
POLITECNICO DI TORINO

Master degree course in Ingegneria Elettronica
(Electronic Engineering)

Master Degree Thesis

Neural Architecture Search
Techniques for the Optimized

Deployment of Temporal
Convolutional Networks at the

Edge

Supervisors
Doc. Daniele Jahier Pagliari
Doc. Alessio Burrello

Candidate
Matteo Risso

matricola: 265419

Academic Year 2020-2021

This work is subject to the Creative Commons Licence

Summary

For many years Recurrent Neural Networks (RNNs) achieved state-of-the-
art (SoTA) results in time series analysis, but their large computational
complexity makes them ill-suited to be deployed on microcontrollers and, in
general, on other resource-constrained edge devices. A more viable alternative,
towards the efficient deployment of time series related tasks is represented by
Temporal Convolutional Networks (TCNs), a particular class of Convolutional
Neural Networks (CNNs), achieving comparable results to SoTA RNNs
architectures. TCNs offer many advantages from a computational standpoint,
resulting in a more hardware-friendly alternative to RNNs. Nevertheless, the
optimized deployment of a TCN on a microcontroller-based edge device still
requires a careful and time-consuming hand-tuning of the model’s hyper-
parameters. This tedious process is necessary to achieve a good trade-off
among inference accuracy and computational complexity (total number
of operations and memory footprint). Nonetheless, due to the extremely
large design-space of such architectures, usually this hand-tuning process
leads to sub-optimal solutions. This thesis tackles the problem using Neural
Architecture Search (NAS), i.e., the automatic tuning of hyper-parameters by
means of an algorithm. In this work the usage of NAS algorithms is explored
in the direction of searching for TCN architectures with hardware-friendly
features, i.e., a small memory footprint and/or reduced number of Floating
Point OPerations (FLOPs). In particular, two different low-complexity
NAS approaches, i.e., MorphNet and PIT, are applied to a seed TCN, in
order to train the network on its task and, jointly, optimize the target hyper-
parameters that define the architecture, with respect to a specific metric (e.g.,
the FLOPs). MorphNet is an existing NAS approach present in literature,
which is here combined with PIT, a novel light-weight NAS designed during
this thesis work. The two methods are applied both independently on the
seed network and also jointly exploring different setups. This allows to

iii

explore the orthogonality of the two NASes, leading to a complete workflow
for the optimization of TCNs. In particular, the proposed workflow allows
to obtain both SoTA results on the considered time series analysis task and
also to compress the seed architecture as much as 99.6%.

iv

Acknowledgements

Anyone knowing me well is aware how little I am inclined to let me go
publicly. Nevertheless, I am sure that spending few lines for all the people
that were there for me in this long journey it is the least I could do.

To my supervisors, Daniele Jahier Pagliari and Alessio Burrello, for help-
ing me with kindness and passion in whatever difficulties I encountered.
Moreover, I want to infinitely thank you for opening me up a way to my
future. I respect deeply your work and I hope to be worthy, too.

To my parents, Angelo and Magda, for supporting every choice I have
made. For never held back a solid support. I thank you for always being
there, even when I want to be left alone.

To my grandparents, Marta, Renzo, Rosanna and Piero. Even if I have
sinned to prove it you are and always has been part of who I am.

To Dante, for never leave me alone (literally).

To Betty, for sharing with me every aspect of this long journey. You
support me when I was overwhelmed, bringing levity where I put weight.
Thank you for teaching me to take one step at a time. You made me feel at
home, always.

To all the people unjustly neglected here, but that have contributed,
directly or indirectly, to this amazing accomplishment.

Sincerely, thank you.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 5
2.1 Overview . 5
2.2 Neuron . 8

2.2.1 Most Common Activation Functions 9
2.2.2 Artifical and Biological Neurons 11

2.3 Layers of Neurons . 11
2.4 Training of DNNs . 13

2.4.1 Gradient-Based Learning 14
2.4.2 Most Common Loss Functions 15
2.4.3 Regularization Techniques 16

2.5 Popular DNNs Architectures 17
2.5.1 Convolutional Neural Network (CNN) 18
2.5.2 Temporal Convolutional Network (TCN) 21

2.6 PPG-based Heart-Rate Estimation 22
2.6.1 Dalia Dataset . 24

3 Related Works 27

4 NAS Techniques for Edge-TCNs Optimization 31
4.1 Motivations and Objectives 31
4.2 TimePPG : Optimized TCNs for PPG-based Heart Rate Mon-

itoring . 33
4.2.1 TEMPONet . 34

vi

4.2.2 MorphNet Details . 36
4.3 PIT : Pruning In Time . 38

4.3.1 Dilation-Aware Mask 39
4.3.2 Making Dilation Differentiable 41
4.3.3 PIT Regularizer . 42
4.3.4 Training . 45

4.4 Further Improvements . 45

5 Experimental Results 49
5.1 Experimental Setup . 49

5.1.1 GAP8 Hardware Platform 50
5.2 TimePPG Design Space Exploration Results 51

5.2.1 State-of-the-Art Comparison 52
5.2.2 Embedded Deployment 55

5.3 PIT Design Space Exploration Results 55
5.3.1 State-of-the-Art Comparison 57
5.3.2 Embedded Deployment 58

5.4 MorphNet and PIT Orthogonality Exploration 59
5.4.1 H.-T. TEMPONet → MorphNet → PIT 60
5.4.2 Dil=1 TEMPONet → PIT → MorphNet 61
5.4.3 Dil=1 TEMPONet → MorphNet → PIT 62
5.4.4 Embedded Deployment 64

6 Conclusions and Future Works 65

vii

List of Tables

5.1 Comparison of TimePPG-BestMAE with state-of-the-art PPG
based heart rate monitoring algorithms. The p-value reported
is computed with non-parametric Mann-Whitney statistic. . 54

5.2 Deployment of TimePPG solutions on GAP8 System on Chip
(SoC) and comparison with original TEMPONet without dila-
tion and hand-tuned (h.-t.) dilation. 55

5.3 Dilation factors obtained for the different temporal convolu-
tional layers of TEMPONet. 56

5.4 Comparison between ProxylessNAS and PIT, with Dalia as
dataset and TEMPONet as seed architecture. 57

5.5 Deployment of PIT solutions on GAP8 SoC and comparison
with original TEMPONet without dilation and hand-tuned
(h.-t.) dilation. 58

5.6 Deployment of MNdil1-PIT solutions on GAP8 SoC and com-
parison with original TEMPONet without dilation and hand-
tuned (h.-t.) dilation. 64

viii

List of Figures

2.1 Comparison between the traditional paradigm to problem
solving (uppermost scheme) and the Machine Learning one
(lowermost scheme) [19] . 5

2.2 Artificial (left) and biological (right) neurons. 8
2.3 Most common activation functions. 9
2.4 Fully Connected layers of neurons (MultiLayer Perceptron

(MLP)). 12
2.5 Comparison between some of the most common loss functions

employed in regression tasks. 15
2.6 Example of 2D Convolution. 18
2.7 Example of Max/Average Pooling. 20
2.8 Example of 1D Dilated Convolution. 21
2.9 PPG waveform. 23
2.10 PPG Sensor. 24
3.1 Example of supernet and path selection. 28
4.1 Proposed NAS and deployment flow. 33
4.2 Raw input signals and sliding window sampling. 35
4.3 Modified TEMPONet architecture. 35
4.4 Plain Lasso regularizer vs Group Lasso regularizer. 38
4.5 Training flow of the proposed Pruning In Time (PIT) NAS tool. 39
4.6 Combination of γ parameters with each other and point-wise

multiplication to convolutional kernels to form different dila-
tion patterns. Example for rf max = 9. 40

4.7 Generation of the M mask vector with differentiable opera-
tions. Example for rf max = 9. 44

ix

4.8 In subfigure A, the prediction of TimePPG on 200 seconds of
subject 7. In B and C, traces from subj. 8 and 5, show-
ing the benefits of the postprocessing and of fine-tuning.
TimePPG 1 is the plain Temporal Convolutional Network
(TCN), TimePPG 2 includes the post-processing and TimePPG
3 integrates both the post-processing and the fine-tuning. . 47

5.1 GAP8 Chip and Layout [52]. 50
5.2 TimePPG Pareto charts in the Mean Absolute Error (MAE)

vs. size and MAE vs. Floating Point Operations (FLOPs)
spaces . 51

5.3 PIT Pareto chart in the MAE vs. size space. 56
5.4 Comparison of training time between PIT, ProxylessNAS and

a plain training on TEMPONet. 58
5.5 Three possible combinations of MorphNet and PIT algorithms. 59
5.6 Pareto charts in the Performance vs. Number of Parameters

space obtained using MN-BestMAE (left) and MN-BestSize
(right) as seed networks for PIT. 60

5.7 Pareto charts in the Performance vs. Number of Parameters
space obtained using PIT-BestMAE (left) and PIT-BestSize
(right) as seed networks for MorphNet. 61

5.8 Pareto charts in the Performance vs. Number of Parameters
space obtained with MorphNet using as seed TEMPONet with
all dilation factors fixed to 1. 62

5.9 Pareto charts in the Performance vs. Number of Parameters
space obtained using PIT with MN dil1−BestMAE (left) and
MN dil1−BestSize (right) as seed networks. 63

x

xi

Acronyms

AI Artificial Intelligence.

ANN Artificial Neural Network.

CNN Convolutional Neural Network.

CV Computer Vision.

DAG Direct Acyclic Graph.

DL Deep Learning.

DMA Direct Memory Access.

DNAS Differentiable Neural Architecture Search.

DNN Deep Neural Network.

ECG ElectroCardioGram.

FLOP Floating Point Operation.

FPU Floating Point Unit.

GAN Generative Adversarial Network.

GPU Graphic Processing Unit.

MA Motion Artifact.

MAE Mean Absolute Error.

MCU MicroController Unit.

xii

ML Machine Learning.

MLP MultiLayer Perceptron.

MSE Mean Squared Error.

NAS Neural Architecture Search.

NLP Natural Language Processing.

NN Neural Network.

PPG PhotoPlethysmoGraphy.

PPG PhotoPlethysmoGram.

PULP Parallel Ultra Low Power.

RNN Recurrent Neural Network.

SGD Stochastic Gradient Descent.

SoC System on Chip.

TCN Temporal Convolutional Network.

xiii

Chapter 1

Introduction

Throughout history several scientific breakthroughs and innovations have
changed the perception of the world where everybody of us live. Mainly this
happens slowly, through several years, but sometimes this change is very
abrupt. A very evocative concept, used by historians to denote this type of
events is summarized by the two following words : Copernican revolution,
which recalls the transition from an geocentric view of the universe to the
well-known heliocentric one. Is certainly very difficult to understand when a
revolution of this type is happening in real-time, but some philosophers [1]
bravely indicates our days as revolutionary.

This announced revolution is strictly related to information technologies
and to the very inflated concept of Artificial Intelligence (AI), which abso-
lutely requires few words to be properly framed. This work is mainly related
to Deep Learning (DL) algorithms, which are a subset of the wider discipline
of Machine Learning, in turn usually seen as an autonomous branch of the
aforementioned AI.

From a technical perspective Machine Learning techniques represent an
effective way to realize systems that are able to learn from data and expe-
riences, usually requiring a strong intervention in the form of tuning and
data preparation of the human programming them [2]. DL pushes forward
the concept of learning making it as autonomous as possible, which mainly
means reducing the need of human intervention in tuning the algorithm and
nearly removing the data preparation step, enabling therefore learning from
raw data, as human and other living beings do.

In the last years DL algorithms have started to provide state of the art
results in different areas e.g., Computer Vision (CV), Natural Language

1

1 – Introduction

Processing (NLP) and time series analysis. For each different task various
DL solutions exist, mainly in the form of different flavours of Artificial
Neural Networks (ANNs), or simply Neural Networks (NNs), which are,
as suggested by the name, brain-inspired Machine Learning models. In
particular, Convolutional Neural Networks (CNNs) and its variants are well
suited for CV problems, while Recurrent Neural Networks (RNNs) and its
evolutions provide best results in NLP and when dealing with time series [3].

Day after day NNs are becoming more complex to achieve better per-
formances, and this linked with the huge amount of data to be managed
at training time, makes mandatory the exploitation of a huge computing
power. The training phase of ANNs is today possible thanks to Graphic
Processing Units (GPUs), and is almost confined to that type of hardware
usually exploited on the cloud with high performing clusters. A different
reasoning can be, instead, performed for the inference phase of NNs, which
is the phase when the trained model deals with real-world data and tries to
accomplish its task. Inference can always be performed in the cloud, but
today a large effort is devoted by industries and researchers to bring inference
from cloud to the edge [4], which means running trained DL architectures
on resource constrained devices like MicroController Units (MCUs) and
IoT-nodes. In this way, data that are collected by this type of devices can
be directly processed in place, with several benefits. One of such benefits
is an increased responsivity of the system. In fact, the latency required to
perform computations directly on the device is much lower compared to
the time requested to send data, wait for the elaboration on the cloud and
finally receive results of the elaboration. Another potential advantage is an
improvement in privacy, since data stored in the edge-device never leave
it. Lastly, the energy consumption required for the inference may be lower
compared to the one required for the wireless transmissions, resulting in a
more efficient computation [2].

If edge-computing, from a side, presents significant advantages from the
other it opens several challenges, first of all the need to embed large models
in resource-constrained devices. An ANN model “as is” presents, usually, a
too large memory footprint to be fitted on a general purpose MCU making it
impossible to perform inference on the edge. For this reason various solutions
and techniques have been proposed in literature [5], [6] [7], [8], in order to
compress ANNs models, which mainly rely on their intrinsic high-level of
redundancy. ANNs present redundancy at the level of data representation
: often is possible to pass from a floating-point representation of data to a

2

1 – Introduction

simpler fixed-point representation with lower number of bits, in a process
known as quantization [9]. Another source of redundancy is realized by
the network itself because usually ANN are over-parametrized. Thanks to
pruning techniques is possible to identify redundant (and not useful) elements
and prune them [5], [6], [7]. Both these techniques, if applied in an intelligent
way, are able to shrink very efficiently the networks, without tampering too
much their performance, enabling DL on the edge. Another approach that
allows ANN to be executed on low-resources hardware, is Neural Architecture
Search (NAS) [10], [11], [12], [13]. NAS techniques aim is to find the best
DL architecture, from the point of view of a certain metric (e.g., the size),
to accomplish a certain task. The search performed by NAS algorithms is
usually based on Machine Learning techniques. Is then possible to apply NAS
to find architectures with a certain size constraint. Moreover a reduction in
size is usually followed by a reduction in the number of operations (MACs)
to be performed in a single iteration of the algorithm, which is translated in
a lower latency and lower energy consumption.

