
 POLITECNICO DI TORINO

Facoltà di Ingegneria
 Corso di Laurea Magistrale in Ingegneria Informatica

Deep Learning-Based Real-Time Detection
and Object Tracking on an Autonomous
Rover with GPU based embedded device

Relatore
Prof. Ing. Paolo Garza
Politecnico di Torino

Correlatore
Prof. Ing. Aldo Algorry

Universidad Nacional de Córdoba

Candidato
 Aldo Caliò

 A.A. 2020-2021

“I computer sono incredibilmente veloci, accurati e stupidi.
 Gli uomini sono incredibilmente lenti, inaccurati e intelligenti.

L'insieme dei due costituisce una forza incalcolabile.”
Albert Einstein

Alla mia Famiglia,
Luogo di partenze e arrivi del cuore.

 Abstract

In recent years, there has been a growing interest in autonomous systems with artificial
intelligence, especially in the military, home automation and smart cities sectors. In this
project, the aim is to develop, through an artificial neural network capable of detecting
objects, a system that can make a rover-type vehicle independent. An autonomous vehicle
is a system capable of perceiving its environment and moving safely with little or no human
input. Based on an appropriate network according to the needs, a tracking algorithm is
developed, which gives the memory to the intelligence, i.e. it can assign an identity to any
detected object, around frames in a real-time video. The implementation of a tracking
algorithm would allow the system to be more dynamic and to perform more complex
functions than simply detecting and tracking the object frame by frame.
This paper explores the possibility to create an autonomous system that allows the user to
select the desired mode of use by means of a graphic user interface. A Follow Me module
is implemented, a technology that is now present in many systems of this type, such as
drones or domestic robots, which allows the drone to follow a moving object around
autonomously. The Follow Me module allows any person detected to voluntarily activate
and, vice versa, deactivate the tracking function of the system.

The following work is part of a larger research project, entitled "INTEGRATION OF
OBJECT DETECTION IN REAL-TIME IMAGES IN AUTONOMOUS VEHICLE DRIVING",
supported by the National University of Cordoba, aimed at the autonomous operation of a
rover-type land vehicle. The tests that will be carried out will relate to the use of a very
specific board, the INVIDIA Jetson-Nano, which is mounted in the physical system
supplied to the general project.

 Keywords

CNN Convolutional Neural Network.
BBOX Bounding Box.

SSD Single Shot Detector.

ML Machine Learning

SOT Single Object Tracking.

MOT Multiple Object Tracking.

GPIO General Purpose Input/Output. Entrada/Salida de Propósito General.

CUDA Compute Unified Device Architecture.

API Application Program Interface.

CPU Central Process Unit.

GPU Graphic Process Unit.

FPS Frame Por Second.

AI Artificial Intelligence.

Index

1 Introduction and Background 6
1.1 Introduction . 6

1.1.1 Work methodology . 6
1.2 Background . 8

1.2.1 Object Tracking . 8
1.2.2 Challenges of Object Tracking 9
1.2.3 NVIDIA JETSON NANO 10

1 2.3.1 Comparison between TFLOPS 11

2 System Design and software implementation 13
2.1 System Design . 13
2.2 Functional and non-functional requirements 13
2.3 Behaviour description . 14

2.3.1 Use cases . 14
2.3.2 Sequence diagrams . 19
2.3.3 Execution sequences . 19

2 3.3.1 Follow Me . 20
2 3.3.2 Reach Target . 21

2.4 Description of the structure . 24
2.5 API Architecture . 26

2.5.1 Class Diagrams . 27

3 Object Tracking 35
3.1 Object Tracking implementation 36

3.1.1 Centroid Tracking Algorithm 36
3.1.2 Algorithm implementation 39

4 Additional modules and GUI 41
4.1 Identity switch recognizer . 41

4.1.1 Identity switch . 41
4.1.2 Behaviour description (identity switch) 43

4.2 Follow Me Module . 43
4.2.1 Behaviour description (Follow Me) 43
4.2.2 Parameters of the Follow Me Module 45

1

4.2.3 Implementation of the algorithm 45
4 2.3.1 Follow Me function 46
4 2.3.2 Unfollow Me function 46

4.2.4 Algorithm limitations . 47
4.3 GUI . 48

4.3.1 First window . 48
4.3.2 Second window (Static Modes) 48
4.3.3 Third window (Dynamic Mode 49
4.3.4 Fourth window (Class Selection) 50

5 Test and results 51
5.1 Tests . 51

5.1.1 Centroid Tracking algorithm experimentation 51
5.1.2 Identity switch experimentation 52
5.1.3 Follow Me experimentatation 53

5 1.3.1 Follow Me mode experimentation (1) 53
5 1.3.2 Follow Me mode experimentation (2) 55
5 1.3.3 Follow Me mode experimentation (3) 57

5.1.4 Reach Target mode experimentation 58
5.2 Results . 59

5.2.1 Best Parameters based on the experimentation 59
5.2.2 Requirements Traceability Matrix 60
5.2.3 Limit parameters for Non-Functional Requirements 62

6 Conclusion 63
6.1 Recommendation for further research 64

7 APPENDIX 66
7.1 A: Selection of the camera . 67
7.2 B: Why choose python for ML? 69
7.3 C: Jetson Nano installation . 71

2

Index of figures

1 Introduction and background
1.1 Abstraction of the tracking issue 9
1.2 NVIDIA Jetson Nano . 11

2 System design and software implementation
2.1 System Design . 13
2.2 Use case diagrams . 19
2.3 Follow Me Mode execution diagram 21
2.4 Reach Target execution diagram 23
2.5 Diagram of system context . 25
2.6 High-level Block Definition Diagram 25
2.7 Internal Block diagram . 26
2.8 High-level class diagram . 27
2.9 Complete class diagram . 27
2.10 GUI module . 28
2.11 Follow Me module . 28
2.12 Object Detection Module . 30
2.13 Safe Module . 31
2.14 Tracking Module . 32

3 Object Tracking
3.1 Bounding boxes example . 35
3.2 Centroid algorithm: step 1 . 37
3.3 Centroid algorithm: step 2 . 38
3.4 Centroid algorithm: step 3 . 39

4 Identity switch recognizer
4.1 Identity switch . 42
4.2 Example of incorrect centroid assignment 42
4.3 Example of bounding box width variation 44
4.4 Example 2 of bounding box width variation 45
4.5 First window . 48
4.6 Second window . 49
4.7 Third window . 50
4.8 Fourth window . 50

i

Index of tables

1 Introduction and Background
1.1 Comparison of computing power between Jetson modules 11

2 System design and software implementation
2.1 Functional and non-functional requirements 14
2.2 CU1.1 . 15
2.3 CU1.2 . 15
2.4 CU1.3 . 16
2.5 CU1.4 . 16
2.6 CU1.5 . 17
2.7 CU2.1 . 17
2.8 CU2.2 . 18
2.9 CU2.3 . 18

5 Tests and results
5.1 Centroid Tracking algorithm experimentation 51
5.2 Identity switches experimentation 52
5.3 Follow Me mode experimentation (1) 53
5.4 Follow Me mode experimentation (2) 55
5.5 Follow Me mode experimentation (3) 57
5.6 Reach Target mode experimentation) 58
5.7 Requirements traceability matrix 61

i

6

Introduction and Background

 1.1 Introduction

Machine learning is a method of data analysis that automates the construction of
analytical models. It is a branch of artificial intelligence based on the idea that systems
can learn from data, identify patterns and make decisions with minimal human
intervention. Machine Learning is forming its own name, with growing recognition
showing that MA can play an important role within a wide range of crucial applications,
such as data mining, natural language processing and image recognition.

