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Summary

Mobile applications and mobile devices are becoming more and more per-
vasive in our everyday life supporting a wide range of activities in a variety
of contexts. An “app” is a highly event-oriented software thought to react
to a set of inputs typical of the mobile world. Furthermore, mobile devices
themselves are characterized by a mixture of attributes that can affect in
many ways how a graphical user interface (GUI) is displayed. This high-
lights the need to have applications that have been tested extensively and
from different points of view, from their back-end to their presentation layer.

Despite these factors, Visual GUI Testing (VGT) is not a common ac-
tivity in the mobile environment, especially in an industrial context. The
existing tools introduce a collection of different approaches to this activity,
each one with a specific testing goal and each one suffering from well-known
weaknesses.

These frameworks can be categorized into three groups, according to how
they identify graphical elements on the screen. First-generation VGT tools
focus on interacting with the bitmap layer of the application’s front-end,
second-generation ones directly access the app’s visual components to ex-
tract locators, and third-generation ones use image recognition algorithms to
match areas on the screen of the host machine.

Issues that make VGT not feasible in an industrial development process are
the diversity of both mobile operating systems and mobile hardware models,
which makes tests not portable, the scarce performances, the test flakiness,
and, finally, the tests fragility that makes their maintenance during lifecycle
of a project unsustainable.

The focus of this thesis work is TOGGLE, a tool supporting the main-
tenance and the creation of VGT in the Android ecosystem, which covers
the largest percentage of the market. Besides, TOGGLE must be used in
combination with an Android Virtual Device (AVD) running on a personal
computer.

A popular framework in the Android ecosystem is Espresso, a tool to
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generate both first- and second-generation tests, that represent the starting
point of TOGGLE. The main purpose of the framework is to automatically
translate second-generation Espresso tests into third-generation ones. These
tests can detect graphical features, such as the modification of the color of
a button, that the source ones cannot identify, enlarging the overall testing
capability of the suite. Third-generation tests use the Java APIs offered by
SikuliX and EyeAutomate libraries.

At its state-of-the-art TOGGLE completed the translation while showing
several weaknesses impacting both its usability and portability in a non-
academic context.

The main purpose of this thesis work was to make TOGGLE a library
that testers could use when performing VGT in an industrial development
process. To achieve this result, some interventions on some of TOGGLE’s
most problematic aspects were required to increase the flexibility of the mod-
ules composing the system and their APIs, strengthen the translation flow
against some of the weaknesses typical of this context, and add new features
to increase the portability of the intermediate results. To summarize, the
final goal was to make the tool as easy as possible for the end-user. Ad-
ditionally, the Façade structural design pattern has been adopted to offer a
clean and simple interface to the system, with methods suited for both casual
and more experienced users.

Finally, the set of translatable inputs has been enlarged, adding the pos-
sibility to emulate the scroll interaction on the screen of the AVD. This is a
typical mobile interaction that requires a dedicated translation mechanism.

The final version shows some considerable improvements, as will be pre-
sented in chapter 5. Particularly, the tool reached a 100% percentage of
successfully translated tests, 99.09% of successful interaction emulation dur-
ing the translated tests execution, and an overall 3rd generation tests success
percentage of 98.00%.

The experience gained during the empirical evaluation of TOGGLE proves
that it is feasible to have robust and automatically generated third-generation
test suites. Additionally, the tool tool has proven to be easy-to-use, requir-
ing low effort for translating and executing the third-generation test suites.
Moreover, the re-engineered version of the tool can be the foundation to
further extensions enriching, for example, the collection of applications that
could exploit TOGGLE or even adding the support for different second-
generation test syntaxes. I hope that this work could help TOGGLE give its
contribution to increasing the adoption of VGT in industrial projects.
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Chapter 1

Introduction

Over the past few years, mobile application development has been one of the
main trending technologies, growing constantly year by year.

More in detail, devices running the Android Operating System occupy a
high percentage of the market and this led to an increasing interest coming
from all kinds of companies, from automotive to financial ones, from IT ones
to public authorities.

The outcome is that devices running the Android Operating System per-
vade our everyday life, acquiring a fundamental role in it. This leads to the
need of having well-tested and reliable applications. While it is an easy task
to find tools that may help a developer testing his/her code, it is harder
to find reliable ones that could help when performing end-to-end testing of
mobile applications. Since this world is dynamic and fast-changing, it is not
feasible to perform this kind of testing in a non-automated way. This often
results in software that has not been tested deeply, either behaving unexpect-
edly due to some undiscovered flaws or, more in general, having a sequence
of interactions causing a different result compared to the one the developers
had in mind.

It is in this context that TOGGLE [12] (i.e. Translation Of Generations
of GUI testing at Low Effort) places itself, trying to compensate for the lack
of tools that can make E2E testing automated and easy to maintain during
the life-cycle of the project. Its purpose is to generate third-generation test
cases from second-generation ones automatically, lessening the effort needed
to maintain them.

Generally, every generation of GUI tests uses some sort of locators, to
isolate a graphical element, and of oracles, or expected outputs, to verify
that the interaction has produced the expected result. According to the
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1 – Introduction

testing approach under examination, both these elements will use a different
factor to evaluate the success or the failure of the assertion.

The second-generation test cases group the layout-based tests of an An-
droid application, namely the ones that, starting from a model of a Graphical
User Interface decomposed in a hierarchy of layout components, can access
the attributes of each one of them and use their values as locators (property-
based locators), so that it is possible to isolate an element to be used as an
interaction starting point, or as an oracle, verifying the result of a sequence
of interactions based on the state of that component. These tests do not
make any kind of assumptions on how the View is implemented or on what
kind of algorithm is running in the background, their main goal is to test the
output of a sequence of interactions. One of the most important and used
frameworks to write second-generation tests is Espresso. Moreover, Espresso
is the layout-based testing tool that TOGGLE can interact with.

The third-generation test cases are, instead, tests that, using screen-captures
both as locators and as the expected output, can interact with a Graphical
User Interface emulating the behavior of a real end-user, thus being the ones
that are best suited for E2E testing. This makes them completely indepen-
dent from the application code but unable to perform any kind of assertion
on individual component objects since all the assertions that this kind of
tests perform are based on the visual appearance of the application under
test. This characteristic makes this approach unstable, needing constant
maintenance and being deeply dependent on the machine the test is run on.

The consequence is that these tests usually require a maintenance effort
that is often too high (surely higher than the second generation ones) and,
therefore, they are not adopted in an industrial environment.

The two main tools for executing third-generation test cases that are pre-
sented in this paper are SikuliX [17] and EyeAutomate[3].

SikuliX is a tool using image recognition, powered by OpenCV, to identify
any kind of GUI component or image displayed on the desktop of the com-
puter. It is an evolution of another open-source project named Sikuli that
was started by the User Interface Design Group at MIT in 2009. It supports
many scripting languages and can be used with any Java-aware program-
ming language. Once it has recognized an image, it can emulate any kind of
interaction (click, type, double-click, and more).

EyeAutomate is a similar tool that, through image recognition, aims at
automating any user scenario, seeing the application as a black box. It
is a Java application and, for this reason, it can be used on any platform
supporting Java. It uses both pixel-based and vector-based image recognition
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1 – Introduction

in combination with AI.
In the following chapters, it will be introduced an analysis on both GUI

testing and mobile application testing techniques, TOGGLE will be pre-
sented as it was before being re-engineered (by listing its features, its flaws,
and all the challenges faced to improve it), then all the interventions on it
will be presented, explaining what were the final goals and all the reasons
behind every modification. Finally, I will present the results of an empirical
application of the tool of a five open-source real applications.
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Chapter 2

Background

Visual GUI Testing is a high-level testing approach for GUI-based software.
It is known to have great potential since it allows to work with closed systems
without needing access to their APIs.

For this reason, it is mostly code-independent since its main focus is the
front-end of a system. With this approach tests usually ensure that: the
application under test (from now on AUT) respects a given visual design (e.g.
that each visual element is actually displayed at given coordinates and/or
with given dimensions), messages for the end user are/are not displayed, a
certain set of interactions result in the proper expected functionality, radio
buttons or dropdown menus or other graphical elements are correctly aligned,
the color of each visual element respects the theme of the AUT and more.

Succinctly, this approach makes it easier to test the system in its entirety
to guarantee that the developed software follows its requirements.

Naturally, this approach presents some limitations that have discouraged
its diffusion in an industrial environment. The outcome is that there is a lack
of empirical data documenting both its applicability for testing purposes and
its general cost for maintenance and development.

In general, it has been documented that Visual GUI Testing suffers from
high sensitivity to GUI layout changes, it is deeply dependent on character-
istics of the screen (pixel density, zoom factor, width, height...) and, if not
automated, the development of a full set of tests is costly, time-consuming
and highly error-prone.

Test automation, in this context, has been considered but there are still no
frameworks making this kind of test actually feasible in an industrial ecosys-
tem. It has been observed that it is more challenging to automate high-level
tests, because they depend on a greater number of functional components of
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2 – Background

the system.

2.1 GUI Testing
As previously stated a lot of effort (coming especially from the academic
world) was put into the research for the best way to perform GUI testing
and for an efficient way of automating this kind of tests. This resulted in a
plethora of different approaches to GUI testing[22][14]:
Manual testing : this is the most basic approach. It involves a human

tester that manually creates and executes test cases. Even if it requires
the highest effort, it is convenient when the GUI is at the initial stage
of development and it is likely to change in a short time. Manual test-
ing allows developers to perform quick checks that can be done at any
moment. This approach doesn’t support any form of regression testing,
meaning tests aiming at making sure that a change in the program has
not adversely affected the existing features, and it is not scalable. Fur-
thermore, the tester is required to have some expertise to be able to
write tests that actually validate the design of an element;

Capture/record and Replay (from now on R&R): it is, as the name sug-
gests, divided into two main phases. During the first phase (record
phase), the user performs some interactions with the GUI and the frame-
work captures and translates them automatically into a script. Dur-
ing the second one (replay phase), the script is replayed to repeat the
recorded interactions. This approach supports automated regression
testing and can interact with different windows as long as they are dis-
played on the screen. The drawback of R&R is that it is hard to maintain
and it does not work well with tests requiring a lot of interactions with
the GUI of the AUT. R&R can work at different levels of abstraction,
from GUI bitmap level, where the framework interacts directly with the
bitmap layer on the screen and works with coordinates, to the widget/-
component level where, during the capture/record phase the information
of the widget the test is interacting with are extracted and then, during
the replay phase, these data are used to correctly locate them. Each
level of abstraction has its weaknesses and strengths: the higher the
level the more it suffers from GUI layout changes while being robust to
code modifications, the lower the more it suffers from changes in the
code structure or the APIs while being robust to GUI layout modifica-
tions. Several frameworks supporting this testing technique exist. Some
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2.2 – GUI Testing for Android applications

examples are Espresso Test Recorder1, Robotium Recorder2, RERAN 3,
Barista4 and Xamarin Test Recorder5;

Model-based testing : this approach focuses on creating a model that will
be used to understand and evaluate the behavior of the system. After
having defined a model a tool should be used to automatically generate
test cases from it. To make this possible it should be used either state
charts representing the state of the system in each step or decision tables
showing the results for each input. The generated test cases are usually
filtered by a selection algorithm to discard all the inadequate ones.

Scripted testing [13]: this approach is, probably, the most common one. It
requires that testers programmatically write down test cases emulating a
sequence of interactions with the AUT GUI while having direct access to
the code of the application. For this reason, they are often classified as
white-box testing, meaning that they are written with deep knowledge
of the actual implementation of the software. They enable regression
testing but, since they have to be constantly and manually maintained
during the whole lifecycle of the software under examination, they are
costly and time-consuming.

Since the mobile world is the main focus of this paper, it is important to
say that it presents some additional challenges and tools to perform visual
GUI testing.

2.2 GUI Testing for Android applications
As previously stated, the mobile world is in rapid expansion and it needs
tools that can help developers writing quality software. Testing is a key
activity in the software development process and needs to be supported.

For Android application development, the general suggestion is to use
well-tested libraries (like, for example, the Jetpack6 ones) and to follow a

1https://developer.android.com/studio/test/espresso-test-recorder
2https://robotium.org/
3https://www.androidreran.com/
4https://github.com/AdevintaSpain/Barista
5https://marketplace.visualstudio.com/items?itemName=XamarinInc.XamarinTestRecorder2015
6https://developer.android.com/jetpack/androidx/explorer
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2 – Background

Figure 2.1. Iterative test driven development. From :
https://developer.android.com/training/testing/fundamentals

test-driven development approach [5], organizing the code in a way that will
ease the testing activity and performing unit tests during development and
UI tests after passing the previous ones without failures.

Moreover, the test environment should be set following some best prac-
tices that are often enforced automatically by the integrated development
environment (IDE). A common IDE when developing an Android applica-
tion is Google’s Android Studio that organizes tests in two different folders
named:

androidTest : the directory where tests running on real devices or emulated
ones are placed. Typically, here integration tests, acceptance tests, end-
to-end tests, GUI tests could be found;

test : the directory where tests that run on the local machine are placed
(typically unit tests).

Since mobile applications are strongly event-driven (both coming from
users and environmental changes detected from a set of sensors and hardware
components) then GUI testing has become more and more relevant.

16
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Some examples of types of tools introduced to enforce this approach in
the mobile world are[20]:

Automation APIs/Frameworks : they offer an efficient and powerful way
of obtaining information on the visual hierarchy of GUI components and
let testers interact with them programmatically, emulating the behavior
of a user. Moreover, these tools offer some APIs to perform some as-
sertions on the state of the components. These tools typically provide
cross-device compatibility and support for basic user interactions and
APIs, while still being susceptible to the difficulty of emulating complex
user actions (such as scrolling, zooming, pinching, and more) and to the
high maintenance cost. Some examples of frameworks that fall under
this category are UIAutomator7, Espresso[2], Appium8, Robotium9.

Record & Replay : this kind of framework has already been presented. As
for the previous cases, in the mobile environment, they are an alternative
to manual test scripts generation but they require a more limited knowl-
edge to be used. They suffer from the fragmentation problem, since
they often interact with the Linux kernel of the mobile device without
having any knowledge of the actual GUI component and, for this rea-
son, they are often tied to the screen size and density of the device.
Another problem to be considered is that the higher the level of user
action representations the more limited is the accuracy and the timing
of events. Tools following this approach have already been presented in
section 2.1.

Automated Test Input Generation Techniques : these tools automat-
ically generate input for test scripts to lower the time spent by testers in
creating test cases. They are usually used to reach a particular goal like
achieving a high percentage of code coverage or discovering the highest
possible number of bugs. Their main weaknesses are that it may be
difficult to generate system events, it is costly in terms of performance
to restart the application, certain complex inputs usually need to be
specified manually, it is unlikely to have reproducible tests, and cross-
device testing is not supported. This kind of tool may be further cat-
egorized into three different classes according to their input generation

7https://developer.android.com/training/testing/ui-automator
8https://appium.io/
9https://robotium.org/
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2 – Background

technique: random-based, systematic, and model-based. Some examples
of tools that fall under this category are Monkey10, AndroidRipper11,
Google RoboTest12, AppDoctor13.

Bug and Error Reporting/Monitoring Tools : they are a common cat-
egory of tools that have been included, in the past few years, in a lot
of mobile testing workflows. As the name suggests, the main goals of
these tools are bug reporting and error and resource consumption moni-
toring. The ones aiming at bug reporting, typically, describe issues with
textual reports and, eventually, other additional files (like screenshots).
The others may be included by developers in the application, otherwise,
the only in-field option to retrieve this information are reviews (taking
into account that real users usually don’t have the required knowledge
to provide the context to identify and solve the error) or automated
crash reports (that often are not good enough). Some solutions to these
limitations have been introduced but they all include the need for API
calls to methods provided by third-party services, in order to collect
data that may actually help developers locate the issue, and they are
limited to crash reporting. Some examples are Airbrake14, Appsee15,
BugClipper16.

Mobile Testing Services : this is a crowd-based approach that, exploiting
the effort of a delocalized group of workers (that may or may not be
actual testers), lowers the cost of test case generation by splitting it
among a large number of people. The main goal of these tools may
vary among the following options: collecting bug reports to discover
the maximum number of software flaws, measuring the usability of an
application, stressing the security mechanisms of the AUT, ensuring that
the AUT will work in different geographical regions. None of these tools
is open source and typically they are not scalable since it is difficult
to find a place for them in an agile development approach, which is

10https://developer.android.com/studio/test/monkey
11https://github.com/reverse-unina/AndroidRipper
12https://firebase.google.com/docs/test-lab/android/robo-ux-test
13https://www.theappdoctor.com/
14https://airbrake.io/
15https://www.appsee.com/
16https://bugclipper.com/
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2.2 – GUI Testing for Android applications

becoming more and more common in software teams. Some tools of
this type are Xamarin Test Cloud17, Google Firebase18, TestArmy19,
Apperian20, Apptimize21.

