
POLITECNICO DI TORINO

Master Degree Course in Electronic Engineering

Master Degree Thesis

UVM environment for
RISC-V processors

Advisor
Prof. Edgar Ernesto Sanchez Sanchez
Ph.D. Annachiara Ruospo

Candidate
Leonardo Barraco

April 2021

This work is subject to the Creative Commons Licence

Abstract

In the VLSI design flow, functional verification is the task of checking that the digi-
tal design is compliant with the specifications in order to find bugs in the hardware
description before being mass-produced. Due to the fast growth of the design size
and complexity, functional verification has become the bottleneck in the design flow.
According to industry surveys, verification can take up to 70% of the total amount
of time while the design phase requires around 30%. For this reason, it is neces-
sary to develop a proper verification framework to speed up the verification phase
and avoid delays in time-to-market. In this thesis, a simulation-based verification
environment has been developed to verify the RISC-V RV32IMFCXpulp processor.
In the UVM environment Agents are responsible for driving input test-vectors into
the DUV, collecting the output transactions, and finally performing the comparison
of the actual results with the expected ones. Python scripts are used to generate
random constrained stimuli according to the ISA and to extract simulation results.
A good verification effort must be characterized by a coverage greater than 90% as
this parameter represents the confidence of the verification process. Code Cover-
age, with its metrics, has been used to keep track of the improvements. In order to
reach a 90.1% Coverage, it was necessary to test the processor functionalities out
of normal operating conditions, by injecting proper test vectors including illegal
instructions (Fault Injection), interrupt requests and asynchronous resets.

iii

Questa tesi è dedicata a
Leonardo, Ignazio, Pia
ed Adriana
che insieme ai miei genitori mi hanno
cresciuto trasmettendomi valori e
ambizioni

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Goal of the thesis . 1
1.2 Motivation . 1

1.2.1 State of art . 2
1.3 Introduction to Verification . 4

1.3.1 Verification Methods . 5
1.3.2 Verification Plan . 5

1.4 The Universal Verification Methodology 8
1.4.1 Coverage Driven Verification 8
1.4.2 UVM Components . 9

1.5 Introduction to RISCV Processors 11

2 RISC-V PULP 13
2.1 Complete ISA with extensions . 14

2.1.1 Base Integer . 14
2.1.2 Multiplication Extension . 19
2.1.3 Compressed extension . 20
2.1.4 Post-incrementing Load and Store Instructions 21
2.1.5 Hardware Loops . 22
2.1.6 ALU Extension . 23
2.1.7 Vectorial . 23

2.2 PULP Architecture . 24
2.2.1 Instruction Fetch stage . 24
2.2.2 Instruction Decode stage . 25
2.2.3 Execution stage . 26
2.2.4 WB Stage . 27

vi

3 UVM Testbench 29
3.1 Overall Structure . 29
3.2 Top . 31
3.3 Wrapper . 31
3.4 Interfaces . 31

3.4.1 Interface in . 32
3.4.2 Interface out . 33

3.5 Sequences . 34
3.5.1 Processor Sequence . 35
3.5.2 Packet out . 36

3.6 Environment . 37
3.7 Agents . 38

3.7.1 Agent in . 38
3.7.2 Agent out . 39

3.8 Driver . 39
3.9 Monitors . 39

3.9.1 Monitor in . 40
3.9.2 Monitor out . 40

3.10 Scoreboard . 40
3.10.1 Decode_check . 42
3.10.2 Summary of simulation . 50

4 Simulation Environment 51
4.1 ISA Database . 51
4.2 RV Generator . 54
4.3 UVM Env Configurator . 59

4.3.1 GUI Elements . 59
4.3.2 GUI Result Frames . 61

5 Simulation and Results 65
5.1 Coverage and metrics . 65

5.1.1 Statement Coverage . 66
5.1.2 Branch Coverage . 66
5.1.3 Focused Condition Coverage 66
5.1.4 Focused Expression Coverage 67
5.1.5 FSM Coverage . 67
5.1.6 Toggle Coverage . 68

5.2 Simulations . 69
5.2.1 Single Simulation . 69
5.2.2 Multiple Simulations . 71

6 Conclusion and Future works 81

vii

A ALU Extension 83
A.1 Bit Manipulation Operations . 83
A.2 General ALU Operations . 84
A.3 Immediate Branching . 85
A.4 MAC Operations . 85

B Vectorial Extension 87
B.1 Vectorial ALU . 87
B.2 Vectorial Comparison . 90

viii

List of Tables

1.1 UVM components . 10
1.2 UVM phases . 10
2.1 Base Immediate Encoding instructions 15
2.2 Base Register Encoding instructions 16
2.3 Control Transfer Instructions . 17
2.4 Load and Store instructions . 18
2.5 System instructions . 18
2.6 Mul/Div Instructions . 19
2.7 Compressed Instructions Quadrant 0 20
2.8 Compressed Instructions Quadrant 1 20
2.9 Compressed Instructions Quadrant 2 21
2.10 Register-Immediate loads with post increment 21
2.11 Register-Register loads with post increment 22
2.12 Register-Immediate stores with post increment 22
2.13 Register-Register stores with post increment 22
2.14 Hardware Loop instruction encoding 23
4.1 sel string encoding . 55
5.1 Example of illegal instruction . 76
A.1 Bit Manipulation Encoding . 83
A.2 Bit Manipulation Encoding . 83
A.3 General Alu Encoding . 84
A.4 General Alu Encoding . 84
A.5 General Alu Encoding . 85
A.6 Immediate Branching Encoding . 85
A.7 MAC Encoding . 85
A.8 MAC Encoding . 86
B.1 Vectorial General ALU Instructions 87
B.2 Vectorial General ALU Instructions 88
B.3 Vectorial Dot Product Instructions 88
B.4 Vectorial Shuffle-pack Instructions 88
B.5 Vectorial Shuffle-pack Instructions 89
B.6 Vectorial comparison Instructions 90

ix

List of Figures

1.1 VLSI Design Flow . 2
1.2 Statistics showing the increase of time spent in verification phase[8] 2
1.3 RISCV-DV framework architecture 3
1.4 MIPS UVM framework architecture 4
1.5 Functional Verification Aspects [21] 6
1.6 Scoreboard approach . 7
1.7 Phases of Random stimuli based verification 8
1.8 UVM Classes Diagram [13] . 9
1.9 Transaction Level Modeling . 11
2.1 RI5CY Architecture Block Diagram 13
2.2 RI5CY Architecture Block Diagram 24
2.3 General Purpose Register File . 26
3.1 UVM Framework Structure . 30
3.2 Processor interface block diagram 32
3.3 Processor out interface block diagram 34
3.4 Processor Environment block diagram 38
3.5 Result of AUIPC . 41
3.6 Result of Branch not taken . 41
3.7 Result of branch taken . 42
3.8 decode and check function collapsed 47
3.9 Plot of simulation summary . 50
4.1 Random Program generated by RVGEN2.py 58
4.2 UVM Env Graphical User Interface 59
4.3 Simulation Result frame . 61
4.4 Single Coverage Result frame . 62
4.5 Aggregate Coverage Result frame 62
4.6 Coverage Trend frame . 63
5.1 Expression coverage . 67
5.2 alu div FSM example . 67
5.3 FSM coverage . 68
5.4 Coverage trends . 69
5.5 Results of the simulation . 70

x

5.6 Coverage Report . 72
5.7 Instruction Set Coverage reports . 73
73subfigure.7.4
5.8 Instruction Set Coverage reports . 74
74subfigure.8.2
5.9 Coverage Report . 75
5.10 Coverage Report . 77
5.11 Instruction Set Coverage reports . 78
5.12 Coverage Report . 79

xi

List of Acronyms

ALU Arithmetic Logic Unit

API Application Programming Interface

APU Auxiliary Processing Unit

AUIPC Add Upper Immediate to Program Counter

CDV Coverage Driven Verification

CSR Control and Status Registers

CSV Comma Separated Values

DUV Device Under Verification

FCC Focused Condition Coverage

FEC Focused Expression Coverage

FIFO First In First Out

FPU Floating Point Unit

FP Floating Point

FSM Finite State Machine

GPR General Purpose Register

GUI Graphic User Interface

HDL Hardware Description Language

IC Integrated Circuit

ISA Instruction Set Architecture

ISG Instruction Stream Generator

xii

ISS Instruction Set Simulator

JALR Jump and Link Register

JAL Jump and Link

LUI Load Upper Immediate

MOS Metal-Oxide Semiconductor

OBI Open Bus Interface

OOP Object Oriented Programming

OPIMM Operand Immediate

OVM Open Verification Methodology

PC Program Count

PULP Parallel Ultra Low Power

RAM Random Access Memory

RD Register Destination

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RS Register Source

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

STMTS Statements

SoC System on Chip

TLM Transaction Level Modeling

UVC UVM Verification Component

UVM Universal Verification Methodology

VECOP Vectorial Operation

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

eRM e Reuse Methodology

xiii

Chapter 1

Introduction

1.1 Goal of the thesis
The goal of this thesis work is to build a verification environment based on UVM
methodology to verify a RISCV architecture including not only the base ISA but
also extensions and proprietary extensions. It has been decided to use Code Cover-
age enabling all the metrics, it is important reaching a high coverage level (> 90%)
to ensure that both standard situation and corner cases have been verified.

1.2 Motivation

The number of transistor/IC double every 2 years

According to Moore’s law[19] stated in 1965, the number of transistor per inte-
grated circuit doubles every two years, and thanks to the technologic progress in
silicon manufacturing this law is still valid. Thanks to the possibility to integrate a
larger number of transistor in the same chip area, devices complexity is increasing
and engineers are able to implement complex systems providing more functionali-
ties on a single chip (SoC).
VLSI is the process of producing an IC which contain millions of MOS transistors
onto a single chip. Microprocessors and memory chips are typical example of VLSI
devices.
The VLSI design cycle starts with a formal specification of a VLSI chip, following a
series of steps, and eventually lead to the production of a packaged chip. A typical
design cycle may be represented by the flow chart shown in Fig. 1.1.

As complexity increases, the probability of having bugs in the hardware de-
scription will increase. According to "The 2020 Wilson Research Group Functional
Verification Study"(Fig. 1.2), the average time spent in HDL coding represents 30%

1

Introduction

Figure 1.1: VLSI Design Flow

of the total time and around 60-70% of time is spent to verify that the architecture
meets the required specification [8] . Generally, it is difficult that design meets
the specification at the first verification, and delays in hardware verification lead
to delays in time to market which are major issues in a company. It is clear that
developing a verification framework is fundamental in order to reduce the amount
of time necessary to produce a verified hardware design.

Figure 1.2: Statistics showing the increase of time spent in verification phase[8]

1.2.1 State of art

Before moving on, it would be interesting to analyze what has already been done
in the field of UVM Based RISC-V Verification.

2

1.2 – Motivation

RISC-V DV

RISC-V DV is an SV/UVM based open-source RISC-V verification environment.
It is available on Github1, it has been supported by Google. The verification envi-
ronment structure is reported in Fig. 1.3.
RISC-V ISG produces a constrained set of assembly programs which are then

Figure 1.3: RISCV-DV framework architecture

cross-compiled and fed to the ISS and RTL. Both the DUV and the reference
model write-back the log of the simulation on a .csv file. Finally, the log files
are compared to find out any discrepancies. This Instruction Set Simulator is
configurable by modifying the ISS.yaml file, supported ISS’s are SPIKE,Imperas
OVPsim, Western Digital Whisper, SAIL_RISCV.
Being UVM-based it is compatible with the major HDL simulator vendors such
as Synopsys,Cadence,Mentor Graphics,Metrics. As it is an open-source project is
it possible to clone it from GitHub and modify the source code to be adapted to
the DUV. The Device under Verification has proprietary extensions which means
customs instructions, so two modifications would be required:

• Implement custom ISA in Instruction Stream Generation;

• Implement a custom ISS capable of dealing with Pulp-proprietary extensions.

Unfortunately, the ISS developed by the RI5CY producer is not an open-source
project, so a large amount of work would be necessary to develop a proper ISS.

Processor-UVM-Verification by Anish Gupta

This project, available on Github2 has been the starting point of this thesis work.

1https://github.com/google/riscv-dv
2https://github.com/gupta409/Processor-UVM-Verification

3

Introduction

Figure 1.4: MIPS UVM framework architecture

It is a System Verilog based Verification environment for MIPS 5 staged pipelined
processor. This project embeds a simple UVM environment with UVC derived from
base classes. Random Instructions are generated inside the sequencer using System-
Verilog constraints. In reality, this project is far different from what is needed
to verify RI5CY but it represents a quite good example of a UVM framework in
which the reference model is not an external ISS but is embedded in the scoreboard
allowing a run-time check of results.

1.3 Introduction to Verification
According to Andrew Piziali, the most appropriate definition of functional verifica-
tion is "Demonstrating the intent of a design is preserved in its implementation"[21].
It is important to remember that the first steps in VLSI flow have a high abstrac-
tion level, while when the design reaches the HDL coding step it is less abstract.
The main consequence is that with each transformation during the design process
the intent is clarified removing both ambiguity and redundancy.
The implementation is the RTL realization of the design written in an HDL such as
Verilog, VHDL, SystemVerilog. Verification is a comparative process between the
RTL implementation and the intent exploited to find functional logic errors. Logic
errors or bugs are differences between the observed behaviour of the DUV and its

4

1.3 – Introduction to Verification

expected behaviour (intent).
This kind of errors could be caused by designers because of misinterpretation of
specifications, or ambiguous specification.

1.3.1 Verification Methods
According to Andrew Piziali [21] there are 2 main methods to verify a DUV:

• Static Methods;

• Dynamic Methods.

Static Methods

Static methods are not simulation-based and use a mathematical model of the
design to determine if there is any violation of the assertion. As a result, it is not
required to generate and drive stimuli in the DUV to verify the design. That can
be considered an advantage as the most time-consuming step in dynamic methods
is the one related to the generation of the proper test vector. On the other hand,
static methods have significant disadvantages related to the verification of complex
architectures made up of multiple blocks.
Static methods appear to be an effective verification tool if the DUV is a small
block and verification engineer is interested in its behaviour without caring about
interaction with other blocks.

Dynamic Methods

Dynamic methods are simulation-based and require a simulation environment.
They are characterized by simulating the DUV applying certain test vectors and
comparing its response against the expected behaviour. The simulation environ-
ment should be able to record verification progress using coverage metrics.
Dynamic methods are advantageous as they allow to verify all the possible test
condition. However, for a large design, it could be time-expensive as the number
of test vector increase dramatically.

1.3.2 Verification Plan
The verification plan defines what must be verified in a hardware design, the veri-
fication strategy, the coverage metrics that should be set and then met to move to
the next step of the design flow.
Verification plan is composed of three important aspects:

• Coverage Measurements;

5

Introduction

• Stimulus Generation;

• Response Checking.

Figure 1.5: Functional Verification Aspects [21]

Coverage Measurement

The coverage measurement section of the verification plan is the one in which the
verification scopes are described.
It is the most important section because determining if all bugs have been found is
not possible, so metrics are required to estimate the level of coverage that has been
achieved. This section includes the kinds of coverage: functional, code, assertions
and eventually the metrics.

Stimulus generation

The stimulus generation part is responsible for generating the input test vector
required to fully exercising the DUV and exhibiting all the possible behaviours.
That means not only generating valid test vectors showing that the device is working
as intended but also invalid test vectors to drive the device into corner-cases. So
an important aspect of stimulus generation is verifying situation that occurs only
outside of normal operating parameter in order to check the error detection logic
of the DUV. The objective of stimulus generation is generating test-vectors that
allow reaching a high coverage level.

Response Checking

The response checking section is responsible for verifying that DUV responses con-
form to the specifications. There are two different strategies:

6

1.3 – Introduction to Verification

• Reference Model Check;

• Distributed data and temporal check.

Reference Model Check

This approach requires a reference model, so a sort of implementation of the DUV
at a higher abstraction level. The reference model is used alongside the DUV and
receive the same input test-vectors.
The responses coming from the DUV are compared to the expected results provided
by the reference model. The problem in this kind of approach is that building up
a reliable reference model could lead to complex work comparable to the design
process.

