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Abstract

Nowadays there is a need for many companies emerging in the context of Industry
4.0 to save costs, increase efficiency, and improve the factory management. For
this reason the research on predictive maintenance techniques and state of health
(SoH) estimation of a production machine is one of the most relevant areas in the
scientific field.

This thesis is inside the research and development MOREPRO project owned by
Brain Technologies. Morepro aims to bring to the field an innovative solution based
on multi-level distributed intelligence logic to improve the management of produc-
tion plants thanks to new capabilities. The objective concerns the development of
a prototype which is capable of:

e Monitoring the SoH of CNC machines and their critical components through
embedded sensors signals coupled with machine learning and data mining
techniques.

e Monitoring the wear condition of the machine’s tool using a digital twin
approach, combining real-time signals with estimated quantities in a virtual
simulation environment.

e Developing predictive models able to estimate the on-line SoH and the trend
of degradation states of machine and system components over time.

The contribution of this thesis work can be divided in three main sections:

1. Development of a basic CNC machine model: the first phase is the
physical model’s basic design of a CNC machine, in order to be able to
develop a prediction algorithm. The approach was to combine the state
equations of a DC motor with the mechanical equations of a CNC machine
and simulate the plant to collect the values of the analysed state variables.

2. Predictive multimodel: the core of the project where a prediction analysis
on the state variable and wear’s parameter estimation are developed using a
bank of Extended Kalman Filters and a logic of residual error management.

3. Interaction model upgrade and predictive multimodel update: an
in-depth modelling of the interaction between CNC end-effector and work-
piece, through the study of how various parameter can impact the end-
effector’s wear condition. An update of the EKF’s bank is made accordingly
to the upgrade of the model. Finally various tests were carried out to check
the overall system correct behaviour.



Table of contents

[List of Figures| 3
[List_of Tables 5
7
1__Introductionl 8
(1.1 Wear estimation|. . . . . . . . . . . ... ... 8
(.2 CNCmachine SoHl . . . . . . . ... ... . . 9
(1.3 Edge Computing advantages| . . . . . . . ... ... .. ... ..... 10
(1.4 MOREPRO project|. . . . . .. .. ... .. ... ... .. ..... 11
(1.4.1 Partnership| . . . . . . . . . . . ... ... ... 13

(1.5  Work Organization| . . . . . . . ... .. ... .. ... ....... 13
(1.5.1 Morepro team| . . . . . . . .. ... 14

1.5.2 Work flowl . . . . ... . .. 16

(.6 Thesisoutlinel . . . . . . . .. . ... 18
[2__State of art] 20
[2.1 Methods for estimating SoH| . . . . . .. ... ... ... ... 21
[2.1.1 Past project references| . . . . . . . . . . .. ... ... ... 28

[2.1.2  Comparison between the methods| . . . . . . . . . ... ... 29

[3 Physical Modell 30
[3.1 Mechanical part|. . . . . . ... ... ... 31
[3.2  Electrical part|. . . . .. ... ... o 32
B3 Plant modell . . . . . ... ... 34
[3.3.1  Simulink implementationl . . . . . . ... ..., 34

[3.4 Most significant parameter choice| . . . . . .. ... ..o 40
TP ~Jentification 41
[4.1  Set-membership identification . . . . . . . .. ... ... 42
[4.1.1 Application| . . . . . . .. ... o 43

M41.2 Resultsl. . . ... ... 44

> EKF Bank: multi model approach| 46
BI_EKE] . . . oo 47
[>.2  Residual error analysis| . . . . . ... ... ... ... L. 49
[5.2.1  Residual error comparison| . . . . . . ... ... ... ... 59

b.3 FEvaluation tests . . . . . . . ... 62
Hh.3.1  Reset time choicel . . . . . . ... ... Lo 73

[>.4  Multi model: algorithm structure, . . . . . .. .. ... ... . ... 7




[.4.1 Switching estimator{. . . . . . . .. ... ... ... ... .. 79

(.42 Best model choicel . . . . . . ... ... 80

6 Model upgrade] 83
[6.1 Friction coefficient modeld . . . . . . ... ... oo 84
[6.1.1 Friction coethicient correlated with the tool-chip contact length| 84

6.1.2  Thermal effect in friction coefficientf . . . . . . . ... . . .. 86

[6.1.3 Thermal analysis| . . . . . ... ... ... ... ... ... . 87

[6.1.4 Other correlated modell . . . . . . ... ... ... ... ... 89

[6.1.5 Model comparison| . . . ... ... ... ... 90

[6.2  Final plant model . . . . . . . ... o0 92

(7 Multi model update 94
[7.1  EKF integration|. . . . . . . . ... ... oo 94
[[2 Functional Tests. . . . . . . . .. . ... .. .. ... ... ... 95
[7.3 Sensitivity Tests|. . . . . . . . . ... 98
|Conclusions and future works 104
[References 105



List of Figures

(1.1  Example of CNC machine schematic diagram| . . . . .. ... ... 9
(1.2 Synthetic structure of MOREPRO system| . . ... ... ... ... 12
(1.3 Overall system structure| . . . . . . . ... ... ... 12
(1.4 V-shape development flow.| . . . . . . .. ... .. ... ... .. .. 14
[1.5 Team organization chart. . . . . . . . . . . ... ... ... ... .. 15
(.6 Workflow schematic) . . . . . ... ... ... o0 16
(.7 Workflow contribution. . . . . . . . . ... .. oo 16
2.1 Forms of maintenancel . . . . . ... .. ... ... 21
[2.2  Schematic of state updatel . . . . . . ... ..o 23
R3 P-Fcurvel . ... ... 24
2.4 Schematic of a Artificial Neural Networkl . . . . . .. ... ... .. 25
[2.5 Components of a Fuzzy logic system| . . . .. ... ... ... ... 26
2.6 Schematicof HMM| . . . . . . . .. ... o oo 27
[2.7  Flow diagram of condition indicator construction. The gray boxes |

indicate the condition indicators.[14] | . . . . ... .. ... 28
[3.1 Simplified milling machine modell . . . . . .. ... ... ... ... 31
(3.2 Simplified schematic ot a DC motor| . . . . . ... ... ... ... . 32
(3.3 Contact logic| . . . . ... ... 35
3.4 Plant Simulink] . . . .. ..o 36
[3.5  Simulink implementation of the modell . . . . . . . ... ... ... 37
[3.6  Contact force control input plot.|. . . . . ... ... ... ... ... 38
[3.7  Summary plots of Model’s main parameters.| . . . . . ... ... .. 39
4.1 Block scheme of the system| . . . . ... ... ... ... ...... 42
[5.1 Diagram of nonlinear discrete time system in state-space form| . . . 48
H.2  Simulink scheme of the EKFJ . . . ... .. ... ... ... 49
b3 Mean test) . . . . .. oo 52
b4 Covariance test) . . . . . . . ..o oo 53
b5 PSD test] . . . . . . 54
H.6  Correlation test). . . . . . . . . ... 55
B RMStest] . . . . . . 56
[>.8 Integral test.|. . . . . . . ... o7
[5.9  Boxplot of the angular acceleration error.|. . . . . . . . .. ... .. 60
[5.10 Boxplot ot the current derivative error.| . . . . . . . . . . . ... .. 61
5.11 Boxplot of the average error.|. . . . . . . .. .. ... ... ..... 61
5.12 Boxplot error with 200 [T%d] angular velocity,| . . . ... ... ... 62
5.13 Boxplot error with 210 [TSLZd] angular velocity,| . . . . ... ... .. 63
5.14 Boxplot error with 220 :izd angular velocity| . . . . .. .. ... .. 64




5.15 Boxplot error with 230 [rci;l] angular velocity,| . . . . ... ... .. 64
5.16 Boxplot error with 0.4 |m] position reference,. . . . . . ... .. .. 65
5.17 Boxplot error with 0.47 |m/| position reference.| . . . . . . . . . . .. 66
5.18 Boxplot error with 0.53 |m/| position reference.| . . . . . . . . . . .. 66
5.19 Boxplot error with 0.6 [m| position reference.|. . . . . . . . ... .. 67
5.20 Boxplot error with 20 % duty cycle.| . . . . . . .. .. ... ... .. 68
[5.21 Boxplot error with 40 % duty cycle| . . . . . . ... ... ... ... 68
[5.22 Boxplot error with 60 % duty cyclef . . . . . ... .. ... ... .. 69
[5.23 Boxplot error with 80 % duty cycle.| . . . . . . .. ... .. ... .. 70
[5.24 Boxplot error with 4 number of cycles.| . . . . . ... ... ... .. 71
[>.25 Boxplot error with 6 number of cycles.| . . . . . ... ... ... .. 71
[5.26 Boxplot error with 8 number of cycles.| . . . . ... ... ... ... 72
[5.27 Boxplot error with 10 number of cycles.|. . . . . . . .. .. ... .. 73
[5.28 T reset analysis| . . . . . . . ... oo 74
(.29 T reset choicel . . . . . . . . . . . ... 75
[5.30 Integral error in nominal condition with Reset time of 30s.| . . . . . 76
[5.31 Simulink implementation of the algorithm.| . . . . . . ... ... .. 78
[5.32 Simulink implementation of error logic.| . . . . . . .. ... ... .. 78
[5.33 Switching estimator|. . . . . . . ... ... 79
.34 Best model choice with nominal condition| . . . . . .. ... .. .. 81
[5.35 Best model choice with 5 variation| . . . . . . ... ... ... ... 82
[6.1 Model upgrade pathl . . . ... ... ... ... ... 83
[6.2  Proposed friction model.f . . . . ... ..o 000 85
[6.3  Tool-workpiece interaction temperature curves.|. . . . . . . . . . .. 87
[6.4 Influence of cutting speed on tool-chip intertace temperature.|. . . . 89
[6.5 5 obtained from the tool-chip contact length modelf . . . . . . . .. 90
[6.6 5 obtained from the temperature dependent model| . . . . . . . .. 91
[6.7 /S obtained from the machining speeds model|. . . . . . . . . . . .. 91
[7.1 Boxplot based on chip load with nominal condition| . . . . . . . .. 96
(7.2 chip load analysis from 0.2to 0.7 . . . . . . ... ... ... ... .. 97
(7.3 chip load analysis from 0.8 to 1.1{ . . . . . .. . . .. .. ... ... 98
[7.4  'Test on angular velocity referencef. . . . . . . . . ... ... .. 99
[7.5 Test on number of cycles.|. . . . . . ... ... 000 100
[[.6  Test on number of Filters] . . . ... ... ... ... ... ... .. 101
[7.7  Test on position reference.| . . . . . . . . ... ... 102
(7.8 chip load range analysis from 0.7to 1.7/ . . . . . . . . ... ... .. 103




List of Tables

[2.1 Comparison between SoH estimation methods.|. . . . . . . . .. .. 29
[4.1  Parameters Uncertainty Intervals . . . . . .. ... ... ... ... 44
1.2 Parameters identification) . . . . .. ... ... 0oL 45
.1 Nominal values of the errors for each method) . . . . .. .. .. .. 50
b2 FOMmeanl . .. .. ... . 52
Hh.3  FOM Covariancel . . . . . . . .. ..o 53
................................ 54
(.5 FOM Correlation|. . . . . . . .. .. .. ... ... 55
Hh.6  FOM Correlationl . . . . . .. .. ... oo 56
.7 FOM Integrall . . . . . . .. .. ... ... ... o7
[>.8  Nominal CNC parameters.| . . . . . . ... .. ... .. ... .... 59
5.9 Nominal working conditions.|. . . . . . . ... ... ... ... ... 60
5.10 Test with 210 [:i;l] angular velocity.| . . . . ... ... L. 63
5.11 Test with 220 [%l] angular velocity,| . . . . ... ... 63
5.12 Test with 230 [rci;l] angular velocity,| . . . . ... ... 64
5.13 Test with 0.4 [m] position reference]. . . . . . . . .. .. ... ... 65
5.14 Test with 0.47 |m| position reference.| . . . . . . . . . . .. ... .. 65
5.15 Test with 0.53 |m| position reference.| . . . . . . .. . ... ... .. 66
5.16 Test with 0.6 [m] position reference.|. . . . . . . .. ... ... ... 67
5.17 Test with 20 % duty cycle.| . . . . . . .. ... ... ... ... ... 67
[5.18 Test with 40 % duty cycle| . . . . .. ... ... oo 0oL 68
.19 Test with 60 % duty cycle] . . . . ... . ... ... ... ... ... 69
[5.20 Test with 80 % duty cycle| . . . . . . . . . . ... ... ... ... 69
[5.21 Test with 4 number of cycles.| . . . . . . . ... ... ... ... .. 70
[5.22 Test with 6 number of cycles.| . . . . .. ... ... ... ... ... 71
[5.23 Test with 8 number of cycles.| . . . . .. ... ... .. ... .... 72
[5.24 Test with 10 number of cycles.|. . . . . . . .. ... ... ... ... 72
(0.25 Friction coefficient associated to each filter] . . . . . . . ... .. .. 80
[5.26 Test with nominal friction coefficient| . . . . . . . ... .. ... .. 81
.27 Test with friction coefficient variationl . . . . . . . .. .. ... ... 81
6.1 Temperature values.| . . . . . . . . ... ... ... .. 88
[6.2  Nominal CNC parameters updated| . . . . .. ... ... ... ... 93
[7.1 Chip Load associated to each filter| . . . . . . ... ... ... ... 95
(7.2 'Test with nominal chip load| . . . . . .. .. ... ... ... .... 95




Acronyms

MPC model predictive control
SoH State of health

ERMES Extendible Range MultiModal Estimator Sensing
DOE Design of experiment

KF Kalman filter

PF Particle Filter

EKF Extended Kalman filter
EM Electric Machine

T Temperature

RMS Root Mean Square

LSM Least Square Method

RT Reset time

CNC Computer numerical control
10T Internet Of Things

RUL Remaining Useful Life

EOL End of Life

DC Direct current

Al Artificial Intelligence



SCARA Selective Compliance Assembly Robot Arm
PM Predictive Maintenance

ANN Artificial Neural Network

HMM  Hidden Markov Model

MQL Minimum Quantity Lubrification






1 INTRODUCTION

1 Introduction

1.1 Wear estimation

The estimation in real-time of the state of a production machine is one of the most
significant topic in scientific research. The estimation of the SoH together with
predictive maintenance techniques are slightly becoming a relevant issue because
of their direct relation that link them to the efficiency of the production and
to the saves of the costs. As Industry 4.0 continues to become reality, many
companies are struggling with Al algorithms implementation that can lead to
to major cost savings, higher predictability, and the increased availability of the
systems. Indeed, the benefits of predictive strategies are definitely very strategic.
Thus, the increasing demand of monitoring systems that allows to keep track of
the production as much efficiently as possible have led to the development of many
predictive maintenance methods [2]. The main functions of those algorithms are:

e SoH (state of health) estimation of a machine, motor or single component.
e Calculation of patterns that can help prediction and prevention of failures.