Device Streaming Tools : the purpose of this category of tools is to allow
developers to mirror a device connected to their PC over the internet
and to access it remotely. These tools could be used in combination with
the previous category to stream secured devices to remote testers. Some
examples of tools are OpenSTF22, Appetize.io23.

As for the actual test scripts, a general categorization that will be used in
the remainder of this paper classifies them into:

First-generation tests : these are tests generated with frameworks that
work with the bitmap layer of the front-end of the application;

Second-generation tests : they work directly on the visual components
and their state. They are faster and more reliable but need the tester
to have deep knowledge of the GUI of the application;

Third-generation tests : these tests are based on image recognition algo-
rithms and have the highest abstraction level concerning the AUT. They
are more flexible but very fragile and costly to be maintained.

The focus of this thesis work is on Espresso, a framework producing tests
of second-generation that will be the input of TOGGLE. The tool will then
generate tests of third-generation automatically, easing their maintenance
cost.

In conclusion, other than the ones presented in this section, a lot of differ-
ent frameworks and approaches exist and there is no absolute best choice. For
this reason, while designing a mobile application, it is advisable to perform
an analysis on what approach should be taken during Visual GUI Testing

17https://testcloud.xamarin.com/
18https://firebase.google.com/
19https://testarmy.com/en/
20https://digital.ai/app-management
21https://apptimize.com/glossary/ab-testing/
22https://github.com/openstf/stf
23https://appetize.io/
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2 – Background

and on what should be actually tested according to both the specific test-
ing needs and the team’s knowledge of the adopted tool(s). Furthermore,
a key point in this analysis should be the study about the limitations that
each different approach brings with it to evaluate the effort required, both
in developing the test scripts and in maintaining them, through the whole
life-cycle of the application.

2.3 Issues for Android GUI testing
In the previous section, a lot of characteristics of Android GUI testing tools
and techniques have been presented. Among those, it is possible to find some
weaknesses that are common to all frameworks.

These issues are the reason why GUI testing is still struggling to find its
applicability in industrial environments. In this section, the main problems
will be presented and further detailed.

2.3.1 Fragmentation
One of the first weaknesses to be considered, and probably the most intuitive
one, is fragmentation[19]. The fragmentation problem is not exclusive of the
mobile world but, in this context, it found a greater emphasis.

By fragmentation, we mean the problem connected with the wide variety
of devices supporting the Android OS and of the operating system itself.
Furthermore, with the recent introduction of devices such as smart TVs, this
issue has gained even more relevance than before.

With this premise, it is clear that nowadays an Android application must
be developed keeping in mind that, in order to reach the majority of the
market, it should run on a high percentage of the available devices without
incurring any malfunctioning. Moreover, since OS versions change over the
years the same device might run different OSs.

The fragmentation issue comes with important consequences for the test-
ing practice too. A crowd-based approach might be used but, as previously
stated, it is not compliant with agile DevOps practices.

It is easy to understand that this issue is a great challenge while performing
Visual GUI Testing. With different configurations, there could be different
screen dimensions, different screen densities, different Android APIs. This
results in different visual appearances for the same layout. Moreover, if,
while designing an application, some best practices are not followed, the same
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visual component may appear larger on screens with a lower pixel density
and smaller on screens with a higher one. GUI tests run the risk of being tied
to a single configuration or, alternatively, they require the same test cases
to be written for all configurations we expect our application to be executed
into. Both options are, in the majority of cases, not good enough for the first
option and not feasible in terms of maintainability, cost, and effort for the
second one.

2.3.2 Test flakiness and performance
It is safe to assume that visual GUI tests have performance issues and this
happens for many reasons. Firstly, knowing that they emulate user’s inter-
actions, they need more time to be executed than, for example, unit tests.

Some tools introduce by default a time-out between each instruction to
correctly synchronize them that may or may not be customized.

Some other tools rely on an image recognition algorithm that needs a high
computational effort (and, consequently, it takes more time to be executed)
to locate the visual components on the screen.

Finally, the performance of this kind of test may be influenced by depen-
dencies on external services. The latter introduces another related weakness
of visual GUI tests.

This issue was highlighted by the diffusion of cloud-based web services.
Even if the trend of both computational and storage capability of mobile
devices is growing, sometimes applications rely on remote services. This
happens for many reasons: the computational cost of an operation is too
high to be performed on the device, the user wants to store some data in a
shared repository or the developer decided to use a third-party service.

This comes with the introduction of non-predictable delays in the behav-
iors and outcomes of the application because the execution time is impacted
by race conditions, loss of connectivity, data integrity issues, response time-
outs. Moreover, for frameworks using image recognition algorithms, the tran-
sition from one state of the application to another may take more time than
the one required to locate the image on the screen. This misalignment is
hard to quantify and compensate for and may cause unpredictable testing
results as well. The outcome is that the testing activity becomes, of course,
more challenging, since non-determinism in the behavior of the application
often results in test cases failing or succeeding due to external conditions.
This issue is known as test flakiness.

Sources of flakiness may be, for example, codified response delays, lack of
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identification mechanisms for unexpected behaviors, lack of mechanisms sup-
porting different device states according to the number of remote resources
available, lack of support for internal unpredictable events like the Garbage
Collection.

Even if non-determinism does not impact exclusively Visual GUI Tests it is
still an important problem in this context since, when writing test scripts, it
is necessary to assume that a fixed set of interactions produces a predictable
graphical result.

2.3.3 Fragility and maintainability

These are, probably, the most impacting weaknesses in this context. It is
well known that GUI tests are inherently unstable and fragile. No approach
can be considered immune to this problem and, as previously stated, this is
one of the main reasons why GUI testing has not been widely adopted in
every mobile application development process.

The reasons behind this fragility are multiple and not uniform among
the various frameworks. A tool that has a higher-level view on the AUT
is susceptible to GUI layout changes, theme changes, textual changes and,
generally, any kind of graphical modification. A tool that, instead, has a
lower-level view on the AUT is susceptible to APIs changes or, for example,
modifications of the attributes of a resource.

Moreover, the mobile world is a dynamic ecosystem that is constantly
evolving. This implies that applications too are often fast-changing both in
terms of functionalities offered and in terms of graphical features, especially
in the first phases of their life cycle.

To these problems, the fragmentation issue in Android devices and the
ones connected to test flakiness (sections 2.3.1 and 2.3.2) should be added
to have a clear picture of how many factors contributes to increasing the
instability of GUI tests.

The most obvious consequence of test fragility is the high effort and cost
they require to be maintained during the AUT life-cycle. It is not feasible to
maintain and update tests that need to be re-written from scratch for each
different device or each new feature introduced. Tools like Espresso partially
try to decouple test scripts from device characteristics, but they are deeply
connected to attributes of the View like text, ids, hints, and, consequently,
they are fragile to internal changes of the application.
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Another consequence of this problem is that regression testing might be-
come an unfeasible activity. Tests passing on previous versions of the ap-
plications and failing with the most recent one do not necessarily highlight
a real malfunctioning. Instead, their failure may be due to an error in the
test scripts themselves (that, for example, may not be able to recognize an
updated View).
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Chapter 3

Adopted tool: state of the
art

In the context presented in chapter 2 TOGGLE finds its place. TOGGLE
is a framework designed to lower the maintainability effort and the cost
required to perform the transition from second-generation test cases to third-
generation ones.

The adopted tool to create second-generation tests is Espresso, while the
tools used to run third-generation ones are SikuliX and EyeAutomate.

The reason why TOGGLE focuses on the transition from second- to third-
generation tests is that the two methodologies have complementary advan-
tages. The first category allows testing the values taken by the attributes of
a View in the displayed layout like its id, its type, its position in an Adapter-
View, and similar characteristics not directly related to the visual appearance
of the component. On the other hand, the second category, since it does not
depend on any internal attribute, makes it possible to test how each compo-
nent is displayed on the screen, whether it respects or not the theme of the
application or if a given interaction on a specific View will result or not in
the expected output on the screen.

Furthermore, running a test suite containing tests from both generations
will increase the probability of identifying faults that would be impossible to
discover using exclusively only one of the two approaches. More in detail if,
in presence of a fault, both second- and third-generation test scripts fail it
means that the visual component under test has radically changed or it is
not displayed. When, in presence of a fault, only one of the two generations
fails while the other one succeeds there could be two cases according to which
one is failing:
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• Second generation test failure: the fault is about a specific attribute
of a View that might not be graphically displayed, like a non-existing id
or a wrong class type of entries inside an AdapterView.

• Third generation test failure: the fault is related to the visual ap-
pearance of the component like, for example, a change in the color of a
View or a wrong image is displayed inside an ImageView.

The last combination of events is when a fault is present but none of the
generations detects it. This is an unlikely scenario.

The problem in coupling second- and third-generation tests is that the
translation process is cumbersome since the testing objectives behind each
generation are typically different, so the tester should be aware of what it is
the actual purpose of the test before performing the translation. Additionally,
the translation process itself is hard to perform because a second-generation
assertion often results in several third-generation instructions. This problem
is even more highlighted in the context of this case study since the translation,
in this context, happens for tests that should run on an emulated device. This
means that third-generation tools should reproduce interactions that are not
standard ones on the host machine (typically a personal computer) but are
the ones typical of the mobile world (scroll, tap, double-tap, swipe. and
similar).

Finally, another issue is that it is even harder to maintain two different
sets of Visual GUI Tests manually, especially third-generation ones that are
the ones requiring the highest effort.

The main purpose of TOGGLE is to remove the translation cost from the
picture by automating this activity, easing the combined adoption of second-
and third-generation tests. The result is a deeper and more accurate GUI
testing suite for the AUT.

3.1 Espresso
Espresso [2] is an open-source framework, developed by Google to test An-
droid user interfaces, that supports JUnit4. It is strongly encouraged to use
it as a white box testing tool, to be able to exploit all its potential even
though it is possible to use it to create black-box tests too.

Espresso has become one of the most relevant testing tools for many rea-
sons. For starting, by being developed by Google it is well integrated and
supported in Android Studio (probably the most common IDE for Android
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applications development) and the Android ecosystem as well. This means
that it is aware of the internal mechanism of the Android Operating Sys-
tem, hiding the complexity needed to synchronize the test interactions: an
interaction won’t be performed until the message queue of the main thread
of the application is empty, no instances of AsyncTask are currently execut-
ing a task, and all the resources that should be idle are actually idle. This
automatic synchronization mechanism makes Espresso robust against some
sources of test flakiness presented in section 2.3.2.

Furthermore, it has a clean and simple set of APIs with a smooth learn-
ing curve offering to the tester a flexible set of operations other than the
possibility of validating and/or mocking Android Intents.

Tests written using Espresso are instrumented ones, meaning that they
need the application to be installed and launched. The Android testing
framework offers the AndroidJUnitRunner to run Espresso tests. This runner
automatically handles the loading of both the Espresso test cases and of the
AUT on the device (emulated or not), then it runs the tests collects the
results.

This framework has four main components with different functionalities:

• Espresso: the starting point of every interaction offering methods like
onView() and onData() to perform assertions or actions on the Views
on the screen. Moreover, it offers some other APIs to perform actions
that do not operate on any view like pressBack();

• ViewMatchers: classes whose main purpose is matching UI compo-
nents in the visual hierarchy by analyzing different attributes like their
id, their text, their class, whether they have or not another child View
inside themselves, and more;

• ViewActions: classes whose main purpose is to perform actions on a
View. Objects of this class can be passed to the perform() method of
the ViewInteraction class.

• ViewAssertions: classes whose main purpose is to assert that the ac-
tual Views on the screen (found through the usage of ViewMatchers)
and the expected ones are the same. Objects of these classes can be
passed to the check() method of the ViewInteraction class.
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3.2 SikuliX and EyeAutomate
For what concerns third-generation tests the supported tools are SikuliX and
EyeAutomate.

SikuliX [18] is a framework that aims at locating and performing actions
on GUI components that are displayed on the screen of the machine executing
the test script. Each script has a statement file and zero or more images.
The statement file is a combination of instructions to wait for an image to be
displayed on the screen with a customizable time out, actions to be performed
on the located visual component, and other instructions implementing, for
example, decisions and repetitions statements. Images are used as locators.

The image recognition algorithm is highly dependant on the number of
pixels of the images. This means that a test will fail if the portion of the
screen that it is trying to locate does not correspond to the relative image
dimensions (with, of course, a small tolerance margin).

Figure 3.1. Sikuli architecture1.

The core of this framework is the internal Java library that is composed
of two different sections:

1https://sikulix-2014.readthedocs.io/en/latest/devs/system-design.html
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• java.awt.Robot: a component in charge of handling mouse and keyboard
events;

• C++ Engine: a component using the OpenCV library to locate on the
screen the visual elements captured in the images of the script.

The two components interact through the Java Native Interface, a frame-
work used to call native code (code specific for a given operating system) or,
more in general, code written in other programming languages like, in this
case, C++.

Additionally, above the Java API, a Jython layer is in charge of showing
to the end-user simple and easy-to-use commands.

SikuliX provides APIs for several programming languages like Javascript,
Python, Java, and Ruby. This case study will focus on the Java APIs that
could be used by adding sikulixapi.jar to the dependencies of the project.

EyeAutomate [4] is a visual GUI testing framework completely developed
in Java. For this reason, it can be executed on every platform supporting
this programming language.

The core of this tool is called the "Eye" and it envelops the image recog-
nition algorithm used during the execution of test scripts. This algorithm
uses all available CPUs and, for this reason, its execution time depends on
the resolution of the screen and the number of available CPUs. A visual test
script is composed of four kinds of files:

• Textual files (*.txt): the ones containing the script itself;

• Image files (*.png): the ones containing the image to be recognized on
the screen;

• Data files (*.csv): the ones containing data to be passed to the script,
making data-driven testing possible. Each line will contain a parameter
to be sent to the script and the framework will execute it one time for
each row;

• Widget files (*.wid): the ones containing a script with some prioritized
properties (that could be an image, a location, or an identifier) used as
locators in a given interaction. Each line in the widget will be executed
until a locator successfully locates the required visual element.

Inside an image, the selected area is a round section and the recognition
will succeed or not depending on a correspondence that should be at least
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equal to 95%. In case of multiple matches, all of them will be returned
ordered by their distance from the current position (the upper-left corner of
the screen at the beginning of the test script).

The image recognition AI supports the recognition of small screenshots
by dividing an image into small areas of interest and then by searching for
the best match. Moreover, this framework supports both vector- and pixel-
based image recognition. The first one is less sensitive to zoom factors and
to rendering details. The outcomes of each test script can be verified thanks
to the following log files:

• execution_log.txt: a file where all the executed instructions are regis-
tered and where, in presence of a failure, an error message will be added;

• text_log.txt: a file where dates and hours of every test execution are
registered;

• test_history.csv: a file listing all runs for a given script;

• test_steps.csv: a file listing all commands in a script.

It is possible to use EyeAutomate APIs from Java including the EyeAuto-
mate.jar file to the dependencies of the project.

3.3 TOGGLE
The purpose of TOGGLE is to translate Espresso tests into both SikuliX
and EyeAutomate scripts and into Java classes implementing the equivalent
version of third-generation scripts, using instructions coming from EyeAu-
tomate Java APIs, from SikuliX Java APIs, or from both libraries (in this
case the test firstly tries one approach and then, if this fails, it tries with the
other one).

Picture 3.2 shows the high-level architecture of this tool. The main com-
ponents are:

• Enhancer: this component oversees parsing 2nd generation tests, un-
derstanding the operations that are being executed, and injecting the
lines of code that are necessary to later perform the translation. The
purpose of the injected instructions is to collect some data on what is
being displayed on the screen, to collect and log information on the op-
eration to be translated, to create an XML dump containing data on the
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Figure 3.2. The translation process of TOGGLE.

displayed visual hierarchy, to take screenshots at each step, to handle
a coherent naming convention that grants the uniqueness of names for
both XML dump files and screenshot ones and, in general, to set up
all the required information to create the 3rd generation equivalent of
the test under analysis. From now on I will refer to the class with the
injected lines of code as enhanced class;

• Executor: this component executes the 2nd generation enhanced test
classes verifying their outcome and generating, consequently, the screen-
captures, the XML dumps, and the log lines containing information on
each visual interaction;

• Log Parser: this component oversees filtering the Android LogCat
buffer to retrieve the logged lines. From these lines the properties of
each interaction can be rebuilt and then translated into 3rd generation
test instructions connected to their correspondent visual locators;
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• 3rd generation script creator: this component performs the actual
translation starting from the list of rebuilt interactions.

