
POLITECNICO DI TORINO

Master’s Degree in Electronics Engineering

Master’s Degree Thesis

LoRaWAN for Air Quality Monitoring
System

Prof. MAURIZIO REBAUDENGO Amir Nagah ELGHONAIMY

March 2021

Summary

This Thesis is an extension development work to the project that exists in[1] which
aims to measure the air quality using some distributed sensor nodes that depend
on Particulate Matter, Temperature, Relative Humidity, and Pressure sensor.

Figure 1: The System Block Diagram

Looking at figure 1, this study project focus mainly on Parts C, D, and E which
are the physical and MAC layer’s properties and implementation, also we will
give attention to the practical implementation of F(The Things Network(TTN)
configurations), G(Data Storage) and H(Data Visualization).

The sensor node in the meantime is transmitting its data (block D) over a "WiFi"
connection which has a high throughput (supports real-time data monitoring) but
it suffers from relatively short-range communications and it consumes a lot of the
battery power of the station. The Thesis is a study for an alternative Wireless
technology that can replace the "WiFi" efficiently by extending the transmission
range and still able to have a sufficient throughput, latency, and consumes lower
power. We choose the LoRaWAN technology for our project after examining the
available LPWAN technologies in the market. LoRaWAN satisfies our system-
critical parameters which are: A maximum communication range that can reach
0.6Km. The Maximum update time for the sensor data is 5 minutes(300 seconds).
Technology’s latency should not push the transmission to violate the update time.
and advantage of LoRaWAN over other competitors is that it is working in the
free ISM Band.

The hardware that was used is the Pycom-FiPy board which is based on the

ii

ESP32 µController combined with the SFX172 LoRa chip (LoRaWAN stack -
Class-A).

The complete system looks as was shown in figure 1, the TTN was used as
the web-server for its simplicity and free of charge. Node-Red was used as the
application-server to store the data on a CSV file.

A field test was conducted in the city of Turin, the range test was made using
two different packet lengths, 20 bytes (assuming all the possible data that can be
included) and 51 byte which is the maximum payload that can be used with the
TTN network at high-speed transmission Spreading Factor(SF) 7. we also used 3
different SF to examine the behavior of the LoRa modulation characteristics in a
real situation.

Four different points were defined on the city of Turin which simulate Line of
sight and non Line of sight scenarios. The range measurement was quantified using
the Gateway(GW) registered under the name "polito" on the TTN website.

Range

the test showed that LoRa is indeed a long-range modulation (over 2Km) in urban
areas, but it also showed that it suffers from the surrounding environment (metal,
moving vehicles..etc), whoever this can become over by using more Gateways.

Throughput and update time

TTN restriction was a challenge for our packet since we were only allowed to send
417Msg/Day for 20 bytes, considering this limitation we end up using only SF=7
that achieves a message every 3.5 minutes. Then we suggested some techniques
to reduce the packet size like skipping the redundant information (Like ID and
Time) and introduced the concept of the Sensors States Byte(SSB) which can be
seen in Figure 2, using those techniques we were able to reduce the update time of
transmission from 3.5 minuets to 2.2 minutes for TTN web-server (few seconds for
a private web-server).

Figure 2: The Sensors States Byte and an example of pattern transmission

iii

Latency

Figure 3: Timing of a LoRaWAN Packet

The system as shown in figure3 using the same Network-Time-Protocol(NTP)
server to sync the sensor node and the Node-Red clocks so results become more
accurate(since we can’t control the time source of the GW and TTN). Subtracting
the timestamps of every stage we get the latency. to avoid negative timing we took
the average of those measurements.

SF TOA Latency Other Latency components
7 100(milliseconds) 0.1(milliseconds)
9 330(milliseconds) 0.35(milliseconds)
12 2400(milliseconds) 0.45(milliseconds)

Table 1: Latency components for every SF

The Conclusion is that LoRaWAN can be used as an LPWAN technology for
the Node but using TTN web-server, the transmission must be restricted to only
SF=7 with an update time = 2.2 min. changing the web-server to a private one
would give a big restriction-free on the duty cycle that will be reduced from 3.3
minutes to 5 seconds.

iv

Acknowledgements

ACKNOWLEDGMENTS

It was tough but it worth it.....
Thank you Wael for all the helps and time, Osama my best friend who keep giving

me positive support.Edoardo giusto for assisting me and give me valuable hints
about how to organize my thesis, Mohammad ghazivakili for introduce me to

Node-Red which made a lot of things easier and Gustavo Ramirez for the technical
guidance you gave me when i get stuck. Thanks to Italy for such a wonderful and

valuable experience to study in the poleticnico Di Torino .

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiv

1 Introduction 1
1.1 LPWAN . 1

2 LoRa and LoRaWAN Technology 4
2.1 LoRa vs. LoRaWAN . 4

2.1.1 LoRa Modulation (Physical Layer) 4
2.1.2 LoRa Parameters . 5
2.1.3 Coding Rate(CR) . 8

2.2 LoRaWAN (MAC Layer) . 9
2.2.1 LoRaWAN Architecture . 9
2.2.2 LoRaWAN Packet Format 12
2.2.3 Time On Air and Duty Cycle 14
2.2.4 LoRaWAN Power Consumption 15
2.2.5 LoRaWAN Classes . 17

2.3 Authentication And Encryption . 19
2.3.1 Authentication with the Network Server 19
2.3.2 The Application Serve data Encryption 20
2.3.3 The Full LoRaWAN Frame 20

2.4 Activation of LoRa Devices: ABP or OTAA 21
2.4.1 Activation By Personalization(ABP) 22
2.4.2 Over The Air Activation(OTAA) 22

2.5 LoRaWAN networks and servers . 25
2.5.1 The different types of networks 25

2.6 LoRa Limitations . 26
2.6.1 ISM Band Limitations . 26

vii

2.6.2 LoRa Technology Limitations 26

3 Design and Implementation 28
3.1 The System Design . 28

3.1.1 Architecture . 28
3.1.2 Components . 29
3.1.3 TTN Limitations . 37
3.1.4 Node-Red . 38
3.1.5 Firmware Flowchart . 40

4 Measurements and Results 42
4.1 The System Criteria . 42
4.2 Test Scenarios . 43

4.2.1 The Size of The Payload . 43
4.2.2 Measurements Points Geo-locations 44
4.2.3 Test setup . 44
4.2.4 Range Test . 48
4.2.5 Throughput of the System 51
4.2.6 Byte-Rate Suitability For The Task 52
4.2.7 Can we do better ? . 54
4.2.8 The Latency . 58

5 Conclusion and future work 64
5.1 Conclusion . 64
5.2 Future Work . 65

A A 66

B B 76

Bibliography 82

viii

List of Tables

1 Latency components for every SF iv

1.1 LPWAN Comparison . 3

2.1 comparison between a private network and an dedicated network . . 26

4.1 Test Points of the Experiment . 45
4.2 Short Payload Packet configurations 48
4.3 Long Payload Packet configurations 49
4.4 The Evaluated bit-rate for different SF 52
4.5 Timing Analysis for 20 byte Payload 54
4.6 Encoding of the Last 3 LSB of the SSB 56
4.7 Transmission of measurement Packet(10+13) and SSB(1+13) 57

ix

List of Figures

1 The System Block Diagram . ii
2 The Sensors States Byte and an example of pattern transmission . . iii
3 Timing of a LoRaWAN Packet . iv

1.1 Famous wireless Technologies[5] . 2

2.1 The LoRa Chirp Signal characteristics[7] 5
2.2 Real LoRa Signal[8] . 5
2.3 LoRa Chirps with different SF[7] 6
2.4 An un-modulated LoRa Chirp for BW= 125KHz 6
2.5 Every Chirp is divided into 22 chips 7
2.6 Influence of the Coding Rate on the number of added bits[[10]] . . . 9
2.7 LoRa and LoRaWAN on the OSI model [11] 9
2.8 LoRaWAN Architecture [12] . 10
2.9 The Role of LoRaWAN Gateway 11
2.10 Network Session Key Authentication 11
2.11 Application Session Key Encryption 12
2.12 Lora Packet format . 12
2.13 LoRaWAN Simple Packet format 13
2.14 Spectrum Analyzer view of the Frame[6] 13
2.15 Example of the format for a real LoRaWAN Packet 14
2.16 LoRa Duty Cycle restriction . 14
2.17 Table – LoRaWAN spreading factor with TOA for 64-byte payload

For a B.W. = 125 kHz for 500-meter distance [11] 15
2.18 the air time and fair access policy for different data rates for empty

payload packet . 15
2.19 Energy Consumption by Device Class[18] 16
2.20 Class-A transmit/receive profile [19] 17
2.21 Class-B transmit/receive profile[19] 18
2.22 Class-C transmit/receive profile[19] 19
2.23 The MIC and frame authentication by the network server 20
2.24 Using the AppSKey to encrypt/decrypt the Data 20

x

2.25 Encryption followed by the Authentication process 21
2.26 Configuration of DevAddr, NwkSKey and AppSKey in ABP 22
2.27 Configuration parameters before the Join Request (OTAA) 22
2.28 Configuration parameters after the Join Request (OTAA) 23
2.29 Join Request - Join Accept in OTAA 24
2.30 The Infrastructure of a private LoRaWAN network 25
2.31 Infrastructure of a dedicated LoRaWAN network 26
2.32 LoRaWAN Duty Cycle and EIRP limitations for Up-Link and Down-

link [20] . 27

3.1 "Polito" Gateway on Google map 29
3.2 The LoRaWAN System Architecture 29
3.3 TTN Map of the registered Gateways (near the test position in

Torino City) . 30
3.4 FiPy board and its expansion board 31
3.5 FiPy System block diagram[21] . 32
3.6 Lora 868MHz Antenna . 32
3.7 TTN Console . 33
3.8 registering our application in the TTN applications 34
3.9 Payload in hexadecimal representation 34
3.10 Payload decoder function . 35
3.11 Payload in human readable format 36
3.12 An encrypted LoRaWAN Packet 36
3.13 The Metadata of the received packet 37
3.14 Node-Red Flow . 38
3.15 Node-Red Flow for extracting the up-link messages from TTN . . . 39
3.16 Tracking the timing of the LoRaWAN packet 40
3.17 LoRa Up-Link transmission Flowchart 41