This work deals with the problem of time series analysis on edge devices.
The state of the art in time series is represented, today, by RNNs and its
evolutions, which are usually not so well suited to be executed on general-
purpose MCUs. For this reason we investigate here the use of TCNs [14],
[15], a special class of CNN, for the task of time series analysis on edge.
In particular, we investigate the optimization and implementation, for an
embedded device, of an architecture based on TEMPONet, a TCN presented
in [16], that gives excellent results with bio-signals. The main contributions
of this work can be identified in a framework of NAS techniques for the joint
optimization and compression of a seed ANN, like TEMPONet. In particular,
the problem is tackled from two different sides :

(i) By means of the NAS approach proposed in [12], which tries to optimize,
during the training, the number of output filters of each convolutional
and fully-connected layer. The effectiveness of the method is shown and
demonstrated for TCN architectures, which are not considered in [12].

(ii) Even if the literature includes plenty of NAS approaches that are general,
and thus allow whatever network’s parameters to be specified, like in [11],
a specific, fast and light-weight method for learning dilations factors,
the most characteristic hyper-parameter of TCNs, is still missing. Here
a novel NAS algorithm is proposed, called Pruning In Time (PIT), that
allows the learning of dilation factors.

3

1 – Introduction

Moreover the orthogonality of the two methods is also explored, in order
to understand if the two approaches can be combined together to find even
better architectures, with respect to to the standalone NAS algorithms. As a
benchmark for the architectures and techniques analyzed and developed the
Dalia dataset [17] is exploited. It represents the largest publicly available
dataset of PhotoPlethysmoGram (PPG) signals, used with the aim of accurate
heart-rate estimation in wearable embedded devices.

As target device, in the whole work, the GAP8 SoC is considered [18].
The rest of this thesis is structured as follows. Chapter 2 presents the

required background on DL algorithms and the description of the task and
the dataset used as benchmark. Chapter 3 proposes a summary of the main
published works in the field of NAS. Chapter 4 represents the core section of
the whole work, presenting the developed algorithms and techniques. Finally
chapter 5 summarizes the obtained results on the target task.

4

Chapter 2

Background

2.1 Overview

Figure 2.1: Comparison between the traditional paradigm to problem
solving (uppermost scheme) and the Machine Learning one (lowermost
scheme) [19]

One of the first problems that need to be faced when dealing with Machine

5

2 – Background

Learning is related to its own definition, because an univocal and generally
accepted one does not exist. One good candidate might be :

Machine Learning is the science (and art) of programming computers so
they can learn from data. -Aurèlien Gèron, 2019 [19].

A more technical one is presented in [20] :

A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E. -Tom Mitchell, 1997.

This second definition gives a great hint of what a Machine Learning
algorithm is and how it works. It is highlighted that a Machine Learning
system learns from experience, providing a new paradigm with respect to the
traditional one, where the algorithm simply encodes some prior knowledge of
the programmer. This comparison between traditional and Machine Learning
approaches is summarized in figure 2.1.

Deep Learning, instead, as briefly mentioned in chapter 1 is a subset of
Machine Learning, therefore the same considerations presented before hold,
but DL is somehow an evolution of the plain Machine Learning approach,
that trades more complicated (deep) models in exchange for a lesser need of
domain expertise in their setup.
Before the advent of DL, the development and the diffusion of Machine
Learning methods were hampered by a strong need of feature engineering,
where the term feature denotes each type of information that is provided
to the algorithm as an input. A general approach to feature engineering
does not exist, thus each task needs to be studied and analyzed separately
requiring a strong know-how and lot of time.
For example, if our Machine Learning model’s aim is to classify different
species of Iris flowers, possible features to be considered are the width or the
length of the petals [21]. In the proposed example is quite easy to identify
candidates features, but this is not always the case : usually a laborious
trial-and-error work is required to identify the set of useful features that
allows to accomplish the task in the best way. Another example, that shows
this other side, might be a face-recognition task starting from photographs.
A human being knows that faces generally include two eyes, one mouth and
so on and we can think to use this knowledge as features, but it is extremely

6

2.1 – Overview

difficult to describe simply what an eye (or a mouth) is in terms of raw image
pixels.
This problem is solved in DL by means of the so called representation learning
where the Machine Learning approach is used not only to learn the mapping
between features and the output but also to learn representation of features
starting from raw inputs (e.g., an image) [22].
Deep Learning algorithms are, as said, more complex than Machine Learning
counterparts but, thanks to representation learning, they minimize the data
preparation and feature engineering phase solving therefore the strongest
drawback of Machine Learning models. In DL models the raw input data
are transformed by means of stack of functions, called layers in the DL
jargon, where each function is composed of many simpler functions. Each
layer transforms the input data in representations with an increasing level of
abstraction.

A plethora of different Machine Learning and DL algorithms exist and
different ways of classifying them are possible. Probably the most common
classification criteria is related to the characteristics of the learning process
through which the algorithm is able to tune itself in order to accomplish its
task. Three main learning approaches exist : supervised learning, unsuper-
vised learning and reinforcement learning. The most common is the first one,
which is also the only learning technique considered in this work.

In supervised learning the algorithm is fed with a training set that includes
both the inputs and the desired outputs, usually denoted as labels. The labels
are used to make a comparison between them and the effective output, the
aim of the learning process is tuning the algorithm in a way that the difference
between effective outputs and labels is minimized. Typical supervised learning
tasks are regression and classification.

Unsupervised learning is characterized by unlabeled data, therefore the
model tries to learn without a gold-reference. This type of approach is usually
exploited in clustering and data reduction and visualization.

The last type of learning, here briefly presented is reinforcement learning,
where the system is denoted as an agent which learns during it execution,
having rewards and penalties depending on the actions performed.

The most common class of DL algorithms are Deep Neural Networks
(DNNs) (or simply NNs). They are characterized by a stacked and linked
modular architecture, usually trained with a supervised approach. Also in
the contest of DNNs various classifications exist, which are mainly related
to the type of layers involved and their connections. Usually each ANNs’

7

2 – Background

family has been developed for addressing a specific set of task. The main
architectures are :

• Multi Layer Perceptron (MLP), one of the first ANN model pro-
posed. It is made of feed-forward stacked layer of densely connected
elements. Usually they are exploited to realize simple classifiers.

• Convolutional Neural Network (CNN), evolution of MLP models
based on layers performing discrete convolution of input matrices with
learnable filters. They represent the state of the art in CV tasks.

• Recurrent Neural Network (RNN), presents loops and a memory
of previous computations. They represent the state-of-art in NLP and
sequences analysis tasks.

2.2 Neuron

Figure 2.2: Artificial (left) and biological (right) neurons.

The basic functional unit of neural networks, from which the adjective
neural is inherited is the neuron. The DL neuron, namely the artificial
neuron, is a simple elementary unit that performs a weighted sum of its
inputs followed by a non-linear function. The formula describing its behavior
is :

y = h(
nØ

i=1
wixi + b) (2.1)

Where xi are the inputs of the neuron, multiplied to the respective weights
wi, b is a bias term and h() denotes a non-linear function, usually called
activation function, which is applied to the weighted sum.

8

2.2 – Neuron

Figure 2.3: Most common activation functions.

2.2.1 Most Common Activation Functions
In figure 2.3 the most common activations function that can be found in
NNs are represented [19]. Some brief notions about them are here provided :

• Step Function (ref : green curve-figure 2.3): represents the first acti-
vation function proposed in ANNs, in the context of the perceptron [23].
Its analytical form is :

h(x) =
0, x ≤ 0

1, x > 0
(2.2)

This function binarize the output of the neuron, deciding if its output can
be propagated or not, limiting then the information provided to other
elements in the network. Moreover the step function is not derivable in
the point x = 0, this complicates the training of the system through
the powerful backpropagation algorithm, presented in 2.4, which requires
almost-everywhere derivable functions.

• Sigmoid Function (ref : yellow curve-figure 2.3): provides an output
in the interval (0,1) as the step function, but it is fully-derivable in its

9

2 – Background

domain. It is described by :

h(x) = 1
1 + e−x

(2.3)

Thanks to its smooth behavior it can be used with backpropagation, but
it can suffer of the vanishing gradients problem, when x is too high or
too small, having that the sigmoid is only sensitive to its input when
it is near 0. Sigmoid units can be used as output units, to predict the
confidence, in terms of probability, that a binary variable is 1 [22].

• Hyperbolic Tangent Function (tanh) (ref : blue curve-figure 2.3):
presents S-shaped, smooth behavior like sigmoid, but differs from it
about the output range, which ranges from -1 to 1. Its equation can be
written as :

h(x) = tanh(x) = ex − e−x

ex + e−x
(2.4)

Usually tanh performs better than sigmoid function during training,
providing a much more stable gradient and thus a faster convergence.
This is mainly related to the fact that the hyperbolic-tangent func-
tion is more similar to an identity function [22], because tanh(0) = 0
while sigmoid(0) = 1

2 . This results in a neuron which is linear in the
neighborhood of 0, providing a much more simpler training in that
region.

• Rectified Linear Unit (ReLU) (ref : red curve-figure 2.3): represents
today (with some variants) the “standard” activation for ANNs. Its
equation is :

h(x) = max(0, x) (2.5)

It is easy to compute and solve the saturation problems for large values
of x, avoiding vanishing gradients. Moreover thanks to its linearity the
training is much faster. The main drawback of ReLU is that it blocks
learning from input examples that produces a negative output, for this
reason some evolutions has been proposed that sometimes perform better.
Some of this ReLU variants (not analyzed here) are Leaky ReLU and
Exponential Linear Unit (ELU).

10

2.3 – Layers of Neurons

2.2.2 Artifical and Biological Neurons
Although the neuron term is very catchy and attractive, the biological analogy
with brain cells is very thin. In figure 2.2 an artificial and a biological neuron
are schematized.

Biological neurons are made of several parts and are much more complex,
both in terms of structure and function, with respect to to artificial ones.
The main parts of a “living”-neuron are a cell body which contains the
nucleus and the cell’s essential elements which are somehow common to every
human cell. What characterize neurons is the fact that they build a densely
interconnected structure : they catch biological signals, as inputs, from other
neurons thanks to dendrites which are branching extensions connected to
the cell body. Outputs travel through a very long extension called axon, that
splits at its end in many synaptic terminals or synapses which are connected
to the dendrites of other neurons. Electrical signals that reach synapses
stimulate the release of chemical signals indicated as neurotransmitters. This
are next collected by dendrites of other cells, which would fire (i.e., produce
and propagate another signal) if the amount neurotransmitters is sufficient
[19].

Artificial neurons somehow resemble to the biological counterparts, mainly
in the sense that they form a densely connected structure of similar units
collecting inputs of other units and broadcasting outputs to some others.
Also the concept of activation function is bio-inspired, mimicking mainly the
activation mechanism implemented with neurotransmitters, but at the same
time is also misleading with the biological analogy, because real-neurons
seem to implement an S-shaped activation function, which is not the best
performing choice in ANNs, where ReLU generally is better.

This was only an extremely simple (and simplistic) overview of what
neurons really are, but it is important to know that neurons of Neural
Networks are only a remotely inspired model of what a real neuron is.

2.3 Layers of Neurons
The single neuron presented in section 2.2 is only capable to perform linear
combinations (followed by a non-linear function) of the input values, thus
it can be used only for very simple binary classification or regression tasks.
Taking more neurons of this type, juxtaposing them and broadcasting inputs
to every neuron a so-called layer of neurons is realized. This structure is able

11

2 – Background

Figure 2.4: Fully Connected layers of neurons (MLP).

to perform tasks like multi-output classification. A single layer of neurons
presents several problems, in particular it fails in solving some classical
problems like the XOR classification problem [24]. This and other problems
are solved by stacking multiple layers of this type, in an architecture which
is known as MLP [19].

The simplest MLP is composed by three layers : input, hidden and output
layers. An example of MLP is prsented in figure 2.4.

The input layer collects input data that are used to perform computations
inside the network. Usually an additional default-input is provided, which
takes the value of 1 and is used to take into account the bias term.

The hidden layer is the one that follows the input layer. It produces
an intermediate output which is not the final one. It is the “core” of the
network, its purpose is learning useful relations used to extract features from
the inputs, which are then fed to the output layer.

The output layer provides results of the computation. It characterizes
the specific task to be performed : classification or regression. In regression
tasks a single neuron realizes the output layer and usually the activation

12

2.4 – Training of DNNs

function is not present. When dealing with classification the number of
neurons indicates the number classes to predict, when a single neuron is
present the task is indicated as a binary-classification task.

NNs with a number of hidden layers greater than one (e.g., example of
figure 2.4) are denoted as a Deep NN (DNN). Having the input and output
layers fixed by the task to be accomplished, the design of an ANN reduces
to the choice of the number of hidden layers (i.e., the depth) and the number
of neurons (i.e., the width) present in every layer. A general rule to choose
depth and width of NNs does not exist and usually obtaining an optimal
result requires many trial-and-error steps. Nevertheless some heuristics exist,
that allow to identify a range of candidates depth and width. In particular
it is important to avoid the two situations of underfitting and overfitting.
In case of underfitting the network is too small and is not able to learn
patterns and extract features from the training examples. Increasing depth
and/or width might improve a lot performances. Overfitting represents
the opposite situation, the network is very large and has the capability to
fit perfectly the training set. In this situations the network is unable to
generalize and performs very poorly on examples not seen during training.
This is symptomatic of an oversized network, reducing depth and/or width
can solve the problem.