Distributed data and temporal check

This second strategy exploits temporal check on some monitored signals to capture
device behaviour. One of the used approaches is based on Monitors and a Score-
board in a structure like the one shown in Fig. 1.6 Input packets are captured by

Figure 1.6: Scoreboard approach

the input monitor and sent to the reference model residing in the scoreboard while
DUV outputs are collected by the output monitor and sent to the checker in the
scoreboard. Inside the scoreboard, input packets are processed according to the
specification to produce the expected outputs. Finally, the checker provides a Pass
or Fail according to the result of the comparison.

7

Introduction

1.4 The Universal Verification Methodology
In the previous section, the verification issue has been explained and appeared clear
that there was the necessity of a universal methodology to increase the speed and
the efficiency of the verification process.
UVM is a standardized methodology for verifying IC designs. UVM is derived
mainly from OVM which was based on the eRM by Verisity Design. The advantages
of using a universal methodology are that the best practices for an exhaustive
verification are coded and UVCs are provided. It is open-source and compatible
with all the major commercial simulator like Aldec, Cadence, Mentor Graphics,
and Synopsys.

1.4.1 Coverage Driven Verification
UVM provides a complete framework to achieve Coverage Driven Verification com-
bining automatic test-vector generation, self-checking testbench and coverage mea-
surements. UVM has made it possible to create a test environment capable of
exploiting "controlled randomness" of the input vectors to discover sooner design
bugs. It is also possible to meet verification goals by changing testbench parameters
and in this way run specific simulations to reach specific scenarios that are not easy
to reach randomly (Corner cases).
Fig. 1.7 clearly shows that random tests are sufficient to reach about 50% of the

Figure 1.7: Phases of Random stimuli based verification

coverage goal. After the first random simulations, it is necessary to adjust and add

8

1.4 – The Universal Verification Methodology

some constraint to the input sequences in order to reach corner cases.

1.4.2 UVM Components
UVM is based on OOP, this allows to increase reusability, a fundamental concept
in the verification process. UVM Library provides a set of useful class from which
deriving object and components, each class contains methods to deal with common
operations. Thanks to OOP Verification Engineers can derive object and compo-
nents from base classes and produce any modification to obtain customized classes.

Figure 1.8: UVM Classes Diagram [13]

The uvm_object class is the base class for all UVM data and hierarchical classes.
It contains a set of methods for common operations:

• create;

• copy;

• compare;

9

Introduction

• print.

The uvm_components class contains the UVM framework components shown in
Tab. 1.1.

uvm_driver Drives signals to DUV
uvm_monitor Monitor signals
uvm_sequencer Create Input vectors
uvm_agent Contains Sequencer,Driver and Monitor
uvm_env Contain all the components of the framework
uvm_scoreboard It represents the checker
uvm_subscriber Receive the transaction to perform functional coverage analysis

Table 1.1: UVM components

In UVM, phases are used as a synchronization mechanism in the simulation.
In this way, each component has to pass through phases and must wait for other
components before moving to the next phase. The main phases are shown in Tab.
1.2

build_phase Components build and instantiation
connect_phase Connect components through TLM ports
end_of_elaboration_phase Ensure that all the connection are properly set
start_of_simulation_phase Initialization of components to avoid zero time dependencies
run_phase During this phase time-consuming operation are performed
extract_phase Simulation has been completed and results can be extracted
check_phase Receive the transaction to perform functional coverage analysis
report_phase Display result or summary of check phase

Table 1.2: UVM phases

UVM uses TLM APIs to facilitate the inter-communication between UVM com-
ponents. Sequences and methods are combined to form a packet (transaction) and
each UVM component can use predefined methods (put and get) to send or receive
transactions.

10

1.5 – Introduction to RISCV Processors

Figure 1.9: Transaction Level Modeling

1.5 Introduction to RISCV Processors
The Device Under Verification in this thesis work is RV32IMFCXpulp. It is a
RISCV Processor developed by the Integrated Systems Laboratory (IIS) of ETH
Zürich and Energy-efficient Embedded Systems (EEES) group of the University of
Bologna in 2013.
RISC-V is an open standard ISA based on RISC principles, developed at Berkeley
into the EECS Department. Originally it was developed to support computer
architecture research and education but now it has become a standard architecture.
The RISC-V ISA is provided under an open-source license.
The base integer ISA (RV32I) is sufficient to perform basic operation typical of a
modern instruction set. It contains 40 unique instruction encoded in four different
formats (R/I/S/U). Each of them has a fixed length (32 bit) and must be aligned
on a four-bytes in memory. In order to simplify the decoding operations, some fields
keep the same position in all formats (like opcode, source and destination register).
RISC-V has 32 integer registers, with the x0 location hardwired to 0 while x1-x31
are general purpose. Except for memory access instruction, instructions operate
only with registers. Load and store instructions are used to perform operations to
and from memory. Apart from RV32I other extensions have been developed and
are usually identified by a letter:

• "M" Standard Extension for Integer Multiplication and Division;

• "A" Standard Extension for Atomic Instructions;

• "F" Standard Extension for Single-Precision Floating-Point;

• "D" Standard Extension for Double-Precision Floating-Point;

• "Zicsr" Control and Status Register (CSR);

• "Zifencei" Instruction-Fetch Fence;

• "Q" Standard Extension for Quad-Precision Floating-Point;

11

Introduction

• "L" Standard Extension for Decimal Floating-Point;

• "C" Standard Extension for Compressed Instructions;

• "B" Standard Extension for Bit Manipulation;

• "J" Standard Extension for Dynamically Translated Languages;

• "T" Standard Extension for Transactional Memory;

• "P" Standard Extension for Packed-SIMD Instructions;

• "V" Standard Extension for Vector Operations;

• "N" Standard Extension for User-Level Interrupts;

• "H" Standard Extension for Hypervisor;

• "Zam" Misaligned Atomics;

• "Ztso" Total Store Ordering.

Some of them has been ratified while some others are still open and subjected to
change.

12

Chapter 2

RISC-V PULP

Before moving to the dissertation of the UVM framework, it is necessary to in-
troduce the device under verification and its main characteristics. The DUV is
RV32IMFCXpulp also known as RI5CY and it is a RISC-V processor core de-
veloped in collaboration between ETH University and the University of Bologna.
RI5CY is an open-source processor provided under a permissible SolderPad open-
source license. As the PULP name suggest this processor is concerned about energy
efficiency avoiding power consumption when is in idle. The processor block diagram
is shown in Fig. 2.1

Figure 2.1: RI5CY Architecture Block Diagram

It is a 32 bit pipelined architecture with 4-stages clearly visible in the previous
figure where each stage is separated by pipeline registers:

• Instruction Fetch [IF];

• Instruction Decode [ID];

• Execution [EX];

13

RISC-V PULP

• WriteBack [WB].

It has a large Instruction set providing support for some of the RISC-V standard ex-
tensions and some proprietary extensions. As the name "RV32IMFCXpulp" suggest
the supported extensions are:

• I → Base Integer Instruction Set;

• M → Integer Multiplication and Division Instruction Set;

• F → Single precision Floating point Instruction Set;

• C → Compressed Instruction Set;

• Xpulp → Pulp specific extensions including:

– Post-incrementing load and stores;

– Multiply and accumulate extension;

– ALU Extensions;

– Hardware Loops.

2.1 Complete ISA with extensions
In addition to the extensions already stated RI5CY supports also the Vectorial
instructions. In this section, each of the extension will be briefly analyzed showing
the available instructions.

2.1.1 Base Integer
The base integer instruction set contains:

• Integer Computational Instructions;

• Control Transfer Instructions;

• Load and Store instructions;

• Memory Ordering Instructions;

• System Instructions.

14

2.1 – Complete ISA with extensions

Integer Computational Instructions

Integer Computational Instructions operate on 32 bits operands stored in the inte-
ger register file. Are encoded as R-type and I-type depending on the input operands
used to execute the operation. Depending on the input operands they can be fur-
therly divided in:

• Integer Register-Immediate Instructions (I-Type);

• Integer Register-Register Instructions (R-Type).

The destination is register rd for both register-immediate and register-register in-
structions. The R-type instructions use two operands coming from the register file
according to the source addresses specified in the instruction fields while the I-type
use an operand coming from the register file (rs1) and the other is specified in
the immediate field of the instruction. Immediate must be sign-extended before
being used as an operand in the execution stage. The available instructions for the
register-immediate are reported in Tab. 2.1.

instr[31:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000-shamt rs1 001 rd 0010011 SLLI
0000000-shamt rs1 101 rd 0010011 SRLI
0100000-shamt rs1 101 rd 0010011 SRAI

instr[31:12] instr[11:7] instr[6:0] NAME
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

Table 2.1: Base Immediate Encoding instructions

ADDI, SLTI, SLTIU, XORI, ORI, ANDI are standard operations that use the
whole immediate field to obtain the immediate operand, while SLLI, SRLI and
SRAI use only the 5 LSB of the immediate to define the Shift Amount (SHAMT),
the other part of the immediate is still necessary for the decode operation.

The available instructions for the register-register are reported in Tab. 2.2.

15

RISC-V PULP

instr[31:25] instr[24:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
0000000 rs2 rs1 000 rd 0010011 ADD
0100000 rs2 rs1 000 rd 0010011 SUB
0000000 rs2 rs1 001 rd 0010011 SLL
0000000 rs2 rs1 010 rd 0010011 SLT
0000000 rs2 rs1 011 rd 0010011 SLTU
0000000 rs2 rs1 100 rd 0010011 XOR
0000000 rs2 rs1 101 rd 0010011 SRL
0100000 rs2 rs1 101 rd 0010011 SRA
0000000 rs2 rs1 110 rd 0010011 OR
0000000 rs2 rs1 111 rd 0010011 AND

Table 2.2: Base Register Encoding instructions

Here the two operands are specified by using their register file address in fields
instr[24:20] and instr[19:15] while the field instr[31:25] is used to decode
and distinguish between ADD-SUB and SRL-SRA.

Control Transfer Instructions

RV32I provides two different types of control transfer instructions:

• Unconditional jumps;

• Conditional jumps (i.e. Branches).

The unconditional jumps instructions are JAL and JALR, these two instructions
differ on the encoding (J-type for JAL and I-type for JALR) and on the behaviour.
Even if both JAL and JALR stores in register rd the instruction following the jump
(pc+4) the jump targets are obtained in different ways. In JAL an offset on 20
bit is explicitly provided as immediate and it is sign-extended and added to the
address of the jump instruction. The jump target, in this case, is ± 1MiB range.
In JALR the target address is obtained by adding the sign-extended 12 bit imme-
diate to the content of register rs1.
The other type of control transfer instructions is the conditional branches. In
this kind of instruction the content of two registers is compared, if the resulting
condition is true then the branch is taken. The branch target is obtained by sign-
extending the 12-bit offset provided as immediate and added to the address of the
branch instruction. There are several branch instructions that differs on the type
of comparison.

• BEQ → Branch if is equal;

• BNE → Branch if not equal;

• BLT/BLTU → Branch if lower (Signed and Unsigned);

16

2.1 – Complete ISA with extensions

• BGE/BGEU → Branch if greater equal (Signed and Unsigned);

• BLE/BLEU → Branch if lower equal (Signed and Unsigned);

• BGT/BGTU → Branch if greater (Signed and Unsigned).

All the control transfer instructions are summarized in Tab. 2.3

instr[31:25] instr[24:20]instr[19:15]instr[14:12] instr[11:7] instr[6:0] NAME
imm[12],imm[10:5] rs2 rs1 000 imm[4:1],imm[11] 1100011 BEQ
imm[12],imm[10:5] rs2 rs1 001 imm[4:1],imm[11] 1100011 BNE
imm[12],imm[10:5] rs2 rs1 100 imm[4:1],imm[11] 1100011 BLT
imm[12],imm[10:5] rs2 rs1 101 imm[4:1],imm[11] 1100011 BGE
imm[12],imm[10:5] rs2 rs1 110 imm[4:1],imm[11] 1100011 BLTU
imm[12],imm[10:5] rs2 rs1 111 imm[4:1],imm[11] 1100011 BGEU

instr[31:12] instr[11:7] instr[6:0] NAME
imm[20],imm[10:1],imm[11],imm[19:12] rd 0110111 JAL

instr[31:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
imm[11:0] rs1 000 rd 0010111 JALR

Table 2.3: Control Transfer Instructions

Load and Store Instructions

RISC-V processors are load and store architecture, standard arithmetic instructions
are not allowed to read or write data memory. Only load and store instructions
can access RAM to read and write data. This kind of operations is used to transfer
values between the registers and memory. In particular, load instructions copy a
value from the memory to register rd and stores copy the value contained in rs2
in data memory.
The effective memory address is obtained by adding the content of register rs1 to
the 12-bit sign-extended offset. Load and store instructions can work not only with
the complete 32-bit word but also with half-words or byte and in those cases, the
lower part of the 32-bit data is used. Load and store instructions are summarized
in Tab. 2.4

17

RISC-V PULP

instr[31:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU
instr[31:25] instr[24:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
imm[11:5] rs2 rs1 000 imm[4:0] 0000011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0000011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0000011 SB

Table 2.4: Load and Store instructions

Memory Ordering Instructions & System Instructions

Memory ordering instructions i.e. FENCE or FENCE-I are used to order device
I/O and memory accesses as viewed by other hardware threads, coprocessors and
external devices.
System instructions are privileged instructions that in some cases require a certain
privilege level. These instructions can be divided into two main groups:

• CSR Operations;

• Privileged.

instr[31:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
fm-pred-succ rs1 000 rd 0001111 FENCE
imm[11:0] rs1 001 rd 0001111 FENCE.I

000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK
001100000010 00000 000 00000 1110011 MRET
000000000010 00000 000 00000 1110011 URET
011110110010 00000 000 00000 1110011 DRET
000100000101 00000 000 00000 1110011 WFI

csr rs1 001 rd 1110011 CSRRW
csr rs1 010 rd 1110011 CSRRS
csr rs1 011 rd 1110011 CSRRC
csr uimm 101 rd 1110011 CSRRWI
csr uimm 110 rd 1110011 CSRRSI
csr uimm 111 rd 1110011 CSRRCI

Table 2.5: System instructions

In Tab. 2.5 are summarized all the instructions of this type. The CSR instructions

18

2.1 – Complete ISA with extensions

atomically read-modify-write a single Control and Status Register. The CSR ad-
dress is provided as immediate in instr[31:20]. There are two different versions
of the same (CSRRW, CSRRS, CSRRC) instructions, the standard one in which
rs1 register is used as an operand and another one in which the operand is pro-
vided as a 5-bit immediate value to be zero-extended. Privileged instructions are
like ECALL, EBREAK, and so on, which are used to make a service request or to
return from a service request.