4.1 Map of the Test Points in the city of Turin[Google Earth] 44
4.2 Same Packet received by two gateways 45
4.3 The un-trusted gateway’s location w.r.t sensor node 46
4.4 Packet Deliver Rate with different test points 48
4.5 PDR for the Long payload . 49
4.6 Bit Rate for SF = 7 . 51
4.7 Evaluating the Bit-rate for every SF,(BW = 125Khz) 53
4.8 LoRaWAN Timing for 20 bytes Payload packet 54
4.9 An Example of our suggested Sensors State Byte 55
4.10 The 1% duty cycle allows the transmission every 5 seconds for data

size = 1byte using SF7 . 56
4.11 An Example of the transmission pattern of the sensor data 57

xi

4.12 Timing of a LoRaWAN Packet . 58
4.13 the data as constructed by Node-Red 59
4.14 Latency algorithm for constructing the Packet 61
4.15 Latency algorithm for analyzing the data of the received packet . . 62
4.16 The TOA contribution part to the latency 63
4.17 Other Latency components . 63

xii

Acronyms

ABP
Activation by Personalization

ACK
Acknowledgment

BLE
Bluetooth low Energy

bps
bit per seconds

BW
Band Width

CRC
cyclic redundancy check

CR
Code Rate

CSS
Chirp Spread Spectrum

csv
Comma Separated Values

DevAdd
Device Address

xiv

DL
Down-Link

DC
Duty Cycle

EIRP
Effective Isotropic Radiated Power

ETSI
The European Telecommunications Standards Institute

FEC
forward error correction

Km
Kilo Meter

GW
GateWay

LOF
Line of Sight

MSG
Message

npreamble
Number of Preamble symbols

NTC
Negative Temperature Coefficient

NTP
Network Time Protocol

NLOS
Non Line of Sight

xv

MQTT
Message Queuing Telemetry Transport

Min
Minutes

MPD
Messages per day

SFD
start frame delimiter

SNR
Signal to Noise ratio

SF
Spreading Factors

SP
Server Provider

ISM
Industrial, scientific and medical

IoT
Internet of Things

IP
Internet Protocol

The Symbol duration

The Chip duration

TOA
Timer On Air

TTN
The Things Network

xvi

TP
Test Point

OTAA
Over the Air Activation

OSI
Open Systems Interconnection

LPWAN
Low Power Wide Area Network

LoRa
Long Range

LOS
Line of Sight

PDR
Packet Deliver Rate

RTC
Real-time clock

UI
User Interface

UL
UP-Link

WS
Weather Station

xvii

Chapter 1

Introduction

Recently, the fast spread of COVID-19 has threatened all humanity around the
globe. After the start of its first wave (around Nov-2019), a lot of studies were
conducted to understand the new pandemic’s characteristics, causes, and effects.
A study [2] shows a relation between air pollution (NO2 levels) and air currents
in Italy with confirmed deaths related to COVID-19, another study from Harvard
analyzed air pollution and COVID-19 deaths concluded “A small increase in long-
term exposure to PM2.5 leads to a large increase in the COVID-19 death rate.” [3,
4]. The advancements that happen in recent years on many aspects of technologies
like Embedded systems, Low power wireless technology, and the sensor’s design
had lead to a new era of systems to appears that are able to sense the environment
around and send the data for a long-distance using only a portable battery and
those devices are able to work for several years, from this advancements came the
LPWAN.

1.1 LPWAN
The modern consistency development of Engineers for new wireless technologies
had led to upraise the Low Power Wide Area NetworkLPWAN technology which
becomes the workhorse for the Long-range communications for almost all the
modern IoT systems for its tremendous capabilities to achieve the communications
between sensors that are separated apart with long-distance (that sometimes rise
up to hundreds of kilometers) surviving on the available batteries’ technologies,
this opens the doors for whole new applications and services.

The LPWAN has some attributes that define it from other wireless technologies
as mentioned before but it’ll summarize here as it’s the main characteristic of the
systems that are based on this technology [2]:

1. Long Range: The operating range of LPWAN technology varies from a few

1

Introduction

Figure 1.1: Famous wireless Technologies[5]

kilometers in urban areas to over 30 km in rural settings. It can also enable
effective data communication in previously infeasible indoor and underground
locations.

2. Low Power: Optimized for power consumption, LPWAN transceivers can
run on small, inexpensive batteries for up to 10 years.

3. Low Cost: LPWAN’s simplified, lightweight protocols reduce complexity
in hardware design and lower device costs. Its long-range combined with a
star topology reduces expensive infrastructure requirements, and the use of
license-free or licensed bands reduces network costs.

4. Low Data Rate: Optimized to communicate for very small data rates, for a
few Euro cents a month.

2

Introduction

To be able to make a suitable choice we have to compare those technologies in
terms of their specifications, we will make a comparison as in Table 1.1.

NB-IOT Sigfox LoRaWAN
Range(Km) 1(urban), 10(rural) 10(urban), 40(rural) 5(urban), 20(rural)

Channel BW(Hz) 200k 100 250k and 125k
Data-Rate(bps) 200K 100 50K
Frequency(MHz) LTE 433, 868, 915 433, 868, 915
Bidirectional Yes/Half-duplex Limited/Half-duplex Yes/Half-duplex

Max.payload(bytes) 1600 12(UL), 8(DL) 243
Maximum msg/day Unlimited 140(UL), 4(DL) depends on web-server

Table 1.1: LPWAN Comparison

Besides the added cost to the NB-IoT, it was logistically not easy to have this
service at the time of writing this thesis. We go with the LoRaWAN (only) as it
excels over the SigFox in many areas.

The organization of this thesis is as follows: Chapter 2 discusses the characteriza-
tion and Limitations of the LoRaWAN technology. Chapter 3 describe the testbed
and the configurations the web-server and the application-server that will be used
during the field-test. Chapter 4 will demonstrate the results and the measurements
that had been captured during the field-test and finally Chapter 5 is the conclusion
and suggestion for future work to improve the system.

3

Chapter 2

LoRa and LoRaWAN
Technology

In this section, we are going to discuss LoRa and LoRaWAN Technology which are
used to establish communications from the Sensor nodes to the Application Server.

2.1 LoRa vs. LoRaWAN
LoRa and LoRaWAN are sometimes get misled, in this section we’re going to define
each one of them and discuss the main characteristics for those different layers but
we can generally say that LoRa is a modulation that is used to send data between
a transmitter and a receiver while LoRaWAN protocol allows a LoRaWAN Device
to transmit data to a LoRaWAN server.

2.1.1 LoRa Modulation (Physical Layer)
LoRa(Trademark of Semtech) is a Modulation technique that is derived from the
Chirp Spread Spectrum(CSS) modulation, hence it describes the physical layer
(bits layer implementation) in the OSI Model. The protocol was designed to satisfy
the requirements of the IoT battery enabled devices (Low Power Consumption
Protocol). One of the known characteristics of the CSS is the ability to establish
long-range communication with high resilience to interference. A single Gateway
can cover entire cities or hundreds of square Kilometers[6].

Although the technology range mainly depends on the environment and is
severely affected by the obstacles[9], However according to Semtech (SX1272/73
DataSheet[20]) LoRa modulation can achieve a link budget of 157 dB. Figure 2.1.
shows how a LoRa chirp looks like. LoRa operates in the ISM band over 433, 868
MHz (in Europe), and 915 MHz.

4

LoRa and LoRaWAN Technology

Figure 2.1: The LoRa Chirp Signal characteristics[7]

Figure 2.2: Real LoRa Signal[8]

2.1.2 LoRa Parameters
In LoRa, Chirp and symbol (both) are used to refers to the Modulated Signal(which
carries the Data). The transmission of the LoRa signal can be characterized by
several parameters Like the Spreading Factors SF which are defined to control the bit
rate, improve the range and decrease energy consumption, also the Bandwidth(BW),
Frequency channel, and the Transmission Power, all those parameters can be

5

LoRa and LoRaWAN Technology

Figure 2.3: LoRa Chirps with different SF[7]

controlled in the physical layer.

Chirp Chips and Spreading Factor

To clarify the two technical terms, Chirp(symbol) is the signal that sweeps through
the whole transmission BW of the LoRa Signal.

Figure 2.4: An un-modulated LoRa Chirp for BW= 125KHz

The chirp could be an up-Chirp as in 2.1 or a Down-Chirp, depending on the
Spreading Factor, a LoRa symbol can hold several bits equal to the SF. If SF=7
this means a LoRa symbol can hold 7 raw bits, for example, 0011010(26 in decimal).

6

LoRa and LoRaWAN Technology

This means that the symbol can be encoded with 127 values(for SF7), or we can
say the Chirp is divided into 127 chips.

Figure 2.5: Every Chirp is divided into 22 chips

Just for simplicity, Figure 2.5 demonstrate a Modulated Up-Chirp with 2 bits
which shall make a symbol that holds 4 chips. The minimum LoRa raw bits a
symbol can hold is 7 and the maximum is 12.

SF is on the angle of the chirps(how to spread out the chirp would be). It
indicates how many bits the chirp includes. It also determines the data-rate and it
has a direct effect on the transmission distance (Fixing the transmitting power and
B.W), for example, SP=7 means the chirp represents 7 bits hence 2SF number
of starting and ending frequency positions. Increasing the SF by one will
result of doubling the time it takes to transmit a chirp(assume all other
parameters remains the same), by doubling the chirp time, receivers will have more
time to sample the received signal and hence an increase in the Signal to Noise
ratio(SNR) which means better reception and longer distance (but the downside is
the power consumption)[9]. Observing a LoRa signal on spectrogram we’ll see a
signal like in Figure 2.2 which shows a combination of up-chirps and down-chirps
(represents the preamble, sync, and the data). LoRa supports six different spreading
factors ranging from SF7 to SF12, with SF7 having the highest data-rate, Lowest
range, Energy consumption, Time on Air, and highest Sensitivity(For an SF7 signal,
the receiver needs a higher SNR).
The Spreading factor defines two values:

1. The Number of Raw bits that can be encoded by that symbol.

2. Each LoRa symbol can hold 2SF chips.

7

LoRa and LoRaWAN Technology

The bit Rate can be calculated by

Rb(bit/sec) = SF × BW

2SF
× 4

(4 + CR) (2.1)

Where:

1. SF: Spreading Factor (7-12)

2. BW: Bandwidth (Hz) or Chips/Sec

3. CR: 1-4 (Explained in2.1.3)

Every Chirp in the LoRa Signal contains 2SF Chip, if we want to know how to
calculate the Time a LoRa symbol would take then we can use the following
equation:
First, we find the chip duration time

Tc(sec) = 1
BW

(2.2)

Then by knowing the SP that we use in the transmission, the Chirp(Symbol)
duration would be:

Ts(sec) = 2SF

BW
(2.3)

from Eq 2.3 we can see the direct effect of the SF and BW on the symbol timing
which will have a big roll in controlling the TOA for a LoRaWAN Packet which
is a very important parameter that is considered one of the Limitations of using
LoRaWAN Network (TTN in our Case).

2.1.3 Coding Rate(CR)
LoRa Modulation adds forward error correction(FEC) in every symbol transmission.
The Coding Rate is a ratio that adds more bits to the transmitted bits for error
detection/correction. LoRa Modulation allows the Code rate for the values of CR
= 4/5, 4/6, 4/7, or 4/8. The general formula for the coding rate is: CRC = 4

(4+CR)
where CRC stands for Cyclic coding rate.

The adding of the FEC bits shall increase the signal immunity against noise but
it reduces the transmission throughput and increases the transmission time.

8

LoRa and LoRaWAN Technology

Figure 2.6: Influence of the Coding Rate on the number of added bits[[10]]

2.2 LoRaWAN (MAC Layer)
LoRaWAN is a data-link protocol that manages how LoRa devices enter the
network and how they exchange data, how much data-rate can be send/receive, the
addresses they use, encryption, and other packet configurations. LoRaWAN could
be compared to IP protocol while LoRa could be compared with Ethernet(As a
physical layer).

