
POLITECNICO DI TORINO

Master’s Degree in

Mechatronic Engineering

Master’s Thesis

Design and development of a control system for the
Robotic Arm Schunk LWA 3

Supervisor Candidate
Marcello Chiaberge Fabio Antonacci
Co-Supervisor
Andrea Merlo

Academic Year 2020/2021

To my family

1

Abstract

This thesis presents the design of the control system for a robotic arm, the Schunk

Lightweight Arm 3. This manipulator is used as part of the on-ground simulation of

on-orbit satellite servicing performed at the Rendezvous & Docking facility of Thales

Alenia Space in Turin. This area was built in the framework of the STEPS (Sistemi e

Tecnologie per l’EsPlorazione Spaziale) program; here, the docking maneuver is sim-

ulated on a micrometric black granite floor where two vehicles (the chaser and the

target) move floating over a thin air film in order to obtain a frictionless dynamic and

have a testing environment able to simulate orbiting conditions. The RV&D facility

is also equipped with two robotic manipulators necessary for the capture but more in

general for servicing (e.g., refueling, repairing and/or replacement of parts, removing

of space debris) of a target. The control development started from the study of the

mechanical and electrical configuration of the robotic arm. The technical specifications

of actuators and motor drivers were examined and a suitable control architecture has

been selected. The final solution consists of a workstation that acts as the central

control system, connected via CAN bus to the terminal block of the LWA 3, powered

by a 24 VDC voltage. The control system was entirely designed using the Python

programming language. The protocol used to exchange data between the master and

all the modules of the Schunk LWA 3 is unified and independent from the bus interface

used. The module receives serial data, interprets it and acknowledges the command.

A command typically is composed by an Identifier, followed by a Command ID, a Pa-

rameter ID or a Motion ID, based on the task that the manipulator has to perform,

and data bytes if required. The first step of the control design was the creation of a

Python script to initialize and enable the CAN communication from the workstation

to the robotic arm. The next step was the construction of a CAN message to give

commands to the LWA 3: each one of those is the concatenation of a series of strings

that correspond to a different section of the CAN message. All the functions for build-

ing the string of data were divided in different Python scripts, based on the type of

tasks that they perform. They can vary from general commands (e.g., resetting the en-

coders, halting the motion of the arm or returning to the home configuration) to more

complicated ones like the joint control and some direct kinematics functions. Joint

control can be performed either choosing the velocity at which each module must move

2

or setting the final position that it must reach. Also, some functions were implemented

to directly send the arm in pre-defined configurations from where it is easier to reach

objects to be caught. A crucial task was the creation of a direct kinematic function

that constantly computes the position and orientation of the end-effector and prints

them on the screen. The commands were sent to the arm through a Graphical User

Interface that replaced its previous version of the Command Line Interface launched

from the terminal. The final result is a window that gives the user a more intuitive

control system. The GUI has a section for sending commands to the arm on the left

and a telemetry one on the right where all the relative positions and velocities of each

module, the position and orientation of the end-effector are displayed.

3

Contents

1 Introduction 9

2 On-orbit servicing missions 11

2.1 The importance of satellites servicing 11

2.2 The history of servicing missions . 13

2.3 Ongoing projects and on-ground simulation 19

3 Schunk LWA3 25

3.1 Manipulator modelling and kinematics 25

3.2 Forward kinematics of the Schunk LWA 3 31

3.2.1 Denavit-Hartenberg representation 32

3.2.2 Coordinate frames assignment 34

3.2.3 Forward kinematics equations 34

3.3 Schunk LWA3 data and setup . 36

4 The CAN protocol 42

4.1 ISO 11898 . 42

4.2 Main features . 44

4.3 Schunk LWA3 CAN communication . 47

4.3.1 PowerCube software . 47

4.3.2 IXXAT CANAnalyser 3 Mini 51

5 Control system and Graphical User Interface 53

5.1 Tasks definition . 53

5.2 Control structure . 55

5.3 Experimental tests . 59

5.4 Graphical User Interface . 62

6 Conclusions 65

6.1 Future developments . 65

A User manual 67

4

CONTENTS

B Code 70

5

List of Figures

2.1 A map of the debris clouds just after (on the left) and after three years

(on the right) the Iridium/Cosmos collision (credits: Celestrak/AGI

Viewer 9) . 12

2.2 The repaired Skylab (credits: NASA) 14

2.3 On orbit repair of Solar Max (credits: NASA) 15

2.4 the Astronaut J. Hoffman removes Wide Field and Planetary Camera 1

during the change-out operations (credits: NASA) 16

2.5 The Canadian- Built Space Station Remote Manipulator System during

undocking activities (credits: NASA) 16

2.6 Dextre, built by the Canadian Agency, has arms more than 9 feet in

length and can attach power tools as fingers (credits: NASA) 17

2.7 Robonaut 2 (credits: NASA) . 17

2.8 Configuration of the ETS-VII autonomous docking maneuver (credits:

Tohoku University) . 18

2.9 Artistic rendition of The Orbital Express mission during unmanned op-

erations. 19

2.10 The servicing satellite MEV-1 (credits: SpaceLogistics) 20

2.11 The EPOS facility (credits: DLR) . 21

2.12 The EPOS reference coordinate systems (credits: DLR) 22

2.13 Overview of the OOS-SIM. On the left there is the Client satellite; on

the right, the Servicer satellite and manipulator (credits: DLR) 23

2.14 Rendezvous & Docking facility at Thales Alenia Space 24

3.1 Schematization of a 6 DoF manipulator as open kinematics chain . . . 25

3.2 Inertial (red) and Body (blue) reference frame of a generic rigid body . 26

3.3 Representation of Euler angles ZYX . 27

3.4 The manipulator structure . 32

3.5 The coordinate frames assigned to the manipulator. 35

3.6 Design of Schunk Lightweight Arm 3 36

3.7 The LWA 3 and the SDH . 37

3.8 Circuit diagram for power supply (courtesy of Schunk) 38

6

LIST OF FIGURES

3.9 Schematics of the terminal block . 38

3.10 Terminal block of Schunk LWA 3 (courtesy of Schunk) 39

3.11 PRL module (courtesy of Schunk) . 40

3.12 Example of mounting PRL modules (courtesy of Schunk) 40

4.1 ISO 11898 standard architecture for CAN networks 43

4.2 Example of the physical connection in a high-speed CAN network . . . 44

4.3 Standard structure of a CAN message 45

4.4 Arbitration example scheme on a CAN bus 46

4.5 Assembling of the CAN bus (courtesy of Schunk) 47

4.6 USB-to-CAN Compact Ixxat interface 51

4.7 Screenshot from sotware Ixxat Cananalyser 52

5.1 Control Scheme of LWA 3 . 55

5.2 Command line control window . 58

5.3 LWA 3 in Park position, its original home configuration 59

5.4 Totem and home position . 60

5.5 Op-safe position . 62

5.6 GUI window at power on . 63

5.7 GUI window working . 63

5.8 Position set through GUI . 64

A.1 Power supply . 67

A.2 Emergency push button and terminal block 68

7

List of Tables

3.1 Denavit-Hartenberg parameters . 35

5.1 Totem offset displacements with respect to Park configuration 61

5.2 Op-safe displacements values with respect to Totem configuration . . . 62

8

Chapter 1

Introduction

Since 1957, when the first artificial satellite was launched, the Soviet Sputnik, the

space exploration has made great strides. Until today about 6000 satellite have been

launched for scientific use, by which it was possible to expand the knowledge of the

phenomena occurring in the solar system and beyond, military and commercial use,

allowing the reaching of new frontiers in the field of communications and cannot be

forgotten of course the recent undertakings which have enabled the creation of the

first orbiting telescope, the Hubble Space Telescope, and the first international space

station, the ISS.

The human thirst for knowledge requires technological progress to enable new sci-

entific ventures. For this reason we are faced with the need to exploit the already

launched flight systems even more and to construct large structures in situ, consider-

ing as guideline the need to reduce, reuse and recycle as far as possible. All these needs

require some aspect of what satellite servicing can offer, therefore we can consider the

satellite servicing as a tool able to enable the creation of a new architectures needed

to conquer the next frontiers in space.

On-orbit servicing involves a new class of space missions in which a servicer (or

chaser) spacecraft is launched into the orbit of a target (or client) spacecraft, the

client. The servicer navigates to the client with the intention of manipulating it, using

a robotic arm. A crucial operation of the on-orbit servicing missions is the docking

maneuver, defined as the joining of the two separate free-flying space vehicles. Before

starting this procedure however, a crucial task is to catch the satellite on which the

maintenance needs to be performed.

This thesis work was developed in the Rendezvous & Docking (RV&D) facility

of Thales Alenia Space in Turin where the docking maneuver is simulated with two

satellites floating on a granite surface. The aim of this work is to create a control

system for the Schunk Lightweight Arm 3, one of the two robotic arms in the facility,

that has the function of catching the satellite. The control tasks and commands created

range from simple setup function used at the power on, to the joint control of every

9

one of the seven modules of the Schunk LWA 3, to the computation of the pose of

the end-effector via Direct Kinematics. Also, some commands where implemented to

move the robotic arm in some pre-defined configurations from which the motion to the

operational positions defined by the user is easier.

This dissertation contains, besides this introductory part, five chapters. The next

one gives an overview of the history and characteristics of on-orbit servicing missions.

Chapter 3 firstly introduces the manipulators and robotic arms from a mechanic

and structural point of view. Then, the characteristics and setup of the Schunk LWA

3 are explained.

Chapter 4 gives an overview of the Controller Area Network (CAN) protocol, start-

ing from how it was born to the actual state of the ISO 11898 and the main features

of the protocol today. Then follows a detailed description of how it is implemented for

the Schunk LWA 3, focusing in particular on the construction of a CAN message based

on the various tasks that need to be performed by the manipulator.

Chapter 5 describes the development and the structure of the control system as

well as the Graphical User Interface (GUI), focusing on the various packages created

to perform all the functions required for the operation of the robotic arm. Later in the

chapter, the tests performed to guarantee the correct functioning of the control system

and of the GUI are explained.

Chapter 6 presents the conclusions of this work and the possibilities for future

development.

After the conclusions there are two Appendices: the first one is a user-manual to

properly start-up and use the the manipulator and the framework, and avoid critical

situations that can compromise the correct functioning of the arm. In the second

appendix it is possible to find the code that implements the control algorithms described

in Chapter 5.

10

Chapter 2

On-orbit servicing missions

Except for manned servicing operations, there is no maintenance infrastructure for

space systems. The traditional approach is to build in reliability and to replace the

system in case of failure. Space systems therefore offer a limited degree of flexibility to

adapt to evolving conditions during their long lifetimes. The on-orbit servicing could

change this paradigm by providing a physical access to the satellite after it has been

launched and offering repair services and a broader range of upgrades that would be

cheaper alternatives to satellite replacement.

In the following sections there will be described the reasons why interventions in

orbit are necessary, quoting some missions that have now become milestones in the

history of satellite servicing. An overview on experience and ongoing projects in this

field will follow, with a particular description in the last section of the systems used for

the simulation of rendezvous and docking maneuvers, typical of maintenance missions.

2.1 The importance of satellites servicing

Every sector of satellite utilization could use the servicing to increase the efficiency and

bringing the benefits of space operations at lower overall cost.

One of these sectors is the commercial and strategic. Indeed they provide a lot of

facilities being used as repeaters for broadcasters, for communications and surveillance

to great distance, for connections between computer and also for the GPS (Global Po-

sitioning System) network. Satellite servicing allows to deriving more utility from these

activities promoting the expansion of the sector. The most important applications of

on-orbit servicing in this area are refuelling and replacement of damaged components.

These operations can extend the satellite’s useful life, improve technology, reduce the

life cycle cost, decrease the redundancy in the building of satellite, and increase the

mission performance, providing additional maneuvering or deorbit propulsion capabil-

ity. All of these operations can be conducted from specific space area, that includes

the most used orbits like the Geostationary Earth Orbit (GEO) belt, that surrounds

11

2.1. THE IMPORTANCE OF SATELLITES SERVICING

the Earth at high altitude and low inclination, and the Low Earth Orbit (LEO) near

to the polar inclinations. Moving in this zone, the services can satisfy the requirement

of many customers. However other servicing missions could also be conducted in other

orbits but on an as-needed basis. [11]

Another essential benefit that comes from the servicing missions is the possibility to

modify the orbit of the satellite in order to relocate it in the correct position or to avoid

a space detritus. Many communications and weather monitoring satellites, located in

GEO, suffer periodic or not variations of their position, due to perturbations from

astronomical source like the solar wind and gravitational field of planets or also linked

to the gravitational potential of Earth (e.g. Earth Oblateness). Therefore it is clear

that in order to avoid physical and communicational interference, and in this way

reduce the risk of mission failure, it is necessary to intervene by correcting the satellite

orbit. Another menace must also be fronted for the mission’s success, that is growing

and will reach point of no return in the near future, the space debris. The space junk

includes all orbiting useless or unused objects like fragments of satellite, materials and

dust expelled from the rocket engines and also stages of rockets, often with residual

fuel still inside them therefore potentially explosive upon impact with other objects.

These impacts can be attributed at least partially to the 200 explosions recorded in

orbit whose cause is unknown. The problem concerns mainly the GEO and LEO orbits,

densely populated areas where an impact between two objects could trigger a cascading

action, the so-called “Kessler Syndrome”, causing immeasurable damage to spacecrafts

before fully operational and functioning and therefore economic losses. An example

of the danger of an on-orbit collision is that one occurred in February 2009 between

one of the American satellites of a private constellation, Iridium 33, and the Russian

communications satellite Cosmos 2251, that was in disuse for at least five years at

the time of impact. The collision, occurred at 800 km altitude from earth, caused a

detritus cloud composed of at least 600 pieces of size greater than 10 cm. Some of them

reentered in significant numbers will likely remain in orbit for the next 25-50 years.

Figure 2.1: A map of the debris clouds just after (on the left) and after three years (on the right) the
Iridium/Cosmos collision (credits: Celestrak/AGI Viewer 9)

To avoid these disasters all probes on orbit are catalogued by the “United States

12

2.2. THE HISTORY OF SERVICING MISSIONS

Strategic Command” (USSTRATCOM). In this catalogue are listed the actual orbital

parameters of about 15000 objects, whose size limit is between 5-10 cm, for altitude

below some thousand kilometres and 0.5-1 m for higher orbits (up to geostationary), to

constantly track and detect their position. Only the 6% of these objects are operative

satellites, the 24% are spacecrafts in disuse, the 17% are stages of rockets and about

the 40% are fragments of spacecrafts. In order to increase the knowledge of circumter-

restrial environment and make it safer, even Europe has recently started its program of

Space Situational Awareness (SSA). However, detecting and monitoring the location of

space debris is not enough, the most effective measure to mitigate them is their removal

by deorbit either by the re-entry in atmosphere or by an appropriate vehicle which ex-

ploits the servicing technologies such as orbital maneuvering, autonomous rendezvous,

docking and robotic manipulation. [13]

Besides commercial and strategic benefits, the satellite servicing offers also scientific

and technological ones. Obviously, the first applications with these benefits are the re-

pair and refurbishment, in fact they allow the rapid development of new technologies,

improving the mission performance, and therefore the scientific return, by replacing or

upgrading subsystems thus increasing the reliability. Furthermore the satellite servic-

ing is the main enabler for new space architectures: the ISS is one example of such

structures which could be followed by large observatories to reach new frontiers in as-

tronomy, power farms or refueling depots to supply the spacecrafts in near-Earth or

planetary mission and also interplanetary spaceships. All of these structures are physi-

cally large, expensive and not launched in one piece. Only human and robotic servicing

can assures that each of their elements are assembled, configured for operation, tested

and even maintained and upgraded.

2.2 The history of servicing missions

During the last 40 years several repair and maintenance missions on orbit have been

performed. Below are listed those that have helped to define the concept of on-orbit

servicing.