2.4 Training of DNNs
The most crucial step in all Machine Learning (and DL) algorithms is certainly
related to the training phase : a not properly trained Machine Learning
model is a poor performing model. Depending on the type of algorithm
several training techniques are possible. In the field of DNNs, due to the
extreme complexity of models, a closed-form solution is completely impossible.
Moreover due to the presence of non-linearity (activation functions) the
problem to be solved, i.e., the optimization of neurons’ weights and biases,
becomes non-convex [22]. The training process is essentially a non-convex
optimization problem where the function to be optimized is the so called
cost or loss function L, which could be a generic function that measures
somehow the distance between the expected output of the network and the
actual one. The set of parameters to be optimized (weights and biases) is
usually denoted by the greek letter θ.

The loss function characterizes intimately the task to be solved, then the

13

2 – Background

choice of the proper loss is of primary importance when designing a Machine
Learning algorithm.

Due to the non-convexity of the loss function is impossible to guarantee
convergence to an absolute minimum, for this reason ANNs are trained by
means of iterative gradient-based techniques that drives the cost function to
low values, without ensuring that is the lowest possible point.

2.4.1 Gradient-Based Learning
Nearly all DL models are trained by means of algorithms based on Stochastic
Gradient Descent (SGD). SGD represents an evolution, which is well suited
when dealing with complex models and large amount of data, of the generic
optimization algorithm denoted as Gradient Descent.

The starting point of every gradient-descent algorithm is the evaluation of
a function to be minimized, in our case is the loss L(θ). Then the gradient
of L with respect to θ is evaluated : ∇θL(θ). This quantity is used in the
update rule of θ as follows :

θnew = θold − η∇θL(θ) (2.6)

Where η is known as the learning rate, which represents the most important
parameter of the training process. The learning rate controls the rate of
update of model’s parameters : if it is too low the algorithm will require a
very large number of iteration to converge; if it is too high the algorithm
diverges.

The plain gradient-descent algorithm, also identified as batch gradient
descent, requires the usage of the whole training set at every iteration, thus
when it is composed of a very large number of instances the training process
is dramatically slowed down. SGD instead picks a random instance of the
dataset at every iteration, in this way the algorithm becomes much faster,
but the optimization process is much less straightforward : the loss does
not decrease smoothly but erratically goes up and down, decreasing only on
average [19]. This is of course a drawback but at the same time helps the
convergence to the global minimum because is possible to jump out from
local minima. As it often happens the best choice lies in the middle, usually
SGD is used sampling not a single instance but a certain number of instances
that form together a mini-batch. The size of the mini-batch is another free
parameter in the hands of the designer.

14

2.4 – Training of DNNs

The most intensive part of SGD is certainly the evaluation of all the
gradients, therefore the way for an efficient training pass through an efficient
evaluation of the derivatives. In [25] the backpropagation algorithm is pre-
sented, which is the other cornerstone, along with SGD, of ANNs training.
Backpropagation evaluates all the derivatives of L(θ) with respect to to θ
passing only two times through the network. The first pass is the forward pass
: the mini-batch is passed through the network and the loss evaluated. The
second pass is the backward pass : starting from the output of the network
all the gradients are evaluated by means of the well-known chain-rule of
calculus. This action is performed for every layer having gradients that flow
from the output to the input. At the end weights and biases are updated
with the rule of equation 2.6.

2.4.2 Most Common Loss Functions

Figure 2.5: Comparison between some of the most common loss functions
employed in regression tasks.

Depending on the task several loss functions can be employed, in particular

15

2 – Background

here we concentrate mainly on regression, since later on we will benchmark
our NAS methods on a regression task. Some of the most common are :

• Mean Squared Error (MSE) : loss function commonly employed in regres-
sion tasks, it minimizes the squared differences between the estimated
and existing target values. Its analytical form is : L = 1

N

qN
i=0(yi − ỹi)2,

where ỹ is the predicted value. It is easily differentiable in its whole
domain but it is very susceptible to outliers.

• MAE : loss function commonly employed in regression tasks, it minimizes
the absolute differences between the estimated and existing target values.
Its analytical form is : L = qN

i=0|yi − ỹi|, where ỹ is the predicted value.
It is not differentiable in its minimum, then some problems of convergence
might arise, furthermore its gradient is the same throughout, which
means that even for small loss values the gradient will be large. Then it
is not optimal for training based on SGD. It is very robust to outliers.

• logcosh loss : it is a compromise between MSE and MAE. Far away
from the minimum it acts as MAE, instead near it the behavior of
the function is smoother resembling MSE. Its analytical form is : L =qN

i=0 log(cosh(yi − ỹi)).

In figure 2.5 the analyzed regression losses are reported.
For the sake of completeness the most common loss function used in

classification tasks is here reported : Cross-Entropy Loss, which computes
the cross-entropy between labels and predictions. In the case of binary
classification, i.e., only two classes are present, the loss is : L = −(ylog(p) +
(1 − y)log(1 − p)), where y is the label and p is the output probability
evaluated by the network. In the case of multi-class classification with M
the number of classes the loss becomes : L = −qM

c=1 yclog(pc).

2.4.3 Regularization Techniques
In section 2.4.1 the loss L takes into account only the part related to the error
between expected and actual outputs. In many cases is useful to add another
term to the loss L, which is called regularization loss. This additional term
usually is a soft constraint on the parameters values. Possible reasons behind
regularization are : improving performance on the test set, i.e., improving
generalization; encoding a prior knowledge; promoting one family of solutions

16

2.5 – Popular DNNs Architectures

over others in the space of possible solutions, e.g., promoting solutions that
present, in absolute value, smaller weights.

The most common regularization techniques are the ones based on norm
penalties [22], in particular we recall :

• L2-Regularization, also known as ridge or Tikhonov regularization. The
term added to the loss L(θ) is the squared L2 norm of θ :

Lridge = λëθë2
2 = λ

Ø
θ2

i (2.7)

The resultant effect of ridge regularization is driving weights to the
possible smallest values [19].

• L1-Regularization, also known as LASSO(Least Absolute Shrinkage and
Selection Operator Regression) regularization. The term added to the
loss L(θ) is the L1 norm of θ :

LLASSO = λëθë1 = λ
Ø
|θi| (2.8)

The resultant effect of LASSO regularization is that it tends to drive to
zero weights of least importance [19]. Then model trained with penalty
will present sparse weights. For this reason regularizer based on LASSO
are known as sparsifying regularizers and are at the base of many pruning
techniques [26], [27], [28].

In both equations 2.7 and 2.8 the term λ is known as regularization strength
and it controls the amount of penalty introduced in the total loss, thus how
strong is the effect of the regularization.

2.5 Popular DNNs Architectures
DNNs can be categorized with respect to peculiarities of the underline archi-
tecture. One of the defining characteristics of a network is the flow followed
by data during inference. Relying on this, it is possible to divide DNNs in
two families : feed-forward neural networks and recurrent neural networks.
The first ones are characterized by the absence of feedback connections,
meaning that data flow in a single direction, from the input to the output. In
contrast, the second ones present feedback loops, which allow the network to
have memory of previous computations. In the following only feed-forward

17

2 – Background

neural networks are considered, since the benchmark application on which
we evaluate our NAS methods is based on a network of that type.

The most known (and studied) feed-forward neural network architecture
is, without any doubt, represented by CNN and its variants. Here a brief
review of the main characteristics of CNNs and its uni-dimensional variants
TCNs is provided.

2.5.1 Convolutional Neural Network (CNN)

Figure 2.6: Example of 2D Convolution.

Convolutional Neural Networks (CNNs) are specialized network developed
to handle multi-dimensional data like images. CNNs represents today the
de-facto standard in CV tasks [29] such as object detection or face recognition.
As the name suggest, the core of CNNs is represented by a layer that performs
a convolution operation. Others commonly employed layers are pooling and
normalization. The last layers of CNNs are usually a certain number of
MLPs, also identified as fully-connected or dense layers. They are used to
combine features extracted from the upper part of the network and perform
the final classification or regression.

18

2.5 – Popular DNNs Architectures

Convolutional Layer

In figure 2.6 an example of a 2D convolution operation is reported. The
input of a convolutional layer is usually denoted as input feature map (or
ifmap) and the output is the output feature map (or ofmap). Here, without
loss of generality, ifmap and ofmap are assumed to be squared, which is the
most common situation.

A point (or pixel) in the ofmap is obtained moving rigidly a filter, called
the convolution filter, across portions of the ifmap, computing the sum of the
elements of the Hadamard product between the filter and the corresponding
window in the ifmap. The filters are made of weights learned during the
training phase of the network. Mathematically this operation can be written
as :

y(m,n) =
kØ

i=0

kØ
j=0

K(i,j) · x(m+i−i(s−1),n+j+j(s−1) (2.9)

Where y(m,n) is an output pixel in position (m, n), x denotes the ifmap
and K is the convolutional filter (sometimes identified also as the kernel)
of dimension k × k. Instead s denotes the stride parameter, an integer
that measures how far is moved the window across the ifmap between two
successive steps of the convolution. The dimension of the output feature
map can be simply evaluated with the relation :

d = t + p− k

s
+ 1 (2.10)

Where t is the dimension of the input feature map and p the eventual
amount of zero-padding. Usually each output y(m,n) is then passed through an
activation function like ReLU (2.2.1). The operation presented in equation 2.9
describe the case of a single bi-dimensional input feature map, but it is easily
extendable to the n-dimensional case, presented in equation 2.11.

y
(cout)
(m,n) =

CØ
cin=0

kØ
i=0

kØ
j=0

K
(cin,cout)
(i,j) · x(cin)

(m+i−i(s−1),n+j+j(s−1) (2.11)

In equation 2.11, the points of the output map y of a certain cout output
channel are obtained convolving all the cin input channels with the different
filters K(cin,cout) and computing their sum. Multi-dimensional convolution
is usually employed in CNNs, where inputs with multiple channels are
considered.

19

2 – Background

Pooling Layer

Figure 2.7: Example of Max/Average Pooling.

Besides convolutional layers, usually CNNs employ another common
layer called the pooling layer, which usually follows the convolutional one.
Pooling is in general a sub-sampling operation used to discard unimportant
features. Moreover it helps to make representation approximately invariant
to small translations of the input [22]. This layer is simply made of a sliding
window moved across the input map, then it does not requires any trainable
parameters. A Pooling operation is fully specified by the window’s size, i.e.,
the pool size, the stride s and the implemented technique. Various pooling
techniques exist, the most common are average and max pooling. In the case
of average pooling the output of the pool window is the arithmetic mean of
the inputs. Instead with max pooling the output is the largest of the inputs.
In figure 2.7 an example of both approaches is presented. The dimension of
the output feature map can be calculated again with equation 2.10.

Normalization Layer

Another common building block of modern CNNs is realized by normalization
layers. Normalization layers are usually placed after the activation function
that follows the convolution or in between them. This operation is used in
order to speed-up the training phase and improving the generalization of
the network mitigating overfitting. Literature is plenty of proposed normal-
ization techniques, but without any doubt the most commonly employed
is Batch Normalization [30]. Batch normalization is used to fix mean and
variance of the data flowing in the network stabilizing their distribution. The

20

2.5 – Popular DNNs Architectures

transformation applied to each point in every channel c of the input feature
map x is presented in equation 2.12.

ŷ
(c)
i = γ(c) x

(c)
i − µ

(c)
Bñ

σ
(c)2

B + Ô
+ β(c) (2.12)

The normalization is applied on batches B due to the impracticality to
normalize on the entire training set in one-shot. For each batch B and
channel c the corresponding mean (µ(c)

B) and variance (σ(c)2

B) are evaluated
and used to perform the normalization. The Ô parameter is a small number
employed to avoid divisions by zero. Moreover, the normalized data are also
processed with an affine transformation by means of the γ and β parameters,
which are trainable.

2.5.2 Temporal Convolutional Network (TCN)

Figure 2.8: Example of 1D Dilated Convolution.

For many years the scene in DNN has been dominated by CNNs, thanks
to the extraordinary results obtained with multi-dimensional data. On the
other side, RNNs were considered for a long time the best performing DNN
architectures for processing uni-dimensional time sequences (or series) of

21

2 – Background

data. Recently, starting from the work presented in [14], researchers have
begun to investigate the usage of convolutional architectures to perform
classical RNNs tasks like word/char-level language modeling and time series
analysis. In particular Temporal Convolutional Networks (TCNs) have been
shown to provide comparable results to state-of-the-art architectures on that
tasks. TCNs offers many advantages from the computational standpoint
with respect to RNNs: more data reuse opportunities, higher arithmetic
intensity and smaller memory footprint [14].

Temporal convolution is a variant of the plain convolution presented
in equation 2.9, whose peculiarity is in the use of causality and dilation.
Causality forces the padding to be applied only on left side of the sequence;
therefore, the outputs yt will present the same length of the inputs xt̃ and
are only functions of inputs with t̃ ≤ t. In other words, output samples
respect time causality, not taking information from the future. Dilation is
a fixed gap d inserted between input samples processed by the convolution.
It is used to increase the receptive field of the operation on the time axis
without requiring more parameters. The function implemented in a temporal
convolutional layer is :

yt =
k−1Ø
i=0

Cin−1Ø
l=0

xl
t−d i ·W

l,m
i (2.13)

Where x and y are the ifmap and ofmap, t and m the output time-step and
channel respectively, K is the matrix of filter weights with k filter size, Cin

the number of input channels and d the dilation factor. In figure 2.8 an
example of dilated convolution is provided.

2.6 PPG-based Heart-Rate Estimation
This section provides a brief overview of PPG signals, which are part of the
Dalia dataset [17], used as benchmark for this thesis work. PhotoPlethys-
moGraphy (PPG) is an optical monitoring technique commonly employed to
monitor the cardiovascular system. PPG is of high interest as an alternative
to traditional ECG, since it is non-invasive and less expensive. A PPG
sensor, represented in figure 2.10, consists of one or more LEDs, usually
in the green spectrum, that continuously emit light to the skin and a pho-
todiode that measures variations of light intensity caused blood flowing in
veins. Variations of the blood flow are directly related to heart rate, thus by

22

2.6 – PPG-based Heart-Rate Estimation

Figure 2.9: PPG waveform.

analyzing the PPG waveform it is possible to extrapolate information about
it. Figure 2.9 reports a typical PPG signal, which is composed of two parts:

• DC component: this component is due to the optical reflection of tissues
and to the volume of arterial and venous blood.