Deep Learning is a subcategory of Machine Learning. It refers to the function and
structure of a brain that is known as an artificial neural network. With the introduction of
CNNs (Convolutional Neuronal Network) and the growth in computing power of
processors, there has been an exponential increase in the use of artificial intelligences
with DL techniques and especially in the category of Computer Vision. CV is one of the
branches of Artificial Intelligence that has experienced the greatest growth in recent
years. Computer Vision refers to the discipline that studies how to process, analyse and
interpret images automatically.

 1.1.1 Work methodology

1

7

 Used tools:

• NVIDIA Jetson Nano

• Micro Usb 32Gb

• Camera de Raspberry

• Monitor HDMI

• Power MicroUSB 5V-2A

• Devices

The working methodology chosen to be used is iterative and incremental. This model
was created in response to the weaknesses of the traditional waterfall model, and
groups a series of tasks in small repetitive phases (iterations). The aim of each iteration
is to evolve the product incrementally, implementing new features and new
functionalities. This model consists of a series of steps that are repeated in each
increment, starting with an analysis, and ending with the testing and documentation of
the implemented functionality.

Some of the advantages of the iterative and incremental model compared to other
software development models are:

● Users do not have to wait for delivery of the complete system before they can
use it.

● Users can use the increments as prototypes and gain experience with the
requirements.

● It allows the complexity of the project to be separated into smaller problems that
are solved in each iteration.

● The final product that has clearly been made with incremental stages is much
less likely to have a failure, and in case something does not work you can go back to
the previous stage through backups of each stage.

8

There are two phases of the project that involve the design and implementation of the
software. In these phases we proceed with the analysis of the tools we will be working
with, the design of functional prototypes, and the extension of the functionality and
structural improvements of these prototypes. This report describes in detail the design
and implementation of the final prototypes of the pieces of software created.[1] This
report describes in detail the design and implementation of the final prototypes of the
pieces of software created.[1]

 1.2 Background

 1.2.1 Object Tracking

Object tracking is a field of Computer Vision that involves the tracking of objects as
they move through various video frames. Tracking has many practical applications,
including surveillance, image medical, animal tracking, traffic flow analysis, cars
that are lead alone, the analysis of audience flow and the interaction between man
and computer.

Technically, object tracking begins with object detection (identifying objects in an
image and assigning them bounding boxes). The tracking algorithm of objects
assigns an identification to each object identified in the image, and in subsequent
tables tries to lead through this identification and identify the new position of the
same object.

Here are some of the challenges of object tracking compared to the detection of
static objects, including re-identification, appearance and disappearance, and
occlusion. The two main types of Obj. Tracking commonly used are Offline
Tracking, tracking objects in a recorded video where all the frames are known in
advance, including future activity, and Online Tracking, tracking objects in a live
video stream, for example, a surveillance camera (this is more challenging because
the algorithm must work fast, and it is not possible to take future frames and
combine them in the analysis).

Object tracking is simply an extension of object detection. Modern object detection
algorithms can do most of the work of detecting objects and re-identifying them in
later frames, and that tracking of objects can be reduced to a simple intuitive study.
Other object training algorithms work in conjunction with the detection of objects

9

and apply deep learning techniques to bring an identified object to the following
video frames.

Figure 1.1: Abstraction of the tracking issue

At a high level of abstraction, there are mainly two levels of object tracking: Single
Object Tracking (SOT) and Multiple Object Tracking (MOT). Multiple Object
Tracking is a computer vision task that aims to analyze videos to identify and track
objects belonging to one or more categories, such as pedestrians, cars, animals
and inanimate objects, without any prior knowledge of the appearance and number
of targets.

While in single object tracking (SOT) the aspect of the target is known a priori, in
MOT a detection step is necessary to identify the targets that can go out or come
in. The main difficulty in tracking various simultaneously derives from the various
occlusions and interactions between objects that can sometimes also look similar.
Tracking objects is not limited to 2D sequence data and can be applied to 3D
domains. [2]

 1.2.2 Challenges of Object Tracking

10

The main problems that can be found in real time video object tracking concern
both aspects related to hardware limitations and aspects related to the movement
of the tracked object and the characteristics of the surrounding environment:

1. Re-identification - connecting an object in a frame to the same object in the
following frames.

2. Scale change - objects in a video can change scale dramatically, due to the
camera's zoom, for example.

3. Identity switches - When two objects cross each other, we need discern
which is which.

4. Appearance and disappearance - Appearance and disappearance can
enter or leave the frame unpredictably and we have to connect them to the objects
previously seen in the video.

5. Monitor blur - Blurry motion objects may appear different due to its own
movement or the movement of the camera.

6. View points - The view-objects can look very different from different points
of view, and we have to consistently identify the same object from all perspectives.

7. Occlusion - Occluded objects are partially or completely occluded in some
paintings, as other objects appear in front of them and cover them.

8. Illumination - Changes in the lighting of a video can have a big effect on
the appearance of objects and can make them more difficult to detect in a
consistent. [3]

 1.2.3 NVIDIA JETSON NANO

It was decided to use the NVIDIA® Jetson Nano™ Developer Kit for the realization

of this project. This board is a small, powerful computer that can run multiple neural
networks in parallel for applications such as image classification, object detection,
segmentation and voice processing.

All in an easy-to-use platform that runs on just 5 watts. Precisely for this reason it
was decided to use it for image processing because of its ratio between processing
power and low power consumption.

11

Figure 1.2: NVIDIA Jetson Nano

 1.2.3.1 Comparison between TFLOPS

FLOPS is an acronym for floating point operations per second. It is used as a
general measure of the performance of a processing unit. Floating point operations
are necessary when dealing with software that uses a large variety of numbers.
The software stores exponentially large or exponentially large or small numbers in
a predictable 64-bit encoded size. Converting these 64-bit instructions into raw
numbers requires processing power. Processors can be measured in FLOPS,
which refers to the speed with which they can convert bit instructions into numbers
[4].

Comparison of computing power between Jetson modules:

 Table 1.1: Comparison of computing power between Jetson modules

 Jetson
Nano

TX2
4gb

TX2i Jetson
Xavier
NX

Jetson
AGX
Xavier
Series

AI
Performance

472
GFLOPs

1.33
TFLOPs

1.26
TFLOPs

21
TOPs

32
TOPs

12

13

 System design and software implementation

 2.1 System Design

For the description and analysis of the system, the design of the system is divided according to
the Figure 2.1

Figure 2.1: System Design

 2.2 Functional and non-functional requirements

This chapter lists functional requirements, i.e. requirements that define the functions of
a system or its subsystems, and non-functional requirements, i.e. requirements that
specify the criteria that can be used to judge the functioning of the system.
In the table Functional and non-functional requirements all requirements are listed.

2

14

Table 2.1: Functional and non-functional requirements

 2.3 Behaviour description

 2.3.1 Use cases

Taking a High Level Software (in this case the GUI) as a user of the system,
the use cases of the latter on the API are described:

ID
Requirement

Requirement
declaration

Functional/
Non-
Functional

Comment

R01 The system shall be able to detect different
kinds of objects.

 Functional Classes of COCO-Dataset

R02 The system shall parameterize the viewing
space to assign a position to the object.

 Functional

R03 The system shall be able to select only one
class of objects.

 Functional

R04 The system shall provide an interface for
communication with the AI.

 Functional

R05 The system shall assign different IDs to each
object of the selected class.

 Functional

R06 The system shall dynamically select and track
the target object.

 Functional Dynamic means that the IA has
a frame-by-frame memory of
the target.

R07 The system shall reach a stationary or moving
object.

 Functional

R08 The system shall allow an object to activate
and deactivate the tracking function by a
specific body movement.