• Skylab 2 [1973]: a mission designed to repair the NASA’s first space station

Skylab. During its launch the detachment of a cover had destroyed a solar array

and damaged a micrometeoroid shield. These failures threatened the mission’s

success because any attitude adjustments to maximize the power produced from

the solar arrays to maintain the station’s operation would lead to its subsequent

overheating. Therefore the only solution was a servicing mission to replace the

thermal shield. The crews of the Skylab 2 and 3, after a series of Extravehicular

Activities (EVAs), concluded the first demonstration of on-orbit repair success-

fully. [10]

13

2.2. THE HISTORY OF SERVICING MISSIONS

Figure 2.2: The repaired Skylab (credits: NASA)

• Solar Maximum Repair Mission (SMRM) [1984]: this mission allowed the

successful first use of a space shuttle in the satellite servicing. The probe Solar

Maximum Mission (SMM) was launched to investigate the solar phenomena. It

operated for one year before a failure in the attitude control system occurred. It

is worth noting why its operational life was significantly increased by the direct

intervention of a manned space mission, in fact the crew’s astronaut EVAs of the

space shuttle Challenger fully restored the probe operation and also equipped it

with a hook in order to make it able to be easily docked by a robot arm in case

of new repairs, extending thus its life for another five years.

• Hubble Space Telescope Servicing Mission [1993-2009]: the greatest space

telescope ever built has revolutionized the history of astronomy thanks to several

and important findings. The most significant is the discover of the mysterious

form of energy that moves the universe called Dark Energy, thanks to the obser-

vations of life cycle of supernovae. The first problems for Hubble occurred few

days after the launch. In fact all the first images that came from the telescope

were completely blurred, because of an optical flaw in the primary mirror and the

thermal shaking induced by the solar arrays during orbital sunrise and sunset.

A servicing mission was already planned to refurbishment and maintenance but

not to resolve a problem of such magnitude. The first servicing mission was an

extraordinary achievement, 35 hours of EVAs were necessary to bring Hubble

to the planned capabilities. There were four other missions whose purpose was

14

2.2. THE HISTORY OF SERVICING MISSIONS

Figure 2.3: On orbit repair of Solar Max (credits: NASA)

primarily refurbishment, maintenance and adding of new generation instrument

to improve the performances of entire telescope. These missions were a clear

demonstration of the benefits and versatility of satellite servicing. [5]

• International Space Station (ISS) [1998-2011]: the ISS is the humankind’s

largest artificial satellite that orbit around the Earth. It serves as an orbital

human outpost where a wide variety of research is conducted from the study

of astronomical phenomena to the investigation on biological effects produced

by the space on living beings. The sheer size not allowed the assembly, test

and launch of the entire station, therefore the final integration and checkout

of the each element occurred on orbit, where 143 spacewalks were necessary to

complete its assembly for a total of about 900 hours of EVAs. In addition to

assembly, the astronauts had to perform a variety of on-orbit maintenance tasks

including clearing solar array panels snagged during the deployment, repairing a

torn array and replacing failed component. The most recent was the repairing

of a failed cooling system. Also the robots have played an important role in

ISS construction and maintenance. The space shuttle robotic arm was used to

remove new elements and transfer them to the Space Station Remote Manipulator

System (SSRMS) for berthing. The last one is also used to grasp and berth

15

2.2. THE HISTORY OF SERVICING MISSIONS

Figure 2.4: the Astronaut J. Hoffman removes Wide Field and Planetary Camera 1 during the change-
out operations (credits: NASA)

visiting vehicles and provides even a platform for spacewalking astronauts for the

assembly and maintenance operations.

Figure 2.5: The Canadian- Built Space Station Remote Manipulator System during undocking activ-
ities (credits: NASA)

The ISS is equipped with another manipulator, Dextre (the Canadian Special

Purpose Dexterous Manipulator), that can perform more precisly with respect to

the manipulators mentioned previously, thanks to two independent robotic arms.

Therefore in some cases can replace the astronauts, removing failed components

and installing spare units. Moreover, operating telerobotically from the ground,

it will be used to service and refuel the satellites. [8]

The last improvement to ISS was introduced in 2011r. This is a “human equiv-

16

2.2. THE HISTORY OF SERVICING MISSIONS

Figure 2.6: Dextre, built by the Canadian Agency, has arms more than 9 feet in length and can attach
power tools as fingers (credits: NASA)

alent” robot, Robonaut 2 (R2), that is able to handle tools with a dexterity

exceeding that of suited astronaut, therefore can help humans work and explore

where the risks are too great for people.

Figure 2.7: Robonaut 2 (credits: NASA)

It is clear that the human servicing model is justified in the significant applications,

where the cost of the mission is comparable to that of the vehicle to maintain, but is

not applicable to most commercial space systems being extremely expensive. Therefore

over the years it has been developed a new autonomous and teleoperated vehicle tech-

nology capable of performing maintenance through robotic manipulators (like Dextre),

reducing mission costs. Some historical and recent examples of this technology demon-

stration activities, that were fundamental in the development of the modern servicing

technologies, are listed below.

17

2.2. THE HISTORY OF SERVICING MISSIONS

• Engineering Test Satellite No. 7 (ETS-VII) [1997]: the ETS-VII was a

satellite developed and launched by the National Space Development Agency of

Japan (NASDA, now JAXA). It was the first successful demonstration of au-

tonomous rendezvous and docking involving a “chaser” satellite, that for the first

time was equipped with a robotic arm 2 metre long, the first free-flying space

robot in history, able to grasp a “target” satellite. It also supports several ex-

periments on teleoperation, latency, assembly of a space structure and dynamics

coordination between the arm and the spacecraft. Although it was originally

intended to be used for one and a half years, the satellite was functional for a

period of almost five years.

Figure 2.8: Configuration of the ETS-VII autonomous docking maneuver (credits: Tohoku University)

• XSS-10 and XSS-11 [2003-2005]: the two microsatellites, built by the United

States Air Force Research Laboratory, demonstrated the key technologies for

satellite servicing. Indeed, the first acquired and tracked its second stage and

performed a series of inspections from 100m to 35m of distance from this object.

The second one demonstrated autonomous operations with a “non-cooperative”

space object (i.e. without accommodations for servicing).

• The Orbital Express mission [2007]: this mission was conducted by the De-

fence Advanced Research Project Agency (DARPA) and was the first mission

that completed successfully all robotic satellite servicing activities. The launched

system consisted in two spacecraft: The Autonomous Space Transport Robotics

Operations (ASTRO) vehicle, that performed autonomous docking with the other

spacecraft, NEXT-generation serviceable Satellite (NEXTSat). During the mis-

sion, lasted 4 months, were demonstrated also the fuel transfer and some orbital

replacement units activities such as the insertion of battery in NEXTSat and the

change of the flight computer on ASTRO. [3]

Furthermore in recent years some new international initiatives were announced from

18

2.3. ONGOING PROJECTS AND ON-GROUND SIMULATION

Figure 2.9: Artistic rendition of The Orbital Express mission during unmanned operations.

Canada’s MacDonald, Dettwiller and Associates Ltd. (MDA) and Deutsches Zentrum

für Luft und Raumfahrt e.V. (DLR), the German Aerospace Centre. The first one

is involved in the design of a mission that could allow the satellite refuelling and the

moving of the inoperative satellite in “graveyard” orbits. The servicer would rendezvous

and dock with the satellite’s apogee kick motor (a special motor employed on satellites

destined for GEO orbit and used to reach the zero inclination), connect the tank to a

fuel line and deliver propellant. The business model idea is based on the possibility of

having customers paying per kilogram of fuel that has been successfully added to their

satellite, opening in this way a new market share in space.

2.3 Ongoing projects and on-ground simulation

The most important ongoing project regarding on-orbit satellite servicing is the one

provided by SpaceLogistics, a wholly owned subsidiary of Northrop Grumman that uses

its fleet of commercial servicing vehicles: the Mission Extension Vehicle, the Mission

Robotics Vehicle and the Mission Extension Pods.

The Mission Extension Vehicle is the most used out of the three and can pro-

vide servicing to geosynchronous satellite operators. It docks with customers’ existing

satellites providing the propulsion and attitude control needed to extend their lives.

[18]

MEV-1 successfully launched on an International Launch Services’ Proton rocket

on October 9, 2019 from Baikonur, Kazakhstan. It has been contracted for a five-year

life extension to an Intelsat-901 satellite, providing docked propulsion and servicing

capabilities such as station keeping, altitude control, incline reduction, and inspection.

19

2.3. ONGOING PROJECTS AND ON-GROUND SIMULATION

Figure 2.10: The servicing satellite MEV-1 (credits: SpaceLogistics)

The docking to the satellite was completed on February 25, 2020. Once connected to

its client satellite, MEV performs on-orbit checkouts before relocating Intelsat-901 to

its orbit, then it uses its own thrusters and fuel supply to extend the satellite’s lifetime.

When the customer no longer desires MEV’s service, the spacecraft will undock and

move on to the next client satellite. According to the Northop Grumman company,

the spacecraft can perform multiple docking and undocking maneuvers over its 15-year

life span.

The second Mission Extension Vehicle (MEV-2) launched August 15, 2020 along

with the Northrop Grumman-built Galaxy 30 satellite. MEV-2 will dock with the

Intelsat IS-1002 satellite in early 2021. [17] The other two servicing vehicles in the

SpaceLogistics fleet, the Mission Robotics Vehicle (MRV) and the Mission Extension

Pods (MEPs) are next generation systems that have not been used for any mission yet.

The former, MRV, is a robotic servicing vehicle that installs the MEPs. The MRV

can perform all the functions of an MEV while adding new robotic capabilities for

additional services. The latter, instead, are smaller and less expensive life extension

services that only perform orbit control.

One of the critical requirements of a generic on-orbit servicing mission is to en-

sure a safe Rendezvous and Docking (RV&D) process. Therefore this phase has to

20

2.3. ONGOING PROJECTS AND ON-GROUND SIMULATION

be analysed, simulated and verified in detail, not only with the classical approaches

e.g. numerical simulation but even with systems that can reproduce realistic working

conditions. The German Aerospace Center DLR, for example, with over two decades

of experience in this field, managed to realize two different facilities for on-ground sim-

ulations. The first one was the EPOS (European Proximity Operation Simulator), able

to provide test and verification capabilities for complete RV&D process. This facility

consists of a rail system mounted on the floor of the laboratory to move an industrial

robot toward the other up to the distance of 25m, to have a physical real-time simu-

lations of the last critical phase (separation ranging from 25 to 0m) of the approach

process; two KUKA industrial robots, one mounted on the rail system bearing the

client satellite mock up and other fixed on the ground bearing the docking system and

RV sensors, each having 6 degree of freedom (DoF) are used to simulate the client and

servicer satellite motion, respectively.

Figure 2.11: The EPOS facility (credits: DLR)

The facility has some limitations imposed by the configuration system, for instance

the fixed length of the linear rail limits the possible simulation scenarios and thus the

possible simulation setups with true-scale satellite models to 25m RV&D maneuvers.

But the most critical limitations regard the simulation of satellite rotational motion,

in particular the rotation around the roll-axis. [9]

The EPOS facility could be used also in closed loop applications, like DEOS

(Deutsche Orbital Servicing Mission). For such “hardware in the loop” scenario the

RV&D sensors and the robotic manipulator arm have to be mounted on one robot and

a typical mock-up for the client satellite on the other robot. The sensors can measure

the relative position and attitude of the client satellite and the on-board computer

calculates on this basis the necessary thrusters or reaction wheel commands, that will

21

2.3. ONGOING PROJECTS AND ON-GROUND SIMULATION

Figure 2.12: The EPOS reference coordinate systems (credits: DLR)

feed in a real time simulator. This dynamic simulator computes for the next sample

an update of the position and attitude of the spacecraft based on control forces and

torques, then these upgraded values of position and attitude will be commanded to the

facility.

The new robotic experimental facility which was recently built at the DLR to

support the development and experimental validation of such orbital servicing robots

is called OOS-SIM (On-Orbit Servicing Simulation). First presented to the public in

2013, the facility allows reproducing a close-proximity scenario under realistic three-

dimensional orbital dynamics conditions. It is a simulator for on-orbit servicing tasks

such as assembly, maintenance and repair work on satellites that are in orbit around the

earth. It also investigates the system’s applicability for the removal of non-functioning

orbiting target satellites.

Two large industrial robots hold the servicing unit (or the chaser satellite) and the

target satellite and simulate their weightlessness. A sensitive lightweight robot arm

with gripper is mounted on the servicing unit. The OOS-SIM system has two benefits.

On the one hand, it is able to simulate the multi-body dynamics of free-flying robots

in orbit without the influence of gravity. For this purpose, the movement of the chaser

satellite is realized with an industrial robot with six degrees of freedom. The system also

allows the simulation of contacts between the lightweight robot and the target satellite –

with observation of the orbital dynamics. Force-torque sensors at the interfaces between

the satellites and the industrial robots measure the contact forces and supply them to a

real-time simulation of the multi-body dynamics of the free-flying robot and the target

satellite (”hardware-in-the-loop” method). In this application domain the configuration

22

2.3. ONGOING PROJECTS AND ON-GROUND SIMULATION

Figure 2.13: Overview of the OOS-SIM. On the left there is the Client satellite; on the right, the
Servicer satellite and manipulator (credits: DLR)

of our facility represents a worldwide unique example. The second application of the

facility is to provide a test and analysis platform for the development and validation

of orbital robot control and image processing methods. With gravity-compensated

dynamics, robot control requires suitable solutions to make the interaction between

robot arm and satellite base motion controllable. Chaser satellite can be operated

either with or without its actuators (e.g. thrusters of the attitude control system). Both

strategies are current research topics at the Institute of Robotics and Mechatronics.

The lightweight robot can also be commanded by an operator through teleoperation (or

telepresence, with feedback of contact forces sensed by the robot arm). A stereo camera

is mounted on the robot’s gripper to support the robotic tasks (such as the capture

process). A sun simulator and black curtains allow the simulation of different orbital

lighting conditions under which image processing methods can be tested. The ultimate

goal of this facility is to demonstrate the capture of a non-cooperative tumbling target

satellite. The non-cooperative character is based on the assumption that the target

satellite is not controllable and does not have any helpful visual features on its surface.

One possible deployment scenario is Active Debris Removal, which removes target

satellites from orbit by crashing them in a controlled manner so that they burn up in

the Earth’s atmosphere and fall into the sea. [20] The on-ground servicing simulation

facility in Thales Alenia Space is the Rendezvous & Docking facility, an area that was

built in the framework of the STEPS (Sistemi e Tecnologie per l’EsPlorazione Spaziale)

program and co-financed by the Piedmont Region. Here the docking maneuver is

simulated on a micrometric black granite floor where two vehicles (the chaser and the

target) move floating over an air film of about 60µm in order to obtain a frictionless

23

2.3. ONGOING PROJECTS AND ON-GROUND SIMULATION

dynamic and have a testing environment able to simulate orbiting conditions.

Figure 2.14: Rendezvous & Docking facility at Thales Alenia Space

This air film is fed by an on-board pneumatic system, also able to provide thrust

and torque for attitude and position control. The chaser moves automatically toward

the target and, once they are close enough, docking mechanism is turned on for final

docking. The trajectory is corrected by Navigation and Control software on the basis

of information from on-board sensor: thrusts and torques for controlling position,

attitude and speed are automatically managed and through a Pulse Width Modulator

actuators commands ON/OFF are generated. The area is also equipped with two

robotic arms produced by Schunk (the Lightweight Arm 4P and the Lightweight Arm

3) to implement and test on the hardware the collaborative control algorithms between

the arm and the chaser, necessary for the capture but more in general for servicing (e.g.

refueling of propellant, repairing and/or replacement of parts, removing of space debris)

of a target. The creation of a control system for the Schunk LWA 3 is the objective of

this thesis.

24

Chapter 3

Schunk LWA3

3.1 Manipulator modelling and kinematics

A manipulator arm can be schematically represented as an open kinematic chain of

rigid bodies, links, connected to each other by joints which constitute the degrees of

mobility of the structure corresponding to the joint angles. Of the two extremities, one

is constrained to a base and the other is connected to an end-effector.