Currently, such methods are predominantly based on machine learning algorithms
that lead to very good results in terms of efficiency and precision but they often
doesn’t take into account of the computational effort and real-time requirements.
Nevertheless, predictive maintenance doesn’t require anything more than mathe-
matical computation on when machine conditions are at a state of needed repair or
even replacement so that maintenance can be performed exactly when and how is
most effective. Moreover, when the processing has high precision requirements, the
predictive algorithms are particularly useful. Nowadays, those requirements are
very common in companies which rest their production on such fields as aerospace,
oil & gas, automotive and so on. The complexity of those high precision processes
depends on many aspects:

— Kind of processing.
— Modelling and simulation of robotic, mechanical and electric the systems.
— Wrought materials.

— Different tools such as milling machines, cutting machines, end-effectors and
SO on.

— Production timings requirements.

Dealing with those complexity level can be very hard and expensive for companies,
consequently, it is always more present the need of a method that can be easily
applied regardless of the wrought material, the kind of processes and the field
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of application. To sum up, the key functionalities of prediction algorithm are
consistent when there is abstraction with respect to processing types, real-time
characteristics and efficiency both in terms of computational effort and naturally,

in terms of cost savings.

1.2 CNC machine SoH

CNC (Computer numerical control) [2] machine are high precision machines which
actuate manufacturing processes of material substraction that usually require com-
puterized control action to guarantee high precision and efficiency. A subtractive
manufacturing process typically employs machine tools to remove layers of mate-
rial from a stock piece known as the blank or workpiece and produces a custom-
designed part. This processing type is almost indipendent from the material of
which the workpiece is composed: plastics, metals, foam, glass etc.. This is the
reason why CNC machines finds application in most of industrial processing fields.
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Figure 1.1 Example of CNC machine schematic diagram

As it is shown in figure [I.1] this machines have typically a SCARA or a cartesian
robotic configuration with an end-effector which usually is a cutter. The modelling
of the cutter contact is quite difficult because of the high number of variables that

must be considered, the most relevant are:
— Robotic configuration.
— Environmental parameters.

— Wear condition of the machine: SoH.



1 INTRODUCTION 1.3 Edge Computing advantages

All of those elements needs to be kept under control constantly in order to guaran-
tee the efficiency and the precision of the machine. In particular, there is no way
to check the State of health of the end-effector in a direct way. There could be
possible to install sensor to check temperature, voltage, pressure and estimate a
possible SoH of the tools. However, even with the knowledge of variables that can
be measured by sensors, it is difficult to extract information about actual condi-
tion of the machine, firstly because is very likely that sensors cannot be set up in
the right position, secondly because the knowledge of those parameters could not
be enough to understand the real condition. For instance, obviously, a tempera-
ture sensor cannot be positioned near enough to the cutter to measure the correct
temperature but must be positioned further, and that definitly lead to constant
and inevitable measurement errors. Nowadays, the majority of the systems which
estimate the SoH commonly propose digital-twin solutions. The limitation of such
system is the difficulty to isolate the tool’s wear from the others monitored ef-
fects. Moreover, such monitoring systems combine machine learning techniques
and digital-twin simulation to estimate SoH, not taking into account computa-
tional requirements. Digital-twin models are very useful when the variables that
need to be controlled are numerous, but the most influent parameters in the SoH
estimation are the ones related to the cut process and the end-effector: the most
stressed mechanical elements. Therefore, the parameters which are directly linked
to the SoH are a lot and some of the most important are:

e Friction coefficients.
e Temperature.

e Chip load.

Those elements are strictly related to the contact forces, that’s why understanding
and modeling those element is fundamental for the estimation of the state of health
of CNC machine end-effector.

1.3 Edge Computing advantages

As it was mentioned in the introduction, most of the existing architectures re-
garding the wear estimation and the predictive maintenance entrust the majority
of their computational power in the cloud. Since to execute deep machine learn-
ing calculations there is the necessity of hardware resources, they have no choice
but to rely on cloud computing solution. However, a centralized server, even if
geographically far, can be definitely useful because of the potentially infinite num-
ber of resources that can be accessed and also, because of the huge data storage
capacity available in the servers. On the other side, Edge Computing is an IT
distributed architecture which allows to elaborate data locally, as much close as

10
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possible to the source. It is based on distributed calculation concept, which relies
its principles in the separation of the code execution and in the storage of data
only when it is strictly necessary. This solution compensate some of the cloud
computing shortcomings and provide some advantages:

e Low-latency: edge computing devices are installed locally and compensate
latency that prevent the execution in real-time.

e Costs: Since hardware requirements are very low, the costs of those micro-
processors is almost insignificant.

e Reliability and Security: Since most of the times the edge computing does
not depend on internet connection and servers it offers an uninterruptible
service. Users do not need to worry about network failures or slow internet
connections.

e Scalability: Updates and modification on a cloud computing architecture can
be very expensive. Edge computing do not require a datacenter to store data
and it is easy to add and remove devices from the network architecture.

For sure, the limitation that characterize an edge computing device are strong
constraints and developing a system which is comparable in performance with the
powerful machine learning tools can be rather challenging, but definitely it is a
way that it is worth to study.

1.4 MOREPRO project

Considering all the thematic exposed above, the MOREPRO project wants to bring
on the field a new and innovative proposal, which is not present in any production
system nowadays. It is basically based on a logic architecture distributed in three
different levels:

e Monitoring of the SoH of machine and plant critical components through
embedded sensors and, consequently, applying machine learning and data
mining techniques.

o Keeping track of the SoH of the machine using digital twins tools. The
goal is to combine real-time environment signals along with some estimated
quantities in a specific simulation environment.

e Developing of forecast models, able to estimate the SoH of the machine and
the time evolution decay of the plant/machine.

The general development architecture can be subdivided in two main levels. A
first field level (Edge), where signals will be acquired and processed for a local
supervision of the SoH. This is extremely useful to have a rapid reaction when

11
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any danger anomaly is detected. The same signals are then deployed to a second
server level, mainly located on the cloud, which will be able to set up a proper
bank of data, implement digital twin techniques and compute the right parameters
to reconfigure the elaboration logic of every single edge device. The crucial part
is the continuous interoperability between the two levels and the possibility to
reconfigure the architecture on the fly depending on the case problem. The figure
below represents a general scheme on which the project will based on.

Qutput of the local monitoring
system based on a local data
processing

Additional plant
information

Sensor

- S
% Data mining & Data mining & Cutput of the monitoring
digital twin > » | digital twin | = system based on intelligent
—_— (local) = (remote) algorithms
Simulaton ~———— B
output I £
—_—— ] Decision
Field signals Local = making and System
from different ——» Supervisor > — malnten_ance — interventions
levels planning

Figure 1.2 Synthetic structure of MOREPRO system

With reference to the figure, the edge device will implement the data-mining,
digital-twin and monitoring algorithm allowing the bidirectional data exchange
with both the plant and the supervisor. In practice, it will process the real signal
coming from the field along with the simulation output in order to compute a SoH
of the considered element under monitoring. On the other side, the supervisor will
be able to adjourn and perfection the algorithm of the device itself in order to re-
configure and support the planning decisions. A possible physical implementation
can be seen in the next figure.

Machine CNC control

o O@ j Integration Communication-bus

Smawr Supervisor
i : Server/Cloud
| e ====p -l
{

Gateway

Control panel and

Emergency = g

Edge device

Figure 1.3 Overall system structure
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1.4.1 Partnership

To the aim of this project several companies are involved. Thus, it is relevant
to see how each of them is involved in the work, in order to understand how
a development process is usually treated when a completely new and innovative
device must be designed.

e brain Technologies: it will in particular contribute to the definition and
design of the digital architecture (in collaboration with the other partners)
and to the software development of the distributed intelligence system pro-
posed by the project, including the architecture of the control supervisors
whose action is propagated both in the devices and in the cloud. brain Tech-
nologies will also contribute to the implementation, testing and validation
phases of the final prototype.

e MCM S.p.A: it will contribute to the analysis of user needs and to the pro-
posal of new or improved functionalities of the processing systems as drivers
for the development of the monitoring and predictive management methods
of the plants covered by the project.Other activities in which MCM will play
an active role include: 1) interfacing the machines for data collection, also
through the installation of new sensors; 2) supporting the integration of the
new MOREPRO solutions with the plant supervisor software, 3) analysis
and testing of the prototype system with its validation at the production
unit of CAMS, a partner in the project.

e AL.MEC: it will contribute to the design and manufacture of electronic
boards and components necessary for data collection from machines and
sensors, their mash-up and processing on board the machine and sending
standardised information to predictive maintenance systems.

e CAMS: it is participating in the project by contributing its vision and ex-
pertise as a user of highly flexible production lines for the manufacture of
complex, high value-added parts. CAMS will support in particular 1) the
first phase of definition and analysis of the requirements that will guide the
subsequent development of the new plant monitoring and predictive manage-
ment solutions, 2) the identification and definition of its cases of industrial
interest, 3) the implementation, testing and validation of the final prototype
in its own production lines equipped with flexible MCM systems.

1.5 Work Organization

MOREPRO project is starting out in september 2020, and the work must be
organized in order to start the development as fast as possible. In this situation
model-based software design can be very suitable. Model-based approaches recom-

13



1 INTRODUCTION 1.5 Work Organization

mend to follow precise development procedures, the so called V-shaped represents
a process to be chased in order to guarantee efficiency and cost-effectiveness during
such project natural advancement.

Concept of Verification & Operation &
Operations

alication Maintenance

System

L Verification

Project
Test and

Detailed Integration )
Integration

Project Design and Test
Definition

Time

Figure 1.4 V-shape development flow.

During the first phases of the realization of scientific projects such as MOREPRO,
model-based approaches as the one shown in figure [1.4] are necessary for the or-
ganization of the work. This become even more true as much as the number of
people that join the project increases. Therefore, in the following paragraphs there
will be a brief introduction to the team components and their aim in the V-shaped
development, followed by a presentation of the work flows and the aims of the
project team.

1.5.1 Morepro team

From the collaboration between Politecnico di Torino and brain Technologies srl it
is arised a team of graduate students supervised by brain Technologies engineers,
with the aim of developing the first phases of the project development flow. As it
was previously mentioned, the project is only at the first stage, so once it is defined
the concept of operations, the aim of this team is to obtain a first implementation
after the first six months of work. Despite the development flow suggests to focus
first on the requirements and analysis, it has been decided to employ one member
of the team to do a requirement analysis, two members working on a detailed
modelling of the problem, and the three remaining members working on the core
implementation. This choice comes from the necessity to get a fulfilling conclusion
satisfying all time-requirements.

Therefore, there are three different sub-teams:

1. Prediction team: This team will focus the attention on the prediction analysis
and parameter estimation. After the development of a simple model, the aim

14



1 INTRODUCTION 1.5 Work Organization

becomes to deeply study parameter identification through kalman-filters and
residual error analysis techniques. Estimation of wear and SOH of a CNC
machine is the main objective, to get to this, multi-model approach will
be implemented and tested in detail, using simulative environment such as

MATLAB and Simulink.

2. Modelling team: This team is created to obtain a preliminary detailed mod-
elling of the kynematics and dynamics of a CNC Machine as first. Sec-
ondly, the main objective is to study and specify the interaction between
end-effector and workpiece.