 Functional Function available for objects of
type person

R09 Python 3.6 will be used as programming
language.

 No Functional To maintain compatibility with
the API of the network used

R10 The system will have to achieve low latency
between image production and algorithm
output.

 No Functional Esencial para permitir el uso de
la IA en tiempo real

R11 The system shall apply the safeguards for
borderline cases in tracking

 Functional Case: “IDs switch”

15

 Table 2.2: CU1.1

Table 2.3: CU1.2

16

 Table 2.4: CU1.3

 Table 2.5: CU1.4

17

 Table 2.6: CU1.5

Table 2.7: CU2.1

18

 Table 2.8: CU2.2

 Tabla 2.9: CU2.3

19

2.3.2 Sequence diagrams

To specify the communication and behavior of a system through its interaction with users
(Figure 2.2).

 Figure 2.2: Use case diagrams

 2.3.3 Execution sequences

The following diagrams show the flow of operations that are executed in all
functionalities by describing them at a high level. Only the execution flows of the
functionalities developed in this work are presented:

● Follow Me

● Reach Target

20

2.3.3.1 Follow Me

To illustrate the series of steps involved, the execution of the Follow Me functionality is
analysed:

1. The user, through the GUI interface, selects the Follow Me mode which calls the

Follow_Me() function of the Object Detection Module.

2. The network takes the current frame as input and returns an array with all the
information about the detected objects.

3. The coordinates of the bounding boxes of the current frame are passed to the
Follow Me Module which updates the centroids.

4. With the updated centroids, it checks if a target is already fixed, if not, it waits for
the user to activate the system.

5. When the system is activated, the functions of the Safe module are called
function check_target(), check_collision(), check_switch() are called.

6. If errors are detected, error cases are handled, if not, a check is made to see if
the target wants to disable the system. the target wants to disable the system.

21

 Figure 2.3: Follow Me Mode execution diagram

2.3.3.2 Reach Target

To illustrate the series of steps involved, the execution of the functionality is
analysed:

22

1. The user, through the GUI interface, after entering the name of the preferred

class, selects the Reach Target mode that calls the Reach Target function.
class name, selects the Reach Target mode which calls the function
Select_Dyn_Mode() function of the Object Detection Module.

2. The Select_Dyn_Mode() function calls the reach_target() function that
manages the FollowMe. FollowMe function.

3. The network takes the current frame as input and returns an array with all the
information about the detected objects. information about the detected
objects.

4. The coordinates of the bounding boxes of the current frame are passed to the
Tracking Module which updates the centroids.

5. With the updated centroids, the object of the user's chosen class closest to
the centre of the current frame is set as the target. chosen by the user closest
to the centre of the screen is set as the target.

6. Once the system is activated, the module's safe function check_target() is
called to check if the target has been lost. check if the target has been lost.

7. If errors are detected, error cases are handled, otherwise the system checks
if the target has been reached. check if the target has been reached. If the
target has not been reached, the mission is If the target has not been reached,
the mission continues and the function check_collision detects whether there
is a collision.

23

 Figure 2.4: Reach Target execution diagram

24

 2.4 Description of the structure

The system consists of several interrelated components which communicate for proper
operation of the system:

● Microcontroller: This component consists of the microcontroller itself and its
associated peripherals (such as the camera). Microcontroller and its associated
peripherals (such as the camera) communicate with the artificial intelligence on both
input and output. Artificial intelligence on both input and output.

● Artificial Intelligence: AI is responsible for implementing the artificial
network and all the algorithms associated with object detection and tracking. It waits for
commands from the microcontroller and receives in input the values passed by the
camera (microcontroller component). camera (a component of the microcontroller),
returning information about the decision to be made, the angle of the to be made, the
angle of the object, etc.

● GUI: This component of the system allows the user who wishes to use its
functions to choose between different ways of using artificial intelligence. Also allows to
set certain options such as, for example, in certain cases, the type of class of the object
to be tracked, etc.

● System User: The user is the actor who, through the GUI, communicates in
input with the system and who receives in output the images from the camera with the
changes made by the AI.

● Target object: The target object is the actor that refers to the target that the AI
targets through its tracking algorithms. The target does not participate passively but,
provided that the user chooses it and it belongs to the class "person", it can activate and
deactivate the tracking of the target itself.

The system is expressed in the figures below (Figure 2.5, Figure 2.6, Figure 2.7)

25

Figure 2.5: Diagram of system context

Figure 2.6: High-level Block Definition Diagram

26

 Figure 2.7: Internal Block diagram

 2.5 API Architecture

The system consists of:

● A user interface, which through buttons allows the user to use 5. functions divided
into two groups: Static Modes and Dynamic Modes.

● An Object Detection module that contains the neural network and the 5 functions
of the system. of the system, also from this module are called the Tracking module, the
Secure module and the Follow Me module. Secure module and the Follow Me module.

● A Tracking module that dynamically manages frame by frame all the various
objects the various objects returned from the network and tracks them.

● A Follow Me module that allows a potential user to be followed by a given and
vice versa.

● A Safe module to control possible collisions, swapping between the target and
other objects of the same class and loss of the target.

27

Figure 2.8: High-level class diagram

 2.5.1 Class Diagrams

Before illustrating each individual Class Diagram, Figure 2.9 shows the complete Class
Diagram:

Figure 2.9: Complete class diagram

28

The various modules are explained one by one below:

 Figure 2.10: GUI Module

● Main_function(): This function creates a window and two buttons that call the two
functions Dynamic_Mode() and Static_Mode().

● Static_Mode(): In this function a window is created with 3 buttons related to the 3
static functions, Most central object, Farthest object, Selection detection.

● Dynamic_Mode(): In this function a window is created with 3 buttons related to
the 3 static functions, Most central object, Farthest object, Selection detection.

● Select_Class_Dyn() y Select_Class_Static(): The two functions create a window
with an input for the user to window with an input for the user to choose the class to
follow.

 Figure 2.11: Follow Me module

29

● centroids [] : vector of all saved centroids of each frame delimiter of the selected
class that is compared each time with the input centroids.

● last_sizes [] : vector in which the dimensions of the bounding box associated with
each ID are stored in each cell.

● counters [] : vector in which a counter is stored for each ID that determines how
many times the associated ID has performed a given movement.

● flags [] : vector that sets a flag of 0,1 for each ID.

● sensitivity: parameter that indicates the sensitivity with which all IDs must to make
a certain movement to be followed.

● disappeared [] : vector which for each ID counts how many times a given object
is not detected.

● max_reset_counter : parameter indicating when a counter related to the tracking
activation must be reset. counter related to the activation of the tracking.

● max_start_or_stop : which is compared with the counter associated with each ID
to understand whether a particular user has requested to be tracked or not.

● max_sleep: parameter that indicates for how many seconds the tracker should
not detect any movement.

● count_sleep: parameter that is incremented to be compared to max_sleep.

● register(): function that registers the new centroids.

● deregister(): function to deregister a given centroid.

● follow_update(): function that manages the movement of all IDs of each frame
and returns a possible of each frame and returns a possible target.

● unfollow_update() : function which takes the current target as input and checks
if the target has requested to be unfollowed.

● update_info() : function that checks the movement of all IDs and updates them.

● center_calculator(): function that takes in input all the bounding boxes and
calculates the relative centroid.

30

● empty_case() : function that in the case that the algorithm in a frame t=x does not
detect anythin, the associated IDs disappear.

 Figure 2.12: Object Detection Module

● detection_center(): function that given a detection type object taken from the the
network, returns the one closest to the centre.

● closest_detection(): function that takes in input the vector of the objects detected
and returns as close as possible to the centre of the camera.