2.1.2 Multiplication Extension
Multiplication extension contains instructions that are used to multiply and divide
values coming from integer register file:

• MUL : 32bit x32bit multiplication, lower 32 bit are stored in rd;

• MULH : 32bit x32bit multiplication, higher 32 bit are stored in rd;

• MULHU: unsigned(32bit) x unsigned(32bit) multiplication, higher 32 bit are
stored in rd;

• MULHSU: signed(32bit) x unsigned(32bit) multiplication, higher 32 bit are
stored in rd;

• DIV : signed(32 bit)/signed(32 bit) division with rounding toward zero;

• DIVU : unsigned(32 bit)/unsigned(32 bit) division with rounding toward zero;

• REM : return the remainder of the signed division;

• REMU : return the remainder of the unsigned division.

instr[31:25] instr[24:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
0000001 rs2 rs1 000 rd 0110011 MUL
0000001 rs2 rs1 001 rd 0110011 MULH
0000001 rs2 rs1 010 rd 0110011 MULHSU
0000001 rs2 rs1 011 rd 0110011 MULHU
0000001 rs2 rs1 100 rd 0110011 DIV
0000001 rs2 rs1 101 rd 0110011 DIVU
0000001 rs2 rs1 110 rd 0110011 REM
0000001 rs2 rs1 111 rd 0110011 REMU

Table 2.6: Mul/Div Instructions

19

RISC-V PULP

2.1.3 Compressed extension

The compressed extension named "C" allows a reduction of static and dynamic code
size by adding short 16-bit instruction encodings for common integer operations.
Exploiting compressed instructions a reduction of code size around 25% is achieved.
In general, in order to keep unchanged the processor architectures and support C
extension a compressed decoder is introduced in the fetch stage. Its role is to extend
a 16-bit instruction to its correspondent on 32-bit, in this way is not required to
change the decoder in the decode stage. Compressed instructions are reported in
Tab. 2.7, Tab. 2.8 and Tab. 2.9

instr[15:13] instr[12:9] instr[9:7] instr[6:5] instr[4:2] instr[1:0] NAME
001 uimm[5:3] rs1 uimm[7:6] rd 00 C.FLD
010 uimm[5:3] rs1 uimm[7:6] rd 00 C.LW
011 uimm[5:3] rs1 uimm[7:6] rd 00 C.FLW
101 uimm[5:3] rs1 uimm[7:6] rs2 00 C.FSD
110 uimm[5:3] rs1 uimm[7:6] rs2 00 C.SW
111 uimm[5:3] rs1 uimm[7:6] rs2 00 C.FSW

instr[15:13] instr[12:5] instr[4:2] instr[1:0] NAME
000 nzuimm[5:4|9:6|2|3] rd 00 C.ADDI4SPN

Table 2.7: Compressed Instructions Quadrant 0

instr[15:13] instr[12] instr[11:7] instr[6:2] instr[1:0] NAME
000 nzimm[5] 0 nzimm[4:0] 01 C.NOP
000 nzimm[5] rs1/rd!=0 nzimm[4:0] 01 C.ADDI
010 imm[5] rd!=0 imm[4:0] 01 C.LI
011 nzimm[17] rd!={0,2} nzimm[16:12] 01 C.LUI

instr[15:13] instr[12] instr[11:10]instr[9:7] instr[6:2] instr[1:0] NAME
100 nzuimm[5] 00 rs1/rd nzuimm[4:0] 01 C.SRLI
100 nzuimm[5] 01 rs1/rd nzuimm[4:0] 01 C.SRAI
100 imm[5] 10 rs1/rd imm[4:0] 01 C.ANDI
100 0 11 rs1/rd 00-rs2 01 C.SUB
100 0 11 rs1/rd 01-rs2 01 C.XOR
100 0 11 rs1/rd 10-rs2 01 C.OR
100 0 11 rs1/rd 11-rs2 01 C.AND

instr[15:13] instr[12:10] instr[9:7] instr[6:2] instr[1:0] NAME
110 imm[8|4:3] rs1 imm[7:6|2:1|5] 01 C.BEQZ
111 imm[8|4:3] rs1 imm[7:6|2:1|5] 01 C.BNEZ

Table 2.8: Compressed Instructions Quadrant 1

20

2.1 – Complete ISA with extensions

instr[15:13] instr[12] instr[11:7] instr[6:2] instr[1:0] NAME
000 nzuimm[5] rs1/rd!=0 nzuimm[4:0] 10 C.SLLI
001 uimm[5] rd uimm[4:3|8:6] 10 C.FLDSP
010 uimm[5] rd uimm[4:2|7:6] 10 C.LWSP
011 uimm[5] rd uimm[4:2|7:6] 10 C.FLWSP
100 0 rs1!=0 0 10 C.JR
100 0 rd!=0 rs2!=0 10 C.MV
100 1 0 0 10 C.EBREAK
100 1 rs1!=0 0 10 C.JALR
100 1 rs1/rd !=0 rs2!=0 10 C.ADD

instr[15:13] instr[12:7] instr[6:2] instr[1:0] NAME
101 uimm[5:3|8:6] rs2 10 C.FSDSP
110 uimm[5:2|7:6] rs2 10 C.SWSP
111 uimm[5:2|7:6] rs2 10 C.FSWSP

Table 2.9: Compressed Instructions Quadrant 2

2.1.4 Post-incrementing Load and Store Instructions

Post-incrementing load and store instructions belong to the proprietary extension
of XPulp. This kind of operation perform a load or a store and at the same time
increment the address that was used for the memory access. There are two versions
that differ on the offset encoding:

• Register-Register (offset come from the register file);

• Register-Immediate (offset is encoded as immediate).

In both of them, the modified address is written back in the register file (rs1).

imm[11:0] rs1 funct3 rd opcode name
offset base 000 dest 0001011 p.lb
offset base 100 dest 0001011 p.lbu
offset base 001 dest 0001011 p.lh
offset base 101 dest 0001011 p.lhu
offset base 010 dest 0001011 p.lw

Table 2.10: Register-Immediate loads with post increment

21

RISC-V PULP

funct7 rs2 rs1 funct3 rd opcode name
0000000 offset base 111 dest 0001011 p.lb
0100000 offset base 111 dest 0001011 p.lbu
0001000 offset base 111 dest 0001011 p.lh
0101000 offset base 111 dest 0001011 p.lhu
0010000 offset base 111 dest 0001011 p.lw

Table 2.11: Register-Register loads with post increment

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode name
offset[11:5] src base 000 offset[4:0] 0101011 p.sb
offset[11:5] src base 001 offset[4:0] 0101011 p.sh
offset[11:5] src base 010 offset[4:0] 0101011 p.sw

Table 2.12: Register-Immediate stores with post increment

funct7 rs2 rs1 funct3 rs3 opcode name
0000000 src base 100 offset 0101011 p.sb
0000000 src base 101 offset 0101011 p.sh
0000000 src base 110 offset 0101011 p.sw

Table 2.13: Register-Register stores with post increment

2.1.5 Hardware Loops
Hardware loops extensions aim to increase the efficiency of small loops in code. In
fact, make it possible to execute a certain amount of instruction multiple times
without overhead. In order to set up a hardware loop 3 information are required:

• start address;

• end address;

• counter.

These pieces of information are provided through hardware loop instructions. There
are two possibilities to set up a hardware loop, the first one is using long commands
in which the information is provided using three different instructions, while the
second one is using a single instruction to set the three values. The main difference is
that short command allows a limited range for the number of instructions contained
in the loop. RI5CY support two levels of nested hardware loops so when a hardware
loop is set, the level (0 or 1) must be specified in instr[7]. Hardware loops and
their encoding is summarized in Tab. 2.14

22

2.1 – Complete ISA with extensions

uimmL rs1 funct3 0000 L opcode name
uimmL[11:0] 00000 000 0000 L 1111011 lp.starti
uimmL[11:0] 00000 001 0000 L 1111011 lp.endi
000000000000 src1 010 0000 L 1111011 lp.count
uimmL[11:0] 00000 011 0000 L 1111011 lp.counti
uimmL[11:0] src1 100 0000 L 1111011 lp.setup
uimmL[11:0] uimmS[4:0] 101 0000 L 1111011 lp.setupi

Table 2.14: Hardware Loop instruction encoding

2.1.6 ALU Extension
ALU extensions belong to the Xpulp proprietary extension and aim to extend the
base instruction set with:

• Bit-Manipulation instructions;

• General ALU instructions;

• Immediate Branching instructions.

As the ALU extension contains a large number of instruction their encoding tables
are reported in Appendix A.

2.1.7 Vectorial
Vectorial Instructions is the extension that allows performing operations on subword
elements at the same time by splitting the datapath into smaller parts (SIMD).
Vectorial instructions can work either on 8-bit(byte) or 16-bit(halfword), and in
addition to that three modes influences the second operand.

• 8-bit:

– Normal mode (vector-vector operation);
– Scalar Replication (Operand 2 is treated as a scalar and replicated 4 times
to form a complete vector);

– Immediate Scalar Replication (Operand 2 comes from immediate and has
to be replicated 4 times).

• 16-bit:

– Normal mode (vector-vector operation);
– Scalar Replication (Operand 2 is treated as a scalar and replicated 2 times
to form a complete vector);

23

RISC-V PULP

– Immediate Scalar Replication (Operand 2 comes from immediate and has
to be replicated 2 times).

Finally, Vectorial instructions are divided into ALU operations and comparison
operations. Vectorial comparisons are done on bytes or on half-words and if the
comparison result is true then all the bits of that byte/half-word are set to 1,
otherwise to 0. As the Vectorial extension contains a large number of instruction
their behaviour tables are reported in Appendix B.

2.2 PULP Architecture
Starting from the complete block diagram shown in Fig. 2.2 in this section is going
to be described each of the architectural block providing a brief explanation of the
functionalities.

Figure 2.2: RI5CY Architecture Block Diagram

2.2.1 Instruction Fetch stage
Instruction Fetch is the first stage, it is responsible for providing addr_o to the
instruction memory, and get the correspondent instruction stored at the given ad-
dress. its main architectural blocks are:

• Prefetch Buffer;

• HwLoop Controller;

• Debug Unit;

• Controller;

24

2.2 – PULP Architecture

Prefetch buffer is the component that actually fetches instructions from the instruc-
tion memory or instruction cache. It is available in two different versions:

• 32-bit prefetcher: It allocates a 3 entries FIFO which stores the fetched in-
struction words;

• 128-bit prefetcher: It stores a 128-bit wide cache line.

The usage of 128-bit or 32-bit prefetcher depends on the setting of INSTR_RDATA_WIDTH,
and according to its value, only one prefetcher is allocated.
Hwloop Controller is the component responsible for handling hardware loops. Here
the current program counter is compared to all the hw-loop end address, and jump
to the right start address if the counter is equal to 0. It has a modular approach,
and it is configured by setting the N_REGS parameter, in RI5CY, it is set to 2 be-
cause only 2 nested hardware loops are supported.
The Debug Unit is directly connected to the RI5CY Debug Interface and has a sig-
nal debug_req_i. That request signal makes the core jumps to a specific address
where the debug ROM is mapped. This address is defined through DM_HaltAddress
parameter.
The RISC-V controller is the main controller of the CPU, it receives signals from
all the pipeline stages and according to their transition is able to handle exceptions,
interrupt and normal execution.

2.2.2 Instruction Decode stage

Even if the instruction decode stage contains only two components it is an im-
portant part of the architecture as it is responsible for the de-codification of the
instruction and consequently to provide proper signals to the Execution stage. In
addition to that is responsible for providing correct input operands to be delivered
to the ALU. Its components are the decoder and the GPR.
As explained in the previous section operands can be either stored in the register
file or provided as immediate. The immediate extension is performed in this stage
and all the possible combination of operands are connected to two multiplexers.
According to the signals set inside the decoder, the correct operands are selected
and delivered to the next stage.
GPR is a register file with 32 locations, each can contain a 32-bit word, the location
x0 is hardwired to 0 and it’s not possible to overwrite it. It has 3 read ports (nec-
essary for three operands operations) and 2 write ports (Write port A is connected
to the load and store unit while Write port B is connected to the Execution stage
output). If FPU is used then an additional 32-bit Floating point register file is
allocated.

25

RISC-V PULP

Figure 2.3: General Purpose Register File

2.2.3 Execution stage
The execution stage is responsible for the execution of the operation. It receives
proper signal and operands from the decode stage. Operands and signals are then
connected to the different Computational blocks allocated. As each of the computa-
tional blocks computes a result, the correct result is selected through a multiplexer.
In case of load and store operations, the operands (i.e. the data to be stored and
the correspondent R/W address) are forwarded to the load and store unit.
The computational blocks allocated are:

• ALU;

• Multiplier;

• FPU;

• APU;

• CSR.

26

2.2 – PULP Architecture

ALU is responsible for the arithmetic operation and also vectorial arithmetic op-
eration, for instance: Shift, Comparisons, Shuffle, BitManipulation and standard
logic-arithmetic.
The multiplier is responsible for Integer multiplication, DotP multiplication (i.e.
Multiply and Accumulate operations) and operation with complex numbers.
FPU, when enabled, is used to compute the result of operation involving single-
precision floating-point operands. The APU is enabled together with the external
floating-point unit (fpnew_pkg), exploiting an OBI-interface APU and FPU are
able to communicate and results of operations computed outside of the core are
available in the execution stage.
Control and Status Register are allocated in the execution stage in order to make
it possible to execute atomic CSR instructions. In fact CSR instructions read the
actual value stored in the control and status register and save it in rd, and at the
same time, the value is overwritten.

2.2.4 WB Stage
The last stage is the write-back, in reality, as shown before the writeback is not
responsible for the register file store operation that is going to be performed at the
end of the execution stage. The operations done in this stage are mainly related to
the load and store operation involving data memory. In case of misaligned memory
access, is necessary to sign-extend data read from data memory, this operation is
performed inside the load and store unit to provide the final operand to be stored
in the register file.

27

28

Chapter 3

UVM Testbench

The starting point of this work is the realization of the UVM Framework. Accord-
ing to the reuse philosophy of UVM, all the components are derived from the UVM
base classes exploiting inheritance.
Starting from the given UVM testbench, a large number of architectural modifi-
cations were required to fit the UVM framework to the device under verification.
For instance, it was necessary to introduce an additional agent with all its sub-
components in order to capture input and output transaction from the DUV. The
agent in charge of capturing input transition is also responsible for driving the in-
put sequence, for this reason, it can be considered an active agent (as it includes
the UVM Driver) while the other agent is a passive entity and its role is to collect
internal signals of the DUV, packing them and put transactions to the scoreboard.
It was also necessary to define two different interfaces, each of them represents the
set of signals to be captured from the DUV at different time instant.

3.1 Overall Structure
In this section the framework structure is briefly analyzed, highlighting the main
components and their role in the verification process. A schematic view is shown
in Fig. 3.1. The two main components are the tb_top and the uvm_test. The
wrapper included in the tb_tob is a useful component that has been created to
encapsulate the device under-verification and the RAM. Even if the RAM is not to
be verified, it is an essential component to make the processor working correctly.
In fact, as the RISC-V processor includes load and stores instructions a 2(XLEN)

memory is required to be inserted alongside the device. The uvm_test instantiate
the UVM environment that includes 3 main blocks:

• Agent_in;

• Agent_out;

29

UVM Testbench

• Scoreboard.

Agent_in is an active agent and is capable of driving and capturing signals. In
particular, the sequencer is the component in charge of generating random test-
vectors according to the processor interface, the generated inputs are then sent to
the driver. Once the driver receives the input transactions from the sequencer, it
dispatches them to the DUV exploiting the input interface and respecting a certain
protocol. Monitor_in, on the other hand, is the input transaction collector, its role
is to capture a set of signal inside the DUV and send them to the scoreboard.
Agent_out is simply a passive entity capable of catching output transaction (actual
results of the operation). Output transaction is then sent to the scoreboard.
Once the scoreboard has received the input transaction (input stimuli) and the
output transaction (results) it evaluates the expected results of the operation and
compares them to the actual results, providing a pass or fail.

Figure 3.1: UVM Framework Structure

30

3.2 – Top

3.2 Top
The top hierarchy of the UVM testbench is tb_top_uvm.sv. The operation per-
formed in this module are the following:

• Clock generation;

• Reset de-assertion;

• Interfaces assignments;

• Wrapper instantiation;

• test run.

The first two operations are fundamental to define the system clock and to de-assert
the rst_n after a certain number of cycles defined in the const int RESET_WAIT_CYCLES.
Interface assignments are the operations necessary to define the connection between
the DUV and the UVM interface. All the required signals have to be written hi-
erarchically in the interfaces declarations in order to be available in the UVM
framework. Exploiting this approach any of the UVM components that has a con-
nection with the interfaces is able to catch signals coming from the device under
verification.
After that Wrapper is instantiated UVM test is launched using run_test().

3.3 Wrapper
The wrapper is the component used to encapsulate the device under test i.e.
riscv_core.sv and the RAM data_ram.sv. Inside the wrapper signals to read
and write from and to memory are connected to the core, and some other signals
are set to their default value. In this way, the device to be instantiated in the
tb_top is the wrapper and its signals, both input and output are reduced. The
wrapper allows having a clear interface in which only the signals to be driven by
UVM Framework are available. Other connections are hidden inside the wrapper
module.

3.4 Interfaces
In UVM the DUV is static, as a result, the communication between the testbench
and the DUV cannot be done as users used to do in classic test-benches. In UVM
Virtual interface feature is used, it represents a collection of signals used to drive
and monitor the DUV from the testbench. The direction of the signals is decided
by the mod-ports. In addition to that clocking-blocks are used to synchronize the

31

UVM Testbench

sampling instant of the signals belonging to the same block. In order to better
understand how virtual interfaces work, they can be considered as a handle point-
ing to the interface instance. Using this approach the testbench can access the
DUV signals through the virtual interface and vice versa. Interfaces are defined in
processor_interface.sv and processor_interface_out.sv. Each of the UVM
components that need to monitor or drive interface signals must declare a virtual
interface instance of that interface and get the reference of the interface from the
UVM configuration database.

3.4.1 Interface in
The input interface, described in processor_interface.sv, contains a set of sig-
nals to be driven and another set of signals to be monitored. According to that
two mod-ports and their clocking-block are defined. The input interface block
scheme is shown in Fig. 3.2.