Figure 2.7: LoRa and LoRaWAN on the OSI model [11]

2.2.1 LoRaWAN Architecture
The Architecture of LoRaWAN has a topology of a star of the star (Which enhances
a lot the reception of the data, since one packet can be received by many Gateways
which increases the "success of packet delivery"). Architecture can be seen as in
Fig 2.8.

It is worth to mention that unlike other LPWAN protocols(Like Sigfox), Lo-
RaWAN is a bidirectional protocol that can give a good range of applications (

9

LoRa and LoRaWAN Technology

Figure 2.8: LoRaWAN Architecture [12]

and algorithms) that needs two-way communications between the sensor node and
the server.

LoRa Devices(End Devices)

They are electronic IoT embedded system that has the features of been low power
consumption, small size, and low cost. To transmit through LoRa protocols, those
devices must have a LoRa Radio.

LoRa Gateway

They are Electronic devices that have the ability to listen over multiple channels at
the same time and on all spreading factors. Once they receive a LoRa frame they
transmit its content to the Web-server using the internet. It is the link between
the LoRa modulation and IP communication. Each LoRa Gateway has a unique
identifier (64-bit EUI). This identifier is useful for register and activates a Gateway
on a Network Server (We will talk about that in later chapters) Figure2.9 describes
the steps that a LoRa frame went through.

10

LoRa and LoRaWAN Technology

Figure 2.9: The Role of LoRaWAN Gateway

The Network Server

The Network Server receives the message from the Gateways, then it drops the
duplicated messages(which came from different Gateways). The LoRaWAN Packet
is authenticated using a 128-bit AES key called Network Session Key: NwkSKey.

Figure 2.10: Network Session Key Authentication

The Application Server

It separates the applications from each other. The registered LoRa devices can
store their data (Frame Payload) using the Application server. The messages here
are encrypted using a 128-bit AES key called Application Session Key: AppSKey.

11

LoRa and LoRaWAN Technology

Figure 2.11: Application Session Key Encryption

2.2.2 LoRaWAN Packet Format
We simply don’t send the data directly using the LoRa Modulation, instead, there
must be a frame for our data. The Frame of the LoRa Packet consists of:

• A preamble to allow the receiver to synchronize.

• Optional header (Used in the explicit mode)

• Data Payload

• CRC fields (checking the integrity of the frame).

The LoRa protocol data is called PHY Payload (physical layer data). a general
overview of the LoRa frame would look as in fig2.12 As LoRaWAN is a different

Figure 2.12: Lora Packet format

layer protocol than LoRa then the frame has to be modified. A simple general view
for the LoRaWAN frame would look like in fig2.13

12

LoRa and LoRaWAN Technology

Figure 2.13: LoRaWAN Simple Packet format

Figure 2.14: Spectrum Analyzer view of the Frame[6]

The Preamble is mandatory for every transmission to synchronize the receiver
with the incoming data flow. By default, the packet is configured with 12.25
symbols long sequence[13]:

• 8 configurable symbols (npreamble)

• 2 sync word symbols

• 2.25 SFD symbols

The Structure of the LoRaWAN packet is well-defined in[14], the important
thing to know is that sending an empty up-link message (with no payload data) will
always have an overhead of 131 bytes(2.15) which we must include in our analysis
when we want to calculate the Packet size or the Time On Air.

113 bytes due to [MHDR(1) + DevAddr(4) + FCtrl(1) + FCnt(2) + Fport(1) + MIC(4)] in a
packet with no options (the payload size is independent from the encryption.)

13

LoRa and LoRaWAN Technology

Figure 2.15: Example of the format for a real LoRaWAN Packet

2.2.3 Time On Air and Duty Cycle
The LoRaWAN standard requires that a LoRa Device does not transmit more than
1% of the time. This is called the Duty Cycle(DC). A Duty Cycle of 1% means
that if the device transmits for 1 (time unit), it must stay off for 99% (time unit).
This can be represented by TON

(TON +TOF F) while the Time On-air is the amount of
time a packet(or signal) takes during its trip from the transmitter’s antenna to the
receiver’s antenna.

The formulas to calculate the Time on air are:

1. Calculate the Symbol Rate as Rs = BW
2SF

2. Calculate the time of one symbol as Ts = 1
Rs

3. Calculate the Preamble duration as TP reamble = (nP reamble + 4.25)Ts

4. Calculate the Number of Payload Symbols as
NP ayloadSymbols = 8 + max(ceil(8P L−4SF +28+16−20H

4(SF −2DE))(CR + 4),0)2

5. TP acket = NP ayloadSymbols × Ts

6. Time on Air for LoRa Packet will be Tpacket = Tpreamble + TP acket

However we will use the fast approach with the air time calculator in [16]

Figure 2.16: LoRa Duty Cycle restriction

2for details about the parameters definitions[15, 9].

14

LoRa and LoRaWAN Technology

If the maximum duty-cycle in a sub-band is denoted by “D” and the packet
transmission time (Time On Air), each device must be silent in the sub-band for a
minimum off-period Toff = TOA(1

D
− 1) . TOA is proportionally affected by the

Spreading Factor, longer TOA for higher SF and consequently longer off duration;
this can be seen in the table below:

Figure 2.17: Table – LoRaWAN spreading factor with TOA for 64-byte payload
For a B.W. = 125 kHz for 500-meter distance [11]

We’re going to use the "Air Time Calculator" in[17] to calculate the TOA
concerning its payload size. The TOA for a packet that has no payload (only the
overhead = 13 bytes) with different Spreading factors:

Figure 2.18: the air time and fair access policy for different data rates for empty
payload packet

2.2.4 LoRaWAN Power Consumption
The consumption of a LoRa system depends on several parameters:

15

LoRa and LoRaWAN Technology

1. The quantity of data to be sent (Payload).

2. The Spreading Factor.

3. Any collisions during transmission (and therefore retransmission).

4. The request for acknowledgment of the frames sent.

5. The Duty-Cycle.

6. The transmission power of the transceiver.

7. The power consumed in standby between 2 transmissions.

Figure 2.19: Energy Consumption by Device Class[18]

To give a brief idea about the different levels of power consumption for each of
the different end-device classes, see Fig 2.19.

16

LoRa and LoRaWAN Technology

2.2.5 LoRaWAN Classes
End Devices in LoRaWAN also come in three classes, based on the profile of each
class the reception window for Down-Link messages (from the Network) is defined,
and also the Energy consumption(which reflect on the battery’s life for the sensor).
We are going to talk briefly about Class B, C and give more attention to class-A
since it’s the default mode for all Sensor Nodes.

Class A (All): Minimal power Application

Figure 2.20: Class-A transmit/receive profile [19]

All End devices must support class-A communications (our LoRa module uses
that Class for transmission). It follows the "Aloha" transmission scheme which
means any device can transmit it is message arbitrarily. The transmission profile
of class-A is shown in fig 2.20. Class-A devices are sleeping most of the time, they
wake up to transmit their up-link messages after that they start to listen after a
programmed waiting time for predefined two consecutive receive windows(Rx1 and
Rx2), the waiting time depends on regional parameters and they are defined for
Europe to be 1 second for Rx1 and 2 seconds for Rx2. The Gateway can send on
Rx1 or Rx2 but not both.

The duration of the Rx windows must be at least the duration of reception of a
preamble. A preamble lasts 12.25TS(where TS is the symbol time) and therefore
depends on the Data Rate.

First reception window:
1. Slot RX1 is programmed by default at 1 second + / 20 µs after the end of the

Uplink transmission.

2. The frequency and the Data Rate (DR) are the same as those chosen during
the transmission phase(Uplink).

17

LoRa and LoRaWAN Technology

Second reception window:

1. Slot RX2 is programmed by default at 2 seconds +/- 20 µs after the end of
the Uplink transmission.

2. The frequency and the Data Rate (DR) are configurable but also fixed.

The advantage of using Class-A is that it is the most power-efficient class among
the three classes but it comes with a downside which is the Downlink messages
are queued until the next time an uplink message is received(and an Rx window
is open) if the up-link message was not successfully received, also a LoRa Device
that only uses Class A cannot receive if it didn’t transmit. hence it is not easily
reachable.

Class B(Beacon)

Class B Devices behave the same as for Class A Devices, but other Reception
windows are scheduled at specific times. To synchronize those Receiving windows,
the Gateway must send beacons regularly. A Class B LoRa Device can be contacted
regularly without necessarily being an uplink transmission. On the other hand, it
consumes more than a class A device.

Figure 2.21: Class-B transmit/receive profile[19]

Class C (Continuous)

End devices in Class C mode are used when extremely low power consumption
is not an issue, and latency needs to be minimized. The server-side application
determines that it is managing class C devices during the join procedure. End
devices operating in Class C mode have received windows that are almost always
open. These windows close only when the device is transmitting. Because of this,

18

LoRa and LoRaWAN Technology

Class C end devices use more power to operate than Class A or Class B devices.
However, in turn, they offer the lowest latency for communication from the server
to an end device.

Figure 2.22: Class-C transmit/receive profile[19]

The Gateway used for the Downlink(DL) is the one that received the last message
from the LoRa Device. If the LoRa Node never sends an Uplink, it can not ever
have a Downlink, regardless of its class A, B, or C.

2.3 Authentication And Encryption
In this section we are going to discuss the issues related to LoRaWAN transmission
security.

2.3.1 Authentication with the Network Server
The Network Session Key(NwkSKey) is used to guarantee the authentication
between the LoRa Device and the Network Server. To perform this authentication,
a MIC field(Message Integrity Control) is added to the frame. It is calculated based
on the data transmitted and the NwkSkey. On the receiver, the same calculation is
made. If the NwkSkey is equivalent in the Device and the Network Server then the
two calculated MICs must match. The process is shown in figure 2.23.

19

LoRa and LoRaWAN Technology

Figure 2.23: The MIC and frame authentication by the network server

2.3.2 The Application Serve data Encryption
The Application Session Key(AppSKey) is used for encrypting the data between
the LoRa Device and the Application Server. Only if the data has the same key, it
will be decoded. Data encryption/decryption is done as in figure 2.24.

Figure 2.24: Using the AppSKey to encrypt/decrypt the Data

2.3.3 The Full LoRaWAN Frame
The LoRaWAN Frame at the end will look like 2.25.

20

LoRa and LoRaWAN Technology

Figure 2.25: Encryption followed by the Authentication process

2.4 Activation of LoRa Devices: ABP or OTAA
In LoRaWAN, there are three essential elements for the communication to happens:

1. The DevAddr for Device identification.

2. NwkSKey for authentication.

3. The AppSKey for encryption.

LoRaWAN offers two methods to share those elements before the data transmission
begin:

1. Activation By Personalization(ABP).

2. Over The Air Activation(OTAA).

21

LoRa and LoRaWAN Technology

2.4.1 Activation By Personalization(ABP)

Figure 2.26: Configuration of DevAddr, NwkSKey and AppSKey in ABP

It is the simplest of the two methods. It is very suitable to be used in the case of a
LoRaWAN prototype test or communication setup. Its simplicity comes due to the
fact that the LoRa Device, The Network server, and the Application Server, both
have the DevAddr, the AppSKey, and the NwkSKey before any communication
start. This can be shown in figure 2.26

2.4.2 Over The Air Activation(OTAA)

Figure 2.27: Configuration parameters before the Join Request (OTAA)

22

LoRa and LoRaWAN Technology

In the OTAA the DevAddr, the AppSKey, and the NwKSKey will be generated
during the join request of the LoRa Device (at the beginning of the transmission)as
can be seen in figure2.27.