● farthest_detection(): function that takes in input the vector of detected objects and
returns the farthest detected and returns as far as possible from the center of the
camera.

● Central_Mode() : function that takes in input the vector of detected objects and
returns the farthest detected and returns as far as possible from the centre of the
camera.

● Farthest_Mode() : rutinas que manejas la funcionalidad de “Farthest Object”.

● Personalized_Mode() : routines that handle the functionality of "Select Detection
Class Static".

● reach_target() : routines that handle the functionality of "Select Detection Class
Dynamic".

31

● Follow_Me() : routines that handle the functionality of "Follow_Me"

 Figure 2.13: Safe Module

● command : parameter that assumes a certain value based on the Safe Module
functions.

● limit_point_left : parameter that sets a left boundary based on the screen size in
pixels.

● limit_point_right : parameter that sets a left limit based on the screen size in
pixels. screen size in pixels.

● limit_swapping: parameter indicating the limit distance in pixels before the swap
takes place swapping takes place.

● object_swap_possib_id: parameter indicating that a certain ID has a possibility of
swapping.

● flag_swap_poss: parameter that if set to 1 indicates that there is a likely swap.

● abort_counter : counter to abort the mission.

● abort_limit: value to indicate mission abort.

● limit_point_bottom: lower level for check collision.

32

● check_collision() : function that takes in input all the bounding boxes of the
detected objects in a frame objects detected in a frame t=x and checks for probability of
collision.

● check_switch() : function that checks in each frame if there is a probability of
swap.

● check_target() : function that checks in each frame if the target has been lost.

 Figura 2.14: Tracking Module

● max_disapp_frames: parameter that indicates the limit in frames for which an
object is removed.

● centroids_id : parameter used as an index. It counts the current number of
centroids.

● centroids[] y disapp_centroids [] : these are two OrderedDict objects and are
used to map the centroids and record those that are currently missing.

● unregister_centroid() : function that removes centroids.

● record_new_centroid : function that records centroids.

33

● empty_case() : function that in case the network does not detect anything sets
the centroids as missing and in the case deletes them if the counter is equal to
max_disapp_frames.

● modify_centroids(): taking into input the current centroids, the function calculates
all the distances between the current centroids and the saved ones and updates them

● centroids_recalculator() : given the bounding boxes in input, it calculates the
current centroids.

34

35

Object tracking

In many situations, there are multiple objectives in the image that are of interest. Not
only do you want to classify them, but also obtain their specific positions in the image.
Ideally, you should use a stand-alone system with cameras that have a 360-degree view.
However, this study is limited to a view of approximately 63 degrees of the system that
is closer to the limitation due to the use of a single camera.

In object detection, a bounding box is often used to describe the location of the lens.
The bounding box is a rectangular box that can be determined by the x and y axis
coordinates in the upper left corner and the x and y axis coordinates in the lower right
corner of the rectangle. The origin of the coordinates in the image above is the upper
left corner of the image (TOPLEFT), and to the right and bottom are the positive
directions of the x-axis and y-axis, respectively (the value of the axes is in pixels) [5].

 Figure 3.1: Bounding boxes example

3

36

 3.1 Object Tracking implementation

For the practical purposes of the project, the simple detection of objects added with a
"static" scan, and then recalculated frame by frame, of a pre-selected target thanks to
its class or its position in the image, is lacking in many aspects.

To obtain a more robust system and to be able to track an object for a long time it is
necessary to be able to guarantee a network memory, therefore an algorithm that
assigns an identity to the subject. This would make it possible to follow the target, detect
limit cases, such as the momentary output of the image object, and therefore correct the
behavior of artificial intelligence.

Implementing a dynamic tracking algorithm would also allow for a generally more
dynamic of the system, as it would make it possible, for example, to select tracking
thanks to the specific movement of one of the objects, since in fact the system retains
the memory of the information about the objects present and past.

3.1.1 Centroid Tracking Algorithm

The centroid algorithm is the most intuitive of the tracking algorithms, because
calculates, for each object, the variation of the center from one frame to another. In
comparison with algorithms based on the correlation of various characteristics of each
object, the centroid algorithm is fast and capable of handling when the object being
tracked "disappears" or moves outside the limits of the video frame, so it seems more
suitable for application on the Jetson Nano and for project use cases where you want to
track a single lens and try to keep it focused on the camera image.

The main assumption of the algorithm is that a given object will move potentially between
subsequent frames, but the distance between the centroids for two subsequent frames
will be less than all other distances between the objects.
The final objective is, therefore, to associate to each object an identifier corresponding
to the nearest previous centroid, and in case of assigning to the new objects new
identifications or deleting those that too many frames do not appear. [6]
The algorithm at time zero, in the first frame, assigns each object an identification, and
then creates N centroids for N objects:

37

Figure 3.2: Centroids algorithm: step1

In the next step, given the new centres of the input objects, it calculates for each old
centroid the Euclidean distance to all the new centres.
Therefore, if you choose to associate the centroids with minimum distances between
subsequent frames, you can build the object tracker.

38

Figure 3.3: Centroid algorithm: step 2

The algorithm finally associates the new centers with the nearest centroid, to maintain
the identity of the object, creating, if necessary, new pictures and/or eliminating those
that in too many frames no longer appear in the image.

39

Figura 3.3: Centroid algorithm: step 3

3.1.2 Algorithm implementation

The implemented algorithm follows the following steps:

1) (#old_centroids x #new_centroids) of Euclidean distances between the centroid
i, and the new centroid j. In the example, with C1-C2-C3 old centroids and N1-N2 new
object centers.

2) After creating the matrix, for each old centroid the distance plus and a growing
sorting out among the old centers to have a sort of a list of the "best" old centroids.
Basically the "best" is the old centroid that gets the shortest distance from any new
centroid.
Resultant vector V1: [C2,C3,C1]
3) Then another vector is created containing the nearest new centroid to each old
centroid, always keeping the previously used sorting.

40

Then V2: [N1,N2,N1] always with index (C2,C3,C1)

● Finally, in a cycle, each old centroid (starting with the best old centroid) is
associated with the nearest new centroid.
● loop 1: associate C2 to N1
● loop 2: C3->N2
● loop 3: C1 makes a miss, because N1 is already associated.

 (Iter1) C2->N1, (Iter2) C3->N2, (Iter3) C1->miss!

Clearly the perfect case of use is when there is an NxN matrix, but there also may have
more old or new centroids. In the example case, there is in fact an old centroid that does
not find any coincidence, C1 is classified as "missing". After several frames, the centroid
"falls" and is then removed. If there are more new ones than old ones, then the new
ones simply do not associate with any of the old ones and are saved with new
identifications incrementally.

41

Additional modules and GUI

This chapter will explain the modules, i.e. the GUI, the secure module and the Follow
Me module. These modules serve to improve the user experience of the system. They
also solve certain edge cases that are essential for the proper functioning of the system.

 4.1 Identity switch recognizer

Among the functions implemented in the security module, the identity switch recognizer
plays a central role. In the context of multiple objects tracking, one of the most common
situations is in fact the overlapping of the target object with other objects in the image.
It is therefore necessary to have a security function that is aware of this behavior and
warns the system of a possible ID.

