Politecnico di Torino
Department of Control and Computing Engineering

Institute for Engineering and Architecture

Thesis

For the Degree of

Master of Science in Mechatronic Engineering

End-effector tools State of Health estimation: a data
driven approach

By
Davide Zanon

Submission Date: April, 2021

Mentor: Prof. Alessandro Rizzo
Supervisor: Ing. Giovanni Guida - Brain Technologies



Abstract

Nowadays, the focus on efficient and cost saving maintenance techniques is the
goal of both research and industrial areas. It is clear that the advantages coming
from preserving the continuity of the industrial line can make the difference with
main competitors. The main technologies available in the literature and on the
field that handle this topic make relevant use of machine learning algorithms, thus
requiring high computational resources. On the contrary, the MorePRO project
aims to introduce itself in this slice of the market, proposing an innovative edge
computing device, able to carry out an on-line prediction of the State of Health
of CNC machines. The main idea concerns the realization of a new product, that
combines a consistent use of the multi-model approach, already refined by brain
Technologies in the BAT-MAN and ERMES projects (based on some techniques
such as Kalman filtering and residual error analysis), along with a data driven
tool used to increase the robustness of the prediction. In this way, on the one
hand, an effective and short-term estimate of usury is obtained, on the other,
the possibility of refining the estimate itself in the long term. The main steps
followed in this Thesis work are the building of the model under assumption, the
application and testing of the methods coming from the previous projects and
finally the implementation of the learning algorithms for the previously mentioned
purposes.
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1 INTRODUCTION

1 Introduction

1.1 Wear estimation

The estimation in real-time of the state of a production machine is one of the most
significant topic in scientific research. The estimation of the SoH together with
predictive maintenance techniques are slightly becoming a relevant issue because
of their direct relation that link them to production efficiency. As Industry 4.0
continues to become reality, many companies are struggling with Al algorithms im-
plementation that can lead to to major cost savings, higher predictability, and the
increased availability of the systems. Indeed, the benefits of predictive strategies
are definitely very strategic. Thus, the increasing demand of monitoring systems
that allows to keep track of the production as much efficiently as possible have
led to the development of many predictive maintenance methods [I]. The main
functions of those algorithms are:

e SoH (state of health) estimation of a machine, motor or single component.
e Calculation of patterns that can help prediction and prevention of failures.

Currently, such methods are predominantly based on machine learning algorithms
that lead to very good results in terms of efficiency and precision but they often
doesn’t take into account of the computational effort and real-time requirements.
Nevertheless, predictive maintenance does not require anything more than mathe-
matical computation on when machine conditions are at a state of needed repair or
even replacement so that maintenance can be performed exactly when and how is
most effective. Moreover, when the processing has high precision requirements, the
predictive algorithms are particularly useful. Nowadays, those requirements are
very common in companies which rest their production on such fields as aerospace,
oil & gas, automotive and so on. The complexity of those high precision processes
depends on many aspects:

— Kind of processing.
— Modelling and simulation of robotic, mechanical and electronic systems.
— Wrought materials.

— Different tools such as milling machines, cutting machines, end-effectors and
SO on.

— Production timings requirements.

Dealing with those complexity level can be very hard and expensive for companies,
consequently, it is always more present the need of a method that can be easily
applied regardless of the wrought material, the kind of processes and the field
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of application. To sum up, the key functionalities of prediction algorithm are
consistent when there is abstraction with respect to processing types, real-time
characteristics and efficiency both in terms of computational effort and naturally,

in terms of cost savings.

1.2 CNC machine SoH

CNC (Computer numerical control) [2] machine are high precision machines which
actuate manufacturing processes of material substraction that usually require com-
puterized control action to guarantee high precision and efficiency. A subtracting
manufacturing process typically employs machine tools to remove layers of mate-
rial from a stock piece known as the blank or workpiece and produces a custom-
designed part. This processing type is almost independent from the material of
which the workpiece is composed: plastics, metals, foam, glass etc.. This is the
reason why CNC machines finds application in most of industrial processing fields.

head

7| Disc milling
head

Figure 1.1. Example of CNC machine schematic diagram

As it is shown in figure this machines have typically a SCARA or a cartesian
robotic configuration with an end-effector which usually is a cutter. The modelling
of the cutter contact is quite difficult because of the high number of variables that

must be considered, the most relevant are:
— Robotic configuration.
— Environmental parameters.

— Wear condition of the machine: SoH.

All of those elements needs to be kept under control constantly in order to guar-
antee the efficiency and the precision of the machine. In particular, there is no
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way to check the State of health of the end-effector in a direct way. It could be
possible to install sensor to check temperature, voltage, pressure and estimate a
possible SoH of the tools. However, even with the knowledge of variables that can
be measured by sensors, it is difficult to extract information about actual condi-
tion of the machine, firstly because is very likely that sensors cannot be set up in
the right position, secondly because the knowledge of those parameters could not
be enough to understand the real condition. For instance, obviously, a tempera-
ture sensor cannot be positioned near enough to the cutter to measure the correct
temperature but must be positioned further, and that definitely lead to constant
and inevitable measurement errors. Nowadays, the majority of the systems which
estimate the SoH commonly propose digital-twin solutions. The limitation of such
system is the difficulty to isolate the tool’s wear from the others monitored ef-
fects. Moreover, such monitoring systems combine machine learning techniques
and digital-twin simulation to estimate SoH, not taking into account computa-
tional requirements. Digital-twin models are very useful when the variables that
need to be controlled are numerous, but the most influent parameters in the SoH
estimation are the ones related to the cutting process of the end-effector: the most
stressed mechanical elements. Therefore, the parameters which are directly linked
to the SoH are a lot and some of the most important are:

e Friction coefficients.
e Temperature.

e Chip load.

Those elements are strictly related to the contact forces, that’s why understanding
and modeling those element is fundamental for the estimation of the state of health
of CNC machine end-effector.

1.3 Edge Computing advantages

As it was mentioned in the introduction, most of the existing architectures re-
garding the wear estimation and the predictive maintenance entrust the majority
of their computational power in the cloud. Since to execute deep machine learn-
ing calculations there is the necessity of hardware resources, they have no choice
but to rely on cloud computing solution. However, a centralized server, even if
geographically far, can be definitely useful because of the potentially infinite num-
ber of resources that can be accessed and also, because of the huge data storage
capacity available in the servers. On the other side, Edge Computing is an IT
distributed architecture which allows to elaborate data locally, as much close as
possible to the source. It is based on distributed calculation concept, which relies
its principles in the separation of the code execution and in the storage of data
only when it is strictly necessary. This solution compensate some of the cloud
computing shortcomings and provide some advantages:
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e Low-latency: Edge computing devices are installed locally and compensate
latency that prevent the execution in real-time.

e Costs: Since hardware requirements are very low, the costs of those micro-
processors is almost insignificant.

e Reliability and Security: Since most of the times the edge computing does
not depend on internet connection and servers it offers an uninterruptible
service. Users do not need to worry about network failures or slow internet
connections.

e Scalability: Updates and modification on a cloud computing architecture
can be very expensive. Edge computing do not require a data center to store
data and it is easy to add and remove devices from the network architecture.

For sure, the limitation that characterize an edge computing device are strong
constraints and developing a system which is comparable in performance with the
powerful machine learning tools can be rather challenging, but definitely it is a
way that it is worth to study.

1.4 MorePRO project

Considering all the thematic exposed above, the MorePRO project wants to bring
on the field a new and innovative proposal, which is not present in any production
system nowadays. It is basically based on a logic architecture distributed in three
different levels:

e Monitoring of the SoH of machine and plant critical components through
embedded sensors and, consequently, applying machine learning and data
mining techniques.

e Keeping track of the SoH of the machine using digital twins tools. The
goal is to combine real-time environment signals along with some estimated
quantities in a specific simulation environment.

e Developing of forecast models, able to estimate the SoH of the machine and
the time evolution decay of the plant/machine.

The general development architecture can be subdivided in two main levels. A
first field level (Edge), where signals will be acquired and processed for a local
supervision of the SoH. This is extremely useful to have a rapid reaction when
any danger anomaly is detected. The same signals are then deployed to a second
server level, mainly located on the cloud, which will be able to set up a proper
bank of data, implement digital twin techniques and compute the right parameters
to reconfigure the elaboration logic of every single edge device. The crucial part
is the continuous inter-operability between the two levels and the possibility to
reconfigure the architecture on the fly depending on the case problem. The figure
below represents a general scheme on which the project will based on.



1.4 MorePRO project

Output of the local monitoring

system based on a local data Additional plant

processing information
Sensor
- S
m,. Data mining & Data mining & Qutput of the monitoring
digital twin > » | digital twin | =¥ system based on intelligent
—_— {local) c (remote) algorithms
Simulaton ——— E
output I =
—_— 5 Decision
Field signals Local = making and System
from different ——| o o leor |€T—> —*| maintenance | ——* interventions
levels planning

Figure 1.2. Synthetic structure of MorePRO system

With reference to the figure, the edge device will implement the data-mining,
digital-twin and monitoring algorithm allowing the bidirectional data exchange
with both the plant and the supervisor. In practice, it will process the real signal
coming from the field along with the simulation output in order to compute a SoH
of the considered element under monitoring. On the other side, the supervisor will
be able to adjourn and perfection the algorithm of the device itself in order to re-
configure and support the planning decisions. A possible physical implementation
can be seen in the next figure.

Integration Communication-bus

e Supervisor
H Server/Cloud
———— -l

Gateway

Control panel and
Emergency

Edge device

Figure 1.3. Overall system structure

1.4.1 Partnership

To the aim of this project several companies are involved. Thus, it is relevant
to see how each of them is involved in the work, in order to understand how
a development process is usually treated when a completely new and innovative
device must be designed.

e brain Technologies: it will in particular contribute to the definition and
design of the digital architecture (in collaboration with the other partners)
and to the software development of the distributed intelligence system pro-
posed by the project, including the architecture of the control supervisors
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1.5

whose action is propagated both in the devices and in the cloud. brain Tech-
nologies will also contribute to the implementation, testing and validation
phases of the final prototype.

MCM S.p.A: it will contribute to the analysis of user needs and to the
proposal of new or improved functionalities of the processing systems as
drivers for the development of the monitoring and predictive management
methods of the plants covered by the project. Other activities in which
MCM will play an active role include: 1) interfacing the machines for data
collection, also through the installation of new sensors; 2) supporting the
integration of the new MorePRO solutions with the plant supervisor software,
3) analysis and testing of the prototype system with its validation at the
production unit of CAMS, a partner in the project.

AL.MEC: it will contribute to the design and manufacture of electronic
boards and components necessary for data collection from machines and
sensors, their mash-up and processing on board the machine and sending
standardised information to predictive maintenance systems.

CAMS: it is participating in the project by contributing its vision and ex-
pertise as a user of highly flexible production lines for the manufacture of
complex, high value-added parts. CAMS will support in particular 1) the
first phase of definition and analysis of the requirements that will guide the
subsequent development of the new plant monitoring and predictive manage-
ment solutions, 2) the identification and definition of its cases of industrial
interest, 3) the implementation, testing and validation of the final prototype
in its own production lines equipped with flexible MCM systems.

Work Organization

MorePRO project is starting out in September 2020, and the work must be or-
ganized in order to start the development as fast as possible. In this situation
model-based software design can be very suitable. Model-based approaches recom-
mend to follow precise development procedures, the so called V-shaped represents
a process to be chased in order to guarantee efficiency and cost-effectiveness during
such project natural advancement.