3. Requirements team: This team is in charge to carry out an overall view
of the project, analyzing requirements and specifics for each part of the
project. Finally, another important role of this team is to develop a design
of experiment in order to opportunely test the functionalities individually
and together.

After the first three months of work, the team sub-division is not valid anymore
because each team-component will be focused on developing further features listed
in [1.0.2l

TEAM ORGANIZATION CHART

Specifics and
Requirements
Team
Prediction

team

3

Luca Cecere

Adriano Marzio

b

MOREPRO Davide Zanon

‘ -

Antonia Verde Modelling
Team

. Ing. Giovanni Guida

Supervisor

Michele Pinto

Joud Basso

Figure 1.5 Team organization chart.
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1 INTRODUCTION 1.5 Work Organization

1.5.2 Work flow

An organization of the work flow is fundamental to help streamline and automate
repeatable tasks, minimizing room for errors and increasing overall efficiency. The
MOREPRO project work flow can be synthesized in the following schematic:

Requirements Prediction Testing
Defining requirements, Implement prediction algorithm for Test the device with SIL(software in
expectations, feasability and assign wear estimation and for the the loop) and HIL (hardware in the
tasks for all of team components. improvement of models and raal loop procedures)
W P s W
&) & Fo - Fo
A A d A A A
o0 i [ seoc2 ] i
Modelling Coding g
Develope a detailed mathematical Translate everything into
model of the CNC machines and executable code, developing
study contact forces between end- firmware and all softwares needed
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Figure 1.6 Workflow schematic.

As it was explained in the previous paragraph, the tasks have been assigned to
be executed in parallel, however they are meant to be put together, however, it is
important to keep in mind a clear idea of the pre-determined work-flow.

For what regards this thesis, the work-flow contribution in terms of what is carried
out in team and what individually is well defined and it can be represented as
follows:

Team Individual

Physical model of Set-Membership

the CNC machine |  Pparameter
and upgrade

identification

| | Interaction
EKF Bank model analysis

— EKF Bank update

| | Functional and
Sensitivity tests

Figure 1.7 Workflow contribution.

The individual points can be summarized in:

e Set-membership identification on the unknown parameters of the model.
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e In-depth modelling of the interaction between the end-effector and the work-
piece.

e Update of the multi model according to the new friction coefficient model
and various tests (functional and sensitivity) to verify the correct behaviour
of the multi model system.
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1.6 Thesis outline

The contents of this thesis are organized as presented in the following.

In Chapter 1, an introduction related to the field of wear estimation, the ap-
plication areas and their main characteristics is reported. The CNC machine is
presented as a case study and in order to estimate its SoH the advantages of an
edge computing approach are analysed. This is followed by the presentation of the
MOREPRO project, with objectives, overall system structure and partnership.
Finally the work organization between the team is described along with the work
flow timeline.

In Chapter 2, an in-depth study of the state of the art literature in topics of interest
for this work is carried out. First there is a presentation of the different types of
system maintenance and then specifically the various techniques for estimating
SoH are examined such as Model-based approach, State observer and Learning
algorithm. Finally, a summary table of all the methods with the main advantages
and disadvantages is also proposed.

In Chapter 3, the design of the physical model of a CNC machine is described,
in order to be able to develop a prediction algorithm. The approach is to com-
bine the state equations of a DC motor with the mechanical equations of a CNC
machine and simulate the plant to collect the values of the state variables and to
discriminate which parameter mostly affects the SoH.

In Chapter 4, a parameters identification is carried out. In particular, the approach
used is the set-membership one due to the inability to identify some parameters
with a Kalman Filters Identification method tested by a colleague. The algorithm
is applied to the state equation which allowed such an approach.

In Chapter 5, the multi model approach is implemented. The algorithm involves
a bank of N Extended Kalman Filter, each based on a different wear hypothesis
taking into account the friction coefficient as the most significant parameter. The
state variables of the plant model is estimated by the filters and a corresponding
residual error is analysed through a suitable logic in order to choose the filter
model that best approximate the plant condition.

In Chapter 6, an in-depth modelling of the interaction between CNC end-effector
and workpiece is developed in order to have a better information from the simula-
tion performed. A case study is the dependence of friction coefficient on temper-
ature and therefore it is added to the initial model. Another influencing factors
emerged from literature are the machining speeds. Finally, by putting the different
dependencies together, the friction coefficient is expanded as a function of other
parameters or variables. It is proven that the one with the greatest impact on the
change in SoH is the chip load. The final model is then modified by integrating
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the state equations with the new formulation of friction coefficient.

In Chapter 7, accordingly to the model upgrade, an update of the EKF bank is
needed. The chip load becomes the new wear condition hypothesis on which each
filter is based. Finally, a series of tests were carried out: functional tests in order to
analyze the correct behaviour of the multi model system and to verify the matching
between the best model choice with the hypothesis assumed; a sensitivity analysis
on the residual error produced by the bank of EKF with the aim of identifying,
among the most significant parameters of the CNC machine model, how their
possible variations affect the integral error produced and how a different input
conditions affect the state observer behaviour.

Concluding remarks obtained from this thesis will be presented after Chapter 7.
Moreover, promising new project lines that emerge from this work will be outlined
as well.
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2 State of art

System reliability is one of the main issues in the nowadays industry, thus the de-
velopment of advanced system maintenance techniques is an emerging field based
on the information collected through system or component monitoring (or system
state estimation) and equipment failure prognostics (or system state forecasting).
According to the standard EN 13306 (2001), such techniques can be grouped into
two main categories. The first one is corrective maintenance and it consists of
replacing the component and repairing the damage after some major breakdown.
This kind of approach is used when the consequences of a failure are not so crit-
ical and the intervention on the field does not require a lot of costs and time. In
particular, we refer to palliative maintenance when the repair is provisional, and
curative maintenance when it is definitive. The second one is preventive main-
tenance and it refers to provide an alarm before faults reach critical levels so
as to prevent system performance degradation, malfunction, or even catastrophic
failures. When the maintenance intervention is time-based, meaning that the com-
ponents are replaced based on a predefined schedule which relies on the working
hours of the component, it is referred as predetermined maintenance. Obviously,
this approach is not optimal, since the components are being replaced before the
end of their lives, therefore increasing the costs.

A possible solution is to use condition-based maintenance, which refer to the anal-
ysis of real-time data in order to find in the change of their characteristic a possible
failure. However, this approach do not guarantee to design a maintenance policy
with certainty. On the contrary, predictive maintenance try to estimate the SoH
of the machine, relying on more dynamic algorithms. [0]
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Figure 2.1 Forms of maintenance

2.1 Methods for estimating SoH

1. Model-based approach

This approach makes use of physical failure model in order to predict the
degradation rate of a component or its lifetime. In practice, a mathematical
model able to capture the failure mechanism must be developed. It seems
obvious that the more accurate and sophisticated the model is, the more
precise will be the SoH estimate of the machine under control. However, it
is not always possible to obtain a model that perfectly adhers to the reality,
that is why a trade-off between a very precise model and an estimate that
allows to hide the lack of knowledge of the plant is needed. Usually, this
approach follows some prefixed steps:

— Critical part selection: it is important, especially in very complex
plant, to focus the study only on the part that actually contribute to
the lifetime duration of the machine.

— Failure mechanism determination and model definition: intu-
itively, this is the most difficult part, where a suitable model must be
designed in order to capture the most relevant aspects.

— Governing loads evaluation: it is important to understand which
loads affects most the failure and how they are related to the operational
usage of the system.
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— Data collection: once the model is defined, it is possible to collect
data from the field.

— Failure prediction: combining the monitored data with those one
coming from the model it is possible to have an actual estimation of the
health of the plant.

— Model validation: finally, it is possible to determine how the model
is reliable by comparing the failure prediction with actual failure data.

7]

In particular, having a view at the models available in literature, we can
distinguish between different kind of models:

e Electromechanical models: in this case we have models that describe
the behavior of the plant by means of equations that link macroscopic
parameters such as forces, currents, torques, etc. This approach results
to be very accurate but at the same type they are very time-consuming
in terms of computation.

e Mathematical models: these are based on the calculation of coeffi-
cients of linear and non-linear mathematical functions, needed to inter-
polate the data obtained experimentally through the measurement of
some relevant quantities. The negative aspect is that these functions
result not to connect in a natural way the physical quantities between
them, often finding relationships that have no real link with the actual
dynamic of the plant. [16]

2. State observer

State observer is a very popular approach to system maintenance. For linear
systems with additive Gaussian noise terms, KF can be used for prediction.
However, when dealing with nonlinear systems with additive Gaussian noise
terms EKF are more suitable. For nonlinear systems with non-Gaussian
noise terms, the PF also called sequential Monte Carlo method, which are
based on the sequential importance sampling (SIS) and the Bayesian theory,
lead to a suboptimal solution to state estimation problem [§]

e KF is an established technology for dynamic system state estimation
that is mostly used in many fields including: target tracking, global
positioning, dynamic systems control, navigation, and communication.
The KF covers a set of recursive equations that are repeatedly evaluated
as the system operates [9]. Any causal dynamic system generates its
outputs as some function of the past and present inputs. It is often
also convenient to think of the system having a “state” vector (which
may not be directly measurable such as the SoH of a machine) where
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the state takes into account the effect of all past inputs on the system.
Present system output may be computed with present input and present
state only, past inputs do not need to be stored. The KF can be viewed
macroscopically in this way:

System
Uj > > Vk
Xk
Y +
o
Model .
- ~ > Yk
X

Figure 2.2 Schematic of state update

The true system has a measured input u; and a measured output ys .
It also has an unmeasured internal state x . A model of the system
runs in parallel with the true system, simulating its performance. This
model has the same input u, and has output y;. It also has internal
state Zp, which has known value as it is part of the model simulation.
The true system output is compared with the model output, and the
difference is an output error, or innovation. This innovation is converted
to a vector value by multiplying with the Kalman gain Lj, and used
to adapt the model state 2 to more closely approximate the true sys-
tem’s state. The state estimate and uncertainty estimates are updated
through computationally efficient recursive relationships.

e EKF (Extended Kalman Filter) is used in order to deal with non-
linear systems. In practice, it is based on a linearization of the system
such that is possible to treat it as a linear time-variant (LVT). Since
this algorithm will be widely used during the Thesis work it will be
introduced and discussed more in detail in the next phases.

e Particle filters are nonlinear state observers that approximate the
posterior state distribution using the set of weighted spots, called par-
ticles. The particles consist of samples from the states-space and a set of
weights which represent discrete probability masses. A better estimate
can be obtained by increasing the number of particles. Particle filtering
has a wide applicability in fault prediction because of the simple imple-
mentation. The algorithm consists of two steps: the first one is state
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estimation, and the second one is long-term prediction. The state esti-
mation involves estimating the current fault dimensions and changing
parameters in the environment. The next step is the state prediction,
which uses the current fault dimension estimate and the fault growth
model, to generate state prediction from (7 + 1) to (7 + p). Once the
long-term prediction is estimated, given the lower and upper bounds of
a failure zone (Hy, and H,;), the prognosis confidence interval can be
estimated.

3. Vibration monitoring
VM is a particular way of analyze the SoH of a machine by using, as obvi-
ous, vibrations as an indicator. This technique is particularly used because
vibrations bring an high content of information, in the sense that a possible
damage is almost instantaneously captured by them. However, vibration-
based monitoring applications focus more on diagnostic aspects than pre-
dicting ones. Nevertheless, in some cases this method can be used and useful
for making a prognosis of the system. Thus, looking at the PF-curve in the
figure, it is possible to distinguish between a first part on the left, where after
a certain time of inspection a point of deterioration observability (P) used for
monitoring purpose, and a second part on the right, where the objective is
to predict the behavior of the curve till the failure, used for prognosis. |7, [10]

Inspection Onset of
intervals deterioration ) .
s Point of
: A’/ ; observability of

Py  Geteriontion

Functional
Failure

Y

F

Condition ——»

Time ——» «—— P-F Interval —»

Figure 2.3 P-F curve

4. Moving Horizon Estimation
MHE is a powerful technique for facing the estimation problems of the state
of dynamic systems in the presence of constraints, nonlinearities and distur-
bances [I1]. MHE is an optimization approach that uses a series of measure-
ments observed over time, containing noise (random variations) and other
imprecisions and produces estimates of unknown variables or parameters. It
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requires an iterative method that relies on linear programming or nonlinear
programming solvers to find a solution. The basic concept is to minimize an
estimation cost function defined on a moving window composed of a finite
number of time stages. The cost function includes the usual output error
computed on the basis of the most recent measurements and a term that pe-
nalizes the distance of the current estimated state from its prediction (both
computed at the beginning of the moving window).