Another key element displayed in picture 3.2 is the TOGGLETools An-
droid Library. This library should be added to the test package of the AUT.
It contains the implementation of all the utility functions that the enhanced
classes invoke.

In the remaining of this section, each component and all the other key
elements of the translation process of TOGGLE will be detailed and the
weaknesses of each one of them will be introduced.

3.3.1 Enhancer
This component is tool-specific, meaning that it can enhance exclusively test
classes written using the Espresso library. It is possible, theoretically, to
create an equivalent component supporting different 2nd generation testing
frameworks to make TOGGLE compliant with them too.

The input of this component is, as previously stated, an Espresso test class
but, before starting the translation process, it is necessary to modify the size
of the Android LogCat buffer [9].

To go into further details, the Android logging system is composed of
multiple circular buffers maintained by an internal system process (named
logd). Each buffer has a precise goal: the main buffer stores most of the log of
the application, the system buffer stores messages coming from the Android
Operating System, and the crash buffer stores all log lines generated after a
crash. A library to interact with these buffers is available by including the
header file android/log.h). Alternatively, it is possible to use a command-line
instruction with the following syntax:

[adb] logcat [<option >] ... [<filter -spec >] ...

Given their nature, when these buffers reach their limit size the initial
content will be overwritten and, consequently, will be impossible to be re-
trieved. This mechanism, if not correctly addressed, could heavily affect the
translation process if, for example, the overwritten lines contain some of the
logged instructions that are necessary to rebuild the visual interactions.

This is the first weakness of TOGGLE that is going to be presented. In
its initial state, this operation had to be either manually performed via com-
mand line instruction or coded into the same Java project invoking the APIs
of TOGGLE. In any case, the resizing of the Android Logcat buffers was
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performed in a non-transparent way for the end-user. Moreover, this opera-
tion implies an invasive intervention of the original context of the application
that could impact its functionalities.

An empirical evaluation demonstrated that a reasonable size for these
buffers to have a fault-free translation process is 32MB. It is worth noticing
that, for an application that performs logging intensively, this could be not
enough.

The specific command-line instruction to resize the LogCat buffers is:

adb logcat -G 32M

Once the buffers have been successfully resized the enhancing activity can
start. The Espresso test classes are parsed exploiting the JavaParser library2
and then, once an Espresso assertion is identified during the analysis of a test
method, instructions coming from the TOGGLETools library are injected to
generate:

• Screen-captures: captions of the currently displayed screen. They will
be saved as Bitmap files on the emulated external storage of the Android
Virtual Device (AVD). These captures are generated thanks to the UI
Automator framework. The naming convention for these files involves
using the test method name with a suffix composed by a progressive
identifier number;

• XML Dumps: an XML file containing the current screen hierarchy and
reporting every layout component with some of its properties (such as
its coordinates on the screen, its id, its class, and similar attributes).
Similar to what happens to screen-captures, these files are saved on the
external storage of the AVD and they follow the same name convention so
that the two kinds of files will be paired in a one-to-one correspondence.
The screen hierarchy is extracted through the usage of the UI Automator
framework;

• Log interactions: using the Android LogCat library, lines containing
attributes about the performed interactions are pushed into the LogCat
buffers.

2JavaParser is the most popular parser for the Java programming language. Specif-
ically, this library can analyze Java files with invocation level granularity, generate and
inject Java code, and do some processing and refactoring. This project is open source
and has many years of history with hundreds of contributors. More can be found at
https://github.com/javaparser/javaparser

33



3 – Adopted tool: state of the art

A typical log line has the following format:

<testName > <interactionIdentifier > <
searchType > <searchKeyword > <
interactionType > <optionalArguments >

Where testName is the name of the enhanced test method, interaction-
Identifier is the unique name, identifying a couple composed by screenshot
and an XML dump file, generated following the explained naming convention,
searchType determines the type of attribute used to locate a specific view in
the hierarchy (e.g. its id, its textual content...), searchKeyword is the value
that searchType assumes, interactionType is the type of interaction to be per-
formed on the located widget (e.g. click, doubleclick, typetext, fullcheck),
and, finally, optionalArguments are optional parameters that should be cou-
pled to the interactionType to correctly rebuild the visual interaction.

Other injected instructions are sleep instructions, used to correctly syn-
chronize each step to give the system the time to generate the screen-captures
and the XML dumps. The sleep time is of two seconds, an amount of time
that has been proven to be sufficient to create the two files without incurring
unexpected behaviors.

Another key factor to consider is that the initial version of the enhance-
ment process supported most of the Espresso instructions using Espresso.onView()
as their entry point, except for the ones using scrollTo() as ViewActions.
This uncovers another issue that the state-of-the-art of this library presented.
It completely lacked the support for all types of scrolling interactions (i.e.
the interactions that are tested using Espresso.onData() as entry-point or
scrollTo() as ViewActions).

In addition to this, the Enhancer module offered interface methods that
let the end-user enhance one class at a time and were not able to distinguish
whether the test class being parsed had already been enhanced or not. The
outcome was that, if the AUT has a test suite with N test classes, the method
to enhance a class had to be called N times. Furthermore, if an enhanced
version of one of these classes had already been generated the enhancing
method will simply overwrite it, wasting execution time and computational
resources.

The output of the Enhancer module is an enhanced test class performing
the same set of 2nd generation tests of the source one and that can be exe-
cuted in the same way but, additionally, it executes some other instructions
whose purpose is to collect the required data to later complete the translation
process.
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3.3.2 Executor
Once the first phase of the translation has been completed, a set of prelim-
inary operations needs to be performed before starting the execution of the
newly generated tests.

Firstly, the application needs to have the permissions for reading and
writing on the external storage to be granted so that it can correctly create
and store the output files of the execution of the enhanced class.

In particular, in the manifest file of the application, the following permis-
sions must be declared:

android.permission.WRITE_EXTERNAL_STORAGE : needed to
be able to create and write on a file stored on the external storage of the
device;

android.permission.READ_EXTERNAL_STORAGE : needed to be
able to read from a file stored on the external storage of the device.

It is worth noticing that, starting from Android version 6.0 (API level
23), these permissions are considered dangerous, meaning that they could
potentially expose user’s private information or share operations with other
apps, therefore they should be granted by the user at run time. Of course,
forcing the end-user to click on the screen to grant these permissions during
the execution of a test is not compatible with the concept of test automation
and, consequently, with the purpose of TOGGLE.

In addition to this, another key element to be considered before launching
the enhanced tests is that that it is mandatory to inject some library classes
into the test folder. These classes are named:

• TOGGLETools: a Java class offering the implementation of all the ad-
ditional operations needed to complete the translation. Particularly, its
methods are used to log the interactions, to take the screenshots, to get
the display size, and more;

• BitmapSaver : a Java class whose main purpose is to store on the external
storage the bitmap version of the taken screenshot.

As introduced in section 3.3.1, the lines of code injected into the Espresso
test classes use methods coming from these two library classes.

Finally, the application needs to be re-built, installed, and correctly in-
strumented on the Android Virtual Device so that its APK will include both
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the enhanced classes and the library ones and it is possible to launch the
enhanced tests through command-line instructions.

All these steps either were not completely automated or their complexity
was not hidden to the end-user. More in detail, the permissions had to be
manually granted acting directly on the AVD, the library classes had to be
copied into the test folder of the AUT and there was no support for the
automatic generation of the new APK of the application.

Moreover, the reference to the instrumentation of the application had to
be retrieved manually by the programmer and then sent, as a string, to the
method in charge of executing the enhanced test case.

A partial solution to these problems was offered by an extension of TOG-
GLE implementing its GUI interface. In this case, all these steps were inter-
active with the end-user and the framework became more a stand-alone tool
than an open-source library, which is, instead, the actual goal of this case
study.

Once the test environment has been correctly prepared, the enhanced test
class can be executed thanks to the following Android Debug Bridge (ADB)
command-line instruction, launched via Java code:

adb shell am instrument -w -e class <
testInjectionPath >.< testClassName > <
instrumentation >

Where testInjectionPath is the path to the folder of the enhanced test
cases, testClassName is the name of the test class we want to execute, and
instrumentation is the test instrumentation of the AUT.

The method launching this command needs to be executed as many times
as the number of enhanced test classes that we wanted to execute.

This highlights two different vulnerabilities. The first one involves the fact
that, as already presented in section 3.3.1, the complexity of the execution
is not truly hidden to the end-user meaning that, even if the test classes are
all in the same directory, there is no support for executing them all with one
single instruction. The second vulnerability is the high memory consumption
that these tests cause on the external storage of the AVD. In particular, each
enhanced test method execution results in, at least, as many bitmap files
and XML dumps as Espresso assertions plus an additional couple of these
files (one per each type) that is needed for the final check of the screen (this
is a further operation injected at the end of each test method). It is easy
to understand that the external storage can be quickly filled and, for this
reason, it has to be manually cleared before each test execution.
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Another problem that is directly connected to the previous one is that, in
presence of test classes with many test methods, the translation process could
fail even addressing all the previous issues with the correct countermeasures.
This happens because the execution granularity by test class has proven
to be too coarse leading to consuming the available memory on the external
storage of the AVD before having completed the execution of the whole class.
Consequently, in these cases, it is not possible to create the needed files for
all test methods.

The initial version of this framework did not address these issues, leaving
the responsibility of preventing them to the end-user.

Finally, the executor checks the outcome of each 2nd generation test as-
sertions, and, in presence of a failure, it notifies the tester and aborts the
translation process. This is a reasonable consequence since it is useless to
translate a faulty test method.

The output of this module is a set of bitmap files and XML dumps with a
1-to-1 correspondence and a set of logged lines in the Android LogCat buffer.

3.3.3 LogParser
This module is in charge of initiating the actual translation process, starting
from the output of the Executor, by collecting the information generated
after the execution of the enhanced test classes.

The first operation is filtering the log file so that the logged lines, de-
scribing the visual interactions, can be isolated. This has a computational
complexity proportional to the total number of lines in the LogCat buffer.

Once all lines of interest have been collected, the second operation that
has to be performed is pulling out from the external storage of the AVD, for
each interaction line, the screen-captures and the XML dumps.

Finally, starting from the information collected from the log lines and
the dumps, an object of the class corresponding to the actual interaction is
created. During the creation process of these objects, the screen-captures
are resized according to the screen size of the host machine and, using the
coordinates taken from the corresponding dump file, cropped, isolating the
component on which the interaction has to be performed. The final image
will be used as a locator in the equivalent 3rd generation test script.

The resizing of the images is necessary since the screen-captures, con-
sidering that they come from the AVD, have a screen resolution that does
not reflect the one used to graphically display the emulated screen on the
computer hosting the emulator.
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The crop operation, instead, is useful because, by using as locator only
the portion of the screenshot containing the visual component, every depen-
dency on its rendered position will be eliminated. This is important because
this factor could slightly differ according to which device the AUT is being
executed on, to its orientation, and similar factors that usually affect the
stability of GUI tests.

The dump file and the optional arguments could be further used to extract
some other information, if needed, to correctly emulate the visual interaction.

This module presents, probably, one of the most challenging vulnerabili-
ties of TOGGLE. Programmatically retrieving the screen density of the host
machine, and resizing the cropped screen-captures accordingly, is not an
easy task because it is directly related to two of the biggest Visual GUI
Test weaknesses: the dependency on the pixel density of the screen and the
small tolerance to width and height differences between the locators and the
front-end bitmap layer of the AUT.

In particular, the library offers no method to automatically retrieve the
width and height of both the screen of the host machine and the screen of the
AVD neither it offered an automatic way to dynamically handle the differ-
ences in these measures when changing the host machine. These dimensions
were hard-coded for a specific host machine and a collection of different types
of mobile emulators, thus they are not portable among different computers.
Consequently, the whole process becomes not maintainable in the long term
nor in an industrial development process.

The output of this module is a set of Java objects containing all the in-
structions and information, other than the references to their locator image,
that are necessary to complete the translation. Each of these objects inherits
from a common parent class, named ToggleInteraction, that offers some basic
common functionalities. Picture 4.3 shows a schematic representation of the
key elements inside this class.

3.3.4 Third generation script creator
Starting from a collection of ToggleInteraction objects, the third generation
script creator is in charge of generating GUI tests using both EyeAutomate
and SikuliX instructions.

It is useful to highlight two important factors to correctly analyze this
translation process. The first one is that, since the scripts are meant to be
executed in an ecosystem, the computer one, that is different from the mobile
one, the basic interactions will be different too. For example, in the mobile
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Figure 3.3. ToggleInteraction.

world, a user could perform actions like swiping or pinching that are typical
of a device with a touchscreen while not so common on a personal computer.

The second factor is the difference between the entry points of the two
generations of tests. A 2nd generation test, especially an Espresso one, has
a lower-level approach and, for this reason, it can act directly on the View
objects without necessarily having to perform any graphical interaction on
them, that is, instead, the typical action of a real user. This happens, for
example, when the test method is executing the Espresso instructions to
enter some text on a View. In this case, the text will appear inside the visual
component without having to move the focus on it.

On the contrary, a 3rd generation test access the AUT through its GUI and
has no lower-level attachment to the software. This means that, for example,
to type some text on a View a test needs to execute a preliminary instruction
to tap on it, moving in this way the focus to the component under exam,
and then one or more other instructions to actually insert the text.
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The same problem presents itself when a test needs to emulate the fol-
lowing interactions: swipe down/up/left/right, replace some text, clear some
text, double-click, and long-click.

Both factors explain why it is impossible, especially for more complex
interactions, to have 1-to-1 correspondence between 2nd and 3rd generation
instructions.

Another key element to be considered while transitioning from one gener-
ation to the other is that, since a 3rd generation test has a higher-level entry
point on the AUT, the instructions have to be correctly synchronized so that
the GUI can have the time to reach a stable state after each interaction.

This synchronization mechanism is implemented by a customizable time-
out set on each instruction, needed to wait for the widget to be displayed on
the screen, and some sleep instructions placed to additionally temporize the
interactions.

An empirical evaluation proved that a reasonable time-out value to grant
the fact that the GUI can reach a stable state is 30s. The sleep instruction
placed between the interactions, instead, can use a different value according
to the situation. For example, a double-click needs a sleep time that is, of
course, shorter than the one needed to perform a long-click.

In addition to this, after each group of instructions generated in the trans-
lation of a 2nd generation assertion, an additional sleep instruction of 1s is
inserted to further decrease the probability of performing graphical interac-
tions too quickly for the GUI engine to intercept them.

The outputs of this module are two textual scripts, one per each 3rd gen-
eration testing tool, and a Java project with the classes containing the in-
structions that, using the APIs offered by both EyeAutomate and SikuliX,
can execute the same test.

The textual script can be executed by the two correspondent IDEs (Eye-
Studio and SikuliX IDE).

The Java project offers, instead, a wider range of options to the tester.
While being semantically equivalent to the textual scripts, the Java classes
let the tester use them as the foundation for a more complex test case (for
example it is possible to generate a test that, before the execution of the
actual set of interactions, wants to set up a given scenario in the database of
the AUT).

Furthermore, TOGGLE exploits the possibility of using instructions com-
ing from both EyeAutomate and SikuliX APIs in the same test method to
increase the stability of the generated visual GUI tests. The Java project is
composed of four different classes:
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1. an EyeAutomate-only class, containing exclusively instructions coming
from this library;

2. a SikuliX-only class, containing exclusively instructions coming from this
library;

3. a Java class combining the two libraries, executing first the EyeAutomate
version of the test and, if it fails, trying to execute the SikuliX version;

4. a Java class combining the two libraries, executing first the SikuliX ver-
sion and, if it fails, trying to execute the EyeAutomate one.

Table 3.1 shows the collection of instructions needed to emulate some of
the most common interactions [12].

3.4 Translation example
In this section, an example of the translation of basic interaction is going to
be presented, showing the generated data and files. The goal is to give the
reader an actual example of how a translation takes place and the appearance
of every file involved in it.

Figure 3.4. (1) Espresso source test method.

The starting point is the source Espresso test method shown in figure 3.4.
This method will be parsed to generate the enhanced version and then this
class will be executed to create the log lines, the XML dump files and the
screen-captures. Figures 3.5, 3.6, 3.7, and 3.8 report, in order, an example
for each step.