1.5 Work Organization
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Figure 1.4. V-shape development flow.

During the first phases of the realization of scientific projects such as MorePRO,
model-based approaches as the one shown in Figure [1.4] are necessary for the
organization of the work. This become even more true as much as the number
of people that join the project increases. Therefore, in the following paragraphs
there will be a brief introduction to the team components and their aim in the
V-shaped development, followed by a presentation of the work flows and the aims
of the project team.

1.5.1 MorePRO team

From the collaboration between Politecnico di Torino and brain Technologies srl it
is aroused a team of graduating students supervised by Giovanni Guida, Innovation
Manager of brain Technologies, with the aim of developing the first phases of the
project. As it was previously mentioned, the project is only at the first stage, so
once it is defined the concept of operations, the aim of this team is to obtain a
first implementation after the first six months of work. Despite the development
flow suggests to focus first on the requirements and analysis, it has been decided
to employ one member of the team to do a requirement analysis, two members
working on a detailed modelling of the problem, and the three remaining members
working on the core implementation. This choice comes from the necessity to get
a fulfilling conclusion satisfying all time-requirements.

Therefore, there are three different sub-teams:

1. Prediction team: This team will focus the attention on the prediction analysis
and parameter estimation. After the development of a simple model, the aim
becomes to deeply study parameter identification through kalman-filters and
residual error analysis techniques. Estimation of wear and SOH of a CNC
machine is the main objective, to get to this, multi-model approach will
be implemented and tested in detail, using simulating environment such as
MATLAB and Simulink.
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2. Modelling team: This team is created to obtain a preliminary detailed mod-
elling of the kinematics and dynamics of a CNC Machine as first. Sec-
ondly, the main objective is to study and specify the interaction between
end-effector and workpiece.

3. Requirements team: This team is in charge to carry out an overall view
of the project, analyzing requirements and specifics for each part of the
project. Finally, another important role of this team is to develop a design
of experiment in order to opportunely test the functionalities individually
and together.

After the first three months of work, the team sub-division is not valid anymore
because each team-component will be focused on developing further features that
are explained in detail in paragraph.

TEAM ORGANIZATION CHART

d

Luca Cecere
Specifics and

Requirements
Team

=

Prediction
team

(o

Adriano Marzio

MOREPRO Davide Zanon

‘ -

Antonia Verde Modelling
Team

‘ Ing. Giovanni Guida

Supervisor

Michele Pinto

Joud Basso

Figure 1.5. Team organization chart.

1.5.2 Work flow

An organization of the work flow is fundamental to help streamline and automate
repeatable tasks, minimizing room for errors and increasing overall efficiency. The
MorePRO project work flow can be synthesized in the following schematic:
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Requirements Prediction Testing
Defining requirements, Implement prediction algerithm for Test the device with SIL(software in
expectations, feasability and assign wear estimation and for the the loop) and HIL (hardware in the
tasks for all of team components. improvement of models and real loop procedures)
) ) ) ) F
b4 b4 A b A

Modelling sz Coding

Develope a detailed mathematical Translate everything into

model of the CNC machines and executable code, developing

study contact forces between end- firmware and all softwares needed
effector and workpieces. to run on edge devices

Figure 1.6. Workflow schematic.

As it was explained in the previous paragraph, the tasks have been assigned to be
executed in parallel, however they are meant to be put together. Nevertheless, it
is important to keep in mind a clear idea of the pre-determined work-flow.

For what regards this thesis, the work-flow is well defined and it is listed as follows:

1. State of art analysis: Comparison with all the current techniques present in
the literature about parameter estimation and predictive maintenance.

2. Development of simple model for simulation scopes: In this stage the aim is to
build a simulation suitable model that has to be the base for the prediction
algorithm. This model is intended to be very simple in terms of physics
and mathematical modelling.The idea is to test the algorithm in a simple
environment as first, and then complicate the modelling until the real plant
testing is ready.

3. Multi-model approach: This phase is the most crucial because it starts the
actual development of the prediction algorithm. The scope of this stage is
to apply the multi-model approach(only applied for Battery management
systems until now) for the estimation of SoH of the end-effector.

4. Specific features: As last stage but not least, there is the implementation
of specific improvements to the estimation algorithm that include machine
learning techniques, reliability calculation and modelling betterment.

1.5.3 Objective of this Thesis

As part of the prediction team, the main goal of this Thesis work is to introduce
data-driven techniques to support the estimation algorithm of the edge device pre-
viously mentioned. In particular, after the development of a common part carried
out with other two students about the implementation of a multi-model approach
on a previously designed physical model of a CNC machine, the main focus falls
on the exploration of the Machine Learning world. Roughly speaking, two differ-
ent types of approaches will be addressed. The first in which on the sole basis of
the data coming from the sensors, an algorithm will be built that performs the
same work of the edge device, i.e. estimating of the wear of the machine. In the
second one, also considering the labels in output from the devices mounted on the
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machines, the aim is to eliminate the small parametric variations present between
different plants, obtaining a more reliable estimate.

For the first part, Self-Organizing maps (SOM) are used as clustering algo-
rithms, which are essentially neural networks that allow to transform the data
set into a topology-preserving 2D map. Basically, a SOM consists of a competi-
tive layer which can classify a data set of vectors with any number of dimensions
into as many classes as the layer has neurons. The neurons are arranged in a 2D
topology, which allows the layer to form a representation of the distribution and
a two-dimensional approximation of the topology of the data set.

For the second part, the use of k-Nearest Neighbors (kNN) is exploited, which
basically is a classification algorithm based on the characteristics of the objects
close to the one considered. The analysis is carried out considering data collected
from five different machines and the responses coming from the edge-devices of
each one. For this kind of approach, both cross-validation and principal compo-
nent analysis are used, since they bring relevant improvements to the algorithm.

1.6 Thesis outline

The contents of this Thesis are organized as presented in the following.

In Chapter [I} an introduction related to the problem of wear estimation is reported
with particular emphasis to edge computing devices and their advantages. This
is followed by a brief explanation of the entire project and the main roles of each
group in its realization.

In Chapter [2, an in-depth study of the state of the art literature about topics of
interest is made. In particular, after a brief presentation of all the kind of industrial
maintenance the problem of the State of Health estimation is analysed through
the main known techniques. Finally, a summary table of all the studied methods
in the preliminary phase is proposed, focusing on their potential advantages and
disadvantages.

In Chapter [3| the design of a simple physical model of the plant under study
is made, both for the mechanical and electrical part. Moreover, the Simulink
implementation of the same is made along with a brief analysis of which parameter
affects mostly the wear condition of the model.

In Chapter [ the implementation and testing of what will be the core element
of the edge device is made. Thus, the application of a Multi-model approach,
based on an Extended Kalman Filters bank. First of all, a residual error analysis
is carried out in order to find which parameters influence in the most significant
way the results, introducing the concept of integral error reset. As final part, an
accurate switching logic development for the choice of the Best Model is made.
In Chapter [5| in order to improve the efficiency of the prediction algorithm a
parallel data-driven analysis is carried out. Indeed, the focus of this part is to
rely on the Cloud, which must be responsible to classify/cluster the data collected
from the plant through suitable machine learning techniques. In particular, two
different scenarios are presented, a first one where just considering the sensors data
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coming from the machines a clustering operation between different wear classes is
made using Self-Organizing Maps, and a second one where, making use also of
the labels that the edge device produce, a classification is carried out using a
K-NN algorithm with the main goal to leverage the possible estimation errors of
the various devices available on the field. Concluding remarks obtained from this
Thesis will be drawn in Chapter [6f Moreover, promising new research lines that
emerge from this work will be outlined as well. Additionally, this Thesis includes
one appendix on boxplots that will be helpful to better understand and clarify the
main analysis carried out in Chapter [
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2 State of art

System reliability is one of the main issues in the nowadays industry, thus the de-
velopment of advanced system maintenance techniques is an emerging field based
on the information collected through system or component monitoring (or system
state estimation) and equipment failure prognostics (or system state forecasting).
According to the standard EN 13306 (2001), such techniques can be grouped into
two main categories. The first one is corrective maintenance and it consists of
replacing the component and repairing the damage after some major breakdown.
This kind of approach is used when the consequences of a failure are not so crit-
ical and the intervention on the field does not require a lot of costs and time. In
particular, we refer to palliative maintenance when the repair is provisional, and
curative maintenance when it is definitive. The second one is preventive main-
tenance and it refers to provide an alarm before faults reach critical levels so
as to prevent system performance degradation, malfunction, or even catastrophic
failures. When the maintenance intervention is time-based, meaning that the com-
ponents are replaced based on a predefined schedule which relies on the working
hours of the component, it is referred as predetermined maintenance. Obviously,
this approach is not optimal, since the components are being replaced before the
end of their lives, therefore increasing the costs.

A possible solution is to use condition-based maintenance, which refer to the anal-
ysis of real-time data in order to find in the change of their characteristic a possible
failure. However, this approach do not guarantee to design a maintenance policy
with certainty. On the contrary, predictive maintenance try to estimate the SoH
of the machine, relying on more dynamic algorithms. [6]

Maintenance

s . no
“.? failure )
occurrence?

Corrective Preventive
Maintenance Maintenance
yes provisional no no dynarmic yes
nature? approach?
Palliative T Curative Predetermined Condition-based
Maintenance Maintenance Maintenance Maintenance
¥
Predictive
Maintenance

Figure 2.1. Forms of maintenance
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2.1 Methods for estimating SoH

1. Model-based approach

This approach makes use of physical failure model in order to predict the
degradation rate of a component or its lifetime. In practice, a mathematical
model able to capture the failure mechanism must be developed. It seems
obvious that the more accurate and sophisticated the model is, the more
precise will be the SoH estimate of the machine under control. However, it
is not always possible to obtain a model that perfectly adhers to the reality,
that is why a trade-off between a very precise model and an estimate that
allows to hide the lack of knowledge of the plant is needed. Usually, this
approach follows some prefixed steps:

— Critical part selection: it is important, especially in very complex
plant, to focus the study only on the part that actually contribute to
the lifetime duration of the machine.

— Failure mechanism determination and model definition: intu-
itively, this is the most difficult part, where a suitable model must be
designed in order to capture the most relevant aspects.

— Governing loads evaluation: it is important to understand which
loads affects most the failure and how they are related to the operational
usage of the system.

— Data collection: once the model is defined, it is possible to collect
data from the field.

— Failure prediction: combining the monitored data with those one
coming from the model it is possible to have an actual estimation of the
health of the plant.

— Model validation: finally, it is possible to determine how the model
is reliable by comparing the failure prediction with actual failure data.