Figure 3.2: Processor interface block diagram

driver_cb

Signals to be driven belong to the driver_cb, are synchronized to the positive edge
of the clock signal and allows the driver to push input vectors to the DUV at each
clock cycle.

1 clocking driver_cb @ (posedge clk);
2 //Instruction signals
3 output inst_in;
4 output instr_gnt;
5 output instr_rvalid;
6 //Interrupt signals
7 output irq_in;
8 output irq_id_in;
9 output irq_sec_in;

32

3.4 – Interfaces

10 endclocking : driver_cb

Signals in driver_cb are defined as output, even if it seems to be not very intuitive,
it depends on the fact the interface is considered from the testbench point of view,
so the signals which are modified by the driver are the output of the testbench and
input of the DUV.

Monitor_cb

The signals belonging to the monitor_cb are synchronized to the negative edge of
the clock signal to be sure that the input transaction has been delivered to the
DUV. For the same reason explained before, here signals are defined as input.

1

2 clocking monitor_cb @ (negedge clk);
3 //Instruction signals
4 input instr_addr;
5 input instr_req;
6 input core_busy;
7 //Interrupt signals
8 input irq_ack_out;
9 input irq_id_out;

10 //Internal DUV Signals
11 input instr_core;
12 input rs1_address;
13 input rs2_address;
14 input rs3_address;
15 input rd_address;
16 input illegal_insn;
17 input pc_value;
18 input reg_file_i;
19 input b_mask_a;
20 input b_mask_b;
21 input jump_target;
22 input csr_rdata;
23 endclocking : monitor_cb

3.4.2 Interface out
The out interface is used to collect internal signals of the DUV after that operations
have been completed. It represents the collection of the actual results provided by
the DUV. Here signals are going only from the device to the testbench, for this
reason, there is no need to insert a driver clocking block.The input interface block
scheme is shown in Fig. 3.3.

33

UVM Testbench

Figure 3.3: Processor out interface block diagram

All the signals defined in the out interface belong to the monitor_out clocking
block.

1 clocking monitor_out_cb @ (negedge clk);
2 input reg_file_o;
3 input pc_value_o;
4 input wdata_mem;
5 input rdata_mem;
6 input csr_rdata;
7 input csr_wdata;
8 input hwlp_start;
9 input hwlp_end;

10 input hwlp_cnt;
11 endclocking : monitor_out_cb

3.5 Sequences
The UVM System Verilog library provides the uvm_sequence_item as a base class
to describe data items. Data items are the transactions either to be collected or to
be driven in the DUV. Transaction items in the verification framework are derived
from the class uvm_sequence_item which provide a set of useful methods to ran-
domize transaction fields and to compare or print transaction objects.
The sequence-item is composed of data fields required to generate the stimulus
and in that case, are defined as rand and can have constraint ranges defined.
Data fields can represents also analysis information coming from the DUV for
example responses, internal signals, error signals. In the UVM framework de-
veloped for processor under-verification, there are two different sequence objects.
The first one is related to the input transactions while the other one is associ-
ated with the output transactions. The definition of the two sequence object is in
processor_sequence.sv and in packet_out.sv.

34

3.5 – Sequences

3.5.1 Processor Sequence
The transaction object in processor sequence is processor_transaction, in the
following snippet of code the signals included are shown. Some of them are defined
as rand to randomize input values and create input vectors. In reality, it was used
as a first approach to verify that the UVM environment was working properly. As
soon as it was clear that the environment was working properly an external python
program was used to generate random instructions to be fed to the processor. That
choice was done to simplify the randomization procedure, in fact, as the DUV has
a large instruction set it was too complicated to deal with the UVM randomization
feature.

1 class processor_transaction extends uvm_sequence_item;
2

3 ‘uvm_object_utils(processor_transaction)
4

5

6 bit instr_gnt;
7 bit instr_rvalid;
8 bit instr_addr;
9 bit instr_req;

10 bit irq_in;
11 bit irq_id_in;
12 bit irq_sec_in;
13 bit irq_ack_out;
14 bit irq_id_out;
15 bit core_busy;
16 bit [31:0] instr;
17 bit [31:0] instr_core;
18 bit [31:0] instrn;
19 bit [4:0] rs1_address;
20 bit [4:0] rs2_address;
21 bit [4:0] rs3_address;
22 bit [4:0] rd_address;
23 bit [31:0] pc_value;
24 bit [31:0] jump_target;
25 bit [31:0][31:0] reg_file;
26 bit [4:0] b_mask_a;
27 bit [4:0] b_mask_b;
28 bit [31:0] csr_rdata;
29 bit illegal_insn;
30 //RANDOMIZATION
31 rand bit [11:0] immediate;
32 rand bit [4:0] rs1;
33 rand bit [4:0] rs2;

35

UVM Testbench

34 rand bit [4:0] rs3;
35 rand bit [4:0] rd;
36

37

38

39 constraint my_range_1 {rs1 >=5’b00000; rs1<5’b11111; }
40 constraint my_range_2 {rs2 >5’b00000; rs2<5’b11111; }
41 constraint my_range_4 {rs3 >5’b00000; rs3<5’b11111; }
42 constraint my_range_3 {rd >5’b00001; rd<5’b11111; }
43 constraint myrange4 {immediate>12’b0; rd<12’b00111111111;}
44

45 function new (string name = "");
46 super.new(name);
47 endfunction
48

49 endclass: processor_transaction

In processor_sequence are also defined the sequencer operations. In the body
task of inst_sequence, an object of type processor transaction is created. The
random instructions that were written in instructions.txt by the random gen-
erator, are read line by line and associated with the transaction object. Then
finish_item() method is used to signal that the transaction object has been com-
pleted. Now the sequencer is responsible for redirecting the created sequence to the
driver. In the last part of the processor_sequence, the behaviour of the sequence
is described through a simple for loop, in this way each time that the driver calls
get_next_item() a new transaction is available.

3.5.2 Packet out
Packet out is simply the container of the output transaction and it is extended from
the uvm_sequence_item base class. The signals to be captured from the DUV are
shown in the following piece of code.

1 class packet_out extends uvm_sequence_item;
2

3 ‘uvm_object_utils(packet_out)
4

5 bit [31:0][31:0] reg_file;
6 bit [31:0] pc_value;
7 bit [31:0] wdata_mem;
8 bit [31:0] rdata_mem;
9 bit [31:0] csr_rdata;

10 bit [31:0] csr_wdata;
11 bit [31:0] hwlp_start;
12 bit [31:0] hwlp_end;

36

3.6 – Environment

13 bit [31:0] hwlp_cnt;
14 function new (string name = "");
15 super.new(name);
16 endfunction
17

18 endclass: packet_out

3.6 Environment

In the UVM framework, the environment is the container class, in general, it con-
tains one or more agents, and other components such as the monitor, the score-
board, and the subscriber. The processor environment is defined in processor_env.sv
and contains the instantiation of:

• Agent;

• Agent out;

• Scoreboard;

• Subscriber.

The environment operations are performed only during the build and connect
phases. In fact, after the instantiation of the UVC’s during the build phase the
creator function is called to create each of them. During the connect phase, the
analysis ports of Driver and Monitors are connected to the implementation of the
analysis port in the Scoreboard. This is a very important step as analysis ports
are the way transactions move throughout the UVM framework. A scheme of the
connection is shown in Fig. 3.4.

37

UVM Testbench

Figure 3.4: Processor Environment block diagram

Note that the dots on the scoreboard represent the implementation of the anal-
ysis ports while the diamonds represent the analysis port.

3.7 Agents
As explained in the previous section this UVM framework requires two separated
agents both derived extending uvm_agent base class. The first one is the active
agent and it is used to drive and capture the transaction, while the second one
is a passive agent and is used only to monitor signals inside the DUV. An active
agent typically contains a driver, a sequencer, and a monitor while a passive agent
consists of only the monitor.

3.7.1 Agent in
Agent in is the active agent of the framework and it is defined in processor_agent.sv.
Agent in is responsible for the creation of the required UVC’s during the build phase
and for the connection of the sequencer export port with the driver port during the
connect phase. In addition to that during the build phase two text files are opened
and their file descriptor is returned. The UVC’s are created by calling the con-
structor function as shown in the following piece of code.

1 driver = processor_driver::type_id::create("driver", this);
2 mon = processor_monitor::type_id::create("mon",this);
3 sequencer = uvm_sequencer#(processor_transaction)::type_id::create("sequencer", this);

38

3.8 – Driver

The two files opened here are:

• instruction.txt: it is the file in which the generator writes the random
instructions to be sent to the processor. Opening it here make it available in
sequencer which is going to read its content line by line;

• illegal_dump.txt: it is used inside the scoreboard. Each time that an illegal
instructions has been recognized then it is written to that file. It will be useful
to check if the generator is producing proper test vectors or not.

3.7.2 Agent out
Agent out is the passive agent and as a result, it contains only the declaration of
the monitor_out component and its creation during the build phase.

3.8 Driver
The driver, derived from uvm_driver base class is responsible for sending the input
vectors received from the sequencer to the DUV. This operation must be done ac-
cordingly to the protocol specified in the RI5CY User Manual. The signals required
are:

• instr_rdata_i: Data read from instruction memory (i.e. the instruction to
be sent);

• instr_rvalid_i: This signal will be high for exactly one cycle per request.
Is used to signal that instr_rdata holds valid data;

• instr_gnt_i: The other side accepted the request.

During the build phase, the Drv2Sb (Driver to Scoreboard) port is created. Most
of the driver operations are done during the run_phase task. In fact, if during a
positive edge of the clock the request signal is high, then the driver gets a new
transaction object from the sequencer using get_next_item() method and asso-
ciate the signals contained in the transaction to the DUV signals. Once the signal
has been driven to the DUV the transaction is sent to the scoreboard through the
Drv2Sb port using the write() method.

3.9 Monitors
The monitor is used to extract signals information from the internal bus of the DUV
and translate them into transactions. After that transaction has been captured it is
sent to the scoreboard. Both the monitor works in the same way, the only difference
is related to the type of transaction object and the signals contained in it.

39

UVM Testbench

3.9.1 Monitor in
In the input monitor during the run phase, a transaction object pros_trans is
created and at the negative edge of clock, signals from the processor virtual interface
are redirected to the transaction object. Then the processor transaction object
is sent to the Scoreboard through the Mon2Sb port. Input Monitor has crucial
importance as the scoreboard need to know if the transaction sent to the DUV
has been received, and some internal signals are required to evaluate the expected
results starting from the current situation (e.g. the current value of the register
file).

3.9.2 Monitor out
Monitor out, on the other hand, is used to collect signals information after that
operation has been completed. Using the same approach signals contained in the
virtual out interface are redirected to a packet_out transaction object that is then
sent to the Scoreboard through the Mon2Sb_port_out. The signals collected here
represent the actual results of the instruction sent by the driver.

3.10 Scoreboard
The Scoreboard is the most complex component in the UVM framework. It is de-
rived by extension from the uvm_scoreboard base class. It has the important role
of verifying that everything has worked as expected by looking at input and output
transaction. Up to now, we have seen that transaction objects have been moved
throughout the UVM framework using analysis port. Most of them are directed to
the scoreboard where their implementation is defined. Analysis port works like a
callback, so each time that a UVC’s write a transaction to the analysis port, the
correspondent callback function is executed. It is a non-blocking mechanism that
avoids time-delay in the verification framework, but it has a drawback as we need to
synchronize the received transaction in order to perform meaningful comparisons.
For this reason, the callback function of these analysis ports is used to put trans-
actions into uvm_tlm_fifo.
The scoreboard is responsible for decoding the instruction and perform the asso-
ciated operation in order to compute the expected result, compare the expected
result to the actual result coming from the output transaction and provide a PASS
or FAIL signal. Most of the thesis work was done on this component, in fact as the
scoreboard embeds a sort of decoder and the reference model, it was very difficult
to build this component.
During the run phase, the transaction objects are consumed from the FIFO us-
ing the get() method. Once the packets are synchronized two void functions are
executed:

40

3.10 – Scoreboard

• function void print_reg(packet_out pack_out);

• function void decode_check(processor_transaction out_trans, processor_transaction
exp_trans,packet_out pack_out).

The first one is used to print out on the terminal the actual content of the
register file of the DUV. The second one is the main function of the scoreboard.
Before starting the decode of the instruction, a check between the driven instruction
and the input one to the instruction fetch stage is performed. The result of the
comparison is shown through ’uvm_info:

• ‘uvm_info ("1_INSTRUCTION_WORD_PASS ", $sformatf("Actual Instruction=%h
Expected Instruction=%h ",out_trans.instr_core,exp_trans.instrn),
UVM_LOW);

• ‘uvm_info ("1_INSTRUCTION_ERROR ", $sformatf("Actual Instruction=%h
Expected Instruction=%h ",out_trans.instr_core,exp_trans.instrn),
UVM_LOW).

There are others ’uvm_info used to signals certain conditions. As an example some
results of simulation are shown in Fig. 3.5, Fig. 3.6 and Fig. 3.7.

Figure 3.5: Result of AUIPC

Figure 3.6: Result of Branch not taken

41

UVM Testbench

Figure 3.7: Result of branch taken

The meaning of ’uvm_info signals are explained in the final part of this chapter.
Now the decode and check function will be analyzed.

3.10.1 Decode_check
As explained before, this function receives the transaction objects and for sake of
simplicity, the signals contained in transaction objects will be assigned to signals
before moving to the decode and check part.

1 //DECLARATION FOR EXP_TRANS
2 bit [4:0] exp_rs1,exp_rs2,exp_rd;
3

4 //DECLARATION FOR OUT_TRANS
5 bit [4:0] out_rs1,out_rs2,out_rs3,out_rd;
6 bit [31:0][31:0] in_reg_file;
7 bit illegal_found;
8 bit [31:0] in_pc_value;
9 int shamt;

10 bit [31:0] out_instr;
11 bit [31:0] csr_data;
12 bit [31:0] jump_target;
13

14 //DECLARATION FOR PACK_OUT
15 bit [31:0][31:0] out_reg_file;
16 bit [31:0] out_pc_value;
17 bit [31:0] out_wdata_mem;
18 bit [31:0] out_rdata_mem;
19 bit [31:0] out_csr_wdata;
20 bit [31:0] out_csr_rdata;
21 bit [31:0] hwlp_start;
22 bit [31:0] hwlp_end;
23 bit [31:0] hwlp_cnt;
24

25 //GENERIC VARIABLES
26 bit[31:0] expected_res;
27 bit[31:0] tmp32_0,tmp32_1,tmp32_2;

42

3.10 – Scoreboard

28 bit[63:0] tmp64_0,tmp64_1,tmp64_2;
29 bit[15:0] tmp16_0,tmp16_1,tmp16_2;
30 bit[7:0] tmp8_0,tmp8_1,tmp8_2,tmp8_3;
31 bit[31:0] imm_i_type,imm_iz_type,imm_s_type,imm_sb_type,
32 imm_u_type,imm_uj_type,imm_z_type,imm_s2_type,imm_bi_type,
33 imm_s3_type,imm_vs_type,imm_vu_type,imm_shuffleb_type,
34 imm_shuffleh_type,imm_clip_type;
35 bit[31:0] bitmask_first ;
36 bit[31:0] bitmask_inverse ;
37 bit[31:0] bitmask ;
38 int i, j;
39 bit[31:0] count, countones, countzeros;
40 int rotamt;
41 bit branch_taken;
42 int i0,i1,i2,i3,i4,i5,i6,i7;

In the previous piece of code, signals are declared while in the next piece useful
assignments are done to redirect transaction signals to the internal signals.