It happens only once at the 1st communication. But there are other parameters
that must be known for both the LoRa Device and the Web Server before the
communication starts, those are:

1. DevEUI: It is a unique identifier for the LoRa device Some LoRa Devices
already have a factory supplied DevEUI.

2. AppEUI: A unique identifier for the server application.

3. Appkey: An AES 128 key used to generate the MIC (Message Code Integrity)
during the Join Request. It is shared with the Network server.

Figure 2.28: Configuration parameters after the Join Request (OTAA)

After the negotiation of the LoRa Device to join the Network Server(Join Re-
quest), both the LoRa Device and the server will generate the essential parameters:
DevAddr, NwkSKey, and AppSKey as can be seen in figure 2.28.

The generated parameters after the join request are:

1. NwkSKey: Used for authentication with the Network Server.

2. AppSKey: Used for data encryption.

3. DevAddr: Unique 32-bit identifier within a LoRa network.

23

LoRa and LoRaWAN Technology

Figure 2.29: Join Request - Join Accept in OTAA

The Scenario of the OTAA joint request as in (2.29) goes like this:

1. The LoRa Device initiates the Join-Request by sending DevEUI, AppEUI,
and AppKey information to the server.

2. The Network Server then authenticates the Join Request and validates it.
Then it generates a NwkSKey, an AppSKey, and a DevAddr.

3. The Network Server returns the DevAddr, as well as other parameters. Those
parameters allow the LoRa Device to generate the same NwkSKey and
AppSKey as the Web server.

24

LoRa and LoRaWAN Technology

2.5 LoRaWAN networks and servers
2.5.1 The different types of networks
LoRaWAN networks can be used in three configurations:

1. Using the operated LoRaWAN networks offered by a telecom operators.

2. Using a private LoRaWAN network.

3. Using a dedicated network.

At the meantime there is no telecom operators in Italy that supports LoRaWAN
coverage. We are going to demonstrate only the private LoRaWAN networks and
the dedicated networks.

Private LoRaWAN networks

Figure 2.30: The Infrastructure of a private LoRaWAN network

Private networks give the implementation of the Gateway and the servers to
the user, so the whole infrastructure to communicate with a LoRa device can be
defined by the user. There are some well known open source servers like "Chirp
Stack"[https://www.chirpstack.io/].

The dedicated LoRaWAN network

In this case, the Infrastructure of the LoRaWAN server is managed by the server
provider(SP), while it gives the user the ability to install their own Gateways (and
also using other users gateways), it’s more like a gateway sharing community. The
Things Network(TTN) is an example of that https://www.thethingsnetwork.
org/ and we are going to use it in our test.

25

https://www.chirpstack.io/
https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/

LoRa and LoRaWAN Technology

Figure 2.31: Infrastructure of a dedicated LoRaWAN network

Private networks Dedicated networks
Infrastructure Cost GW and servers fees only GW if user uses his own

Coverage Optimized to user needs Depends on the SP
UpLink MSG Unlimited (but respect 1% DC) Depends on the SP

DownLink MSG Unlimited (but respect 1% DC) Depends on the SP

Table 2.1: comparison between a private network and an dedicated network

2.6 LoRa Limitations
Knowing the Limitations of technology is a key element to define whether or not
it’s going to satisfy the need or not. And like all other technologies, LoRaWAN
has its own pros and cons, and in this section, we’re going to mention them.

2.6.1 ISM Band Limitations
According to The European Telecommunications Standards Institute ETSI to work
in the ISM Band must follow some rules to avoid the over-crowded and interference
when using the band, there are two main restrictions that LoRaWAN must follow
for working on this Band which are:

1. 1% Duty Cycle (for the standard sub-Bands)

2. EIRP of 14dBm (25mW) in Europe

2.6.2 LoRa Technology Limitations
1. LoRa has a maximum Data Rate of 11Kb/sec (SF = 7)

26

LoRa and LoRaWAN Technology

Figure 2.32: LoRaWAN Duty Cycle and EIRP limitations for Up-Link and
Down-link [20]

2. Packet size can’t exceed 256 bytes/transmission

There are other limitations that are imposed by the network server provider as
we will show in the next chapter.

27

Chapter 3

Design and Implementation

In this section, we’re going to describe our System component and their interaction
by presenting the system architecture and how the implementation process was
done.

3.1 The System Design
We start here by describing the System architecture and the involved components.

3.1.1 Architecture
Our system is composed of:

1. Sensor Node: Which is based on the FiPy Board with its Expansion board
3.1 to collect the sensors data and handle the transmission of the packets via
LoRaWAN Transceiver (embedded module).

2. The Gateway:
LoRaWAN architecture allows the packets to be received by more than one
Gateway, The Gateway “Polito” which is established in the Politecnico Di
Torino was considered to be the system gateway for the Tests.

3. TTN Web Server: It’s a web server that provides open tools and a global,
open network to build IoT applications at low cost, featuring maximum security
and ready to scale (but that also comes with more limitations).

4. Node-Red: It is a visual tool designed for the IoT, It quickly assembles
flows of various services. It enables users to stitch together Web services
and hardware by replacing common low-level coding tasks, and this can be

28

Design and Implementation

Figure 3.1: "Polito" Gateway on Google map

done with a visual drag-drop interface. Various components in Node-RED are
connected to create a flow. Most of the code needed is created automatically.

Figure 3.2: The LoRaWAN System Architecture

Figure 3.2 represents the generic interconnection of the elements. The Sensors
are sending packets to TTN through the TTN registered gateways (gateways that
are registered on the TTN web-server), the locations of the gateways nearby in
the city of Turin are shown in figure 3.3, after that, we use the feature that TTN
provides which is the integration with the Node-Red through the MQTT Protocol.
Once the packet arrives Node-Red platform, it can be stored, analyzed, or visualized
with many possibilities.

3.1.2 Components
LoRaWAN Sensors Node

FiPy is the first 5-network development board on the market which is offered by
Pycom company. It features WiFi, BLE, LoRa, Sigfox, and LTE-M it’s programmed
with Micro-python. It’s based on the famous ESP32 µConteroller supplied by 3.3V-
5.5V, the µConteroller is connected through a high-speed SPI connection to the

29

Design and Implementation

Figure 3.3: TTN Map of the registered Gateways (near the test position in Torino
City)

SX1272 Semtech chip which is responsible for performing the LoRa modulation.
The block diagram of FiPy is shown in Figure 3.5

The FiPy was used with the Lora 868MHz Band antenna as the experiment is
conducted in Europe which is a standard dipole with a gain of 2.15 dbi.

Using the FiPy with its expansion board allows access to the Board using
Mini-USB cables directly or via WiFi connection. The development environment
that was used is the Pymark plugin using the Visual Studio Code editor.

DHT11–Temperature and Humidity Sensor The DHT11 is a commonly
used temperature and humidity sensor. The sensor comes with a dedicated NTC
to measure temperature and an 8-bit microcontroller to output the values of
temperature and humidity as serial data. The sensor is also factory calibrated and
hence easy to interface with other microcontrollers. The sensor measurement range
for the temperature starts from 0°C to 50°C with an accuracy of ±2°C and the
measurement range for the humidity starts from 20% to 90% with an accuracy of
±5%RH [22]. To extract the sensor data with the FiPy the Library dth.py was
used as it features the required methods to do the job, in the following lines we
demonstrate a part of the code to initialize and extract the sensor data.

30

Design and Implementation

Figure 3.4: FiPy board and its expansion board

1 from dth import DTH # Custom Library o f the dHT11 senso r
2

3 # cr ea t i n g DHT11 Object on pin 3 o f the Fipy
4 DHT_11 = DTH(Pin (’P3 ’ , mode=Pin .OPEN_DRAIN) ,0)

Using the dth library to extract the sensor measurements from the
DTH11 sensor line 25.

Using the method read() from the dth library to read the Temperature and the
humidity from the sensor, if the results were valid data (4 bytes that represent the
Temperature and the humidity) then the data will be printed on the Visual studio
Console (for debugging). Then the results for both Temperature and humidity
were stored in two separate variables to be transmitted using the LoRaWAN socket
which we’ll demonstrate later in this chapter.

31

Design and Implementation

Figure 3.5: FiPy System block diagram[21]

Figure 3.6: Lora 868MHz Antenna

1 r e s u l t = DHT_11. read ()
2 i f r e s u l t . i s_va l i d () :
3 pycom . rgb led (0 x001000) # green
4 pr in t (" Temperature : %d C" % r e s u l t . temperature)
5 pr in t (" Humidity : %d %%" % r e s u l t . humidity)
6 hum = r e s u l t . humidity
7 temp = r e s u l t . temperature

32

Design and Implementation

Assigning the Temperature and the humidity values line 56.

The console output will be like: So at this point, we’re sure that our sensor is

sending the data to the FiPy which collects this data properly.

The Things Network (TTN)

Figure 3.7: TTN Console

As previously described TTN is a dedicated web server that’s dedicated to the
LoRaWAN IoT Applications by allowing the users to configure and monitor their
LoRaWAN applications and also their gateways through the TTN Console as shown
in figure 3.7.

We configured our application using the necessary values for the ABP authen-
tication because as we mentioned in 2.4 it is simpler and faster for prototyping
purpose and testing. The configuration window is shown in figure 3.8.

Payload format The FiPy was programmed to concatenate the Temperature
and humidity readings and send them using the "ustruct" library which returns
several bytes needed to store a given data input, this was done due to two facts, 1st

33

Design and Implementation

Figure 3.8: registering our application in the TTN applications

the “send” socket of the LoRaWAN requires the input argument to be in the "bytes"
format, 2nd TTN strongly advice the users to always use the binary encoding for
their payload data [23].

1 Con_Data = in t (s t r (temp)+s t r (hum))
2 Data_11 = us t ruc t . pack (’h ’ ,Con_Data)
3 s . send (Data_11)

Constructing the Packet byte format in-order to be send using the LoRa
socket line 65.

Figure 3.9: Payload in hexadecimal representation

34

Design and Implementation

The transmitted packet can be checked on the TTN web server page which
also gives many valuable Metadata about the transmission parameters but we’ll
demonstrate the payload first; it will look as shown in figure 3.9 which is represented
in hexadecimal form.

TTN provide a convenient tool that lets the server do payload decoding for the
user to see meaningful data on the web UI and this is done by writing a JavaScript
decoding function under the section called “payload format”. The function can be
tested using a payload that’s inserted by the user (we used a real payload from the
application page).