7]

In particular, having a view at the models available in literature, we can
distinguish between different kind of models:

e Electromechanical models: in this case we have models that describe
the behavior of the plant by means of equations that link macroscopic
parameters such as forces, currents, torques, etc. This approach results
to be very accurate but at the same type they are very time-consuming
in terms of computation.

e Mathematical models: these are based on the calculation of coeffi-
cients of linear and non-linear mathematical functions, needed to inter-
polate the data obtained experimentally through the measurement of
some relevant quantities. The negative aspect is that these functions
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result not to connect in a natural way the physical quantities between
them, often finding relationships that have no real link with the actual
dynamic of the plant. [16]

2. State observer

State observer is a very popular approach to system maintenance. For linear
systems with additive Gaussian noise terms, KF can be used for prediction.
However, when dealing with nonlinear systems with additive Gaussian noise
terms EKF are more suitable. For nonlinear systems with non-Gaussian
noise terms, the PF also called sequential Monte Carlo method, which are
based on the sequential importance sampling (SIS) and the Bayesian theory,
lead to a suboptimal solution to state estimation problem [§].

e KF is an established technology for dynamic system state estimation
that is mostly used in many fields including: target tracking, global
positioning, dynamic systems control, navigation, and communication.
The KF covers a set of recursive equations that are repeatedly evaluated
as the system operates [9]. Any causal dynamic system generates its
outputs as some function of the past and present inputs. It is often
also convenient to think of the system having a “state” vector (which
may not be directly measurable such as the SoH of a machine) where
the state takes into account the effect of all past inputs on the system.
Present system output may be computed with present input and present
state only, past inputs do not need to be stored. The KF can be viewed
macroscopically in this way:

System
Uy, > — Vi
Xk
+
ﬁ Ly )
Model .
- - > Yk
Xk

Figure 2.2. Schematic of state update

The true system has a measured input u; and a measured output y; .
It also has an unmeasured internal state x, . A model of the system
runs in parallel with the true system, simulating its performance. This
model has the same input u; and has output g,. It also has internal
state T, which has known value as it is part of the model simulation.
The true system output is compared with the model output, and the
difference is an output error, or innovation. This innovation is converted
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to a vector value by multiplying with the Kalman gain L, and used
to adapt the model state 2 to more closely approximate the true sys-
tem’s state. The state estimate and uncertainty estimates are updated
through computationally efficient recursive relationships.

e EKF (Extended Kalman Filter) is used in order to deal with non-
linear systems. In practice, it is based on a linearization of the system
such that is possible to treat it as a linear time-variant (LVT). Since
this algorithm will be widely used during the Thesis work it will be
introduced and discussed more in detail in the next phases.

e Particle filters are nonlinear state observers that approximate the
posterior state distribution using the set of weighted spots, called par-
ticles. The particles consist of samples from the states-space and a set of
weights which represent discrete probability masses. A better estimate
can be obtained by increasing the number of particles. Particle filtering
has a wide applicability in fault prediction because of the simple imple-
mentation. The algorithm consists of two steps: the first one is state
estimation, and the second one is long-term prediction. The state esti-
mation involves estimating the current fault dimensions and changing
parameters in the environment. The next step is the state prediction,
which uses the current fault dimension estimate and the fault growth
model, to generate state prediction from (7 + 1) to (7 + p). Once the
long-term prediction is estimated, given the lower and upper bounds of
a failure zone (Hy, and H,;), the prognosis confidence interval can be
estimated.

3. Vibration monitoring
VM is a particular way of analyze the SoH of a machine by using, as obvi-
ous, vibrations as an indicator. This technique is particularly used because
vibrations bring an high content of information, in the sense that a possible
damage is almost instantaneously captured by them. However, vibration-
based monitoring applications focus more on diagnostic aspects than pre-
dicting ones. Nevertheless, in some cases this method can be used and useful
for making a prognosis of the system. Thus, looking at the PF-curve in the
figure, it is possible to distinguish between a first part on the left, where after
a certain time of inspection a point of deterioration observability (P) is used
for monitoring purpose, and a second part on the right, where the objective is
to predict the behavior of the curve till the failure, used for prognosis. |7, [10]
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4. Moving Horizon Estimation

MHE is a powerful technique for facing the estimation problems of the state
of dynamic systems in the presence of constraints, nonlinearities and distur-
bances [11]. MHE is an optimization approach that uses a series of measure-
ments observed over time, containing noise (random variations) and other
imprecisions and produces estimates of unknown variables or parameters. It
requires an iterative method that relies on linear programming or nonlinear
programming solvers to find a solution. The basic concept is to minimize an
estimation cost function defined on a moving window composed of a finite
number of time stages. The cost function includes the usual output error
computed on the basis of the most recent measurements and a term that pe-
nalizes the distance of the current estimated state from its prediction (both
computed at the beginning of the moving window).

5. Learning algorithm
These techniques use measurement signals and their statistics to create non-
linear structures which can provide desirable outcomes given the input data.
These structures include a wide range of methods, such as principal compo-
nent analysis (PCA), partial least squares (PLS), artificial neural networks,
fuzzy-logic systems and graphical models like hidden Markov models (HMM).

e ANN propose methodologies similar to those in the biological nervous
system. For a set of available monitoring data which are used as inputs
and predefined known outputs it is possible to use some of the training
algorithms, such as back-propagation algorithm, to map the connection
between the input and output. Neural networks are self-adaptive struc-
tures whose weights between neurons are adjusted by minimizing the
criteria to match a model to desired outputs. The training procedure
allows the network to learn the relationship among the data without
engaging the model of the system. Once the weights are set, the ANN
is ready to generate the desired output as a fault evolution prediction.
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Figure 2.4. Schematic of a Artificial Neural Network

e Fuzzy logic also provide mapping between the input and output sig-
nals. It can be said to be an extension of the multi-value logic. In a
wider sense, is almost synonymous with the theory of Fuzzy sets, refer-
ring to classes of objects with fuzzy boundaries, in which the concept of
membership takes on a matter of degree [12]. Unlike neural networks,
they are based on linguistic and reasoning human capabilities. By defin-
ing the appropriate if-then rules and adjusting membership functions,
fuzzy systems can give very accurate prognosis.

INPUTS OUTPUTS
- »I Fuzzifier ‘ Rule base Defuzzifier —

Fuzzy | Linguistic Fuzzy
Input Sets Inference Output Sets

Figure 2.5. Components of a Fuzzy logic system

The common fuzzy logic system processes data in three sequential stages:
fuzzification, inference and defuzzification. In the fuzzification step, a
crisp, or well-defined, set of input data is gathered and converted to a
fuzzy set using fuzzy linguistic variables that is, fuzzy linguistic terms.
Second, an inference is made based on a set of rules. Last, in the defuzzi-
fication step the resulting output is mapped using so-called membership
functions. A membership function is a curve that maps how each point
in the input space is related to a membership grade. Using the wear
estimation example, various levels of wear in a given set would receive
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a membership grade between 0 and 1; the resulting curve would not
define “new” but instead would trace the transition from worn to new

I3].

Hidden Markov Models is a statistical model which can be used to
describe system transitions between states. It represents an extension
of a regular Markov chain with unobservable or partially observable
states. The general structure of a discrete-time HMM with N states,
S = (s1,82,...,sy) and M observation symbols, V' = (v, va,...,vp) is
shown in the schematic below.
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Figure 2.6. Schematic of HMM

The states are interconnected so that a transition between any two
states is possible. The hidden state at time t is denoted as ¢; and
the state-transition rule follows the Markov property, meaning that the
state ¢; depends only on the state ¢;_;. The transition matrix A = {a;;}
stores the probability of state j following state i. The observation ma-
trix B = {b,(k)} shows the probability of observation k being produced
from the j-th state. The initial state array # = {m;} holds the infor-
mation about initial probabilities; thus, the formulation of HMM is:
A= (A, B,n).

HMMs can be used to estimate the occurrence of a breakdown, before
it happens. Using the Baum-Welch algorithm, HMM can be trained
in order to give desired outputs related to system health, for the mon-
itored data inputs. HMM offer a reasonable estimation of the RUL
time, meaning the time when the system will be in the specified, faulty
state. Also, it is possible to estimate the probability of system being in
specified state after n iterations.

6. Frequency domain condition indicators
Another possibility regards the analysis of frequency domain indicators. This
kind of research was fundamental for the whole thesis streamline, because
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it is the base of information extrapolation from signals. A deep study can
be done about all frequency domain indicators but ”Developing a real-time
data-driven battery health diagnosis method, using time and frequency do-
main condition indicators” [14] perfectly sum up the main features in brief.
This article is about battery health diagnosis, but the main principles can
be applied also in the study-case of this thesis. The flow diagram of the
construction of condition indicators which is used in the study is depicted in

Figure
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Figure 2.7. Flow diagram of condition indicator construction. The gray boxes
indicate the condition indicators.[14]

7. Hybrid algorithm
In the literature it is possible to find some methods that make use of some
of the theories exposed so far in order to increase the estimation quality
of the SoH. These is done in order to overcome the limitations of a single
approach. It will be seen that also in this Thesis work a mixed/hybrid
approach will be carried out, using some of techniques exposed above, such
as EKF, multimodal analysis and ML.

2.1.1 Past project references

This project research, and the whole thesis work, is part of a continuing evolving
series of projects handled by brain Technologies srl. Since the origin of MorePRO
comes from the evolution of some ideas developed in the previous projects, it is
necessary to have a preparatory overview of the ideas and the principles make up
the past projects.

The projects that precede this work are:

1. The BAT-MAN research and development, which is an industrial project
owned by brain Technologies and it is the starting point of the application
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of the innovative approach based on an EKF bank and whose main goal is
the realization of an electronic device capable of detecting and forecasting,
in real-time, the working conditions of a Lead-Acid battery.

. The ERMES (Extendible Range MultiModal Estimator Sensing), which

is an algorithm designed by Brain Technologies whose innovative value is
to identify the methodologies to apply to the problem of the diagnosis of
an accumulation system, and in particular to the problem related to the
estimation of the SoH of batteries. The proposed ERMES algorithm for the
estimate the state of health (SoH) and the state of charge (SoC) is based on
the model with the augmented state, which means to consider the uncertain
parameters related to SoH and SoC as states and not simply as output. The
algorithm involves the generation of a battery model based on an equivalent
circuit and a bank of N EKF (Extended Kalman Filter) each based on a
different SoH hypothesis. Since this approach is very similar to the one
adopted in this thesis, a more detailed explanation of the multi-model and
the residual error analysis approach is available in the dedicated chapter of
this thesis (chapter [4] reference related to this project is Virtual Sensing for
the Estimation of the State of Health of batteries [15]).

2.1.2 Comparison between the methods

Vibration Monitoring

Moving Horizon

Advantages Disadvantages
Model-Based High reliable results High computational ef-
when the model is fort
accurate
Kalman Filters High accuracy and online High calibration and
estimation strong hypotesis on the
model
Particle Filters Fase implementation, Strong sample size de-
ability to cope with large pendence

scale system

Speed of fault detection  Hardly suitable for prog-
nosis scope

Very high computational
effort, not able to cope

with high dynamics

High noise filtering

Learning algorithm

Hybrid algorithm

High accuracy and esti-
mation

Online estimation, cor-
rection of disadvantages
of other methods

Need of an huge set of
data

Strongly depends on the
model precision

Table 2.1. Comparison between SoH estimation methods.
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3 Physical Model

Mathematical modeling is the art of translating problems from an application area
into tractable mathematical formulations whose theoretical and numerical analysis
provides insight, answers, and guidance useful for the originating application [16].
Nevertheless, the modeling of a CNC machine can be a very challenging objective,
this is due to the complexity and the high number of elements that those techno-
logic tools can achieve.

Starting from a blank sheet, the general idea beside this Thesis work is to de-
velop a model able to represent in the most effective way the real condition of the
plant under study. However, considering the high complexity of a CNC machine,
it has been decided to start from a basic model in order to allow an embryonic
prediction algorithm as soon as possible and obtain some effective results from a
simple simulation environment. The main objective of the simulation is to un-
derstand and emulate the behaviour of a particular manufacturing system on a
computer prior to physical production, thus reducing the amount of testing and
experiments on the shop floor. By using a virtual system, less material is wasted
and interruptions in the operation of an actual machine on the workplace can be
avoided. The goal of the modern manufacturing technologies is to produce already
the first part correctly in the shortest period of time and in the most cost effective
way. Since the product complexities increase and the competitive product life cy-
cle times are reduced, the construction and testing of physical prototypes become
major bottlenecks to the successful and economically advantageous production of
modern machine tools [I7]. It is clear that, in this way, it is possible to discrimi-
nate better which parameter/quantity mostly affects the case under assumption.
In a second moment, it will be up to the modelling team to further complicate the
model in order to have a better adherence to the real case.