5. Learning algorithm
These techniques use measurement signals and their statistics to create non-
linear structures which can provide desirable outcomes given the input data.
These structures include a wide range of methods, such ah principal compo-
nent analysis (PCA), partial least squares (PLS), artificial neural networks,
fuzzy-logic systems and graphical models like hidden Markov models (HMM).

e ANN propose methodologies similar to those in the biological nervous
system. For a set of available monitoring data which are used as inputs
and predefined, known outputs it is possible to use some of the training
algorithms, such as backpropagation algorithm, to map the connection
between the input and output. Neural networks are selfadaptive struc-
tures whose weights between neurons are adjusted by minimizing the
criteria to match a model to desired outputs. The training procedure
allows the network to learn the relationship among the data without
engaging the model of the system. Once the weights are set, the ANN
is ready to generate the desired output as a fault evolution prediction.

INPUT LAYER HIDDEN LAYER (1) HIDDEN LAYER (L) OUTPUT LAYER

Figure 2.4 Schematic of a Artificial Neural Network

o Fuzzy logic also provide mapping between the input and output sig-
nals. It can be said to be an extension of the multi-value logic. In a
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wider sense, is almost synonymous with the theory of Fuzzy sets, refer-
ring to classes of objects with fuzzy boundaries, in which the concept of
membership takes on a matter of degree [12]. Unlike neural networks,
they are based on linguistic and reasoning human capabilities. By defin-
ing the appropriate if-then rules and adjusting membership functions,
fuzzy systems can give very accurate prognosis.

INPUTS | \-_‘—_,,/ | OUTPUTS
>| Fuzzifier Rule base Defuzzifier >
Fuzzy | Linguistic Fuzzy |
Input Sets Inference Output Sets

Figure 2.5 Components of a Fuzzy logic system

The common fuzzy logic system processes data in three sequential stages:
fuzzification, inference and defuzzification. In the fuzzification step, a
crisp, or well-defined, set of input data is gathered and converted to a
fuzzy set using fuzzy linguistic variables that is, fuzzy linguistic terms.
Second, an inference is made based on a set of rules. Last, in the defuzzi-
fication step the resulting output is mapped using so-called membership
functions. A membership function is a curve that maps how each point
in the input space is related to a membership grade. Using the wear
estimation example, various levels of wear in a given set would receive
a membership grade between 0 and 1; the resulting curve would not
define “new” but instead would trace the transition from worn to new
[13].

e Hidden Markov Models is a statistical model which can be used to
describe system transitions between states. It represents an extension
of a regular Markov chain with unobservable or partially observable
states. The general structure of a discrete-time HMM with N states,
S = (s1,82,...,sy) and M observation symbols, V' = (v, va,...,vp) is
shown in the schematic below.
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Figure 2.6 Schematic of HMM

The states are interconnected so that a transition between any two
states is possible. The hidden state at time t is denoted as ¢ and
the state-transition rule follows the Markov property, meaning that the
state ¢; depends only on the state ¢;_;. The transition matrix A = {a;;}
stores the probability of state j following state i. The observation ma-
trix B = {b;(k)} shows the probability of observation k being produced
from the j-th state. The initial state array # = {m;} holds the infor-
mation about initial probabilities; thus, the formulation of HMM is:
A= (A, B,n).

HMMs can be used to estimate the occurrence of a breakdown, before
it happens. Using the Baum-Welch algorithm, HMM can be trained
in order to give desired outputs related to system health, for the mon-
itored data inputs. HMM offer a reasonable estimation of the RUL
time, meaning the time when the system will be in the specified, faulty
state. Also, it is possible to estimate the probability of system being in
specified state after n iterations.

6. Frequency domain condition indicators
Another possibility regards the analysis of frequency domain indicators. This
kind of research was fundamental for the whole thesis streamline, because it is
the base of information extrapolation from signals. A deep study can be done
about all frequency domain indicators but the article "Developing a real-
time data-driven battery health diagnosis method, using time and frequency
domain condition indicators” [14] perfectly sum up the main features in a
brief article. This article is about battery health diagnosis, but the main
principles can be applied also in the study-case of this thesis. The flow
diagram of the construction of condition indicators which is used in the

study is depicted in figure
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Figure 2.7 Flow diagram of condition indicator construction. The gray boxes
indicate the condition indicators.[14]

7. Hybrid algorithm
In the literature it is possible to find some methods that make use of some of
the theories exposed so far in order to increase the estimation quality of the
SoH. These is done in order to overcome the limitations of a single approach.
It will be seen that also in this Thesis work a mixed/hybrid approach will
be carried out, using some of techniques exposed above, such as EKF and
multimodal analysis.

2.1.1 Past project references

This project research, and the whole thesis work, is part of a continuing evolving
series of projects handled by brain Technologies srl. Since the origin of MOREPRO
comes from the evolution of some ideas developed in the previous projects, it is
necessary to have a preparatory overview of the ideas and the principles make up
the past projects.

The projects that precede this work are:

1. The BAT-MAN research and development, which is an industrial project
owned by brain Technologies and it is the starting point of the application
of the innovative approach based on EKF batteries approach and whose
main goal is the realisation of an electronic device capable of detecting and
forecasting, in real-time, the working conditions of a Lead-Acid battery.

2. The ERMES (Extendible Range MultiModal Estimator Sensing), which
is an algorithm designed by Brain Technologies whose innovative value is
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to identify the methodologies to apply to the problem of the diagnosis of
an accumulation system, and in particular to the problem related to the
estimation of the SoH of batteries. The proposed ERMES algorithm for the
estimate the state of health (SoH) and the state of charge (SoC) is based on
the model with the augmented state, which means to consider the uncertain
parameters related to SoH and SoC as states and not simply as output. The
algorithm involves the generation of a battery model based on an equivalent
circuit and a bank of N EKF (Extended Kalman Filter) each based on a
different SoH hypothesis. Since this approach is very similar to the one
adopted in this thesis, a more detailed explanation of the multi-model and
the residual error analysis approach is available in the dedicated chapter of
this thesis (chapter ??, reference related to this project is Virtual Sensing

for the Estimation of the State of Health of batteries [19]).

2.1.2 Comparison between the methods

Advantages Disadvantages
Model-Based High reliable results High computational ef-

when the model is fort

accurate

Kalman Filters

Particle Filters

Vibration Monitoring

Moving Horizon

Learning algorithm

Hybrid algorithm

High accuracy and online
estimation

Ease implementation,
ability to cope with large
scale system

Speed of fault detection

High noise filtering

High accuracy and esti-
mation

Online estimation, cor-
rection of disadvantages
of other methods

High calibration and
strong hypotesis on the
model

Strong sample size de-
pendence

Hardly suitable for prog-
nosis scope

Very high computational
effort, not able to cope
with high dynamics
Need of an huge set of
data

Strongly depends on the
model precision

Table 2.1 Comparison between SoH estimation methods.
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3 Physical Model

Mathematical modeling is the art of translating problems from an application area
into tractable mathematical formulations whose theoretical and numerical analysis
provides insight, answers, and guidance useful for the originating application [16].
Nevertheless, the modeling of a CNC machine can be a very challenging objective,
this is due to the complexity and the high number of elements that those techno-
logic tools can achieve.

Starting from a blank sheet, the general idea beside this Thesis work is to de-
velop a model able to represent in the most effective way the real condition of
the plant under assumption. However, considering the high complexity of a CNC
machine, it has been decided to start from a very basic model in order to allow
an embryonic prediction algorithm as soon as possible and obtain some effective
results from a simple simulation environment. The main objective of the simu-
lation is to understand and emulate the behaviour of a particular manufacturing
system on a computer prior to physical production, thus reducing the amount of
testing and experiments on the shop floor. By using a virtual system, less ma-
terial is wasted and interruptions in the operation of an actual machine on the
workplace can be avoided. The goal of the modern manufacturing technologies
is to produce already the first part correctly in the shortest period of time and
in the most cost effective way. Since the product complexities increase and the
competitive product life cycle times are reduced, the construction and testing of
physical prototypes become major bottlenecks to the successful and economically
advantageous production of modern machine tools [I7]. Tt is clear that, in this
way, it is possible to discriminate better which parameter/quantity mostly affects
the case under assumption. In a second moment, it will be up to the modelling
team to further complicate the model in order to have a better adherence to the
real case.

As for all mechatronic devices, it is possible to distinguish between a mechanical
and an elctrical part, parts that are not independent but they work together to
exploit the necessary tasks.
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3.1 Mechanical part

As regards the mechanical part, a very simple model of a milling machine is used.
In particular, having a look at the figure below, a rotational disc is considered that
translates in the piece direction in order to cut it.

LSS

Figure 3.1 Simplified milling machine model

The approach used to get the equations governing the system is the Newton one, a
balancing between forces and torques involved. Since the schematic is very simple,
defining the various quantities:

e 0: Rotational velocity.

e i: Linear velocity.

e F: Horizontal force that moves the cutter.
e F5: Normal Force due to contact.

e f.. Binary function that defines the presence of contact. Indeed, it assumes
1 value when the work piece is present or 0 otherwise.

e T,: DC motor torque applied to the cutter.

o [,: Inertia of the motor and the cutter.

e 3. Contact rotational friction.

e A,: Depth of cutting.

e cost: Minimum contact force (introduced in order to avoid model disconti-

nuities).
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It is possible to trace the two Newton equations:

n Ta - /BQFC
f=_o "¢
I
By — fo(FR Ay + cost)
B m

3.2 Electrical part

For the electrical part instead, modern CNC machines are driven by brush-less or
servo motors. The most important characteristics required for the servo motors
that drive CNC machines are: fast response to instructions, good acceleration
and deceleration properties, the capability to control velocity safely in all velocity
ranges and to control very precise the position [I8]. Machines with computer
numerical control need controllers with high resolution that gives good precision.
At this time, both classical and modern control techniques are used, such as PID
controllers, feedback control, feedforward control, adaptive control or auto tuning
methods.

In order to get a basic framework easy to manage, a DC motor is implemented
to drive and interface with the mechanical part. The figure [3.2 shows a simplified
DC motor circuit used to pull out the electrical equations.

Figure 3.2 Simplified schematic of a DC motor

Defining the following quantities:
e V: supply Voltage.

e i,: Armature current.
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T,: DC motor torque applied to the cutter.

k;: Motor torque proportionality constant.

L: Inductance.

R: Resistance.

Vy: Back E.M.F

Att,or: Engine friction.

k: Proportionality constant.

b: Total flux

e [;: Motor inertia.

it is possible to derive the equations for the supply Voltage and the Torque applied
to the cutter.

( dig(t)
Vs = Ri,(t) + L——
Rz‘( )+ p
V, = kbé
T, = kyiq(t) — At
| 7o = 110

Thus, playing a little bit with the equations:

keviq(t) — Attt = 1.0
dia(t)
dt

Vs = Rig(t) + L + kyf

Since the supply Voltage is related to the angular velocity through the equation:

T,
Vi= "R+ kw
k
rearranged for angular velocity:
V. T
TR

Two main variables affect the speed of the motor in our final equation: the supply
Voltage and the Load Torque.
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3.3 Plant model

Finally, the electromechanical model used is mainly based on the following dynamic
equations:

“ T L L
Ty, = kyig(t) — Aty
T, — BOF.

I,
Fy — fo(FyA, + cost)

m

é:

Thus, replacing the torque equation in the angular acceleration one, the final state
equations of the model are obtained:

( i kiia Attmeld BE.0
I, I, I,
. F1 FC<F204 -+ C)
T=———">
m m
: Ve, Ri, k0
lg = — — — —

where the states are:
e 0: Rotational velocity.
e i: Linear velocity.

e i,: Dc current of the motor.

3.3.1 Simulink implementation

The equations described to date can be translated into model through suitable
simulation environment program. For this thesis work, it has been decided to
implement the model in Matlab and simulink, because are suitable for this sort
of simulations. Implementing such mathematical model using those tools is very
intuitive, particularly if the MATLAB Guidelines are followed. Applying these
guidelines can improve the consistency, clarity, and readability of your models.
The guidelines also help you to identify model settings, blocks, and block param-
eters that affect simulation behavior or code generation. MATLAB guidelines can
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be found in the mathworks site [19].

In the figure it is shown how it is implemented a simple contact logic using
boolean operators, which is intended to handle the contact with the workpiece.

p|>=
[
Ot
cutter_pos : | >
» > :D—b double w1 )
E—b o o contact
B
e iy Lo
velocity

Figure 3.3 Contact logic

For the implementation of the equations described in the paragraphs[3.2/and 3.1}, it
was decided to create a dynamic MATLAB function and to use integrator blocks
to integrate the output and feedback where needed:
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3.3 Plant model
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Figure 3.4 Plant Simulink.

X_pos

Initial condition of the integrators are all set to 0, as well as the starting condition

of the contact. The output of the plant coincide with the states of the system:
1. 6: angular acceleration.
2. I : linear acceleration.

3. iy : derivative of the current.

In the next page (figure , there is the overall simulink implementation of the

model.
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3 PHYSICAL MODEL
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To sum up, the simulink blocks are:
e Green block: plant implementation.

e Orange block: simple triggers which introduce 2% of uncertainty on the
inputs.
e Cyan blocks: PID controllers on the position and angular velocity.

e Yellow block: contact logic.