• AC component: this component represents the blood’s variation of
volume due to the heart activity. It is the useful part of the PPG signal
from which is possible to extract the heart-rate information.

Moreover, in PPG signals it is possible to identify two phases, which are
specific of the heart activity : the systolic and diastolic phases. During
the systolic phase the signal increases in magnitude until it reaches a peak
(systolic peak), then it follows the descending diastolic phase that ends with
a secondary peak (diastolic peak). The interval between two consecutive
systolic peaks represent an heartbeat. A major limitation of PPG-based HR
estimation is due to Motion Artifacts (MAs). These are artifacts caused
by movements of the user’s arm, which result in ambient light leaking in

23

2 – Background

Figure 2.10: PPG Sensor.

the gap between the wrist and the photodiode or variations of the sensor
pressure on the skin. Moreover, blood flow can vary considerably depending
on the type of physical activity, contributing to a less precise light absorption
measurement, and hence HR estimate [17]. In order to mitigate the effect
of MAs several approaches has been proposed, many of which are based on
a sensor fusion approach that combines the PPG sensor with a tri-axial
accelerometer. Some of these approaches rely on classical algorithm [31], [32]
requiring lots of hand-tuning, while some other are based on DL [17], [33],
[34].

2.6.1 Dalia Dataset
The Dalia [17] dataset includes, along with PPG sensor data, also data
collected from a 3D accelerometer, which are used together to produce a
reliable heart-rate estimation, mitigating the effect of MAs. The heart-rate
ground truth value is obtained with an R-peak detector [35] applied on
ElectroCardioGram (ECG) signals collected simultaneously with the rest
of the data. Acceleration and PPG signals are collected from a wrist-worn
device (Empatica E4 [36]), while ECG data are collected with a chest-worn
device (RespiBAN Professional [37]).

Data are collected from 15 subjects of different gender (seven male and
eight female) and age (30.60±9.59 years). Each subject is denoted throughout
this thesis with a capitol S followed by a specific number between 1 and 15.
A total of 37.5 hours of recording are available, where the subjects perform
different activities such as cycling, driving, walking, etc. Before feeding the

24

2.6 – PPG-based Heart-Rate Estimation

network the raw data are pre-processed. In particular, data are sampled at
32Hz and organized by means of a sliding window that see 8 s of history.
Each window overlaps with the previous one of 6 s.

25

26

Chapter 3

Related Works

In chapter 2 a brief overview of DNNs architectures has been provided.
What should be clear is that the design space is extremely vast. In fact the
number of hyper-parameters that can be tuned and modified is extremely
high, e.g., the number and type of layers, the specific parameters of layers
(filter size, number of channels, dilations, ...) and so on. Some intuitions of
what works better in specific situations exist, but general design rules do
not, thus building ANNs is somehow an art. Moreover the common trend in
DNNs is having more and more complex and deeper models. For this reason,
the number of possible combinations of hyper-parameters explodes. For this
reason a new trend in NNs’ research is Neural Architecture Search, which is a
general term that identify the usage of algorithmic techniques techniques to
automate the design of DNNs. NAS tools are designed to explore efficiently
the design space optimizing jointly the accuracy of the model and eventually
other metrics like the memory footprint (i.e., the number of parameters),
the number of FLOPs [12] or the latency [11]. NAS outputs architectures
are Pareto-points in the considered complexity-accuracy space, where the
complexity is the metric to be optimized. In particular, finding size-optimized
architectures is extremely attractive in order to deploy them on edge devices
[38], [39].

In literature, different approaches to NAS have been proposed. The
forerunners are techniques based on reinforcement learning like NAS-RL
[40] and MetaQNN [41] or evolutionary algorithms [42]. These methods
provide state-of-the-art results on the considered datasets, but they require
an enormous amount of GPU hours, thus being prohibitive to apply on a large
scale. Therefore successive NAS works have moved in the direction of reducing

27

3 – Related Works

the amount of resources required to perform the search. Early NAS algorithms
train each candidate architecture from scratch; a first intuition that allows
to speed-up a lot the search phase is the one proposed in ENAS [43], where
weights are inherited from previous searching phases. Weight sharing requires
a constrained search space, which becomes smaller, but this allows to run
the NAS in a reasonable time. Nevertheless, this approach still requires
multiple models to be trained and reinforcement learning is notoriously not
so fast. Therefore, recent research has focused on techniques that allow
a single model to be trained. Differentiable Neural Architecture Search
(DNAS) solutions, first time presented in DARTS [10], allow to do that. In

Figure 3.1: Example of supernet and path selection.

DNAS the problem is modeled as the optimization of a supernet, that embeds
different implementations of each layer. In figure 3.1 an example of supernet,
represented as a Direct Acyclic Graph (DAG) is provided. Each edge of the
DAG represents a candidate layer and is associated with a trainable weight
that is learned during training, alternating their optimization with the one of
“normal” network parameters. Edges are collected in sum nodes. At the end
of the training and searching phase the learned architecture will be the one
that is composed by the edges with the highest weights. This solution is much
more efficient than previous ones, but the memory requirements and training

28

3 – Related Works

time is still very high, due to the complex architecture of the supernet and
mostly it does not scale well with the supernet size. These problems are
tackled by another DNAS method, ProxylessNAS [11], by training a single
path of the DAG per batch. This allows to limit the memory occupation of
the whole supernet, but the search space is not fully explored at the same
time.

Lastly, an emerging set of DNAS techniques is based on the Dmasking-
NAS approach [12], [13], where the search space is limited to a single seed
architecture. This method is used to search and optimize hyper-parameters
characterizing specific layers, e.g., number of output channels/neurons in
convolutional/dense layers. DmaskingNAS methods, as the name suggest,
are based on differentiable trainable masks which are used to tweak layers’
parameters to explore different architectures during the search. In detail,
for each layer l and for each hyper-parameter h that enters in the learning
process a set of additional weights γ(l,h) is inserted. The γ

(l,h)
i weights are

then combined with normal ones, in such a way that when a γ
(l,h)
i passes from

the value 1 to 0 the architecture changes. The main effort of this methods is
devoted to making these discrete masks differentiable.

MorphNet [12] is a DmaskingNAS method that searches the optimal
number of output channels of convolutional layer. It exploit as masks weights
the multiplicative terms of batch normalization layer, which are then driven
to 0 in order to yield a simplified architecture, with an approach similar
to weight pruning. MorphNet uses specific regularizers to optimize specific
metrics such as size, FLOPs and latency. Further details about MorphNet
are provided in chapter 4 where the algorithm is applied to TCNs.

FBNetV2 [13] also searches for the optimal number of output channels
of convolutional layer, but its method is easily extendable to other hyper-
parameters such as the filter size. Its approach is based on mutually exclusive
masks. For example, if a certain convolutional layer presents N output
channels, then it is possible to build a specific number of masks with l
leading 1s and N-l trailing 0s, that correspond to variants of the layer with
N-l output filters, with l = 1, 2, ..., N . Masks are then multiplied with
a Gumbel-Softmax weight [44], summed together and multiplied with the
output of convolution.

The search space in DMaskingNAS algorithms is smaller than DNAS ones,
but it is wide enough to find good solutions, and the time overhead with
respect to plain training of the network is negligible. Moreover this approach
can be used to further optimize a seed network, already well performing on

29

3 – Related Works

its task. In particular, it is possible to use it to enable inference on edge
devices compressing well performing, but too large, seed architectures.

30

Chapter 4

NAS Techniques for
Edge-TCNs Optimization

4.1 Motivations and Objectives
For many years DL has been confined to the cloud, whereas models were
extremely complex and resource-hungry. Therefore, the only way to effectively
exploit them in real-world application leans on high-performance computing
platforms with highly-parallel hardware such GPUs.

The world of Mobile and IoT applications is, without any doubt, one
of the fields that could benefit more from powerful DNNs. Today, lots of
different DL applications effectively “run” on this type of devices, jointly
identified as edge devices. Albeit, the execution of DL algorithms is still
mostly confined to the cloud. The main reason for this is that edge devices
usually do not provide an amount of HW resources, especially in terms of
memory, that effectively allows it to run complex models such ANNs.
This is the main reason why the computational part is demanded to high-
performance servers : the edge device acts only as an interface that collects
and sends data to be processed and then waits for the elaboration result.

This cloud-based inference computing paradigm presents several problems,
such :

• High Latency : the inference is not real-time and includes a time overhead
related to the wireless communication with the cloud. This is especially
problematic for applications that could benefit from real-time inference,
like face-recognition or Heart-Rate tracking.

31

4 – NAS Techniques for Edge-TCNs Optimization

• Privacy and Data Integrity : the data collected at the edge and sent to
a server might be sensitive for the privacy. Moreover, the client has no
mean to control if its data are collected or manipulated by a malicious
third party.

• Energy: the data pipeline collect-send-wait-receive is not efficient also
from an energy perspective, which is of primary importance in edge de-
vices, usually powered with a battery. Indeed, doing every computation
at the edge is usually more efficient mainly because it does not involve
all the “wasted” energy in the transmission of data and all the consumed
energy is devoted to useful computations. Two main reasons lie behind
this fact. First, the energy required for transmitting and receiving does
not scale with technology in the same way as compute energy. Second,
the wireless links are often long range, thus they require a great amount
of energy.

For this reasons lot of effort is devoted to an alternative computing paradigm
for DL, which brings inference from the cloud to the edge. In particular lot of
effort is devoted to the compression of DNNs with negligible drops in accuracy,
so that these models can be deployed on memory- and energy-constrained
edge devices.

This thesis work deals with edge-inference optimization of time series.
The problem is tackled by means of TCNs, which represent an HW-friendly
alternative to RNNs. TCNs represent a quite novel DL architecture, in
fact few works are present in literature and even less in the direction of
their optimization. For this reason, this work proposes two NAS techniques
applied specifically to TCNs.
The first one represents an application of an existing NAS, MorphNet [12]
briefly described in chapter 3 and more deeply presented in section 4.2.
MorphNet was originally developed for CNNs and here is applied to TCNs
for the first time.
The second one is the novel NAS algorithm PIT, developed in this thesis
and presented in 4.3, which allows to optimize the dilation factor parameters
of temporal convolutional layers. Both methods are tailored in a way that
allows to compress networks enabling inference-on-the-edge.

The proposed NAS techniques are tested on a real IoT task that needs
real-time computations and the models obtained are tested on a commercial
edge platform. The task taken into consideration is PPG-based Heart-Rate
Monitoring on wrist-worn devices, such as the Apple Watch [45] or the Fitbit

32

4.2 – TimePPG : Optimized TCNs for PPG-based Heart Rate Monitoring

Charge 4 [46].

4.2 TimePPG : Optimized TCNs for PPG-
based Heart Rate Monitoring

Figure 4.1: Proposed NAS and deployment flow.

Figure 4.1 summarizes the TimePPG flow, i.e., the steps performed to
optimize the pre-existing TCN TEMPONet [16] by means of the MorphNet
[12] NAS technique on the Dalia [17] dataset. The picture highlights two
specific architectures that MorphNet found : TimePPG-BestMAE and
TimePPG-BestSize. The former represents the Pareto point in the Size vs
MAE 1 space that achieves the lowest MAE. The latter represents the Pareto
point with lowest size.

1MAE is used as metric to measure network performances. The analytical expression
of MAE is the same presented in section 2.4.2

33

4 – NAS Techniques for Edge-TCNs Optimization

Figure 4.1 also shows the Fine-Tune and Post-Processing step, which
are not part of the NAS algorithms but allow to outperform other DL
algorithms in terms of performance on the Dalia dataset. These two additional
improvements are briefly analyzed in section 4.4.

Finally the Post-Training Int8 Quantization is an additional step necessary
to deploy the models on an edge device such as GAP8 MCU.

4.2.1 TEMPONet
The base architecture used in this work is TEMPONet, a TCN which shows
impressive results in bio-signals analysis tasks, like EMG-based gesture
recognition [16]. TEMPONet presents a modular structure composed of
three Convolutional Blocks, where each block is made of :

• two temporal convolutional layers with kernel size 3×1, variable dilation
and causal padding.

• one convolutional layer with kernel size 5× 1, variable stride followed
by an Average Pooling layer with stride and pool size 2.

The three blocks are characterized, respectively, by stride s = 1, 2, 4 and
by dilation d = 2, 4, 8. The strided convolution of the three blocks raises
the number of channels to 32, 64 and 128 respectively, while each pooling
reduces the sequence length. The three convolutional blocks are followed by
two Fully Connected (FC) layers with dropout (to improve generalization
[47]) and a SoftMax operation. All layers include ReLU non-linearity as
activation function and are equipped with Batch-Normalization [30].

To adapt TEMPONet to Heart-Rate monitoring, it is necessary to slightly
modify the original architecture, in particular the input and output layers.
The input needs to be adapted to the target dataset Dalia, which is made of
raw sensor data generated by a triaxial accelerometer and a PPG sensor. An
example of these four raw signals is reported in the leftmost part of figure 4.2.
The data are sampled at 32Hz and the inputs for the network are obtained
by means of a sliding window that see 8 s of history. The overlap between
two successive windows is 6 s, thus at each step the window movement is 2 s
as shown in the rightmost part of figure 4.2. The resulting four time series
present a number of samples equal to 256, thus the input needs to collect a
256× 4 matrix.
The original output layer made of a classifier with softmax activation function

34

4.2 – TimePPG : Optimized TCNs for PPG-based Heart Rate Monitoring

is replaced by a single neuron, without any activation function, to perform
regression. The modified version of TEMPONet is depicted and summarized
in figure 4.3.

Figure 4.2: Raw input signals and sliding window sampling.

Figure 4.3: Modified TEMPONet architecture.