As for all mechatronic devices, it is possible to distinguish between a mechanical
and an elctrical part, parts that are not independent but they work together to
exploit the necessary tasks.

3.1 Mechanical part

As regards the mechanical part, a very simple model of a milling machine is used.
In particular, having a look at the figure below, a rotational disc is considered that
translates in the piece direction in order to cut it.
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LSS

Figure 3.1. Simplified milling machine model

The state equations of the systems are obtained through a classical Newton for-
mulation. Since the schematic is very simple, defining the various quantities:

e 0: Rotational velocity.

e 1: Linear velocity.

e [: Horizontal force that moves the cutter.
e [5: Normal Force due to contact.

e f.: Binary function that defines the presence of contact. Indeed, it assumes
1 value when the work piece is present or 0 otherwise.

e T,: DC motor torque applied to the cutter.
e [,: Inertia of the motor and the cutter.

e [3: Contact rotational friction.

e A.: Depth of cutting.

e cost: Minimum contact force (introduced in order to avoid model disconti-
nuities).

it is very easy to trace the two Newton equations:

n Ta - ﬁch
Q= ——  —
I
F1 — fc(FgAm + COSt)
m
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3.2 Electrical part

For the electrical part instead, modern CNC machines are driven by brush-less or
servo motors. The most important characteristics required for the servo motors
that drive CNC machines are: fast response to instructions, good acceleration
and deceleration properties, the capability to control velocity safely in all velocity
ranges and to control very precise the position [I8]. Machines with computer
numerical control need controllers with high resolution that gives good precision.
At this time, both classical and modern control techniques are used, such as PID
controllers, feedback control, feedforward control, adaptive control or auto tuning
methods.

In order to get a basic framework easy to manage, a DC motor is implemented
to drive and interface with the mechanical part. The figure shows a simplified
DC motor circuit used to pull out the electrical equations.

Sn

o i

Figure 3.2. Simplified schematic of a DC motor

Defining the following quantities:
e V5: supply Voltage.
e i,: Armature current.
e T,: DC motor torque applied to the cutter.
e k;: Motor torque proportionality constant.
e [: Inductance.
e [?: Resistance.
e V,: Back EM.F

o Att,,,: Engine friction.
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e k: Proportionality constant.
e b: Total flux
e [;: Motor inertia.

it is possible to derive the equations for the supply Voltage and the Torque applied
to the cutter.

( dig(t)
V, = Rig(t) + L—=—~
Z.( )+ L—
V, = kbb
Ty = kyiq(t) — Att ol
| 7o = 1.0

Thus, playing a little bit with the equations:

keyiq(t) — Attiod = 1.0
diq(t)

Ky
a

Vs = Ri,(t)+ L

Since the supply Voltage is related to the angular velocity through the equation:

1u
Vs=—R+kw
k
rearranged for angular velocity:
Vi 1.
W = E - ﬁR

Thus, it is possible to notice that two main variables affect the speed of the motor:
the supply Voltage and the Load Torque.

3.3 Plant model

Finally, the electromechanical model used is mainly based on the following dynamic
equations:

oV B k0
“TTT L L
Ta - ktia(t) - Attmote
n Ta - /BQFC
Q= ——  —
I

F1 — fC<F2AI + COSt)
m

T =
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Thus, replacing the torque equation in the angular acceleration one, the final state
equations of the model are obtained:

( i kjio Attmed BE.0
I I, I,
. F1 FC<F204 + C)
{po i1 fellbato)
m m
B V. Ri, k0
N )

3.4 Most significant parameter choice

A literature research on the parameters that most influence end-effector wear has
shown that the friction coefficient plays a key role in the interaction between
the workpiece and the end-effector tool.

In this first phase of development, it is decided to adopt the friction coefficient,
referred to as 3, as the parameter on which to base the filter wear hypothesis.
From now on, in the multi-model approach and therefore in residual error analysis
and evaluation tests, § will be used as a parameter to be estimated and from which
to extrapolate the SoH of the machine.

Clearly, the interaction between the tool and the workpiece is more complex than
a simple coefficient, since it depends on various factors such as temperature, the
used material, relative speed, applied forces, cooling media, etc.

Thus, the key factor is that the analysis carried out during this Thesis work must
work independently of the specific choice of the parameter in a way that a conse-
quently complication of it could lead to results that are not so far from the ones
obtained considering [ as representative. This is the reason why, an in-depth
modelling of the interaction will be the goal of another research group working on
the same project.

3.4.1 Simulink implementation

The equations described to date can be translated into model through suitable
simulation environment program. For this thesis work, it has been decided to
implement the model in Matlab and simulink, because are suitable for this sort
of simulations. Implementing such mathematical model using those tools is very
intuitive, particularly if the MATLAB Guidelines are followed. Applying these
guidelines one can improve the consistency, clarity, and readability of models. The
guidelines also help you to identify model settings, blocks, and block parameters
that affect simulation behavior or code generation. MATLAB guidelines can be
found in the mathworks site [19].

In Figure|3.3|it is shown how it is implemented a simple contact logic using boolean
operators, which is intended to handle the contact with the workpiece.
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Figure 3.3. Contact logic

For the implementation of the equations described in paragraphs and [3.1], it
was decided to create a dynamic MATLAB function and to use integrator blocks
to integrate the output and feedback where needed:

@D
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- 1 .
( : ) »F2 theta_ddot 5 P@
F2 theta_dot
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Figure 3.4. Plant Simulink.
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Initial condition of the integrators are all set to 0, as well as the starting condition
of the contact. The output of the plant coincide with the states of the system:

1. 6 : angular acceleration.
2. % : linear acceleration.
3. iy : derivative of the current.

In the next page (figure , there is the overall simulink implementation of the
model.
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Figure 3.5. Simulink implementation of the model
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To sum up, the simulink blocks are:
e Green block: plant implementation.

e Orange block: simple triggers which introduce 2% of uncertainty on the
inputs.

e Cyan blocks: PID controllers on the position and angular velocity.
e Yellow block: contact logic.

For what regards the PID controllers, they have been tuned using a MATLAB
predefined tool (Control System Tooolbox) in such a way to find a good balance
between robustness and efficiency. Instead, the next plot represents the contact
logic output:

Contact force[N]
© o ©o o o o o o
N w = w (=] ~ @ © -

o
Y

o
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Time[s]

Figure 3.6. Contact force control input plot.

As it was expected, since the contact logic is made up so that the output is 1
when there is contact and 0 when there is no contact, the contact force input
plot oscillate in a discrete way between those two values. Finally, in Figure |3.7]
are depicted all outputs and main parameters of the model so that the physical
behaviour is described.
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Figure 3.7. Summary plots of Model’s main parameters.
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4 EKF Bank: Multi-model approach

State observers are mainly used to provide an estimate of the internal state of a
given real system, from measurements of the input and output of the real system.
This utilization is very suitable when there is noise and it is needed to be reduced,
or when there is a state which cannot be measured directly and there is the ne-
cessity of have a more accurate estimation of it. Using a Kalman-filter in order
to understand the state and the working condition looking at the residual error is
not a common utilisation of such state-observers. What it is need to be done for
this scope is a deep analysis of the residual errors. The latter, are defined as the
module of the difference between a state estimation and the real state:
Supposing that x(t) is a state of a system M (z(t)):

~

Residual_error = |x(t) — x(t)| Vt

The residual error can seem very similar to an estimation error, but there is
a slight but very important difference. On one hand, the residual error is the dif-
ference between the state estimation and the state coming from the output of the
real plant, so there is no need to know the internal exact formulation of the plant.
On the other hand, the calculation of the estimation error suppose to perfectly
know the real value of the parameter to be estimated. This difference is rather
crucial, because it is not possible to suppose the real value of the internal state
of the system. Moreover, it is important to mention that the residual error can
be affected by measurement noise. For this Thesis work it was supposed to have
a really low measurement error on the states because the approach is intended to
be as much simple as possible at first.

Starting from the considerations done until now, is it possible to relate the residual
error to a state or to a set of parameters that can represents the SoH?

How much the other parameters changes affect the residual error calculation?
Which is the state on whom the difference of the residual errors are more high-
lighted?

Is it really possible to apply the multimodel approach for the estimation
of SoH?

The questions that need to be solved to answer to the last one are numerous, and
during this chapter there will be the proof of concepts and some possible answer
to the listed questions, mainly based on empirical approach.

The starting question is: What is the effect of a parametric variation on the resid-
ual error, and which is the weight of this variation? Initially, the focus was the
search for papers and/or documents that take into account the effects of para-
metric variations on the residual error produced by the observer: a possibility is
to consider faults as parametric variations that induce a change in system behav-
ior. Nevertheless those kind of approach are quite time-consuming because require
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strong theoretical analysis. Another available option, rather more practical, is the
search for a method that foresees a sensitivity analysis with the aim of identifying
which are the parameters whose variations have a relevant effect on the output and
consequently these parameters could be used as criteria to do the scheduling and
eventually decide which will be the partition method for the state space. Sensitiv-
ity analysis is the method most frequently used during research on this topic and
seems to give the best results. This method consists in getting a many data from
experiment strongly varying the condition, so that there is a strong background
where a a global sensitivity analysis (GSA) can be performed[20)].

4.1 EKF

The Extended Kalman filter is a method to estimate both the states of the system
and also his parameters; it is an iterative procedure, composed by different equa-
tions that are fast evaluated as the system changes during time. In each step there
is the estimation not only of the system states but also of the covariance matrix,
indicator of the uncertainty of the states estimate. A ”large” value of covariance
indicates a high level of uncertainty while a ”small” one indicates confidence in
the estimate. As seen previously, our system is represented by the following state
equations:

(5_ Ko _ Attnatl  BEO
I, I, I,
. Fl FC(FQOz + C)
rT = ——-
m m
.V, Ri, kb
(T T L T L

We can notice the form of a classical nonlinear system & = f(x,u) and starting
from the following state-space model in a discrete-time domain:

Trp1 = f(2h, up)+wi
yr = h(xy) + vy,

where x;, are the states, u are the inputs, y; is the output, wy is the disturbance
and vy is a measurement noise. f(-) is a nonlinear state transition function that
describes the evolution of states x from one time step to the next. The nonlinear
measurement function A(-) relates x to the measurements y at time step k. At
each time step, f(xg,ur) and h(xy) are linearized by a first-order Taylor-series
expansion. We assume that f(-) and h(-) are differentiable at all operating points
(g, ug).
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Figure 4.1. Diagram of nonlinear discrete time system in state-space form

The inputs uy are:
e V. armature voltage
e F: horizontal force that moves the cutter
e F.: function that define the contact with the object.