4.1.1 Identity switch
Computer vision systems have difficulty in maintaining the identity of the individuals over
long periods of time; many modern vision systems multiple objects are based on tracking
identification, which means they propagate the identities along the track. This can lead
to the spread of identity changes as individuals approach and then disperse again. In
the example examined, there may be an overlap in the image of the lens with another
moving object:

4

42

Figure 4.1: Identity switch

In the case of the centroid algorithm, based only on the displacement of the centers of
the objects and not on the use of other characteristics that distinguish them, it happens
that in case of overlapping there will be a random assignment of identifications, in fact
the centre of a new object, previously assigned to a centroid, can be erroneously
associated to another centroid that is closer than its associated object:

Figure 4.2: Example of incorrect centroid assignment

43

4.1.2 Behaviour description (identity switch)

The IS case, on a practical level, can be seen through the tests to behave according to
this series of events:

1) The two centroids x,y are progressively approached until they reach a minimum
distance selected with the variable limit_swapping.

2) Once this minimum distance is exceeded, the two objects overlap and only a new
object with its center will be detected, and therefore one of the two IDs will be pending
for n frames.

3) After n frames, the assignment of the IDs shall be random.

 4.2 Follow Me Module

The Follow Me module allows any person detected in a certain frame to activate and,
vice versa, to voluntarily deactivate the monitoring function of the system. The idea of
this algorithm is to detect, within a certain number of frames the movement of all people
and, based on a certain movement, of the which is repeated during a predetermined
time interval, allow the tracking function to be activated and deactivated.

4.2.1 Behaviour description (Follow Me)

It was decided to detect as movement the opening and closing of the arms, this
movement is related to the bounding boxes, more specifically to the size in the x-axis.
The size of the last and the current bounding box is then checked for a fixed number of
consecutive frames, if they are one time larger and one time smaller with respect to the
saved dimension for a predefined number of times the target is set (or released).

44

Figure 4.3: Example of bounding box width variation

Through the tests, and therefore knowing the frame rate of the system, we calculate the
time in which the object's box has changed by a certain percentage of width, compared
to the previous one.
If dim1 and dim2 are the box widths at moment one and moment two respectively, then
the counter is increased according to this condition:

if dim2 is larger than dim1.

if dim1 is larger than dim2.

K is the variable that indicates how much the box size should vary before increasing the
counter. Through the tests, it can be seen that the net is not able to accurately capture
the image in the opening situation of the arms, so it is decided to establish the variable
K with a lower value than it should have in reality to respect the real size of the person.
This will result in less sensitivity to unwanted variations but will allow the subject to
activate the tracking.

45

 Figure 4.4: Example 2 of bounding box width variation

The limit value of the size change (for which the counter is increased) is directly related
to the size of the bounding box. This is necessary for prevent the counter from rising for
small variations.

4.2.2 Parameters of the Follow Me Module

● max_reset_counter : parameter that indicates when a counter related to the
activation of the tracking must be reset.

● max_start_or_stop : parameter that compares to the counter associated to each
ID to understand if a particular user has requested to be tracked or not.

● max_sleep: parameter that indicates for how many seconds the algorithm should
not detect any movement.

● count_sleep: parameter that is incremented to be compared with max_sleep.

4.2.3 Implementation of the algorithm

46

4.2.3.1 Follow Me function

1. In the first step, the algorithm is called by the Object Detection module, that for each

frame it passes in input to the algorithm all the returned centroids by the Tracking
algorithm and all the bounding boxes associated with people detected in the current
frame.

2. If the length of the bounding boxes passed as input is zero, the centroids are
registered as missing.

3. Calculate the centre of all bounding boxes in input and compare these centroids with
those returned by the Tracking algorithm, to associate each centroid with the correct
bounding box.

a. In case there is a coincidence between the centroids, if the centroid does not
was saved is recorded. Otherwise, if it already exists, take the bounding box
saved from the previous frame and check its size with the current one by
incrementing a counter (only if respectively in the frame t=n once the size is
larger than the saved size multiplied by a certain sensitivity parameter and in
the table t=n+1 if the current size multiplied by the sensitivity is less than the
previous one (i.e. the size current table t=n).

b. In case there is no coincidence between the centroids, the new centroid is

recorded in case it is not already saved and related to a new object or establish
that centroid as disappear.

4. In the last step all updated counters are checked and if there are any that has a

counter above a certain limit parameter is returned this objective.

4.2.3.2 Unfollow Me function

1. In the first step, the algorithm is called by the Object Detection module, that for each

frame it passes in input to the algorithm all the returned centroids by the tracking
algorithm, all the bounding boxes associated with the people detected in the current
frame and the target ID.

47

2. If the length of the bounding boxes passed as input zero. the centroids are registered
as missing.

3. Calculate the centre of all bounding boxes in input and compare these centroids with
those returned by the Tracking algorithm, to associate the bounding box correct.

i. In case there is a match between the centroids if the centroid is not was saved
an error is returned because the target is not activated, from another way if it
already exists takes the saved bounding box from the previous frame and
checks its size with the current one by increasing a counter only if respectively
in the frame t=n once the size is larger than the size stored multiplied by a
certain sensitivity parameter and in the table t=n+1 if the current size multiplied
by the sensitivity is less than the previous one (i.e. the current size of the table
t=n).

4. In the last step the updated counter of the target is checked and if it is higher than a
certain limit parameter the target is returned with the value -1.

i. Thanks to the implementation of this algorithm, it is possible to precisely

parameterize the opening and closing movement of any person's arms.

ii. In addition, to prevent a user from opening and closing the arms more times
than necessary and activating and deactivating the AI, the sleep_time which
allows us to overcome this problem by pausing on algorithm for a stable
number of frames.

4.2.4 Algorithm limitations

The limitations of the algorithm are:

● If two or more people wanted to "call" the system at the same time, the first person
with the meter above the threshold would be targeted, which would depends on
the order in which the object detection algorithm returns the bounding boxes.

● If two or more people at the same time wanted to "call" the system and were too
close together, object detection for some paintings could create a single bounding
box or return the wrong size of one of the two without allow the meter to increase.

48

 4.3 GUI

It was decided to structure the GUI in 4 windows organized as follows:
The first one has two buttons that refer respectively to the window that manages the
static functionalities and it handles the dynamic functionalities.
Finally, a window in which the user can enter his chosen class.

4.3.1 First window

In the first window there are two buttons:

● Dynamics Modes : calls the Dynamic_Modes() function that handles the GUI of
all dynamic functionalities.

● Static Modes : calls the Static_Modes() function that handles the GUI of all static
functionalities.

Figure 4.5: First window

4.3.2 Second Window (Static Modes)

In the second window there are three buttons:

49

● Most Central Object: it calls the Central_Mode() function that handles the MOB
functionality.

● Farthest Object: it calls the Farthest_Mode() function which handles the FM
functionality

● Select detection class: it calls the Select_Class() function that handles the GUI
so that the user can choose their own object class..

Figura 4.6: Second window

4.3.3 Third window (Dynamic Mode)

In the second window there are three buttons:

● Follow Me: it calls the Follow_Me() function that handles the Follow Me
functionality.

● Reach Target: it calls the Select_Class_Dyn() function that handles the Follow
Me functionality.

50

Figura 4.7: Third window

4.3.4 Fourth window (Class Selection)

In the second window there is an input entry to call the function relative to the Reach
Target if the tracking is dynamic or Select Class if it is static tracking.

● Input: it calls the reach_target()/personalized_mode() function that handles the
Reach Target/Select Class functionality.

● Get Target: input box where the user can put his chosen class.

Figure 4.8: Fourth window

51

Test and results

Once the various improvements introduced have been explained in detail, as well as the
objectives to be achieved, a testing process should be carried out to determine whether
these objectives have been achieved. In this way, it could be determined what the limits
are and what future work should be done to improve them.
In turn, within each of these sections, the study of specific situations of interest is carried
out.
The degree of complexity of the tests will increase due to the subsequent aggregation
of different modules and, therefore, of the different variables present in them.