Once these files have been created and pulled out from the external storage
of the AVD, then the Click interaction is created and the screen-capture is
resized and cropped to extract the locator shown in figure 3.9.

This locator will be used by the generated test files to make assertions on
it and to perform interactions. The same sequence of files and, generally, of
steps will be executed for the "fullcheck" log line, whose purpose is to verify
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Table 3.1. 3rd generation test syntax

Logged interaction EyeAutomate commands SikuliX commands
clearText i. Click img

ii. Type [BACKSPACE] (arg1 times)
i. click(img)
ii. type (Key.BACKSPACE) (arg1 times)

click i. Click img i. click(img)
closesoftkeyboard i. Type [CTRL_PRESS]

ii. Sleep 10
iii. Type [BACKSPACE]
iv. Sleep 10
v. Type [CTRL_RELEASE]

i. keyDown(Key.CTRL)
ii. sleep(0.01)
iii. type(Key.BACKSPACE)
iv. sleep(0.01)
v. keyUp(Key.CTRL)

doubleclick i. MouseDoubleClick img
ii. Click img
iii. Type arg1

i. hover(img)
ii. mouseDown(Button.LEFT)
iii. sleep(0.001)
iv. mouseUp(Button.LEFT)
v. sleep(0.001)
vi. mouseDown(Button.LEFT)
vii. sleep(0.001)
viii. mouseUp(Button.LEFT)

longclick i. Move img
ii. MouseLeftPress
iii. Sleep 500
iv. MouseLeftRelease

i. hover(img)
ii. mouseDown(Button.LEFT)
iii. sleep(0.5)
iv. mouseUp(Button.LEFT)

typetext i. Click img
ii. Type arg1

i. click(img)
ii. type(arg1 )

openactionbarmenu i. Type [CTRL_PRESS]
ii. Sleep 10
iii. Type m
iv. Sleep 10
v. Type [CTRL_RELEASE]

i. keyDown(Key.CTRL)
ii. sleep(0.01)
iii. type(m)
iv. sleep(0.01)
v. keyUp(Key.CTRL)

pressback i. Type [CTRL_PRESS]
ii. Sleep 10
iii. Type [BACKSPACE]
iv. Sleep 10
v. Type [CTRL_RELEASE]

i. keyDown(Key.CTRL)
ii. sleep(0.01)
iii. type(Key.BACKSPACE)
iv. sleep(0.01)
v. keyUp(Key.CTRL)

presskey i. Type arg1 i. type(arg1 )
pressmenukey i. Type [CTRL_PRESS]

ii. Sleep 10
iii. Type h
iv. Sleep 10
v. Type [CTRL_RELEASE]

i. keyDown(Key.CTRL)
ii. sleep(0.01)
iii. type(h)
iv. sleep(0.01)
v. keyUp(Key.CTRL)

replacetext i. Click img
ii. Type [BACKSPACE] (arg1 times)
iii. Type arg2

i. click(img)
ii. type(Key.BACKSPACE) (arg1 times)
iii. type(arg2 )

swipedown i. Move img
ii. Sleep 10
iii. MouseLeftPress
iv. MoveRelative "0" "250"
v. MouseLeftRelease

i. r = find(img)
ii. start = r.getCenter()
iii. stepY = 250
iv. run = start
v. mouseMove(start); wait(0.2)
vi. mouseDown(Button.LEFT); wait(0.2)
vii. run = run.below(stepY)
viii. mouseMove(run)
ix. mouseUp()
x. wait(0.2)
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Figure 3.5. (2) Espresso enhanced test method.

Figure 3.6. (3) Log lines.

that the final screen of the AVD matches the expected one. Figure 3.10
shows an example of a SikuliX test script.
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Figure 3.7. (4) XML dump file.

Figure 3.8. (5) Screen-capture.
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Figure 3.9. (6) Locator.

Figure 3.10. (7) 3rd generation test script.
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Chapter 4

TOGGLE Reengineering

Chapter 3 introduced TOGGLE, a support tool whose purpose is to ease
the transition from 2nd generation tests to 3rd generation ones. TOGGLE,
being conceived as an academic tool, proves the feasibility of an automated
translation but, due to all the flaws and weaknesses presented in chapter 3,
it is not good enough to be adopted in an industrial development process.

For this reason, we felt that the framework needed to be re-engineered to
make its learning curve smoother.

This process may be categorized into three main phases:

tool improvement : in this phase, the vulnerabilities of the tool, presented
during its state-of-the-art description, were addressed and solved. The
main goal was to make the whole process as automated as possible by
reducing the manual interventions requested to an end-user to the lowest
level possible;

re-design : in this phase I re-designed the architecture of the library to hide
its complexity, offering a clear, flexible, and easy-to-use interface that
can act as the main entry-point for the end-user. The adopted design
pattern is the Façade pattern;

new features : in this phase, I implemented some missing features of TOG-
GLE. Specifically, the tool lacked a translation mechanism supporting
the scroll interaction so a mechanism to translate it has been introduced.

Another additional phase may be placed before the previous ones since the
starting point was to change the build automation mechanism from Maven
to Gradle.
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The re-engineered version of TOGGLE can be found at https://github.
com/VittorioDiLeo21/TOGGLE, together with a zipped folder reporting the
source Espresso files and the corresponding 3rd generation translation used
for the experiment reported in chapter 5.

4.1 Gradle
The first step taken during the re-engineering process of TOGGLE was to
change the build automation tool. TOGGLE initial version used Maven.

Even though Maven, since it is older than Gradle [7] [8], has higher support
in the most common IDEs, the decision of migrating to Gradle was carried
out because this tool offers higher flexibility and better performances.

Additionally, Google adopts Gradle as the default build tool for Android
applications. This choice was made not only because its build scripts are
shorter and clearer than an equivalent Maven one but also for the flexibility
and customization possibilities that this build tool offers. Gradle, in fact,
is an extensible framework and it can be used in projects written in a wide
range of programming languages, including C/C++, while Maven is mainly
Java-oriented.

Furthermore, since a Maven script is written using the XML syntax and
the build flow follows some predefined targets to which goals are attached,
it is more rigid and it does not support incremental compilation for classes
(i.e. compiling only the classes that have actually changed).

On the other hand, Gradle uses a Domain Specific Language (DSL) derived
from Groovy. It is based on tasks composed in an acyclic graph and supports
incremental compilation resulting in overall higher flexibility.

In addition to the mechanism to avoid unnecessary work, Gradle exploits
both a build cache, to reuse the outputs of any previous build having the
same inputs, and a long-lived process (called Gradle Daemon), that keeps
data related to the build process ready to be re-used.

Another factor affecting the build performances is the difference in de-
pendency management between the two tools. In particular, Gradle lets the
user define customized dependency scopes and substitution rules, avoiding
unwanted dependencies in the project so that it is possible to obtain better-
modeled and faster builds.

As it can be seen in picture 4.1, that is showing a comparison between Gra-
dle and Maven execution times in three different contexts, Gradle is proven
to have better performances than Maven.
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Figure 4.1. Comparison between Gradle and Maven build performances.
From : https://gradle.org/maven-vs-gradle/

Moreover, since TOGGLE is a mobile-oriented framework and, more in
detail, an Android-oriented one, I felt that Gradle was the best option to
maintain coherency with the official Android build tool.

4.2 Tool improvement
As presented in sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4 the modules composing
TOGGLE presented some weaknesses that worsen its maintainability. In
this section these issues will be further analyzed, presenting the proposed
solutions and all the various improvements introduced.

4.2.1 Log files
One of the first issues highlighted in chapter 3 was the need to resize the
Android LogCat buffers to avoid the overwriting of their content once they
have been filled up to their maximum size.

Even though a first temporary solution, using the ADB command to man-
ually resize these circular buffers, had already been introduced, this option
was not sustainable in a long-term generic library. First of all, it introduces
an invasive intervention on the environment of the AUT while the tool should
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be as transparent as possible but, more importantly, this solution was not
universally valid because it was heavily dependent on the log frequency of the
AUT. An application that, during its execution, logs a lot of lines in these
buffers might easily fill these buffers even after they have been resized.

For this reason, the lines containing the information about the translation
process have been redirected into separate log files stored on the external
storage of the device, avoiding any kind of manipulation on the Android
LogCat buffers.

Having separate files introduces several benefits. For starting, there is an
actual separation of concerns between the logic of the AUT and the trans-
lation process, avoiding mixing information coming from the two processes.
This highlights another improvement related to the previous one: since all
log lines are concentrated in the same location, there is no need to add a
subsequent filtering operation to retrieve them. A simple sequential read is
all it is needed, thus resulting in a shorter translation execution time.

Going into further details on how the log phase has been changed, it is
necessary to specify that the logged lines have been further divided into one
file for each test class. By using different files, the flexibility of the translation
process has increased since the execution and the translation of every single
class have become independent from one another.

The outcome is that if only a few Espresso test classes in the whole test
suite have changed then only these classes need to be included in the re-
translation process to update accordingly the correspondent 3rd generation
tests, leaving untouched all the other log files that can maintain their validity.
The results are better performances and easier maintainability.

A consideration to be done is that creating, updating, and saving a file
on an Android device is not a trivial task. The application should declare in
its manifest file the permissions to write and read on the external storage.
Given that these permissions are needed to execute the enhanced tests too (as
already explained in section 3.3.2), the conclusion was that this improvement
is not adding any new constraints to the adoption of the library.

To automate the phase of permission granting another ADB command has
been used:

adb shell pm grant <package -name > <
permission -name >

Where package-name is the package name of the application and permission-
name is the name of the permission to be granted. In this case, the latter
will assume the following values:
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android.permission.WRITE_EXTERNAL_STORAGE ;

android.permission.READ_EXTERNAL_STORAGE .

4.2.2 TOGGLETools library injection
The library classes named TOGGLETools and BitmapSaver had to be copied
in the folder containing the enhanced tests to be able to execute them. These
classes explicitly depend on libraries belonging to the Android ecosystem,
thus they cannot be included in a generic Java project that does not use a
Software Development Kit (SDK) compliant with the Android APIs.

TOGGLE, instead, is a tool thought to be used on a personal computer
supporting Java, starting from a mobile emulator but generating images, test
scripts, and test classes that will be stored and eventually executed on the
first kind of machine. For this reason, it should be considered external to
that environment, thus it cannot use an Android SDK.

Knowing this, it is easy to understand why both TOGGLETools and
BitmapSaver library classes need to be directly injected into the environ-
ment of the AUT, so that they can be built as part of the application itself,
and could not be used as internal library classes of TOGGLE, adding a simple
dependency to the test classes of the AUT.

Of course, manually pasting these classes into the test folder of the appli-
cation is not feasible nor maintainable in the long term and for big projects.
The implemented solution includes some Java methods that, receiving as in-
put the test directory of the AUT, can detect whether the two classes have
already been injected or not and, if not, they are able to re-create them in
the specified folder.

For this purpose a class, named ToggleToolFinder, has been introduced
to TOGGLE, offering the implementation of the methods to perform these
operations other than a copy of both library classes. The latter is actually
excluded from the build process of the library, they are used as source files
when it is needed to inject them into the project.

4.2.3 Enhance method update
The enhancing process, at the state-of-the-art of the tool, had some weak-
nesses. For starting, when launching a new enhancing sequence of instruc-
tions, there was no support for detecting whether an Espresso test class had
already been enhanced or not.
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To understand if there is the actual need to enhance a class or not there
are many options. Generally, it should be enough to search for a file with the
same name plus the word "Enhanced" appended to it but, to add a further
check, it is possible to parse this test file searching for a reference to any
of the APIs offered by the TOGGLETools class or, simply, for the import
declaration for TOGGLETools itself. The second option has been selected
because it is a reasonable compromise between good performances and trust
in the output result. In any case, to force the re-enhancement of a test class,
it is enough to simply delete the previous version from the folder.

Another problem was that to enhance a test suite with multiple test
classes, the same method had to be invoked repeatedly for as many times as
the number of classes to be enhanced, passing as method parameter the class
name. This condition heavily affects the usability of the library.

For this reason, starting from the test folder, a feature has been imple-
mented to offer the possibility of analyzing every Java file inside it to find
out whether it contains an Espresso assertion, if, of course, it is not an en-
hanced file, and if it does not already have an enhanced equivalent. If all
three conditions are verified then the test file needs to be enhanced and the
whole enhancing process will be executed. This sequence is repeated until
all the files in a given folder have been processed. In this way, the library
lifts from the end-user the burden of having to invoke the same instruction
over and over. Moreover, it automates the update process in case of a new
Espresso test file added to the given directory: it will be enhanced (while all
the other unchanged classes will be ignored) as long as the new file is in the
same folder.

4.2.4 Build and install
Once TOGGLETests and BitmapSaver have been successfully injected into
the test folder and all the Espresso test classes under exam have been en-
hanced, the application needs to be built and deployed on the Android em-
ulator.

An Android application uses Gradle as its build-automation tool and the
recommended way to execute any Gradle build is by exploiting the Gradle
Wrapper[6]. The Wrapper is a script whose main goal is to quickly set up the
build automation tool, eventually downloading automatically the declared
version of Gradle and reducing the overall build time.

To include a Gradle Wrapper in a project it is necessary to have a Gradle
runtime version installed on the machine and to execute the wrapper task.
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This script is usually automatically generated by the IDE when a new
project for an application is created but it is possible to use the gradlew
instruction with the relative options to execute the build tasks with the
Wrapper through command-line instructions. This is the adopted solution
to run tasks to build and install the application from a third-party project.

Knowing that this script is placed in the base folder of the AUT, which is
known to the library since the enhancing phase, it is possible to exploit this
path to reach the script and execute it to build the application, generate the
APK, and install it on the target device.

In particular, there are two solutions for performing these operations. The
first one is by executing the following command-line instruction:

<applicationPath >\ gradlew assemble

Where applicationPath is the path to the gradlew script that has been
previously mentioned. This command will assemble all AUT versions and an
APK will be created for each of them.

Another option is to execute the following combination of commands. The
first one is:

<applicationPath >\ gradlew tasks

That returns the list of all the available executable Gradle tasks. Then,
this list needs to be filtered in order to collect all tasks that should be exe-
cuted to build the project of the application.

Thereupon, for each identified task, the following instruction needs to be
executed:

<applicationPath >\ gradlew <taskName >

Where, of course, taskName is the name of the task to be executed.
If one of the previous tasks fails an exception will be thrown so that

the end-user can be notified and it can avoid performing all the subsequent
instructions (that would likely be pointless if this step was not successful).

If, instead, the build and deploy phase succeeds the next operation to
be performed, to be able to execute the enhanced tests, is to automatically
retrieve the instrumentation of the application. The following ADB command
returns the list of all the active instrumentation:

adb shell pm list instrumentation
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To isolate the single instrumentation needed to execute the enhanced
Espresso test methods this list should be filtered, searching for a line contain-
ing both the package name of the AUT and the string AndroidJUnitRunner
in it. From this line, it is possible to obtain the reference to the instrumen-
tation of interest.

4.2.5 Enhanced test execution
As presented in section 3.3.2, the execution phase had several vulnerabilities
to be fixed.

The first issue that is going to be presented involves the external memory
usage: a generic enhanced test execution, especially after the improvements
to the log phase introduced in section 4.2.1, outputs, other than the actual
test results, a set of files that can quickly fill the emulated external storage.
For this reason, it is necessary to clear up the memory, deleting any residual
file of previous executions, so that it will be possible to generate and store
the new ones.

Moreover, at its state-of-the-art, TOGGLE executed the enhanced tests
with a class level granularity. As already presented, this introduces another
memory-consumption-related problem. Even if the external storage of the
device is cleared up before and after any enhanced test execution if a test
class contains a lot of test methods the external storage of the AVD may be
filled up before completing the execution of the whole class. This results in
a fragmented set of files, due to the lack of memory, that does not include
all the ones necessary for a complete test translation.

This means that the initial version of TOGGLE introduced an indirect and
undesirable constraint on the number of test methods that could be included
in a test class. This is an element that might further discourage an end-user
from using this translation automation tool.

Additionally, even a single method may cause excessive memory consump-
tion but, in this case, an empirical evaluation proved that the average number
of assertions in an Espresso test method results in a reasonable memory usage
so that it is unlikely that a single test completely consumes all the available
space on the external storage. From this starting point, a finer granularity
has been adopted, moving from the class-level to the method-level one.

Executing enhanced tests with this finer level of granularity is not suffi-
cient to solve the memory usage problem by itself. Another complementary
operation to be carried out is to pull out all the generated output files after
each method execution so that they could be safely deleted from the device

54



4.2 – Tool improvement

without causing any loss of information, which might affect the translation
process.