The states x; are the same of the plant model while the output y; we suppose to
coincide with the states. We must define the following quantities:

0
o [ = %(:pk,uk) = Jacobian of f computed in (zy, uy)
k
Oh . :
o H;= %(.%k) = Jacobian of h computed in zy
k

e 1, = estimate of x;, computed at step k

e 1} = prediction of x), computed at step k-1
e P, = covariance matrix of x; — 2

e ()% = covariance matrix of wy,

e R? = covariance matrix of vy

As regards the matrices Q¢ and R, since we have no information on the distur-
bances, we chose them as diagonal matrices by a trial and error procedure. The
algorithm can be summarized with the following step:

1. Prediction
xhy = f(&p—1, uk—1)
PP =F, 1P FL | +Q°
2. Update
Sy = H,PPHF + R?
Ky = PPHFS,!
Ayp = yi — h(xi)
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Py = (I — K,Hy,)P?

In addition, a further step was added to the algorithm to calculate the residual error
for each state variable, which we recall is the modulus of the difference between
the estimates produced by EKF and the data collected from the simulation of the
plant.

Residual _error = |33(Al<:) —z(k)| VEk (4.1)
The final output of the EKF block are therefore the residual errors that is needed to
carry out an analysis and establish whether a multi-model approach may be better
for the final objective. In the figure there is the Simulink implementation of
the EKF.

Figure 4.2. Simulink scheme of the EKF.

4.2 Residual error analysis

Considering the residual error as raw value, it is not significant to watch the errors
amount every sample time since it does not lead to any particular conclusion.
To assign a meaningful sense to the residual error, it must be conducted a signal
elaboration and the discrete values of the error sampled in time must be processed.
Signal theory and data processing are a widely treated in today scientific literature,
so there are countless articles that can be followed in order to understand the best
way to treat a signal. One of the most complete article is the one cited in the state
of the art chapter of this Thesis [I4]. This article plainly explain how to analyze
residual errors using both frequency domain and time domain indicators. Among
all, some of the most simple and efficient according to the article are:

e Mean.
e Integral.
e RMS.

e Correlation.
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e PSD.
e Covariance.

To verify which is the best, it can be applied and experimental approach. In
particular, it is possible to set up some test to verify which of this methods,
applied on the residual error, it is most suitable. It must be kept in mind that the
objective is to find a method that can highlight the difference between changing
of beta. That’s because the aim is to make the system very sensitive to little
change of beta, but confidently less sensitive to other parameters variations. So
the approach will be to test 20 little variation of beta, starting from the nominal
condition and increasing of 20% every step. It will also be reported a little variation
on the horizontal input force of about 2%. The nominal values (calculate with
beta nominal) of the errors elaborated for each state and for each considered are
reported in the following table:

Method Nom. Rot. acc. Nom. linear acc. Nom. curr. der.
Mean 1.7111 0.0242 0.4959
RMS 3.6821 0.0509 1.1879
Correlation 1.3979 1.0000 3.8928
covariance 10.6403 0.0020 1.1663
integral error 58.7780 1.2503 33.7761

Table 4.1. Nominal values of the errors for each method.

In order to understand the results, it is also defined a FOM(Figure of merit) as a
simple index that describe how far the non-nominal condition model is with respect
to the nominal one. This FOM index is the ratio between the absolute value of
the residual error and the absolute value of the residual in nominal condition:

FOM — |Residual error parameter|

|Nominal residual error parameter|

Keeping in consideration the nominal values reported in Table [4.1] the following
plot will show which signal manipulation can be considered as the most suitable.
Let’s start the tests from each method:
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1. MEAN:
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Figure 4.3. Mean test.
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FOM current
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Table 4.2. FOM mean
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2. Covariance:

COV([Rotation residual rr)
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Figure 4.4. Covariance test.
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Table 4.3. FOM Covariance
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3. PSD: For the power spectral density, it has been considered an interpolation

of the maximum peaks.
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Figure 4.5. PSD test.
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Table 4.4. FOM PSD
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4. Correlation:
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Figure 4.6. Correlation test.
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Table 4.5. FOM Correlation
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5. RMS:

RMS(|Rotation residual err|)
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Figure 4.7. RMS test.
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Table 4.6. FOM Correlation
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6. Integral:
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Figure 4.8. Integral test.

20

FOM angular

FOM linear FOM current

4.4911

1.0886 3.8739

Table 4.7. FOM Integral
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Results can be summed up in the following tables:

e Angular acceleration:

mean integral RMS cov corrpy., PSD

1.93 58 5.8 30 6.1 —19.9

51T 2.05 61 6 32 6.4 —18.6

2.19 66 6.2 34 6.8 —17.4

2.32 70 6.5 36 7.2 —16.8

Il 244 73 6.7 39 7.6 —15.9
2.55 7 6.9 41 8 —15

2.76 80 72 44 8.4 —14.2

2.88 84 74 46 8.7 —13.5

2.98 87 7.7 50 9.1 —-12.7

3.1 91 79 53 9.6 —-12.2

e Linear acceleration

mean integral RMS cov  corryg. PSD
0.005 0.15 0.01 0.002 0.15 —63

42

The results on the linear acceleration, varying Fj, differ so little from the

results obtained with the nominal values that they are irrelevant.

e Current derivative

mean integral RMS cov corrye. PSD
0.67 20 1.8 3.0 9.2 —25.9

61 0.71 21 1.9 3.2 9.2 —25.8
0.75 22 20 3.5 9.2 —25.2

0.79 23 21 3.9 9.2 —24.9

0.83 25 22 4.3 10 —24.8

Uy 0.87 26 2.3 4.7 11 —24.3
0.91 27 24 5.2 13 —23.7

0.95 28 25 5.6 15 —23.2

0.99 29 26 6.2 16 —22.6

1.03 31 2.8 6.7 18 —22.6

Beyond the good results for the integral error reported above, most of the methods
appear suitable for the scope. Indeed, choosing to utilize the rotation acceleration
error or the current related error, there is not a method that really take advantages
on the others. The RMS method and the integral are almost equivalent in terms of
FOM, that indicates that are both good for the aim. So the decision to choice for
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the integral error method comes from another consideration: the integral error
is cumulative and takes into account the previous state of the system. The RMS
is very good and will be used to elaborate the errors as well as the integral error.
Nevertheless, considering that mechanical system states naturally needs time to
evolve and change, taking into account a cumulative way to treat the residual error
is definitely the best choice. The integral error behaviour will be widely treated
from this point until the end of this thesis work.

4.2.1 Residual error comparison

Once decided that the integral of the residual errors is the most suitable choice to
carry out a multivariate analysis, it is possible to see what of the variables available
contain more information. This is done using a simulation environment composed

of:
e The Plant Model obtained in 3.3l
e The EKF described in [4.1]

e A logic of management and decision of the integral of the residual errors that
contains a possible integral reset as it will be seen.

The estimator allows the absolute error computation of the angular acceleration
error and of the derivative of the current. Thus, exploiting a boxplot analysis
(details can be found in appendix) on the integral of such errors, it is possible to
decide which kind of error best describe our model. The simulation is carried out
considering the nominal parameters of the machine, described in the table below.

Nominal value

Mass [kg] 3
Radius [m)] 0.3
Resistance k(2] 0.6
Inductance [mH] 0.1
Torque constant 1.5
Voltage constant 0.2
Motor Inertia [kgm?| 0.001
Friction coefficient 0.1

Table 4.8. Nominal CNC parameters.

The same machine is considered to work in nominal condition when:
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Nominal value

Angular velocity refer- 210

ence [rad]

52
Position reference [m] 0.5
Duty cycle [%)] 50
Number of cycles 4
Contact point [m] 0.4
Workpiece length [m] 0.09

Table 4.9. Nominal working conditions.

In the same environment, a variable e, is defined and used to discriminate which
of the residual errors available will be considered. In particular:

e c. = 1: only the angular acceleration error is considered.
e c¢. = 2: only the current derivative error is considered.
e e¢. = 3: an average between the two errors is computed and considered.

Thus, considering a one hundred seconds simulation, the friction coefficient § of
the plant is made to change between five different values while the filter one is
keep fixed to the nominal one. In this way, analyzing the boxplots of the three
different errors it is possible to see which of the three one allow a better distinction
between the various friction coefficient cases.

Boxplot wiht ec=1
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Figure 4.9. Boxplot of the angular acceleration error.



4.2 Residual error analysis 45
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Figure 4.10. Boxplot of the current derivative error.

Boxplot wiht ec=3

160 - N
|
|
140 + I 1
|
|
_— |
120 ‘ | 1
I
I
w
5 100 ! 1
5 I
T:u 80 [ | b
5 |
z !
@ L | i
& 60
40 T 1
PR B
|
20 - | 1 7
| I |
T | I |
0r ==——"| 1 1 1 . i
0.1 0.25 0.4 0.55 0.7

Friction coefficient 3 variation

Figure 4.11. Boxplot of the average error.

Having a look at the results, it is possible to see that in the first and in the last
case a better separation between the matched value and the other ones is obtained.
On the contrary, considering the derivative of the current the separation is not so
marked as the other ones. Thus, a first suggestion is that the e. variable must
be set to 1 or to 3 to obtain more remarkable results. Moreover, focusing just on
these values, when considering the angular acceleration, looking the median values
of the boxes, an higher distance between the nominal error is obtained. Finally,
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it is possible to conclude that when setting e. equal to one better results will be
expected in the next.

4.3 Evaluation tests

Till now, all the simulations were carried out assuming that the machine always
exploit the same kind of lavoration. Thus, it is convenient to test/stress the
environment with different input conditions in order to see if the state observer
works well in any case and which kind of processing affects more the algorithm.
In particular, a kind of multivariate error analysis is made, changing one variable
at a time:

e Angular Velocity
With all the other parameters fixed, only the angular velocity is made to
change:
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Figure 4.12. Boxplot error with 200 [%] angular velocity.
s
Nominal value Testing value
d
Angular velocity [~=] 210 210
s

Position [m] 0.5 0.5

Duty cycle [%)] 50 50

Number of cycles 4 4

d
Table 4.10. Test with 210 [ﬂ] angular velocity.

s2
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Boxplot wiht angular velocty reference=210

®
=]

-
1
1
® 70 [
<
D60 -
©
S
©
g 50 [
5 T
240 - |
g 1
2@ 1
§ 30 ! !
© | 1
& 20 i i
K I | 1
2 | 1 1
2 | | 1
| | 1
<10t ] | I 1
I | | 1
I | | 1
of === L . L o
. . . . .
0.1 0.25 04 0.55 0.7

Friction coefficient 4 variation

d
Figure 4.13. Boxplot error with 210 [%
s

] angular velocity.

Nominal value Testing value
d
Angular velocity [%] 210 220
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 50
Number of cycles 4 4

d
Table 4.11. Test with 220 [%] angular velocity.
s
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Figure 4.14. Boxplot error with 220 —- angular velocity.
s
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Nominal value

Testing value

d
Angular velocity [%] 210
s
Position [m] 0.5
Duty cycle [%)] 50
Number of cycles 4

230

0.5
50
4

d
Table 4.12. Test with 230 [%] angular velocity.
s

Boxplot wiht angular velocty reference=230

@ ~ @
=] o =]

51}
=]

Angular acceleration residual errors
w -
o o

o

I

|
§
§
§

—_

0.1 0.25 04 0.55
Friction coefficient & variation

d
Figure 4.15. Boxplot error with 230 [%] angular velocity.
s

e Position

48

With all the other parameters fixed, only the position reference is made to

change:

Nominal value

Testing value

d
Angular velocity [%] 210
s
Position [m] 0.5
Duty cycle [%)] 50
Number of cycles 4

210

0.4
50
4

Table 4.13. Test with 0.4 [m] position reference.
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Boxplot wiht reference position=0.4
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Figure 4.16. Boxplot error with 0.4 [m] position reference.