 5.1 Tests

5.1.1 Centroid Tracking algorithm experimentation

 Table 5.1: Centroid Tracking algorithm experimentation

Title: Centroid tracking algorithm experimentation
Description: The algorithm is tested for correct operation and its ability to create identities
and track them in frames. It is desired to study the behaviour of the algorithm in the
presence of different objects, both in static and moving positions.
Video: Tracking Testing
Seconds: 0:00 - 1:08
Link:https://www.youtube.com/watch?v=T7RIFbr1Ybs&ab_channel=ProyectoIntegrador
Cali%C3%B2-Forese

5

52

Place: living room
Light: artificial

Camera position: 27 above the ground
Angle of view: 62.2 x 48.8 deg
Objects position with respect to the
camera: between 1.5 and 4 m

max_disapp_frames: 30 frames

Number of objects: 5
Object class: person

In the first frame the algorithm can correctly assign five different centroids created in
order of detection. The stativity of the subjects allows the algorithm to have a stable
behaviour; this is lost when the subjects start to move. In fact, in the second image ID5
and ID3 are pending and they do not have any box associated with them.
In the third picture due to an IS, the subject with ID5 is now assigned ID3, which was
located on the opposite side of ID5 in the first frame.

 Figure 5.1: Centroid tracking algorithm experimentation

5.1.2 Identity switch experimentation

 Table 5.2: Identity switches experimentation

Title: Identity switches experimentation
Description: The case of a possible change of identity is
analyzed. We study whether the network is able to recognize
this event and then report it correctly. We look for the minimum
distance considered to establish the overlap and the number of
frames in which one of the identifications is pending to assert
the change.
Place: living room Camera position: 27 above the

53

Light: artificial

ground
Angle of view: 62.2 x 48.8 deg
Objects position with respect
to the camera: between 2 and
2.5 m

limit_swapping: 200 px
abort_limit: 4 frames

Number of objects: 2
Object class: person

The experiment shows an example of control over the identity switch event. It can be seen,
in Figure 5.2, how in the second frame the possibility of a switch occurring in the following
frames is correctly signaled, as the centroids approach the 200px boundary. In the next
frame, one of the two centroids in question remains pending, thus without an associated
object for more than 8 frames (a little more than a second). This means that the situation
of a possible change of identity has occurred.
In the third picture, in addition, one can see the creation of a false identification: the
superimposition of the two subjects in the picture has created a third ID4, due to an error
in the detection of the person class objects in the picture.

 Figure 5.2: Identity switch experimentation

 5.1.3 Follow Me mode experimentation

 5.1.3.1 Follow Me mode experimentation (1)

 Table 5.3: Follow Me mode experimentation (1)

Title: Follow Me mode experimentation (1)
Description: Selection, through a predetermined movement of
the body of a person or object class, of the target. We
experience the ability of the network to track the object in
several frames, even when the target moves out of the frame.
Deselection of the target by the same movement as before.

54

Video: Follow Me Testing
Seconds: 0:06 - 0:18 (Activation)
 0:40 - 0:50 (Disact.)
Link:https://www.youtube.com/watch?v=-
i_stxDzrNo&ab_channel=ProyectoIntegradorCali%C3%B2-
Forese
Place: living room
Light: artificial

Camera position: 27 above the
ground
Angle of view: 62.2 x 48.8 deg
Objects position with respect
to the camera: between 1.5 and
4 m

max_reset_counter:
4 frames
max_start_or_stop:
4 repetitions
max_sleep: 4 frames
sensitivity: 1.30

Número de objetos: 2
Clase de los objetos: person

Figure 5.3 shows how the follow-me mode activation function works correctly. The
enable sequence, that ID0 performs to allow it to self-stabilize as a target, is highlighted.
In the fourth picture the arrow shows the white line that determines that the tracking has
been triggered.
In Figure 5.4, on the other hand, the target deactivation sequence is correctly
implemented. Here also the yellow arrow in the last frame indicates the correct disabling
of the target tracking mode.
The two sequences show as main difference the ability of the network to detect the
subject on the left of the image; in fact, the subject is not detected in the first sequence,
but in the second sequence, when approaching the camera. It is correctly detected and
identified.

55

 Figure 5.3: Functionality activation

 Figure 5.4: Functionality deactivation

 5.1.3.2 Follow Me mode experimentation (2)

 Table 5.4: Follow Me experimentation (2)
Title: Follow me experimentation (2)
Description: Selection, through a predetermined movement of
the body of a person or object class, of the target. The ability of
the network to track the object in several frames is
experimented. Deselection of the target by the same movement

56

as before. The case where the sensitivity of the motion change
control is low is studied..

Place: living room
Light: artificial

Camera position: 27 above the
ground
Angle of view: 62.2 x 48.8 deg
Objects position with respect
to the camera: between 2 and 3
m

max_reset_counter:
4 frames
max_start_or_stop:
4 repetitions
max_sleep: 4 frames
sensitivity: 1.15

Number of objects: 1
Object class: person

By setting the limit of the variation of the Follow Me activation movement to a low value,
small variations in the size of the box, due to the simple movement of the subject,
incorrectly activate the function. Therefore, the expected behavior actually occurs, both
on activation (Figure 5.5) and deactivation (Figure 5.6), randomly.

Figure 5.5: Activation of the system with low sensitivity

Figure 5.6: Deactivation of the system with low sensitivity

57

 5.1.3.3 Follow Me mode experimentation (3)

 Table 5.5: Follow Me mode experimentation (3)

Title: Follow Me mode experimentation (3)
Description: Selection, through a predetermined movement of
the body of a person or object class, of the target. The ability of
the network to track the object in several frames is
experimented. Deselection of the target by the same movement
as before. We examine the case in which the variable that
determines the number of frames before deleting the Id is too
low.
Place: living room
Light: artificial

Camera position: 27 above the
ground
Angle of view: 62.2 x 48.8 deg
Objects position with respect
to the camera: between 1.5 and
4 m

max_reset_counter:4
frames
max_start_or_stop:4
repetitions
max_sleep: 4 frames
sensitivity: 1.30
max_disapp_frames:8
frames

Number of objects: 2
Object class: person

 The experiment shows how the max_disapp_limit variable set too low affects the correct
f functioning of the Follow Me module. The network, in fact, erases the target centroid too
q quickly, so that it is identified as lost event though the target was only out of the image for
 a few moments.

58

Figure 5.7: Follow Me experimentation with a low max_disapp_frames variable

 5.1.4 Reach Target mode experimentation

 Table 5.6: Reach Target mode experimentation
Title: Reach Target mode experimentation
Description: The case in which the interface object class is selected is analyzed. After
checking the correct selection of the class, we study the case in which there are objects of the
selected class and the opposite case, evaluating the correct emission of messages over the
network. Finally the correct message is evaluated when it reaches the target and therefore the
end of the algorithm.
Video: Static functionalities testing
Seconds:
Link:https://www.youtube.com/watch?v=o9XpidIo7RU&ab_channel=ProyectoIntegradorCali
%C3%B2-Forese

Place: living room
Light: artificial

Camera position: 27 above the ground
Angle of view: 62.2 x 48.8 deg
Objects position with respect to the camera:

59

between 0.8 and 2 m

 Number of objects: 1
Object class: person/chair

The experiment of pre-selecting the class and therefore reaching the object relative to the
selected class is successful. It can be seen in Figures Figure 5.8 and Figure 5.9, how the
success message is displayed correctly.
Also, it can be seen how, in the second sequence, the chair is first detected and then
assigned as a target to be reached.

Figure 5.8: Reach Target experimentation with a person

Figure 5.9: Reach Target experimentation with a chair

 5.2 Results

 5.2.1 Best parameters based on the experimentation

60

As shown in the tests, both functional and non-functional requirements were met, as
well as the objectives set at the beginning of the project.