Figure 3.1: Schematization of a 6 DoF manipulator as open kinematics chain

The resulting motion of the structure is obtained by motion composition of each

link with respect to the previous one. Therefore in order to manipulate an object in

the space it is necessary to know the position and orientation of the end-effector, linked

to the joint angles of manipulator by means of the direct kinematics equation that can

be written in term of transformation matrix as:

25

3.1. MANIPULATOR MODELLING AND KINEMATICS

T(q) =

"
R(q) p(q)

0T 1

#
(3.1)

where, considering a manipulator with n degrees of freedom, q = [q1 q2 ... qn] is

the vector of joint angles, 0T = [0 0 0] R and p are the rotation matrix and position

vector, that represent respectively the orientation and position of the end-effector with

respect to the base frame. Therefore the matrix T(q) represent the transformation

matrix from the base to the end-effector reference frame in homogeneous coordinates.

Actually, the orientation of a rigid body can be represented in terms of so-called min-

imal representation, that can be extracted from the Rotation matrix as shown below.

Consider two reference frames, one fixed in the space (x, y, z) and the other fixed with

the body (x’, y’, z’) like in Figure 3.2.

Figure 3.2: Inertial (red) and Body (blue) reference frame of a generic rigid body

The relative orientation between these frames, and hence the orientation of the

body, can be described by means of the rotation matrix, R, whose nine components

represent the direction cosines of the unit vectors of one frame relative to the other.

Therefore the rotation matrix has a geometrical meaning, indeed it is possible to con-

sider it as result of a sequence of three consecutive rotations each one around a co-

ordinate axis, each of which describes the rotation about an axis in space needed to

align the axes of the reference frame with the correspondent axes of the body frame.

These matrix are called elementary rotations and their representations are shown in

the following equations:

26

3.1. MANIPULATOR MODELLING AND KINEMATICS

Rx(α) =

1 0 0

0 cosα −sinα
0 sinα cosα

 ,Ry(α) =

 cosα 0 sinα

0 1 0

−sinα 0 cosα

 ,

Rz(α) =

cosα −sinα 0

sinα cosα 0

0 0 1


These rotations are positive if they are made anticlockwise about their relative axis.

The order in which the succession occurs is not commutative and therefore, must be

specified. The components of a rotation matrix are linked by six relations due to its

orthonormal property, therefore only three components are linearly independent and

constitute the minimal representation of the body’s orientation. This representation

can be obtained by using a set of three angles (α, β, γ), the Euler Angles. There are

twelve distinct sets of Euler angles, with regard to the sequence of possible elementary

rotations; below the so-called ZYX representation is presented.

Consider (α, β, γ)the set of Euler angles. The overall rotation described by these

angles is obtained as composition of the following elementary rotations:

• Rotate the reference frame by the angle γ about axis z; this rotation is described

by the rotation matrix Rz (γ) which is defined in the equations above.

• Rotate the current frame by the angle β about axis y’; the corresponded rotation

matrix is R0
y(β).

• Rotate the current frame by the angle α about axis x”; the corresponded rotation

matrix is R00
x(α). [7]

Figure 3.3: Representation of Euler angles ZYX

The resulting frame orientation is obtained by composition of rotations with respect

to the current frame. The correspondent Rotation matrix is:

27

3.1. MANIPULATOR MODELLING AND KINEMATICS

RZY X(α) =

cγcβ cγsβsα − sγcα cγsβcα + sγsα

sγcβ sγsβsα + cγcα sγsβcα − cγsα
−sβ cβsα cβcα

 (3.2)

To solve the inverse problem, that is to compute the set of Euler angles from a

given Rotation matrix r11 r12 r13

r21 r22 r23

r31 r32 r33


it is sufficient to compare the two matrices above, if β is in the range (-π/2, π/2)

the solution is:

α = Atan2(r32, r33)

β = Atan2(−r31,
p
r211 + r221)

γ = Atan2(r21, r11)

where Atan2(y, x) is a two argument arctangent function. The solution in this case

is β = π/2, 3π/2 is:

α = Atan2(−r32,−r33)

β = Atan2(−r31,−
p
r211 + r221)

γ = Atan2(−r21,−r11)

Both of these solution degenerate when cosβ = 0, i.e. β = ±π/2; in this case only

the sum or the difference of α and β can be computed and singularities can occur. The

same rotation matrix expressed in (3.2) is obtained using the RPY (Roll-Pitch-Yaw)

Angles representation in which each of the three rotations, in order Rx(ψ), Ry(θ) and

Rz(φ), takes place about an axis in the fixed reference frame.

An alternative representation of the orientation between two frames can be obtained

in terms of a rotation angle, θ, about a unit vector, r , the Angle/Axis representation.

The corresponding Rotation matrix is:

R(θ, r) = rrT + cosθ(I − rrT) + sinθS(r)

where the S(r) matrix is a skew-symmetric dyad. It is clear that the rotation (θ,

r) cannot be distinguished from (-θ,-r), being represented by the same matrix R. On

the other hand in the case sin θ = 0, i.e. θ = 0 or π, can occur singularities easily

verifiable considering the solution of the inverse problem.

28

3.1. MANIPULATOR MODELLING AND KINEMATICS

θ = cos−1(r11+r22+r33−1
2

)

r = 1
sinθ

r32 − r23r13 − r31
r21 − r12


These drawbacks can be overcome by a four-parameter representation, called Euler

parameters, that in terms of equivalent axis r = [rxryrz]
T and angle θ are given by:

ε1 = rxsinθ/2

ε2 = rysinθ/2

ε3 = rzsinθ/2

η = cosθ/2

These four components are not independent, indeed squaring each component and

summing them, the result is always 1, therefore, an orientation might be visualized as

a point on a unit hypersphere in four-dimensional space. The Euler parameters can

be considered as (3x1) vector ε plus a scalar η or a (4x1) vector Q = ε, η. In this last

case it is called a Unit quaternion. [4] The equivalent Rotation matrix is defined as:

R(ε, η) = (η2 − εT ε)I + 2εε2 − 2ηS(ε)

The equivalent Euler parameters, given a Rotation matrix, are:

ε21 = 1/4(r11 − r22 − r33 + 1)

ε22 = 1/4(−r11 + r22 − r33 + 1)

ε23 = 1/4− (r11 − r22 + r33 + 1)

η2 = 1/4(r11 + r22 + r33 + 1)

In order to avoid numeric singularities it is sufficient to select the maximum absolute

value component, assign to it the positive sign and derive the others accordingly. The

different orientation representations are related to the angular velocity of the body

through the following kinematics relations:

• for the rotation matrix Ṙ = S(w)R

• for the Euler angles w = T (φ)φ̇

• for angle/axis parameters θ̇ = rTw

29

3.1. MANIPULATOR MODELLING AND KINEMATICS

• for the unit quaternion Q̇ = 1/2(QΩ) [2]

where the vector w ∈ R3x1 denotes the angular velocity of the body frame with

respect to the reference frame; the φ = [α, β, γ]T is the Euler angles vector and the Ω is

the skew-symmetric matrix linked to the angular velocity. Representing the orientation

with the minimal representation, using for instance the Euler Angles, it is possible to

describe the manipulator posture by means of a (mx1) vector, with m ≤ n, called state

vector.

x =

"
p

φ

#
(3.3)

where p describes the end-effector position, φ its orientation and m the DoF of

the manipulator in the task space. This vector is defined in the space in which the

manipulator task is specified, the so-called operational space, whereas in the joint space

(configuration space) we refer to the manipulator posture with the (nx1) joint vector,

q , mentioned before. According to this notation the direct kinematic relationship can

be written in another form than (3.1) as:

x = k(q) (3.4)

where k (·) is generally a nonlinear vector function that allows the computation of

the operational space variables from the knowledge of these in the joint space. Deriving

with respect to the time the equation (3.3) we obtain the relationship that allows to

express the end-effector linear, ṗ, and angular w , velocities as a function of joint

velocities, q̇ :

ẋ =

"
ṗ

w

#
=

"
J p(q)

J o(q)

#
= J (q)q̇ (3.5)

where J is the (mxn) Jacobian matrix of the manipulator.

Once understood how the position and the orientation of end-effector are affected

by the manipulator’s joints, in order to implement a control for the robotic arm it is

necessary to define its dynamic model. This can be derived either using Lagrange’s

method based on energy balance or the Newton-Euler method based on force balance

and written in the compact matricial form below.

H (q)q̈ + Cq(q , q̇)q̇ + g q(q) + τh = τ (3.6)

where q , q̇ , q̈ ∈ Rnx1 are the joint, joint velocity, joint acceleration vector; H q ∈
Rnxn is the Inertia matrix of the manipulator arm; C q ∈Rnx1 is the nonlinear dependent

velocity term, that takes into account the centrifugal and Coriolis forces; g q ∈ Rnx1 is

the vector of moments generated by the presence of gravity; τh ∈ Rnx1 is the vector of

30

3.2. FORWARD KINEMATICS OF THE SCHUNK LWA 3

joint-space forces and moment exerted by the end-effector on the environment; τ ∈ Rnx1

is the actuation torques vector applied to the joints. In the model of the equation (3.7)

the viscous and static friction forces have been neglected, thus considering only the ideal

behavior of the manipulator. Such nonlinear characteristics will be compensated during

the numerical simulations. Furthermore, it is worth noting that the dynamics equation

of the manipulator (3.7) is defined in the joint space, denoted by the subscription q .

The joint space description of the manipulator tasks can only be used for a well-defined

environment and task geometries, therefore it is generally more convenient to define

the manipulator tasks in the operational space, especially when the manipulator needs

to perform a variety of contact tasks in an unknown environment. For this reason, it

is useful considering also the dynamics model in the operational space, expressed as:

H (x)ẍ + Cx(x , ẋ)ẋ + gx(x) + F h = F (3.7)

where x , ẋ , ẍ ∈ Rmx1 are the state, state velocity and state acceleration vector;

H x ∈ Rmxm, C x ∈ Rmx1, g x ∈ Rmx1, are the representation of the same Inertia matrix,

nonlinear dependent velocity term and the vector of gravity forces expressed in the

equation (3.7), respectively, with the only difference that are defined in the operational

space, as denoted by the subscription x ; F h ∈ Rmx1 is the vector of forces and moment

due to environment contact and F ∈ Rmx1 is the vector of forces and moment acting on

the end-effector. The relationship between the operational and joint space parameters

can be given by the following equation:

H x = (JH −1
q J T)−1

C xẋ = H xJH −1
q C qq̇ −H xJ̇ q̇ (3.8)

gx = H xJH −1
q g q

Easy derivable taking in consideration the fundamental link between the operational

and joint variables of position and force, the first expressed by the equation (3.5) and

the second expressed by τ = J TF, respectively.

3.2 Forward kinematics of the Schunk LWA 3

The forward kinematics determine the position and orientation of the end-effector of a

robotic arm when the joint angles values are given by mapping the joint space to the

task space. The manipulator considered in this thesis has seven revolute joints rotating

around fixed axis on previous links. The 7-DoF manipulator has a similar structure

to the human arm. The arm has 7 revolute joints arranged to form the shoulder, el-

bow, and wrist portions as shown in Figure 3.4. Forward kinematics problem has no

31

3.2. FORWARD KINEMATICS OF THE SCHUNK LWA 3

complexity to derive the equations comparing to the inverse kinematics because it is a

straightforward problem. Hence, there is always a forward kinematics solution of a ma-

nipulator. The Denavit-Hartenberg method is the most common method for describing

the manipulator kinematics that led to derive the forward kinematics equations.

Figure 3.4: The manipulator structure

3.2.1 Denavit-Hartenberg representation

The forward kinematics of the arm can be developed by a systemic procedure using a

combination of conventions to determine and analyze the successive effect of the consec-

utive joint motions to finally place the end-effector at a specific position and orientation.

These conversions allow to simplify the intricacy of the forward kinematics analysis in

the complex arm with higher number of axes. The solution of the forward kinematics

problem can be accomplished by calculating the transformation between the fixed base

frame and the end-effector frame. The Denavit-Hartenberg procedure is the convention

generally used to calculate the transformation between the frames [1]. Each joint in the

manipulator connects two links: every joint i connects the link i-1 to the link i. When

joint i is actuated the link i moves. Link 0 is always fixed. In Denavit-Hartenberg

method, the homogeneous transformation matrix is represented by a product of four

basic transformations: two translations and two rotations parametrized by the four

32

3.2. FORWARD KINEMATICS OF THE SCHUNK LWA 3

Denavit-Hartenberg parameters as equation (3.9) illustrates.

T i−1
i = Rotzi(θi)Transzi(di)Transxi(ai)Rotxi(αi) =

=


cos(θi) −sin(θi) 0 0

sin(θi) −cos(θi) 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1




1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 cos(αi) −sin(αi) 0

0 sin(αi) cos(αi) 0

0 0 0 1


The final result of this matrix multiplication is:

T i−1
i =


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)

sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 (3.9)

where θi is the joint angle, di is the link offset, ai is the link length and αi is the link

twist. The matrix T i−1
i is a function of a single variable θi because the manipulator

in this study has only revolute joints, the remaining three parameters are constant for

each link. The joint angle θi is the angle measured about zi−1 between xi−1 and xi.

The link offset di is the distance from oi−1 to the intersection of the xi and zi−1 axes

along zi−1. The link length ai is the distance from oi to the intersection of the xi and

zi−1 axes along xi. The link twist αi is the angle measured about xi between zi−1 and

zi. The homogeneous transformation matrix T i−1
i expresses the position of joint frame

center oi and orientation of the attached frame i with respect to the previous joint

frame i1. So the transformation from the base to the end-effector is given by

T 0
7 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6 T

6
7 (3.10)

Where the transformation matrix T i−1
i is given by the rotation matrix Ri−1

i and the

translation vector pi−1
i as shown in equation (3.11).

T i−1
i =

"
Ri−1
i pi−1

i

0 1

#
(3.11)

The rotation matrix Ri−1
i in Denavit-Hartenberg method can be combination of

rotations around z and x. The corresponding rotation matrices are shown in equation

(3.12). pi−1
i is a 3 by 1 vector that represents coordinates of the position of the frame

center (px, py and pz).

Rx =

1 0 0

0 cos(αi) −sin(αi)

0 sin(αi) cos(αi)

 ,Rz =

cos(θi) −sin(θi) 0

sin(θi) cos(θi) 0

0 0 1

 (3.12)

33

3.2. FORWARD KINEMATICS OF THE SCHUNK LWA 3

The assigned frames must satisfy two conditions of the Denavit-Hartenberg method.

The first one is that the xi axis is perpendicular to zi−1 and the second is that the axis

xi must also intersect zi−1. Assigning the coordinate frames for a manipulator can

be achieved by many different assigned ways but such that the Denavit-Hartenberg

conditions are satisfied.

3.2.2 Coordinate frames assignment

The procedure of the Denavit-Hartenberg convention algorithm starts by assigning the

coordinate frames to derive the forward kinematics equations of a manipulator. The

first step in the process is the choice of the z axes for the 7 joints by assign zi to be the

axis of actuation for joint i+1. Thus, z0 is the axis of actuation for joint 1, z1 is the axis

of actuation for joint 2, z2 is the axis of actuation for joint 3, z3 is the axis of actuation

for joint 4, z4 is the axis of actuation for joint 5, z5 is the axis of actuation for joint 6,

z6 is the axis of actuation for joint 7, z7 is the axis of defining an important direction

for the end-effector. The base frame then is established by choosing the origin o0 at

any point on z0 as shown in Figure 3.5, the x0 and y0 axes are conveniently chosen to

form a right-hand frame. The origins from o1 to o7 are chosen to be the points of the

intersection between z1 and zi+1. After that assigning the x axis from x1 to x7 where xi

must intersect and be perpendicular to the axis of zi−1 and zi. The yi axis established

to form a right-hand frame, see Figure 3.5 below.