Nominal value Testing value
d
Angular velocity [%] 210 210
s
Position [m] 0.5 0.47
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 4.14. Test with 0.47 [m] position reference.
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Figure 4.17. Boxplot error with 0.47 [m] position reference.
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Nominal value Testing value
d
Angular velocity [%] 210 210
s
Position [m] 0.5 0.53
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 4.15. Test with 0.53 [m] position reference.

Boxplot wiht reference position=0.53333
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Figure 4.18. Boxplot error with 0.53 [m] position reference.

Nominal value Testing value
d
Angular velocity [—=-] 210 210
s
Position [m] 0.5 0.6
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 4.16. Test with 0.6 [m| position reference.
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Figure 4.19. Boxplot error with 0.6 [m] position reference.

e Duty cycle
With all the other parameters fixed, only the duty cycle is made to change:

Nominal value Testing value
d
Angular velocity [%] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 20
Number of cycles 4 4

Table 4.17. Test with 20 % duty cycle.
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Figure 4.20. Boxplot error with 20 % duty cycle.



4.3 FEvaluation tests 52

Nominal value Testing value
d
Angular velocity [%] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 40
Number of cycles 4 4

Table 4.18. Test with 40 % duty cycle.
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Figure 4.21. Boxplot error with 40 % duty cycle.

Nominal value Testing value
d
Angular velocity [—=-] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 60
Number of cycles 4 4

Table 4.19. Test with 60 % duty cycle.
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Boxplot wiht duty cycle=60
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Figure 4.22. Boxplot error with 60 % duty cycle.

Nominal value

Testing value

d
Angular velocity [%] 210
s
Position [m] 0.5
Duty cycle [%)] 50
Number of cycles 4

210

0.5
80
4

Table 4.20. Test with 80 % duty cycle.
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Figure 4.23. Boxplot error with 80 % duty cycle.

e Number of cycles

93

With all the other parameters fixed, only the number of cycles is made to

change:
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Nominal value Testing value
d
Angular velocity [%] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 4.21. Test with 4 number of cycles.
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Figure 4.24. Boxplot error with 4 number of cycles.

Nominal value Testing value
d
Angular velocity [—=-] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 50
Number of cycles 4 6

Table 4.22. Test with 6 number of cycles.



4.3 FEvaluation tests

Boxplot wiht number of cicles=6
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Figure 4.25. Boxplot error with 6 number of cycles.
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Nominal value

Testing value

d
Angular velocity [%]
s

Position [m]
Duty cycle [%)]
Number of cycles

210

0.5
20
4

210

0.5
50
8

Table 4.23. Test with 8 number of cycles.
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Figure 4.26. Boxplot error with 8 number of cycles.
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o6

Nominal value

Testing value

d
Angular velocity [%]
s
Position [m]
Duty cycle [%]

Number of cycles

210

0.5
20
4

210

0.5
50
10

Table 4.24.

Test with 10 number of cycles.
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Figure 4.27. Boxplot error with 10 number of cycles.

Having a look at the various tests performed so far, it is possible to see that
there are no sensible variation when considering different working conditions with
respects to the nominal ones. Thus, the error associated with the correct model to
estimate is always smaller then the other ones. Moreover, in some particular cases
there is a better distinction between the boxplots, indicating a more accuracy on
the estimation algorithm. Moreover, it is necessary to state that during these tests
a reset of the integral error was considered, whose choice is justified in [4.3.1]

4.3.1 Reset time choice

A crucial aspect of residual error analysis is the choice of the integral’s reset time.
An integration period should be chosen mainly for two reasons:

e clearly, after a certain period of time while it is growing up, it will reach its
maximum value distorting the results;

e there may be situations in which there are transient errors depending on
many factors such as the work period, the type of machining process, ecc.
that can influence the integral.
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o7

Thus, in order to choose an optimal reset time, a boxplot analysis was carried out

by varying it through the simulation range.
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Figure 4.28. T reset analysis
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From the boxplots above can be seen that with a reset time of 10s, the error
variation is quite small compared to the others. This is probably due to the fact
that in 10s time there are no sensible dynamic variations in the system that would
capture an estimation mismatch. From 30s onwards the results are quite similar
but it has been decided to investigate a narrower range right after 30s because by
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increasing more and more the reset time it is possible to run into the problems
listed above.
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Figure 4.29. T reset choice

The results highlight that choosing a reset time of 30 seconds is the best choice for
this kind of framework, because it corresponds to a processing period. In practice,
since it is not possible to exactly know how long a processing period takes it is
better to choose a reset time large enough to capture the dynamic variations of
the system under study.

In Figure 4.30] it is possible to notice the behaviour of the angular acceleration
error’s integral with nominal values for all the parameters when a Reset time of
30s has been chosen.
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Figure 4.30. Integral error in nominal condition with Reset time of 30s.
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4.4 Multi-model: Algorithm structure

With all the considerations made so far, it is possible to implement the final
estimation algorithm. This part will represent the core of the MorePRO project
and of the edge-device that will be implemented on the CNC machine to have an
on-line SoH monitoring.

As far as the algorithm is concerned, it is mainly composed of three distinct parts:

e The CINC model that represents the dynamics equations governing the
system;

e The Extended Kalman Filter bank where each filter is based on a dif-
ferent friction coefficient hypothesis and which get as input the same inputs
applied to the model mentioned before and the outputs at the terminals
produced by the latter and aims to estimate, based on the assigned 3 hy-
pothesis, the acceleration at the terminals obtained by linearizing the CNC
model around the specific working point.

e A logic of decision and management of the integral of the residual errors
that include a reset, a best model choice and possibly the reliability of such
choice.

In the following figure the general Simulink structure is depicted, summarizing all
the components described above.

Figure 4.31. Simulink implementation of the algorithm.

In the green box are contained the dynamic behavior and the state equations of
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the plant while in the yellow one is contained the entire EKF bank. The residual
error estimation is than forwarded to the light blue block which represents the
logic of error management, whose internal structure is represented in Figure

Occurence_SoH_Reliability_est1

Choose_Best_Model1

Figure 4.32. Simulink implementation of error logic.

In the next pages it is possible to find an in-depth explanation of the various
mentioned structures.

4.4.1 Switching estimator

It is considered a problem of state estimation with a parameter variation in a finite
range. The idea is to put N EKF in parallel, where each of them works with a
different "wear condition” hypothesis. In particular, the friction coefficient [ is
chosen as switching parameter, obtaining N independent EKF, each with a fixed
value of .

N States estimate
>

EKF 1 Residual errors
—

Inputs ofthe model

¥

Sensor acquisition data

¥

~—
{ S States estimate
-

h 4

Residual errors
—

States estimate
—

Residual errors
e

Figure 4.33. Switching estimator
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The working principle of the switching estimator is:
e Each EKF will purpose its own estimate.

e Each EKF works with a different friction coefficient, switched over a finite
set of values.

It has been decided to put N=6 EKF with a g range values from 0.1 to 1 linearly
spaced as detailed in table[4.25[ The aim is to identify the filter with the minimum
residual errors, which means that filter which works with the friction coefficient
more similar to the real one and that represents better the condition of the machine.

Filter [ value
41 0.1

#2 0.28
#3 0.46
#4 0.64
#5 0.82
#6 1

Table 4.25. Friction coefficient associated to each filter

4.4.2 Best model choice

A key part of the algorithm is dealing with residual errors and extrapolate useful
information from the, as the errors contains an intrinsic assessment of the EKF’s
quality. The underlying idea is to choose the model with the smallest residual
error as the best model because it will have the closest friction coefficient to the
real one with all other parameters unchanged.

In order to implement this management, a Matlab function has been developed
which is dependent on both the input errors, the reset of the integral and also
a "dwell time” which will be explained shortly. In principle, the choice works
through these steps:

- Initially a dwell time is set, that is a period in which the function can
not check the errors data because it is supposed as a period for a dynamic
evolution of the system so that there are relevant data in the estimates.

- When there is a reset of the integral, the function cannot select the model
because the data is not reliable as no past information are collected.

- After resetting the integral and the dwell time at which the transient has
passed, the function analyses the errors data and assigns the model with the
lowest error as the best model.

The Figure shows that with the condition listed in Table the best model

is always the first because, as it should be, it is the one that has the same value
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as the nominal one.

Nominal value Testing value
d
Angular velocity [%] 210 210
s
Friction coefficient 0.1 0.1
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 4.26. Test with nominal friction coeflicient

40 -

Integral error
3
T
3
|
\\

Best model choice

Time [s]

Figure 4.34. Best model choice with nominal condition

While testing a friction coefficient variation in the range 0.1 = 0.5 the best model
changes according to the less residual error like shown in figure

Nominal value Testing value
d
Angular velocity [~=] 210 210
S
Friction coefficient 0.1 0.1+-0.5
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 4.27. Test with friction coefficient variation
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Figure 4.35. Best model choice with § variation
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5 Data driven analysis

To increase the accuracy of the prediction estimate, during the development of
the project it was decided to introduce a data-based analysis in parallel to what
has been seen so far. In fact, the main idea is that there may be cases for which
the edge device is not totally reliable due to various factors that can make the
operation of the machine differ from the nominal one.

The goal is therefore to create classification/clustering algorithms that discretize
between N different possible wear conditions in the inference space, choosing the
most suitable for each situation. In particular, two different types of approaches
will be addressed. A first in which on the sole basis of the data coming from
the sensors, an algorithm will be built that performs the same work of the edge
device, i.e. the estimate of the wear of the machine. A second one in which,
also considering the labels in output from the devices mounted on the machines,
the aim is to eliminate the small parametric variations present between different
plants, obtaining a more reliable estimate.

5.1 Machine Learning

"1t is said that an artificial system learns from experience E to some classes of task
T and measurement of performance P it its performance in task T, measured by
P, improve with experience E.” [2]]

As stated from the definition, Machine Learning means a set of algorithms and
methodologies which goal is to provide an actual system capable of automatically
learns new strategies from external stimuli, not relying on a pre-programmed logic.
All the ML algorithms are based on the same structures:

e Data source: an organized collection of field data.

e Feature: an individual and measurable property of the phenomenon under
observation.

e Data element: a particular element of the data source univocally identified
by the values assumed by the considered features.

e Model: a function that produces specific outputs given specific inputs.
e Model structure: a model with undefined parameters.

e Label: the specific results given by the model when a specific output is
applied.

e Learner: it creates a specific model based on the class of the model structure.
The learning algorithms can be divided into two classes of belonging;:

e Supervised learning: the algorithm learns knowledge from the data with
their associated answers. In particular, we speak of regression when the tar-
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get is a numerical value and of classification when the target is a qualitative
variable, such as a class can be.

e Unsupervised learning: when the algorithm learns knowledge directly
from the data structure, not knowing the answers. In practice, it tries to
independently find specific patterns by rearranging the various features in a
certain specific way. It is usually referred as clustering. [22]

5.1.1 Data pre-processing

Having an huge data set does not always imply having better results. In fact, big-
ger data brings adder complexity, that is why is important to have only significant
data, organizing them in specific structures, such as matrices, filtering them and
avoiding redundancies between features.[23] One of the most popular multivariate
statistical technique is Principal Component Analysis and it is used by al-
most all scientific disciplines. This technique is used in order to extract the most
important information from the data structure, simplify the description of the
data set and to maintain only important informations compressing the data size.
This is done by computing new variables, called principal components, as linear
combinations of the original variables. In particular, the first principal compo-
nent is required to have the largest possible variance, the second one is computed
under the constraint of being orthogonal to the first component and the others
are computed likewise. The values of these new variables for the observations are
called factor scores, and these factors scores can be interpreted geometrically as
the projections of the observations onto the principal components. [24]