All the best system parameters that allowed an acceptable stability condition and error
tolerance to be achieved are listed in detail.

● max_disapp_frames = 30
Running the algorithm at an average of 8 fps, setting this parameter to 80 means that
the AI waits 10 seconds before deleting a centroid.
If this parameter were higher it would have problems in swapping the id because
centroids would remain pending and overlap with others, and vice versa if it were too
low the system would not be able to resume the target id once lost.

● sens = 1.3
By setting the sensitivity in the "Follow Me" mode to 1.3 it is possible to have a good
accuracy in the movement of the accuracy in the movement of any person's hands.
Any higher would risk inadvertently activating the system, whereas the user would have
to try to activate the system.

● max_reset_count = 4
The number 4 means that if the target is lost for more than 4 frames its counter to
activate the movement is reset to zero.
Again, thanks to this parameter, if a target is pending when it reappears it must make
the move again rather than risk being activated on the first move.

● sleep_time = 24
Thanks to this parameter the algorithm avoids detecting movements for 3 seconds after
the target has been set. In this way there is no risk that if the user makes more
consecutive movements than necessary with his arms once the Follow Me is activated;
it is not immediately deactivated.

● limit_swap = 200
By setting the distance limit for the switch to 200 pixels, the swap can be recognised
with an acceptable margin of error.

● abort_limit_count = 8
By setting the abort mission counter for the swap to one second you can have a very
good reaction to the switch identity problem.

 5.2.2 Requirements Traceability Matrix

61

As shown in the tests and in the table, both functional and non-functional requirements
were met, as well as the objectives established at the beginning of the project.

 Tabla 5.7 : Requirements traceability matrix

ID Requirement Requirement declaration Id Test Status

R01 The system shall be able to detect different kinds of
objects.

All tests Past

R02 The system shall parameterize the viewing space to
assign a position to the object.

All tests Past

R03 The system shall be able to select only one class of
objects.

 5.1.4 Past

R04 The system shall provide an interface for communication
with the AI.

All tests Past

R05 The system shall assign different IDs to each object of the
selected class.

All tests Past

R06 The system shall dynamically select and track the target
object.

5.1.3 Past

R07 The system shall reach a stationary or moving object. 5.1.4 Past

R08 The system shall allow an object to activate and
deactivate the tracking function by a specific body
movement.

 5.1.3.1, 5.1.3.2 Past

R09 Python 3.6 will be used as programming language. All tests Past

R10 The system will have to achieve low latency between
image production and algorithm output.

All tests Past

R11 The system shall apply the safeguards for borderline
cases in tracking

 5.1.2 Past

62

5.2.3 Limit parameters for Non-Functional Requirements

● Object detection capabily:

❖ The IA can perfectly detect objects up to 3 meters distance from the
camera.

❖ Beyond 3 meters it can detect motion every 8 frames on average.

❖ Beyond 4 meters from the tests, it can be seen the system detects motion
on average every 12 frames, but if the target remains stationary it is lost.

● Limiting Parameters for Non-Functional Requirements:

This non-functional requirement is met thanks to the choice of the Mobilenet v2 SSD,
which achieves 8fps which guarantees a real-time implementation of the system.

The tests and the explanation of the work can be found at the following page:

https://www.youtube.com/channel/UCU2Crx70ouY-
IAGcFeVRv6g?view_as=subscriber

63

Conclusion

This paper suggests that it is possible, using a neural network, to implement a series of
functionalities that make an autonomous system independent. The initial objective of the
project was to allow a ground vehicle, equipped with a series of basic and essential
components, to perceive its surroundings and, through a graphical interface, allow the
user to select between different modes of use of the system.

It was therefore necessary to implement a tracking algorithm that is able to assign an
identification to each object of interest and that subsequently allows one of these to be
selected as a target. It was decided to implement the centroid algorithm, which is light
and versatile and considered ideal for the hardware used. This has made it easier to
detect and resolve a larger number of events, such as the temporal output of the image
target, and to further extend the dynamism of the system.

Subsequently, the study continued with the development of an additional module of
Follow Me, a technology frequently used in various autonomous devices, which allows
the user without using the GUI to capture the interest of the vehicle, so as to allow the
latter to follow it until the deactivation of this mode.
Subsequently, the problem of identity switches, a strong limitation of all multiple objects
tracking algorithms, has been addressed, creating a functionality to search for this
problem and then reporting it to the system.
Finally, the paper aims to create a graphical interface that allows the user to interact
with the system, in a simple and fast way, selecting between different modes of use.

Several problems were encountered during the testing phase, mainly for two reasons:
the low speed of the algorithm, due in part to the limited number of boards used, and

6

64

the inadequacy of the test site, which does not guarantee adequate exposure of the
objects under test.
All the functional and non-functional requirements set as an objective at the beginning
of the project were met by means of precise tests that made it necessary to study the
various parameters used up to the best configuration explained in the Testing section.

 6.1 Recommendation for further research

The use cases proposed in the objective of the work and implemented in this project
serve as an example to create a basis for extending the functionality of user use and
behavior of the autonomous system.
As far as tracking is concerned, the next step is to implement different advanced visual
tracking algorithms, which allow a better identification of the different objects in the
image and thus a better recognition of these especially in borderline cases. An example
of an algorithm to be implemented would be MOSSE. The MOSSE filter is a stable
correlation filter which can be initialized on a single frame of a video. The MOSSE filter
adapts with the changes in the appearance of the object while tracking. Tracking using
the MOSSE filter is not dependent on changes in lighting, non-rigid transformations,
pose, and scale. [7]

Among the improvements that can be added to the project, the improvement of hardware
and simulation conditions certainly plays an important role. The implementation of the
intelligence in the Jatson-Nano is adequate for the case study, but one must consider
the fact that adding new features will slow down the algorithm, considerably decreasing
the fps value.
To achieve an environment with sufficient power and therefore computing speed, we
recommend using an NVIDIA Jetson TX2, which, compared to the Nano, has twice as
many GPUs (256 instead of 128 cores) and twice as much memory (8 GB).
Even a camera with a better resolution would improve system performance, especially
considering that some of the problems in the test phase relate to poor image quality.

65

66

APPENDIX

67

Selection of the camera

The camera market is very wide and varied in terms of features and prices.
For the purposes of the implementation of this IP, the Pi Camera Module,
from the manufacturers of Raspberry, was chosen as the camera of choice.
There are two versions of this camera, whose characteristics are compared
in table A.1.1 . The Pi Camera Module V2 (see figure 3.5.1) was chosen
because it has better features for the same price.

Figure A.1: Pi Camera v2

 A

68

 Table A.1.1: Hardware specifications
 Camera Module v1 Camera Module v2 HQ Camera
Net price $25 $25 $50

Size Around 25 × 24 × 9 mm 38 x 38 x 18.4mm
(excluding lens)

Weight 3g 3g

Still resolution 5 Megapixels 8 Megapixels 12.3 Megapixels

Video modes 1080p30, 720p60 and
640 × 480p60/90

1080p30, 720p60 and
640 × 480p60/90

1080p30, 720p60 and
640 × 480p60/90

Linux integration V4L2 driver available V4L2 driver available V4L2 driver available

C programming API OpenMAX IL and others
available

OpenMAX IL and others
available

Sensor OmniVision OV5647 Sony IMX219 Sony IMX477

Sensor resolution 2592 × 1944 pixels 3280 × 2464 pixels 4056 x 3040 pixels

Sensor image area 3.76 × 2.74 mm 3.68 x 2.76 mm (4.6 mm
diagonal)

6.287mm x 4.712 mm
(7.9mm diagonal)

Pixel size 1.4 µm × 1.4 µm 1.12 µm x 1.12 µm 1.55 µm x 1.55 µm

Optical size 1/4" 1/4"

Full-frame SLR lens
equivalent 35 mm

S/N ratio 36 dB

Dynamic range 67 dB @ 8x gain

Sensitivity 680 mV/lux-sec

Dark current 16 mV/sec @ 60 C

Well capacity 4.3 Ke-

Fixed focus 1 m to infinity N/A
Focal length 3.60 mm +/- 0.01 3.04 mm Depends on lens

Horizontal field of
view 53.50 +/- 0.13 degrees 62.2 degrees Depends on lens

Vertical field of view 41.41 +/- 0.11 degrees 48.8 degrees Depends on lens

Focal ratio (F-Stop) 2.9 2.0 Depends on lens

https://www.sony-semicon.co.jp/products/common/pdf/IMX477-AACK_Flyer.pdf

69

Why choose Python for ML?