3.2.3 Forward kinematics equations

The forward kinematics equations can be obtained after assigning the coordinate frames

and establishing the link parameters di, ai, αi and θi that form the D-H table. The

link length ai is distance along xi from oi to the intersection of the axis of xi and the

axis of zi−1. From the assigned frames shown in Figure 3.5 there is no distance along

any x axes from the origins to the point of intersection between the xi and zi−1 so

that the link length is zero in all the frames in the D-H table. The link offset di is the

distance along the axis zi−1 from the origin oi−1 to the intersection of the axis xi and

the axis of zi−1. The assigned frames in Figure 3.5 shows that there are lsb along z0, l
e
s

along z2, l
w
e along z4 and ltw along z6 while there is no any link offsets along z1, z3 and

z5. The link twist αi is the angle between zi−1 and zi measured about xi. Figure 3.5

illustrates that about x1 there is an angle of −π/2 (rad) between the axis of z0 and z1,

same angle is around the axes of x3 and x5. The angle about x2 between the axes of z1

and z2 is π/2 (rad), same angle around the axes of x4 and x6. The figure shows that

there is no angle around x7 between the axis of z6 and z7. The Link angle θi is the

angle between xi−1 and xi measured about zi−1 since all the joints are revolute joints

so the joint angles from θ1 to θ7 are variables. The Denavit-Hartenberg parameters are

34

3.2. FORWARD KINEMATICS OF THE SCHUNK LWA 3

Figure 3.5: The coordinate frames assigned to the manipulator.

shown in Table 3.1

Frames Link angle [rad] xi−1
i [mm] yi−1

i [mm] zi−1
i [mm]

R0 → R1 θ1 0 0 133.1
R1 → R2 θ2 0 -13.1 -166.9
R2 → R3 θ3 0 182.6 13.1
R3 → R4 θ4 0 -13.6 -145.4
R4 → R5 θ5 0 159.1 13.6
R5 → R6 θ6 0.565 -10.785 -117.4
R6 → R7 θ7 -0.571 141.6 10.885
R7 → Ree 0 0 0 -36.9

Table 3.1: Denavit-Hartenberg parameters

The homogeneous transformation matrices T 0
7 are computed by substituting the

parameters above in equation (3.10) for each joint. The position and orientation trans-

formation matrix of the end-effector relative to basis coordinate system is shown in

equation (3.13).

35

3.3. SCHUNK LWA3 DATA AND SETUP

T 0
7 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6 T

6
7 =


R11 R12 R13 px

R21 R22 R23 py

R31 R32 R33 pz

0 0 0 1

 (3.13)

3.3 Schunk LWA3 data and setup

The Schunk Lightweight Arm 3 is, as mentioned before, a 7 degrees-of-freedom manip-

ulator. The arm is based on the servo-electric swivel units PRL (Positive Rotational

Lock) with integrated motor controller units and a through-hole for cable feed- through.

The combination of a high compact performance, and new materials for the connection

technology allows the doubling of the payload to nominal 5 kg. The standard design

of the LWA 3 is available as a 7-axes system.

Figure 3.6: Design of Schunk Lightweight Arm 3

36

3.3. SCHUNK LWA3 DATA AND SETUP

The open software-architecture enables the connection and operation with any type

of end-effectors to the servo-electric “wrist” of the arm, e.g.:

• Servo-electric 2-finger parallel grippers PG;

• Schunk Anthropomorphic Hand SAH;

• Schunk Dexterous Hand (SDH), which was available at the Thales Alenia Space

RV&D facility and can be seen in Figure 3.7 on the left of the robotic arm.

The force-torque sensor FTC may be used for the power feedback. All joint func-

tionalities are stored as macros directly in the respective PRL and may be actuated

from a superposed control level.

Figure 3.7: The LWA 3 and the SDH

The technical data of the LWA 3 are:

• repeatability of 1 mm;

• power supply is 24 VDC, maximum current of 15 A (for safety reasons, the current

deployed during tests in the RV&D facility was never higher than 2 A);

• maximum payload of 5 kg that can be increased as described later [14].

The PRL modules are not directly connected to the power supply and to the work-

station used to control them, as can be seen in Figure 3.8.

37

3.3. SCHUNK LWA3 DATA AND SETUP

Figure 3.8: Circuit diagram for power supply (courtesy of Schunk)

1. Power supply

2. PC, SPS or suitable control

3. PowerCube Terminal Block

4. PowerCube-Module 1 to n

5. Bus cable from Terminal Block to module

6. Cable for comunication

7. Cable for power supply

The terminal block is connected to the power supply with pins for logic supply (one

for 0 VDC and one for 24 VDC) and two pins come out of the block and go to the base

of the robotic arm. In a similar way, the PC for the control and communication has

a CAN cable with three wires (for CAN high, CAN low and Shield) that go to their

respective pins of the terminal block which then sends the signals directly to the arm

with the CAN bus. Figures 3.9 and 3.10 show the schematics of the terminal block

with the pins and an actual photo, respectively.

Figure 3.9: Schematics of the terminal block

38

3.3. SCHUNK LWA3 DATA AND SETUP

Figure 3.10: Terminal block of Schunk LWA 3 (courtesy of Schunk)

The advantages that the structure and design of LWA 3 brings are:

• Suitable for mobile applications, thanks to low energy consumption at 24 V DC;

• High torque, speed and repeat accuracy for rapid acceleration;

• Short cycle times and high process stability;

• Complete integration of control, regulator and power electronics does not require

a control cabinet;

• Compact quick-change system to quickly and easily mount grippers and tools;

• Internal cabling with free wires Expandable without disruptive cables;

• High power density and extremely compact Lightweight construction and new

design provide a weight-load capacity ratio of 2:1;

• maneuverable and flexible, as 7 axes provide redundancy during challenging han-

dling tasks

The field of applications of the LWA 3 lightweight arm includes various sectors

of robotics: inspection systems, service robotics, human-machine and human-human

interactions are just some examples. When combined with different types of end-

effectors, the LWA 3 can be used in tactile, sensor or camera based inspection systems

or even with mobile platforms, such as light transport, monitoring and maintenance

robots.

The new servo-electric swivel units PRL of the PowerCube series with integrated

Motor-Controller unit and continuous center bore for the cable feed-through form its

39

3.3. SCHUNK LWA3 DATA AND SETUP

base. The combination of high power density and light materials for connecting tech-

nology enable twice the payload. Each PRL module is composed by a rotor and a

stator linked to a plaque that connects every joint to the previous one. The separation

of the two parts coincides with the line above the Schunk logo, visible in Figure 3.11.

Figure 3.11: PRL module (courtesy of Schunk)

The seven PRL modules that make up the stucture of the arm come in different

dimensions: 2x PRL 120, 2x PRL 100, 2x PRL 80, 2x PRL 60. [14] These motors are

assembled together and also internally connected by cables routing through the hollow

shaft integrated into the PRL-modules.

Figure 3.12: Example of mounting PRL modules (courtesy of Schunk)

40

3.3. SCHUNK LWA3 DATA AND SETUP

1. Connection element 120

2. PRL 120

3. Pedestal PRL 120

The Rotary Module PRL meet the demands for reconfigurable, modular robot

structures since they are consistently implemented. Due to the use of light but also

very stable materials, the compact swivel units achieve a weight-payload ratio which is

better than 2:1. The modules are equipped with an integrated power supply, control

options, and universal communication interfaces. The individual PRL modules can be

freely and flexibly assembled to an individual light-weight arm. Due to this combination

of this flexible robotics solution, five degrees of freedom are already successfully and

reliably integrated. There is an open software architecture that allows the control

of the axes, however the PRL modules communication is based on the PowerCube

software. The PowerCube protocol can be used via three different types of bus: CAN

bus, RS232 and Profibus. All the specifics of the PowerCube software and the CAN

communication will be the focus of the next chapter.

41

Chapter 4

The CAN protocol

The Controller Area Network - CAN - is a communication protocol developed by R.

Bosch GmbH at the beginning of the 1980s as a working method for enabling robust

serial communication, with a focus on the automotive area. In 1990 Mercedes-Benz

was the first manufacturer to use this protocol in one of their flagship model, the

S-class. In 1993 it became an international standard with the release of ISO 11898,

CAN 2.0A and 2.0B, while in 1994 other CAN-related higher level protocols have been

standardized, such as CANopen and DeviceNet. In 1997 24 millions CAN interfaces

were produced; two years later there were already more than three times as many, and

today almost every road vehicle uses this protocol [15]. The reason why CAN became

so popular is that it provides an inexpensive and durable way to make the numerous

micro-controllers present in a car communicate with one another, as it can reduce a

lot the amount of cables needed. Today the CAN networks are also used in space

and aerospace applications, robotics, railed transportation, hospitals and even coffee

machines [12].

4.1 ISO 11898

Since CAN has evolved and became more and more complicated in the past 50 years,

ISO 11898 had to expand and include many details of the protocol. Today ISO 11898

is divided in five parts:

• ISO 11898-1 Road vehicles—Controller area network (CAN) - Part 1: Data link

layer and physical signalling

• ISO 11898-2 Road vehicles—Controller area network (CAN) — Part 2: High

speed medium access unit

• ISO 11898-3 Road vehicles—Controller area network (CAN) — Part 3: Low

speed, fault-tolerant, medium-dependent interface

42

4.1. ISO 11898

Figure 4.1: ISO 11898 standard architecture for CAN networks

• ISO 11898-4 Road vehicles—Controller area network (CAN) — Part 4: Timetrig-

gered communication

• ISO 11898-5 Road vehicles—Controller area network (CAN) — Part 5: High

speed medium access unit with low-power mode

A simple representation of the layers that form this communication structure is the

one shown in figure 4.1. The Application layer provides high level communication

functions that can be implemented by a software developer or handled by a higher level

protocol such as:

• CAL (CAN Application Layer): originally developed by Philips Medical Sys-

tems, is an application-independent layer that is now maintained by the CAN in

automation (CiA) user group.

• CANopen: built on top of CAL, uses some of its services and communication

protocols. With this protocol every node in the network is associated to an

Object Dictionary (OD) where all the parameters that describes the device and its

behavior are contained. CANopen is now maintained by the CAN in automation

(CiA) user group too.

• DeviceNet: developed by American company Allen-Bradley (now owned by

Rockwell Automation), adapts the technology from the Common Industrial Pro-

tocol and exploits CAN, making it low-cost and robust compared to the tradi-

tional RS-485 based protocols.

The Datalink layer has the task of transferring the messages from a node to all the

other ones. It is divided in Logic Link Control layer (LLC) and Medium Access Control

layer (MAC) and handles bit stuffing and error control, waiting for acknowledgement

from the receivers after a message is sent. Figure 4.2 shows how nodes are connected in

43

4.2. MAIN FEATURES

Figure 4.2: Example of the physical connection in a high-speed CAN network

a typical CAN network. The Physical layer implements physical signaling, bit encoding

and decoding, bit transmitting and synchronization [12]. Different kinds of physical

layer are used to satisfy the system specification both from a cost or performance point

of view, the most common are:

• High-speed CAN hardware: it’s the most used physical layer, with two wires that

allow communication at 1 Mbit/s rate. Used most for anti-lock brake systems,

engine control modules and emission systems, it is also known as CAN-C (ISO

11898-2).

• Low-speed/fault-tolerant CAN hardware: also known as CAN-B (ISO 11898-3),

also uses two wires for the communication, but up to 1 Mbit/s transfer rate. In

the automotive field it is primarily used for comfort devices.

• Single-wire CAN hardware: using just a single wire for the communication, the

transfer rate is limited to 33.3 kbit/s (88.3 kbit/s in high-speed mode). Also

known as CAN-A, within an automobile it is used just for those devices that do

not have any performance requirement, such as mirror adjusters.

4.2 Main features

Being such a robust, fast, safe and widely used protocol, CAN is inevitably complex.

The communication is asynchronous, half duplex (usually differential signaling), up to

1 Mbit/s. The number of nodes is virtually unlimited, for this reason they do not have

an address, but filter the data on the bus to determine if it’s useful or not, and master-

slave designation is not used. Logic values are ”dominant” (low - 0) or ”recessive”

(high - 1), where dominant overrides recessive, so any node can start a message and an

arbitration process is applied, without any loss of time or data. It is also worth noting

that there is a high level of data security because a node that recognises that it is faulty

after error checking, can disconnect itself from the network. Since all the nodes are

44

4.2. MAIN FEATURES

Figure 4.3: Standard structure of a CAN message

equal, it is impossible to simply send ”only” the data on the bus, so the communication

is based on messages or frames that allows to carry much more information. Figure

4.3 shows how typically a CAN message is organized for CAN 2.0A (standard) and can

2.0B (extended). Considering just the 11-Bit-Identifier frame, that is the one used for

the Schunk Lightweight Arm 3 and the SDH, the message is divided in the following

parts [15]:

• Start of Frame (SOF) = 1 bit (low, dominant): always used to start a

frame, the falling edge synchronizes all network nodes.

• Arbitration Field = 12 bit: ID and RTR combined make the Arbitration

Field. Each message has its own ID = 11 bit that basically is the ”name”

of the message (CAN 2.0B has a 29 bit ID), the lower the identifier the higher

the priority. Remote Transmission Request (RTR) = 1 bit is the last bit

of the arbitration field. If RTR is high=recessive it means that the message is

asking for data (data request frame), else if RTR is low the message contains the

data itself (data frame) or does not have to contain data because it only triggers

some operations that do not need it. These two messages have the same ID but

different RTR so are different.

• Control Field = 6 bit: is composed by the Identifier Extension Flag (IDE)

bit that indicates that the ID is completed, the r0 bit that is reserved and the

Data Length Code (DLC) 4 bits that indicates how many bytes of data is the

message carrying.

• Data Field = 0–8 bytes of data: contains the actual data of the message.

• Cyclic Redundancy Check (CRC) Field = 16 bits: the first 15 bits (CRC

sequence) are only used for fault detection, adding redundant check bits at the

transmission end, then these bits are recomputed at the receiver end and tested

again, if there is a misalignment a CRC error occurred. The CRC field is closed

by that last bit, called CRC delimiter (high).

• Acknowledge Field = 2 bits: all the nodes that have recognized the message

as correct will send a dominant level in the ACK slot, if no node sends the

45

4.2. MAIN FEATURES

Figure 4.4: Arbitration example scheme on a CAN bus

low level an ACK error occurred. The acknowledge field is closed by the ACK

delimiter (high).

• End of Frame (EOF) = 7 bit: indicates the end of the data frame (usually

all recessive).

• Inter Frame Space (IFS) = 3 bit (high): separates the frame from the

following one. The time for this operation is used inside the node to transfer the

message from the controller to a receive buffer or to transfer a message from a

transmit buffer to the controller.

It is noticeable that inside the message structure a good part is dedicated to error

detection, another important feature of the CAN protocol, with the CRC field and

the ACK field. Another way an error active node or the transmit one can report

an error is by transmitting an error frame (usually six consecutive low level bits), a

particular message that violates the rules of bit stuffing and frame format, causing

all the other nodes to send an error frame as well [6], and after that bus activity

returns to normal. On the contrary, also an error passive node can indicate that they

have detected an error by sending an error-passive flag (usually 14 recessive bits), so

if the fault is not detected by an error active node or the transmit one the message

will continue the transmission [19]. Generally hundreds if not thousand of nodes are

connected and try to transmit messages in a single CAN network, and since there is

no master-slave designation, bit-wise arbitration is used to give priority to a certain

frame instead of another one. Figure 4.4 shows how it works. Node B and Node C

start transmitting on the CAN bus at the same moment but after some identical bits,

B tries to put on the bus a recessive (high) bit while C transmits a dominant (low)

one. So B loses arbitration and stops transmitting, C finishes its message and after

that B wins arbitration again, completing its frame. This functionality is part of the

46

4.3. SCHUNK LWA3 CAN COMMUNICATION

ISO 11898 physical layer, which means that it is contained entirely within the CAN

controller and is completely transparent to a CAN user [6].

4.3 Schunk LWA3 CAN communication

Like it was anticipated in paragraph 3.3, the PRL modules can communicate with one

another and with the master PC through different standards: RS232, Profibus or CAN

bus. In the case of the Schunk LWA 3 at Thales Alenia Space, the communication

method that was used was the CAN bus. The hollow shaft drive allows a protected

installation of cables and hoses inside the arm up to the ”wrist”. No cables are vis-

ible, and there are no interfering contours. An example of assembling inside one of

the modules is the one in Figure 4.5. In the same figure it is possible to see 120 Ω

resistance whose presence is necessary to terminate the CAN bus on both ends. The

final resistance that completes the ”chain” of termination is welded on the terminal

block.