All these actions can be executed through some ADB command-line in-
structions. In detail, the following commands are used to remove any bitmap
or dump file, generated from any previous execution of TOGGLE, and to
erase any residual log file respectively:

adb shell rm sdcard/TOGGLE /*. bmp sdcard/TOGGLE
/*. xml

adb shell rm -f /sdcard/TOGGLE /* TOGGLE.txt

Then, for each enhanced class, every test method can be executed and, if
all assertions succeed then it means that the translation process can continue
safely and that all the generated bitmap and XML files have been pulled out
from the AVD external storage. The instruction to pull all the output files
of the method is:

adb pull /sdcard/TOGGLE <destinationFolder >

Where destination folder is the directory where all test scripts, test classes,
locator images, and log files will be placed.

It is worth noticing that the sub-directory named "TOGGLE" has been
introduced during this phase of the re-engineering process of the tool. There
are two different reasons behind its introduction. Firstly, as it happened for
the log phase, to establish an actual separation among entities that logically
belong to separate processes so that the generated files of TOGGLE do not
mix with files coming from different sources. Secondly, in a more pragmatic
way, the use of this sub-directory drastically lowers the effort required during
the pull phase since it makes it possible to pull the whole set of files that is
wrapped in this folder with only one command-line instruction.

Once all files have been pulled out from the device, the screen-captures
and the XML dumps must be deleted from the external storage of the device.
The ADB command used to complete this task is the same one that has been
introduced while explaining the operations needed to reset the log files, with
the only difference in the string used to match the file to be removed. In
fact, in this case, the command is:

adb shell rm -f /sdcard/TOGGLE/<methodName >*

Where methodName is the name of the method that has just been exe-
cuted.
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To execute a single method through an ADB command, a piece of ad-
ditional information (i.e. the name of the method) should be included in
the instruction used in the starting version of TOGGLE to launch a test.
Specifically, the ADB command becomes:

adb shell am instrument -w -e class <
testInjectionPath >.< testClassName >#<
testMethod > <instrumentation >

The granularity change in the test execution introduces an additional dif-
ficulty. As a matter of fact, this modification leads to a deeper information
level of detail required when using TOGGLE.

Initially, to execute the enhanced test classes, a list containing all the
names of the test classes had to be passed as a parameter of the method.
Furthermore, there was no automatic way to retrieve this information and,
for this reason, the end-user had to manually collect and hard-code this
information before invoking the execution method.

Knowing this, it was necessary to automate this process, and, facing
the new challenge that the method-level execution granularity introduces,
a deeper re-work of this process was the natural consequence to try and
solve it.

Starting from the enhance phase, since the parsing mechanism analyzed
the test class method by method, I introduced, during the analysis of a test
class, a mechanism to collect all the methods names of the class in a list that
will be returned to the invoker of the enhance method.

Then, since the final goal was to use a Façade class to hide the complexity
of the whole translation execution flow, as it will be later explained in section
4.3, a JavaBean-like class has been introduced, meaning a serializable class
that encapsulates many properties that can be later accessed by its getter
and setter methods, so that all data about an enhanced class can be wrapped
in one single object and easily stored. This class is named ClassData and it
contains the list of test methods of an enhanced class and the name of its log
file (i.e. <className>TOGGLE.txt).

Additionally, to automatically collect the name of all the test classes, a
new class, named EspressoTestFinder, has been introduced. This class offers
a method to filter the names of the Java files in a given directory according
to the following conditions:

1. It should contain an Espresso import declaration;

2. It should contain an Espresso assertion in one of its methods;
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3. It shouldn’t contain a TOGGLETools invocation (i.e. it should not be
an enhanced test file).

This utility class can be used in all the preparatory translation phases
since its output (i.e. the actual list of test files to be enhanced in a given
directory) is what needs to be given in input to the Enhancer module.

Having both the test class name and its matching ClassData object it is
possible to group them in a java.util.Map<K, V> having as key the class
name and as value the ClassData object. In this way, it is possible to finally
use a single library’s method invocation to execute a whole test suite obtain-
ing, as a result, an improvement in the overall usability and maintainability
of the library.

Finally, the log file remains at class granularity level and, for this reason,
it will be pulled out only after the class execution has been completed, and
then it will be deleted from the external storage of the AVD. This implies
that the log file will remain in memory for the whole class execution time.
In this case, differently from what happened with both screen-captures and
XML dumps, the memory consumption of log files is limited (since they are
.txt files) thus it is not problematic to keep them in memory for a longer
time.

4.2.6 ToggleInteraction generation process
After that all the generated files have been pulled out from the AVD to the
host machine, the next tasks of the translation process were the filtering of
the LogCat content and the interventions on the screenshots to extract the
locators. Particularly, the first one aimed at isolating the lines containing
the information on each interaction while the second one, exploiting the in-
formation coming from both the log lines and the dump file corresponding to
the screen-capture under examination, consisted of a combination of resizing
and cropping interventions on the screenshots.

The updates in the whole translation process that have been introduced
up to this point made the filtering operation useless. As already explained
in section 4.2.1, each log file already groups all the lines that are necessary
to generate the various instances of the ToggleInteraction class matching the
interactions to be translated, grouping them in one file for each enhanced
test class. This leads to an improvement in the performances of the library
performances. Furthermore, the introduction of the log files makes it possi-
ble, for the end-user, to execute independently the instructions to generate
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both the required ToggleInteraction objects for a specific enhanced class and
the relative 3rd generation script files. More specifically, these instructions
have become independent both from the first two steps of the translation
process and from any other enhanced class.

The outcome is that it is possible, as long as an enhanced test file has
not changed and as long as its output couples of screen-capture/dump file
are available on the host machine, to re-execute the last two steps of the
translation process in different moments. Moreover, since the size of the
screen-captures is tied only to the width and height of the mobile device,
thus being independent of the host machine, it is possible, simply by sharing
the output files of the enhance phase, to generate a different version of the
locators for every different model of host machine we want to run the final
3rd generation test scripts on. This is a notable improvement in terms of
flexibility and maintainability of the generated GUI tests because it makes
it possible to execute once the enhanced tests (that is the most critical and
time-consuming step of the whole process) and then share the results, for
example, among all team members so that everyone might be able to have
its own version of the locators, compliant with the screen resolution of his/her
device.

Another relevant element to be improved during the creation process for
each ToggleInteraction object concerns the number of pixels occupied from
the screen of the AVD on the host machine. These dimensions are needed,
for example, to be able to generate locators with the right width and height.
The initial version of TOGGLE had these dimensions hard-coded. It is easy
to understand that, to make the library portable, it was fundamental to
address this problem.

The first step of the implemented mechanism to solve this issue was to
introduce the Java Native Access (JNA) library among the dependencies
of TOGGLE. This library makes it possible to use native library methods
without further requiring native code of any kind.

More in detail, this library has been introduced because it offers some
classes that can search, among all the opened windows, for the one containing
a given string in its name, evaluate programmatically the actual width (or
height) in pixels of the selected window and obtain the screen width and
height of the host machine.

Thanks to these features, a solution has been implemented to evaluate,
with sufficient precision, the actual width and height of the screen of the
AVD.

Going step by step, it is fundamental to observe that, to resize a given
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screenshot so that it can assume the resolution of the emulated screen (and
not the resolution of the real mobile device), a ratio between the measures
of the physical device and the actual ones must be computed. TOGGLE
compute this measure with the following formula:

r = AV DWidth

PhysicalDeviceWidth
(4.1)

It is worth noticing that this measure can be considered as a reduction
factor, thus it could be computed on one dimension only being valid for
both of them. In other words, the computation of this ratio on the height
dimension will produce the same ratio.

The PhysicalDeviceWidth can be obtained through an ADB instruction:

adb shell wm size

The AVDWidth, instead, is more challenging to be computed automati-
cally. In the initial version of TOGGLE, as previously presented, this value
was predetermined and fixed. This made it impossible to have a portable
version of the test cases. To obtain this measure automatically a new util-
ity class has been implemented, named WindowUtils, that groups all the
methods implementing the operations that are necessary for extracting the
searched values. The first variables to be obtained are the dimensions of the
window containing the emulated device. To achieve this result, a function
has been introduced. Particularly, this method, starting from a sub-string
that should belong to the name of the window under exam, can program-
matically retrieve both its height and width thanks to the APIs of the JNA
library. The default value for the sub-string is "Android Emulator", which is
a fixed value that is always present in the default name assigned to a new
AVD from the Android Studio IDE.

This process highlights a constraint: there should be at most one run-
ning AVD during the translation process. This is a reasonable limitation
for several reasons. For starting because the Espresso test cases will run
on one device per time. Additionally, each device has its resolution thus it
will produce different versions of the same locators and, for this reason, it
makes sense to perform separate translation processes for separate mobile
hardware models. Finally, none of the presented command-line instructions
would work with more than one running emulator.

After having collected the dimensions of the window, the next step is the
computation of the percentage of these dimensions that are actually occupied
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by the screen of the AVD. An AVD window typically contains, besides the
emulated screen itself, some other visual components like, for example, the
device frame of the emulator (different according to the selected AVD skin)
and an options menu. It is important to say that all the computations
presented in this section refer to emulators with the device frame enabled.

Figure 4.2. Measures on the emulator window.

This percentage has been evaluated empirically for some of the default
AVD skins that it is possible to select while creating a new emulated device
from Android Studio IDE. The followed mathematical procedure starts from
some basic measures like the pixels per inch (ppi) of the host machine, its
pixels per centimeter (ppcm) obtainable by computing the ratio between ppi
and the number 2.54, the dimensions of the window, and the measured width
and height in centimeters of the emulated screen. Having computed these
measure, to compute the number of pixels of the width of the emulated screen
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the formula to be applied is:

px = measuredCm ∗ ppcm (4.2)

Where px is the number of pixels of the emulated screen, measuredCm
is the measured size in centimeters and ppcm is the number of pixels per
Centimeter. This formula can be applied interchangeably to compute both
width and height. This value is computed automatically and not predefined
but it is still dependant on the host device, meaning that, to reach the goal
of having a library as portable as possible, a further step had to be taken.
In particular, the ratio between the dimensions of the emulated screen and
the window ones has been computed to have a value that is not tied to the
actual number of pixels in a particular screen but, instead, a value that can
be used regardless of the characteristics of the host machine.

ratio = px

windowDim
(4.3)

In this case, windowDim can be either the window width or height. Thanks
to this formula it is clear that, if both windowDim (as previously presented,
it is possible to retrieve this value programmatically) and the ratio values
are known then it is possible to obtain the value of px without needing any
further assumption on the characteristics of the host machine, thus increasing
the level of portability of the library.

Table 4.1 shows a list of the presented measures collected on an Acer
Aspire A715-71G-743, with an Intel i7 of 7th generation processor, a screen
resolution of 1920x1080, and running Windows 10 OS.

Finally, using the computed ratios, it is possible to retrieve both the width
and height of the emulated screen starting from the dimensions of its wrap-
ping window. It is worth noticing that, in this case, the ratio should be
considered as the percentage of the total width or height occupied by the
correspondent measure of the emulated screen, and not as a simple reduc-
tion factor. In fact table 4.1 shows that there are different ratio values for
height and width, highlighting that each one applies exclusively to a single
dimension. This is a consequence of both the difference between the screen
resolution of the AVD skins and the way these skins affect the window di-
mensions.
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Table 4.1. Ratios and resolution per skin of the emulator

Emulator skin Window
dimen-
sions (px)

Screen
dimen-
sions(px)

Emulator
resolution

Width ratio Height ratio

GALAXY NEXUS 557x865 366x651 720x1280 0.6570915619389587 0.7526011560693642
NEXUS 4 493x864 396x661 768x1280 0.8032454361054767 0.7650462962962963
NEXUS 5 492x864 391x695 1080x1920 0.7947154471544715 0.8043981481481481
NEXUS 5X 484x865 385x684 1080x1920 0.7954545454545454 0.7902665121668598
NEXUS 6 536x864 408x726 1440x2560 0.7611940298507462 0.8402777777777778
NEXUS 6P 489x864 385x684 1440x2560 0.787321063394683 0.7916666666666666
NEXUS ONE 536x863 355x589 480x800 0.6623134328358209 0.6825028968713789
NEXUS S 546x865 369x612 480x800 0.6758241758241759 0.707514450867052
PIXEL 467x864 369x656 1080x1920 0.7901498929336188 0.7592592592592593
PIXEL 3 407x864 371x742 1080x2160 0.9115479115479116 0.8587962962962963
PIXEL XL 482x864 377x670 1440x2560 0.7821576763485477 0.7754629629629629

4.2.7 3rd generation script creator
The improvements affecting this module involve mainly three aspects: the
mechanism to launch the generated test suites, the mechanism to reset the
state of the AUT after a test case execution, and, finally, how the jar files
containing both EyeAutomate and SikuliX APIs are inserted into the new
project.

The state-of-the-art version of the library required a manual intervention
to inject the jar files into the project and had no method to run at once all 3rd

generation test classes. Specifically, every Java class had a main method that
could be launched to run all the test methods of the class so, to run completely
the test suite, it was necessary to launch manually one by one every Java main
or to modify the generated project. This was, of course, not maintainable nor
usable in an industrial context. For this reason, the translated Java classes
have been updated by substituting their main method with an equivalent
run one and by including in the generated project a Java class including a
unified main containing the code to launch every run method.

Furthermore, a utility module offering two Java methods has been imple-
mented. The first one is used to start the AUT on the emulator through the
following ADB command-line instruction:

adb shell am start -n <appPackage >/<
pathToMainActivity >

Where<appPackage> is the package name of the AUT and<pathToMain-
Activity> is the relative path to the main activity file. The second one stops
the AUT with the following ADB command:
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adb shell am force -stop <appPackage >

The purpose of this new class is to automatically reset the state of the
AUT so that every 3rd generation test case can start from the same initial
state, emulating the behavior of the Espresso source tests.

Finally, another improvement that has been introduced is the automatic
injection of the jar files containing the Java API of the 3rd generation adopted
frameworks. In this case, since the injection operation is costly in terms of
execution time, a mechanism has been implemented to detect whether these
files have already been injected or not and to copy them in the project folder
only the first time the translated project is generated so that all following
translations won’t suffer from this time overhead.

4.3 Re-design
The improvement phase, even though it addressed most of the issues of
TOGGLE, especially the ones related to its maintainability and portabil-
ity, pointed out that the library still had a usability problem. The main
reason is that to have a working translation process, it is mandatory to use
in the correct order all the various modules composing the library.

This implied that an end-user willing to adopt TOGGLE to translate
his/her Espresso test classes into 3rd generation ones had to experience a
steep learning phase that could likely discourage him/her from adopting the
library.

Furthermore, the whole sequence of method calls, since it involves different
modules and different execution phases, could likely be a source of errors even
for experienced users.

This analysis highlighted the necessity to make the learning curve for
a user more shallow so that both the normal translation flow and a more
customized set of tasks could be achieved with a lower effort.

For this reason, a complete re-design of the library structure was intro-
duced. Particularly, a structural design pattern, known as the "Façade pat-
tern", has been adopted to offer a cleaner interface to the features of the
library, adding the possibility to use its modules both from a high-level point
of view and a lower-level one. The first one is more suitable for normal users
that need to use the library for a basic translation process while the second
one offers some methods that let the user access every single module with
their functionalities without exposing the deeper level implementation details
that are automatically handled by the library itself.
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4.3.1 Façade pattern
A design pattern, by its definition, is a way of solving well-known problems
through the application of some best practices that a programmer should
follow when facing similar situations. One of the first and, probably, most
influential categorization of design patterns was made by the GoF (Gang of
Four, a nickname for the authors of Design Patterns: Elements of Reusable
Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides) [15] that classified these patterns into three categories:

creational patterns : they focus on the instantiation process so that the
system implementing this pattern can be independent of the object cre-
ation. This can be done, for example, by exploiting inheritance so that,
according to some external conditions, with one single instantiation in-
struction it is possible to create objects that are instances of several
different classes. Another example could involve the adoption of some
Factory classes, which are classes in charge of creating other objects in
place of the user. These patterns increase the flexibility of a system,
making it independent from object creation, encapsulating the instan-
tiation complexity, and hiding who or what generates an instance of a
class and when this instance has been created;

structural patterns : they focus on how different modules of a system can
be linked to group them into bigger structures. The purpose of these pat-
terns can be merging two different systems into one, grouping different
objects so that the programmer can be able to introduce new functional-
ities, using "proxy" objects acting in place of other objects (for example
in place of remote ones), sharing objects without suffering of memory
overhead, using different parts of a system from a single interface object,
separating an object abstraction from its actual implementation so that
this can be changed safely or enriching an object dynamically by adding
to it new characteristics and responsibilities;

behavioral patterns : they focus on algorithms and the responsibilities of
objects. They model the control flow of communication among objects
so that it can be easily maintained and updated. Patterns belonging to
this category use inheritance to share common behaviors, common algo-
rithms, and common communication motif among different classes. This
can be done, for example, by offering some abstract classes implement-
ing an algorithm that uses some base operations whose implementation
is delegated to the concrete classes, so that changing them will actually
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make the same algorithm to be portable in several contexts. Another
example could be the usage of class composition, which focuses on how
to make different objects cooperate so that it is possible to implement
a new feature that was not obtainable otherwise. Other improvements
offered by these patterns are the possibility of gaining a looser coupling
in the system, the possibility of dynamically maintaining dependencies
among objects, and some solutions encapsulating in a single object a
whole set of behaviors so that they can be reused in the system.