For what regards the PID controllers, they have been tuned using a MATLAB
predefined tool(Control System Tooolbox) in such a way to find a good balance
between robustness and efficiency. Instead, the next plot represents the contact
logic output:

Contact force[N]
© o ©o © o © o o
N w E-N w [=2] ~ [e-] ©w -

o
=y

o

0 20 40 60 80 100
Time[s]

Figure 3.6 Contact force control input plot.

As it was expected, since the contact logic is made up so that the output is 1
when there is contact and 0 when there is no contact, the contact force input plot
oscillate in a discrete way between those two values. Finally, in the figure
are depicted all outputs and main parameters of the model so that the physical
behaviour is described.
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3.3 Plant model
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Figure 3.7 Summary plots of Model’s main parameters.
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3.4 Most significant parameter choice

A literature research on the parameters that most influence end-effector wear has
shown that the friction coefficient plays a key role in the interaction between
the workpiece and the end-effector tool.

In this first phase of development, it is decided to adopt the friction coefficient,
referred to as 3, as the parameter on which to base the filter wear hypothesis.
From now on, in the multi-model approach and therefore in residual error analysis
and evaluation tests, 5 will be used as a parameter to be estimated and from which
to extrapolate the SoH of the machine.

Clearly, the interaction between the tool and the workpiece is more complex than
a simple coefficient, since it depends on various factors such as temperature, the
used material, relative speed, applied forces, cooling media, etc.

Thus, the key factor is that the analysis carried out during this Thesis work must
work independently of the specific choice of the parameter in a way that a conse-
quently complication of it could lead to results that are not so far from the ones
obtained considering [ as representative. This is the reason why, an in-depth
modelling of the interaction will be the goal achieved in Chapter [6]
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4 Parameter identification

Since in the first phase of the project there are not real-time signals available from
embedded sensors and structural data of the CNC machine, a step further to the
development of the physical model, is to identify unknown parameters.

System identification means estimate the possible values of the unknown parame-
ters that are inside the model, in order to built the final model of our dynamical
system. There are many possible way to follow but the basic idea to solve this
problem is to use the inputs and outputs measured in order to built the mathe-
matic relations between the parameters. The system identification can be done in
two possible way:

e gray box model: the model of the system is available but there are different
unknown parameters to be estimated.

e black box model: the model is not available, the whole estimate of the pa-
rameters is done only building connections between the inputs and outputs
values.

The parameters to estimate are the following:
0 = [Ky; In;m; Fy; L Res; K,

with
e K,: motor’s constant
e [, inertia
e m: tool’s mass
e [5: contact force
e L: inductance of the motor
e Res: resistance of the motor
e Kv: motor’s constant

First an identification approach is followed by a colleague using Kalman filters but
it turned out that some parameters could not be identified with such an approach.
In particular, K; and I, are not inside an acceptable range of values, probably
because they are not correlated with the collected data from the plant simulation.
Therefore, the goal is to employ a set-membership identification for the state
equation which allowed such an analysis on the unknown parameters of the model.

41



4 PARAMETER IDENTIFICATION 4.1 Set-membership identification

4.1 Set-membership identification
Set-membership identification theory is based on the following main ingredients:

e A-priori information about the system to be identified:

u(t) w(t)

Figure 4.1 Block scheme of the system

w(t) = f(6,r(t)), where:

u(t)=input signal;

w(t)=output signal;

r(t)=regressor that depends on the past values of u(t) and w(t);
- f € F and F is a given class of function.
e A-priori information on the noise in the collected data:
- Noise model structure (Equation error, Output error, Error in variable);
- The noise is assumed to belong to a given bounded set.
e A set of input-output data corrupted by noise (experimentally collected).
The main objective of the Set-membership theory is:
1. to identify a good model for the system under studys;
2. to quantify the accuracy of the identified model.

Since the input-output data collected experimentally are uncertain, also the ob-
tained model will be affected by uncertainty.

In the Set-membership identification theory we call Feasible Solution Set (FSS)
the set of all the models that satisfy the equation of the system given by the a-
priori info on the system class for all the collected data corrupted by bounded
noise.

When the class of systems F is parametrised by a parameter vector #, we can
replace the FSS with another set called Feasible Parameter Set (FPS) that is
the set of all the parameter values that satisfy the equations describing the model
and it is denoted with Dy.

The computation of 6; requests the minimization of a linear function of 6 subjected
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4 PARAMETER IDENTIFICATION 4.1 Set-membership identification

to a set of linear equalities and inequalities in the variables 6, thus in order to solve
a polynomial optimization problem a Matlab relaxation method called SparsePOP
is used.

In addition, the Parameter Uncertainty Intervals (PUI) should be defined:

PUIy, = [6;,6,]

where:
0; = mingep, 6; (4.1)
ai = IMaXgpep, 0; .

4.1.1 Application

Considering the state equation of the system:

i kio. B8O Atty0

I, I, I,

it is necessary to convert it into a form that can be suitable to the application of
the Set-membership algorithm.

First of all we should move from the time domain to the Laplace domain and write
the equation in the form of a transfer function where:

e Output: angular velocity of the cutter
e Input: current of the DC motor

Remembering that 5 is a dynamic variable, in the context of parameter identifica-
tion we can assume it to be constant as we are identifying the model parameters
at a nominal level. We obtain:

T 0.7
8(8+E>

where the only parameter to be estimated are k; and In. Now by means of the
forward Euler discretization method, with sample time T, we obtain the transfer
function in discrete time:

that corresponds to the classical SparsePOP form:

Y 05

X 224612+ 6,
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4 PARAMETER IDENTIFICATION 4.1 Set-membership identification

The parameter vector to be estimated is: 0 = [0y, 02, 03] where:

( 0.7T
91 — [— —
g 01T
2 = In + (42)

03 = T2(kt/fn)

\

Applying the SparsePOP relaxation algorithm the PUI’s values obtained are:

PUI min max
0, -2.65 -1.88
0, 1.05 1.57
05 -0.16  0.01

Table 4.1 Parameters Uncertainty Intervals

By averaging the minimum and maximum of each interval we have that:

0, = 2.265
0, = 1.31 (4.3)
05 = —0.075

4.1.2 Results

Now substituting the results obtained from [4.3]in [4.2] the values estimated are:
o [, —0.125
o K; =168

These values are in an acceptable range, thus they can be used for the project
analysis. To recap, the parameters value used are:
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4.1 Set-membership identification

Used value

K, 1.5

Fy[N] 3

L [mH] 0.1

Res [k(] 0.6

L,[K gm?] 0.13

K, 0.2

m [Kg] 3

Table 4.2 Parameters identification.
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5 EKF Bank: multi model approach

State observers are mainly used to provide an estimate of the internal state of a
given real system, from measurements of the input and output of the real system.
This utilization is very suitable when there is noise and it is needed to be reduced,
or when there is a state which cannot be measured directly and there is the ne-
cessity of have a more accurate estimation of it. Using a Kalman-filter in order
to understand the state and the working condition looking at the residual error is
not a common utilisation of such state-observers. What it is need to be done for
this scope is a deep analysis of the residual errors. The latter, are defined as the
module of the difference between a state estimation and the real state:
Supposing that x(t) is a state of a system M (z(t)):

A

Residual _error = |x(t) — x(t)| Vt (5.1)

The residual error can seem very similar to an estimation error, but there is
a slight but very important difference. On one hand, the residual error is the dif-
ference between the state estimation and the state coming from the output of the
real plant, so there is no need to know the internal exact formulation of the plant.
On the other hand, the calculation of the estimation error suppose to perfectly
know the real value of the parameter to be estimated. This difference is rather
crucial, because it is not possible to suppose the real value of the internal state
of the system. Moreover, it is important to mention that the residual error can
be affected by measurement noise. For this thesis work it was supposed to have
a really low measurement error on the states because the approach is intended to
be as much simple as possible at first.

Starting from the considerations done until now, is it possible to relate the residual
error to a state or to a set of parameters that can represents the SoH?

How much the other parameters changes affect the residual error calculation?
Which is the state on whom the difference of the residual errors are more high-
lighted?

Is it really possible to apply the multimodel approach for the estimation
of SoH?

The questions that need to be solved to answer to the last one are numerous, and
during this chapter there will be the proof of concepts and some possible answer
to the listed questions, mainly based on empirical approach.

The starting question is: What is the effect of a parametric variation on the resid-
ual error, and which is the weight of this variation? Initially, the focus was the
search for papers and/or documents that take into account the effects of para-
metric variations on the residual error produced by the observer: a possibility is
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to consider faults as parametric variations that induce a change in system behav-
ior. Nevertheless those kind of approach are quite time-consuming because require
strong theoretical analysis. Another available option, rather more practical, is the
search for a method that foresees a sensitivity analysis with the aim of identifying
which are the parameters whose variations have a relevant effect on the output and
consequently these parameters could be used as criteria to do the scheduling and
eventually decide which will be the partition method for the state space. Sensitiv-
ity analysis is the method most frequently used during research on this topic and
seems to give the best results. This method consists in getting a many data from
experiment strongly varying the condition, so that there is a strong background
where a a global sensitivity analysis(GSA) can be performed|20].

5.1 EKF

The Extended Kalman filter is a method to estimate both the states of the system
and also his parameters; it is an iterative procedure, composed by different equa-
tions that are fast evaluated as the system changes during time. In each step there
is the estimation not only of the system states but also of the covariance matrix,
indicator of the uncertainty of the states estimate. A ”large” value of covariance
indicates a high level of uncertainty while a ”small” one indicates confidence in
the estimate. As seen previously, our system is represented by the following state
equations:

(j_ hiia At BEO
-, I, I,

. F F.(Fa+c)

‘T = —

m m

- V. Ri, kb

/I/ —_— e — — —
(YT L L L

where the states are:
e 0: rotational acceleration
e 1: linear velocity
e i,: dc current of the motor

We can notice the form of a classical nonlinear system & = f(x,u) and starting
from the following state-space model in a discrete-time domain:

{Ik+1 = f(zg, up)+ws

vh = h(ze) + ¢ (5.2)

where x; are the states, ux are the inputs, y, is the output, wy is the disturbance
and vy, is a measurement noise. f(-) is a nonlinear state transition function that
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describes the evolution of states x from one time step to the next. The nonlinear
measurement function A(-) relates x to the measurements y at time step k. At
each time step, f(zg,ux) and h(zg) are linearized by a first-order Taylor-series
expansion. We assume that f(-) and h(-) are differentiable at all operating points
(ZL‘ ks uk) .

Wi v
k
j . »éﬂ. Unit Yk
|_. SGo) delay > g(+, ) Yk

State equation Mecasurement equation

Y

Figure 5.1 Diagram of nonlinear discrete time system in state-space form

The inputs uy are:
e V. armature voltage
e F7i: horizontal force that moves the cutter
e [.: function that define the contact with the object.

The states x;, are the same of the plant model while the output vy we suppose to
coincide with the states. We must define the following quantities:

o [}= g—f(xk,uk) = Jacobian of f computed in (xy, uy)
9
oh : .
o H;= %(:Ek) = Jacobian of h computed in zy
k

e 1, = estimate of x;, computed at step k

e 1} = prediction of z; computed at step k-1
e P, = covariance matrix of x; — 2

e ()% = covariance matrix of wy,

e R? = covariance matrix of vy

As regards the matrices Q¢ and R¢, since we have no information on the distur-
bances, we chose them as diagonal matrices by a trial and error procedure. The
algorithm can be summarized with the following step:

1. Prediction
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5 EKF BANK: MULTI MODEL APPROACH 5.2 Residual error analysis

zy = f(&_1, uk—1)
PP =F 1P FF |+ Q%

2. Update
Sy = HyPPHT + R*
Ky = P'HLS, !
Ay = yp — h(a})
T = 2} + KpAyg
P, = (I — KyHy) P}

In addition, a further step was added to the algorithm to calculate the residual error
for each state variable, which we recall is the modulus of the difference between
the estimates produced by EKF and the data collected from the simulation of the
plant. X

Residual error = |z(k) — xz(k)| Yk (5.3)
The final output of the EKF block are therefore the residual errors that is needed to
carry out an analysis and establish whether a multi-model approach may be better
for the final objective. In the figure there is the Simulink implementation of
the EKF.

Figure 5.2 Simulink scheme of the EKF.

5.2 Residual error analysis

Considering the residual error as raw value, it is not significant indeed watching
the errors amount every sample time does not lead to any particular conclusion.
To assign a meaningful sense to the residual error, it must be conducted a signal
elaboration and the discrete values of the error sampled in time must be processed.
Signal theory and data processing are a widely treated in today scientific literature,
so there are countless articles that can be followed in order to understand the best
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way to treat a signal. One of the most complete article is the one cited in the state
of the art chapter of this thesis [I4]. This article plainly explain how to analyze
residual errors using both frequency domain and time domain indicators. Among
all, some of the most simple and efficient according to the article are:

e Mean.

Integral.
e RMS.

Correlation.
e PSD.
e Covariance.