Figure 4.5: Assembling of the CAN bus (courtesy of Schunk)

4.3.1 PowerCube software

The original package of the Lightweight Arm 3 also included the PowerCube software

that can be used for the control of the manipulator. A simple interface allows the user

to choose which standard of communication is chosen by inserting the InitString that

contains, besides the name of the standard, also the baud rate and the number of the

47

4.3. SCHUNK LWA3 CAN COMMUNICATION

port. By clicking the button ”Scan” in the window, the program scans the communica-

tion device specified with “InitString” and lists all detected modules. Double clicking a

list box entry will open the module dialog box. Here it is possible to navigate between 6

pages: I/O Settings, Electrical Settings, Module Test, Identification, Drive/Controller

Settings and finally General Settings. However, trying to control a robotic arm using

this program is quite difficult. In addition to this, using the PowerCube software with

the CAN bus is possible only whit one of the two interface boards supported by Pow-

erCube: the ESD PCI331 (PCI board) or the ESD USB-Mini (USB interface). For

this reason, the best way to go forward is to exploit the PowerCube communication

protocol for the CAN network. The protocol used to exchange data between master

and PowerCube is unified and independent from the bus interface used. The module

receives serial data, interpretes it and acknowledges the command. The time neces-

sary for this transfer depends on the bus interface and its parameters. A PowerCube

command has this structure:

Identifier CommandID ParameterID or MotionID Data 0 ... Data 7

Command ID, Parameter ID and following data bytes are identical for all communi-

cation interfaces (RS232, CAN, Profibus-DP). Only the Identifiers vary in dependency

of the bus interface used. The PowerCube acknowledges all commands received (as

far as not configured in another way) and the acknowledge data frame has the same

structure as the command. All messages, either sent or received, are expressed using

hexadecimal numbers. [16] A CAN-Bus-Identifier follows the CAN-Specification 2.0

Part A (11-bit-ID). There are three possible identifiers:

• 0x0AM (cmd ack) for the acknowledgement messages sent from module M to

the master PC;

• 0x0CM (cmd get) for messages sent from the master to the module in order to

read a parameter or a value;

• 0x0EM (cmd put) for messages sent from the master to the module to set a

parameter or a value or to start a motion procedure.

In all cases M indicates the number of the module to which the message is referred

(1 ≤ M ≤ 7). There are some commands that can be sent to all connected modules

contemporarily, in this case the Identifiers listed above can’t be used. They are replaced

by the Broadcast Identifier 0x100.

The Command ID is the first data transferred which states the command to be

processed by the module. These commands are available:

• Reset - 0x00 clears the error state and resets the encorders;

48

4.3. SCHUNK LWA3 CAN COMMUNICATION

• Home - 0x01 starts homing procedure;

• Halt - 0x02 immediately stops one or all modules;

• SetExtended - 0x08 set parameter (write target position or velocity, minimum

or maximum position, velocity, acceleration, ...);

• GetExtended - 0x0A fetch parameter (read actual position, velocity, acceler-

ation, current or minimum and maximum parameters);

• SetMotion - 0x0B set motion command (motion starts with target position or

target velocity).

The first three Command IDs do not require any additional Parameter ID, Motion ID

and obviously any data byte. On the contrary, for SetExtended and GetExtended it

is necessary to specify the Parameter ID related to what needs to be read or written.

The SetExtended also requires data bytes that must be sent to the LWA 3 to declare

the parameter value. In a similar way, the SetMotion Command ID expects both the

Motion ID and relative data bytes. The amount of data bytes sent with the command

depends on the motion mode chosen. The data sent to the module will be immediately

acknowledged (if not configured otherwise in the configuration word) and the data flow

has the same exact structure of the message sent.

The third data transferred in the CAN message, after the Identifier and the Com-

mand ID, is the Parameter ID. Those available to the user are:

• ActPos - 0x3C returns the actual position in radiants (GetExtended command);

• ActVel - 0x41 returns the actual velocity in rad/s (GetExtended command);

• MinPos - 0x45 used to read or write the minimum position that a joint can

reach, expressed in radiants (can be both a GetExtended or SetExtended com-

mand);

• MaxPos - 0x46 used to read or write the maximum position that a joint can

reach, expressed in radiants (can be both a GetExtended or SetExtended com-

mand);

• MaxVel - 0x48 used to read or write the maximum velocity (in rad/s) that a

joint can reach (can be both a GetExtended or SetExtended command);

• MaxAcc - 0x4A used to read or write the maximum acceleration (in rad/s2)

that a joint can reach;

• TargetPos - 0x4E set the target position that a joint must reach after it receives

a following SetMotion command (SetExtended command);

49

4.3. SCHUNK LWA3 CAN COMMUNICATION

• TargetVel - 0x4F set the target velocity that can be reached by a joint during

motion (SetExtended command);

• TargetAcc - 0x50 set the target velocity that can be reached by a joint during

motion (SetExtended command).

For the commands that can be used to either fetch or set a parameter it is important

to understand how to differentiate the message sent based on what the required action

is. The solution is very simple: the robotic arm understand the request based on the

Command ID used before the Parameter ID. Also, if a command is a SetExtended

one, data bytes are required to complete the message. Finally, as an alternative to the

ParameterID, for those Command IDs that require them, there are the Motion IDs.

The two most important are:

• FRAMP MODE - 0x04 used to start a movement that stops at the position

(in rad) entered via the data bytes (SetMotion command);

• FVEL MODE - 0x07 starts a motion with the chosen velocity (in rad/s), the

movement stops when the maximum position is reached (SetMotion command).

It is worth noting that the PowerCube manual offers a wider range and choice of

Command IDs, Parameter IDs and Motion IDs. However, for this thesis’ work, it was

chosen to include in the code of the control systems only the IDs reported above. In

this way it has been possible to perform the required tasks while keeping the code as

short and simple as possible.

Finally, it is important to pay attention to the format in which the data bytes must

be specified. Even if PowerCube requires various types based on the necessity (char,

unsigned char, short, unsigned short, long, unsigned long or float), the only one that

has been used in this work has been the float. This means that the data at the end of

the message must be expressed using floating point standard and ordered according to

the Little Endian format. Once the data has been converted from decimal to floating

point (IEEE-754) standard, the bytes must be separated and their order reversed. For

example, the number 0.77 converted in float is 0x3F451EB8. Now, if the digits after

0x are divided in couples and these couples are reversed, the final result of the Little

Endian ordering is: 0xB81E453F.

With all the tools described up until now it is possible to show what a message sent

to the robotic arm would be like. If, for example, the velocity of module 2 has to be

set to 0.77, the can message would be constructed as follows:

1. the Identifier is a cmd put because data will be sent to the second joint of the

arm, in this case 0x0E2;

2. Command ID is 0x08, SetExtended given that a parameter must be set;

50

4.3. SCHUNK LWA3 CAN COMMUNICATION

3. SetExtended requires a Parameter ID, in this case TargetVel, 0x4F;

4. finally, the data bytes with reverse ordering expressing in floating point stan-

dard the chosen velocity for the module, in this case 0xb81e453f (as computed

previously).

The message, separating the bytes is: 0xE2 0x08 0x4F 0xB8 0x1E 0x45 0x3F.

4.3.2 IXXAT CANAnalyser 3 Mini

As said in the previous paragraph, using the PowerCube software with the CAN bus is

possible only whit one of the two interface boards supported by the program. For this

reason, before starting the development of the control system, it has been necessary to

test the CAN communication between the computer and the Lightweight Arm 3 using

another interface. The one supplied at the RV&D facility is the USB-to-CAN Compact

by Ixxat (Figure 4.6)

Figure 4.6: USB-to-CAN Compact Ixxat interface

This interface comes with a software that can be used to send the messages to the

manipulator and see the acknoledgments that it returns. The USB-to-CAN Compact is

easily plugged in and recognized by the program; communication is enabled by simply

clicking on the green check in the top left corner. The transmission frame on the bottom

of the screenshot in Figure 4.7 allows the user to send the CAN message providing the

division of ID and data frame. In this case, the ID column refers only to the first byte

51

4.3. SCHUNK LWA3 CAN COMMUNICATION

of the CAN message described in the previous paragraph, the Identifier. The bytes

relative to the Command ID, Parameter or Motion ID and the actual data bytes, must

be entered in the column labeled ”Data (hex)”. For both the ID and the Data column,

the ”0x” before the byte can be omitted, because the program automatically recognize

the number entered as hexadecimal. It is also possible to choose which format of CAN

message is used, if the standard one or the extended one, by checking the box in the

column ”Ext.” if necessary. The button on the far left in the Transmit window sends

the message reported in the relative line when clicked. The receive windows shows the

responses coming from the arm with the same structure used to send messages, and in

addition to those, there are five more columns. The first two indicate the number and

the time of each acknowledgement; the third indicates the state of the communication

(for example errors); the fifth column ”DLC” tells the Data Length, in other words how

many data bytes are in the response; the seventh column reports any ascii conversion

that can occur.

Figure 4.7: Screenshot from sotware Ixxat Cananalyser

If the message created in the previous paragraph has to be sent using The Ixxat

Cananalyser software, the first column would contain the Identifier (E2), while all the

other bytes (08 4F B8 1E 45 3F) will go in the Data column.

This software has been very useful for learning how to communicate with the LWA 3:

how to order the message, divide it, send data and how to read the responses. The first

steps of the control development have been made trying to send various messages to the

arm and see if and how they would be received and their consequences, and made me

understand which command the manipulator expects before others. The work carried

out using Ixxat Cananalyser have been crucial for the design of the control system.

52

Chapter 5

Control system and Graphical User

Interface

5.1 Tasks definition

The work done using Ixxat Cananalyser was very important, not only for learning how

to construct and send a message to the LWA 3, but it also helped understanding what

commands does the manipulator expects before other. First of all, after connecting

the arm to the power supply, and powering on the latter, it is necessary to send the

command Reset to clear any error state and reset the encoders. This has to be done

for all the joints, so it is appropriate to use the Broadcast version of this command

(with the Identifier 0x100) thus not having to repeat the action seven times. Now, it

is possible to send any command for setting or reading parameters, but not to start

motion. Before being able to do so, there is another command that must be sent to

all joints, the command Home. This command starts the motors (that can be heard

clicking) but does not change any of the joints’ positions. The configuration in which

the robotic arm is switched off is returned, indeed, as the new default home position.

The command Home must be sent using the Broadcast Identifier, just like it is for Reset.

After all these procedure are completed, the arm is ready to receive and perform any

command, also the motion ones. As written in the previous chapter, there are two

ways to start a joint movement: by specifying a target position (Motion ID 0x04) or

a target velocity (Motion ID 0x07). Performing a movement in a safe way, however,

requires the definition of a parameter through a SetExtended command. It is necessary

to specify, with two consecutive messages, the target position and target velocity. One

must be sent as a SetExtended command and the other as a SetMotion. There are two

options of doing so:

• first set the velocity value using SetExtended Command ID (0x08) and TargetVel

Parameter ID (0x4F), then start the joint movement specifying the position that

53

5.1. TASKS DEFINITION

has to be reached with the SetMotion Command ID (0x0B) and FRAMP MODE

(0x04);

• enter the target position with SetExtended Command ID (0x08) and TargetPos

Parameter ID (0x4E), then start the movement specifying the joint velocity that

has to be reached with the SetMotion Command ID (0x0B) and FVEL MODE

(0x07).

These two procedures may seem equivalent, however, after some tests performed with

the Cananalyser software, it has been noted that actually they are not. In particular,

the second strategy does not have the desired effect: after sending the SetMotion

command, the motor does not stop its run when it reaches the target position but

it keeps going until it reaches the end of stroke instead. This happens because the

FVEL MODE activates a movement based only on the velocity, ignoring the parameter

of the requested position, thus stopping only when it arrives to the limit position. The

PowerCube manual does not give a precise step by step procedure to control the arm

so these tests where crucial to understand how to communicate with the manipulator

to make it perform the required tasks in the correct way and order. After all these

trials it has been possible to start the design of the control system to replace the not

much user-friendly Cananalyser software. Now that the communication procedures are

clear, it is possible to define which are the task that a reliable control system must

perform:

• reset the encoders and clear the error state;

• change default home position and move the joints to the desired starting config-

uration;

• stop the motion immediately when a dangerous situation occurs;

• change parameters like maximum and minimum position to make sure that every

motor can reach every position from 0° to 360° or from -180° to 180°, or at least

cover as wider a range as possible, while avoiding any dangerous configuration;

• read position, velocity and other parameter requested by the user

• set target position, velocity and acceleration parameters

• start motion;

• perform different tasks at the same time (sending the same command to all joints

or moving them all together);

• choose pre-defined position that might help the manipulator reach the target

object more easily;

54

5.2. CONTROL STRUCTURE

• compute the pose (position and orientation) of the end-effector through forward

kinematics.

These tasks must be accomplished through a suitable user interface. During the course

of this work, at first the control actions have been performed via a Command Line

Interface, then after the completion of the design, the commands have been transferred

on a more suitable and user-friendly Graphical User Interface, whose development will

be the focus of paragraph 5.4.

5.2 Control structure

The user controls the arm through a user interface from the master (in this case a

workstation or a PC) linked to the internal logic (the terminal board) via a commu-

nication interface (the CAN network). The terminal board is also connected to the

power supply on one side and to the actuators (the joints of the manipulator) on the

other. The modules’ motors receive the commands via the CAN network and send

back to the internal logic an acknowledgement after they perform the required tasks.

The sensors also send messages to the master when the latter asks for data like actual

position, velocity or acceleration. The control structure is schematized in Figure 5.1

Figure 5.1: Control Scheme of LWA 3

The first step is the creation of a short code that enables the communication via the

CAN network. This code, called init can.sh, must be launched from terminal after

the power up of the computer and of the Lightweight Arm 3. Some Python scripts can

be considered preparatory and complementary for the rest of the control system. As

mentioned before, the Lightweight Arm 3 expects data in radiants and in floating point

55

5.2. CONTROL STRUCTURE

format with Little Endian byte ordering. For the user, providing data and values in

such format would be very difficult and time consuming, for this reason three Python

files have been created:

• AngleConversion.py that provides a function for converting from degrees to

radiants and one that does the opposite; the second function comes in handy

when, for example, the user sends commands to read the position or velocity of

a joint and wants to see them in degrees rather than in radiants.

• FloatingPoint.py with a function that takes as input the data value in ra-

diants and converts it from decimal to floating point according to the standard

IEEE754; a second function does the opposite job taking as input the data pro-

vided by the arm as an output.

• LittleEndian.py where the two functions change the bytes ordering from Big

Endian to Little Endian for input data and vice-versa for output ones.

In this way, it is possible to highlight two paths: one for encoding of data (crossed while

feeding parameters to the arm) and the decoding one (undertaken when the output

must be converted to a value of easy understanding for the user).

Encoding path:

Data input → AngleConversion.py (degrees to radiants) → FloatingPoint.py (decimal

to IEEE754) → LittleEndian.py (reverse ordering) → LWA 3

Decoding path:

LWA 3 → LittleEndian.py (direct ordering) → FloatingPoint.py (IEEE754 to

decimal) → AngleConversion.py (radiants to degrees) → Data input

The file that sends messages to the LWA 3 and receives and stores the acknowledge-

ment with possible output data is the launch.py. This script has just one function,

launcher(CAN msg), that takes as input the CAN message built in the other files and

separates the Identifier from the rest. This last part, that came in the function as a

string, is converted, element by element, from hexadecimal to decimal format. After

defining the variables of the bus type (CAN) and of the channel (CAN port 1), the

message is officially sent to the LWA 3 split in two parts: the arbitration id equal to

the Identifier, and the data equal to the array of the remaining data bytes expressed

as decimal numbers.

After a pause of one second, the launcher(CAN msg) function stores the message

that is received on the bus defined before and prints it on the screen after converting

it from Little Endian and floating point format to decimal value.

56

5.2. CONTROL STRUCTURE

After these preliminary scripts the design of the control system continues with

the creation of other Python files that can carry out the required tasks. Each task

has been associated with a function and all the functions have been divided in some

Python codes, based on the type of command or action performed. For example, tasks

related to the reading and writing of parameters are incorporated in the same file; the

same is valid for motion related commands or for functions that perform more actions

at the same time.