For starters, a language with good machine learning libraries is needed. It also needs
good runtime performance, good tool support, a large community of programmers and
a healthy ecosystem of support packages.

Figure A.2: The best programming languages for ML

Python is known for its concise and easy-to-read code, earning great respect for its ease
of use and simplicity. The same cannot be said for C, which is considered a lower-level
code, meaning it is easier for the computer to read (hence its higher performance), but
harder for humans to read.

 B

70

Given the complexity of machine learning algorithms, the less a developer has to worry
about the complexities of coding, the more they can focus on what really matters: finding
solutions to problems and achieving project goals.
Python's simple syntax also allows for a more natural and intuitive ETL (Extract,
Transform, Load) process, and means it is faster for development compared to C++,
allowing developers to quickly test machine learning algorithms without having to
implement them.
Python is an open source programming language and is supported by many high-quality
resources and documentation. It also has a large and active community of developers
ready to provide advice and assistance at all stages of the development process.

71

Jetson Nano installation

For installation requires:

● A microSD card (16GB UHS-1 minimum)

● USB keyboard and mouse

● Computer screen (either HDMI or DP)

● Micro-USB power supply (5V⎓2A)

The Jetson Nano Developer Kit uses a microSD card as the boot device and for primary
storage. It is important to have a card that is fast and large enough for our projects; the
recommended minimum is a 16GB UHS-1 card.

The first thing to do is to write the operating system image to the microSD card.

For this we use the Jetson Nano Developer Kit SD Card Image.

Once the operating system has been written, the microSD card can be placed on the
Jetson Nano[8].

It was decided to use Ubuntu 18.04 as the operating system, developing in Python (see
annexes A.3 to understand the choice of Python) with CUDA version 10.0.

 C

72

Figure A.3: Placing the microSD in the Jetson Nano

Using the microUSB with a power bank or 5V⎓2A power supply, when booting, it is
advised to set the power mode of the Jetson Nano to 5W so that it does not crash, to do
this, open a terminal and type:
● sudo nvpmodel -m 1

To return to 10W power mode (default):
● sudo nvpmodel -m 0

Given the number of peripherals connected (monitor, camera, ..) the 10W setting causes
the system to crash because it cannot guarantee the necessary power.

To reduce memory pressure (and crashes), it is a good idea to set up a 6GB swap
partition (Nano only has 4GB RAM).

● git clone https://github.com/JetsonHacksNano/installSwapfile
● cd installSwapfile
● chmod 777 installSwapfile.sh
● ./intallSwapfile.sh

73

References

● [1] “Metodo Incremental” https://obsbusiness.school/es/blog-
project-management/metodologias-agiles/caracteristicas-y-fases-del-
modeloincremental#:~:text=El%20modelo%20incremental%20de%20ges
ti%C3%B3n,por%20el%20cliente%20o%20destinatario (October 2020)

● [2] https://missinglink.ai/guides/computer-vision/object-tracking-
deep-learning/

● [3] “Tracking Object”

https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-
opencv/ (October 2020)

● [4] “Comparacion Modules Intel”

https://developer.nvidia.com/embedded/jetson-modules (October 2020)

● [5] “Bounding Box” https://d2l.ai/chapter_computer-
vision/bounding-box.html (ultima visita septiembre 2020)

● [6] https://github.com/prat96/Centroid-Object-Tracking (Sept 2020)

● [7] “Tutorial on Minimum Output Sum of Squared Error Filter”
https://mountainscholar.org/bitstream/handle/10217/173486/Sidhu_colost
ate_0053N_13486.pdf

● [8] ”Jetson Nano Developer Kit”

https://developer.nvidia.com/embedded/jetson-nano-developer-kit (2020)

https://obsbusiness.school/es/blog-project-management/metodologias-agiles/caracteristicas-y-fases-del-modeloincremental#:~:text=El%20modelo%20incremental%20de%20gesti%C3%B3n,por%20el%20cliente%20o%20destinatario
https://obsbusiness.school/es/blog-project-management/metodologias-agiles/caracteristicas-y-fases-del-modeloincremental#:~:text=El%20modelo%20incremental%20de%20gesti%C3%B3n,por%20el%20cliente%20o%20destinatario
https://obsbusiness.school/es/blog-project-management/metodologias-agiles/caracteristicas-y-fases-del-modeloincremental#:~:text=El%20modelo%20incremental%20de%20gesti%C3%B3n,por%20el%20cliente%20o%20destinatario
https://obsbusiness.school/es/blog-project-management/metodologias-agiles/caracteristicas-y-fases-del-modeloincremental#:~:text=El%20modelo%20incremental%20de%20gesti%C3%B3n,por%20el%20cliente%20o%20destinatario
https://missinglink.ai/guides/computer-vision/object-tracking-deep-learning/
https://missinglink.ai/guides/computer-vision/object-tracking-deep-learning/
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://developer.nvidia.com/embedded/jetson-modules
https://d2l.ai/chapter_computer-vision/bounding-box.html
https://d2l.ai/chapter_computer-vision/bounding-box.html
https://github.com/prat96/Centroid-Object-Tracking
https://mountainscholar.org/bitstream/handle/10217/173486/Sidhu_colostate_0053N_13486.pdf
https://mountainscholar.org/bitstream/handle/10217/173486/Sidhu_colostate_0053N_13486.pdf
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

74

 Image References

• Figure 1.1: Abstraction of the tracking issue(https://www.move-

lab.com/blog/tracking-things-in-object-detection-videos)

• Figure 1.2: NVIDIA Jetson Nano
(https://developer.nvidia.com/embedded/jetson-nano-developer-kit)

• Figure 3.1: Bounding boxes example (https://d2l.ai/chapter_computer-
vision/bounding-box.html)

• Figure A.1: Pi Camera v2 (https://www.amazon.co.uk/Raspberry-
Pi-Camera-Module-Filter/dp/B01ER4FA9U)

• Figure A.2: The best programming languages for
ML(https://twitter.com/gp_pulipaka/status/1108360695479857152)

• Figure A.3: Placing the microSD in the Jetson
Nano((https://developer.nvidia.com/embedded/jetson-nano-developer-kit)

https://www.move-lab.com/blog/tracking-things-in-object-detection-videos
https://www.move-lab.com/blog/tracking-things-in-object-detection-videos
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://d2l.ai/chapter_computer-vision/bounding-box.html
https://d2l.ai/chapter_computer-vision/bounding-box.html
https://www.amazon.co.uk/Raspberry-Pi-Camera-Module-Filter/dp/B01ER4FA9U
https://www.amazon.co.uk/Raspberry-Pi-Camera-Module-Filter/dp/B01ER4FA9U
https://twitter.com/gp_pulipaka/status/1108360695479857152
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

75