35

4 – NAS Techniques for Edge-TCNs Optimization

4.2.2 MorphNet Details

Algorithm 1 MorphNet Algorithm
1: procedure MorphNet(F ,L,G, λ, ω, ζ,θ, th)

2: ó F is a cost metric, e.g., number of FLOPs, model size
3: ó L is a generic loss function used to train the model
4: ó G is the regularization loss
5: ó λ is the regularization strength
6: ó ω is the width multiplier
7: ó ζ is the upper bound for the constraint F
8: ó θ is the set of weights to be optimized
9: ó th is a threshold parameter used to prune channels

10: ó Execution :

11: Train the network : θ∗ = arg min
θ
{L(θ) + λG(θ)}

12: Find new number of output channels O
Í

1:M induced by θ∗ and th
13: Find largest ω such that F(ω ·OÍ

1:M) ≤ ζ
14: goto Line 11 until desired, setting Oo

1:M = O
Í

1:M
15: return ω ·OÍ

1:M
16: end procedure

MorphNet [12], as mentioned in chapter 3, is a NAS approach that can
be categorized as a DMaskingNAS technique. This algorithm, starting from
a seed network, in a single training is able to optimize the number of output
channels of each convolutional layer. Other layers are kept unchanged.

The pseudo-code of the algorithm is presented in 1 and a Python imple-
mentation based on the Keras deep learning framework is open-sourced at
[48]. This NAS is composed of two successive steps repeated iteratively on a
seed network denoted as Oo

1:M , where M convolutional layers are present :

• Pruning Step (Lines 11-12) : the loss function L is augmented with
a sparsifying regularizer G, used to induce sparsity in the network.
Moreover, the regularizer is such that it puts more cost on neurons that
contribute more to a certain metric F such size, FLOPs or latency. The
regularizer is controlled by the strength parameter λ. After the training

36

4.2 – TimePPG : Optimized TCNs for PPG-based Heart Rate Monitoring

output channels are pruned by means of th threshold.

• Expansion Step (Line 13) : the pruning step shrinks the network, usually
affecting performance. This expansion step is based on a uniform width
multiplier [49], which allows to recover accuracy. The width multiplier
technique consists in simply finding the largest ω that allows to respect
the F(ω ·OÍ

1:M) ≤ ζ constraint.

In this work we employ as F measure the model size and the FLOPs.
We consider a certain convolutional layer L, with IL input channels, OL

output channels, (xin, yin) input spatial dimensions, (xout, yout) output spatial
dimensions and (kx, ky) filter dimensions. The F expression for FLOPs will
be :

FF LOP s = 2xoutyoutkxky · ILOL (4.1)

For the model size, instead :

Fsize = kxky · ILOL (4.2)

TEMPONet has been tested and optimized with both the metrics.
The complete regularizer G embeds the cost function F and a certain

regularization strategy. If batch-normalization layers are present in the
DNNs the trainable parameter γ of such layer is used to mask entire output
channels of convolutional layers. Sparsification of γ parameters is promoted by
means of L1-Regularization (2.4.3). An alternative employed regularization
technique, which adapts well to architectures without batch normalization
layers, is the so-called group LASSO regularization [50]. Figure 4.4 reports
a comparison between the plain Lasso (upper-most) and the group-Lasso
(lower-most) along with its mathematical expression. In group-Lasso groups
gi of weights are identified, which together form a set G, such that ti gi ≡
G ≡ θconv, with θconv denoting the fraction of total weight θ related to
convolutional layers. The plain Lasso regularization leads to a sparse (or
unstructured) pruning, instead group-Lasso pruning is structured. MorphNet
forms the gi groups with the weights related to each output channels, thus a
structured pruning of output channels will be performed during training.

TEMPONet besides convolutional layers presents also three large fully-
connected layers, which contribute about the 25% to the size, thus also
optimizing this layers along with convolutional one would be extremely
valuable. Unfortunately, the publicly available MorphNet code, at the time
of starting this thesis work, only optimized convolutional layers. Fortunately,

37

4 – NAS Techniques for Edge-TCNs Optimization

Figure 4.4: Plain Lasso regularizer vs Group Lasso regularizer.

fully connected layers can be easily seen as particular cases of convolutional
ones : a fully connected layer with Nin input and Nout output neurons is
equivalent to a convolutional layer with Nin input and Nout output channels
with a kernel size equal to 1. Transforming FC layers in convolutional ones
in this way allows MorphNet to optimize them too.

4.3 PIT : Pruning In Time
Most of the developed NAS tools address hyper-parameters optimization of
CNNs. Despite the fact thatTCNs share most of their hyper-parameters with
CNNs (e.g., filter sizes, number of output channels, etc.) the key peculiarity
of those networks, i.e., the dilation factor, is not covered by any NAS. For
example, there is no way to optimize dilation factors using MorphNet. As
detailed in section 2.5.2, dilation allows to enlarge the receptive field of the
network without any size-overhead. Therefore, finds their optimal value is
extremely valuable in making DNNs more hardware-friendly.

Pruning In Time (PIT) is a novel light-weight DMaskingNAS algorithm
that tries to optimize dilation factor of TCNs considering jointly accuracy
and complexity. As MorphNet does, PIT starts from a seed network to be
optimized and tackles the optimization problem as a structured pruning of
weights, performing the search in a single training run.

The proposed method is depicted in figure 4.5 : PIT takes as input the
target dataset that defines the task to be accomplished and a seed TCN with
maximally-sized filters without dilation (i.e., every dilation factors is equal

38

4.3 – PIT : Pruning In Time

Figure 4.5: Training flow of the proposed Pruning In Time (PIT) NAS
tool.

to 1). For each convolutional layer a set of γ parameters is added, which
are then combined in a differentiable manner, in order to mask weights of
the kernel and realize different dilations factors. Further details are provided
in section 4.3.1 and 4.3.2. In section 4.3.3 the regularization strategy is
presented, while section 4.3.4 explain the PIT’s training procedure.

4.3.1 Dilation-Aware Mask
Each convolutional layer in a TCN is characterized by a certain receptive field
rf , which is defined as rf = d · (k − 1), where d is the dilation factor and k
the kernel size. PIT limits the allowed dilation-search space to regular values,
which are better from an edge-deployment perspective. Regular dilation
is the only variant supported supported by current inference libraries for

39

4 – NAS Techniques for Edge-TCNs Optimization

Figure 4.6: Combination of γ parameters with each other and point-wise
multiplication to convolutional kernels to form different dilation patterns.
Example for rf max = 9.

MCUs [51], [52], and enable more regular memory access patterns along with
better low-level optimizations. Moreover, PIT further restricts the search
space only to dilations which are powers of 2. This choice enables a simpler
formalization of the dilation-learning problem.

In PIT, every temporal convolutional layer is characterized by its max-
imum receptive field rf max. This value is used to define the length L =
ålog2(rf max − 1)æ+ 1 of a binary vector γ associated to each temporal convo-
lution. The parameters γ1 to γL−1 are trainable and control dilation. Instead,
the first element γ0 is always equal to 1 and it is used to make the notation
simpler and more consistent.

Figure 4.6 shows how the elements of γ are combined together in a way
that the resulting search space is restricted to regular power-of-two dilation
patterns : the γi are multiplied together forming the new set of parameters
Γi.
The ith element of Γi is simply :

Γi =
L−1−iÙ

k=0
γk (4.3)

As shown in the green part of Figure 4.6, Γi are used as multiplicative factors
for all the kernels of a certain layer, and their combination forms the overall
mask vector M .

The rightmost part of figure 4.6 shows an example of all the possible
outcomes (except the trivial one where no weight is masked, i.e., d = 1) of

40

4.3 – PIT : Pruning In Time

the masking operation. When rf max = 9 ⇒ L = 4, four possible dilation
patterns are possible :

(i) γ1 = 0⇒ d = 8

(ii) γ1 = 1, γ2 = 0⇒ d = 4

(iii) γ1 = 1, γ2 = 1, γ3 = 0⇒ d = 2

(iv) γi = 1,∀i⇒ d = 1.

Therefore, starting from the d = 1 case, which holds when Γ0 = γ0 ·
γ1 · · · γL−1 = 1, d = 2 is obtained removing the γi = 1 condition on the
last factor of Γ1, then Γ1 = γ0 · γ1 · · · γL−2 = 1. Larger values of d are
obtained with the same procedure considering the next γi and Γi until the
always true ΓL−1 = γ0 = 1 is reached. It is therefore evident that, thanks
to this formulation, all possible combinations of zero-values in the γi array
correspond to a valid (regular) dilation pattern, so that the resulting network
can be directly deployed on an edge device.

In PIT the equation 2.13 describing dilated convolution is modified as
follows :

yt =
rf max−1Ø

i=0

Cin−1Ø
l=0

xl
t−i · (Mi ¤Wl,m

i) (4.4)

Where ¤ is the Hadamard product and all the other symbols maintain the
same meaning defined before.

4.3.2 Making Dilation Differentiable
Equation 4.4 describes the behavior of the temporal convolutional layer in
PIT when the forward pass is evaluated. In order to include γ parameters in
the loss function and train the whole architecture as a DNAS algorithm it is
essential to make the operation 4.4 completely differentiable. This requires
working in two directions :

(i) Binarization of γ : the different masks Mi are binary masks, thus the
float trainable version of γ, denoted as γ̂, needs to be binarized in the
forward pass.

(ii) Encoding of dilation in M : each binary mask is built combining the Γi

factors. In order to train and search between different architectures by

41

4 – NAS Techniques for Edge-TCNs Optimization

means of γ trainable parameters it is necessary to allow the gradient
flow during the backward pass, thus it is necessary to express M as a
differentiable function of γ.

Binarization of γ̂

In the forward pass, before evaluating the temporal convolution, the bina-
rization of γ̂ is performed following the approach used in Binary-Connect
[53]. The adopted binarization function is an Heaviside step functions with
threshold δ :

H(γ̂i − δ) =
1, for γ̂i ≥ δ

0, for γ̂i < δ
(4.5)

In all the experiments the value δ = 0.5 is used. In the backward pass, when
the derivatives are evaluated, the gradient of equation 4.5, which is zero
almost everywhere, is treated with a straight-through estimator [53] : the
Heaviside function is replaced with an identity function in order to allow the
gradients to be propagated.

Differentiable Dilation Mask M

In order to build the M masks in a completely differentiable manner starting
from the respective γ vector, the following tensor transformation is used :

M =
Ù

columns

{[(γ · 11×L)¤ T + (1L×L − T)] ·K} (4.6)

Where rcolumns indicates a product that runs along all elements in each
column of the final matrix, 1i×j is a matrix of 1s of size i× j. T and K are
two constant matrices of 0s and 1s. In particular, T is an upper triangular
matrix with inverted columns, whereas K can be generated procedurally for
any value of rf max, by repeating a pattern of 0s and 1s. Algorithm 2 details
how K is generated. Figure 4.7 shows an example of these two matrices and
of the entire transformation, for the case rf max = 9. Also here γ0 has been
directly replaced with its constant value 1.

4.3.3 PIT Regularizer
To promote sparsity, the loss function of PIT is augmented with an L1-
Regularization term on γ vectors. As MorphNet does, it is possible to

42

4.3 – PIT : Pruning In Time

Algorithm 2 K matrix generation
1: procedure K-gen(L)
2: Define seed-matrix as 11×1
3: K ← seed-matrix
4: for i← 1, . . . , L do
5: Add row of 0s to K
6: Add column of (2i − 1) leading 0s and one trailing 1 to K
7: Add row of 0s to seed-matrix and append it to K
8: seed-matrix ←K
9: end for

10: end procedure

43

4 – NAS Techniques for Edge-TCNs Optimization

Figure 4.7: Generation of the M mask vector with differentiable operations.
Example for rf max = 9.

multiply the regularization term with a factor that takes into account the
measure of a certain metric to be optimized. Here we consider as target
metric the model size, as the final aim is having small hardware-friendly
architecture, but the method is easily extendable to other target metrics
such as FLOPs or latency. The specific form of the PIT-regularizer, that
promotes small networks, is the following :

Lsize
R (γ) = λ

layersØ
l=1

C
(l)
in · C

(l)
out

L−1Ø
i=1

round
Arf max − 1

2L−i

B
|γ̂(l)

i | (4.7)

Where λ controls the strength of the regularization, l denotes the lth layer.
C

(l)
in and C

(l)
out are the number of input/output channels in the lth layer. The

last term, round
1 rf max−1

2L−i

2
is the number of non-masked kernel time-slices

added by each non-zero γ
(l)
i .

The total loss function employed by PIT during the NAS phase is :

LP IT (W ,γ) = Lperf (W) + Lsize
R (γ) (4.8)

Where Lperf(W) denotes the loss term related to the TCN’s performance,
which depends on the specific task considered (e.g., LogCosh in the Dalia
benchmark).

44

4.4 – Further Improvements

4.3.4 Training
Algorithm 3 summarizes PIT’s training procedure, which is composed of
three different loops : Warmup, Pruning and Fine-Tuning.

The first phase is the warmup, it is characterized by at least Stepswu

iterations of the training loop, with all the γ vectors frozen to 1 and
LP IT (W ,γ) ≡ Lperf (W).

The next step is the pruning loop, which starts from the pre-trained state
reached during warmup. Here both the weights W and the γ vectors are
updated with the complete loss of equation 4.8. This training phase does
not present a predefined number of epochs but it continues until convergence
by means of an early-stop mechanism, which stops the loop when the loss
does not increase anymore on the validation set.

The NAS algorithm ends with a fine-tuning, made of Stepsft steps. All
the γ vectors are frozen at the values learned during the previous loop, thus a
specific architecture in the search space is considered. As warmup, fine-tuning
uses only the Lperf (W) loss component. This last step is necessary to adapt
all weights to the specific architecture found, significantly improving the final
performances of the learned network.

4.4 Further Improvements
Figure 4.8 presents the effect of two improvements, the post-processing and
fine-tuning, performed on the TimePPG architectures produced by MorphNet
starting from TEMPONet. As said, these two additional steps are not part
of the MorphNet algorithm or other NASes, but they allow to obtain DNNs
that outperform other DL approaches on the Dalia dataset and for this
reason are here presented.