Figure 3.10: Payload decoder function

After that we can see the received data as show in the following figure 3.11.
Notice that the payload represented on the TTN application web page is the
decrypted payload, if we want to check the encrypted data we can look at the TTN
gateway page to find out the size of the encrypted data as it will look like in figure
3.12.

35

Design and Implementation

Figure 3.11: Payload in human readable format

Figure 3.12: An encrypted LoRaWAN Packet

As we mentioned in the LoRaWAN tech. section the overhead is 13 bytes
(default) which explains why the Payload on the gateway Console is 15 bytes (since
our application uses only 2 bytes for the payload data). The Payload Metadata

One of the most valuable information that the user gets from the TTN server
is the Metadata which shows many important parameters that contribute to the
reception of the data packet Those parameters are shown in figure 3.13 .those
are the parameters that we’re going to use in our experimental field test of the

36

Design and Implementation

Figure 3.13: The Metadata of the received packet

LoRaWAN technology which will reflect us the range, data rate (throughput) and
the delay.

3.1.3 TTN Limitations
We had mentioned before the limitations of using the ISM Band along with the
LoRaWAN technology limitations; Now as we’re going to use the TTN web-server we
must know its limitations and rules as well. According to [24] the TTN limitations
which are imposed when using the TTN server (known as the fair access policy for
The Things Network’s- public community network) states that The Payload data
for each end-device can send As :

• An average of 30 seconds up-link TOA, per 24 hours, per device.

• At most 10 downlink messages per 24 hours, including the ACKs for confirmed
up-links.

• Devices with fixed hard coded spreading factors of SF12 or SF11 are not
allowed to join the network.

37

Design and Implementation

3.1.4 Node-Red
Node-RED is a programming tool for wiring together hardware devices, APIs, and
online services. Primarily, it is a visual tool designed for the Internet of Things,
but it can also be used for other applications to very quickly assemble flows of
various services. It enables users to stitch together Web services and hardware by
replacing common low-level coding tasks (like a simple service talking to a serial
port), and this can be done with a visual drag-drop interface. Various components
in Node-RED are connected to create a flow. Most of the code needed is created
automatically.

Figure 3.14: Node-Red Flow

Why Node-Red?

The need for extracting and storing the Meta Data of the payload message is
the main reason why the researcher used Node-Red since the storage integration
capability that’s offered by TTN doesn’t provide (store) the Metadata of the
messages. Also, the web Console of TTN only stores the data until the browser
buffer will overflow then all the data will be lost hence the need for an application
to store those data. Once we have the data stored we can analyze it as we want.

Node-Red Payload and Metadata flow

Node-Red really makes it easy for us to do our measurements as it provides
ready-made Nodes that Emulate the Up-link(or Down-link) of the TTN Nodes (or
Gateways). A Flow has been developed to extract the LoRa packet from the TTN
web-server and store the data in a .csv file, the flow is shown in figure 3.15.

Describing the flow from left to right, 1st we use the ttn up-link which is the
connection between Node-red and TTN server, the output of this node is split into
two branches one that goes to the function Node which is used to extract the

38

Design and Implementation

Figure 3.15: Node-Red Flow for extracting the up-link messages from TTN

needed parameters from the received up-link messages, this node is programmed in
JavaScript to extract the following parameters:

• Message Counter (Counter)

• Message payload data (PL)

• Data Rate (DataRate)

• RSSI (rssi)

• SNR (snr)

• The time which the gateway received the uplink message (Time)

• Gateway ID (GW_ID)

• Gateway Location (lat , lng , alt)

The JavaScript code for this node is in the appendix. The other branch of the
output goes to a Node called Interval length which gives the ability to measure
the time difference between two consecutive messages[25]. From this node, we can
measure the delay that occurs between the up-link messages, Notice that we can’t
measure the accurate latency of the system since we don’t control the clock
sources that go to the different stages of the system like the TTN and the Gateway
and we will discuss this in the next chapter.

39

Design and Implementation

Figure 3.16: Tracking the timing of the LoRaWAN packet

The Extracted data will then be stored in a .csv file to do the analysis later.
In the next section, we’re going to demonstrate the measurements and the results
that had been done.

3.1.5 Firmware Flowchart
As the system components have been described, here we demonstrate the flowchart
that the system follows to establish the LoRa connection between the Sensor node
and the gateway. The transmission is non-confirmed so the sensor node doesn’t
wait for any response from the GWs(in the Rx Windows as described in 2.20). The
Firmware was cited in Appendix A.

40

Design and Implementation

Figure 3.17: LoRa Up-Link transmission Flowchart

41

Chapter 4

Measurements and Results

After defining the main parts of the proposed design and system methodology along
with the main aspects and structure of the testbed that is going to be used to test
the system performance and the reliability of the communication scheme prototype
in the previous chapter, in this chapter, the measurements and results are going
to be discussed. We will focus on the investigation of the scheme performance
in different scenarios to examine its capabilities and to check how it behaves in
special environments and under special circumstances to show its abilities to fit
these particular uses.

4.1 The System Criteria

To Evaluate the system properly we have to have reference parameters that we can
compare with the results we get from the real measurements, so we can know what
the technology can satisfy and what it can not. The following are the criticalities
for the system:

1. Should cover a range of at least 600 meters.

2. The update time for up-link messages should be < 300 Sec

3. Should be able to handle the transmission of 20 bytes of data within every
transmission interval.

Hence the objective of the measurements is evaluating the applicability of the
LoRaWAN technology to satisfy those criteria or no.

42

Measurements and Results

4.2 Test Scenarios
As we want to evaluate the performance of the technology with our critical param-
eters, The scenarios and the measurement of the experiment will go like this:

1. We will be testing the LoRaWAN coverage distance, this will be done by
transmitting 100 LoRaWAN packets from four test points and we will observe
the success of the reception of the packets (which indicated by the Packet
Deliver Rate PDR) and also observe how the spreading factor(SF) could affect
the PDR. We will also examine the effect of the packet size on PDR by using
two different packet lengths, one will be 20 bytes and the other will be 51
bytes.

2. Considering the TTN policy and the ETSI duty cycle restriction (for the
868MHz Band) we will quantify the maximum achievable data rate w.r.t a
payload data of 20 bytes.

3. After defining the maximum data rate which satisfies the TTN and ETSI
constraints, we will measure the actual delay that the packets take through their
transmission journey from the Sensor Node until it reaches the Application
server(Node-Red).

4.2.1 The Size of The Payload
The short payload size was determined based on the data ingredients of our sensor
node which is:

1. ID (2-bytes).

2. 4xPM2.5:(10 bits/Sensor).

3. 4xPM10:(10 bit/Sensor).

4. TEMP:(1-byte).

5. HUM:(1-byte).

6. RTC:(4-byte).

7. GPS:(from 2 to 8 bytes - Future Version)

The Sensor Node Box contains 4 of PM2.5 sensors and 4 of PM10 sensors, which
in total produce 80 bits/sec (10 bytes).

43

Measurements and Results

4.2.2 Measurements Points Geo-locations
The measurement test was set as following, four test points were chosen in the
city of Turin to measure the performance of the technology. As was mentioned
in the previous chapter 3.3 that TTN provides a gateways map that shows the
distribution of the registered gateways that forward the packets to the TTN server.
we had noticed that sometimes an unknown gateway that is not trusted (registered
to TTN server with fake locations) receives the packets, to avoid those Gateways
the Gateway which is installed in the polytechnic university of Turin (registered
under the name Polito) was considered the reference Gateway to the sensor Node’s
test points. The four test points are chosen to demonstrate different transmission
environment, we try to emulate the Line of Sight(LOS), Non-Line of Sight(NLOS),
relatively short and long distances.

Figure 4.1: Map of the Test Points in the city of Turin[Google Earth]

Point 1 is a far LOS from “Polito” GW with few blocking buildings with height
< 100 m across the sight. Point 2 is a short-range LOS with few buildings in the
vicinity. Point 3 has a lot of buildings that block the view of the GW. Point 4 is a
far distance with an environment that’s in front of a water surface (river) where
there’re moving boats and many other obstacles. The chosen points to do the test
are listed in Table 4.1 below

4.2.3 Test setup
The measurement test was set as following, four test points were chosen in the city
of Turin to run the tests. The bandwidth will be fixed BW = 125KHz and code
rate = 4/5 for all the measurements. The Gateway “Polito” was chosen to be the
reference Gateway and its geographical information is shown in Table 4.1.

LoRaWAN architecture as mentioned in 2.2.1 follows "star of star" topology,

44

Measurements and Results

Point Number Distance from Polito Gw(Km) Latitude Longitude
1 2.88 LOS 45.039404 7.645806
2 0.6 LOS 45.057617 7.659197
3 1.11 NLOS 45.061521 7.648052
4 2.59 NLOS 45.060447 7.694892

Gw 0 45.064167 7.6597

Table 4.1: Test Points of the Experiment

which allows many GWs to receive the same packet. The TTN GW map tells us
about the registered Gateways in the city of Turin as shown in 3.3. But besides
those "Registered" GW there are also some gateways that are not registered as
"Trusted" in the TTN server which may have non-accurate location data about
them. we had to deal with one of them since the TTN web-server some times
ignore the reception of the same packet from multiple GW and start to ignore
some of the GW which leads to the ignorance of the GW "polito" some times. This
gateway which seems that it can received our packet from a distance of 60Km as

Figure 4.2: Same Packet received by two gateways

45

Measurements and Results

Figure 4.3: The un-trusted gateway’s location w.r.t sensor node

shown in figure 4.2 under the GW ID = "EUI-60C5a8fffeb55024" which receives
the same packet as GW ID = "polito", taking the coordinates of this GW and put
it in Google map we get 4.3 (which is pretty impressive if it was real), we are not
denying that LoRa can achieve this long range (there are many tests that had done
much longer range[26],but the fact that there are many GW around the sensor node
(As shown in 3.3) and the experiment was done in the urban city of Turin, all that
create suspicious about the location of this gateway and hence in order to quantify
the measurements of the PDR we are going to consider only the packets received
by the Gateway "Polito" since it is defined by TTN as "registered Gateway" which
means that its location information is accurate and hence we can be confident
about our distance measurements that it represents accurate information about
the distance.

PDR(%) = (R

T
)× 100 (4.1)

The transmitting power is automatically handled by TTN so it’s not one of the
developing variable parameters (unless the transmission is only LoRa).
The PDR is a measure of how many packets has been delivered successfully and it
can be calculated as in Eq 4.1.

46

Measurements and Results

Where:

1. R is the successful received packets

2. T is the Number of the Total transmitted packets

47

Measurements and Results

4.2.4 Range Test
Besides the General measurement specifications that had been mentioned in the
previous section, the range test will have an additional setup to observe the Packet
length on the range, we are going to use two packet lengths, one with the real
data of the DHT11 sensor (which is 2 bytes size) and the other one with a fixed
payload data that will be relatively big (51 bytes) both will be tested Concerning
LoRaWAN parameters and will be given the names Short Payload and Long Payload
respectively. A 100 (unconfirmed) packets will be transmitted from the sensor node
to the Gateway.