1 //ASSIGNMENTS EXPECTED VARIABLES
2 exp_rs1=exp_trans.instrn[20:16];
3 exp_rs2=exp_trans.instrn[24:20];
4 exp_rd=exp_trans.instrn[11:7];
5 //ASSIGNMENTS PACK_OUT VARIABLES
6 out_reg_file=pack_out.reg_file;
7 out_pc_value=pack_out.pc_value;
8 out_wdata_mem=pack_out.wdata_mem;
9 out_rdata_mem=pack_out.rdata_mem;

10 out_csr_rdata=pack_out.csr_rdata;
11 out_csr_wdata=pack_out.csr_wdata;
12 hwlp_start=pack_out.hwlp_start;
13 hwlp_end=pack_out.hwlp_end;
14 hwlp_cnt=pack_out.hwlp_cnt;
15 //ASSIGNMENTS OUT_TRANS VARIABLES
16 out_rs1=out_trans.rs1_address;
17 out_rs2=out_trans.rs2_address;
18 out_rs3=out_trans.rs3_address;
19 out_rd=out_trans.rd_address;
20 in_reg_file=out_trans.reg_file;
21 illegal_found=out_trans.illegal_insn;
22 in_pc_value=out_trans.pc_value;
23 shamt=out_rs2;
24 out_instr=out_trans.instr_core;
25 csr_data=out_trans.csr_rdata;
26 jump_target=out_trans.jump_target;
27

28 //ASSIGNMENTS IMMEDIATE VARIABLES

43

UVM Testbench

29 imm_i_type={{20{out_instr[31]}},out_instr[31:20]};
30 imm_iz_type={20’b0,out_instr[31:20]};
31 imm_s_type={{20{out_instr[31]}},out_instr[31:25],out_instr[11:7]};
32 imm_sb_type={{19{out_instr[31]}},out_instr[31],out_instr[7],out_instr[30:25],out_instr[11:8],1’b0};
33 imm_u_type={out_instr[31:12],12’b0};
34 imm_uj_type={ {12 {out_instr[31]}}, out_instr[19:12], out_instr[20], out_instr[30:21], 1’b0 };
35 imm_s2_type={ 27’b0, out_instr[24:20] };
36 imm_bi_type={ {27{out_instr[24]}}, out_instr[24:20] };
37 imm_s3_type={ 27’b0, out_instr[29:25] };
38 imm_vs_type={ {26 {out_instr[24]}}, out_instr[24:20], out_instr[25] };
39 imm_vu_type= { 26’b0, out_instr[24:20], out_instr[25] };
40 imm_shuffleb_type={6’b0, out_instr[28:27], 6’b0, out_instr[24:23],
41 6’b0, out_instr[22:21], 6’b0, out_instr[20], out_instr[25]};
42 imm_shuffleh_type={15’h0, out_instr[20], 15’h0, out_instr[25]};
43 imm_clip_type=(32’h1 << out_instr[24:20]) − 1;
44 //BIT MANIP OPERANDS
45 bitmask_first = 32’hFFFFFFFE << out_trans.b_mask_a ;
46 bitmask = ~(bitmask_first) << out_trans.b_mask_b ;
47 bitmask_inverse = ~(bitmask);

To avoid redundancy, the meaning of signals have not been explained before. Now
that UVM Framework is going to use them a brief description is required.

• exp_rs1 : It is the expected address on 5-bit of source register 1 coming from
driver transaction;

• exp_rs2 : It is the expected address on 5-bit of source register 2 coming from
driver transaction;

• exp_rd : It is the expected address on 5-bit of destination register coming
from driver transaction;

• out_reg_file : It is the [32bit]x[32bit] register file coming from monitor out
and used to check the actual result of the computation;

• out_pc_value : This signal hold the program counter value coming from
monitor out, useful to check if Control Transfer instruction has been executed
correctly;

• out_wdata_mem : This signal contains the data to be written in data memory
sampled by monitor out;

• out_rdata_mem : This signal contains the data to be read from data memory
sampled by monitor out;

• out_csr_rdata : This signal represents the data that has been read from
Control and Status Register file coming from monitor out;

44

3.10 – Scoreboard

• out_csr_wdata : This signal represents the data that has been written in
Control and Status Register file coming from monitor out;

• hwlp_start : When a hardware loop is set, start address value is going to be
written in CSR, this signal holds the value that has been written;

• hwlp_end : When a hardware loop is set, end address value is going to be
written in CSR, this signal holds the value that has been written;

• hwlp_cnt : When a hardware loop is set, the counter value is going to be
written in CSR, this signal holds the value that has been written;

• out_rs1 : It is the actual address on 5-bit of source register 1 coming from
input monitor;

• out_rs2 : It is the actual address on 5-bit of source register 2 coming from
input monitor;

• out_rs3 : For three operands operation it is the actual address on 5-bit of
source register 3 coming from input monitor;

• out_rd : It is the actual address on 5-bit of destination register coming from
input monitor;

• in_reg_file : This signal on [32bit]x[32bit] holds the register file before that
instruction has been executed, It is used to get operands and evaluate the
expected result;

• illegal_found : This signal raise when an illegal instruction is encountered.
When it happens the scoreboard signal it using an ’uvm_info and the illegal
instruction is written in "illegal_dump.txt";

• in_pc_value : This signals hold the program counter value sampled by input
monitor, is used in some instructions to evaluate jump target (JAL, JALR)
and in arithmetic instruction (AUIPC);

• shamt : It is an integer value specified in SRL and SRA instructions to specify
the shift amount, it can be represented on 5 bit as the maximum shift amount
is 32;

• out_instr : It is the actual instruction sampled by the input monitor that is
going to be compared to the one sent by the driver;

• csr_data : It is the value contained in CSR before that atomic RW operation
has been executed;

45

UVM Testbench

• jump_target: This signal is the Jump target sampled by input monitor, in
reality, is never used but during the verification process was used to check
some conditions;

• imm_i_type : Immediate sign extended;

• imm_iz_type : Immediate zero extended;

• imm_s_type : S-type immediate;

• imm_u_type : U-type immediate;

• imm_uj_type : UJ-type immediate;

• imm_s2_type : S2-type immediate;

• imm_bi_type : BI-type immediate;

• imm_s3_type : S3-type immediate;

• imm_vs_type : VS-type immediate (Sign-extension for vectorial type);

• imm_vu_type : VU-type immediate (Zero-extension for vectorial type);

• imm_shuffleb_type : SHUFFLEB-type immediate (SHUFFLE type for byte
vectorial);

• imm_shuffleh_type : SHUFFLEH-type immediate (SHUFFLE type for half-
word vectorial);

• imm_clip_type : CLIP-type immediate;

• bitmask_first : Signal used for bit-manipulation instructions ;

• bitmask : Signal used for bit-manipulation instructions, it is evaluated by left
shifting bitmask of an amount coming from input monitor;

• bitmask_inverse : Signal used for bit-manipulation instructions, it is simply
the bitwise negation of bitmask.

The decoding phase starts with a check on the expected instruction (coming from
driver transaction) and actual instruction (coming from the input monitor). If this
check was successful then we can move on to identify the instructions using its
opcode(i.e. instr[6:0]) and its function fields (i.e. instr[14:12] function3 and
instr[31:25] function7) according to the type of instructions. The scoreboard
decode_check function is shown in Fig. 3.8, all the case and if are collapsed
because otherwise, it is not readable.

46

3.10 – Scoreboard

Figure 3.8: decode and check function collapsed

Finally, inside each of the opcode cases, the instruction is recognized and the
expected value is computed. Then it is compared to the content of register rd
coming from output monitor. As an example is reported in the following piece of
code the complete decode and check for OPIMM Instructions.

1 7’b0010011:begin //OPCODE_OPIMM
2 ‘uvm_info ("2_OPCODE_OPIMM", $sformatf("Instruction is %h\n",out_trans.instr_core),
3 UVM_LOW)
4 if(illegal_found==1) begin
5 ‘uvm_error ("3_ILLEGAL_INSN", $sformatf("RAISED ILLEGAL SIGNAL IN CONTROLLER"))
6 $fdisplay(processor_agent.dump_illegal,"%h",out_trans.instr_core);
7 end
8 else begin
9 case(out_trans.instr_core[14:12])

10 3’b000: begin
11 expected_res=imm_i_type+in_reg_file[out_rs1][31:0];
12 if(expected_res==out_reg_file[out_rd][31:0]) begin
13 ‘uvm_info ("4_ADDI_SUCCESS", $sformatf("Actual Calculation=%h
14 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
15 end
16 else begin
17 ‘uvm_info ("4_ADDI_FAILED", $sformatf("Actual Calculation=%h
18 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
19 end
20 end
21 3’b010: begin
22 expected_res = $signed(in_reg_file[out_rs1][31:0]) < $signed(imm_i_type) ? 32’h00000001 : ’0;
23 if(expected_res==out_reg_file[out_rd][31:0]) begin
24 ‘uvm_info ("4_SLTS_SUCCESS", $sformatf("Actual Calculation=%h

47

UVM Testbench

25 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
26 end
27 else begin
28 ‘uvm_info ("4_SLTS_FAILED", $sformatf("Actual Calculation=%h
29 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
30 end
31 end
32 3’b011: begin
33 //comparison evaluation
34 expected_res = $unsigned(in_reg_file[out_rs1][31:0]) < $unsigned(imm_i_type) ? 32’h00000001 : ’0;
35 if(expected_res==out_reg_file[out_rd][31:0]) begin
36 ‘uvm_info ("4_SLTU_SUCCESS", $sformatf("Actual Calculation=%h
37 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
38 end
39 else begin
40 ‘uvm_info ("4_SLTU_FAILED", $sformatf("Actual Calculation=%h
41 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
42 end
43 end
44 3’b100: begin
45 expected_res=imm_i_type^in_reg_file[out_rs1][31:0];
46 if(expected_res==out_reg_file[out_rd][31:0]) begin
47 ‘uvm_info ("4_XORI_SUCCESS", $sformatf("Actual Calculation=%h
48 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
49 end
50 else begin
51 ‘uvm_info ("4_XORI_FAILED", $sformatf("Actual Calculation=%h
52 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
53 end
54 end
55 3’b110: begin
56 expected_res=imm_i_type|in_reg_file[out_rs1][31:0];
57 if(expected_res==out_reg_file[out_rd][31:0]) begin
58 ‘uvm_info ("4_ORI_SUCCESS", $sformatf("Actual Calculation=%h
59 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
60 end
61 else begin
62 ‘uvm_info ("4_ORI_FAILED", $sformatf("Actual Calculation=%h
63 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
64 end
65 end
66 3’b111: begin
67 expected_res=imm_i_type&in_reg_file[out_rs1][31:0];
68 if(expected_res==out_reg_file[out_rd][31:0]) begin
69 ‘uvm_info ("4_ANDI_SUCCESS", $sformatf("Actual Calculation=%h
70 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)

48

3.10 – Scoreboard

71 end
72 else begin
73 ‘uvm_info ("4_ANDI_FAILED", $sformatf("Actual Calculation=%h
74 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
75 end
76 end
77 3’b001: begin
78 expected_res=in_reg_file[out_rs1][31:0]<<shamt;
79 if(expected_res==out_reg_file[out_rd][31:0]) begin
80 ‘uvm_info ("4_SLLI_SUCCESS", $sformatf("Actual Calculation=%h
81 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
82 end
83 else begin
84 ‘uvm_info ("4_SLLI_FAILED", $sformatf("Actual Calculation=%h
85 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
86 end
87 end
88 3’b101: begin
89 if(out_trans.instr_core[31:25]==7’b0) begin
90 expected_res=$signed(in_reg_file[out_rs1][31:0]) >> $signed(shamt);
91 if(expected_res==out_reg_file[out_rd][31:0]) begin
92 ‘uvm_info ("4_SRLI_SUCCESS", $sformatf("Actual Calculation=%h
93 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
94 end
95 else begin
96 ‘uvm_info ("4_SRLI_FAILED", $sformatf("Actual Calculation=%h
97 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
98 end
99 end

100 else if(out_trans.instr_core[31:25]==7’b0100000) begin
101 expected_res=$signed(in_reg_file[out_rs1][31:0]) >>> $signed(shamt);
102 if(expected_res==out_reg_file[out_rd][31:0]) begin
103 ‘uvm_info ("4_SRAI_SUCCESS", $sformatf("Actual Calculation=%h
104 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
105 end
106 else begin
107 ‘uvm_info ("4_SRAI_FAILED", $sformatf("Actual Calculation=%h
108 Expected Calculation=%h\n",out_reg_file[out_rd][31:0],expected_res), UVM_LOW)
109 end
110 end
111 end
112 endcase
113 end
114 end

49

UVM Testbench

3.10.2 Summary of simulation
In the summary of the simulation, the count of each uvm_info signal is reported.
To simplify the extraction of the useful information from the summary a number
was inserted at the begin of the string.

• 1_INSTRUCTION_WORD_PASS or 1_INSTRUCTION_ERROR;

• 1_BRANCH_TAKEN or 1_BRANCH_NOT_TAKEN;

• 2_ILLEGAL_OPCODE or 2_OPCODE_XXX;

• 3_ILLEGAL_INSN;

• 4_OP_SUCCESS or 4_OP_FAILED.

Exploiting this approach the plot_report() function included in functions.py
can extract the needed information from the simulation log and display a plot bar
allowing a faster check of the performances. An example of plot is shown in Fig.
3.9.

Figure 3.9: Plot of simulation summary

50

Chapter 4

Simulation Environment

In this chapter will be analyzed the python environment developed the support
of the UVM framework. To speed up the verification procedure it was decided
to develop a random instructions generator mainly based on a database of valid
instructions extracted from the RTL hardware description. Finally, a graphical
user interface based on Tkinter has been developed, in this way user can specify
the number and type of instructions to be tested, compile and run a simulation and
collect the results. In the first section will be explained how the ISA Database has
been extracted and used, in the second the Random generator features are shown
while in the last section the GUI functionality will be explained.

4.1 ISA Database
A large part of this work was dedicated to the extraction of the available instruc-
tion set. It was not so easy as for a certain kind of instructions there was a lack
of documentation. The first approach was to identify all the valid opcodes ac-
cepted by the device under verification, which was done by simply looking at the
riscv_defines.sv. Using an extractor script (Extractor.py)and a database cre-
ator (db_opcode_32_creator.py) the following database is obtained.

1 name_byopcode={
2 "1110011" :"OPCODE_SYSTEM",
3 "0001111" :"OPCODE_FENCE",
4 "0110011" :"OPCODE_OP",
5 "0010011" :"OPCODE_OPIMM",
6 "0100011" :"OPCODE_STORE",
7 "0000011" :"OPCODE_LOAD",
8 "1100011" :"OPCODE_BRANCH",
9 "1100111" :"OPCODE_JALR",

10 "1101111" :"OPCODE_JAL",

51

Simulation Environment

11 "0010111" :"OPCODE_AUIPC",
12 "0110111" :"OPCODE_LUI",
13 "1010011" :"OPCODE_OP_FP",
14 "1000011" :"OPCODE_OP_FMADD",
15 "1001111" :"OPCODE_OP_FNMADD ",
16 "1000111" :"OPCODE_OP_FMSUB",
17 "1001011" :"OPCODE_OP_FNMSUB",
18 "0100111" :"OPCODE_STORE_FP",
19 "0000111" :"OPCODE_LOAD_FP ",
20 "0001011" :"OPCODE_LOAD_POST",
21 "0101011" :"OPCODE_STORE_POST",
22 "1011011" :"OPCODE_PULP_OP",
23 "1010111" :"OPCODE_VECOP",
24 "1111011" :"OPCODE_HWLOOP",
25 }
26 opcode_byname={
27 "OPCODE_SYSTEM" :"1110011",
28 "OPCODE_FENCE" :"0001111",
29 "OPCODE_OP" :"0110011",
30 "OPCODE_OPIMM" :"0010011",
31 "OPCODE_STORE" :"0100011",
32 "OPCODE_LOAD" :"0000011",
33 "OPCODE_BRANCH" :"1100011",
34 "OPCODE_JALR" :"1100111",
35 "OPCODE_JAL" :"1101111",
36 "OPCODE_AUIPC" :"0010111",
37 "OPCODE_LUI" :"0110111",
38 "OPCODE_OP_FP" :"1010011",
39 "OPCODE_OP_FMADD" :"1000011",
40 "OPCODE_OP_FNMADD " :"1001111",
41 "OPCODE_OP_FMSUB" :"1000111",
42 "OPCODE_OP_FNMSUB" :"1001011",
43 "OPCODE_STORE_FP" :"0100111",
44 "OPCODE_LOAD_FP " :"0000111",
45 "OPCODE_LOAD_POST" :"0001011",
46 "OPCODE_STORE_POST" :"0101011",
47 "OPCODE_PULP_OP" :"1011011",
48 "OPCODE_VECOP" :"1010111",
49 "OPCODE_HWLOOP" :"1111011",
50 }

The second step was the larger time-consuming operation as it was necessary to

52

4.1 – ISA Database

find all the possible instructions. A reverse-engineering operation was fundamental
to extract from the riscv_decoder.sv the complete instruction set. The encoding
of the instructions was reported in a .csv for sake of simplicity. As the random
generator has been developed in python the best way to having a database without
duplication of elements is using a set of dictionaries. In fact, python dictionaries
are used to store data values in key: value pairs and does not allow duplicates.
So starting from two CSV databases:

• ISA.csv;

• ISA_C.csv.