5.1.2 Cross-validation

When resorting to a ML algorithm the best thing would be to have a different set
of data in order to test the learner with respect to the training one. However, in
industrial fields this is often unusual, since waiting for new data is infeasible in
terms of costs and time. That is why a common random split between the data
set is made, using a certain percentage fore training purposes (usually from 70 to
75) and the remaining one for testing. Nevertheless, a randomic split of the data
could bring to bias problems. That is where cross-validation based on k-folds
comes in, where a subdivision on equal size folds is made in order to use each fold
at a turn for testing scope and the remaining ones for the training. The main idea
is represented in Figure 5.1}
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FOLD1 FOLD 2 FOLD3 FOLD 4 FOLDS
ITERATION 1 [ TRAIN H TRAIN “ TRAIN H TRAIN || TEST ‘
ITERATION 2 l TRAIN ” TRAIN " TRAIN ” TEST " TRAIN l
ITERATION 3 TRAIN TRAIN TEST TRAIN TRAIN
ITERATION 4 TRAIN . TEST | TRAIN TRAIN . TRAIN
ITERATION 5 TEST ” TRAIN " TRAIN H TRAIN || TRAIN
—| DATASET PARTITIONED INTO FOLDS 17

Figure 5.1. K-fold cross validation. [22]

5.2 Unsupervised SoH estimation

Recalling what stated above, in the first part of the work the goal is to obtain a
clustering of the data coming from the sensors in different classes. Not having the
real machine data available due to too long working/company times compared to
a Thesis work, it has been decided to generate the data autonomously from the
Simulink environment described in the previous paragraphs. It is clear that this
approach will not be the same that will be pursued in the real implementation of
the algorithm later on, however it can be useful to have a good starting point for
future developments.

Therefore the starting point of the work is concentrated on a data generation
that can be as similar to the possible data collected on the machine. It was there-
fore assumed to have sensors capable of measuring the angular and linear speed of
the tool and the current of the DC motor as significant quantities. Furthermore,
to have a quality of the data more similar to reality, a white error with zero mean
and with a variance of 5% associated with these sensors was considered.

The data collection was made considering the work plan shown in chapter |5.1
where the only variable parameter between the various cases is the friction coeffi-
cient 3 (for obvious reasons described in Table|3.4]) in order to have machines that
are working with a different state of wear between them.
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Working value

d
Angular velocity [%] 210
s

Position reference [m] 0.5
Friction coefficient 0.1-0.43-0.77-1.1

Duty cycle [%] 90
Number of cycles 200
Simulation time [s] 10000

Table 5.1. CNC working conditions.

5.2.1 Self-organizing maps

Self Organizing maps (SOM) are used as first clustering algorithm, which are
essentially neural networks that allow to transform the data set into a topology-
preserving 2D map. Basically, a SOM consists of a competitive layer which can
classify a data set of vectors with any number of dimensions into as many classes
as the layer has neurons. The neurons are arranged in a 2D topology, which
allows the layer to form a representation of the distribution and a two-dimensional
approximation of the topology of the data set. In Figures and the neurons
topology of the used SOM and the neural network layers are represented.

SOM Topology

Figure 5.2. SOM topology.
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Input SOM Layer Output

10x10

Figure 5.3. SOM layers.

Once implemented the neural network, it is possible to train it using unsupervised
weight and bias learning rules with batch updates, where the weights and biases
are updated at the end of an entire pass through the input data. For SOM training,
the weight vector associated with each neuron moves to become the center of a
cluster of input vectors. In addition, neurons that are adjacent to each other in
the topology should also move close to each other in the input space, therefore it
is possible to visualize a high-dimensional inputs space in the two dimensions of
the network topology. Once trained the algorithm for 200 epochs, it is possible to
evaluate the quality of the network by having a look at some of the main relevant
plots of SOM:

e SOM input planes: This plot shows a weight plane for each element of the
input vector. They are visualizations of the weights that connect each input
to each of the neurons, with darker colors that represent larger weights. If
the connection patterns of two inputs were very similar, you can assume that
the inputs are highly correlated. In this case, input 1 (the angular speed)
seems to have the same wright on almost all neurons thus it could be a good
idea to remove this input since it does not brings relevant information.

Weights from Input 1 Weights from Input 2

0 2 4 6 8 10

Weights from Input 3

Figure 5.4. SOM input planes with all features.
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e SOM sample hits: This plot shows the neuron locations in the topology,
and indicates how many of the training data are associated with each of the
neurons (cluster centers). In this case it is already possible to distinguish
between four main agglomerates, which basically represents the four wear
conditions.

Figure 5.5. SOM sample hits with all features.
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e SOM neighbor distances: In this figure, the blue hexagons represent
the neurons. The red lines connect neighboring neurons. The colors in
the regions containing the red lines indicate the distances between neurons.
The darker colors represent larger distances, and the lighter colors represent
smaller distances. In this case a band of darker segments seems to create
four yellow cluster, even if in some region the separation is not so marked.

SOM Neighbor Weight Distances

Figure 5.6. SOM neighbor distances with all features.

Recalling what just seen, a second retraining phase using only linear speed and
current as features of the experiment is made in order to see if better performance
of the network are obtained. The same series of plots as before are used as a
measure of quality:
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e SOM input planes: in this case the two feature brings very uncorrelated
information, thus what will be expected are better results.

Weights from Input 1

8 ‘ 8

Weights from Input 2

Figure 5.7. SOM input planes.

e SOM sample hits: also in this case it is possible to see a clear separation
between four main clusters, one for each corner.

Hits

Figure 5.8. SOM sample hits.
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e SOM neighbor distances: with respect to the previous case a better
distance between the four clusters is obtained, which allows to state that
a better forecast of the wear will be expected.

SOM Neighbor Weight Distances

Figure 5.9. SOM neighbor distances

In order to see if more accurate network can be built it is possible to try to use
PCA. Thus, with respect to the previous data set a product with the coefficients
of table [5.2| is made, where each column of contains coefficients for one principal
component. The columns are in descending order in terms of component variance.

1.8%107* 0.99
0.99 ~1.8%1074

Table 5.2. PCA coefficient.

As before an evaluation analysis of the various plot, in order to see if a better
implementation of the clustering neural net can be obtained:
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e SOM sample hits: no relevant differences are obtained with respect to the
previous case in terms of sample hitting.

Hits

® & =

0 2 4 6 8 10

Figure 5.10. SOM sample hits with PCA.

e SOM neighbor distances: in some way the distinction between neighbor
clusters is less clear.

SOM Neighbor Weight Distances

Figure 5.11. SOM neighbor distances with PCA.
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After this analysis it can be concluded that SOMs are an excellent tool for clus-
tering a data set not knowing the answers. Furthermore, it is convenient not
to consider the angular velocity, thus obtaining both a better algorithm and less
heavy from the computational point of view. Moreover, since the PCA analysis
does not bring any actual improvement, it is advisable not to take it into account
in the development phase for the same reasons mentioned above.

5.2.2 K-means approach

As second clustering algorithm K-means is exploited, which basically is a parti-
tioning method that treats observations in the data set as objects having locations
and distances from each other. It divide the objects into K mutually exclusive clus-
ters, in a way that data within each cluster are as close to each other as possible,
and as far from objects in other clusters as possible. Each group is characterized
by its centroid, or center point. Analyzing in more detail the operation of the
algorithm step by step:

e After setting the number of clusters, the algorithm chooses k random exam-
ples which will be the centroids.

e The algorithm assigns all available data to the available clusters based on
the Square Euclidean distance from each centroid and assigning them to the
nearest one.

o After assigning all the examples to the various clusters, the algorithm recal-
culates the centroids by leveling all the data present in the various groups.

e As a last step, if the position of the centroids has not changed much the
algorithm returns the solution. Otherwise, he repeats his previous steps
until he reaches a better solution.

Of course, the algorithm is trained using the same data collected for the SOMs
in order to compare the results between the two clustering algorithms in the best
possible way.

Before starting the actual training, it is useful to analyze through a silhouette
plot how much the various clusters are really separated. Indeed, this plot allows
to see how close each point in one cluster is to points in neighboring clusters.
Taking a look at Figure [5.12] it is possible to see how most of the points in all
four clusters have a silhouette value greater than 0.8, indicating a well-marked
separation between the various clusters.
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Figure 5.12. Silhouette plot.

Thus, after setting the number of clusters to four, to avoid the fact that the solu-
tion strongly depends on the starting point it is possible to replicate the training
of the algorithm for a certain number of times, i.e. 5, and then pick the solution
that gives the best results in terms of lowest total sum of distances among all the
replicates.

It is possible now to look at the results of the training process through a scatter
plot, which basically allows to represent all the experiments and their subdivision,
as can be seen in Figure [5.13] where each color represents one of the fours different
clusters.

250 -
200
150

100 ~

Current

_50 -l

500 -1
400 500 oo 0 -05
100 1 0.5

Angular Velocity Linear Velocity

Figure 5.13. Scatter plot.

Since, as stated before, data are generated from a Simulink environment, it is
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possible to estimate the accuracy of the algorithm by comparing the ”real” sub-
division of the experiments with the obtained one. In this case, the algorithm is
capable of finding the correct match-up with the 88.4%

5.3 Supervised learning algorithm

As seen before, the main difference of having a supervised algorithm is having
available not only the features of the system but also its answers. In this case,
therefore, in addition to the angular and linear velocity and current coming from
the sensors, the estimate of wear from the edge device is considered as the system
output.

The main idea behind using a supervised algorithm for this job is to collect data
from various machines in the production plant, considering the fact that each ma-
chine is slightly different on a parametric level than the others. This assumption
allows to have more realistic data and to eliminate the estimation errors of the
edge device due to a mismatch between plant and filter bank. Furthermore, as
before it is assumed that for each CNC machine data are taken for four different
configurations of wear (and therefore of the friction coefficient). The algorithm
will therefore be based on the five machines listed in Table [5.3].

1st 2nd 3rd 4th 5th

Mass [kg] 3 29 31 285 3.05
Resistance [k§2] 0.6 0.7 0.8 0.8 0.5
Radius [m] 0.3 029 028 031 0.32

Torque constant 1.5 1.5 1.3 1.6 1.4
Inductance [mH|] 0.1 0.15 0.05 0.12 0.11
Voltage constant 0.2 0.2 0.25 0.15 0.3

Table 5.3. CNC parameters of different machines.

5.3.1 K-Nearest Neighbor

Given a set X of n points and a distance function, k-nearest neighbor (kNN) search
lets you find the k closest points in X to a query point or set of points Y. The
kNN search technique and kNN-based algorithms are widely used as benchmark
learning rules. The relative simplicity of the kNN search technique makes it easy
to compare the results from other classification techniques to kNN results. As
distance metrics to categorize query points based on their distance to points in
the training data set the standardized euclidean is used, where given an m,-by-n
data matrix X, which is treated as m, (1-by-n) row vectors z1, xa, ..., Tyne, and an
m,-by-n data matrix Y, which is treated as m, (1-by-n) row vectors yi, ya, ..., Ymy
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it is computed as:

&= (zs —y) V7 (25— us) (5.1)

where V is the n-by-n diagonal matrix whose j;;, diagonal element is S(j)?, where
S is a vector of scaling factors for each dimension.