Data Size SF BW CR Pkt numbers MSG Type
2 Bytes 7,9,12 125KHz 4/5 100 Unconfirmed

Table 4.2: Short Payload Packet configurations

Figure 4.4: Packet Deliver Rate with different test points

48

Measurements and Results

Data Size SF BW CR Pkt numbers MSG Type
51 Bytes 7,9,12 125KHz 4/5 100 Unconfirmed

Table 4.3: Long Payload Packet configurations

Figure 4.5: PDR for the Long payload

Figures 4.4 and 4.5 demonstrate the results of the PDR for every test point
with varying the spreading factor for Short and Long Payload respectively. SF12
achieves almost 100% for all the distances for Short and Long Payloads. SF7 and
SF9 showed unstable behaviors regardless of what was expected, In Short Payload
it was expected that TP2 will have the highest PDR, since it is the nearest to
our Gateway, but the results showed that TP3 was a better performance for those
SF. The reason for this behavior is due to the different types of interference that
surround the LoRa Device during the experiment time (vehicle, bus movements,
and maybe other radio signals) since TP2 is a bus station. If we observe Figure
4.5 where the same experiment was conducted, we can see a better behavior for
the same Spreading factors(7 and 9). Although the Payload this time is much
bigger than the 1st experiment(more than 90% PDR for TP2). We can also see
a clear reduction in the PDR in the Long Payload case as the distance increases
(as in TP3, TP4) which comply with the physical description of the SF(2.1.2) as
was described in Ch.2. A critical note to consider here, that those measurements
PDR were taking only w.r.t. "Polito" GW, however, TTN web-server shows that a

49

Measurements and Results

much higher PDR than that for packets reception but it was through other GWs
(which we discarded as mentioned previously). also, the range performance can be
enhanced by increasing the code-rate, as we used the minimum CR = 4/5 however
if we used the CR = 4/8 we can have a longer range (better reception for the same
Node) but the downside is that we are going to lose the bit-rate.

50

Measurements and Results

4.2.5 Throughput of the System
Now we want to evaluate the performance of LoRaWAN in terms of its maximum
rate of data that packets can be transmitted with. General speaking we can
theoretically know the data rate that we can get corresponding to every SF by The
following Equation[15] :

DR = SF × BW
2SF × 4

(4+CR)

Where:

1. DR = Data rate

2. SF = Spreading factor packets (7-12)

3. BW = Bandwidth(Hz)

4. CR = Coding rate (1-4)

Also, a very handy calculator[16] provided by Semtech can calculate the bit rate of
the transmission rapidly as shown in Figure 4.6.

Figure 4.6: Bit Rate for SF = 7

51

Measurements and Results

SF BW(KHz) CR Evaluated Bit Rate(bps)
7 125 4/5 5468
8 125 4/5 3125
9 125 4/5 1775
10 125 4/5 976
11 125 4/5 537
12 125 4/5 292

Table 4.4: The Evaluated bit-rate for different SF

We can find out the Bit Rate for the other Spreading factors and set a table for
them as shown in Table 4.4. Note that Bandwidth can increase the bit rate but it
is only controllable by LoRa transmission (not LoRaWAN).

4.2.6 Byte-Rate Suitability For The Task
We shall begin here to analyze the applicability of the data rate that LoRaWAN
support for our system, we will also consider the limitations of the duty cycle
and TTN fair access policy and see if the technology can deliver the packets at a
reasonable rate or not.

Packet Timing Analysis

We will start our analysis simple by examining the time it takes to transmit a
20-byte payload packet taking into consideration all the restrictions. Knowing that
the overhead for LoRaWAN Packet (minimum without payload) is 13 bytes and
using the air time calculator [17] we can find out a good approximation of how
long our packet shall be on the air TOA, the time the device should be sleep after
that and how many packets (message) should be sent during the hour. So the total
packet size will be 33 bytes (20 + 13).

From fig 4.8 we can see that SF=12 is the critical case for the data rate with
the highest limitations on the duty cycle and the maximum number of a packet
per day for transmitting a 20-byte payload LoRaWAN packet on the EU868 Band,
analyzing the results of this SF in details would be :

1. For SF=12, TOA = 1810.4 ms for a 33-byte Packet.

2. Toff = 181 Seconds between subsequent packets (1% Duty Cycle).

52

Measurements and Results

Figure 4.7: Evaluating the Bit-rate for every SF,(BW = 125Khz)

3. TTN Access policy limits the total number of transmitted packets per day to
16 MSG/day (for transmitting the whole day).

So, TTN only allow us to send 16 Message per day using the SF12.
while the Maximum packet rate that the weather station must not exceeds is 5
min. hence using SF12 is not applicable for our system. An important thing to
notice here is that the Fair Access policy for TTN does not exist with a private
web-servers.

Combining the information of the bit rate with the LoRaWAN transmission
restrictions we can now know that the suitable mode for transmission for our system
is the SF7 and under the limitations of the TTN web-server, this should imply a
bit Rate of 5.5Kbps with a Toff = 3.5minuets, also notice that the Toff increases
or decreases depending on the size of the packet.

53

Measurements and Results

Figure 4.8: LoRaWAN Timing for 20 bytes Payload packet

Packet Size SF TOA(ms) DC 1%(sec) Sleep Time(min.) Max. MSG/Day
33 7 71.9 7.2 3.5 417
33 8 133.6 413.4 6.4 224
33 9 246.8 24.7 11.8 121
33 10 452.6 45.3 21.7 66
33 11 987.1 98.7 47.4 30
33 12 1810.4 181 86.9 16

Table 4.5: Timing Analysis for 20 byte Payload

4.2.7 Can we do better ?
A more efficient suggestion for the Air quality station’s packet is:

Packet reduction

We can take advantage that the LoRaWAN packet already contains the device ID,
so we don’t need to waste another 2 bytes to transmit information that is already
included(we only need to extract it from the meta-data of the payload). Also using
the advantage that LoRaWAN Packet contains the timestamp within can make
us save the RTC data which reserve 4 bytes of the packet, Now our packet shall

54

Measurements and Results

contain the following:

1. PM2.5:(40 bits)

2. PM10:(40 bits)

3. TEMP:(1-byte)

4. HUM:(1-byte)

now we have a reduction from 20 bytes to only 12 bytes of data which can be
send using TTN every 2.7 minutes and every 10 seconds if we are going to use a
private web-server.

Data averaging and SSB

The fact that weather data is not a rapidly changing type of data(per seconds),
hence we don’t need to send the data at the same rate as the sensors produce it,
instead, we can use a simple technique like introducing a Sensors States Byte(SSB)
which is simply a byte that gives us an indication if there is any change happened
in the sensor’s readings. and we can use it as the default transmission unless there
is a change in the sensor’s measurement.

Figure 4.9: An Example of our suggested Sensors State Byte

The SSB byte could be constructed like in figure 4.9. Where "State" bit is an
indication if there is any change happens in any of the measurements of any of
the sensors, so at the receiver side the check can only be done on that bit, if it =
0 then no change happens in any of the readings, if it = 1 then the proceeding
sensor’s bits must be checked to know which sensor(s) measurement had changed.
The 3 least significant bits can be used as an indicator to the web-server of the
upcoming data packet, we can set our own coding for those 3 bits. For example,
we can establish a table of the upcoming measurement that will be sent like:

An algorithm can be set on the sensor node to follow a specific pattern whenever
the measurement of any of the sensors changes and/or with a specific period of
time.

The normal pattern of transmission now is reduced to 1 byte(14 bytes in total)
per transmission, using LoRa air time calculator, this gives us the possibility to

55

Measurements and Results

Sensor Measurement X1 X2 X3 Size(bytes) TTN Toff (min) 1% Toff (sec)
PM10 0 0 0 2 2.2 4.6
PM2.5 0 0 1 2 2.2 4.6

PM10+PM2.5 0 1 0 4 2.4 5.1
Temperature 0 1 1 1 2.2 4.6
Humidity 1 0 0 1 2.2 4.6

GPS 1 0 1 4 2.4 5.1
RTC 1 1 0 4 2.4 5.1

All Measurements 1 1 1 10 3.3 6.2

Table 4.6: Encoding of the Last 3 LSB of the SSB

transmit a message every 2.2 minutes using TTN and every 5 seconds if we use a
private web-server.

So we can send a Full packet with the sensor’s data once every few minutes then
keep transmitting only the SSB until a change happens in the measurement of one
of the sensors, the difference between the duty cycle of the full sensor measurements
and the SSB is one minute for the amount of the sensor data that we have at the
moment but as the data may get bigger, this difference becomes larger.

Figure 4.10: The 1% duty cycle allows the transmission every 5 seconds for data
size = 1byte using SF7

56

Measurements and Results

Figure 4.11: An Example of the transmission pattern of the sensor data

All Measurement Packet Sensor State Byte
Size(Byte) 10 1

Duty Cycle Limitation MSG every 5 Sec MSG every 5 Sec
TTN Limitation MSG every 3.3min MSG every 2.2min

Table 4.7: Transmission of measurement Packet(10+13) and SSB(1+13)

The Pros of this technique

The power of those techniques become more important to solve the limitations of
the TTN web-server not just for the Fair Access Policy but also the very limited
Downlink per day for a gateway which is only 30 MSG/day, so now we can make
the transmission smarter to track the changes on the measurements and give the
sensor node the intelligence to use the possibility to transmit a much higher number
of Uplink over the LoRaWAN technology (For TTN).

The con of this method is that the user can’t give commands to the sensor node
to change its pattern unless they changed the Firmware.

57

Measurements and Results

4.2.8 The Latency
In this section, we are going to demonstrate the Latency that a LoRaWAN packet
may encounters during its journey starting from the Node sensor until it reaches
the application server successfully.

The Latency Test Configurations

The analysis will focus on the LoRaWAN class-A investigating the impact of dif-
ferent parameters on the latency, this will be done by fixing the bandwidth and
the code rate to 125KHz and 4/5 respectively while using the different spreading
factor(7,9,12). Setup a single sensor node (FiPy) and a single Gateway, we will
run the test. Looking at figure 3.16, the LoRaWAN packet leaves the sensor node
to the gateway as it is modulated using the LoRa protocol, the gateway then
forwards this packet to a single network server (TTN in our case) over an IP-based
network, the network server can be connected to an application server which demon-
strates the data as the user wants, every stage during this journey costs the packet
an amount of delay which we demonstrate it on the Packet timing diagram in Fig 4.8.

Figure 4.12: Timing of a LoRaWAN Packet

Where :

1. T0 = The RTC initial time in the Sensor Node.

2. T1 = The Packet spends TOA then the GW register its received time.

3. T2 = TTN registers its Timestamp after receiving the packet.

58

Measurements and Results

4. T3 = after the TTN decoding and processing and transmission, finally the
packet reaches Node-Red which has its own timestamp.