Those CSV files have been converted in a database using respectively db_isa_32_creator.py
and db_isa_16_creator.py. The resulting database is a simple structure in which
instructions are divided by Encoding types (R,RI,I,S,SB,U,UJ,HL,PRIV,BM,IB,R4,V)
and it is possible to search for instructions using different criterion (i.e. keys). For
each type of instructions the instruction database is generated using a snippet of
code like the following one:

1 f_write= open("database/db_ISA_32.py","a+")
2 f_write.write("####################################\n")
3 f_write.write("####################################\n")
4 f_write.write(" #R_type_DB\n")
5 f_write.write("####################################\n")
6 f_write.write("####################################\n")
7 f_write.write("R_TYPE_BYINSTR_NAME={\n")
8 for c in range(0, len(r_instructions)):
9 f_write.write("\"{}\" :\"{}\",\n". format(r_instructions[c],r_names[c]))

10 f_write.write("}\n")
11 #search by name and returns instruction complete
12 f_write.write("R_TYPE_BYNAMES_INSTR={\n")
13 for c in range(0, len(r_instructions)):
14 f_write.write("\"{}\" :\"{}\",\n". format(r_names[c],r_instructions[c]))
15 f_write.write("}\n")
16 #search by name and returns OPCODE
17 f_write.write("R_TYPE_BYNAMES_OPCODE={\n")
18 for c in range(0, len(r_instructions)):
19 f_write.write("\"{}\" :\"{}\",\n". format(r_names[c],r_opcodes[c]))
20 f_write.write("}\n")
21 #search by name and returns instruction complete
22 f_write.write("R_TYPE_BYNAMES_FUNCT3={\n")
23 for c in range(0, len(r_instructions)):
24 f_write.write("\"{}\" :\"{}\",\n". format(r_names[c],r_funct3s[c]))
25 f_write.write("}\n")

53

Simulation Environment

26 #search by name and returns FUNCT7
27 f_write.write("R_TYPE_BYNAMES_FUNCT7={\n")
28 for c in range(0, len(r_instructions)):
29 f_write.write("\"{}\" :\"{}\",\n". format(r_names[c],r_funct7s[c]))
30 f_write.write("}\n")
31 #search by FUNCT3 and returns instruction name
32 f_write.write("R_TYPE_BYFUNCT3_NAMES={\n")
33 for c in range(0, len(r_instructions)):
34 f_write.write("\"{}\" :\"{}\",\n". format(r_funct3s[c],r_names[c]))
35 f_write.write("}\n")
36 #search by FUNCT7 and returns instruction name
37 f_write.write("R_TYPE_BYFUNCT7_NAMES={\n")
38 for c in range(0, len(r_instructions)):
39 f_write.write("\"{}\" :\"{}\",\n". format(r_funct7s[c],r_names[c]))
40 f_write.write("}\n")
41 #search by OPCODE and returns instruction name
42 f_write.write("R_TYPE_BYOPCODE_NAMES={\n")
43 for c in range(0, len(r_instructions)):
44 f_write.write("\"{}\" :\"{}\",\n". format(r_opcodes[c],r_names[c]))
45 f_write.write("}\n")

Some of the keys are never used, in general, the approach used in the random
generator is to get all the instruction names using their opcodes, and after that get
the full instructions exploiting the previously obtained name.

4.2 RV Generator
The istruction set database was the starting point for the random generator. Once
the database has been created the next step is to randomize among opcodes and
then among of instructions of that database.
In rvgen2.py database dictionaries are imported in order to be available in the
current program and then are cast to list. Using lists instead of dictionaries is
better as in this way we are able to use random.choice() method to get a random
element from a list.
The main function in rvgen2.py is rv_generator, it accepts as arguments 3 pa-
rameters:

• num: the number of random instructions to be generated;

• sel: it is a string containing ones and zeros and it is used to select the subset
of opcodes to be included in randomizations;

• log: it is a 1 or 0 and gives the possibility of avoiding printing on stdout the
log on instruction randomizations.

54

4.2 – RV Generator

num does not represent the actual number of instructions generated, in fact, to get
the real number we should add prologue instructions, and consider that Control
Transfer instructions lead to additional instructions. sel is really important in a
CDV (Coverage Driven Verification) environment as allow us to select only opcodes
that were not fully covered in previous simulations. Its value is set in the GUI and
follow table 4.1

OP FENCE HWLOOP SYSTEM VECOP STOREFP PULP_OP
sel[0] sel[1] sel[2] sel[3] sel[4] sel[5] sel[6]
LOADFP JAL JALR BRANCH STORE STOREPOST LOAD

sel[7] sel[8] sel[9] sel[10] sel[11] sel[12] sel[13]
LOADPOST LUI AUIPC OPIMM OP_FP FMADD FNMADD

sel[14] sel[15] sel[16] sel[17] sel[18] sel[19] sel[20]
FMSUB FNMSUB CORNERCASES
sel[21] sel[22] sel[23]

Table 4.1: sel string encoding

According to the sel string provided as input, the OPCODE_LIST is created in
a for-loop by appending OPCODE_DB elements to it using sel[i] as a masking
condition. The second step to initialize the environment is to create an instruction
list for each of the opcodes. The complete instruction list is obtained by combining
together the list of instructions coming from the database. Then by looking at their
7 LSB’s (i.e. OPCODE) instructions are appended to the correct list. Finally what
we get are the following lists containing number of elements specified in parenthesis:

• OPCODE_OP (52);

• OPCODE_FENCE (2);

• OPCODE_HWLOOP (6);

• OPCODE_SYSTEM (12);

• OPCODE_VECOP (200);

• OPCODE_STORE_FP (4);

• OPCODE_PULP_OP (20);

• OPCODE_LOAD_FP (4);

• OPCODE_JAL (1);

• OPCODE_JALR (1);

• OPCODE_BRANCH (8);

55

Simulation Environment

• OPCODE_STORE (3);

• OPCODE_STORE_POST (6);

• OPCODE_LOAD (5);

• OPCODE_LOAD_POST (10);

• OPCODE_LUI (1);

• OPCODE_AUIPC (1);

• OPCODE_OPIMM (9);

• OPCODE_OP_FP (89);

• OPCODE_FMADD;

• OPCODE_FNMADD;

• OPCODE_FMSUB;

• OPCODE_FNMSUB.

The random generator is also capable of providing wrong instructions, illegal in-
structions in order to raise exception signals and cover also corner cases situations.
As explained the random generator has two levels of randomization, in the first
step a random opcode is chosen among the ones included in OPCODE_LIST, then a
random instruction is chosen from the instruction list of that opcode. The random
instruction got from the randomization process is a prototype containing "x" in
fields that have to be filled. So depending on the opcode different operations are
performed to get a complete instruction where all the fields have been properly
filled.
In the following snippet of code, the randomization of OPCODE_OP is shown:

1 typ=random.choice(OPCODE_LIST)
2 x+=1
3 if(typ=="OPCODE_OP"):
4 inst = random.choice(OPCODE_OP)
5 instr,name =inst
6 if(instr[0:2]=="11"): #IMMEDIATE BIT MANIPULATION
7 LS3=random_reg()
8 LS2=random_reg()
9 SRC=random_reg()

10 RD=random_regd()
11 instr_fill="11"+LS3+LS2+SRC+instr[17:20]+RD+instr[25:]

56

4.2 – RV Generator

12 elif(instr[0:2]=="10"): #REGISTER BIT MANIPULATION
13 RS1=random_reg()
14 RS2=random_reg()
15 RD=random_regd()
16 instr_fill="1000000"+RS2+RS1+instr[17:20]+RD+instr[25:]
17 else: #OTHER INSTRUCTIONS
18 RS1=random_reg()
19 RS2=random_reg()
20 RD=random_regd()
21 instr_fill=instr[0:7]+RS2+RS1+instr[17:20]+RD+instr[25:]
22 if(log==1):
23 print(colored("{}:". format(x),"red"),colored(instr_fill,"green"),
24 colored(name,"green"))
25 f.write("{}\n". format(instr_fill))

To generate random immediate,register address and rounding modes four different
functions are used:

• def random_reg(): used to generate random rs1 and rs2, a random number
in range [0,31] is generated and converted to its binary form;

• def random_regd(): used to generate random rd, a random number in range
[1,31] is generated and converted to its binary form (rd /= 0);

• def random_rounding_mode(): used to generate random rounding mode, a
random element is chosen from list "ROUNDING_MODE=["000","001","010","011","100"]";

• def random_immediate(n): Used to generate random operands to be inserted
as immediate, it accepts an integer argument to select the number of bits of
the immediate.

After instr_fill has been obtained by concatenation of operands and instruction
fixed fields, it is always written in the instruction.txt file and ready to be read
by the UVM Sequencer. If log option is enabled the instructions are written to the
stdout. An example of random generated program is shown in the Fig. 4.1

57

Simulation Environment

Figure 4.1: Random Program generated by RVGEN2.py

Finally, after the randomization process has been completed it is necessary to

58

4.3 – UVM Env Configurator

modify the UVM Framework, in particular, the sequencer file must be updated
to change the number of iteration required to send all the transactions read from
instruction.txt. This operation is performed by the function overwrite_sequencesv(num).

4.3 UVM Env Configurator

UVM Env Configurator is the GUI developed to configure the simulation constraint
and run a complete simulation. It has been developed using the Tkinter Python
library, and contains a set of elements that will be explained in the next subsections.
GUI is shown in Fig. 4.2.

Figure 4.2: UVM Env Graphical User Interface

4.3.1 GUI Elements
In this subsection, the GUI elements are described explaining their functionalities.
tk.Entry and tk.CheckButton are used to configure the simulation parameters.
tk.Buttons are used to run simulations and interact with the UVM Framework.

tk.Notebook element

The graphical user interface is split into two tabs using tk.Notebook. The first
frame shows the UVM Configurator, which will be detailed in the next paragraph,
while the second frame is used to show the plots created during the simulation.

59

Simulation Environment

tk.Entry element

In the GUI there is a single tk.Entry element. It is used to specify the parameter
num that is the number of random instruction to generate. The parameter is then
passed as argument of the rv_generator function imported from rvgen2.py.

tk.CheckButton elements

There are 24 CheckButtons, each of them corresponds to each of the bit of the
string sel. Each of the check buttons is associated with a tk.booleanvar whose
initial value is set before initializing the interface. By changing the state of check
buttons sel string is changed. There is an additional check button that is used to
set the log parameter, if it is enabled then all the operations will print on stdout
otherwise only some information will be printed.

tk.Buttons elements

There are ten tk.buttons used to interact with the UVM framework, in particular,
each of them as a callback function that is run whenever the button is pressed:

• CLEAR: It was necessary to add this button to clean up the terminal from
the result of the previous simulation. When it is pressed its callback function
clear() is called;

• CLOSE: When it is pressed the GUI is terminated by using root.quit()
function;

• RANDOMIZE: When it is pressed, the callback function randomize() is ex-
ecuted. All the input parameter are passed to the rvgen2.rv_generator()
function and progress bar is updated gradually reaching 33%;

• COMPILE: After Randomization the processor_sequence has been modified
so the UVM framework must be recompiled. When the button is pressed
compile_design() function is executed and the progress bar is updated to
66%;

• RUN_SIM: When it is pressed run_sim() function is executed. At the end
of the simulation if log on stdout was enabled then you should see on stdout
the summary of results, otherwise, you need to press the SUMMARY button.
The progress bar is updated reaching 100%;

• SUMMARY: When it is pressed a summary of the simulation is printed out
on stdout;

• PLOT: This button is used to run plot_report() function imported from
functions.py. When pressed a plot is created extracting information of the
simulation from the summary;

60

4.3 – UVM Env Configurator

• COVER: when it is pressed a coverage analysis of the last simulation is run.
The result is saved in the coverage folder, a plot of the actual coverage is
saved in the figure folder and the Coverage result labels are updated. Further-
more, aggregate coverage is evaluated by a combination of ".ucdb" databases
of coverage;

• POST_EDIT: When this button is pressed, a post-editing operation is per-
formed to create coverage reports divided by type and then different plots are
created;

• TREND: Whenever it is pressed the result of the post-editing step is exploited
to create a plot showing the percentage of coverage over the number of simu-
lation.

4.3.2 GUI Result Frames
In this section the "Results" tab is shown and explained. Each time that a plot is
created using buttons available in UVM Configurator tab, instead of showing the
plot using plt.show() method the figure is saved in the figures folder, re-opened
and shown in the results tab.

Simulation Results

Figure 4.3: Simulation Result frame

61

Simulation Environment

Single Coverage Result

Figure 4.4: Single Coverage Result frame

Aggregate Coverage Result

Figure 4.5: Aggregate Coverage Result frame

62

4.3 – UVM Env Configurator

Coverage Trend

Figure 4.6: Coverage Trend frame

63

64

Chapter 5

Simulation and Results

In this chapter, the results of the verification procedure are shown and described.
The first section will describe the type of coverage that has been used and the
selected metrics, in the second section the results of the simulations are shown
through plots to demonstrate that the DUV is working as intended (i.e. verification
scope), the percentage of coverage is shown and how it has been reached is described.
The last step is really important to demonstrate that the DUV has been fully
exercised in most of its functionalities.

5.1 Coverage and metrics
Collecting coverage information is fundamental because improves efficiency allow-
ing the identification of areas of the design that have not been exercised. In this
project, code coverage is used to determine the level of confidence in the verifica-
tion. Code coverage is a measure of the amount of code of the RTL description
is executed when a simulation is run. A program with high code coverage has a
lower chance of containing undetected bugs. That suggests we need to reach a high
coverage level to make this verification procedure meaningful.
Enabling the analysis of code coverage is simple as it is done by inserting a com-
mand while the design is compiled and simulation is run, after the simulation, a
".ucdb" database is returned and another ModelSim command is used to extract
coverage information in a user-readable form.
The available metrics are the following and will be explained in the following sub-
sections:

• Statement Coverage;

• Branch Coverage;

• Focused Expression Coverage;

65

Simulation and Results

• Focused Condition Coverage;

• FSM Coverage;

• Toggle Coverage.

5.1.1 Statement Coverage
Statement coverage reports which RTL statements have been executed or not. Lines
can contain multiple statements and this kind of coverage can identify more than
one statement for each line of code. It is useful to identify statements that have
not executed and may investigate the reasons:

• Statement could not be executed because data and control flow prevents its
execution;

• Is possible to execute statement but the condition required has not been cre-
ated.

Stmts = N_of_executed_statements

Total_statements
∗ 100 (5.1)

5.1.2 Branch Coverage
The branch coverage metric counts the amount of control flow transfer statements
like if, case, while, repeat, for, loop. An if statement with a single condition provides
2 possible conditions, and it is necessary to cover both the condition to achieve
100%. In some cases should be checked if the expression can assume both values
or not.

Branch = N_of_executed_branches

Total_branches
∗ 100 (5.2)

5.1.3 Focused Condition Coverage
Condition coverage checks boolean expression in conditional statements to test and
evaluate the variables or sub-expressions. The goal of condition coverage is to check
individual outcomes for each logical condition [12]. For instance let consider the
following boolean expression:
if(x<y and a>b) there are two logical conditions, as a result the possible outcomes
are

• True,True;

• True,False;

• False,True;

66

5.1 – Coverage and metrics

• False,False.

To achieve 100% coverage all the possible conditions must be covered.

Condition = N_of_executed_operands

Total_number_of_operands
∗ 100 (5.3)

5.1.4 Focused Expression Coverage
The same as condition coverage, but covers concurrent signal assignments instead of
branch decisions[cit] As an example, an extract of Expression coverage is reported
in Fig. 5.1.

Figure 5.1: Expression coverage

5.1.5 FSM Coverage
FSM Coverage is divided into state coverage and transition coverage. In fact, even
if we succeed in covering all the state of the FSM, is possible that all the transition
has not covered. If we consider the FSM shown in Fig. 5.2

Figure 5.2: alu div FSM example

67

Simulation and Results

The FSM is composed of three states and four arcs. State coverage provides
a table with a count of the visits for each of the state. Transition coverage will
provide a table in which there are all the possible arcs to be covered. A report like
the one shown in Fig. 5.3 is provided for each of the FSM recognized in the design.