To verify which is the best, it can be applied and experimental approach. In
particular, it is possible to set up some test to verify which of this methods,
applied on the residual error, it is most suitable. It must be keep in mind that the
objective is to find a method that can highlight the difference between changing
of beta. That’s because the aim is to make the system very sensitive to little
change of beta, but confidently less sensitive to other parameters variations. So
the approach will be to test 20 little variation of beta, starting from the nominal
condition and increasing of 20% every step. It will also be reported a little variation
on the horizontal input force of about 2%. The nominal values (calculate with
beta nominal) of the errors elaborated for each state and for each considered are
reported in the following table:

Method Nom. Rot. acc.  Nom. linear acc. Nom. curr. der.
Mean 1.7111 0.0242 0.4959
RMS 3.6821 0.0509 1.1879
Correlation 1.3979 1.0000 3.8928
covariance 10.6403 0.0020 1.1663
integral error 58.7780 1.2503 33.7761

Table 5.1 Nominal values of the errors for each method.

In order to understand the results,it is also defined a FOM(Figure of merit) as a
simple index that describe how far the non-nominal condition model is with respect
to the nominal one. This FOM index is the ratio between the absolute value of
the residual error and the absolute value of the residual in nominal condition:
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FOM - |Residual error parameter|

|Nominal residual error parameter|

Keeping in consideration the nominal values reported in the table[5.1] the following
plot will show which signal manipulation can be considered as the most suitable.
Let’s start the tests from each method:
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5.2 Residual error analysis

1. MEAN:
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Figure 5.3 Mean test.

FOM angular FOM linear

FOM current

4.6759 1.4162

4.0266

Table 5.2 FOM mean
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2. Covariance:
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Figure 5.4 Covariance test.

FOM angular FOM linear FOM current
5.9107 1.7358 7.9633

Table 5.3 FOM Covariance
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5.2 Residual error analysis

PSD peak mean(|Rotation residual err|)

3. PSD: For the power spectral density, it has been considered an interpolation

of the maximum peaks.
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Figure 5.5 PSD test.

20

FOM angular

FOM linear FOM current

7.527

1.001 5.743

Table 5.4 FOM PSD
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4. Correlation:
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Figure 5.6 Correlation test.

FOM angular FOM linear FOM current
1.3979 1.0000 3.8928

Table 5.5 FOM Correlation
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5. RMS:
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Figure 5.7 RMS test.

FOM angular FOM linear FOM current
4.1469 1.3404 3.1979

Table 5.6 FOM Correlation
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6. Integral:
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Figure 5.8 Integral test.

FOM angular FOM linear FOM current
4.4911 1.0886 3.8739

Table 5.7 FOM Integral

Results can be summed up in the following tables:
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e Angular acceleration:

mean integral RMS cov corrye. PSD

1.93 58 58 30 61  —19.9
Bt 2.05 61 6 32 64 —18.6
2.19 66 62 34 68 —174
2.32 70 65 36 72 —16.8
I 244 73 67 39 76 —15.9
2.55 77 6.9 41 8 ~15
2.76 80 72 44 84  —14.2

2.88 84 74 46 8.7 —13.5
2.98 87 7.7 50 9.1 —12.7
3.1 91 79 53 9.6 —12.2

e Linear acceleration

mean integral RMS cov  corrpe. PSD

0.005 0.15 0.01 0.002 0.15 —63

The results on the linear acceleration, varying Fj, differ so little from the
results obtained with the nominal values that they are irrelevant.

e Current derivative

mean integral RMS cov corrpy., PSD

0.67 20 1.8 3.0 9.2 —-25.9
g1 0.71 21 1.9 3.2 9.2 —25.8
0.75 22 20 3.5 9.2 —25.2
0.79 23 21 39 9.2 —24.9
0.83 25 22 43 10 —24.8
I 087 26 23 4.7 11 —24.3
0.91 27 24 5.2 13 —23.7
0.95 28 25 5.6 15 —23.2
0.99 29 26 6.2 16 —22.6
1.03 31 2.8 6.7 18 —22.6

Beyond the good results for the integral error reported above, most of the methods
appear suitable for the scope. Indeed, choosing to utilize the rotation acceleration
error or the current related error, there is not a method that really take advantages
on the others. The RMS method and the integral are almost equivalent in terms of
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FOM, that indicates that are both good for the aim. So the decision to choice for
the integral error method comes from another consideration: the integral error
is cumulative and takes into account the previous state of the system. The RMS
is very good and will be used to elaborate the errors as well as the integral error.
Nevertheless, considering that mechanical system states naturally needs time to
evolve and change, taking into account a cumulative way to treat the residual error
is definitely the best choice. The integral error behaviour will be widely treated
from this point until the end of this thesis work.

5.2.1 Residual error comparison

Once decided that the integral of the residual errors is the most suitable choice to
carry out a multivariate analysis, it is possible to see what of the variables available
contain more information. This is done using a simulation environment composed

of:
e The Plant Model obtained in 3.3l
e The EKF described in B.11

e A logic of management and decision of the integral of the residual errors that
contains a possible integral reset as it will be seen.

The estimator allows the absolute error computation of the angular acceleration
error and of the derivative of the current. Thus, exploiting a boxplot analysis on
the integral of such errors, it is possible to decide which kind of error best describe
our model. The simulation is carried out considering the nominal parameters of
the machine, described in the table below.

Nominal value

Mass [kg] 3
Radius [m] 0.3
Resistance [kS] 0.6
Inductance [mH] 0.1
Torque constant 1.5
Voltage constant 0.2
Motor Inertia [kgm?] 0.001
Friction coefficient 0.1

Table 5.8 Nominal CNC parameters.

The same machine is considered to work in nominal condition when:
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Nominal value

Angular velocity refer- 210

rad
ence [7]
Position reference [m] 0.5
Duty cycle [%] 50
Number of cycles 4
Contact point [m] 0.4
Workpiece length [m] 0.09

Table 5.9 Nominal working conditions.

In the same environment, a variable e, is defined and used to discriminate which
of the residual errors available will be considered. In particular:

e c. = 1: only the angular acceleration error is considered.
e ¢. = 2: only the current derivative error is considered.
e c. = 3: an average between the two errors is computed and considered.

Thus, considering a one hundred seconds simulation, the friction coefficient § of
the plant is made to change between five different values while the filter one is
keep fixed to the nominal one. In this way, analyzing the boxplots of the three
different errors it is possible to see which of the three one allow a better distinction
between the various friction coefficient cases.
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Figure 5.9 Boxplot of the angular acceleration error.
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Figure 5.10 Boxplot of the current derivative error.

Boxplot wiht ec=3
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Figure 5.11 Boxplot of the average error.

Having a look at the results, it is possible to see that in the first and in the last
case a better separation between the matched value and the other ones is obtained.
On the contrary, considering the derivative of the current the separation is not so
marked as the other ones. Thus, a first suggestion is that the e, variable must
be set to 1 or to 3 to obtain more remarkable results. Moreover, focusing just on

61



5 EKF BANK: MULTI MODEL APPROACH 5.3 Evaluation tests

these values, when considering the angular acceleration, looking the median values
of the boxes, an higher distance between the nominal error is obtained. Finally,
it is possible to conclude that when setting e. equal to one better results will be
expected in the next.

5.3 Evaluation tests

Till now, all the simulations were carried out assuming that the machine always
exploit the same kind of lavoration. Thus, it is convenient to test/stress the
environment with different input conditions in order to see if the state observer
works well in any case and which kind of processing affects more the algorithm.
In particular, a kind of multivariate error analysis is made, changing one variable
at a time:

e Angular Velocity
With all the other parameters fixed, only the angular velocity is made to
change:

Boxplot wiht angular velocty reference=200
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Figure 5.12 Boxplot error with 200 [—-| angular velocity.
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Nominal value Testing value
d
Angular velocity [~=] 210 210
S

Position [m] 0.5 0.5

Duty cycle [%)] 50 50

Number of cycles 4 4

rad

Table 5.10 Test with 210 [—-] angular velocity.
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Figure 5.13 Boxplot error with 210 [ﬂ] angular velocity.
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Nominal value Testing value
d
Angular velocity [~=] 210 220
S

Position [m] 0.5 0.5

Duty cycle [%)] 50 50

Number of cycles 4 4

rad

Table 5.11 Test with 220 [—-] angular velocity.
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Boxplot wiht angular velocty reference=220
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Figure 5.14 Boxplot error with 220 % angular velocity.
s

Nominal value Testing value
d
Angular velocity [%] 210 230
S

Position [m] 0.5 0.5

Duty cycle [%)] 50 50

Number of cycles 4 4

rad

Table 5.12 Test with 230 [—-] angular velocity.
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Figure 5.15 Boxplot error with 230 [—-] angular velocity.
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e Position
With all the other parameters fixed, only the position reference is made to

change:
Nominal value Testing value
d
Angular velocity [%] 210 210
s

Position [m] 0.5 0.4

Duty cycle [%)] 50 50

Number of cycles 4 4

Table 5.13 Test with 0.4 [m] position reference.
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Figure 5.16 Boxplot error with 0.4 [m] position reference.

Nominal value Testing value
d
Angular velocity [%] 210 210
s
Position [m] 0.5 0.47
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 5.14 Test with 0.47 [m] position reference.
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Boxplot wiht reference position=0.46667
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Figure 5.17 Boxplot error with 0.47 [m] position reference.

Nominal value Testing value
d
Angular velocity [~=] 210 210
s
Position [m] 0.5 0.53
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 5.15 Test with 0.53 [m] position reference.

Boxplot wiht reference position=0.53333

20

-
SE§
= |

Angular acceleration residual errors
o

o
G |+ bt - - - [H»\
(5]

R e R TR

0.1
Friction coefficient 4 variation

Figure 5.18 Boxplot error with 0.53 [m] position reference.
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Nominal value Testing value
d
Angular velocity [~=] 210 210
S
Position [m] 0.5 0.6
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 5.16 Test with 0.6 [m] position reference.
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Figure 5.19 Boxplot error with 0.6 [m] position reference.

e Duty cycle
With all the other parameters fixed, only the duty cycle is made to change:

Nominal value Testing value
d
Angular velocity [%] 210 210
S
Position [m] 0.5 0.5
Duty cycle [%)] 50 20
Number of cycles 4 4

Table 5.17 Test with 20 % duty cycle.
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Boxplot wiht duty cycle=20
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Figure 5.20 Boxplot error with 20 % duty cycle.

Nominal value Testing value
d
Angular velocity [~=] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 40
Number of cycles 4 4

Table 5.18 Test with 40 % duty cycle.
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Figure 5.21 Boxplot error with 40 % duty cycle.
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Nominal value

Testing value

d
Angular velocity [%]
S

Position [m]
Duty cycle [%)]
Number of cycles

210

0.5
20
4

210

0.5
60
4

Table 5.19 Test with 60 % duty cycle.
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Figure 5.22 Boxplot error with 60 % duty cycle.

Nominal value

Testing value

Angular velocity [%i]
s

Position [m]
Duty cycle [%)]
Number of cycles

210

0.5
20
4

210

0.5
80
4

Table 5.20 Test with 80 % duty cycle.
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Boxplot wiht duty cycle=80
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Figure 5.23 Boxplot error with 80 % duty cycle.

e Number of cycles
With all the other parameters fixed, only the number of cycles is made to

change:
Nominal value Testing value
d
Angular velocity [%] 210 210
s

Position [m] 0.5 0.5

Duty cycle [%)] 50 50

Number of cycles 4 4

Table 5.21 Test with 4 number of cycles.
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Boxplot wiht number of cicles=4
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Figure 5.24 Boxplot error with 4 number of cycles.

Nominal value Testing value
d
Angular velocity [~=] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 50
Number of cycles 4 6

Table 5.22 Test with 6 number of cycles.

Boxplot wiht number of cicles=6
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Figure 5.25 Boxplot error with 6 number of cycles.

71



5 EKF BANK: MULTI MODEL APPROACH 5.3 Evaluation tests

Nominal value Testing value
d
Angular velocity [~=] 210 210
S
Position [m] 0.5 0.5
Duty cycle [%)] 50 50
Number of cycles 4 8

Table 5.23 Test with 8 number of cycles.

Boxplot wiht number of cicles=8
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Figure 5.26 Boxplot error with 8 number of cycles.

Nominal value Testing value
d
Angular velocity [%] 210 210
s
Position [m] 0.5 0.5
Duty cycle [%)] 50 50
Number of cycles 4 10

Table 5.24 Test with 10 number of cycles.
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Boxplot wiht number of cicles=10
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Figure 5.27 Boxplot error with 10 number of cycles.

Having a look at the various tests performed so far, it is possible to see that
there are no sensible variation when considering different working conditions with
respects to the nominal ones. Thus, the error associated with the correct model to
estimate is always smaller then the other ones. Moreover, in some particular cases
there is a better distinction between the boxplots, indicating a more accuracy on
the estimation algorithm. Moreover, it is necessary to state that during these tests
a reset of the integral error was considered, whose choice is justified in [5.3.1]

5.3.1 Reset time choice

A crucial aspect of residual error analysis is the choice of the integral’s reset time.
An integration period should be chosen mainly for two reasons:

e clearly, after a certain period of time while it is growing up, it will reach its
maximum value distorting the results;

e there may be situations in which there are transient errors depending on
many factors such as the work period, the type of machining process, ecc.
that can influence the integral.