This was decided in order to avoid the creation of many scripts, like what would have

happened if each task had its own, or a very long one that contained every function.

At the end, the control structure consists of five Python files besides the preparatory

ones listed earlier in the paragraph:

• GeneralCommands.py contains the commands that can be sent with the Broad-

cast Identifier (0x100), i.e. Reset, Home and Halt that respectively carry out the

tasks of clearing the error state and resetting encoders, sending the manipulator

back in its home configuration and stopping motion immediately. None of these

commands require a Parameter ID or Motion ID after their Command ID.

• ParametersRW.py where there are the functions to read and write parameters

like minimum and maximum position, maximum velocity, acceleration or current.

These functions need the GetExtended Command ID when reading the data, and

the SetExtended one during the configuration of a parameter.

• Telemetry.py is the Python file for the functions used to read the position,

velocity or acceleration of each joint.

• JointControl.py stores all the functions related to motion, from the SetEx-

tended commands to set the target position or velocity to the SetMotion ones.

• Multiple.py contains the commands aimed at all the joints contemporarily or

those that forecast a sequence of functions being deployed consecutively: some

examples of this category are the Arm, Park, Totem and Op-safe functions that

will be explained in the next paragraph. This script also provides the functions

to move all the joints at the same time with different rotations or to set their

velocity with just one command.

Eventually, the last and most important file of the control system is the dugtrio

arm model.py. This script is the core of the control system as it provides the kine-

matics parameters necessary to compute the required pose of the end-effector and also

the call to all the functions defined previously: the first line of the codes, indeed, have

the import statement for the other Python files created, whose function are necessary

to control the arm. After these import statements there is the description of the arm

57

5.2. CONTROL STRUCTURE

as a class called Dugtrio: the first function, init (self) carries the geometric dis-

placements between each joint of the arm in matricial form. It is worth noting that

these values are the same as the Denavit-Hartenberg in Table 3.1. This function also

calls the two successive ones that are necessary to compute the roto-translation matrix:

the first is called read(self) and performs the task of reading the actual position of the

joints and stores the results in a variable called self.joints. This variable is later used

by the next function, compute rt(self) that calculates the roto-translation from base

to end-effector with the help of intermediate roto-translation matrices: some represent

the movement from one fixed joint to the mobile configuration of the next one and

others are relative to the rotation from the mobile reference frame to the fixed one of

the same joint. The iteration of matrices multiplication for all joints couples gives the

final result of the roto-translation matrix. The first three elements of the last column of

this matrix are the x, y and z coordinates of the end-effector in the moment when the

computations are performed. The roll, pitch and yaw are calculated with the help of

an appropriate Python file, RPYconversion.py. This file takes the roto-translation

matrix as an input and, using the relative formulas, gives as output the values that

make up the orientation of the end-effector.

The functions that complete the Dugtrio class are simply the call to their corre-

sponding ones from the imported files in order to compute the required task when they

are launched from the Command Line Interface.

The final lines of this code are the if name == ’ main ’:.py loop: when

the file is launched from the terminal, this part of the script is executed, printing out

on the screen the Command Line Interface, visible in Figure 5.2.

Figure 5.2: Command line control window

At the prompt, the user can type in any of the commands available among those

that appear. Based on the user choice, the relative function is called and the required

task executed. The script is structured in such a way that, after any movement of any

joint, the roto-translation matrix and relative pose of the end-effector are computed

and printed out on screen.

58

5.3. EXPERIMENTAL TESTS

5.3 Experimental tests

The first task to carry out is the choice of a suitable home configuration for the Schunk

LWA 3.

Figure 5.3: LWA 3 in Park position, its original home configuration

Figure 5.2 above shows the position in which the Schunk Lightweight Arm was

locked at the beginning of my thesis. This position, that later will be defined as Park,

is optimal for when the manipulator has to be transported from one location to another

because it is the configuration that takes up the least space possible.

It is also important to notice that in the image above, all the joints are in their

natural zero position. This means that, when the Schunk arm is asked for the posi-

tion of each joints, the output data is equal to 0. However this configuration is very

inconvenient as default home configuration, so it is crucial to find a better one.

None of the commands listed on the PowerCube manual allows to change the default

home configuration, but it is reported that there is a way of doing so in an artificial

manner: the Schunk LWA 3 always remember as its home position, the one in which it

has been turned off and as a consequence, the one it has at power on. This allows the

user to arbitrarily choose the position that he considers the most convenient. In this

case the position chosen is the one called Totem, visible in Figure 5.3

The advantages of the Totem configuration is that it is more user friendly than

the Park one, as the user can easily assess the position of each joint with respect to

its maximum and minimum end of stroke. Also, any position is easier to reach from

Totem than it is from Park. Lastly, the configuration was chosen because it was more

compliant to safety requirements: if, for example, from the Park position joint 4 moves

59

5.3. EXPERIMENTAL TESTS

Figure 5.4: Totem and home position

in anti-clockwise direction, joint 6 would crash on the desk surface, to which it is

already too close.

It is clear that the only advantage of Park is the fact that it occupies the least

space possible and so it is a configuration useful only for situations like the transport

described earlier in this paragraph.

After computing the displacement that would offset the home position, these values

have been used as parameter for a FRAMP POS motion command to move joints 2, 4

and 6. Of course these value have been obtained, checked and confirmed with a trial

and error procedure, until the new setting would be more than acceptable. Joints 1, 3,

5 and 7 are already in their optimal setup and do not need any offset. The offset values

for the new home position are reported in Table 5.1. Now that the joints are organized

in a different way it is necessary to set the new home position as the user zero. Keeping

the zeros related to Park would make very difficult for the user to understand where the

joint is in its range of possible positions. The offsets in Table 5.1 are the entry values of

an array used to change the position parameters, when required, to make them fall into

line with the positions read by the arm. This simple line of code makes the user job a

lot easier. For example, if the person that is controlling the arm wants to move joint

2 10° in the positive direction (anti-clockwise) from its Totem, he would have to enter

100°. This, however, would be a very counterintuitive computation that can be avoided

60

5.3. EXPERIMENTAL TESTS

Joint displacement [deg]

Joint 1 0
Joint 2 90
Joint 3 0
Joint 4 120.32
Joint 5 0
Joint 6 -115.74
Joint 7 0

Table 5.1: Totem offset displacements with respect to Park configuration

by letting the code automatically add 90° (the offset of joint 2) at the value entered

by the user (in this case 10°). The Totem command, whose corresponding function is

stated in the Multiple.py script, is crucial for recovering the home position when

needed. However rare, it might happen that the power goes off and that the LWA 3

suddenly shuts down. If this situation occurs, when it is restarted, the robotic arm will

identify as its home position the one in which it has turned off. In this case, having

the Totem command helps recover the desired home position. The user can, indeed,

launch the command right before the arm is manually turned off, thus restoring the

best home configuration.

Another command stated in the Multiple.py Python file is Arm. The tasks

performed are: sending the Reset command to all joints and the setting of maximum

and minimum position (MaxPos and MinPos) that each module can reach during its

movement. The need for such a command has become evident when it was noticed

that some joints did not reach the target position set sometimes. For example, when

joint 1 received a SetMotion task to reach the position of -180°, it did not carry out its

task, stopping at -120° circa. It is clear that the problem to solve was the configuration

of the end of strokes values in the LWA 3 memory.

After studying the structure of the manipulator in all its joints, it has been decided

that the joints 1, 3, 5 and 7 can fulfill a complete round without causing or risking

any structural danger. Their stroke can go from the -180° to the 180° position. The

same cannot be said for joints 2, 4 and 6 whose maximum and minimum positions have

been imposed at 120° and -120° respectively. Pushing the limit further was in fact a

huge risk of collision between the joints in some configurations, but the values chosen

guarantee safety in any situation.

The most important arm configuration that has been defined is the Op-safe one.

The manipulator reaches this configuration when the homonym command is launched

through the Multiple.py Python file. This position, seen in Figure 5.5, is a safe

configuration from which the arm can easily move when it has to pick up an object.

It can be considered a pre-operational position. The values at which the joints are

moved, reported in table 5.2, have been decided with a series of tests to assess a

61

5.4. GRAPHICAL USER INTERFACE

Figure 5.5: Op-safe position

suitable distance of the end-effector from the floor. Also important, the shift from

Park or Totem to Op-safe must happen without any collisions or close calls with the

surrounding environment in the RV&D facility.

Joint displacement [deg]

Joint 1 70
Joint 2 30
Joint 3 0
Joint 4 70
Joint 5 20
Joint 6 50
Joint 7 0

Table 5.2: Op-safe displacements values with respect to Totem configuration

5.4 Graphical User Interface

All the tests described above were performed using the Command Line Interface shown

in Figure 5.2. After the completion of the control system, all the tools and function

have been transferred to a Graphical User Interface (GUI). A GUI is a more intuitive

and easy to use window that replaces the CLI while it still carries out the same tasks.

The GUI has been developed using the tkinter package (“Tk interface”), the standard

62

5.4. GRAPHICAL USER INTERFACE

Python interface to the Tk GUI toolkit. With few lines of code, tkinter allows the

creation of windows, frames, labels, buttons and more tools that have been used to

create the Schunk LWA 3 GUI. A screenshot is visible in Figure 5.6.

Figure 5.6: GUI window at power on

Here, it is possible to see that the main window is divided in two frames: the CMD

on the left for sending commands to the arm, and the TLM on the right to analyse

the telemetry. The first two rows of the CMD frame include buttons that launch the

homonym commands. Two of those commands are linked to the third and fourth lines

of the frame. The sliders in the third row are used to decide the movement of each

joint. Their values are the input for the task performed by ”MOVE”, that indeed,

is to move every module by the angle set on the respective slider. A similar task is

carried out by the ”ALLVEL” button, that takes the numbers entered in the boxes on

the fourth row to set the velocity of the corresponding joint. These entry boxes, the

buttons and the sliders are created using the homonym tkinter widgets.

The sliders have the same maximum and minimum limits as the positions that each

joint can reach.

Figure 5.7: GUI window working

63

5.4. GRAPHICAL USER INTERFACE

Figure 5.7 shows a screenshot of the GUI window where the sliders are moved from

the zero position and there are values entered in the velocity boxes. The resulting

configuration, obtained after clicking the button MOVE, is shown in figure 5.8.

Figure 5.8: Position set through GUI

The screenshot in Figure 5.7 also shows the right frame running. In the TLM

frame the joints’ positions and velocities are labels, constantly updated in real time

after the buttons ”READ POSITIONS” and ”READ VELOCITIES” are clicked once.

On the bottom right, the ”COMPUTE POSE” calculates position and orientation of

the end-effector when clicked.

64

Chapter 6

Conclusions

The target of this thesis project was to design a suitable control system for a robotic

manipulator that can be used during on-orbit satellite servicing missions. The first step

was to study the state of the art of the present servicing technologies and on-ground

simulation facilities, in order to create a solid knowledge about it. A deep study

of the manipulator modelling and kinematics was conducted with a particular focus

on the Denavit-Hartenberg representation and the coordinate frame assignment. The

equations needed to compute the roto-translation matrix are presented as an essential

part of the study of the forward kinematics of a 7-DoF robotic arm. Then, all the

informations about the Schunk LWA 3 are collected, from the mechanical structure to

the electrical components and connections to the power supply. The CAN bus protocol,

used to communicate with the arm, is presented starting from the ISO 11898 and its

layers. The standard data frame and the main features of the protocol are deeply

illustrated to introduce and better understand how it was implemented for the Schunk

LWA 3. Also important is the description of the structure of the CAN message and

the work done with software that enables a simple communication through a USB-to-

CAN interface. A description of the design and development of control system follows,

with focus on the structure, the functions created and the tasks performed by the

LWA 3. The tests of the manipulator’s functionalities are reported, highlighting what

obstacles had to be overcome, the solutions adopted and the different configuration of

the arm that can be used in various situations. A brief description of the GUI developed

for controlling the arm closes the chapter regarding the control system. After these

conclution there will be two appendices: one for the LWA 3 user manual and the other

for the code written during this thesis work.

6.1 Future developments

It is worth highlighting the future developments that can follow this project. As a

matter of fact, there are some areas that the control system does not cover at the

65

6.1. FUTURE DEVELOPMENTS

moment but could be added in the future. First of all, two types of control could

be implemented to support the forward kinematics: the inverse kinematics (cartesian

control) and the impedance control. The first would allow the user to specify a certain

position in the base reference frame for the end-effector to reach and the control sys-

tem would autonomously compute the movement for each joint in order to achieve such

task. This would save a lot of time and computation on the user side. The impedance

control, instead, would allow the user to manually move the arm applying a small

force on an end-effector equipped with a force sensor. Also in this case, the computer

would compute the movements for each joint to follow the directions imposed by the

user. Finally, another area of improvement could be the extension of the control to

the Schunk Dexterous Hand (SDH), the end-effector tool supplied at the Thales Alenia

Space RV&D facility. The SDH, like the LWA 3, uses the CAN protocol for communi-

cation and could be included in the framework of the arm with the addition of suitable

commands and function for its control.

66

Appendix A

User manual

This section contains the step-by-step procedure to use the Schunk LWA 3, from the

power supply setup to the launch of the control interfaces. First of all, while the power

supply is not connected to the terminal block, set the voltage at 24 VDC and the

current at 2 A maximum. Then, link the cable from the terminal block to the power

supply: two wires inside this cable must be connected to the 24 and 0 VDC pin of

the terminal block on one side and to the + and - of the power supply on the other.

In a similar way, the CAN cable inserted in the CAN port of the computer, must be

connected, on the other end, to the CAN pin of the terminal block.

Figure A.1: Power supply

Before switching on the power supply and the computer, it is mandatory to connect

67

the red push button to the emergency circuit on the terminal block.

Figure A.2: Emergency push button and terminal block

Once all the cables are connected and the terminal block is linked via CAN to a port

of the computer it is possible to power up both the power supply and the computer.

If the SDH or any other end-effector are not connected, it is possible to measure the

electric potential different at the pins visible on top of joint 7. Make sure that it is

equal to 24 VDC before going on with the next steps. Then, right click on the folder

”SchunkLWA3” and open it in the terminal. At the prompt, write ./init can.sh

and press Enter to initialize the communication on the CAN port 1. Type the password

and then write the name of the file that contains the command interface:

• python dugtrio arm model.py if the arm is going to be controlled through

the command line;

• python guirealtime.py if the choice is to use the GUI.

No matter what file has been chosen, after it has loaded, the first command that must

be launched is Arm: type the name ”arm” at the prompt in the CLI or click the

button in the GUI and wait for the LWA 3 to clear the error states and to set the

maximum and minimum position for each joint. Once the Arm procedure is over, send

the command Home, otherwise no motion will be allowed. When the motors’ clicking

has stopped, the manipulator is ready to receive any command. Now it is possible to

start any procedure and send the commands described in Chapter 5 to make the LWA

68

3 carry out the desired tasks. If the arm is about to collide with any surface, object or

instrumentation of the facility, press the red emergency push button or click the button

”STOP” in the GUI (or type the command if using the CLI) to immediately stop the

motion and avoid any dangerous event. After the robotic arm has been stopped, it

is necessary to send the Reset command to clear the error state before resuming any

procedure. If the push button was pressed, make sure to unlock it by turning it in

the direction of the arrow. In this case it is not necessary to send the arm in the

Home position, although very recommendable. If any sudden shutdown occurs, reset

the home configuration by turning on the power supply, move the manipulator to the

Totem position and turn it off. However, to avoid the loss of the chosen home, make

sure to always type or click ”QUIT” before turning on the power supply: this will send

the Totem command to the arm before closing the GUI or terminal window.

69

Appendix B

Code

In this appendix is listed the code relative to the control of the Schunk LWA 3. This

first part is the dugtrio arm model.py, that is the main file of the control system:

it contains the initialization of the arm, its kinematic description through the Denavit-

Hartenberg parameters, the computation of the roto-translation matrix and the call to

the functions created to communicate and send tasks to the LWA 3.