Another criterion, used to further distinguish patterns belonging to the
same category, is their scope. A design pattern may have:

class scope : patterns having this scope focus on static relationships (i.e.
established at compile-time). This kind of relationships is typical of
classes and sub-classes and it is established through inheritance;

object scope : patterns having this scope focus on dynamic relationships
among objects, meaning a relationship that might change at run-time.
The majority of the design patterns fall under this scope.

Figure 4.3. Design patterns.
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The Façade pattern is one of the twenty-three well-known design patterns
presented in Design Patterns: Elements of Reusable Object-Oriented Soft-
ware[15] and belongs to the structural category with object scope. Picture
4.4 shows the sequence flow of a generic system adopting this pattern.

Figure 4.4. Façade pattern sequence flow1.

There are many reasons to adopt this design pattern. The most popular
ones are the need to isolate parts of a system by interposing among them
one façade class for each subsystem that will act as the entry-point for its
reference module, the need to decouple clients with the implementation of
abstract interfaces and, finally, the need to provide a simple interface to a
system (or to part of it) that will be good enough for most clients, leaving
the direct access to the subsystems to the few clients needing for customized
behaviors.

As a matter of fact, by embracing this pattern the adoption entry barrier
to TOGGLE for an end-user has been drastically reduced, offering a set of
APIs both hiding completely the complexity of the translation flow, thus
making it possible to execute the whole translation with one single method
invocation, and ensuring the correct usage of every single module separately.
In particular, as already presented in sections 3.3 and 4.2, some modules
of TOGGLE need some preliminary actions that, at the state-of-the-art, are

1From: https://en.wikipedia.org/wiki/Facade_pattern
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under the direct responsibility of the programmer even though they involve
some internal mechanism. An example might be the Executor component
that requires the classes TOGGLETools and BitmapSaver to be injected
into the test folder. For this reason, even though, for example, after all the
interventions the library offers some methods to inject these classes where
needed, some additional interface methods have been included in the façade
class to lift the burden of ensuring that all the preliminary steps have been
correctly completed from the end-user.

Another key factor in favor of the adoption of this pattern is the possibility
to improve the decoupling between the library implementations and the code
using them. A façade class, in fact, simply by standing in between the clients
and the system, facilitates the concealing of the evolution of internal library
modules, making them independent from how the functionalities offered by
the system are exploited by the end-users.

To summarize, by re-designing the architecture of the library with the
adoption of the façade pattern, the goal was lowering the learning effort
required to use the library without giving away the possibility to a more
customizable use of it, which could be suited for more experienced users.

4.3.2 TOGGLE class
The façade class of TOGGLE is thought to be placed between the mod-
ules of the library and the end-user, offering different abstraction levels and,
consequently, a wide range of operations.

The main incentive to its introduction was the complex set of interactions
among the components of the tool and with the AUT, which often led to
unwieldy Java methods implementing the whole translation. More in de-
tail, these methods required a high number of instructions to be invoked in
the correct order, other than some hard-coded values. The outcome was a
method having an excessive number of lines of code, that was not portable
and highly error-prone.

For this reason, the introduction of the Façade structural design pattern
was the right solution to re-design the interface of the library. The starting
point was to isolate the fundamental data that should come as input from
the end-user so that it can be possible to carry out the translation process
without any further user intervention. These data are:

• rootTestDirectoryName: commonly, it will assume either the value
"androidTest" or, eventually, "test";
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Figure 4.5. Toggle façade class.

• guiTestPath: the path to the directory where translated GUI test
should be generated into;

• appPackageName: the package name of the AUT;
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• testDirectoryPath: the path to the directory containing the Espresso
test classes to be enhanced and translated;

• device: the hardware model of the AVD.

From this set of information it is possible to extract automatically, for
example, the root folder of the application, that will be used to run the
Gradle instructions, or the graphical reduction factor, to programmatically
evaluate the dimensions of the emulated screen.

Once the input data to create a Toggle instance has been defined, the next
step was selecting a set of interface methods to be offered to the end-user.

The most important ones wrap the sequence of instructions required to
complete a whole translation process, offering the possibility to execute it
with one single method invocation.

Two versions of this method are offered: the first one with method-level
execution granularity, which was introduced with the re-engineering of the
library in section 4.2.5 and that has no constraints on the number of test
methods in a single class, and the second one with class-level execution granu-
larity, that requires a test class to have a limited number of Espresso methods
and assertions.

Then, to increase the interface flexibility so that an end-user requiring
a customized set of interactions with the components of the library is not
forced to directly access the internal modules, some interface methods per-
forming lower-level operations have been included in the façade class. More
in detail this class offers a method to inject (if They are not already present)
TOGGLETools, BitmapSaver, and ScrollHandler (that will be introduced in
section 4.4) into the Espresso test folder, a method to enhance one single test
class starting from its absolute path, a method to enhance a whole test folder
starting from its absolute path, some methods to execute, after performing
all the preliminary operations, the enhanced tests with both granularity lev-
els, a method to re-install the application on the target device, some methods
to pull, clear and delete all the different kinds of files generated after the exe-
cution of an enhanced test, a method to grant the needed permissions to the
AUT, a method to retrieve the string identifying the test instrumentation of
the AUT, a method to generate the 3rd generation test methods and more.

As will be later presented in chapter 5, an empirical evaluation proved
that the introduction of this class has drastically improved the usability of
the library, reducing the development time and its time-to-learn.
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4.4 New features
After the completion of both the phase of tool improvement and the re-
design one, TOGGLE had a solid base for the development of some further
extensions. Specifically, the lack of support of the tool for the "scrolling"
interaction with the screen of the emulator was still an issue to be overcome,
especially knowing that this kind of input is widespread in the mobile world.
This interaction can be executed through two different Espresso instructions:

onData : an instruction that interacts on an AdapterView (or on an object
that is an instance of one of its descendant classes), finding among its
child elements the one that matches the specified conditions and auto-
matically scrolling to it;

scrollTo : an instruction that interacts on a "scrollable" View (i.e. an in-
stance object of the following three classes: ScrollView, HorizontalScrol-
lView, or ListView), searching among its children the one that matches
the specified conditions and scrolling until it is displayed on the screen.

Additionally, this specific interaction presents some challenges that re-
quired considerable effort and the definition of some constraints to be sur-
mounted. For example, even though the final interaction is actually the same,
the semantics behind a scroll executed after an onData() instruction differs
from the one behind the same operation but following a scrollTo().

As displayed in picture 4.6, considering the case of a scroll-down interac-
tion, the first one will scroll to the matched item until either it is displayed
as the first element of its container or it is not possible to scroll down any-
more, meaning that the AdapterView does not contain enough elements after
the matched one. On the other hand, ViewActions.scrollTo() scrolls to the
matched view until it appears on the screen. This implies that it does not
try to bring it as the first displayed element of its container. Picture 4.7
provides an example of how a scrollTo instruction behaves in case of a scroll-
down interaction.

Another challenge that this interaction presents is related to the possibility
of performing a diagonal scrolling with one single Espresso instruction. This
may happen if, for example, the container ScrollView is bigger than the
screen of the device and, consequently, it is possible to scroll the screen in
all directions. To translate these kinds of interactions there are two options,
according to how a specific scroll interaction is translated. If the translated
scroll interaction will happen, in any case, along with one single direction
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Figure 4.6. Espresso.onData() scrolling semantics.

then, to translate a diagonal movement, it is necessary to combine multiple
translated interactions to emulate the diagonal original one. Alternatively,
if the translated interaction can follow a diagonal path too, it is possible
to translate every scrolling interaction in every direction with one single
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Figure 4.7. ViewActions.scrollTo() scrolling semantics.

ToggleInteraction object.
The second solution has been adopted for various reasons. For starting,

even though the creation of the single object containing the information
needed to emulate one movement was simpler with the first solution, the
translation complexity increased drastically. The main reason is that a lot
of additional measures had to be collected. Furthermore, it was necessary,
while creating the ToggleInteraction objects, to detect whether the scrolling
happened in one single direction or multiple ones so that the right number of
ToggleInteraction objects could be created. Another issue was related to the
need for "intermediate" locators. While the Espresso instructions perform
this movement at once, if the translated interaction had to be split into
multiple ones, one for each dimension, it was necessary to have a locator for
each one of them. This implies that the execution order of the translated
instruction was a key factor to be considered. Moreover, a mechanism to
collect the "intermediate" locators had to be developed, increasing both the
overall complexity and the fragility of the 3rd generation tests. These issues,
plus the different semantics of the Espresso scroll instructions, made the
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adoption of the first solution prohibitive.
The development of the second solution introduces the following four Tog-

gleInteraction inheriting classes: ScrollDownRight, ScrollDownLeft, ScrollUpRight,
and ScrollUpLeft. The measures collected during the execution of the en-
hanced test method containing these kinds of interactions are the starting X
and Y coordinates, the final X and Y coordinates, the width and height of the
container, and its top-left coordinates inside the screen. To go into further
details, the conceptual order of the actions that should be carried out during
the execution of an enhanced test class to correctly collect all information
and to translate a 2nd generation scroll interaction into a 3rd one is:

1. Get a reference to the container of the searched item;

2. Take a screen-capture, that will be used to match the starting point of
the scrolling interaction;

3. Create the XML dump file, that will be coupled with the screen-capture
of point 2;

4. Collect the starting coordinates inside the container;

5. Execute the 2nd generation test assertion;

6. Collect the final coordinates inside the container;

7. According to the initial and final coordinates, identify the scrolling di-
rection;

8. Log a new line containing all the collected information;

9. Take a screen-capture of the displayed screen after the scroll interaction;

10. Create the XML dump file, that will be coupled with the screen-capture
of point 9;

11. Log a new line performing the original assertion on the located View.

Some additional intermediate operations could be needed, according to
what kind of scrolling interaction is being executed, and they will be pre-
sented in sections 4.4.1 and 4.4.2.

Point 7 of the list presents a core decision that should be further analyzed.
Since we are considering diagonal movements, the case of a mono-directional
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scrolling interaction (that is the most common one) should be detailed to
explain how it can be translated with the adopted mechanism.

To explain how this could work it is necessary to detail the specific trans-
lation process of a scroll interaction, starting from the enhance phase. As it
can be seen from the sequence of actions that have been previously listed,
a couple of files screen-capture / XML dump is taken before the execution
of the actual scroll movement, performed by the Espresso test assertion, so
that the data on the initial status of the application, meaning the one before
the movement such as, for example, its starting X and Y coordinates inside
the container View, can be collected. Then, after the Espresso assertion, the
scroll has been completed and it is possible to collect the data on the state
of the AUT after this operation (particularly its final X and Y coordinates
inside the container View) and, finally, to log all these information.

This should be considered as the first phase of the translation, that is the
one aiming at the definition of the scroll direction and of how many pixels
have been scrolled in that direction. The key pieces of information in this
phase are the X and Y starting and final coordinates, which identify the
initial and the final offsets plus its direction. In fact, if the final X coordinate
differs from the initial ones it means that there has been a movement along
the horizontal axis (that might be either right or left according to whether
the final X coordinate is, respectively, greater or smaller than the initial one),
if instead, the two measures are equal it means that the scroll movement did
not affect the horizontal axis and, consequently, it was only a vertical scroll.
The same concepts can be applied to the vertical axis.

By convention, if a scroll interaction does not impact the horizontal coor-
dinates it will be assigned to the right direction and if it does not impact the
vertical ones it will be assigned to the down direction. This information will
be logged too, specifically in the interaction-type field.

The next step involves the generation of the ToggleInteraction object. The
constructor of the specific scroll interaction instance analyzes the log line to
extract a locator from the screenshot and a couple of start and end points
inside the area of the container. Particularly, the first operation is to ex-
tract a locator. This operation depends on the source Espresso instruction
and it will be further detailed in sections 4.4.1 and 4.4.2 but, generally,
its main objective is to extract the bounds of an element inside the area of
the container so that it could be used as the starting point for the subse-
quent computations determining all the parameters required to emulate the
movement. It is important to specify that, since the screen-capture frames
the state of the AUT preceding the scroll interaction, it is not important
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to locate a precise element, this step is needed simply to determine a fixed
element to be located during the 3rd generation test execution from which
the emulation of the interaction could start.

Once the bounds of this element have been extracted from the XML dump
and the screen-capture containing it has been correctly cropped and re-sized,
two points inside the area of the container should be determined. They will
act as starting and ending points of the movement giving, consequently, a
measure of the number of pixels that could be scrolled along both axis within
the margins of the container. The computation of the coordinates of these
points will be performed separately for each dimension. Specifically, if the
logged line, relative to the interaction under examination, reports that on the
X-axis there has been a movement then the two points will have a horizontal
component that is proportional to the number of pixels to be covered in this
direction. The same thing will happen along the Y-axis. In this way, it is
possible to have movements following a single dimension simply by putting
the component on the other axis to 0. The source of this reference system is
the center of the locator whose bounds in each direction have been extracted
before the start of these computations.

Each point will keep a 20-pixel margin from the limits of the container to
avoid the risk of starting the scroll interaction by clicking on an external point
or on the border of the View, which would result in a faulty translation. The
value 20 has been determined empirically and it has proven to be the optimal
solution to ensure that the start and the end of the movement are constrained
within the borders of the container. Two more measures to be established
are the total distance to be scrolled in each direction. These measures could
be easily determined from the initial and final offsets reported into the log
line. It is important to specify that each measure, that should be used in
the translated test, should be resized by multiplying it by the resize factor
(specific for each dimension) defined in section 4.2.6.

The latter computation concludes the set of operations to be carried out
during the construction of a single interaction instance.

Finally, it is important to detail how, starting from these measures, a scroll
movement could be emulated. Particularly, a scroll movement is composed of
a pressure on a point on the screen, a movement along a direction maintaining
the pressure, and, finally, the release of the pressure. This set of operations
could be repeated in a loop until the View of interest is displayed on the
screen. The steps that will compose the emulated interaction follows exactly
this template, using as the point to start the pressure and as the point to
release it respectively the two points whose coordinates have been established
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in the construction phase of the interaction, and as the number of pixels to
be scrolled the specific measure computed in the same occasion.

The last trait to be determined is the number of repetitions of this move-
ment. This measure will be computed by dividing the total distance to be
covered by a scroll-step, a value measuring the distance between the start-
and the end-point of the movement. Of course, this ratio could have a re-
mainder that must be taken into account to emulate with the maximum
precision possible the scroll movement.

Furthermore, an empirical evaluation, performed during the experiment
detailed in chapter 5, proved that it is important to deal with the sensitivity
of the emulator and, particularly, it is necessary to avoid moving the cursor
too fast after the beginning of the pressure so that no pixels would be lost
due to a non-deterministic behavior of the emulator when dealing with quick
movements. Another factor affecting the precision of the translation involves
the duration of the time slot that should elapse between the end of the
movement and the release of the pressure. This event should happen after
keeping the cursor stationary for a while so that the scroll won’t continue
after the pressure has been released. Both these issues have been solved by
interposing some sleep instructions between the actual commands driving the
cursor. Particularly, the movement is always divided into three segments of
equivalent length, and, between the two movements, a sleep instruction of
0.25s is executed. This approach has proven to be the most effective one to
obtain precise and effective scroll movements.

Additionally, between the start of the pressure and the actual movement
of the cursor, there is a sleep time of 0.1s and, finally, after reaching the
ending point, an additional sleep instruction of 1s is inserted to stabilize the
state of the AUT.