Thus, in order to choose an optimal reset time, a boxplot analysis was carried out
by varying it through the simulation range.
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From the boxplots above can be seen that with a reset time of 10s, the error
variation is quite small compared to the others. This is probably due to the fact
that in 10s time there are no sensible dynamic variations in the system that would
capture an estimation mismatch. From 30s onwards the results are quite similar
but we decide to investigate a narrower range right after 30s because by increasing
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Figure 5.28 T reset analysis
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more and more the reset time we can run into the problems listed above.
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Figure 5.29 T reset choice

The results highlight that choosing a reset time of 30 seconds is the best choice as
far as our framework is concerned, because it corresponds to a processing period.
In practice we do not know exactly how long a processing period takes so a better
choice could be to choose a reset time large enough to capture the dynamic varia-

tions of the system concerned.

In the figure [5.30] we can notice the behaviour of the angular acceleration error’s
integral with nominal values for all the parameters when a Reset time of 30s has

been chosen.
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Figure 5.30 Integral error in nominal condition with Reset time of 30s.

76



5 EKF BANK: MULTI MODEL APPROACH 5.4 Multi model: algorithm structure

5.4 Multi model: algorithm structure

With all the considerations made so far, it is possible to implement the final esti-
mation algorithm, that will be then validate through an appropriate unit testing
in ??7. This part will represent the core of the MOREPRO project and of the
edge device that will be implemented on the CNC machine to have an on-line SoH
monitoring.

As far as the algorithm is concerned, it is mainly composed of three distinct parts:

e The CNC model that represents the dynamics equations governing the
system;

e The Extended Kalman Filter bank where each filter is based on a dif-
ferent friction coefficient hypothesis and which get as input the same inputs
applied to the model mentioned before and the outputs at the terminals
produced by the latter and aims to estimate, based on the assigned [ hy-
pothesis, the acceleration at the terminals obtained by linearizing the CNC
model around the specific working point.

¢ A logic of decision and management of the integral of the residual errors
that include a reset, a best model choice and possibly the reliability of such
choice.

In the following figure the general Simulink structure is depicted, summarizing all
the components described above.
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Figure 5.31 Simulink implementation of the algorithm.

In the green box are contained the dynamic behavior and the state equations of
the plant while in the yellow one is contained the entire EKF bank. The residual
error estimation is than forwarded to the light blue block which represents the
logic of error management, whose internal structure is represented in [5.32]

‘Occurence_SoH_Reliability_est1

Errors_integral1 Choose_Best_Modelt

Figure 5.32 Simulink implementation of error logic.

In the next pages it is possible to find an in-depth explanation of the various
mentioned structures.
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5.4.1 Switching estimator

It is considered a problem of state estimation with a parameter variation in a finite
range. The idea is to put N EKF in parallel, where each of them works with a
different "wear condition” hypothesis. In particular, the friction coefficient (5 is
chosen as switching parameter, obtaining N independent EKF, each with a fixed
value of S.

States estimate

Inputs of the model
>

Residual errors

Sensor acquisition data
—

States estimate
>

Residual errors
—

States estimate
—>

Residual errors
—

Figure 5.33 Switching estimator

The working principle of the switching estimator is:
e cach EKF will purpose its estimate;

e cach EKF works with a different friction coefficient, switched over a finite
set of values;

It has been decided to put N=6 EKF with a g range values from 0.1 to 1 linearly
spaced as detailed in table[5.25[ The aim is to identify the filter with the minimum
residual errors, which means that filter works with the friction coefficient more
similar to the real one and that represents better the condition of the machine.

79



5 EKF BANK: MULTI MODEL APPROACH 5.4 Multi model: algorithm structure

Filter [ value
#1 0.1

#2 0.28
#3 0.46
#4 0.64
#5 0.82
#6 1

Table 5.25 Friction coefficient associated to each filter

5.4.2 Best model choice

A key part of the algorithm is dealing with the residual errors and extrapolate
useful information from it as the errors contains an intrinsic assessment of the
EKF’s quality. The underlying idea is to choose the model with the smallest
residual error as the best model because it will have the closest friction coefficient
to the real one with all other parameters unchanged.

In order to implement this management, a Matlab function has been developed
which is dependent on both the input errors, the reset of the integral and also
a "dwell time” which will be explained shortly. In principle, the choice works
through these steps:

- Initially a dwell time is set, that is a period in which the function can
not check the errors data because it is supposed as a period for a dynamic
evolution of the system so that there are relevant data in the estimates.

- When there is a reset of the integral, the function cannot select the model
because the data is not reliable as no past information are collected.

- After resetting the integral and the dwell time at which the transient has
passed, the function analyses the errors data and assigns the model with the
lowest error as the best model.

The figure shows that with the condition listed in the best model is
always the first because, as it should be, it is the one that has the same value as
the nominal one.
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Nominal value Testing value
d
Angular velocity [~=] 210 210
S
Friction coefficient 0.1 0.1
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 5.26 Test with nominal friction coefficient
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Figure 5.34 Best model choice with nominal condition

While testing a friction coefficient variation in the range 0.1 + 0.5 the best model
changes according to the less residual error like shown in figure [5.35

Nominal value Testing value
d
Angular velocity [%] 210 210
s
Friction coefficient 0.1 0.1+-0.5
Duty cycle [%)] 50 50
Number of cycles 4 4

Table 5.27 Test with friction coefficient variation
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Figure 5.35 Best model choice with § variation
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6 Model upgrade

Modelling is a very important and necessary step in Robotics; the obtained math-
ematical model is used in order to perform some simulations that can allow to
better understand the robot movements and behaviours. The most important
benefit in modelling and simulate a system is that using environment of simu-
lation, like MathWorks (MATLAB,Simulink) is less expensive than perform real
tests with the system and helps also to collect data. The initial models, normally,
are as simple as possible in order to explain the main characteristic of the system
and to develop an embrional prediction algorithm. But in order to have good
information from the simulation performed, it is better to create a model closer
enough to reality and for this reason increase the level of detail and accuracy of
the model. One of the crucial steps of the project is to built the model of the
used machine and of the interaction between the end-effector and the material to
be shaped. The starting model of the CNC machine, is composed by an electrical
and mechanical equations that can synthesize the work of the machine. In order
to add more in-depth representation, information about the interaction between
the end-effector and the workpiece are added. In detail, the interaction model is
developed around the friction coefficient () between the tool and the material;
this because is considered as the most significant parameter,playing a main role,
in the tool wear process. Schematically, the upgrading process of the model will
follow this path:

Friction

Integration with .
coefficient =) other research ) Final plant
models analysis

model

model

Related a Related to

| |

Figure 6.1 Model upgrade path
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6.1 Friction coefficient models

Describe the metal cutting process is very difficult; the complexity is related to the
plastic deformation that arise during the process in the metal to be shaped. The
thermomechanical deformations that occur in the metal bring to microstructure
modifications while one of the main causes involved in the tool wear, is the high
temperature at the tool-workpiece interface.

The increasing temperature in the metal cutting, is due to the sliding contact be-
tween the metallic surfaces. This kind of motion generates high friction coefficients
that dissipate huge amount of energy, that is even increased when tool wear occurs.
The friction coefficients plays an important role in metal cutting process and is
influenced by many factors; among the most important there are temperature, the
used material of the tool and of the workpiece, the relative speed in interaction,
the applied forces, the cooling media supplied in the contact interface etc etc.

One way to decrease this friction is for sure the use of cutting fluids, like lubricant
oils, whose effect is more evident at low speeds. At high speeds the cooling is not
able to lubricate the interaction surface with the consequence that the effect is
reduced and the friction coefficients is almost the same of the dry condition. In
general the whole behaviour is also related to the amount of lubricant provide to
the machine.

To accurate describe and model the metal cutting procedure, detailed mathemat-
ical models are needed, able to represent how the material deform but also how
the tool and the workpiece interact. The state of art related with the friction
coefficient in metal machining provides a lot of model that consider different fac-
tors and provides detailed approaches considering different parameters that could
influence the interactions. The goal of this study is to better understand which,
between the factors, has a greater influence on the friction coefficient. Among the
many approaches studied, several were discarded because of the excessive diffi-
culty in finding the parameters, while less detailed models have been taken into
consideration, which in any case give satisfactory results but are easier to deal
with.

6.1.1 Friction coefficient correlated with the tool-chip contact length

The first model taken into account considers the material transfer layer thickness
but also the non-linear flow velocity of the chip. The proposed model subdivides
the tool-chip interaction surface into three zone that differ each other for mechan-
ical characteristics related to the impact. In particular, is possible to define two
different friction coefficients along the contact surface.
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workplece P I ' _
a b
Reglons: Surfaces;
[ ——the sticking region FG—the free surface of the chip

1 the transition region DEA——the boundary Interface of the secondary shear zone
BECA—the cutting Interface
11k the sllding reglon ORAH—the tookchlp contacting Interface
Shadow zone!
BCARO—the materal transfer layer

Figure 6.2 Proposed friction model.

As can be seen from figure the three regions along the tool-chip interaction
length (along the y. axis) are respectively sticking region ([,), transition region
(I,,) and sliding region (I.). Normally, friction coefficient models consider only the
sticking and sliding region but in order to consider the chip flow continuity also a
transition region is introduced. Two different kind of deformation take place: in
the sticking region a plastic deformation is present (0 < y. < l,,), while in both
transition and sliding region there is an elastic deformation (I, < y. < (I, + lin))-
The BCARO area represent the material transfer layer where two important zone
are highlighted:

e tool-chip contacting interface (ORAH) that is the border between the tool
rake face and the chip;

e cutting interface (BCA) is the one with the maximum shear strain, because
this is the plane where the cutting action take place.

As mentioned before, with the proposed model it is possible to consider two dif-
ferent formulation of the friction coefficient and in particular in the transition and
sliding areas the coefficient is defined as 3, that is a local friction and is calculated
as: ( L)
T \Ye = 1lp
Ba = ——— (6.1)
Po(1— )¢
where 7 is the shear stress in the sticking region, P, the pressure at the tool tip
and ( is an empirical parameter. In order to compute the friction coefficient along
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the whole tool-chip interface the following formulation can be used:

folp deyc + flic BSIPO( - %)deyc

folc Py(1 — Zl’—cc)cwdyC

(C+1) [y Tdye + BuPole(1 — )6+
POlc

where
e (: empirical parameter;
e 7: shear stress;
e 1g: local coefficient in the sliding region.

Experiments carried out using a wide range of parameters show that the model
works appropriately. Realizing many tests with different cutting speed, emerged
that the friction coefficient value decreases with the increasing of cutting speed
and that for high values of that one the sticking region disappear.

6.1.2 Thermal effect in friction coefficient

One of the main problems in metal cutting is the heat spreads from the cutting
process that increase the temperature of the tool, workpiece and machine too.
One of the main dangerous effect of high temperature flux in metal cutting is that
they favour the tool wear and due to the high heat flux also the material of the
work-piece may be subject to undesired modifications that bring to an incorrect
processing.

Is very difficult to make direct measurement because of the cutting process and
the main way to find some values is to use simulation models. In particular, this
approach treats the whole process as a continuous flow of work material against
the cutter. In this case, the interaction between the tool and material is simulate
with a temperature dependent friction model. The friction coefficient remains a
constant equal to Sy =1/ /3 till the temperature Ty. For temperature higher than
Ty, B decreases due the thermal softening effect depending on the melting point
temperature Tm and the power mr as described in equation [6.3]

T—-Ty \™
= 11— =—— 6.3
5 50 |: (Tm - TO) :| ( )
This temperature-dependent friction model is under the assumption that the effects

of speeds and pressures act only on contact temperatures.The used power m,. is
an empirical parameter.
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6.1.3 Thermal analysis

Having chosen a temperature-dependent friction model, it now appears necessary
to identify which temperatures affect the tool-workpiece interface and how the
cutting parameters can impact on the temperature. The cutting temperature is
not constant throughout the tool, the chip or the workpiece. It can be observed
that the maximum temperature is developed not on the very cutting edge, but at
the tool rake, some distance away from the cutting edge. The temperature field in
the cutting zones is shown in figure [6.3

chip
300
400

70

» . 200
100
workpiece

Figure 6.3 Tool-workpiece interaction temperature curves.

In order to obtain consistent temperature data, it is necessary to integrate sev-
eral measurement techniques as the machine processes are complex. Therefore,
two techniques from literature were analysed: K-type thermocouple and Infrared
Radiation pyrometer to measure the tool-chip interface temperature [24]. The
thermocouple only measures the mean temperature over the entire contact area
of the tool and the workpiece. In the IR technique the surface temperature of
the body is measured based on its emitted thermal energy [25] and in order to
establish the temperature on the outside surfaces of these regions, the radiation
from the tool, the workpiece and the chip is measured.

