side.
This is due to the high number of packets that are generated when files of such
dimensions are demanded and it causes a dropdown of the connection speed and
the fulfilment of the 4 buffers in the software(2 original by 3Proxy and other 2
in Aether).

7.2.2 Aether load
Due to the load of the requests, it is possible that Aether cannot keep up with all
of them. This brings the system, on both side, in a state that is not guaranteed
stable downloads. As soon as the load becames less, the downloads rocket up to
the maximum speed possible. This behaviour is justified from the fact that, on the
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overload situation, there is a congestion in delivering the packets; this results in
slowing down the speed of the download and in some cases also the interruption of
it.

7.2.3 Performance
Generally the performance have suffered a drop due to the computational expanse
of Aether intermediation. It was possible to notice a decrease of 5 times with respect
to the normal speed of the proxy running alone. It is acceptable considering that the
plugin has to listen on 2 sockets more, generate packets and send them. Moreover,
in the case that there is a lot of packets to deliver, there is a congestion phase that
tends to drastically reduce the overall throughput.
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Conclusion and future
developments

The aim of this work was to provide a proxy service to each node in the DTN
network that requests its use. For this reason, a design that already acted as a
proxy was studied and from there adapted in the context of a DTN. The plugin
mechanism was used in order to be able to transparently call functions that had ac-
cess to the data structures of the bundles in order to communicate with the Aether.
Specifically, the part of bundle management, sending, receiving and processing used
some code and files from Tinyproxy project. In general, 3Proxy2Bundle works cor-
rectly and efficently. In some cases, there might be problems with the reordering
of packages or security issues.
Future developments may focus on improving failures and delay situation, e.g. when
the connection fails and the downloads of files via FTP don’t terminate properly.
Performance could also be improved analysing the congestion problem in Aether.
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