1 from numpy import *

2 import numpy as np

3 import GeneralCommands

4 import JointControl

5 import launch

6 import ParametersRW

7 import Telemetry

8 import Multiple

9 # import time

10

11

12 class Dugtrio:

13

14 # Initialisation

15 def __init__(self):

16 self.joints = []

17 self.__links = np.array ([[0, 0, 133.1] ,

18 [0, -13.1, -166.9],

19 [0, 182.6, 13.1],

20 [0, -13.6, -145.4],

21 [0, 159.1, 13.6],

22 [0.565 , -10.785, -117.4],

23 [-0.571, 141.6 , 10.885] ,

24 [0, 0, -36.9]], dtype

=float)

25 self.read()

26 self.rt = self.compute_rt ()

70

27 self.eps = 0.1

28

29 def read(self):

30 CAN_msg = [[’0x0C’ + str(i), ’0x0A’, ’0x3C’] for i in range(1,

8) if i != 3]

31 position = []

32 for msg in CAN_msg:

33 position.append(launch.launcher(msg))

34 position.insert(2, 0)

35 self.joints = position

36 self.rt = self.compute_rt ()

37 print(’rotation: ’, self.rt[0:3, 0:3])

38 print(’translation: ’, self.rt[0:3, 3])

39

40 # Compute the roto -translation from base to end -effector

41 def compute_rt(self):

42

43 # From the inertial frame to the first fixed -joint

44 t_01f = [[1, 0, 0, self.__links[0, 0]],

45 [0, -1, 0, self.__links[0, 1]],

46 [0, 0, -1, self.__links[0, 2]],

47 [0, 0, 0, 1]]

48

49 # From the first fixed -joint to the first mobile -joint

50 t_1f1 = [[cos(self.joints [0]), -sin(self.joints [0]), 0, 0],

51 [sin(self.joints [0]), cos(self.joints [0]), 0, 0],

52 [0, 0, 1, 0],

53 [0, 0, 0, 1]]

54 # Iterate the matrix multiplication from joints couples (1,2)

to (6, 7)

55 from_v = True

56 t_1to7 = [[1, 0, 0, 0],

57 [0, 1, 0, 0],

58 [0, 0, 1, 0],

59 [0, 0, 0, 1]]

60

61 for link in range(0, len(self.joints) - 1):

62 # From fixed to mobile

63 t_ftm = [[cos(self.joints[link + 1]), -sin(self.joints[

link + 1]), 0, 0],

64 [sin(self.joints[link + 1]), cos(self.joints[link

+ 1]), 0, 0],

65 [0, 0, 1, 0],

66 [0, 0, 0, 1]]

67

68 # If we start from a vertical joint we adopt t_vh ,

otherwise t_hv

71

69 if from_v:

70 t_mtf = [[1, 0, 0, self.__links[link + 1, 0]],

71 [0, 0, 1, self.__links[link + 1, 1]],

72 [0, -1, 0, self.__links[link + 1, 2]],

73 [0, 0, 0, 1]]

74 else:

75 t_mtf = [[1, 0, 0, self.__links[link + 1, 0]],

76 [0, 0, -1, self.__links[link + 1, 1]],

77 [0, 1, 0, self.__links[link + 1, 2]],

78 [0, 0, 0, 1]]

79

80 # Update the transformation chain

81 t_mm = matmul(t_mtf , t_ftm)

82 t_1to7 = matmul(t_1to7 , t_mm)

83

84 # Change the flag

85 # print(from_v)

86 from_v = not from_v

87

88 # Define the last transformation from joint -7 to end -effector

89 t_7e = [[1, 0, 0, self.__links[7, 0]],

90 [0, 1, 0, self.__links[7, 1]],

91 [0, 0, 1, self.__links[7, 2]],

92 [0, 0, 0, 1]]

93

94 # Compute the global roto -translation

95 mtx = matmul(matmul(matmul(t_01f , t_1f1), t_1to7), t_7e)

96 # print(type(mtx))

97 return mtx

98

99 # Command on joints

100 def move(self):

101

102 joint_space = input(’insert joint angular displacements: ’).

split(’ ’)

103 joint_space = [float(joint_space[i]) for i in range(len(

joint_space))]

104

105 # Bounds for variables

106 down = [-180 for i in range(len(joint_space))]

107 up = [180 for i in range(len(joint_space))]

108

109 if not len(joint_space) != 7:

110

111 if down < joint_space < up:

112 joint_space [2] = 0

113 # sending position to arm

72

114 count = 0

115 for joint in joint_space:

116 if count != 2:

117 CAN_msg = JointControl.PosMove(str(count + 1),

float(joint))

118 launch.launcher(CAN_msg)

119 count += 1

120 self.read()

121

122 else:

123 print("Wrong input: enter joints variables in [-180,

180].")

124 else:

125 print("Wrong input: joint space must have shape 7.")

126

127 # Reset the encoders

128 def reset(self):

129 GeneralCommands.Reset ()

130 return True

131

132 # Send one or more joints to their home positions

133 def home(self):

134 GeneralCommands.Home()

135 while [0 - self.eps] * 7 < self.joints < [0 + self.eps] * 7:

136 self.read()

137 break

138 return True

139

140 # Immediately stops the movement of one or more joints

141 def halt(self):

142 GeneralCommands.Halt()

143 return True

144

145 # Resets the encoder and set the minimum an maximum position for

each joint

146 def arm(self):

147 Multiple.Arm()

148

149 # Bring the arm in vertical position

150 def totem(self):

151 Multiple.Totem ()

152 self.read()

153 return True

154

155 # Bring each joint to its encoder ’s zero position

156 def park(self):

157 Multiple.Park()

73

158 self.read()

159 return True

160

161 # Pre -operation position

162 def opsafe(self):

163 Multiple.Opsafe ()

164 self.read()

165 return True

166

167 # Read actual position

168 def actpos(self):

169 CAN_msg = Telemetry.ActPos ()

170 response = launch.launcher(CAN_msg)

171 return response

172

173 # Read actual velocity

174 def actvel(self):

175 CAN_msg = Telemetry.ActVel ()

176 response = launch.launcher(CAN_msg)

177 return response

178

179 # Read or write the minimum position

180 def minpos(self):

181 CAN_msg = ParametersRW.MinPos ()

182 response = launch.launcher(CAN_msg)

183 return response

184

185 # Read or write the maximum position

186 def maxpos(self):

187 CAN_msg = ParametersRW.MaxPos ()

188 response = launch.launcher(CAN_msg)

189 return response

190

191 # Read or write the maximum velocity

192 def maxvel(self):

193 CAN_msg = ParametersRW.MaxVel ()

194 response = launch.launcher(CAN_msg)

195 return response

196

197 # Read or write the maximum acceleration

198 def maxacc(self):

199 CAN_msg = ParametersRW.MaxAcc ()

200 response = launch.launcher(CAN_msg)

201 return response

202

203 # Read or write the maximum current

204 def maxcurr(self):

74

205 CAN_msg = ParametersRW.MaxCurr ()

206 response = launch.launcher(CAN_msg)

207 return response

208

209 # Set the target position before sending a motion command

210 def targetpos(self):

211 CAN_msg = JointControl.TargetPos ()

212 response = launch.launcher(CAN_msg)

213 return response

214

215 # Set the target velocity before sending a motion command

216 def targetvel(self):

217 CAN_msg = JointControl.TargetVel ()

218 response = launch.launcher(CAN_msg)

219 return response

220

221 # Set the target acceleration before sending a motion command

222 def targetacc(self):

223 CAN_msg = JointControl.TargetAcc ()

224 response = launch.launcher(CAN_msg)

225 return response

226

227 # Send motion command to reach the set position

228 def posmotion(self):

229 CAN_msg = JointControl.PosMotion ()

230 response = launch.launcher(CAN_msg)

231 self.read()

232 return response

233

234 # Send motion command to move with the set speed

235 def velmotion(self):

236 CAN_msg = JointControl.VelMotion ()

237 response = launch.launcher(CAN_msg)

238 return response

239

240 # Send position motion command to each joint (with a different

angle for each one)

241 ’’’ def allpos(self):

242 CAN_msg = Multiple.AllPos ()

243 response = launch.launcher(CAN_msg)

244 return response ’’’

245

246 # Set the same velocity for all joints

247 def allvel(self):

248 Multiple.AllVel ()

249

250

75

251

252 if __name__ == ’__main__ ’:

253 arm = Dugtrio ()

254 arm.compute_rt ()

255 cmd_name = [’reset ’, ’home’, ’halt’, ’arm’, ’totem ’, ’park’, ’

opsafe ’, ’actpos ’, ’actvel ’, ’minpos ’, ’maxpos ’,

256 ’maxvel ’, ’maxacc ’, ’maxcurr ’, ’targetpos ’, ’targetvel

’, ’targetacc ’, ’posmotion ’, ’velmotion ’,

257 ’move’, ’allvel ’, ’read’, ’quit’]

258 cmd_func = [arm.reset , arm.home , arm.halt , arm.arm , arm.totem , arm

.park , arm.opsafe , arm.actpos , arm.actvel , arm.minpos ,

259 arm.maxpos , arm.maxvel , arm.maxacc , arm.maxcurr , arm.

targetpos , arm.targetvel , arm.targetacc ,

260 arm.posmotion , arm.velmotion , arm.move , arm.allvel ,

arm.read]

261 while True:

262 cmd = input(f’call a function: \n{cmd_name} \n>> ’)

263 if cmd in cmd_name and cmd != ’quit’:

264 i = cmd_name.index(cmd)

265 cmd_func[i]()

266

267 elif cmd == ’quit’:

268 break

269

270 else:

271 print(’command not found ’)

This second part of the code is the guirealtime.py file. Most of these lines are

aimed at the creation of the elements that form the main window using the widget

provided by tkinter (labels, entries, buttons and sliders). Some lines are the defini-

tion of the commands performed by the buttons when these are clicked. This file

imports the previous one and makes use of some of its functions such as read(self) and

compute rt(self) for the computation of the end-effector’s pose.

1 from tkinter import *

2 import Multiple

3 import GeneralCommands

4 import Telemetry

5 import launch

6 import AngleConversion

7 import math

8 from dugtrio_arm_model import Dugtrio

9

10

11 root = Tk()

12 root.title(’GUI LWA 3’)

13 dg = Dugtrio ()

76

14

15 cmd_frame = LabelFrame(root , text="CMD")

16 tlm_frame = LabelFrame(root , text="TLM")

17 cmd_frame.grid(row=0, column=0, padx=10, pady =10)

18 tlm_frame.grid(row=0, column=1, padx=10, pady =10)

19

20

21 def update ():

22 global entry1

23 global vel1

24 message = Telemetry.ActPos(’1’)

25 if entry1 is not None:

26 entry1.grid_forget ()

27 del entry1

28 pos1 = launch.launcher(message)

29 pos1deg = AngleConversion.RadToDeg(pos1)

30 entry1 = Label(tlm_frame , text=str(round(pos1deg , 3)))

31 entry1.grid(row=1, column=1, padx=5, pady =10)

32 message = Telemetry.ActVel(’1’)

33 if vel1 is not None:

34 vel1.grid_forget ()

35 del vel1

36 jv1 = launch.launcher(message)

37 jv1deg = AngleConversion.RadToDeg(jv1)

38 vel1 = Label(tlm_frame , text=str(round(jv1deg , 3)))

39 vel1.grid(row=1, column=2, padx=5, pady =10)

40 tlm_frame.after (237, update2)

41

42

43 def update2 ():

44 global entry2

45 global vel2

46 message = Telemetry.ActPos(’2’)

47 if entry2 is not None:

48 entry2.grid_forget ()

49 del entry2

50 pos2 = launch.launcher(message)

51 pos2deg = AngleConversion.RadToDeg(pos2)

52 entry2 = Label(tlm_frame , text=str(round(pos2deg , 3)))

53 entry2.grid(row=2, column=1, padx=5, pady =10)

54 entry3 = Label(tlm_frame , text="0.0")

55 entry3.grid(row=3, column=1, padx=5, pady =10)

56 message = Telemetry.ActVel(’1’)

57 if vel2 is not None:

58 vel2.grid_forget ()

59 del vel2

60 jv2 = launch.launcher(message)

77

61 jv2deg = AngleConversion.RadToDeg(jv2)

62 vel2 = Label(tlm_frame , text=str(round(jv2deg , 3)))

63 vel2.grid(row=2, column=2, padx=5, pady =10)

64 vel3 = Label(tlm_frame , text="0.0")

65 vel3.grid(row=3, column=2, padx=5, pady =10)

66 tlm_frame.after (237, update4)

67

68

69 def update4 ():

70 global entry4

71 global vel4

72 message = Telemetry.ActPos(’4’)

73 if entry4 is not None:

74 entry4.grid_forget ()

75 del entry4

76 pos4 = launch.launcher(message)

77 pos4deg = AngleConversion.RadToDeg(pos4)

78 entry4 = Label(tlm_frame , text=str(round(pos4deg , 3)))

79 entry4.grid(row=4, column=1, padx=5, pady =10)

80 message = Telemetry.ActVel(’1’)

81 if vel4 is not None:

82 vel4.grid_forget ()

83 del vel4

84 jv4 = launch.launcher(message)

85 jv4deg = AngleConversion.RadToDeg(jv4)

86 vel4 = Label(tlm_frame , text=str(round(jv4deg , 3)))

87 vel4.grid(row=4, column=2, padx=5, pady =10)

88 tlm_frame.after (237, update5)

89

90

91 def update5 ():

92 global entry5

93 global vel5

94 message = Telemetry.ActPos(’5’)

95 if entry5 is not None:

96 entry5.grid_forget ()

97 del entry5

98 pos5 = launch.launcher(message)

99 pos5deg = AngleConversion.RadToDeg(pos5)

100 entry5 = Label(tlm_frame , text=str(round(pos5deg , 3)))

101 entry5.grid(row=5, column=1, padx=5, pady =10)

102 message = Telemetry.ActVel(’1’)

103 if vel5 is not None:

104 vel5.grid_forget ()

105 del vel5

106 jv5 = launch.launcher(message)

107 jv5deg = AngleConversion.RadToDeg(jv5)

78

108 vel5 = Label(tlm_frame , text=str(round(jv5deg , 3)))

109 vel5.grid(row=5, column=2, padx=5, pady =10)

110 tlm_frame.after (237, update6)

111

112

113 def update6 ():

114 global entry6

115 global vel6

116 message = Telemetry.ActPos(’6’)

117 if entry6 is not None:

118 entry6.grid_forget ()

119 del entry6

120 pos6 = launch.launcher(message)

121 pos6deg = AngleConversion.RadToDeg(pos6)

122 entry6 = Label(tlm_frame , text=str(round(pos6deg , 3)))

123 entry6.grid(row=6, column=1, padx=5, pady =10)

124 message = Telemetry.ActVel(’1’)

125 if vel6 is not None:

126 vel6.grid_forget ()

127 del vel6

128 jv6 = launch.launcher(message)

129 jv6deg = AngleConversion.RadToDeg(jv6)

130 vel6 = Label(tlm_frame , text=str(round(jv6deg , 3)))

131 vel6.grid(row=6, column=2, padx=5, pady =10)

132 tlm_frame.after (237, update7)

133

134

135 def update7 ():

136 global entry7

137 global vel7

138 message = Telemetry.ActPos(’7’)

139 if entry7 is not None:

140 entry7.grid_forget ()

141 del entry7

142 pos7 = launch.launcher(message)

143 pos7deg = AngleConversion.RadToDeg(pos7)

144 entry7 = Label(tlm_frame , text=str(round(pos7deg , 3)))

145 entry7.grid(row=7, column=1, padx=5, pady =10)

146 message = Telemetry.ActVel(’1’)

147 if vel7 is not None:

148 vel7.grid_forget ()

149 del vel7

150 jv7 = launch.launcher(message)

151 jv7deg = AngleConversion.RadToDeg(jv7)

152 vel7 = Label(tlm_frame , text=str(round(jv7deg , 3)))

153 vel7.grid(row=7, column=2, padx=5, pady =10)

154 tlm_frame.after (237, update)

79

155

156

157 def move():

158 angles = [sli1p.get(), sli2p.get(), sli3p.get(), sli4p.get(),

sli5p.get(), sli6p.get(), sli7p.get()]

159 Multiple.AllPos(angles)

160

161

162 def reset():

163 module=’100’

164 GeneralCommands.Reset(module)

165

166

167 def home():