The post-processing is applied to the output of the TCN, which produces
an Heart-Rate estimation for every time-window considered at the input.
This step is motivated by the fact that fully data-drive models such as
DNNs sometimes make errors when inputs deviate from the distributions
seen during the training phase. The resultant effect is that some Heart-Rate
predictions are not compatible with human physiology, in particular too
steep variations. For this reasons it is useful to smooth the overall prediction
with a filtering technique. Specifically, a limit is imposed on the maximum
relative Heart-Rate variation over time. The adopted filtering approach is
very simple : the latest prediction is compared with the arithmetic mean

45

4 – NAS Techniques for Edge-TCNs Optimization

Algorithm 3 PIT - Pruning in Time
1: procedure PIT(Lperf ,LP IT ,θ,γ, Stepswu, Stepsft)

2: ó Lperf is the loss function used to train the model
3: ó LP IT is the sum of Lperf and the regularization loss
4: ó θ is the set of weights to be optimized
5: ó γ is the set of masking parameters used to learn dilations
6: ó Stepswu is the number of training iterations executed during warm-

up
7: ó Stepsft is the number of training iterations executed during fine-

tuning

8: ó Execution :

9: for i← 1, . . . , Stepswu do ó Warmup Loop
10: Update θ based on ∇θLperf (θ)
11: end for
12: while not converged do ó Pruning Loop
13: Update θ and γ based on ∇θ,γLP IT (θ,γ)
14: end while
15: for i← 1, . . . , Stepsft do ó Fine-Tuning Loop
16: Update θ based on ∇θLperf (θ)
17: end for
18: end procedure

46

4.4 – Further Improvements

Figure 4.8: In subfigure A, the prediction of TimePPG on 200 seconds
of subject 7. In B and C, traces from subj. 8 and 5, showing the benefits
of the postprocessing and of fine-tuning. TimePPG 1 is the plain TCN,
TimePPG 2 includes the post-processing and TimePPG 3 integrates both
the post-processing and the fine-tuning.

HRN of the previous N predictions. When the difference between them is
larger than a certain threshold δ, the actual prediction is clipped to HRN ± δ.
Good values for N and δ are found to be 10 and 10% of the mean. The effect
of post-processing can be appreciated in Figure 4.8-B.

In the DL jargon fine-tuning denotes an additional, usually fast, training
executed after the main one. The Dalia dataset presents an outlier subject
(S5), characterized by higher mean values of the Heart-Rate with respect
to the other fourteen subjects. For this reason TimePPG TCNs fails in
predicting the Heart-Rate of this subject, affecting the overall MAE. In

47

4 – NAS Techniques for Edge-TCNs Optimization

figure 4.8-C it is shown how the plain TCN (TimePPG 1) and the TCN with
post-processing (TimePPG 2) fail in predicting Heart-Rate values greater
than 140BPM. This problem affects overall performances of the TCN and
is a side effect of data scarcity. By means of fine-tuning it is possible to
demonstrate this assumption and show how the performance would improve
if more data were available.

Specifically, fine-tune training is performed with a low learning rate,
freezing the weights of the first convolutional block, on the initial portion
of data, the 25%, relative to the specific subject used as test set, then the
remaining 75% is used to test the fine-tuned network. The proposed approach
is hardly feasible on the field because it would require a new training for
each specific subject wearing the wrist-watch. The main limitations behind
a new in-field training are twofold. From a side, the necessity of specific
training hardware (i.e., GPUs). From the other, a means to collect ground-
truth target (i.e., an ECG apparatus). Therefore, as said before, this last
fine-tuning step is only an expedient to demonstrate how our model would
benefit of more data.

48

Chapter 5

Experimental Results

In this chapter the effectiveness of the two methods proposed in chapter 4
is tested. In section 5.1 the experimental setup is presented, then sec-
tions 5.2 and 5.3 describe the architectures and results found respectively
with TimePPG and PIT frameworks, presenting a state-of-the-art comparison
and the embedded deployment on a commercial MCU. Finally, section 5.4
explores the orthogonality of the two NASes.

5.1 Experimental Setup
As anticipated, the two inputs of both the NASes are the TEMPONet [16]
TCN, used as seed architecture and the Dalia [17] dataset. The following
training details are common to both the methods:

• The obtained models are validated by means of the cross-validation
scheme proposed in [17].

• TCNs are trained with Adam [54] as optimizer, using 1e-3 as learning
rate, batch size equal to 128 and 500 epochs, with an early-stop with
patience equal to 50.

• All the developed code is written in Python 3.6 and TensorFlow 1.14
[55].

• All the training has been performed on a single NVIDIA-GTX 1080Ti
GPU.

49

5 – Experimental Results

5.1.1 GAP8 Hardware Platform

Figure 5.1: GAP8 Chip and Layout [52].

The obtained models have been deployed on a real commercial edge-
computing platform : the Green-Waves Technologies’ GAP8 SoC [18], de-
picted in figure 5.1. This allows to test and measure the effective latency
and energy consumption of the architectures found by the NAS tools.

GAP8 is based on the Parallel Ultra Low Power (PULP) platform [56], an
open-source hardware platform for digital architectures based on the RISC-V
Instruction Set. It includes a cluster of 8 computing cores with enhanced
digital signal processing and Machine Learning (ML) features. These 8
cores are controlled and activated by another computational unit denoted
as the Fabric Controller, which manages communication and orchestrates
computing. The memory hierarchy of GAP8 includes two levels : 64 kB
of L1 single clock-cycle memory and 512 kB L2 memory. An additional L3
level can be added off-chip. Moreover, two Direct Memory Access (DMA)
controllers are present, which allows to move data efficiently.

GAP8 does not include a Floating Point Unit (FPU), thus the models
have to be deployed with a quantized-int8 format. GreenWaves’ proposes a

50

5.2 – TimePPG Design Space Exploration Results

proprietary neural network deployment flow, called NN-Tool, which has been
used to deploy the found TCNs. All the presented data has been obtained
with a core frequency of 100MHz.

5.2 TimePPG Design Space Exploration Re-
sults

Figure 5.2 shows models obtained with MorphNet, starting from TEMPONet
as seed network, in the MAE vs Network Size and MAE vs FLOPs spaces.

The values of MAE reported refer to TimePPG 1, i.e., the plain output of
the network without post-processing and fine-tuning. Only models character-
ized by a MAE lower than 7BPM are shown. The different points of figure 5.2

Figure 5.2: TimePPG Pareto charts in the MAE vs. size and MAE vs.
FLOPs spaces

are obtained exploiting both the size and FLOPs regularizers, tweaking the

51

5 – Experimental Results

regularization strength and the pruning threshold with a grid-search scheme.
In particular, for each one of the values of regularization strength indicated
in figure 5.2, five values of threshold are used; namely th = [1.0e-2, 2.5e-2,
5.0e-2, 7.5e-2, 1.0e-1].

Figure 5.2 also reports the baseline values of MAE, size and FLOPs of
TEMPONet, which achieves 5.78BPM MAE at the cost of 429k parameters
and 13.5MFLOPs. The seed TEMPONet represented in figure 5.2 is not
to-scale and is reported only for comparison. The same point, if represented
to-scale, would be much more higher in the right part of the plot. This shows
clearly how the original seed network is Pareto dominated by our results.

The explored design space spans from 5k to 230k network parameters and
from 0.1M to 12M FLOPs, hence producing a large variety of networks with
different peculiarities. Among the large number of different architectures
produced, two Pareto-optimal points are highlighted : BestSize and BestMAE,
depicted in figure 5.2 respectively with red and green stars. The former is
the TCN that achieves the smallest size, which is obtained by means of the
FLOPs regularizer with a regularization strength of 1.0e-5 and a threshold of
1.0e-2. BestSize network presents only 5.09k parameters (84× compression)
and 86,658FLOPs (151× compression) at the cost of an increased MAE
of 6.29BPM (0.51 increase), where relative results in parentheses are with
respect to the baseline TEMPONet. Instead, BestMAE represents the other
end of the Pareto-chart, i.e., the network with lowest MAE, obtained with
the size regularizer and a strength-threshold combination of 1.0e-6 and 2.5e-2.
BestMAE network presents an optimal MAE of 5.3BPM (0.48 decrease) with
230k parameters (1.87× compression) and 12.3MFLOPs (1.1× compression),
again with respect to TEMPONet.

5.2.1 State-of-the-Art Comparison
Table 5.1 shows a comparison between TimePPG-BestMAE TCN and other
state of the art methods on the Dalia dataset. The results are detailed for
every subject S included in the dataset. TimePPG-BestMAE results are
detailed both in raw form and with the improvements proposes in 4.4, i.e.,
post-processing and fine-tuning. The table reports both DL and classical
algorithms.

The only DL algorithm detailed in 5.1 is the CNN proposed in [17] (in table
STFT+CNN), which achieves a mean MAE of 7.65BPM. Hence, TimePPG-
BestMAE even without post-processing and fine-tuning outperforms this

52

5.2 – TimePPG Design Space Exploration Results

approach. Moreover, the CNN presented in [17] is 260× larger than our
TCN. This makes it nearly impossible to deploy on a real embedded device,
which is, conversely, extremely feasible by means of our network composed
of 230k parameters.
In literature, another DL approach can be found, which is based on Generative
Adversarial Networks (GANs) and proposed in [57] (not presented in table 5.1
because the paper does not report the results on individual subjects), which
achieves a mean MAE of 8.3BPM. Therefore, also the GAN approach is
outperformed by TimePPG-BestMAE.

All the other rows of 5.1 refer to classical methods, based on adaptive
filtering and peak tracking. Schack2017 [58] and SpaMaPlus [59] are originally
proposed for another PPG dataset, IEEE Training [31], which is much smaller
than Dalia. Instead, CurToSS [60] and TAPIR [32] are tailored to Dalia
and significantly outperform the two other methods detailed above. This is
indicative of one of the main drawback of this type of methods : the strong
correlation between the algorithm hyper-parameters and the underlying
dataset, which means, that these algorithms are very prone to overfitting.
TimePPG-BestMAE outperforms both Schack2017 and SpaMaPlus, and,
when combined with post processing achieves comparable results with respect
to TAPIR (with a slightly higher MAE of 0.31BPM) and outperforms
CurToSS (with a slightly higher MAE of −0.16BPM).

The TCN fails in outperforming TAPIR and CurToSS, mainly due to the
presence of S5, which is an outlier with an average hear-rate much higher
than other subjects. The MAE of S5 is the highest and it affects a lot the
mean MAE used in the comparison. This behavior is observable also in the
other DL algorithm based on CNNs.

Thanks to fine-tuning, it is possible to mimic a wider training dataset,
alleviating the outlier problem, whose MAE decreases from 14.68BPM to
4.88BPM. The fine-tuned version of TimePPG-BestMAE effectively out-
performs all the other state-of-the-art algorithms that address PPG-based
heart-rate monitoring on the Dalia dataset.

53

5 – Experimental Results

Table 5.1: Comparison of TimePPG-BestMAE with state-of-the-art PPG
based heart rate monitoring algorithms. The p-value reported is computed
with non-parametric Mann-Whitney statistic.

S1
S2

S3
S4

S5
S6

S7
S8

S9
S1

0
S1

1
S1

2
S1

3
S1

4
S1

5
M
ea
n

p-
va
lu
e

Sc
ha

ck
20
17

[5
8]

33
.1

27
.8

18
.5

28
.8

12
.6

8.
7

20
.6
5

21
.8

22
.3

12
.6

21
.1

22
.8

27
.7

12
.1

16
.4

20
.5

<
0.
01

Sp
aM

aP
lu
s
[5
9]

8.
86

9.
67

6.
40

14
.1
0

24
.0
6

11
.3
4

6.
31

11
.2
5

16
.0
4

6.
17

15
.1
5

12
.0
3

8.
50

7.
76

8.
29

11
.0
6

<
0.
01

ST
FT

+
C
N
N

[1
7]

7.
73

6.
74

4.
03

5.
90

18
.5
1

12
.8
8

3.
91

10
.8
7

8.
79

4.
03

9.
22

9.
35

4.
29

4.
37

4.
17

7.
65

<
0.
01

TA
PI

R
[3
2]

4.
50

4.
50

3.
20

6.
00

5.
00

3.
40

2.
80

6.
30

8.
00

2.
90

5.
10

4.
70

3.
10

5.
00

4.
10

4.
57

<
0.
01

C
ur
To

SS
[6
0]

5.
40

4.
30

3.
00

8.
00

2.
20

2.
80

3.
30

8.
50

12
.6
0

3.
60

3.
60

6.
10

3.
00

5.
50

3.
70

5.
04

0.
02

T
im

eP
PG

-B
es
tM

A
E

4.
51

3.
37

2.
33

5.
25

14
.6
8

4.
76

2.
37

8.
04

8.
75

3.
30

5.
19

8.
08

2.
29

3.
02

3.
49

5.
30

n.
a.

+
Po

st
-P

ro
ce
ss
in
g

4.
01

3.
16

2.
27

4.
62

14
.9
6

4.
28

2.
58

6.
02

7.
61

2.
89

4.
79

6.
95

2.
54

3.
01

3.
56

4.
88

n.
a.

+
Fi
ne

Tu
ni
ng

3.
17

2.
74

3.
13

4.
25

4.
88

3.
7

2.
48

5.
19

7.
00

3.
47

3.
67

3.
91

2.
85

3.
55

3.
6

3.
84

n.
a.

54

5.3 – PIT Design Space Exploration Results

5.2.2 Embedded Deployment

Table 5.2: Deployment of TimePPG solutions on GAP8 SoC and com-
parison with original TEMPONet without dilation and hand-tuned (h.-t.)
dilation.

Weights MAE [BPM] Latency [ms] Energy [mJ]
TEMPONet dil=1 939k 5.08 112.6 29.5

TEMPONet dil=h.-t. 423k 5.31 58.8 15.4
TimePPG-BestSize 5k 6.36 1.62 0.53
TimePPG-BestMAE 232k 5.3 20.2 4.24

Table 5.2 reports a comparison between the deployment results of the
two best TimePPG architectures (i.e., BestSize and BestMAE) and the
two baseline TCNs (i.e., TEMPONet without dilation and with hand-tuned
dilation). As anticipated, the networks are deployed on the 8-core cluster of
GAP8. For this deployment, all TCNs are quantized to INT8 data format.

Both TimePPG’s variants are notable of mention:

• TimePPG-BestSize presents an higher MAE (+19.8%) compared to the
seed TEMPONet, but it reduces size (-98.8%), latency (-97.2%) and
energy (-95.65%).

• TimePPG-BestMAE improves all the metrics compared to the seed
network, in fact it reduces MAE (-0.2%), size (-45.2%), latency (-82.1%)
and energy (-72.5%).