If the number of pixels to be scrolled is either smaller than the scroll-step or
not a multiple of it, the "remainder" number of pixels needs to be computed.
This value may be easily retrieved by, yet, another ratio computed with the
following mathematical formulas:

totToBeScrolled =
ñ

(toBeScrolledY2 + toBeScrolledX2) (4.4)

totScrollStep =
ñ

(scrollYStep2 + scrollXStep2) (4.5)

repetitions = totToBeScrolled

totScrollStep
(4.6)
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remainder = totToBeScrolled mod totScrollStep (4.7)

ratio = remainder

totScrollStep
(4.8)

Where toBeScrolledY and toBeScrolledX are the overall number of pixels
to be scrolled along the Y- and the X-axis while scrollYStep and scrollXStep
are the numbers of pixels of a single scroll-step divided into the two or-
thogonal dimensions. These four values have been determined during the
construction phase. Coherently, totToBeScrolled is the overall distance to
be covered, totScrollStep is the total length of a scroll-step, repetitions is
the integer ratio among the previous two values and represents the number
of times a movement of totScrollStep pixels has to be executed, remainder
is the result of the modulus operator and represents the remainder number
of pixels exceeding the ones covered during the repetitions iterations and,
finally, ratio is the percentage of scrollYStep and scrollXStep that, coupled
together, generates a movement of remainder pixels.

Finally, after the scroll interaction has been completed, an additional
group of screen-capture, XML dump file, and line in the log file should be
considered (points 9, 10, 11 of the previous list). These components have
the purpose of either performing a ViewActions assertion on the destination
element (e.g. the one that should be displayed on the screen after the scroll
interaction) or checking if it is shown as expected.

All the utility methods implementing the code required to retrieve pro-
grammatically the measures, involving this kind of interaction, to be in-
serted in the log lines are offered by a class named ScrollHandler, injected
together with the BitmapSaver and the TOGGLETools ones during the en-
hance phase.

It is important to specify that, while these kinds of interactions are per-
formed automatically in 2nd generation Espresso tests, the same cannot be
said for what happens in the translated 3rd generation ones. Specifically, the
latter willingly emulates the movement that a human user would do, and, for
this reason, it is unlikely that the final screen displayed after the interaction
would match exactly the one that follows the execution of an Espresso equiv-
alent assertion. Other causes behind this behavior are the non-deterministic
number of pixels lost during a single movement due to the screen sensitivity
of the AVD, which could be mitigated by the use of slow movements but
not completely deleted, the margin of error caused by the adoption of the
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reduction factors and, finally, the margin of error caused by the resizing of
the screenshots.

This is not, by itself, a source of faulty translations since the purpose of
these tests is to scroll in a certain direction until the requested element is
displayed, and not until the same exact screen status is displayed. Knowing
this, the decision was, while trying to mitigate as much as possible the source
of errors in the number of pixels to be scrolled, to remove any FullCheck that
would follow a scroll interaction unless the final operation, to be carried
out on the scroll destination element, causes a switch in the appearance
of the AUT, meaning a change in the displayed Activity/Fragment or, for
example, the opening of a new Dialog Window. The FullCheck operation
is an additional check placed at the end of every translated test method to
verify the final state of the application after the set of interactions composing
a test case. This assertion is likely to fail if, after a scroll movement, the final
state does not match exactly the one displayed in the screen-capture taken
during the execution of the source enhanced test method, even though the
searched element has been correctly found by any precedent assertion. Of
course, as previously stated, if the operation on this element causes a radical
change in the appearance of the application the FullCheck operation would
be enabled again.

Finally, sections 4.4.3 and 4.4.4 will explain two additional minor features
that have been added to expand the set of translatable assertions and their
combinations.

4.4.1 OnData
After the general description of how the translation of a scroll interaction
is performed, in this section, the case of the onData() Espresso instruction
will be detailed. This method can be considered the entry point for all tests
that want to perform some assertions on elements contained in an Adapter-
View[1]. An AdapterView is an Android View whose purpose is to display
a group of child elements contained in an adapter. An adapter is an object
connecting the AdapterView with the data relative to its children, providing
access to it. Furthermore, it is responsible for instantiating the View objects
that will be used to graphically display the items in the data set. Android
offers some predefined specific adapters according to how the data of the
items are arranged. Some examples are ArrayAdapter, CursorAdapter, and
SimpleCursorAdapter. Furthermore, the AdapterView class has some derived
classes offering different behaviors. The ones directly introduced by Android
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are ListView, GridView, Spinner, and Gallery. Picture 4.8 shows a general
schema to explain how objects of these classes interact with one another.

Figure 4.8. AdapterView schema.

It is worth mentioning that the child elements might not be rendered on the
screen of the emulator at the moment of execution of the Espresso.onData()
instruction. Specifically, this instruction will return a DataInteraction object
related to the matched element and accepting all ViewMatchers.

By default, it will search for the element of interest among all the elements
contained inside every displayed AdapterView and, then, it will automatically
scroll to it. It is possible to restrict the search space to all the elements of
a specific AdapterView through the method inAdapterView(), which accepts
a ViewMatcher to uniquely identify the AdapterView that should contain
the element corresponding to the DataInteraction object. This method has
proven to be extremely useful since the scroll movement should start inside
the area of the AdapterView to be correctly executed. Furthermore, to find
the first displayed element, as explained in section 4.4, it is necessary to
isolate the container. For these reasons, a new constraint has been introduced
making mandatory the adoption of this method while executing an onData
Espresso assertion. Another reason behind its adoption, as explained in
section 4.2.3, is that thanks to this method, it is possible, while parsing
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the Espresso source class, to inject the lines of code necessary to obtain a
reference to the instance object corresponding to the specific AdapterView.

Another unique method, typical of this context, is the atPosition() one,
matching an element placed at a given position inside an AdapterView. For
this method, the translation support has been added thanks to a dedicated
algorithm that will be invoked when the log line field searchType matches
the string "atposition". In this case, the searchKeyword will contain the id
of the AdapterView of interest, the index searched position, the index of the
first element displayed, and the index of the last one, each of them separated
with a specific separator. Respectively, these pieces of information will be
used to identify the container inside the XML dump, to find out the exact
position of the element of interest (this field will be equal to the value passed
as a parameter to the Espresso atPosition() method), and to find out how
many elements at once can be displayed on the screen, a piece of fundamental
information to translate the searched position into a valid index. In fact, the
indexes reported in the log lines usually assume a value that is different from
the one of the XML dump file. More in detail, the index attribute of the child
elements of an AdapterView in an XML dump file will always assume a value
between 0 and N , where N is the total number of elements displayed minus
one. To make an example, starting from the following Espresso instruction:

onData(allOf ())
. inAdapterView (

withId(
R.id. settings_category_list
))

. atPosition (12)

.check( matches ( isDisplayed ));

and knowing that the AdapterView of interest has twelve elements dis-
played over 15 total ones, the log line relative to the atPosition assertion
(that will follow the one relative to the specific scroll movement), will as-
sume a similar format:

<testName >; <testName ><number >; atposition ;
settings_category_list_ ;12_;3_;14; check

where "_;" is the separator. Following this example, the XML dump file
would have the following content:

In picture 4.9 the red squares highlight the id of the AdapterView and
the index values.
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Figure 4.9. XML dump file for atPosition search type.

In this case, keeping in mind the information reported in the log line, the
node with index 0 corresponds to the third element inside the AdapterView
while the one with index 11 corresponds to the fourteenth one. Consequently,
the searched item will be the one with index 9.
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This example highlights behavior that is typical of the onData instruction
and that has already been introduced in section 4.4: this instruction tries
to scroll until the element of interest reaches the top of the screen or, in case
we are scrolling down, until it is not possible to scroll down anymore since
there are not enough elements left in the AdapterView to fill the screen. This
implies that there will always be a scroll movement, even if the element is
already displayed on the screen, with the only exception of the first element,
which requires no scroll by definition.

Another important consideration to be made involves the item whose
bounds will be extracted during the construction phase of a ToggleInter-
action scroll instance. In fact, in this case, the algorithm to extract these
values will search among all child elements of the container (i.e. the Adapter-
View) for the one with the largest area, and, in case of multiple nodes having
the same area, it will select the first one of them. This mechanism has been
implemented to select the best possible reference point (that will be the
source of the orthogonal axis introduced in section 4.4), meaning the one
that is more likely to be matched without a failure by the 3rd generation test
libraries. Furthermore, in this way we are avoiding the possibility of having
a first element that is partially displayed and that could cause problems in
the methods that crop and resize the area of the locator of screen-capture.

Finally, an onData assertion could end both with a ViewAssertions and
with a ViewActions. This could be a problem since a ViewActions might
result, for example, in a change on the displayed activity or fragment caus-
ing the impossibility of creating the files capturing the appearance and the
data on the searched element after the scroll movement has taken place. To
solve this issue, in case an onData assertion ends with a ViewActions, the
Espresso instruction will be split in two, one ending with a ViewAssertions
whose purpose is simply to verify that the element is displayed and to let
the enhanced test class generate the required data to match it during the
translation, and another one executing the real interaction on the element of
interest.

4.4.2 ScrollTo
ScrollTo is the second command to reproduce a scroll movement offered by
Espresso. Different from what happens with onData, scrollTo is a ViewAc-
tions thus it is the conclusion of an Espresso assertion and not its entry
point. This characteristic prevents the possibility of having a context switch
in the AUT since the assertion itself ends with the scrolling interaction. This
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implies that it will be always possible to create the files that must precede
and follow the scroll movement without any modification to the Espresso
instruction.

This ViewActions object applies to scrollable Views, typically instances of
the ScrollView and HorizontalScrollView classes, and it can scroll to an ex-
isting layout element (differently from what happens with the AdapterView
elements) until it is displayed, if it is not already part of the displayed screen,
otherwise it will have no effect. This behavior, as already introduced in sec-
tion 4.4, differs from what happens with an onData command since it won’t
perform any movement if the element is already displayed when launching
the Espresso assertion, even if it is not the first one among all displayed chil-
dren of its container. Additionally, if an actual scroll movement is required,
it will be limited to the number of pixels that are necessary to make the
element appear on the screen without any further movement.

For these reasons, two different approaches were taken to extract the in-
formation needed to emulate the scroll interaction in the construction phase
of the ToggleInteraction. Particularly, a scrollTo ViewActions object has a
radically different approach to the extraction of the bounds of the element
whose center will be the source of the reference system used for the subse-
quent computations, as introduced in section 4.4. The log line will contain,
as its searchKeyword, the class name of the scrollable view and its top-left
coordinates. Thanks to these pieces of information it is possible to extract
the bounds of the container itself from the XML dump file so that the center
of the whole scrollable View will be the reference point. From this point,
it is possible to later extract the coordinates of the start- and end-points of
the scroll movement. This difference has been introduced mainly because,
in this case, the elements inside the container have no constraint on their
appearance, unlike the case of an AdapterView whose children ViewHolders
are created by the Adapter instance and should respect a predefined pattern.
For this reason, it is not possible to make any assumption on the appearance
of any child element, so it is safer to use the whole container area. This ap-
proach eases the computation of the two points since their coordinates will
be equally spaced and mirrored with respect to the source point.

Finally, during the execution of the enhanced test class, the measures
of the start and the end coordinates along both axes, used to evaluate the
number of pixels to be scrolled in each direction, don’t assume the value of
the offset from the top and left margins of the container but, instead, they are
equal to the number of pixels between the searched element and the nearest
margin of the container.
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4.4.3 InstanceOf
ViewMatchers.instanceOf() is a method returning an object matching an el-
ement in the visual hierarchy of the AUT according to its class. This method
has proven to be particularly useful when dealing with AdapterViews or when
multiple elements share the same id and it is needed a further discrimination
factor to match a particular one among them.

The support to this method has been added by adding a new value, named
"class", to the ones that the field searchType of the log line could assume.
In this case, the field searchKeyword of the log line will assume as value the
name of the class that is the one passed as a parameter of the instanceOf()
method. Finally, when extracting the bounds to isolate the locator to be
used during the 3rd generation test execution, the XML dump file will be
parsed to find a node with the attribute "class" assuming as value a string
containing the one reported in the searchKeyword.

4.4.4 AllOf & anyOf
Another update that has been introduced in the re-engineered version of
TOGGLE involves the allOf() and anyOf() methods. These Espresso com-
mands are used to express a logical relationship among various ViewMatchers
objects. Their purpose is to express more than one condition to locate a View
putting them either in a logical "AND" or in a logical "OR" condition among
themselves.

Particularly, allOf is the equivalent of the logical "AND" condition and,
consequently, it will search for a View matched by all the ViewMatchers
objects passed as parameters. The support for this instruction has been
achieved by implementing a concatenation mechanism of all the searchType
fields, corresponding to every ViewMatchers object, in a unique searchType
reporting all conditions, separated by an "&". Consequently, all the corre-
sponding searchKeywords will be concatenated in the same way. The next
step is the translation of these conditions in an equivalent expression able
to match the searched node in the XML dump file. Once this operation has
been completed it is possible to extract the bounds of the element and to
crop its area from the screen-capture coupled to the XML dump, following
the normal flow of events of a translation.

On the other hand, anyOf is a similar command corresponding to the
logical "OR" operator, matching a View that satisfies at least one of the
expressed conditions. The support for its translation has been implemented
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following the same pattern that has been used for the allOf case, with the only
differences in the separator for the concatenation of both the searchTypes and
the searchKeywords, that in this case is the symbol "|", and in the operator
interposed among all conditions to isolate a node of the XML dump.

By adding the support for these operators it was possible to expand the
horizon of the translatable tests, including, in this way, all the cases using
more complex conditions. Additionally, the test suites used to make the em-
pirical evaluation of the new version of TOGGLE have been fully translated,
as later explained in chapter 5.
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Chapter 5

Empirical evaluation

This chapter will present an empirical evaluation performed on the updated
version of TOGGLE. This experiment was executed on a set of five Android
applications, selected after a mining period on the F-Droid[10] portal.

F-droid is a catalog of FOSS (Free and Open Source Software) whose
adoption is widespread in the research community[11][16][21] since it grants
access to the source code of the applications listed inside it. It classifies
applications according to a category and offers both a WordPress front-end
and a client acting as an equivalent of the Android PlayStore, offering a way
to download, install and update applications directly on a physical mobile
device. Additionally, the F-droid server maintains details of multiple versions
of every application. This project is continuously growing and counts, in
March 2021, over 3400 available applications. Furthermore, to use F-Droid
it is not mandatory to have an account and the client does not record any
user’s private data.

My research aimed at selecting five applications, which will be further de-
tailed in section 5.3, suitable for this experimental experience. Particularly,
the results have been filtered searching for those Android native applications
offering the possibility of testing the new features introduced in this paper.
Certainly, other criteria based on the testability of the application, meaning
that it should not be a toy application and it should be applicable in a real
use case, on the guidelines followed, that should not be too outdated, and on
their code, that should be publicly available, have been applied.

The results have been narrowed down to the following five applications:

1. Budget Watch;

2. PDF CONVERTER: Files to PDF;
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3. Contact Book;

4. Stoic Reading;

5. Simple Calendar.

It is important to specify that every test case starts from the same state
of the application and does not depend on the result of any previous one so
that it is not necessary to make any assumption on the execution order. The
Activity used as the entry-point was always the default Main Activity of the
application.

Section 5.1 will introduce the three research questions, explaining the
aspects they want to verify and the mathematical formulas used to compute
a result. Sections 5.2 and 5.4 explain how the experiment has been carried
out and in what kind of environment, and, finally, the results to the research
questions will be detailed in 5.5. Finally, the last part of this chapter will
focus on a high-level analysis of the experimental conclusions and on some
aspects that have relevance in the final evaluation of the tool.

5.1 Research Questions
In parallel with the execution of every test suite, some data has been collected
to answer a set of research questions whose purpose was to evaluate both the
quality of the translator and the effectiveness of the 3rd generation Visual
GUI Tests.

Particularly, the goal was to find an answer to the following research ques-
tions:

• RQ1 - Translator Performance: what is the ratio between the num-
ber of successfully translated test cases and the overall number of tests?

To answer RQ1, an analysis must be carried out on the enhanced test
classes, other than on the log files and the third-generation test execution,
to detect whether a 2nd generation test assertion has been correctly trans-
lated or not. The ratio has been computed with the following mathematical
expression:

ratio = #correctlyTranslatedTests

#tests
(5.1)
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where tests is the number of tests and it is equal to 30 if we are comput-
ing this value for a single application or equal to 150 if we are considering
the whole set of tests used for this experimental evaluation. Consequently,
#correctlyTranslatedTests is the number of successful test translations and
will assume a value between 0 and tests.

• RQ2 - 3rd generation test effectiveness: What is the percentage of
interactions correctly executed by the translated tests?