168 module=’100’

169 GeneralCommands.Home(module)

170 sli1p.set(value =0)

171 sli2p.set(value =0)

172 sli3p.set(value =0)

173 sli4p.set(value =0)

174 sli5p.set(value =0)

175 sli6p.set(value =0)

176 sli7p.set(value =0)

177

178

179 def stop():

180 module=’100’

181 GeneralCommands.Halt(module)

182

183

184 def totem():

185 Multiple.Totem ()

186 sli1p.set(value =0)

187 sli2p.set(value =0)

188 sli3p.set(value =0)

189 sli4p.set(value =0)

190 sli5p.set(value =0)

191 sli6p.set(value =0)

192 sli7p.set(value =0)

193

194

195 def opsafe ():

196 Multiple.Opsafe ()

197 sli1p.set(value =70)

198 sli2p.set(value =30)

199 sli3p.set(value =0)

200 sli4p.set(value =70)

80

201 sli5p.set(value =20)

202 sli6p.set(value =50)

203 sli7p.set(value =0)

204

205

206 def pose():

207 global x_entry

208 global y_entry

209 global z_entry

210 global roll_entry

211 global pitch_entry

212 global yaw_entry

213 rtm = dg.read()

214 # print(rtm)

215 eex = rtm[0, 3]

216 if x_entry is not None:

217 x_entry.grid_forget ()

218 del x_entry

219 x_entry = Label(tlm_frame , text=round(eex , 3))

220 x_entry.grid(row=10, column =0)

221 eey = rtm[1, 3]

222 if y_entry is not None:

223 y_entry.grid_forget ()

224 del y_entry

225 y_entry = Label(tlm_frame , text=round(eey , 3))

226 y_entry.grid(row=10, column =1)

227 eez = rtm[2, 3]

228 if z_entry is not None:

229 z_entry.grid_forget ()

230 del z_entry

231 z_entry = Label(tlm_frame , text=round(eez , 3))

232 z_entry.grid(row=10, column =2)

233 theta_x = math.atan2(rtm [2][1] , rtm [2][2])

234 cx = math.cos(theta_x)

235 sx = math.sin(theta_x)

236 theta_y = math.atan2(-rtm [2][0] , sx * rtm [2][1] + cx * rtm [2][2])

237 theta_z = math.atan2(-cx * rtm [0][1] + sx * rtm [0][2] , cx * rtm

[1][1] - sx * rtm [1][2])

238 if roll_entry is not None:

239 roll_entry.grid_forget ()

240 del roll_entry

241 roll_entry = Label(tlm_frame , text=round(theta_x , 3))

242 roll_entry.grid(row=10, column =3)

243 if pitch_entry is not None:

244 pitch_entry.grid_forget ()

245 del pitch_entry

246 pitch_entry = Label(tlm_frame , text=round(theta_y , 3))

81

247 pitch_entry.grid(row=10, column =4)

248 if yaw_entry is not None:

249 yaw_entry.grid_forget ()

250 del yaw_entry

251 yaw_entry = Label(tlm_frame , text=round(theta_z , 3))

252 yaw_entry.grid(row=10, column =5)

253

254

255 def allvel ():

256 angles = [en1v.get(), en2v.get(), en3v.get(), en4v.get(), en5v.get

(), en6v.get(), en7v.get()]

257 Multiple.AllVel(angles)

258

259 # Left frame --> COMMAND

260 arm_btn = Button(cmd_frame , text="ARM", width=7, command=Multiple.Arm)

261 arm_btn.grid(row=0, column=0, padx=5, pady =10)

262 stop_btn = Button(cmd_frame , text="STOP", width=7, command=stop)

263 stop_btn.grid(row=0, column=1, padx=5, pady =10)

264 quit_btn = Button(cmd_frame , text="QUIT", width =7)

265 quit_btn.grid(row=0, column=2, padx=5, pady =10)

266 reset_btn = Button(cmd_frame , text="RESET", width=7, command=reset)

267 reset_btn.grid(row=0, column=3, padx=5, pady =10)

268 move_btn = Button(cmd_frame , text="MOVE", width=7, command=move)

269 move_btn.grid(row=0, column=4, padx=5, pady =10)

270 totem_btn = Button(cmd_frame , text="TOTEM", width=7, command=totem)

271 totem_btn.grid(row=1, column=0, padx=5, pady =10)

272 opsafe_btn = Button(cmd_frame , text="OP-SAFE", width=7, command=opsafe

)

273 opsafe_btn.grid(row=1, column=1, padx=5, pady =10)

274 park_btn = Button(cmd_frame , text="PARK", width =7)

275 park_btn.grid(row=1, column=2, padx=5, pady =10)

276 home_btn = Button(cmd_frame , text="HOME", width=7, command=home)

277 home_btn.grid(row=1, column=3, padx=5, pady =10)

278 allvel_btn = Button(cmd_frame , text="ALLVEL", width=7, command=allvel)

279 allvel_btn.grid(row=1, column=4, padx=5, pady =10)

280

281 update_btn = Button(cmd_frame , text="UPDATE", command=update , width =7)

282 update_btn.grid(row=0, column =6)

283

284 pos_label = Label(cmd_frame , text="Positions")

285 pos_label.grid(row=2, column =0)

286

287 jo1p = Label(cmd_frame , text="J 1")

288 jo1p.grid(row=3, column=0, padx=5, pady =10)

289 sli1p = Scale(cmd_frame , from_ =-180, to=180)

290 sli1p.grid(row=4, column =0)

291 jo2p = Label(cmd_frame , text="J 2")

82

292 jo2p.grid(row=3, column=1, padx=5, pady =10)

293 sli2p = Scale(cmd_frame , from_ =-180, to=180)

294 sli2p.grid(row=4, column =1)

295 jo3p = Label(cmd_frame , text="J 3")

296 jo3p.grid(row=3, column=2, padx=5, pady =10)

297 sli3p = Scale(cmd_frame , from_ =-180, to=180)

298 sli3p.grid(row=4, column =2)

299 jo4p = Label(cmd_frame , text="J 4")

300 jo4p.grid(row=3, column=3, padx=5, pady =10)

301 sli4p = Scale(cmd_frame , from_ =-180, to=180)

302 sli4p.grid(row=4, column =3)

303 jo5p = Label(cmd_frame , text="J 5")

304 jo5p.grid(row=3, column=4, padx=5, pady =10)

305 sli5p = Scale(cmd_frame , from_ =-180, to=180)

306 sli5p.grid(row=4, column =4)

307 jo6p = Label(cmd_frame , text="J 6")

308 jo6p.grid(row=3, column=5, padx=5, pady =10)

309 sli6p = Scale(cmd_frame , from_ =-180, to=180)

310 sli6p.grid(row=4, column =5)

311 jo7p = Label(cmd_frame , text="J 7")

312 jo7p.grid(row=3, column=6, padx=5, pady =10)

313 sli7p = Scale(cmd_frame , from_ =-180, to=180)

314 sli7p.grid(row=4, column =6)

315

316 vel_label = Label(cmd_frame , text="Velocities")

317 vel_label.grid(row=5, column =0)

318

319 jo1v = Label(cmd_frame , text="J 1")

320 jo1v.grid(row=6, column=0, padx=5, pady =10)

321 en1v = Entry(cmd_frame , width =7)

322 en1v.grid(row=7, column =0)

323 jo2v = Label(cmd_frame , text="J 2")

324 jo2v.grid(row=6, column=1, padx=5, pady =10)

325 en2v = Entry(cmd_frame , width =7)

326 en2v.grid(row=7, column =1)

327 jo3v = Label(cmd_frame , text="J 3")

328 jo3v.grid(row=6, column=2, padx=5, pady =10)

329 en3v = Entry(cmd_frame , width =7)

330 en3v.grid(row=7, column =2)

331 jo4v = Label(cmd_frame , text="J 4")

332 jo4v.grid(row=6, column=3, padx=5, pady =10)

333 en4v = Entry(cmd_frame , width =7)

334 en4v.grid(row=7, column =3)

335 jo5v = Label(cmd_frame , text="J 5")

336 jo5v.grid(row=6, column=4, padx=5, pady =10)

337 en5v = Entry(cmd_frame , width =7)

338 en5v.grid(row=7, column =4)

83

339 jo6v = Label(cmd_frame , text="J 6")

340 jo6v.grid(row=6, column=5, padx=5, pady =10)

341 en6v = Entry(cmd_frame , width =7)

342 en6v.grid(row=7, column =5)

343 jo7v = Label(cmd_frame , text="J 7")

344 jo7v.grid(row=6, column=6, padx=5, pady =10)

345 en7v = Entry(cmd_frame , width =7)

346 en7v.grid(row=7, column =6)

347

348 # Right frame --> TELEMETRY

349 position_tlm = Label(tlm_frame , text="Position")

350 position_tlm.grid(row=0, column=1, padx=5, pady =10)

351 velocity_tlm = Label(tlm_frame , text="Velocity")

352 velocity_tlm.grid(row=0, column=2, padx=5, pady =10)

353

354 readpos_btn = Button(tlm_frame , text="READ POSITIONS", width =15,

command=update)

355 readpos_btn.grid(row=0, column=4, padx=5, pady=10, columnspan =2)

356 readvel_btn = Button(tlm_frame , text="READ VELOCITIES", width =15)

357 readvel_btn.grid(row=1, column=4, padx=5, pady=10, columnspan =2)

358

359 joint1 = Label(tlm_frame , text="Joint 1")

360 joint1.grid(row=1, column=0, padx=5, pady =10)

361 # entry1 = Label(tlm_frame , text=sli7.get())

362 # entry1.grid(row=1, column=1, padx=5, pady =10)

363 joint2 = Label(tlm_frame , text="Joint 2")

364 joint2.grid(row=2, column=0, padx=5, pady =10)

365 # entry2 = Entry(tlm_frame , width =7)

366 # entry2.grid(row=2, column=1, padx=5, pady =10)

367 joint3 = Label(tlm_frame , text="Joint 3")

368 joint3.grid(row=3, column=0, padx=5, pady =10)

369 joint4 = Label(tlm_frame , text="Joint 4")

370 joint4.grid(row=4, column=0, padx=5, pady =10)

371 # entry4 = Entry(tlm_frame , width =7)

372 # entry4.grid(row=4, column=1, padx=5, pady =10)

373 joint5 = Label(tlm_frame , text="Joint 5")

374 joint5.grid(row=5, column=0, padx=5, pady =10)

375 # entry5 = Entry(tlm_frame , width =7)

376 # entry5.grid(row=5, column=1, padx=5, pady =10)

377 joint6 = Label(tlm_frame , text="Joint 6")

378 joint6.grid(row=6, column=0, padx=5, pady =10)

379 # entry6 = Entry(tlm_frame , width =7)

380 # entry6.grid(row=6, column=1, padx=5, pady =10)

381 joint7 = Label(tlm_frame , text="Joint 7")

382 joint7.grid(row=7, column=0, padx=5, pady =10)

383 # entry7 = Entry(tlm_frame , width =7)

384 # entry7.grid(row=7, column=1, padx=5, pady =10)

84

385

386 ee_label = Label(tlm_frame , text="EE")

387 ee_label.grid(row=8, column =0)

388

389 compute_pose = Button(tlm_frame , text="COMPUTE POSE", width=15,

command=pose)

390 compute_pose.grid(row=8, column=4, padx=5, pady=10, columnspan =2)

391

392 x_label = Label(tlm_frame , text="x")

393 x_label.grid(row=9, column=0, padx=5, pady =10)

394 # x_entry = Entry(tlm_frame , width =7)

395 # x_entry.grid(row=10, column =0)

396 y_label = Label(tlm_frame , text="y")

397 y_label.grid(row=9, column=1, padx=5, pady =10)

398 # y_entry = Entry(tlm_frame , width =7)

399 # y_entry.grid(row=10, column =1)

400 z_label = Label(tlm_frame , text="z")

401 z_label.grid(row=9, column=2, padx=5, pady =10)

402 # z_entry = Entry(tlm_frame , width =7)

403 # z_entry.grid(row=10, column =2)

404 roll_label = Label(tlm_frame , text="roll")

405 roll_label.grid(row=9, column=3, padx=5, pady =10)

406 # roll_entry = Entry(tlm_frame , width =7)

407 # roll_entry.grid(row=10, column =3)

408 pitch_label = Label(tlm_frame , text="pitch")

409 pitch_label.grid(row=9, column=4, padx=5, pady =10)

410 # pitch_entry = Entry(tlm_frame , width =7)

411 # pitch_entry.grid(row=10, column =4)

412 yaw_label = Label(tlm_frame , text="yaw")

413 yaw_label.grid(row=9, column=5, padx=5, pady =10)

414 # yaw_entry = Entry(tlm_frame , width =7)

415 # yaw_entry.grid(row=10, column =5)

416

417

418 root.mainloop ()

85

Bibliography

[1] J. Denavit. A kinematic notation for lower-pair mechanisms based on matrices.

Journal of Applied Mechanics, 1955.

[2] Modeling and control of Robot Manipulators. McGraw-Hill International editions,

Singapore, 1996.

[3] National Research Council. Evaluation of the National Aerospace Initiatives. Na-

tional Academic Press, Washington, USA, 2004.

[4] Craig J. J. Introduction to Robotics: Mechanics and Control. Pearson Prendice

Hall, Upper Saddle River, New Jersey, 2005.

[5] Lanzerotti L. J. Assessment of Options for Extending the Life of the Hubble Space

Telescope. National Academic Press, Washington, USA, 2005.

[6] Texas Instruments. Introduction to the Controller Area Network (CAN). 2008.

[7] Siciliano B. Robotics, Modelling, Planning and Control. Springer, 2009.

[8] Handbook of Space Technology. John Wilex sons, Ltd, Unite Kingdom, 2009.

Chap. 7.

[9] EPOS-Using Robotics for RvD Simulation of On-Orbit Servicing Missions. AIAA

Guidance, Navigation and Control Conference, 2010.

[10] NASA. “On-Orbit Satellite Servicing Study: Project Report”. In: (2010).

[11] Britannica Educational Publishing. Unmanned Space Missions. Rosen Educa-

tional Services, New York, USA, 2010.

[12] Peng Zhang. Advanced Industrial Control Technology. 2010.

[13] National Research Council. Limiting future collision Risk to Spacecraft: An As-

sessment of NASA’s Orbital Debris programs. National Academic Press, Wash-

ington, USA, 2011.

[14] Schunk GmbH. Lightweight Arm LWA 3. Assembly and Operating manual. 2011.

[15] Wolfhard Lawrenz. CAN System Engineering. From Theory to Practical Appli-

cation. Springer, 2013.

86

BIBLIOGRAPHY

[16] Amtec Robotics GmbH. Data exchange with PowerCube. Description of Power-

Cube communication interfaces.

[17] Northrop Grumman. Mission Extension Vehicles Validate New Satellite Life-

line in Orbit. url: https://www.nasaspaceflight.com/2020/07/mission-

extension-vehicles-validate-lifeline/.

[18] Northrop Grumman. SpaceLogistics Life Extension Services. url: https://www.

northropgrumman.com/space/space-logistics-services/.

[19] Sudhakar Maradana. CAN Basics. url: https://%20automotivetechis.wordpress.

com/2012/06/01/can-basics-faq/.

[20] Institute of Robotics and DLR Mechatronics. OOS-SIM. url: https://www.

dlr.de/rm/en/desktopdefault.aspx/tabid-11675/#gallery/30051.

87

Acknowledgements

At the end of this project, I’d like to take a moment to thank all the people who

have played an important role during these months. First of all, I’d like to thank my

supervisor, Prof. Chiaberge, for giving me the opportunity to carry out my thesis in

such an important company.

Thanks to my co-supervisor, Andrea Merlo, for trusting me with this assignment

and for letting me gain experience in an environment like the Robotics and Mechatron-

ics group at TAS-I. I really appreciate the help and the support you gave me during

these months.

Finally, I’d like to thank Ciro Napolitano and Genny Scalise: from the first day I

came in, you have been welcoming and you have done more than I expected to help

me. You have started as my tutors for this project but soon I started considering you

my friends. Thanks to you and to all the friends at Building 77, coming to work every

day was a pleasure.

88