5.3 PIT Design Space Exploration Results
Starting from TEMPONet, the PIT NAS has been applied to explore the
design space, with respect to the dilation hyper-parameter of each temporal
convolutional layer of the seed network. Figure 5.3 shows the Pareto points
(red points), in the MAE vs size plane, obtained during the exploration, by
tweaking the regularization strength and the warmup duration. Moreover, for
comparison the graph also reports in black the two baseline architectures, i.e.,
TEMPONet without dilation (dil=1) and the original TEMPONet with hand-
tuned dilation factors. The search space is quite huge, spanning from 400k
to 900k parameters with ∼104 candidates architectures. Table 5.3 reports

55

5 – Experimental Results

Figure 5.3: PIT Pareto chart in the MAE vs. size space.

Table 5.3: Dilation factors obtained for the different temporal convolutional
layers of TEMPONet.

PIT Dilations
TEMPONet dil=h.-t. (2, 2, 1, 4, 4, 8, 8)

PIT-BestSize (2, 4, 4, 8, 8, 16, 16)
PIT-Medium (1, 2, 4, 2, 1, 8, 16)
PIT-BestMAE (1, 1, 1, 1, 1, 1, 16)

the dilation factors obtained by PIT for three different architectures, i.e., the
largest (PIT-BestMAE) the smallest (PIT-BestSize) and the closest in terms
of parameters (PIT-Medium) to the original hand-tuned TEMPONet.

Figure 5.3 shows how PIT is able to compress and improve in performance
the seed network (TEMPONet with dil=1, black square in figure), in par-
ticular the top-performing TCN is characterized by a MAE reduction of
0.16BPM and a 1.35× compression. Instead, considering the original version
of TEMPONet, with dilations tuned by experts, it is possible to see how
this network is part of the Pareto-frontier, demonstrating the good quality
of PIT in finding optimal architectures.

56

5.3 – PIT Design Space Exploration Results

Table 5.4: Comparison between ProxylessNAS and PIT, with Dalia as
dataset and TEMPONet as seed architecture.

ProxylessNAS PIT
Weights MAE [BPM] # Weights MAE [BPM]

BestSize 381k 5.43 381k 5.43
Medium 517k 5.21 440k 5.28
BestMAE 731k 5.15 694k 4.92

5.3.1 State-of-the-Art Comparison

In order to prove and understand the effectiveness of PIT, a comparison
with another state-of-the-art NAS algorithm is here proposed. Specifically,
the ProxylessNAS [11] has been selected for comparison, which is based
on the supernet idea briefly presented in Chapter 3. The supergraph of
ProxylessNAS is adapted to target all the same dilation factors that PIT
supports.

Table 5.4 reports a comparison between the three BestSize, Medium and
BestMAE architectures found by ProxylessNAS and PIT. It is possible to
notice that both methods converge to the same small network. Instead, in
the large case, PIT is able to find an architecture which is both more accurate
(MAE : 4.92BPM vs 5.15BPM) and more compressed (size : 694k vs 731k
parameters) than ProxylessNAS.

Figure 5.4 shows another comparison between PIT and ProxylessNAS
based on the effective training time of the two NASes. The comparison is
performed with the same setup and training details detailed in section 5.1.
From the figure it is possible to see how ProxylessNAS is much more time
consuming with respect to PIT, which is up to 10.4× faster. Moreover, PIT
is also compared with a simple training of TEMPONet, without any NAS
algorithm in the loop, showing the extremely low overhead of the proposed
method. PIT results to be only 1.3×-2.3× slower than a plain training.
This huge difference between the methods is motivated by the fact that
ProxylessNAS trains only one arc of the supernet for each iteration of the
training loop. PIT, instead, thanks to the DMaskingNAS approach trains
all weights and all mask parameters together, with a considerable speed-up.

57

5 – Experimental Results

Figure 5.4: Comparison of training time between PIT, ProxylessNAS and
a plain training on TEMPONet.

Table 5.5: Deployment of PIT solutions on GAP8 SoC and comparison
with original TEMPONet without dilation and hand-tuned (h.-t.) dilation.

Weights MAE [BPM] Latency [ms] Energy [mJ]
TEMPONet dil=1 939k 5.08 112.6 29.5

TEMPONet dil=h.-t. 423k 5.31 58.8 15.4
PIT-BestSize 381k 5.43 54.8 14.4
PIT-Medium 440k 5.28 59.8 15.7
PIT-BestMAE 693k 4.92 86.3 22.6

5.3.2 Embedded Deployment
Table 5.5 reports the deployment results of the two baseline TCNs (i.e.,
TEMPONet without dilation and with hand-tuned dilation) and the three
identified PIT architectures (i.e., BestSize, Medium and BestMAE). Also
in this case, the networks are deployed on the 8-core cluster of GAP8 and
quantized to INT8 data format.

All the three PIT’s variants are notable of mention:

• PIT-BestSize presents an higher MAE (+6.9%) compared to the seed
TEMPONet, but it reduces size (-59.4%), latency (-51.3%) and energy
(-51.2%).

• PIT-Medium is nearly equivalent to hand-tuned TEMPONet, with

58

5.4 – MorphNet and PIT Orthogonality Exploration

respect to seed architecture (with dil=1) achieves higher MAE (+3.9%)
and reduced size (-53.1%), latency (-46.9%) and energy (-46.8%).

• PIT-BestMAE improves all the metrics compared to the seed network,
in fact it reduces MAE (-3.1%), size (-26.1%), latency (-23.4%) and
energy (-23.4%).

5.4 MorphNet and PIT Orthogonality Explo-
ration

Figure 5.5: Three possible combinations of MorphNet and PIT algorithms.

In this last section the orthogonality of the two NASes, namely MorphNet
(MN) and PIT, is tested in order to optimize both the number of channels
and the dilations of each temporal convolution. Three combinations are
possible :

(i) Apply MorphNet on hand-engineered TEMPONet, as done in Section 5.2,
obtaining a family of architectures. Then, use MorphNet’s output models
as seeds for PIT.

(ii) Apply PIT on TEMPONet without dilations, as did in Section 5.3,
obtaining a family of TCNs. Then use PIT’s output architectures as
seeds for MorphNet.

59

5 – Experimental Results

(iii) Apply MorphNet on TEMPONet without dilations, obtaining a family
of networks. Then use MorphNet’s output TCNs as seeds for PIT.

Figure 5.5 summarizes the previous three approaches.

5.4.1 H.-T. TEMPONet → MorphNet → PIT

Figure 5.6: Pareto charts in the Performance vs. Number of Parameters
space obtained using MN-BestMAE (left) and MN-BestSize (right) as seed
networks for PIT.

Figure 5.6 shows two Pareto frontiers in the Performance vs. Number
of Parameters space obtained applying the PIT workflow on the two size-
and MAE-optimal architectures obtained with MorphNet. These two ar-
chitectures are the ones presented in Section 5.2 as TimePPG-BestMAE
and TimePPG-BestSize; here, they are denoted as MN-BestMAE and MN-
BestSize and used as seeds for PIT.

The left part of figure 5.6 reports the Pareto architectures obtained using
MN-BestMAE as seed. The obtained TCNs improve both the original
TEMPONet variants without and with hand-tuned dilations, finding a new
architecture (left-most point in the plot) that achieves the lowest MAE of all
experiments, i.e., 4.88BPM of MAE with 668k parameters. Therefore, this
particular network, with respect to TEMPONet without dilations, achieves
a compression of 28.9% with a MAE improvements of 3.9% . Moreover,
MN-BestMAE is also improved; the minimum of the Pareto front improves
MAE of 2.1% with 18.3% compression.

60

5.4 – MorphNet and PIT Orthogonality Exploration

The right part of figure 5.6 reports the Pareto-optimal points obtained
using MN-BestSize as seed. With this set-up a plethora of different extremely
compressed TCNs are obtained. Notable of mention is the left-most point
of the plot, which represents a network, that compared to hand-tuned
TEMPONet, contains 98.4% less parameters along with a slightly better
MAE (5.28BPM). The seed network MN-BestSize is, in this case part of the
Pareto frontier.

5.4.2 Dil=1 TEMPONet → PIT → MorphNet

Figure 5.7: Pareto charts in the Performance vs. Number of Parameters
space obtained using PIT-BestMAE (left) and PIT-BestSize (right) as seed
networks for MorphNet.

Figure 5.7 shows the two Pareto frontiers in the Performance vs. Number
of Parameters space obtained applying MorphNet on the size- and MAE-
optimal architectures obtained with PIT. These two architectures are the
ones presented in 5.3 as PIT-BestMAE and PIT-BestSize, here used as seeds
architectures for MorphNet.

The left part of figure 5.7 reports the Pareto architectures obtained using
PIT-BestMAE as seed. The obtained architectures fail in improving both
the original TEMPONet variants without and with hand-tuned dilations.
Moreover, also the seed networks is not improved.

61

5 – Experimental Results

The right part of figure 5.7 reports the Pareto-optimal points obtained
using PIT-BestSize as seed. The seed network PIT-BestSize and the two
TEMPONet flavors are part of the Pareto frontier, thus none of the found
architectures are really capable of improving the seed ones.

This poor results finds a possible explanation in the fact that PIT operates
a more refined research in the design landscape with respect to MorphNet.
Therefore, the resultant search space obtained starting from PIT architectures
as seeds for MorphNet is more constrained, leading to sub-optimal results.

5.4.3 Dil=1 TEMPONet → MorphNet → PIT

Figure 5.8: Pareto charts in the Performance vs. Number of Parameters
space obtained with MorphNet using as seed TEMPONet with all dilation
factors fixed to 1.

Figure 5.8 depicts the Pareto front obtained using the TEMPONet variants
with all dilations fixed to 1 as seed of MorphNet. In the plot the two
architectures MN dil1−BestMAE and MN dil1−BestSize are identified. Where
the subscript dil1 specify that the seed architectures are obtained applying
MorphNet on the dil = 1 TEMPONet flavor.

MN dil1−BestMAE and MN dil1−BestSize are then used as seed networks
for PIT. The obtained Pareto fronts are reported in figure 5.9.

62

5.4 – MorphNet and PIT Orthogonality Exploration

Figure 5.9: Pareto charts in the Performance vs. Number of Pa-
rameters space obtained using PIT with MN dil1−BestMAE (left) and
MN dil1−BestSize (right) as seed networks.

The left part of figure 5.6 reports the Pareto architectures obtained using
MN dil1−BestMAE as seed. The obtained TCNs improve both the original
TEMPONet variants without and with hand-tuned dilations, finding a new
architecture (left-most point in the plot) that achieves a MAE of 4.91BPM
with 405k parameters. Therefore, this particular network, with respect
to TEMPONet without dilations, achieves a compression equal to 55.7%
with a MAE improvements of 3.3% . Moreover, MN dil1−BestMAE is also
improved; the second left-most Pareto-point improves MAE of 3.8% with
38.5% compression.

The right part of figure 5.6 reports the Pareto-optimal points obtained
using MN dil1−BestSize as seed. With this set-up an ensemble of different,
extremely compressed, TCNs are obtained. Notable of mention is the second
left-most point of the Pareto frontier, which represents a network, that
compared to the seed MN dil1−BestSize, presents 68.7% less parameters with
a slightly better MAE.

Moreover, figure 5.9 reports the others BestMAE (left) and BestSize (right)
architectures obtained with methods presented in sections 5.2, 5.3 and 5.4.1.
The results obtained in Section 5.4.2 are not reported in that they do not
provide improvements. The two plots highlight how the approach described in
this section is the best one in finding Pareto-optimal architectures, exploiting
the -now demonstrated- orthogonality of the two NAS algorithms : MorphNet

63

5 – Experimental Results

and PIT.

5.4.4 Embedded Deployment

Table 5.6: Deployment of MNdil1-PIT solutions on GAP8 SoC and com-
parison with original TEMPONet without dilation and hand-tuned (h.-t.)
dilation.

Weights MAE [BPM] Latency [ms] Energy [mJ]
TEMPONet dil=1 939k 5.08 112.6 29.5

TEMPONet dil=h.-t. 423k 5.31 58.8 15.4
MNdil1-PIT-BestSize 3k 5.77 0.88 0.23
MNdil1-PIT-BestMAE 405k 4.91 36.5 9.57

Table 5.6 reports the deployment results of the two baseline TCNs (i.e.,
TEMPONet without dilation and with hand-tuned dilation) and the BestSize
and BestMAE architectures obtained with the flow presented in the previous
section 5.4.3 (TEMPONet dil=1 is the seed network). The deployment is
performed with the same set-up of section 5.2.2 and section 5.3.2.

Both variants provides interesting results:

• MNdil1-PIT-BestSize presents an higher MAE (+13.6%) compared to
the seed TEMPONet, but it reduces extremely size (-99.7%), latency
(-99.2%) and energy (-99.1%).

• MNdil1-PIT-BestMAE improves all the metrics compared to the seed
network, in fact it reduces MAE (-3.3%), size (-56.9%), latency (-67.6%)
and energy (-67.5%).

64

Chapter 6

Conclusions and Future
Works

Deep Learning algorithms are among the most intriguing and promising
technologies proposed in recent years and are today applied on a plethora of
different tasks. For many years the common trend in DL has been having more
and more complex models able to solve problems of increasing difficulties,
requiring an huge amount of resources to effectively execute them. DL models
“as-they-are” are confined to high-performance computing platforms, making
it impossible to deploy them on embedded devices with constrained memory
and computational power. A new research perspective was born in parallel
to this continuous increase of models’ complexity, targeting the efficient
execution of DNNs on edge devices. The primary way to enable the so-called
inference-on-the-edge is represented by somehow shrinking the original, huge
DL architectures.

This work proposes a workflow that allows to quickly and efficiently
compress DNNs, starting from a large one. In particular, resorting to NAS
techniques. Two different NAS algorithms are here used and presented :
MorphNet and PIT. While the former is present in literature and originally
developed for CNNs and here applied to TCNs, the second one is a novel
NAS approach that targets a specific hyper-parameter of such TCNs, the
dilation factor. The effectiveness of both methods, used both in isolation and
jointly, is demonstrated on a bio-signals processing task, highlighting the
obtained compressed architectures, which are then deployed on a real edge
device, namely the GAP-8 SoC. In all the tested solutions state-of-the-art
architectures are found, that effectively compress the seed network up to

65

6 – Conclusions and Future Works

99.6%.
Future works include the extension of PIT to consider other hyper-

parameters such as the kernel-size, in order to target the DNNs’ compression
problem from multiple directions, enlarging the search space of the proposed
NAS algorithm.