A total of 18 trials were analyzed in order to choose a consistent range of tool-chip
interface temperature. The results are given in table [6.1]
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Depth of Cutting Feed rate Tool tempera- Tool-chip inter-

cut [mm)] speed [mm/rev]  ture [°C] face  tempera-
[m/min] ture [°C]
0.4 76 0.05 o7 410
0.4 76 0.08 66 405
0.4 76 0.12 72 410
0.4 114 0.05 65 460
0.4 114 0.08 61 465
0.4 114 0.12 67 445
0.4 170 0.05 65 520
0.4 170 0.08 67 500
0.4 170 0.12 71 475
0.6 76 0.05 72 400
0.6 76 0.08 80 390
0.6 76 0.12 76 395
0.6 114 0.05 80 430
0.6 114 0.08 75 435
0.6 114 0.12 83 420
0.6 170 0.05 81 485
0.6 170 0.08 67 525
0.6 170 0.12 69 480

Table 6.1 Temperature values.

The influence of the cutting parameters such as cutting speed, feed rate and depth
of cut on the cutting temperature was observed. The higher the cutting speed,
the higher the tool-chip interface temperature increase, resulting in a significant
temperature difference. The feed rate has very little effect on the temperature rise.
In the figure the influence of cutting speed on tool-chip interface temperature
can be observed.
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Figure 6.4 Influence of cutting speed on tool-chip interface temperature.

Thus, from the results analysed, it was chosen to simulate the model with a tem-
perature range from 480°C to 550°C.

6.1.4 Other correlated model

Another friction coefficient modelling useful for the project development is the
one related to machining speeds, analysed by Verde Antonia, a project colleague.
Below are the main features for further integration in order to produce a final
complete modelling.

Between the main parameters that affect the friction coefficient there are the ma-
chining speeds: cutting speed and feed rate, that have a combined effect in the
cutting process. Taking into account this parameters the goal of this model is to
built a friction coefficient formulation:

B =3.32V0% —0.24f (6.4)

where:

mDCn
V.= 7 . cutting speed that is a relative velocity between the cutter of

the CNC machine and the material to be processed. In particular, DC is the
diameter of the cutting tool and n is the spindle speed.

o f =nxtxcl: feed rate that is the relative velocity at which the cutting
tool is advanced along the material piece to be shaped. In particular, t is
the number of teeth of the cutter and cl is the chip load.
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6.1.5 Model comparison

In order to create a model as close to reality as possible, a more precise formulation
of the friction coefficient was devised, taking into account two of the three model
mentioned above which have a greater influence on it.

Follows a demonstration of the friction values obtained by filling the equations|[6.2]
[6.3] [6.4] with reliable experimental data and which will subsequently verified with
real data coming from the CNC machine used in the project.

The first model considered is the one correlated with the tool-chip contact length.
Figure [6.5| shows that the range of 3 is between 0.255 and 0.278.

Friction coefficient value
T T T T T

0.28

0.275

Value

0.265

]

|
100 200 300 400 500 600 700 800 900 1000
Time [s]

0.255
0

Figure 6.5 (§ obtained from the tool-chip contact length model

As can be seen,it is not possible to observe great variations in the friction coeffi-
cients despite the complex parameters involved in the equation.

Switching to the second considered model, the values of the coefficient, in figure
[6.6] are in the range 0.38 < 8 < 0.43.
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Friction coefficient value
T : . T

0.385

0.375 L L L L L L . L L
0 100 200 300 400 500 600 700 800 900 1000

Time [s]

Figure 6.6 5 obtained from the temperature dependent model

Compared with the first model, is possible to affirm that the parameters involved
in the temperature dependent model, influence more the trend of .

The last model is the one related with the cutting speed and the feed rate. In this
case the interval is between 0.15 < § < 0.45.

Friction coefficient value

0.5

Value

0.15 1 1 1 L 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Time [s]

Figure 6.7 (8 obtained from the machining speeds model

This formulation is a function of the angular velocity input , all the other param-
eters are constant (DC,t) while CL (the chip load) is the only variable parameter
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6 MODEL UPGRADE 6.2 Final plant model

that impacts on the wear conditions of the cutting tool and is exactly the param-
eter that we want to estimate in the EKF’s bank. The chip load is the theoretical
length of material that is fed into each cutting edge as it moves through the work-
piece. The tool wear is widely affected by the chip load as also the force to cutting
the material.

6.2 Final plant model

The last step is to combine the models which have a greater incidence on the values
of the friction coefficient; for this reason the model related with temperature and
the one related with the machining speeds are joined. The global formulation
is obtained replacing the g formulation instead of By into (6.3)) with the
following result:

8= (3.32 (Dlg’(;?) e 0,24(tnCL)> % {1 — (%)ml (6.5)

In the final equation the parameters involved are all geometric or that can be
directly measured by sensors except of the chip load, which therefore becomes the
parameter to be estimated because it is directly related to the tool wear. Chip
Load affects five major areas of the machining process:

Controls the required force to cut the work material

Assists in controlling heat

Controls tool wear

Directly affects the metal removal rate
e Directly affects surface finish

The chip load setting is still a research topic since too much chip load increases
wear, leads to premature tool failure, rough finishes and draws more torque and
amperage through the machine and increased stress on the axis drives while too
little chip load causes vibration and chattering that will chip the tools cutting
edges and it can cause the tool to rub and wear rather than cut.

Substituting beta equation into the system’s state equations gives:
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6.2 Final plant model

The nominal parameters of the machine are:

DCOr . T-1 ., .
5_ ki Att, 0 ) (3.32( 1000 )04 —0.24(t0CL)) * [1 — (Tm — To) | F.0
I, I, I,
{._FA_F(Fato
m m
- Vi Rig k0
A A

Nominal value

Mass [kg]

Radius [m)]
Resistance [kS]
Inductance [mH]
Torque constant
Voltage constant
Motor Inertia [kgm?|
Ty [°C]

Tm [°C]

Diameter of cutter [mm]|
Number of teeth

3

0.3
0.6
0.1
1.5
0.2
0.001
400
1400
100
)

Table 6.2 Nominal CNC parameters updated
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7 Multi model update

7.1 EKF integration

As far as the multimodel is concerned, the structure of the algorithm remains the
same as in section 5.4} A differentiation is made in the plant equations in which the
friction coefficient is no longer a dynamic independent variable but being expanded
as described in equation now depends on several variables/parameters:

o 0: angular velocity

e DC: diameter of the cutter

e t: number of cutting teeth

e CL: chip load

e T: measured contact temperature
e Ty: thermal softening threshold

e T,,: melting point temperature

e m,: empirical parameter

Therefore,based on research carried out on the development of the interaction
model the only variable that affects tool wear is chip load, as all the others are
either constants depending on the geometry and material of the tool or variables
depending on the type of machining. Thus there is a need to include the chip
load as a wear condition hypothesis within the EKF’s bank and it will be used as
switching parameter.

The EKF algorithm is the same as in paragraph except for the inputs and the
Jacobian of the state-space model F} that become:

e Inputs:
- V,: armature voltage
- Fj: horizontal force that moves the cutter
- F_.: function that define the contact with the object.

- T measured contact temperature

e Jacobian:
0.45 % 3.32 (ZRCE)~1.45) £DC _ 04 st 5103 (1 — (20 ymr ) B — 0.3
— (045 %3.32 ( (550 ) Tooo — 0- *tx G e~ 0.
2 0
F = I
0 0
ke 0
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Adapting the plant equations to the EKF’s structure it is also decided to increase
the number of filters to N=8 EKF in order to have a more accurate range of
models and thus greater estimation accuracy. The filters works with a CL range
values varies from 0.1 to 1.1 linearly spaced as detailed in table [7.1]

Filter CL value
#1 0.1

42 0.24

#3 0.38

44 0.52

#5 0.67

#6 0.81

#7 0.95

#8 1.1

Table 7.1 Chip Load associated to each filter

7.2 Functional Tests

At this stage in order to analyze the correct behaviour of the multimodel system
a series of tests were carried out. The input to the filters are collected from the
plant simulation. In detail, all the range of EKF’s bank has been tested according
to the variation of chip load hypothesis. It is expected that when the chip load
hypothesis of a certain filter is similar to that of the plant, the residual error will
be the lowest as compared to the filters residual error with a hypothesis that is
distant from the actual one. In the figure is shown the Angular acceleration
residual error associated to the nominal condition listed in table [Z.2]

Nominal value Testing value
d
Angular velocity [%] 210 210
S
Chip load 0.1 0.1
Duty cycle [%] 50 50
Number of cycles 4 4

Table 7.2 Test with nominal chip load
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7.2 Functional Tests

Boxplot associated with cl=0.1
T T T T

N I N
=] a =1
S} =] s

Angular acceleration Residual Errors

a
S

€1 €1 €L €

€

chip load associated to each EKF

I I L ! L L I
0.1 024286  0.38571 0.52857 0.67143 0.81429 0.95714

1.

Figure 7.1 Boxplot based on chip load with nominal condition

In the following figures the chip load range from 0.2 to 1.1 has been tested. It
is possible to see that when the chip load hypothesis is similar to that of the
filter, the error is distinctly the smallest; whereas when the hypothesis is in the
middle between two filters, the error of the two filters is so similar that it could
create misunderstandings in choosing the model that best approximates the wear

condition of the system.
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Boxplot with cl=0.3
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Figure 7.2 chip load analysis from 0.2 to 0.7
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Boxplot i with cl=0.8 Boxplot i with cl=0.9
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Figure 7.3 chip load analysis from 0.8 to 1.1

7.3 Sensitivity Tests

In an optimal situation it is always possible to generate a mathematical model that
perfectly represents the system under consideration, but when this is not the case
it is advisable to examine the effects of the lack of knowledge about performance
in order to verify the robustness of the algorithm. Thus, a sensitivity analysis is
carried out on the residual error produced by the bank of EKF with the aim of
identifying, among the most significant parameters of the CNC machine model,
how their possible variations affect the integral error produced and how a different
input conditions affect the state observer behaviour. In particular, percentage
variations with respect to the nominal value of the parameter under examination
is analysed, changing one parameter at a time. The various tests are listed below,
where the figure at the top centre represents the nominal condition while at the
bottom left is a percentage reduction in parameter’s value and at the right a
percentage increase.
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7.3

Sensitivity Tests

e Angular velocity:

with ang_ref=210
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Figure 7.4 Test on

Boxplot associated with ang_ref=231

T
|
250 [ o |
| |
! |
200 — | |
I I
o ! I
e — ! 1
W 150 | |
é |
§ T | t
100 |
0
|l l_:l
n I I
% | | I |
of — 1L €L L L L L
D.‘I 0.24‘286 0.35‘571 0.52‘557 0.67143 0.81‘429 035‘714 |‘.1
chip load associated to each EKF
(¢) +10% wrt nominal value
angular velocity reference.

99




7 MULTI MODEL UPDATE

7.3 Sensitivity Tests

e Number of cycles:

with n_cicle=4
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Figure 7.5 Test on number of cycles.
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e Number of filters:

Boxplot i with NumFilters=8
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Figure 7.6 Test on number of Filters.
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e Position reference:

Boxplot iated with pos_ref=0.46
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Figure 7.7 Test on position reference.
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e Shift of the chip load range:
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Figure 7.8 chip load range analysis from 0.7 to 1.7

Having a look at the various tests performed so far, it is possible to see that
there are no sensible variation when considering different working conditions with
respects to the nominal ones. Thus, the error associated with the correct model to
estimate is always smaller then the other ones. Moreover, in some particular cases
there is a better distinction between the boxplots, indicating a more accuracy on
the estimation algorithm.
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Conclusions and future works

In this work the application of multi model approach in a machine predictive
maintenance domain is the main objective achieved.

e In a first stage, the development of a physical model of the CNC machine
was addressed, under the hypothesis that the model should have allowed
the development of a prediction algorithm as soon as possible and always
keep in mind the edge-computing device goal, thus also with a relatively
low computational cost. After an in-depth analysis of the literature, the
friction coefficient 5 between the tool and the workpiece is choosen as wear
hypothesis on which to base the prediction algorithm, that involves a bank
of N Extended Kalman Filter. Through the residual error analysis it has
been shown that a multi-model approach can be used to estimate the SoH
of the machine.

e In a second stage, the need emerged to investigate the interaction between
the workpiece and the tool and to explore the dependency of the friction
coefficient on other parameters. Through the study and integration of more
complex models, the conclusion was reached to rely on the machine’s chip
load as the source of the wear estimate. Finally a series of functional tests
were carried out in order to verify the correct behaviour of the multi model
system.

Despite the system has not been tested in a real environment, not going beyond
a "Model in the loop” testing, this thesis work lays foundations for future edge-
computing SoH prediction techniques and for the Morepro project progress.

e One of the possible line of action is the research of a more accurate modelling
of the machine but at the same time with low computational effort in order
to meet the edge-computing requirements.

e A possible future work could be the research of an alternative method to
estimate the SoH through a different kind of analysis, that does not take
into account the residual error but only the available measurements.

e One more change could be how to process the residual error; in this thesis
work the approach adopted is an experimental one, however a possible case
study could be a more formal method that links the residual error to the
internal parameters of the model or a mathematical methodology in order to
improve with an optimal and automatic chain the algorithm decision logic.
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