Figure 5.3: FSM coverage

5.1.6 Toggle Coverage

Toggle coverage reports the number of times each bit of signals has toggled its
value. The basic toggle coverage is enabled with -t option and cover: 1→ 0 and
0→1 transition. QuestaSim provide also an extended toggle coverage (-x option)
to cover also transition from and to undefined ("X"), and tristate ("Z")

68

5.2 – Simulations

5.2 Simulations
In this section, the results of the simulations are shown and discussed. As the aim
of the verification is reaching a coverage value over 90% we will see step by step
what was necessary to reach that value. Two different attempts have been done to
reach 90%, in the first one a large number of simulation were required, while in the
second attempt a reduced number was sufficient as only the best test-set has been
included while the useless test-set were removed. As the test-size is an important
parameter the second attempt is better and only that results will be explained,
Coverage trends are reported in Fig. 5.4 for completeness.

(a) First attempt coverage trend (b) Second attempt coverage trend

Figure 5.4: Coverage trends

5.2.1 Single Simulation
As a first approach, a single simulation with a random set of instructions has been
run.
The expected result is that exploiting unconstrained randomization the value of
the coverage will be of course lower than 50% because of the method employed in
the random generator. In fact, as some opcode contains a large number of instruc-
tions while some other contains only one or two instructions and random.choice()
method is not weighted, it is not possible to cover the major part of the instruction
set with a single run.
The expected result has been confirmed by the results of the simulation shown in
Fig. 5.5 and Fig. 5.6.

As you can see from Fig. 5.5 the number of instructions for each of the opcode
is not balanced, having a great number of LUI and AUIPC. At this point, there

69

Simulation and Results

Figure
5.5:

R
esults

ofthe
sim

ulation

70

5.2 – Simulations

were two possible solutions:

• Modify the random generator assigning a weight to opcodes to increase the
probability of executing different instructions avoiding repetition of the same
instruction;

• Run multiple simulations and merge coverage databases.

Coverage report in Fig. 5.6 is a fast and convenient way to look at coverage results
but is not sufficient to understand which part of the design has not covered. For
this reason, together with this figure, two additional textual reports are provided:

• CovReport.txt: it shows the metric percentage reached for each of the com-
ponents;

• CovReportlines.txt: It is an expanded version in which it is reported also
detailed information about the uncovered parts of the design.

To increase the coverage the second technique has been exploited (i.e. Merging
databases), so in the next subsections, the results of multiple runs are reported.

5.2.2 Multiple Simulations

QuestaSim provides a useful command vcover merge to merge the coverage results
obtained in the previous simulations. This mechanism allows joining databases
without repetition of previously covered parts. Now on, the coverage efforts will be
explained focusing on what has been done to get a certain increase and discussing
what has not been covered.

Instruction Set Coverage

After the first generic simulation, a sequence of constrained simulations has been
launched to cover the entire Instruction Set. To be sure that normal situation
has been properly tested we can look at the riscv_compressed_decoder.sv and
riscv_decoder.sv coverage results from CovReportlines.txt.
For each of the simulation, the user is able to select the opcodes to be inserted
according to the coverage requirements. Starting from standard Arithmetic oper-
ation up to vectorial and privileged almost all the instructions contained in ISA
have been tested. Results of some simulations are shown in Fig. 5.7 and Fig. 5.8.

71

Simulation and Results

Figure
5.6:

C
overage

R
eport

72

5.2 – Simulations

(a) Single run including AUIPC,
OPCODE_OP, OPCODE_OPIMM

(b) Aggregate coverage after (a)

(c) Single run including
OPCODE_SYSTEM

(d) Aggregate coverage after (c)

(e) Single run including PULP_OP (f) Aggregate coverage after (e)

Figure 5.7: Instruction Set Coverage reports

At that point, Coverage reached 75,6% and a larger increase with this approach

73

Simulation and Results

was not possible as great results were already obtained for the decoder and com-
pressed decoder. Complete coverage results are reported in Fig. 5.9.

(a) Single run including Control Transfer
Instructions

(b) Aggregate coverage after (a)

Figure 5.8: Instruction Set Coverage reports

74

5.2 – Simulations

Fi
gu

re
5.
9:

C
ov
er
ag
e
R
ep

or
t

75

Simulation and Results

Exception handling

By looking at Fig. 5.9 it appears clear that the verification effort must be directed
to the riscv_controller and its related components. For this reason, the random
generator has been modified to generate not only correct instructions but also illegal
ones. Random Generator is capable of generating:

• Illegal Instructions;

• Misaligned Instructions;

• Wrong Hwloop.

In this way, the idea is to cover exceptions that raise in the device under test when-
ever rules are not respected. The already existing ISA database has been used
to modify also the "non-modifiable" fields of the instructions. To be more clear a
simple example is reported in Tab. 5.1
Correct SRAI instruction is highlighted in green while illegal SRAI is red-highlighted.

instr[31:20] instr[19:15] instr[14:12] instr[11:7] instr[6:0] NAME
0100000-shamt rs1 101 rd 0010011 SRAI
0100111-shamt rs1 101 rd 0010011 SRAI-ILL

Table 5.1: Example of illegal instruction

The only difference is on the funct7 field which contains an abnormal value. When
the generator picks a new instruction from the database, normally its fields are filled
with register-addresses or immediate, but in this case, also the functional fields (i.e.
the ones used to decode) are overwritten with random values.
Another kind of illegal instructions generated are instructions that does not respect
the 32bit, or 16bit encoding. In this way misaligned access in instruction memory
is simulated allowing a coverage of that corner case.
Many other types of corner cases has been inserted to cover exceptions handling of
the design. Exploiting this approach a 82% of coverage has been reached. Coverage
Results are reported in Fig. 5.10.

76

5.2 – Simulations

Fi
gu

re
5.
10
:
C
ov
er
ag
e
R
ep

or
t

77

Simulation and Results

Interrupt handling

The final effort to increase coverage was directed to interrupt handling. As interrupt
controller’s and controller’s FSM contains states and transition that occurs only if
interrupt request arrives and it is served, a mechanism to generate interrupts is
required. This generation is done in the sequencer, signals related to interrupts
were already declared in processor_sequence.sv so it was necessary to add some
constraints on this signal to randomly send interrupt requests. In addition to that,
to cover some FSM transitions in multiplier and controller it was necessary to
randomly reset the DUV. After a couple of simulation 90.1% coverage has been
reached (Fig. 5.12). The remaining part of the design that has not covered is due
to corner cases hard to be caused or transition that never happens.

Figure 5.11: Instruction Set Coverage reports

78

5.2 – Simulations

Fi
gu

re
5.
12
:
C
ov
er
ag
e
R
ep

or
t

79

80

Chapter 6

Conclusion and Future
works

This work aimed to verify a complex processor architecture achieving a high level
of confidence. The result provided in the previous chapter clearly shows that apart
from some corner cases that were not possible to cover a level of coverage around
90% was achieved. It is important to specify that code coverage is a very strict way
to check coverage as it is really hard to increase coverage in some cases. That result
was achieved employing merge of Coverage result, otherwise, we have seen that for
a single random program the coverage is around 50%. That is not good news as
we discovered that randomization is not a good approach to achieve high coverage
and a better approach could be introducing a smarter random generator that tries
to improve its performance by looking at the previous coverage results. In addition
to that, a better idea is to use an external ISS (Instruction Set Simulator) to be
embedded in the scoreboard as the reference model. Introducing an ISS could give
two main advantages:

• Simplify the UVM scoreboard operations;

• Increase the confidence on the pass/fail results. As ISS are well tested we
avoid that errors present in DUV are repeated in the reference model.

That approach could be introduced in future works, as introducing in the currently
developed UVM Framework was too complicated because the existent Instruction
Set Simulator includes only certain RISC-V Extension and should be modified to
include proprietary extensions.

81

82

Appendix A

ALU Extension

A.1 Bit Manipulation Operations

f2 Is3[4:0] Is2[4:0] rs1 funct3 rd opcode name
11 Luimm5[4:0] luimm5[4:0] src 000 dest 0110011 p.extract
11 Luimm5[4:0] luimm5[4:0] src 001 dest 0110011 p.extractu
11 Luimm5[4:0] luimm5[4:0] src 010 dest 0110011 p.insert
11 Luimm5[4:0] luimm5[4:0] src 011 dest 0110011 p.bclr
11 Luimm5[4:0] luimm5[4:0] src 100 dest 0110011 p.bset
10 00000 src2 src1 000 dest 0110011 p.extractr
10 00000 src2 src1 001 dest 0110011 p.extractur
10 00000 src2 src1 010 dest 0110011 p.insertr
10 00000 src2 src1 011 dest 0110011 p.bclrr
10 00000 src2 src1 100 dest 0110011 p.bsetr

Table A.1: Bit Manipulation Encoding

funct7 rs2 rs1 funct3 rd opcode name
0000100 src2 src1 101 dest 0110011 p.ror
0001000 00000 src1 000 dest 0110011 p.ff1
0001000 00000 src1 001 dest 0110011 p.fl1
0001000 00000 src1 010 dest 0110011 p.clb
0001000 00000 src1 011 dest 0110011 p.cnt

Table A.2: Bit Manipulation Encoding

83

ALU Extension

A.2 General ALU Operations

funct7 rs2 rs1 funct3 rd opcode name
0000010 00000 src1 000 dest 0110011 p.abs
0000010 src2 src1 010 dest 0110011 p.slet
0000010 src2 src1 011 dest 0110011 p.sletu
0000010 src2 src1 100 dest 0110011 p.min
0000010 src2 src1 101 dest 0110011 p.minu
0000010 src2 src1 110 dest 0110011 p.max
0000010 src2 src1 111 dest 0110011 p.maxu
0001000 00000 src1 100 dest 0110011 p.exths
0001000 00000 src1 101 dest 0110011 p.exthz
0001000 00000 src1 110 dest 0110011 p.extbs
0001000 00000 src1 111 dest 0110011 p.extbz

Table A.3: General Alu Encoding

f2 Is3[4:0] rs2 rs1 funct3 rd opcode name
00 Luimm5[4:0] src2 src1 010 dest 1011011 p.addN
10 Luimm5[4:0] src2 src1 010 dest 1011011 p.adduN
00 Luimm5[4:0] src2 src1 110 dest 1011011 p.addRN
10 Luimm5[4:0] src2 src1 110 dest 1011011 p.adduRN
00 Luimm5[4:0] src2 src1 011 dest 1011011 p.subN
10 Luimm5[4:0] src2 src1 011 dest 1011011 p.subuN
00 Luimm5[4:0] src2 src1 111 dest 1011011 p.subRN
10 Luimm5[4:0] src2 src1 111 dest 1011011 p.subuRN
01 Luimm5[4:0] src2 src1 010 dest 1011011 p.addNr
11 00000 src2 src1 010 dest 1011011 p.adduNr
01 00000 src2 src1 110 dest 1011011 p.addRNr
11 00000 src2 src1 110 dest 1011011 p.adduRNr
01 00000 src2 src1 011 dest 1011011 p.subNr
11 00000 src2 src1 011 dest 1011011 p.subuNr
01 00000 src2 src1 111 dest 1011011 p.subRNr
11 00000 src2 src1 111 dest 1011011 p.subuRNr

Table A.4: General Alu Encoding

84

A.3 – Immediate Branching

funct7 Is2[4:0] rs1 funct3 rd opcode name
0001010 Iuimm5[4:0] src1 001 dest 0110011 p.clip
0001010 Iuimm5[4:0] src1 010 dest 0110011 p.clipu
0001010 src2 src1 010 dest 0110011 p.clipr
0001010 src2 src1 010 dest 0110011 p.clipur

Table A.5: General Alu Encoding

A.3 Immediate Branching

Imm12 Imm5 rs1 funct3 Imm12 opcode name
imm[12|10:5] imm5[4:0] src1 010 imm[4:1|11] 1100011 p.beqimm
imm[12|10:5] imm5[4:0] src1 011 imm[4:1|11] 1100011 p.bneimm

Table A.6: Immediate Branching Encoding

A.4 MAC Operations

funct7 rs2 rs1 funct3 rd opcode name
0100001 src2 src1 000 dest 0110011 p.mac
0100001 src2 src1 001 dest 0110011 p.msu
f2 Is3[4:0] rs2 rs1 funct3 rd opcode name
10 00000 src2 src1 000 dest 1011011 p.muls
11 00000 src2 src1 000 dest 1011011 p.mulhhs
10 Luimm5[4:0] src2 src1 000 dest 1011011 p.mulsN
11 Luimm5[4:0] src2 src1 000 dest 1011011 p.mulhhsN
10 Luimm5[4:0] src2 src1 100 dest 1011011 p.mulsRN
11 Luimm5[4:0] src2 src1 100 dest 1011011 p.mulhhsRN

Table A.7: MAC Encoding

85

ALU Extension

f2 Is3[4:0] rs2 rs1 funct3 rd opcode name
00 00000 src2 src1 000 dest 1011011 p.mulu
01 00000 src2 src1 000 dest 1011011 p.mulhhu
00 Luimm5[4:0] src2 src1 000 dest 1011011 p.muluN
01 Luimm5[4:0] src2 src1 000 dest 1011011 p.mulhhuN
00 Luimm5[4:0] src2 src1 100 dest 1011011 p.muluRN
01 Luimm5[4:0] src2 src1 100 dest 1011011 p.mulhhuRN
10 Luimm5[4:0] src2 src1 001 dest 1011011 p.macsN
11 Luimm5[4:0] src2 src1 001 dest 1011011 p.machhsN
10 Luimm5[4:0] src2 src1 101 dest 1011011 p.macsRN
11 Luimm5[4:0] src2 src1 101 dest 1011011 p.machhsRN
00 Luimm5[4:0] src2 src1 001 dest 1011011 p.macuN
01 Luimm5[4:0] src2 src1 001 dest 1011011 p.machhuN
00 Luimm5[4:0] src2 src1 101 dest 1011011 p.macuRN
01 Luimm5[4:0] src2 src1 101 dest 1011011 p.machhuRN

Table A.8: MAC Encoding

86

Appendix B

Vectorial Extension

For Vectorial extension, as the instruction set is replicated for sc, sci, normal and for
half-words and bytes it is better to provide a table showing the behaviour instead
of the encoding.