66

Bibliography

[1] Luciano Floridi. The fourth revolution: How the infosphere is reshaping
human reality. OUP Oxford, 2014 (cit. on p. 1).

[2] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. «Effi-
cient processing of deep neural networks: A tutorial and survey». In:
Proceedings of the IEEE 105.12 (2017), pp. 2295–2329 (cit. on pp. 1, 2).

[3] Zachary C Lipton, John Berkowitz, and Charles Elkan. «A critical
review of recurrent neural networks for sequence learning». In: arXiv
preprint arXiv:1506.00019 (2015) (cit. on p. 2).

[4] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
computing: Vision and challenges». In: IEEE internet of things journal
3.5 (2016), pp. 637–646 (cit. on p. 2).

[5] Yann LeCun, John Denker, and Sara Solla. «Optimal brain damage». In:
Advances in neural information processing systems 2 (1989), pp. 598–
605 (cit. on pp. 2, 3).

[6] Babak Hassibi, David G Stork, and Gregory J Wolff. «Optimal brain
surgeon and general network pruning». In: IEEE international con-
ference on neural networks. IEEE. 1993, pp. 293–299 (cit. on pp. 2,
3).

[7] Song Han, Huizi Mao, and William J Dally. «Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding». In: arXiv preprint arXiv:1510.00149 (2015) (cit. on
pp. 2, 3).

[8] Marian Verhelst and Bert Moons. «Embedded deep neural network
processing: Algorithmic and processor techniques bring deep learning
to iot and edge devices». In: IEEE Solid-State Circuits Magazine 9.4
(2017), pp. 55–65 (cit. on p. 2).

67

BIBLIOGRAPHY

[9] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. «Quantized neural networks: Training neural networks
with low precision weights and activations». In: The Journal of Machine
Learning Research 18.1 (2017), pp. 6869–6898 (cit. on p. 3).

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. «Darts: Differentiable
architecture search». In: arXiv preprint arXiv:1806.09055 (2018) (cit.
on pp. 3, 28).

[11] Han Cai, Ligeng Zhu, and Song Han. «Proxylessnas: Direct neural
architecture search on target task and hardware». In: arXiv preprint
arXiv:1812.00332 (2018) (cit. on pp. 3, 27, 29, 57).

[12] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju
Yang, and Edward Choi. «Morphnet: Fast & simple resource-constrained
structure learning of deep networks». In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, pp. 1586–
1595 (cit. on pp. 3, 27, 29, 32, 33, 36).

[13] Alvin Wan et al. «Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions». In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2020, pp. 12965–
12974 (cit. on pp. 3, 29).

[14] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. «An empirical eval-
uation of generic convolutional and recurrent networks for sequence
modeling». In: arXiv preprint arXiv:1803.01271 (2018) (cit. on pp. 3,
22).

[15] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. «Temporal
convolutional networks: A unified approach to action segmentation». In:
European Conference on Computer Vision. Springer. 2016, pp. 47–54
(cit. on p. 3).

[16] Marcello Zanghieri, Simone Benatti, Alessio Burrello, Victor Kartsch,
Francesco Conti, and Luca Benini. «Robust real-time embedded emg
recognition framework using temporal convolutional networks on a
multicore iot processor». In: IEEE Transactions on Biomedical Circuits
and Systems 14.2 (2019), pp. 244–256 (cit. on pp. 3, 33, 34, 49).

[17] Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven.
«Deep PPG: large-scale heart rate estimation with convolutional neural
networks». In: Sensors 19.14 (2019), p. 3079 (cit. on pp. 4, 22, 24, 33,
49, 52–54).

68

BIBLIOGRAPHY

[18] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini,
Florent Rotenberg, and Luca Benini. «GAP-8: A RISC-V SoC for AI
at the Edge of the IoT». In: 2018 IEEE 29th International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE. 2018, pp. 1–4 (cit. on pp. 4, 50).

[19] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, tools, and techniques to build intelligent
systems. O’Reilly Media, 2019 (cit. on pp. 5, 6, 9, 11, 12, 14, 17).

[20] Tom Mitchell. Machine Learning. McGraw Hill, 1997 (cit. on p. 6).
[21] R.A. Fisher. Iris Data Set. 1936. url: https://archive.ics.uci.

edu/ml/datasets/iris (cit. on p. 6).
[22] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning.

Vol. 1. MIT press Massachusetts, USA: 2017 (cit. on pp. 7, 10, 13, 17,
20).

[23] Frank Rosenblatt. «The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.» In: Psychological review
65.6 (1958), p. 386 (cit. on p. 9).

[24] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction
to computational geometry. MIT press, 2017 (cit. on p. 12).

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing internal representations by error propagation. Tech. rep. California
Univ San Diego La Jolla Inst for Cognitive Science, 1985 (cit. on p. 15).

[26] Vadim Lebedev and Victor Lempitsky. «Fast convnets using group-wise
brain damage». In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 2554–2564 (cit. on p. 17).

[27] Rodolphe Jenatton, Jean-Yves Audibert, and Francis Bach. «Structured
variable selection with sparsity-inducing norms». In: The Journal of
Machine Learning Research 12 (2011), pp. 2777–2824 (cit. on p. 17).

[28] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetu-
parna Das, and Scott Mahlke. «Scalpel: Customizing dnn pruning to
the underlying hardware parallelism». In: ACM SIGARCH Computer
Architecture News 45.2 (2017), pp. 548–560 (cit. on p. 17).

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet
classification with deep convolutional neural networks». In: Communi-
cations of the ACM 60.6 (2017), pp. 84–90 (cit. on p. 18).

69

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris

BIBLIOGRAPHY

[30] Sergey Ioffe and Christian Szegedy. «Batch normalization: Accelerating
deep network training by reducing internal covariate shift». In: arXiv
preprint arXiv:1502.03167 (2015) (cit. on pp. 20, 34).

[31] Zhilin Zhang, Zhouyue Pi, and Benyuan Liu. «TROIKA: A general
framework for heart rate monitoring using wrist-type photoplethysmo-
graphic signals during intensive physical exercise». In: IEEE Transac-
tions on biomedical engineering 62.2 (2014), pp. 522–531 (cit. on pp. 24,
53).

[32] Nicholas Huang and Nandakumar Selvaraj. «Robust PPG-based Am-
bulatory Heart Rate Tracking Algorithm». In: 2020 42nd Annual In-
ternational Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). IEEE. 2020, pp. 5929–5934 (cit. on pp. 24, 53, 54).

[33] Dwaipayan Biswas et al. «CorNET: Deep learning framework for PPG-
based heart rate estimation and biometric identification in ambulant
environment». In: IEEE transactions on biomedical circuits and systems
13.2 (2019), pp. 282–291 (cit. on p. 24).

[34] Xiangmao Chang, Gangkai Li, Linlin Tu, Guoliang Xing, and Tian Hao.
«DeepHeart: Accurate Heart Rate Estimation from PPG Signals Based
on Deep Learning». In: 2019 IEEE 16th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS). IEEE. 2019, pp. 371–379
(cit. on p. 24).

[35] Pat Hamilton. «Open source ECG analysis». In: Computers in cardiol-
ogy. IEEE. 2002, pp. 101–104 (cit. on p. 24).

[36] Empatica. Empatica E4 wristband. url: https://www.empatica.com/
en-eu/research/e4/ (cit. on p. 24).

[37] RespiBAN. RespiBAN Professional. url: https://biosignalsplux.
com/products/wearables/respiban-pro.html (cit. on p. 24).

[38] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han.
«Once-for-all: Train one network and specialize it for efficient deploy-
ment». In: arXiv preprint arXiv:1908.09791 (2019) (cit. on p. 27).

[39] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song
Han. «Mcunet: Tiny deep learning on iot devices». In: arXiv preprint
arXiv:2007.10319 (2020) (cit. on p. 27).

70

https://www.empatica.com/en-eu/research/e4/
https://www.empatica.com/en-eu/research/e4/
https://biosignalsplux.com/products/wearables/respiban-pro.html
https://biosignalsplux.com/products/wearables/respiban-pro.html

BIBLIOGRAPHY

[40] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. «De-
signing neural network architectures using reinforcement learning». In:
arXiv preprint arXiv:1611.02167 (2016) (cit. on p. 27).

[41] Barret Zoph and Quoc V Le. «Neural architecture search with reinforce-
ment learning». In: arXiv preprint arXiv:1611.01578 (2016) (cit. on
p. 27).

[42] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka
Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin. «Large-scale
evolution of image classifiers». In: arXiv preprint arXiv:1703.01041
(2017) (cit. on p. 27).

[43] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean.
«Efficient neural architecture search via parameter sharing». In: arXiv
preprint arXiv:1802.03268 (2018) (cit. on p. 28).

[44] Eric Jang, Shixiang Gu, and Ben Poole. «Categorical reparameterization
with gumbel-softmax». In: arXiv preprint arXiv:1611.01144 (2016) (cit.
on p. 29).

[45] Apple. Apple Watch Series. url: https://www.apple.com/lae/
watch/ (cit. on p. 32).

[46] Fitbit. Fitbit Charge 4. url: https://www.fitbit.com/global/us/
products/trackers/charge4 (cit. on p. 33).

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. «Dropout: a simple way to prevent neural
networks from overfitting». In: The journal of machine learning research
15.1 (2014), pp. 1929–1958 (cit. on p. 34).

[48] Google-Research. MorphNet. url: https://github.com/google-
research/morph-net (cit. on p. 36).

[49] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
«Mobilenets: Efficient convolutional neural networks for mobile vision
applications». In: arXiv preprint arXiv:1704.04861 (2017) (cit. on
p. 37).

[50] Ming Yuan and Yi Lin. «Model selection and estimation in regression
with grouped variables». In: Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 68.1 (2006), pp. 49–67 (cit. on p. 37).

71

https://www.apple.com/lae/watch/
https://www.apple.com/lae/watch/
https://www.fitbit.com/global/us/products/trackers/charge4
https://www.fitbit.com/global/us/products/trackers/charge4
https://github.com/google-research/morph-net
https://github.com/google-research/morph-net

BIBLIOGRAPHY

[51] ST Microelectornics. X-CUBE-AI. 2017. url: https://www.st.com/
en/embedded-software/x-cube-ai.html (cit. on p. 40).

[52] GreenWaves Technologies.GAP8 NNTool. 2019. url: https://greenwaves-
technologies.com/manuals/ (cit. on pp. 40, 50).

[53] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. «Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1». In:
arXiv preprint arXiv:1602.02830 (2016) (cit. on p. 42).

[54] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic
optimization». In: arXiv preprint arXiv:1412.6980 (2014) (cit. on p. 49).

[55] Martin Abadi et al. «Tensorflow: A system for large-scale machine
learning». In: 12th symposium on operating systems design and imple-
mentation. 2016, pp. 265–283 (cit. on p. 49).

[56] Davide Rossi et al. «PULP: A parallel ultra low power platform for next
generation IoT applications». In: 2015 IEEE Hot Chips 27 Symposium
(HCS). IEEE. 2015, pp. 1–39 (cit. on p. 50).

[57] Pritam Sarkar and Ali Etemad. «CardioGAN: Attentive Generative
Adversarial Network with Dual Discriminators for Synthesis of ECG
from PPG». In: arXiv preprint arXiv:2010.00104 (2020) (cit. on p. 53).

[58] Tim Schäck, Michael Muma, and Abdelhak M Zoubir. «Computa-
tionally efficient heart rate estimation during physical exercise using
photoplethysmographic signals». In: 2017 25th European Signal Pro-
cessing Conference (EUSIPCO). IEEE. 2017, pp. 2478–2481 (cit. on
pp. 53, 54).

[59] Seyed Salehizadeh, Duy Dao, Jeffrey Bolkhovsky, Chae Cho, Yitzhak
Mendelson, and Ki H Chon. «A novel time-varying spectral filtering
algorithm for reconstruction of motion artifact corrupted heart rate
signals during intense physical activities using a wearable photoplethys-
mogram sensor». In: Sensors 16.1 (2016), p. 10 (cit. on pp. 53, 54).

[60] Menglian Zhou and Nandakumar Selvaraj. «Heart Rate Monitoring
using Sparse Spectral Curve Tracing». In: 2020 42nd Annual Inter-
national Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). IEEE. 2020, pp. 5347–5352 (cit. on pp. 53, 54).

72

https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://greenwaves-technologies.com/manuals/
https://greenwaves-technologies.com/manuals/

	List of Tables
	List of Figures
	Introduction
	Background
	Overview
	Neuron
	Most Common Activation Functions
	Artifical and Biological Neurons

	Layers of Neurons
	Training of DNNs
	Gradient-Based Learning
	Most Common Loss Functions
	Regularization Techniques

	Popular DNNs Architectures
	Convolutional Neural Network (CNN)
	Temporal Convolutional Network (TCN)

	PPG-based Heart-Rate Estimation
	Dalia Dataset

	Related Works
	NAS Techniques for Edge-TCNs Optimization
	Motivations and Objectives
	TimePPG : Optimized TCNs for PPG-based Heart Rate Monitoring
	TEMPONet
	MorphNet Details

	PIT : Pruning In Time
	Dilation-Aware Mask
	Making Dilation Differentiable
	PIT Regularizer
	Training

	Further Improvements

	Experimental Results
	Experimental Setup
	GAP8 Hardware Platform

	TimePPG Design Space Exploration Results
	State-of-the-Art Comparison
	Embedded Deployment

	PIT Design Space Exploration Results
	State-of-the-Art Comparison
	Embedded Deployment

	MorphNet and PIT Orthogonality Exploration
	H.-T. TEMPONet MorphNet PIT
	Dil=1 TEMPONet PIT MorphNet
	Dil=1 TEMPONet MorphNet PIT
	Embedded Deployment

	Conclusions and Future Works