The analysis gives an estimation of the latency. As the Synchronization only
occurs between the Fipy and Node-Red. We can’t know the clock source of TTN
and as we don’t use a private Gateway we can’t also control it’s clock source. The
RTC in the Fipy is syncing its time with an NTP server which is "time.inrim.it"
for Italy. We also modified the clock reference for our Windows PC (that runs
Node-red) to sync its clock from the same source. In this way we reduced the error
that could happens due to asynchronous clock between different stages. figure
3 shows the block diagram for clock synchronization between the Node and the
application server. We then embed the RTC time information inside the LoRa
Packet as the MAC payload and transmitted at the time (T0). It takes an amount
of time TOA which has a direct relation with the LoRa physical parameter from
the relation: TOA ∝ 2SF

BW
until it reaches the gateway(T1), the best(lowest) TOA

can be achieved by using the lowest SF and the highest BW. The packet spends an
amount of time during processing then it is re-transmitted to the web-server using
a network connection to reaches TTN at (T2). It is then get processed again and
decoded then transmitted to arrive at (T3) at Node-Red which is installed on the
same PC that is connected to the sensor node. The Node-Red then generates a
.csv file that contains the time stamp for every stage the packet arrives.

A comparison will be done based on the time that had been recorded at each
of those stages. an accuracy error of ±1 Seconds will be considered due to the
asynchronous global clocks between Gateway, TTN, and the Node-Red where in
this Node-red flow we used the "moment" Node to measure the time(in milliseconds)
at which Node-red receives the Packet. The output .csv file should look like in fig

Figure 4.13: the data as constructed by Node-Red

59

Measurements and Results

4.13. A python script was developed specifically to read the data from the file and
calculate the average latency for every SF.

Fig 4.10 shows the flowchart of the algorithm that had been followed inside
the Node to get the timestamp data from the NTP-server, while Fig 4.11 shows
the flowchart that had been followed by both Node-Red to extract the timing
information for every stage then write those data into a .csv file, then a python
script has been developed to calculate the average than draw the Data.

The python script for the Sensor Node, Node-red Nodes, extracting the data
from the .csv file, calculate and draw the average Latency can be found in B.

fig 4.12 and fig 4.13 demonstrate the components that contribute to the latency
from every stage.

60

Measurements and Results

Figure 4.14: Latency algorithm for constructing the Packet

The Latency results

As can be seen in Fig 4.16 and Fig 4.17 the TOA which is a LoRa protocol
characteristic is dominating over all the other latency components As TOA =2400
milliseconds for SF12 while it is only 100 milliseconds for SF7 however it is still far
larger than the latency that occurs from the Gateway processing, TTN decoding

61

Measurements and Results

Figure 4.15: Latency algorithm for analyzing the data of the received packet

and transmitting the LoRa Packet which is as can be seen a fraction of a millisecond.

62

Measurements and Results

Figure 4.16: The TOA contribution part to the latency

Figure 4.17: Other Latency components

63

Chapter 5

Conclusion and future work

5.1 Conclusion
We had demonstrated the applicability of LoRaWAN technology to use it as the
Communication protocol for the Weather station IoT system, the measurements
showed that LoRaWAN can achieve acceptable ranges of data communications
which were 600 meters, but this also should be chosen carefully concerning the
environment(in the case where there is only one gateway in the area) since the
transmission is severely affected by the surroundings as we demonstrated in the
Test point 2. In our experiments we used a foreign web-server like the things
network which add some more additional constrains above those who already exist
for using the ISM Band; that limits the update time for packets transmission and
the number of messages per day which limited the usage of the LoRa Protocol in
our system case to only one suitable spreading factor which is SF7, fortunately, SF7
can satisfy the data-Rate of 5.4Kbps, and it has a minimum latency of around 100
milliseconds with ability to transmit 417 packets per day (packet update time every
3.5 minutes) with a packet latency of around 100 milliseconds as the measurements
showed. We then introduced a suggestion to improve this situation by removing
the redundant information like the ID and the time from the packet, hence we
were able to reduce the packet size to only 10 bytes which has an update time of
2.7 minutes, then we introduced the "Sensors States Byte" which is a byte that
we are going to send instead of sending the whole data every transmission which
reduced the update time to 2.2 minutes which give us more reliability transmit our
information under the TTN restrictions.

64

Conclusion and future work

5.2 Future Work
Future work could be considered is considering using a less constrained web-server
that has fewer restrictions on the number of packets per day like the open-source
web-server "chirpstack" which is Linux based web-server. Also using a gateway
that allows being synchronized with the system like for example the one based on
the Raspberry Pi(using The concentrator module iC880A)[27] this shall give more
accurate timing analysis and experiment parameters control one good latency end
to end analysis had been done on [28] where the researcher was examining many
different parameters on the latency including the IP connection used to transmit
the data from the gateway to the web-server. Also one of the interesting features
that can be included in future works is to take the advantage of the fact that the
Fipy is based on the ESP32 which has 2 interesting features that can significantly
reduce the power usage of the Node which are the Ultra-Low power feature(ULP)
and the Dual-core that can be used efficiently with the freeRtos that is already
supported by this µController.

65

Appendix A

A

The boot.py to include Libraries and define the variables

1 ###
2 # Importing the Required L i b e r a r i e s
3 ###
4 from network import LoRa
5 from machine import UART
6 #from network import WLAN
7 from dth import DTH # Custom Library o f the dHT11 senso r
8 import machine
9 from machine import Pin

10 import socke t # To do the connect i ons
11 import ub i n a s c i i # To do the hexdecimal Convesions
12 import s t r u c t #
13 import u s t ruc t
14 import time
15 import ujson
16 import pycom # To add the hardware
17

18

19

20 ##
21 # Defning Var iab l e s
22 ##
23

24 # Creat ing DHT11 Object on pin 3 o f the Fipy
25 DHT_11 = DTH(Pin (’P3 ’ , mode=Pin .OPEN_DRAIN) ,0)
26

27 # Parameters
28 SF7_DR5 = 5
29 SF8_DR4 = 4
30 SF9_DR3 = 3

66

A

31 SF10_DR2= 2
32 SF11_DR1= 1
33 SF12_DR0= 0
34

35 # Channel ’ s Freq .
36 Ch_0 = 868100000
37 Ch_1 = 868300000
38 Ch_2 = 868500000
39

40 SF_Array = [SF12_DR0,SF11_DR1,SF10_DR2,SF9_DR3,SF8_DR4,SF7_DR5]

The main.py file

1

2 ##
3 # Importing the Required L i b e r a r i e s (done in boot . py)
4

5 ##
6 de f LoRa_Int i l i ze () :
7 ##
8 # LoraWan Con f i gura t i ons
9 ##

10 # I n i t i a l i s e LoRa in LORAWAN mode .
11 l o r a = LoRa(mode=LoRa .LORAWAN) # Lora Constructor −

Creat l o r a Object from the Lora Class
12 #lo r a = LoRa(mode=LoRa .LORAWAN, adr=True , t x_r e t r i e s =1)
13

14 # crea t e an ABP authen t i c a t i on paramsz
15 # Lora MAC Address −−−> 70B3D5499800DEB4
16 dev_addr = s t r u c t . unpack (">l " , u b i n a s c i i . unhex l i f y (’ 260117BD’

)) [0] # these s e t t i n g s can be found from TTN
17 nwk_swkey = ub i n a s c i i . unhex l i f y (’ 9

E81780F9C179F3D559942DB692CA8D8 ’) # these s e t t i n g s can be found
from TTN

18 app_swkey = ub i n a s c i i . unhex l i f y (’
E6B0790498B89248FF46EB374CDC8B76 ’) # these s e t t i n g s can be found
from TTN

19

20 # se t the 3 d e f au l t channe l s to the same frequency (EU
Conf i gura t i ons)

21 l o r a . add_channel (0 , f requency=868100000 , dr_min=0 , dr_max=5)
dr = 0 −−−> S .F . = 12 (Slower Transmiss ion Time but Longer

Range)
22 l o r a . add_channel (1 , f requency=868100000 , dr_min=0 , dr_max=5)

dr = 5 −−−> S .F . = 7 (Faster but Lower Range)
23 l o r a . add_channel (2 , f requency=868100000 , dr_min=0 , dr_max=5)
24

25 f o r i in range (3 , 16) :

67

A

26 l o r a . remove_channel (i)
27

28 # jo i n a network us ing ABP (Act ivat ion By Pe r s ona l i s a t i o n)
29 l o r a . j o i n (a c t i v a t i o n=LoRa .ABP, auth=(dev_addr , nwk_swkey ,

app_swkey) , t imeout=0) # timeout=0 −−> i f i t doesn ’ t connect
i n s t an t i nu s l y , Continue the Code

30

31

32 # wait u n t i l the module has j o i n ed the network
33 whi le not l o r a . has_joined () :
34 pycom . rgb led (0 x f f 0000) # Led Red −−−−> No connected to

Lora Network yet
35 time . s l e e p (2 . 5)
36 pr in t (’Not j o in ed yet . . . ’)
37

38 pr in t (’ j o i n ed ’)
39 #pycom . rgb led (0 x00 f f 00) # Led Green −−−> I t ’ s Connected

now
40

41 de f LoRa_Scocket (SF) :
42 # crea t e a LoRa socke t
43 LoRa_S = socket . socke t (socket .AF_LORA, socke t .SOCK_RAW)
44 LoRa_S . s e t sockopt (socke t .SOL_LORA, socket .SO_DR, SF)
45 # make the socke t non−b lock ing −− We can send & Receive data

w/o having to hold on the r e s t o f our code
46 LoRa_S . s e tb l o ck i ng (Fa l se)
47 re turn LoRa_S
48

49

50 de f Sensor_Data () :
51 ##
52 # DHT11 Data − Co l l e c t Sensor Data
53 ##
54 pycom . heartbeat (Fa l se)
55 pycom . rgb led (0 x000008) # blue
56 r e s u l t = DHT_11. read ()
57 i f r e s u l t . i s_va l i d () :
58 pycom . rgb led (0 x001000) # green
59 pr in t (" Temperature : %d C" % r e s u l t . temperature)
60 pr in t (" Humidity : %d %%" % r e s u l t . humidity)
61

62 hum = r e s u l t . humidity
63 temp = r e s u l t . temperature
64 #################### Payload Short###################
65 Con_Data = in t (s t r (temp)+s t r (hum))
66 re turn us t ruc t . pack (’h ’ ,Con_Data)
67

68 de f Fixed_Data () :
69 ################## Payload Long########################

68

A

70 Id = ’A1 ’
71 pm2_5 = 56
72 pm10 = 61
73 temp = 22
74 humidity = 48
75 #GPS = (44 .47812 , 7 . 50647) # Tuple Lat . and Long .
76 data = [Id , pm2_5, pm10 , temp , humidity]
77 re turn ujson . dumps(data) . encode () # PayLoad_Long = Fixed_Data

()
78

79 LoRa_Int i l i ze ()
80 LoRa_S = LoRa_Scocket (SF12_DR0)
81 Count_Tx_Pack = 0
82 Count_SF = 0
83 Keep_transmission = 1
84 #pr in t ("Now Count_SF = " , s t r (Count_SF)) #

Debug SF value now
85 whi le Keep_transmission :
86 ##
87 PayLoad_Long = Fixed_Data ()
88 LoRa_S . send (PayLoad_Long)
89 pycom . heartbeat (Fa l se)
90 Count_Tx_Pack = Count_Tx_Pack + 1
91 #pr in t ("Count_Tx_Pack = " , s t r (Count_Tx_Pack)) #

Debug How many packet was sent
92 i f Count_Tx_Pack == 100 : # 100 Packet f o r UL
93 Count_Tx_Pack = 0
94 i f Count_SF < 5 :
95 Count_SF = Count_SF + 1
96 # pr in t ("Now Count_SF = " , s t r (Count_SF)) #

Debug the changing o f SF
97 LoRa_S = LoRa_Scocket (i n t (SF_Array [Count_SF]))
98 e l s e :
99 Keep_transmission = 0

100 #pr in t (" Transmiss ion Ends ") # I f
packet s t i l l < 100 keep us ing same SF

101 time . s l e e p (10) #
Should ba change accord ing to the Fair a c c e s s po l i c y .