For this approach the cross-validation exposed in chapter [5.1.2] will be used, mak-
ing use of 10 sub-folds of the data set. In the first part all the three features will be
used for the training/testing of the algorithm and by using a confusion matrix
an evaluation of the quality of the classification will be made, which is a special
matrix where the rows correspond to the true class and the columns correspond
to the predicted class. Diagonal and off-diagonal cells correspond to correctly and
incorrectly classified observations, respectively. Moreover, in order to improve the
quality of the algorithm several tests are exploited in order to find the best number
of neighbors (k). This parameter has a very high impact on the network, indeed
it indicates how many of the objects around the considering point will be used to
assign the class. In example, with reference to figure [5.14] if k=3 only the three
nearest object will be considered, assigning the value to the triangle class, on the
contrary, if k=5 the five nearest objects will be view, classifying the value as a
square.
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m E \
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Figure 5.14. kNN algorithm approach.
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o k=1

Using one as number of neighbors an accuracy of the 91.2% is obtained,
as can be seen in the figure below.

Model 3

456688

456680

True Class

455700

1 2 3 4
Predicted Class

Figure 5.15. kNN with k=1.

o k=2-3

When considering 2/3 number of neighbors an almost similar results is ob-
tained, having a 91% of confidence.

Model 4

1 463500

456210

N

True Class

w

447633

S

1 2 3 4
Predicted Class

Figure 5.16. kNN with k=2-3.
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o k=4

Increasing the parameter k to four better results are obtained (91.1%) with
respect to the previous one. However, the better classification it is still that
one considering only one neighbor for the algorithm.

Model 6

9611 10376

468757

453076

True Class

3 449986

4 449232

1 2 3 4
Predicted Class

Figure 5.17. kNN with k=4.



5.3 Supervised learning algorithm 81

e k=5

Keeping on increasing the parameter a degradation of the performance is
obtained. Indeed, the accuracy is now 90.6%, the lowest one.

Model 7

459118

True Class

450138

450241

1 2 3 4
Predicted Class

Figure 5.18. kNN with k=5.

As a last step for this algorithm it was decided to try to increase the performance
using a PCA. In particular, it was decided to keep a sufficient number of compo-
nents to cover 95% of the variance. By doing so, only the first 2 features will be
considered, with the first that explains the 92.7% of the variance, and the second
7.9%. Once this preliminary analysis of the data has been made, it is possible
to proceed as before to find with which value of k the algorithm works more ac-
curately and if, by applying the PCA, there are significant improvements on the
classification.



5.3 Supervised learning algorithm 82

o k=1

Using one as number of neighbors an accuracy of the 93.3% is obtained,
as can be seen in the figure below.

Model 2

467272

True Class

466703

467830

1 2 3 4
Predicted Class

Figure 5.19. kNN with PCA and k=1.

o k=2

When k is set equal to 2 no relevant differences are seen with respect to
the previous case. Indeed, the accuracy is still 93.3%.

Model 6

1 474993

2 468350

True Class

3 463712

458898

1 2 3 4
Predicted Class

Figure 5.20. kNN with PCA abd k=2.
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o k=3
Increasing to three, a very small improvement is obtained (93.4%).

Model 5

472756

True Class

463396

4 20837 7413

1 2 3 4
Predicted Class

Figure 5.21. kNN with PCA and k=3.

o k=4
The same results as before as obtained, not having any better classification.

Model 4

474539

466069

True Class

462856

1 2 3 4
Predicted Class

Figure 5.22. kNN with PCA and k=A4.
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e k=5

Increasing more the number of neighbors a worst classification is obtained

(92.8%).

Model 3

470091

466565

True Class

463565

1 2 3 4
Predicted Class

Figure 5.23. kNN with PCA and k=5.

To conclude, it can be said that it is certainly advisable to apply a PCA to the
data in question, as the reliability of the algorithm seems to increase by a couple
of percentage points. Furthermore, the best results are obtained when k is equal
to three/four, it is therefore advisable to set it to three in order to have a less
demanding algorithm from the computational point of view.
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5.3.2 Other classification algorithms

Before identifying KNN as the best classification algorithm for the purpose in
question, a brief analysis was made of other possible algorithms. All this was
possible using the tools that MATLAB makes available. In particular, the analysis
was carried out considering for each case the relative confusion matrix, as well as
the percentage of reliability of the same.

e Decision Trees

This is a non-parametric supervised learning method whose goal is to predict
the value of target variables using a tree-like model, based on very simple
rules deduced from data itself. Usually this kind of classification algorithm
is used due to its simplicity, since it is able to handle both numerical and
categorical data and does not require to manage data before feeding them
to the algorithm. On the contrary, it is possible that a over-complex tree is
created, not generalising data in a correct day, as well as they are not able
to deal with small variations in a correct way. Thus, considering the data
generated by the five machines, the training of the algorithm generate the
confusion matrix in Figure where an accuracy of 90.3% is reached.

Model 1

0.4%

12.8%

True Class

12.9%

12.8%

1 2 3 4 TPR FNR
Predicted Class

Figure 5.24. Decision tree confusion matrix.

In the same figure the TP and FN rates are reported, which respectively are
the proportion of data that are correctly identified and incorrectly assigned
for each class.

e Linear & Quadratic Discriminant Analysis

Linear and Quadratic Discriminant Analysis are two classifier that make use,
as their name suggest, a linear and a quadratic decision surface, respectively.
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Both LDA and QDA make strong assumption for the construction of their
algorithms, in particular:

— The predictor variables are drawn from a multivariate Gaussian distri-
bution.

— In LDA equality of covariances among the predictor variables across
each class is assumed.

Furthermore, it is very important to know that QDA is much more flexible
than LDA, and so has substantially higher variance. Thus, DA is recom-
mended if the training set is very large, so that the variance of the classifier
is not a major concern, or if the assumption of a common covariance matrix
is clearly untenable. In contrast, LDA tends to be a better bet than QDA
if there are relatively few training observations and so reducing variance is
crucial.

Indicating with x each training sample, with y the response variable and
with k a class, predictions can be obtained by using Bayes’ rule:

Ply—k|z) = Pl | y?zf(y:k) _ Zi(fal

selecting the class k which maximizes this posterior probability. Thus, since
P(z | y) must be modeled as a multivariate Gaussian distribution with den-
sity:

1 1 e
Plx|y=k) = Wexp (—5 (x —pg) X (x Mk)) (5.3)

where d is the number of features, 3, the covariance matrix and uy a class-
specific mean vector. Thus, according to what stated, the log of the posterior
is:

logP(y=Fk|z)=logP(zx|y=Fk)+log Py =k)+ Cst
1 1 N (5.4)
= —élog 1S5 — 3 (x — )" B, (x — ) +log P(y = k) + Cst

The predicted class is the one that maximises this log-posterior, where C'st
corresponds to the denominator of P(z). Moreover, since for LDA each class
is assumed to share the same covariance matrix, this reduce to:

1
logP(y =k |z) = —3 (x — ) 27 (x — pp) +log P(y = k) + Cst (5.5)
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Thus, applying to the case study of this Thesis, the following confusion
matrices are obtained for LDA and QDA, where an accuracy of 77.8% and
85.9% is reached, respectively.

Model 3

100.0% 100.0%

27.6%

True Class

45.2%

16.0%

3 4 TPR FNR
Predicted Class

Figure 5.25. Linear discriminant confusion matrix.

Model 4

23%

15.4%

True Class

15.9%

22.7%

4 TPR FNR

1 2 3
Predicted Class

Figure 5.26. Quadratic discriminant confusion matrix.

e Gaussian Naive-Bayes

Naive-Bayes are essentially based on the application of the Bayes’ theorem
with the "naive” assumption of strong independence between the features.
In particular, given the class variable y and dependent feature vector x;
through x,,, the Bayes’ theorem states the following relationship:

PP (x| y) (5.6)

P(y|g;17...,l’n): P('Tlx)
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where, assuming the conditional independence:
Ply) [1imy P (xi | )
P e Xy) = = 5.7
<y|$1, 7:1;) P(Zl,...,wn) ( )
finally, since P (z1,...,x,) is constant given the input, it is possible to use
the following classification rule:
§ = argmax P(y) [P @ily) (5.8)
i=1

In this case of study, since the data available are continuous ones, it is possible
to assume that the values associated to each class are distributed according
to a Gaussian distribution. Thus, after the segmentation, it is possible to
compute the mean and the variance in each class and getting to the final
likelihood of the features:

P (2] 4) = —me exp (—“—‘”) (5.9)

2 2
27ray 20y

Applying the theory seen above, it is possible to finally train the algorithm
obtaining the confusion matrix in Figure [5.27, where an accuracy of 85.9%
is reached.

Model 5

2.4%

15.4%

True Class

15.8%

22.8%

1 2 3 4 TPR FNR
Predicted Class

Figure 5.27. Gaussian Naive-Bayes confusion matrix.
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6 Conclusions and Future works

Finally, it is possible to draft all the principal results obtained during this Thesis
work developed as part of the MorePRO team at brain Technologies srl, whose
main objective was the development an edge-computing device, capable of provid-
ing the most reliable on-line estimate of the state of wear of CNC end-effectors.
In particular, going to follow the same path described in the various chapters the
following contributions and conclusions were obtained:

e Firstly, it has been seen how the application of the algorithm already devel-
oped by brain Technologies in the ERMES project for the SoH estimation of
batter system by adopting a new switching multi modal estimation technique
is suitable also for a mechanical case, which concerns the wear prediction of
a dynamical model resembling the work carried out by a CNC machine. This
has be proven by choosing the friction coefficient as main representative for
discriminating different wear conditions of the plant under assumption, and
carrying out a brief analysis on the residual errors of the Extended Kalman
Filters bank implemented.

e Secondly, it has been proven how relying on Machine Learning algorithms
can be very useful for this case study. Indeed, a first implementation of
unsupervised techniques, such as Self-Organizing Maps, could really help
to have a practical feedback on how correct the estimation coming from an
edge-device using the multi modal approach is. Furthermore, the application
of supervised techniques, i.e. K-Nearest Neighbour, could help to leverage
errors coming from a single device when more machines are working on the
same process.

6.1 Future works

This Thesis has shown the potential benefits of applying the proposed estimation
techniques in the field of end-effectors state of health.

As regards the first part of the work, it is clear that one of the main key points
of the algorithm is the implementation of the physical model. As a consequence
one of the possible line of action is the research of a dynamical model that better
describes the working machine on which device will be mounted and at the same
time not complicate it too much to keep the overall computational costs of the
algorithm as low as possible.

In addition, another improvement that could be made, which has been the subject
of study of other other students working on the same project, is to find a way to
better describe the friction coefficient, not considering it as a global parameter 3
but going to see which are the parameters that mostly affects the wear condition,
such as temperature, chip load, cutting angle, and so on could be.

Moreover, recalling the fact that all the data-driven analysis was carried out as-
suming auto-generated data from a Simulink environment, the main consequent
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line of action must be to collect real data from the plant in order to validate/refute
all the hypothesis/results gained during this Thesis work. In this way, it is possible
to see if a Machine Learning approach is suitable to improve the reliability of the
algorithm developed on the edge-device.



Appendix A
Boxplots

Boxplots are graphic representation used to describe the distribution of a sam-
ple by means of dispersion and position indices.

Interquartile Range
(IQR)
Outliers F——— Outliers
@ ({ o0
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Figure 6.1. Boxplot represntation.

As can be seen in figure, the box range goes from the first to the third quartile
and contains the median. Two segments come out from the rectangle and they are
delimited by the minimum and maximum values, also called outliers.
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