B.1 Vectorial ALU

Mnemonic Description
pv.add[.sc,.sci]{.h,.b} rd[i]=rs1[i]+rs2[i]
pv.sub[.sc,.sci]{.h,.b} rd[i]=rs1[i]-rs2[i]
pv.avg[.sc,.sci]{.h,.b} rD[i] = (rs1[i] + op2[i]) >>1
pv.avgu[.sc,.sci]{.h,.b} rD[i] = (rs1[i] + op2[i]) >>1
pv.min[.sc,.sci]{.h,.b} rD[i] = rs1[i] <op2[i] ? rs1[i] : op2[i]
pv.minu[.sc,.sci]{.h,.b} rD[i] = rs1[i] <op2[i] ? rs1[i] : op2[i]
pv.max[.sc,.sci]{.h,.b} rD[i] = rs1[i] >op2[i] ? rs1[i] : op2[i]
pv.maxu[.sc,.sci]{.h,.b} rD[i] = rs1[i] >op2[i] ? rs1[i] : op2[i]
pv.srl[.sc,.sci]{.h,.b} rD[i] = rs1[i] >>op2[i]
pv.sra[.sc,.sci]{.h,.b} rD[i] = rs1[i] >>>op2[i]
pv.sll[.sc,.sci]{.h,.b} rD[i] = rs1[i] <<op2[i]
pv.or[.sc,.sci]{.h,.b} rD[i] = rs1[i] | op2[i]
pv.xor[.sc,.sci]{.h,.b} rD[i] = rs1[i] ^op2[i]
pv.and[.sc,.sci]{.h,.b} rD[i] = rs1[i] & op2[i]

pv.abs{.h,.b} rD[i] = rs1 <0 ? – rs1 : rs1

Table B.1: Vectorial General ALU Instructions

87

Vectorial Extension

Mnemonic Description
pv.abs{.h,.b} rD[i] = rs1 <0 ? – rs1 : rs1
pv.extract.h rD = Sext(rs1[((I+1)*16)-1 : I*16])
pv.extract.b rD = Sext(rs1[((I+1)*8)-1 : I*8])
pv.extractu.h rD = Zext(rs1[((I+1)*16)-1 : I*16])
pv.extractu.b rD = Zext(rs1[((I+1)*8)-1 : I*8])
pv.insert.h rD[((I+1)*16-1:I*16] = rs1[15:0]
pv.insert,b rD[((I+1)*8-1:I*8] = rs1[7:0]

Table B.2: Vectorial General ALU Instructions

Mnemonic Description
pv.dotup[.sc,.sci].h rD = rs1[0] * op2[0] + rs1[1] * op2[1]
pv.dotup[.sc,.sci].b rD=rs1[0]*op2[0]+rs1[1]*op2[1]+rs1[2]*op2[2]+rs1[3]*op2[3]
pv.dotusp[.sc,.sci].h rD = rs1[0] * op2[0] + rs1[1] * op2[1]
pv.dotusp[.sc,.sci].b rD = rs1[0]*op2[0]+rs1[1]*op2[1]+rs1[2]*op2[2]+rs1[3]*op2[3]
pv.dotsp[.sc,.sci].h rD = rs1[0] * op2[0] + rs1[1] * op2[1]
pv.dotsp[.sc,.sci].b rD=rs1[0]*op2[0]+rs1[1]*op2[1]+rs1[2]*op2[2]+rs1[3]*op2[3]
pv.sdotup[.sc,.sci].h rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]
pv.sdotup[.sc,.sci].b rD=rD+rs1[0]*op2[0]+rs1[1]*op2[1]+rs1[2]*op2[2]+rs1[3]*op2[3]
pv.sdotusp[.sc,.sci].h rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]
pv.sdotusp[.sc,.sci].b rD=rD+rs1[0]*op2[0]+rs1[1]*op2[1]+rs1[2]*op2[2]+rs1[3]*op2[3]
pv.sdotsp[.sc,.sci].h rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]
pv.sdotsp[.sc,.sci].b rD=rD+rs1[0]*op2[0]+rs1[1]*op2[1]+rs1[2]*op2[2]+rs1[3]*op2[3]

Table B.3: Vectorial Dot Product Instructions

Mnemonic Description
pv.shuffle.h rD[31:16] = rs1[rs2[16]*16+15:rs2[16]*16]

rD[15:0] = rs1[rs2[0]*16+15:rs2[0]*16]
pv.shuffle.sci.h rD[31:16] = rs1[I1*16+15:I1*16]

rD[15:0] = rs1[I0*16+15:I0*16]
pv.shuffle.b rD[31:24] = rs1[rs2[25:24]*8+7:rs2[25:24]*8]

rD[23:16] = rs1[rs2[17:16]*8+7:rs2[17:16]*8]
rD[15:8] = rs1[rs2[9:8]*8+7:rs2[9:8]*8]
rD[7:0] = rs1[rs2[1:0]*8+7:rs2[1:0]*8]

pv.shuffleI0.sci.b rD[31:24] = rs1[7:0]
rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

Table B.4: Vectorial Shuffle-pack Instructions

88

B.1 – Vectorial ALU

Mnemonic Description
pv.shuffleI1.sci.b rD[31:24] = rs1[15:8]

rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

pv.shuffleI2.sci.b rD[31:24] = rs1[23:16]
rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

pv.shuffleI3.sci.b rD[31:24] = rs1[31:24]
rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

pv.shuffle2.h rD[31:16] = ((rs2[17] == 1) ? rs1 : rD)[rs2[16]*16+15:rs2[16]*16]
rD[15:0] = ((rs2[1] == 1) ? rs1 : rD)[rs2[0]*16+15:rs2[0]*16]

pv.shuffle2.b rD[31:24] = ((rs2[26] == 1) ? rs1 :
rD)[rs2[25:24]*8+7:rs2[25:24]*8]

rD[23:16] = ((rs2[18] == 1) ? rs1 :
rD)[rs2[17:16]*8+7:rs2[17:16]*8]

rD[15:8] = ((rs2[10] == 1) ? rs1 : rD)[rs2[9:8]*8+7:rs2[9:8]*8]
rD[7:0] = ((rs2[2] == 1) ? rs1 : rD)[rs2[1:0]*8+7:rs2[1:0]*8]

pv.pack.h rD[31:16] = rs1[15:0]
rD[15:0] = rs2[15:0]

pv.packhi.b rD[31:24] = rs1[7:0]
rD[23:16] = rs2[7:0]

pv.packlo.b rD[15:8] = rs1[7:0]
rD[7:0] = rs2[7:0]

Table B.5: Vectorial Shuffle-pack Instructions

89

Vectorial Extension

B.2 Vectorial Comparison

Mnemonic Description
pv.cmpeq[.sc,.sci].h,.b rD[i] = rs1[i] == op2 ? ‘1 : ‘0
pv.cmpne[.sc,.sci].h,.b rD[i] = rs1[i] != op2 ? ‘1 : ‘0
pv.cmpgt[.sc,.sci].h,.b rD[i] = rs1[i] > op2 ? ‘1 : ‘0
pv.cmpge[.sc,.sci].h,.b rD[i] = rs1[i] >=op2 ? ‘1 : ‘0
pv.cmplt[.sc,.sci].h,.b rD[i] = rs1[i] < op2 ? ‘1 : ‘0
pv.cmple[.sc,.sci].h,.b rD[i] = rs1[i] <= op2 ? ‘1 : ‘0
pv.cmpgtu[.sc,.sci].h,.b rD[i] = rs1[i] > op2 ? ‘1 : ‘0
pv.cmpgeu[.sc,.sci].h,.b rD[i] = rs1[i] >= op2 ? ‘1 : ‘0
pv.cmpltu[.sc,.sci].h,.b rD[i] = rs1[i] < op2 ? ‘1 : ‘0
pv.cmpleu[.sc,.sci].h,.b rD[i] = rs1[i] <= op2 ? ‘1 : ‘0

Table B.6: Vectorial comparison Instructions

90

Bibliography

[1] Pasquale Davide Schiavone Andreas Traber Micheal Gautschi. RI5CY: User
Manual. April 2019.

[2] Andrew Waterman. Design of the RISCV Instruction Set Architecture. Jan-
uary 2016.

[3] SiFive Inc Andrew Waterman Krste Asanovic. The RISCV Instruction Set
Manual, Volume I: Unprivileged ISA. University of California, Berkeley, July
2020.

[4] CadFlix. ModelSim and Questa Code Coverage. url: https://www.cadflix.
net/video/modelsim-and-questa-code-coverage/. (accessed: 19.01.2021).

[5] Chip-Verify. UVM-Tutorial for Beginners. url: https://www.chipverify.
com/uvm/uvm-tutorial. (accessed: 25.09.2020).

[6] Vanessa R. Cooper. Getting Started with UVM: A Beginner’s Guide. 1st edi-
tion. Verilab Publishing, 22 May 2013.

[7] Doulos. UVM Golden Reference Guide. second. Doulos Ltd., 2013.
[8] Harry Foster. Part 1: The 2020 Wilson Research Group Functional Verifica-

tion Study. url: https://blogs.sw.siemens.com/verificationhorizons/
2020/11/05/part-1-the-2020-wilson-research-group-functional-
verification-study/. (accessed: 11.01.2021).

[9] Verification Guide. UVM-Tutorial. url: https://verificationguide.com/
uvm/uvm-tutorial/. (accessed: 21.12.2020).

[10] Guido Masera. Integrated System Architecture notes. 2020.
[11] Anish Gupta. Processor-UVM-Verification. 2018. url: https : / / github .

com/gupta409/Processor-UVM-Verification/tree/master/Code.
[12] Guru99. Code coverage Tutorial. url: https://www.guru99.com/code-

coverage.html. (accessed: 15.01.2021).
[13] Accellera Organization Inc. System Verilog 3.1a: Language Reference Manual.

2004.

91

https://www.cadflix.net/video/modelsim-and-questa-code-coverage/
https://www.cadflix.net/video/modelsim-and-questa-code-coverage/
https://www.chipverify.com/uvm/uvm-tutorial
https://www.chipverify.com/uvm/uvm-tutorial
https://blogs.sw.siemens.com/verificationhorizons/2020/11/05/part-1-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2020/11/05/part-1-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2020/11/05/part-1-the-2020-wilson-research-group-functional-verification-study/
https://verificationguide.com/uvm/uvm-tutorial/
https://verificationguide.com/uvm/uvm-tutorial/
https://github.com/gupta409/Processor-UVM-Verification/tree/master/Code
https://github.com/gupta409/Processor-UVM-Verification/tree/master/Code
https://www.guru99.com/code-coverage.html
https://www.guru99.com/code-coverage.html

BIBLIOGRAPHY

[14] RISC-V International. Getting Started with RISC-V Verification. url: https:
//riscv.org/blog/2020/05/getting-started-with-risc-v-verification/.
(accessed: 17.09.2020).

[15] Mentor Graphics. ModelSim Command Reference SE 6.0b. 15.Nov.2004.
[16] Mentor Graphics. ModelSim User’s Manual SE 6.0b. 15.Nov.2004.
[17] Andreas Meyer. Principles of Functional Verification. Newnes.
[18] Robert Ekendahl Mike Mintz. Hardware Verification with System VERILOG:

An Object-Oriented Framework. Springer.
[19] Gordon E. Moore. “Cramming more components onto integrated circuits.” In:

(1965). doi: https://newsroom.intel.com/wp-content/uploads/sites/
11/2018/05/moores-law-electronics.pdf.

[20] OpenHardware. CV32E40P User Manual. url: https://core- v- docs-
verif - strat . readthedocs . io / projects / cv32e40p _ um / en / latest /
intro.html. (accessed: 07.10.2020).

[21] Andrew Piziali. Functional Verification Coverage Measurement and Analysis.
Springer.

[22] PLDWorld. Code Coverage commands. url: http://www.pldworld.com/
_hdl/2/_ref/se_html/manual_html/ce_cover.html. (accessed: 20.01.2021).

[23] Pulp-platform. Pulp Implementation. url: https://pulp-platform.org/.
(accessed: 27.11.2020).

[24] Ray Salemi. The UVM Primer: An Introduction to the Universal Verification
Methodology. Boston Light Press, 2013.

[25] Kathleen Meade Sharon Rosenberg. A Practical Guide to Adopting the Uni-
versal Verification Methodology (UVM). 1ST edition. Cadence Design Sys-
tems, 2010.

[26] Cadence Design Systems. System Verilog Training bytes. url: https://www.
youtube.com/watch?v=fBApIYoyx7E\&list=PLYdInKVfi0KZ1HMVNNcxvvWhYJMmLAq\
_g&index=1. (accessed: 01.09.2020).

[27] Udi Jonnalagadda Tao Liu Richard Ho. Open Source RISC-V Processor Ver-
ification Platform. 2019. url: https://riscv.org/wp-content/uploads/
2019/12/12.10- 16.10b- Open- Source- Verification- Platform- for-
RISC-V-Processors.pdf.

[28] Paul Wilcox. Professional Verification : A Guide to Advanced Functional Ver-
ification.

92

https://riscv.org/blog/2020/05/getting-started-with-risc-v-verification/
https://riscv.org/blog/2020/05/getting-started-with-risc-v-verification/
https://doi.org/https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://doi.org/https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://core-v-docs-verif-strat.readthedocs.io/projects/cv32e40p_um/en/latest/intro.html
https://core-v-docs-verif-strat.readthedocs.io/projects/cv32e40p_um/en/latest/intro.html
https://core-v-docs-verif-strat.readthedocs.io/projects/cv32e40p_um/en/latest/intro.html
http://www.pldworld.com/_hdl/2/_ref/se_html/manual_html/ce_cover.html
http://www.pldworld.com/_hdl/2/_ref/se_html/manual_html/ce_cover.html
https://pulp-platform.org/
https://www.youtube.com/watch?v=fBApIYoyx7E\&list=PLYdInKVfi0KZ1HMVNNcxvvWhYJMmLAq_g&index=1
https://www.youtube.com/watch?v=fBApIYoyx7E\&list=PLYdInKVfi0KZ1HMVNNcxvvWhYJMmLAq_g&index=1
https://www.youtube.com/watch?v=fBApIYoyx7E\&list=PLYdInKVfi0KZ1HMVNNcxvvWhYJMmLAq_g&index=1
https://riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf

Ringraziamenti

Volendo fare un’analogia tra il lavoro di tesi e il funzionamento di un processore
si potrebbe dire che è stato come un lungo programma eseguito istruzione dopo
istruzione in attesa di una istruzione di jump che mi portasse alla conclusione.
Quando ho iniziato il percorso universitario non mi sarei mai aspettato una con-
clusione di questo genere, con una tesi svolta completamente da casa, sforzandomi
ogni giorno di fare un passo avanti nella direzione giusta. Questa situazione ha reso
il lavoro più difficile, e quello che mi ha spinto ad andare avanti è stata la voglia
di concludere questo lungo percorso nel migliore dei modi. Diverse persone mi
sono state accanto alimentando la mia forza di volontà soprattutto quando veniva
a mancare ed è a loro che voglio fare i miei ringraziamenti. In primis ci sono i
miei genitori che con la loro costante presenza mi hanno sempre invogliato a fare il
massimo credendo fortemente in me. Poi mio fratello maggiore Ignazio che con un
percorso simile al mio, mi ha mostrato che a volte bisogna solo tenere duro ancora
un attimo per raggiungere i propri obiettivi.
Un ringraziamento speciale va a Monica Monticciolo che in tutti questi anni mi ha
incoraggiato ad andare avanti aiutandomi sempre a vedere il lato positivo in ogni
situazione ma soprattutto quando la confusione e lo stress annebbiavano la mia
vista è riuscita a mostrarmi la via di uscita.
Un grande ringraziamento va a tutti i miei amici di Trapani e quelli di Torino con
i quali ho condiviso i pochi momenti di gioia di uno studente del Politecnico: Mat-
tia La Francesca, Marco Iuculano, Francesco Biasibetti, Gianluca Monaco, Marco
Saladino, Albertino Scarlata,Matteo Ripa, Michelino Baratto, Aldo Moschetti,
Francesco Minosi, Filippo Sanangelantoni,Federica Nasr,Fabio Asti. Un ulteriore
ringraziamento è rivolto al mio coinquilino, Giuseppe Narducci, con la nostra "ora
del tè" e "birra e patatine" ha contribuito ad allegerire il momento che stavo at-
traversando. Infine vorrei ringraziare i due miei colleghi con i quali ho svolto la
maggior parte dei progetti in questi anni: Federico Di Fazio e Manuel Capaccio
senza i quali probabilmente non sarei qui a scrivere questi ringraziamenti. Con
loro ho condiviso momenti difficili sapendo che prima o dopo avremmo trovato una
soluzione. Inoltre vorrei ringraziare il professor Sanchez ed Annachiara Ruospo per
avermi fornito l’opportunità di lavorare ad un progetto così stimolante e per avermi
aiutato in ciascuna delle fasi del lavoro.

93

	List of Tables
	List of Figures
	Introduction
	Goal of the thesis
	Motivation
	State of art

	Introduction to Verification
	Verification Methods
	Verification Plan

	The Universal Verification Methodology
	Coverage Driven Verification
	UVM Components

	Introduction to RISCV Processors

	RISC-V PULP
	Complete ISA with extensions
	Base Integer
	Multiplication Extension
	Compressed extension
	Post-incrementing Load and Store Instructions
	Hardware Loops
	ALU Extension
	Vectorial

	PULP Architecture
	Instruction Fetch stage
	Instruction Decode stage
	Execution stage
	WB Stage

	UVM Testbench
	Overall Structure
	Top
	Wrapper
	Interfaces
	Interface in
	Interface out

	Sequences
	Processor Sequence
	Packet out

	Environment
	Agents
	Agent in
	Agent out

	Driver
	Monitors
	Monitor in
	Monitor out

	Scoreboard
	Decode_check
	Summary of simulation

	Simulation Environment
	ISA Database
	RV Generator
	UVM Env Configurator
	GUI Elements
	GUI Result Frames

	Simulation and Results
	Coverage and metrics
	Statement Coverage
	Branch Coverage
	Focused Condition Coverage
	Focused Expression Coverage
	FSM Coverage
	Toggle Coverage

	Simulations
	Single Simulation
	Multiple Simulations

	Conclusion and Future works
	ALU Extension
	Bit Manipulation Operations
	General ALU Operations
	Immediate Branching
	MAC Operations

	Vectorial Extension
	Vectorial ALU
	Vectorial Comparison