To answer RQ2 a key factor was to collect the total number of interactions
composing every single test case, other than the number of both those that
have been successfully executed and those who have failed. The mathematical
expression to evaluate the percentage is:

perc = #successfulInteractions

#interactions
∗ 100 (5.2)

Where #interactions is the overall number of interactions composing the
3rd generation test cases and #successfulInteractions is the number of in-
teractions that have been successfully executed. This percentage has been
computed at two granularity levels: first, this percentage has been evaluated
for each interaction type, and then, it has been evaluated considering all
interactions grouped together.

• RQ3 - 3rd generation test effectiveness: What is the percentage of
successful translated test cases?

The data required to compute the result for RQ3 is easier to be retrieved
than the one needed for the previous research questions. Particularly the
percentage has been computed through this formula:

perc = #successfulTests

#tests
∗ 100 (5.3)

Where #tests is the overall number of translated test executions while
#successfulTests is the number of executions ended with success and its value
will range between 0 and #tests.
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5.2 Methodology
For each experimental subject, a test suite, composed of a total of 30 Espresso
tests, has been developed, resulting in a total of 150 test cases. Furthermore,
each test suite has been translated and then executed 10 times. The outcome
is an overall number of 3rd generation test executions equals 1500.

Table 5.1 shows the low-level distribution of Espresso assertions for each
application while figure 5.1 shows how these instructions are globally ra-
tioned.

Table 5.1. Distribution of Espresso assertions per application.

Interaction Budget
Watch

Contact
Book

PDF CON-
VERTER

Simple Cal-
endar

Stoic Read-
ing

allOf 1 1 34 8 0
anyOf 2 0 0 0 0
atPosition 21 9 0 0 0
click 37 30 7 30 20
inAdapterView 21 9 0 0 0
instanceOf 0 0 34 0 0
isDisplayed 17 24 11 12 9
matches 23 24 11 12 9
onData 21 9 0 0 0
onView 44 46 37 63 52
scrollTo 3 0 19 12 23
typeText 2 1 0 9 0
withContentDescription 2 0 4 5 0
withId 55 53 33 62 50
withText 9 3 0 4 2
All 258 209 190 217 165

Over these 150 tests, on average, 45% of them execute at least one scroll
interaction. Specifically, the application with the minimum number of tests
performing this kind of interaction is Contact Book with a percentage equal
to 27% of the total ones contained in its suite, while the one with the highest
percentage value is Budget Watch with 80% of its tests performing a scroll
interaction.

Finally, the generated Java projects have been updated to automatically
collect the data required for responding to RQ1, RQ2, and RQ3. Particularly,
the customization introduced aimed at creating two separate CSV files for
every experimental subject. The first one is composed of one row for each
executed test case, meaning that the number of rows for this experiment,
always equals 300. Each row reports the following data:
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Figure 5.1. Espresso instructions distribution among all tests of the
experimental test suites.

<TestClassName >; <TestCaseName >;
<TotalInteractions >; <SuccessfulInteractions >

Where TestClassName is the name of the 2nd generation test class, Test-
CaseName is the name of the test case, TotalInteractions is the total number
of interactions in the specific test case, and SuccessfulInteractions is the num-
ber of successful interactions emulated during specific test execution.

The second CSV file has a finer granularity. Specifically, it is composed of
one line for each interaction and every line reports the following data:

<TestCaseName >; <InteractionId >; <Result >;
<InteractionType >

Where TestCaseName is the name of the test case of interest, InteractionId
is a sequential number that is unique in a specific test case execution, Result
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can either be "p" or "f" according to, respectively, if the interaction is suc-
cessful (pass) or if it failed (fail), and InteractionType is a string identifying
the interaction type and can assume values like "Scroll", "Click", "FullCheck",
"Check", and more.

These two files have been further processed and adjusted to collect more
statistical data on the five test suites and to compute the results presented
in section 5.5.

5.3 Experimental Subjects
The experimental methodology presented in section 5.2 has been applied to
all five test subjects. Particularly, the applications selected are:

1. Budget Watch: an application to create and manage personal budgets
and to keep track of the user’s expenses, by recording his/her transac-
tions and assigning them to one of the defined budgets. It is available
both on F-Droid and on Google Play;

2. PDF CONVERTER: Files to PDF: an application, with a par-
ticular focus on usability, whose purpose is to offer several options to
manipulate, update and create new PDF files from different sources. It
is available both on F-Droid and on Google Play;

3. Contact Book: an application aiming at being an alternative to Google
contacts, with a focus on the user’s privacy. It prevents data sharing with
third parties by using a personal local database. Among its features, it
enables the possibility of sharing and adding new contacts by using a
QR code. It is available on F-Droid;

4. Stoic Reading: an application to consult, without any need for an in-
ternet connection, several stoic writings, ranging from Emperor Marcus
Aurelius to Seneca. It is available on F-Droid;

5. Simple Calendar: a calendar application to handle customizable events
and their reminders over time. It offers a monthly view and the possi-
bility to create events with colored labels, different duration and repet-
itiveness, and many more customizable features. It is available both on
F-Droid and on Google Play.

Table 5.2 presents some more detailed data on all the introduced appli-
cations.
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Table 5.2. Information on the experimental subjects.

Application PlayStore
down-
loads

GitHub
stars

GitHub
commits

Lines of
code

Last update

Budget Watch 29 70 477 9860 27/01/2021
Contact Book - 7 26 2980 02/08/2019
PDF CONVERTER 952 607 639 19110 23/03/2021
Simple Calendar 6805 2397 4350 28762 22/03/2021
Stoic Reading - 14 235 31836 05/02/2021

5.4 Experimental Environment
The hardware infrastructure used to execute all test cases is an Acer Aspire
A715-71G with an Intel(R) Core(TM) i7-7700HQ CPU at the frequency of
2.80GHz, 16GB of RAM, and running Windows 10 Home as its operating
system. Furthermore, all Espresso test cases have been written using Android
Studio 4.1.1 as IDE and executed on a Nexus 5 API 28 (Android 9) with the
animations disabled.

All 3rd generation test executions have been performed on a black back-
ground, to avoid any disturbances to the image recognition algorithms, and
using the SikuliX-then-EyeAutomate approach, which has proven to be one
of the most robust 3rd generation techniques.

5.5 Experimental Results
This section will introduce the results, obtained by studying the data col-
lected after the experimental execution of the test cases, and all the inter-
ventions that have been introduced to obtain the presented achievements.

5.5.1 RQ1
The result of RQ1 can be summarized by saying that all Espresso test asser-
tions have been successfully translated, obtaining a ratio value equal to 1.00.
It is important to highlight the fact that, in this case, an intervention was
necessary to implement the support for some key Espresso methods that are
commonly used. Particularly, as previously mentioned in section 4.4, the
range of supported Espresso assertions has been expanded by including the
possibility of isolating the node of interest using its class name, through the
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support for the ViewMatchers.instanceOf() matcher, and by including the
support for the scroll interactions, both when originated by the scrollTo()
and by the onData() methods. Furthermore, the onData() instruction was
strictly connected to two other Espresso commands, namely inAdapterView()
and atPosition(), whose support has been implemented as well. Finally, as
mentioned in section 4.4.4, the support for multiple logically related condi-
tions, used to match a single View, has been added by creating a translation
mechanism for both the allOf() and the anyOf() instructions.

All these new features made it possible to successfully write and translate
a collection of test suites that are complete and exhaustive.

By studying the data reported in table 5.3, it is possible to observe how
the translation accuracy and the ratio used to evaluate the performances of
the translator would be much lower without the support for the new features.

Table 5.3. Comparison between the state-of-the-art version of the li-
brary and re-engineered one.

Application Translatable
tests - state-
of-the-art

Translatable
tests - re-
engineered

Translation
ratio -
state-of-
the-art

Translation
ratio - re-
engineered

Budget Watch 5 30 0.17 1.00
PDF CONVERTER 0 30 0.00 1.00
Contact Book 22 30 0.73 1.00
Stoic Reading 10 30 0.33 1.00
Simple Calendar 11 30 0.37 1.00
All 48 150 0.32 1.00

5.5.2 RQ2
To evaluate the percentage of interactions correctly translated, and whose
execution was successful, the data on the 3rd generation interaction types
and the result of the EyeAutomate and SikuliX relative assertions have been
collected.

Particularly, two granularity levels have been adopted to compute an ex-
haustive response to this research question. The main goal was to make a
first analysis on the effectiveness of the 3rd generation tests, by focusing on
the quality of every specific translated interaction and their success rate.

The finer granularity level takes into consideration the number of actu-
ally executed interactions, meaning that the #interactions variable won’t
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necessarily be equal to the absolute total number of translated interactions,
because a failure in an assertion will stop the execution of the specific test
case preventing the execution of all following assertions.

On the other hand, while computing the percentage of successful inter-
actions at the coarser granularity level, the #interactions variable has been
considered equal to the total number of translated interactions. It is impor-
tant to highlight the fact that, in this case, the interactions that have been
never reproduced will be considered as failing.

In both cases, the values refer to the complete experimental execution for
all five applications.

Figure 5.2 reports the results obtained from the analysis by interaction
type. It is worth noticing that the highest failure rate is relative to the
"Check" interactions, which are generated not only after an actual Espresso
check assertion but after every scroll interaction too.

Figure 5.2. Success rate of the specific 3rd generation interaction types.
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Figure 5.3 reports the result relative to the global evaluation performed
on all interactions. In this case, the success rate is equal to:

perc = 4707
4750 ∗ 100 = 99.09% (5.4)

Figure 5.3. Success rate of all 3rd generation interactions.

5.5.3 RQ3
The goal of this research question was, again, to evaluate the effectiveness
of the translated test suites. In this case, the analysis has been performed
from a higher-level point of view than to research question 2, by recording
the results of each test execution and computing both the global success rate
and the one specific for the single application.
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As for what happened with RQ2, the data that is being presented refers
to the complete execution of all the experimental test suites, meaning after
that each 10th execution of every translated test has been completed.

Consequently, the variable #tests, used during the computation of the
success percentage, was equal to 300, during the analysis of the performance
of a suite of tests for a single app, and equal to 1500 during the evaluation
of the global success rate.

Table 5.4 and figure 5.4 present both a tabular and a graphic represen-
tation of the results collected to answer this question.

Figure 5.4. Success rate for all 3rd generation tests of all applications con-
sidered during the experimental evaluation.
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Table 5.4. Translated tests success rate.
Application Successful

tests
Failing tests Total Success per-

centage
Budget Watch 292 8 300 97.33 %
PDF CONVERTER 282 18 300 94 %
Contact Book 298 8 300 99.33 %
Stoic Reading 298 8 300 99.33 %
Simple Calendar 300 0 300 100 %
All 1470 30 1500 98.00 %

5.6 Results overview
After this experimental evaluation of the performances of TOGGLE, some
high-level results have been collected to obtain feedback on the quality of the
improvements to the library.

For starting, an important preface to be made is that, after the improve-
ments to the 3rd generation script creator module, the complexity and the
effort required to complete the whole experimental execution has drastically
decreased in comparison with what happened in other previous empirical
applications of TOGGLE. In fact, the automatic injection of the libraries
offering the Java APIs of both EyeAutomate and SikuliX, coupled with both
a unique Java main method launching all tests and an additional module au-
tomatically restarting the application before each test execution, made the
experimental execution a lot easier. The only manual intervention required
was executing the Java main.

Furthermore, RQ1 has proven that it is possible to write exhaustive test
suites for a wide variety of applications with the Espresso methods supported
in the re-engineered version of the library, even though, in this area, there is
still some space for improvements. The two key features that made this result
possible are: the support for the scrolling interactions, which are typical of
the mobile world and, for this reason, highly exploited in various contexts,
and the support for complex logical conditions thanks to the translation
mechanism for the allOf() and anyOf() methods.

RQ2 and RQ3 proved that it is possible to have robust 3rd generation
test suites, especially when they are executed more than once to balance
their flakiness, whose results are coherent with the expected ones, other than
with the ones obtained after the execution of the source 2nd generation suite.
An important consideration regarding the fail condition of a scroll interaction
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should be made. As introduced in section 5.5.2, interactions of this kind will
result, actually, into two 3rd generation ones, the first scrolling in a direction
and the second checking that the searched element is displayed after the scroll
movement.

A failure in the check phase implies that either too many pixels were
scrolled or too few. Additionally, the empirical evaluation proved that it is
more common, due to the sensitivity of the emulator, that often causes a
limited and unpredictable loss in the actual scrolled pixels during a scroll
movement, to have scrolled fewer pixels than expected. In this context, it
is important to say that slowing down the scroll movement was an effective
countermeasure that has drastically reduced this non-deterministic behavior.

On the other hand, a failure in the scroll phase is rarer, as figure 5.2
reports, and it is caused by the impossibility to locate on the screen the
expected starting status of the application, meaning that no scroll movement
has taken place before the failure because it was not possible to match the
initial locator on the screen. This error presented itself only once and its
source was, yet, the test flakiness. Particularly, this failure was caused by
a longer time than usual taken by the application to start up, so that the
test failed before the GUI of the application was completely displayed on the
screen of the emulator.
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Chapter 6

Conclusion and Future
Work

This thesis presented, starting from the existing infrastructure of TOGGLE, a
deep re-engineering of the library to improve both its usability and portability
other than the introduction of some new features expanding the horizon of
translatable interactions.

To go into further details, the purpose of the re-engineering phase was to
transform TOGGLE into a library whose adoption in an industrial software
development process could be feasible. To reach this objective a first analysis
of the tool and all its weaknesses has been performed, with a particular
focus on all those issues causing a high maintenance effort, low portability
of the library, a high entry-barrier for an end-user, the non-scalability of
the translation process in big projects, and any phase needing the manual
intervention of an end-user.

It is worth noticing that, some of the issues presented are common to
the ones preventing the diffusion of Visual GUI Tests and, consequently,
they were particularly urgent to be solved, especially because TOGGLE is
a library whose global goal is to make this kind of testing approach more
common in mobile applications development processes. This phase could be
further divided into two high-level steps: the re-engineering of each mod-
ule, whose goal was to solve the issues of every specific component of the
library, and the re-design of the library, aiming at improving the usability
of TOGGLE, starting from the output of the previous step and providing,
as its output, a version of the tool that could be easily enriched with new
features after low effort interventions involving both their development and
their integration with the library.
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After the completion of this phase, the focus was moved to the implemen-
tation of some new features. In this case, the main goal was to provide an
effective translation mechanism for the scroll interaction, that is as complex
to emulate on a personal computer as it is common in a mobile environment.
This phase took advantage of what has been done to improve the architec-
ture of the library, making it easier to correctly place the new features in
the re-engineered ecosystem of TOGGLE. Moreover, the scroll interaction
required a preliminary analysis of its semantics and of the Espresso instruc-
tions that could generate it because, even though it could be started by
multiple Espresso commands, it should have an unambiguous 3rd generation
translation. This factor was the one that required the greatest effort to be
completed.

Lastly, an experimental appraisal of TOGGLE was performed to evaluate
the results of the previous phases and to find out the aspects of the tool that
could need some further improvements. Particularly, this phase highlighted
that the scroll interaction suffered from a non-deterministic behavior, caused
by the speed of the movement and by the sensitivity of the screen of the
emulator. This required the development of some corrective interventions on
the behavior of the translated interaction to lower the impact of this issue. As
a consequence, the experiment has been repeated multiple times (after each
modification to the scroll instruction) before obtaining the results presented
in chapter 5. The last execution of the experiment proved that a robust and
low effort translation mechanism is possible, presenting satisfactory results,
both in terms of 3rd generation tests success rate and of specific 3rd generation
interactions success rate, which are both similar to the ones collected with
the initial version of the library [12]. The actual difference with the state-
of-the-art variant of the tool is that these results have been obtained with a
much less complex, low-effort, and automated use of the tool.

Furthermore, this empirical experience highlighted some aspects that of-
fer a fertile ground for improvements. An example may be the extension of
the Enhancer module to support the Kotlin programming language, which is
becoming increasingly important in the Android mobile application context
so that it could be possible to parse Kotlin Espresso test classes and to gen-
erate the equivalent enhanced version. Another improvement might involve
the development of a new Enhancer module supporting different 2nd genera-
tion testing frameworks, even though Espresso is probably the one with the
highest diffusion among Android mobile projects. Moreover, the set of trans-
latable interactions and Espresso commands supported by TOGGLE could
be expanded. Finally, the adoption of this library in an existing industrial
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project is encouraged so that it could be possible to obtain an evaluation of
its performances in that context.
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