The DH11 Library to extract valid data from the sensor

1 import time
2 from machine import enable_irq , d i sab l e_i rq , Pin
3

4

5 c l a s s DTHResult :
6 ’DHT senso r r e s u l t returned by DHT. read () method ’
7

69

A

8 ERR_NO_ERROR = 0
9 ERR_MISSING_DATA = 1

10 ERR_CRC = 2
11

12 error_code = ERR_NO_ERROR
13 temperature = −1
14 humidity = −1
15

16 de f __init__(s e l f , error_code , temperature , humidity) :
17 s e l f . error_code = error_code
18 s e l f . temperature = temperature
19 s e l f . humidity = humidity
20

21 de f i s_va l i d (s e l f) :
22 re turn s e l f . error_code == DTHResult .ERR_NO_ERROR
23

24

25 c l a s s DTH:
26 ’DHT senso r (dht11 , dht21 , dht22) reader c l a s s f o r Pycom ’
27

28 #__pin = Pin (’P3 ’ , mode=Pin .OPEN_DRAIN)
29 __dhttype = 0
30

31 de f __init__(s e l f , pin , s enso r=0) :
32 s e l f . __pin = pin
33 s e l f . __dhttype = senso r
34 s e l f . __pin (1)
35 time . s l e e p (1 . 0)
36

37

38 de f read (s e l f) :
39 #time . s l e e p (1)
40

41 # send i n i t i a l high
42 #s e l f . __send_and_sleep (1 , 0 . 025)
43

44 # pu l l down to low
45 s e l f . __send_and_sleep (0 , 0 . 019)
46

47 # c o l l e c t data in to an array
48 data = s e l f . __col lect_input ()
49 #pr in t (data)
50 # parse l eng th s o f a l l data pu l l up pe r i od s
51 pull_up_lengths = s e l f . __parse_data_pull_up_lengths (data)
52 # i f b i t count mismatch , re turn e r r o r (4 byte data + 1 byte

checksum)
53 #pr in t (pull_up_lengths)
54 #pr in t (l en (pull_up_lengths))
55 i f l en (pull_up_lengths) != 40 :

70

A

56 re turn DTHResult (DTHResult .ERR_MISSING_DATA, 0 , 0)
57

58 # ca l c u l a t e b i t s from leng th s o f the pu l l up pe r i od s
59 b i t s = s e l f . __calculate_bits (pull_up_lengths)
60

61 # we have the b i t s , c a l c u l a t e bytes
62 the_bytes = s e l f . __bits_to_bytes (b i t s)
63 #pr in t (the_bytes)
64 # ca l c u l a t e checksum and check
65 checksum = s e l f . __calculate_checksum (the_bytes)
66 i f the_bytes [4] != checksum :
67 re turn DTHResult (DTHResult .ERR_CRC, 0 , 0)
68

69 # ok , we have va l i d data , r e turn i t
70 [int_rh , dec_rh , int_t , dec_t , csum] = the_bytes
71 i f s e l f . __dhttype==0: #dht11
72 rh = int_rh #dht11 20% ~ 90%
73 t = int_t #dht11 0 . . 5 0 C
74 e l s e : #dht21 , dht22
75 rh = ((int_rh ∗ 256) + dec_rh) /10
76 t = (((int_t & 0x7F) ∗ 256) + dec_t) /10
77 i f (int_t & 0x80) > 0 :
78 t ∗= −1
79 re turn DTHResult (DTHResult .ERR_NO_ERROR, t , rh)
80

81 de f __send_and_sleep (s e l f , output , mysleep) :
82 s e l f . __pin(output)
83 time . s l e e p (mysleep)
84

85 de f __col lect_input (s e l f) :
86 # c o l l e c t the data whi l e unchanged found
87 unchanged_count = 0
88 # th i s i s used to determine where i s the end o f the data
89 max_unchanged_count = 100
90 l a s t = −1
91 data = []
92 m = bytearray (800) # needs long sample s i z e to grab

a l l the b i t s from the DHT
93 i r q f = d i s ab l e_ i rq ()
94 s e l f . __pin (1)
95 f o r i in range (l en (m)) :
96 m[i] = s e l f . __pin () ## sample input and s t o r e value
97 enable_irq (i r q f)
98 f o r i in range (l en (m)) :
99 cur rent = m[i]

100 data . append (cur rent)
101 i f l a s t != cur rent :
102 unchanged_count = 0
103 l a s t = current

71

A

104 e l s e :
105 unchanged_count += 1
106 i f unchanged_count > max_unchanged_count :
107 break
108 #pr in t (data)
109 re turn data
110

111 de f __parse_data_pull_up_lengths (s e l f , data) :
112 STATE_INIT_PULL_DOWN = 1
113 STATE_INIT_PULL_UP = 2
114 STATE_DATA_FIRST_PULL_DOWN = 3
115 STATE_DATA_PULL_UP = 4
116 STATE_DATA_PULL_DOWN = 5
117

118 s t a t e = STATE_INIT_PULL_UP
119

120 l eng th s = [] # w i l l conta in the l eng th s o f data pu l l up
pe r i od s

121 current_length = 0 # w i l l conta in the l ength o f the prev ious
per iod

122

123 f o r i in range (l en (data)) :
124

125 cur rent = data [i]
126 current_length += 1
127

128 i f s t a t e == STATE_INIT_PULL_DOWN:
129 i f cu r r ent == 0 :
130 # ok , we got the i n i t i a l pu l l down
131 s t a t e = STATE_INIT_PULL_UP
132 cont inue
133 e l s e :
134 cont inue
135 i f s t a t e == STATE_INIT_PULL_UP:
136 i f cu r r ent == 1 :
137 # ok , we got the i n i t i a l pu l l up
138 s t a t e = STATE_DATA_FIRST_PULL_DOWN
139 cont inue
140 e l s e :
141 cont inue
142 i f s t a t e == STATE_DATA_FIRST_PULL_DOWN:
143 i f cu r r ent == 0 :
144 # we have the i n i t i a l pu l l down , the next w i l l be

the data pu l l up
145 s t a t e = STATE_DATA_PULL_UP
146 cont inue
147 e l s e :
148 cont inue
149 i f s t a t e == STATE_DATA_PULL_UP:

72

A

150 i f cu r r ent == 1 :
151 # data pu l l ed up , the l ength o f t h i s pu l l up w i l l

determine whether i t i s 0 or 1
152 current_length = 0
153 s t a t e = STATE_DATA_PULL_DOWN
154 cont inue
155 e l s e :
156 cont inue
157 i f s t a t e == STATE_DATA_PULL_DOWN:
158 i f cu r r ent == 0 :
159 # pul l ed down , we s t o r e the l ength o f the

prev ious pu l l up per iod
160 l eng th s . append (current_length)
161 s t a t e = STATE_DATA_PULL_UP
162 cont inue
163 e l s e :
164 cont inue
165

166 re turn l eng th s
167

168 de f __calculate_bits (s e l f , pul l_up_lengths) :
169 # f ind sho r t e s t and l ong e s t per iod
170 shortest_pul l_up = 1000
171 longest_pull_up = 0
172

173 f o r i in range (0 , l en (pull_up_lengths)) :
174 l ength = pull_up_lengths [i]
175 i f l ength < shortest_pul l_up :
176 shortest_pul l_up = length
177 i f l ength > longest_pull_up :
178 longest_pull_up = length
179

180 # use the halfway to determine whether the per iod i t i s long
or shor t

181 halfway = shortest_pul l_up + (longest_pull_up −
shortest_pul l_up) / 2

182 b i t s = []
183

184 f o r i in range (0 , l en (pull_up_lengths)) :
185 b i t = False
186 i f pul l_up_lengths [i] > halfway :
187 b i t = True
188 b i t s . append (b i t)
189

190 re turn b i t s
191

192 de f __bits_to_bytes (s e l f , b i t s) :
193 the_bytes = []
194 byte = 0

73

A

195

196 f o r i in range (0 , l en (b i t s)) :
197 byte = byte << 1
198 i f (b i t s [i]) :
199 byte = byte | 1
200 e l s e :
201 byte = byte | 0
202 i f ((i + 1) % 8 == 0) :
203 the_bytes . append (byte)
204 byte = 0
205 #pr in t (the_bytes)
206 re turn the_bytes
207

208 de f __calculate_checksum (s e l f , the_bytes) :
209 re turn the_bytes [0] + the_bytes [1] + the_bytes [2] + the_bytes

[3] & 255

74

A

The Node-Red Function Node

1

2 msg . t op i c = "Data"
3 var gateways = msg . metadata . gateways ;
4 msg . payload = {
5 Counter : msg . counter ,
6 PL: msg . payload ,
7 DataRate : msg . metadata . data_rate ,
8 r s s i : gateways .map(gw => gw . r s s i) ,
9 snr : gateways .map(gw => gw . snr) ,

10 //Gw: gateways.map(gw => gw.gtw_id),
11 Time : msg . metadata . time ,
12 gateways : gateways .map(gw => {
13 return {
14 GW_ID: gw . gtw_id ,
15 l o c a t i o n : {
16 l a t : gw . l a t i t ude ,
17 lng : gw . long i tude ,
18 a l t : gw . a l t i t u d e
19 } ,
20 }
21 })
22

23 }
24

25 return msg

O (n log n)
numpy

75

Appendix B

B

Latency Python Script Sensor Node

1

2

3 ##
4 # Reforming Data to the Correct Form
5 ##
6

7 import re
8 from datet ime import datetime , time , date
9

10 de f replace_bad_chars (t ime_str ing) :
11 t ime_str ing = re . sub (r ’ [\ "ZT] ’ , ’ ’ , t ime_str ing)
12 re turn t ime_str ing . s p l i t (" : ")
13

14

15 de f convert_to_proper_time (time_array , bad_chars=None , cdate=None) :
16 i f bad_chars i s None :
17 a s s e r t l en (time_array) == 4
18 [hr , min , sec , msec] = time_array
19 e l s e :
20 #as s e r t l en (time_array) == 3
21 [hr , mint , s e c s] = l i s t (replace_bad_chars (time_array))
22 s ec = in t (s e c s . s p l i t (’ . ’) [0])
23 t ry :
24 msec = in t (s e c s . s p l i t (’ . ’) [1])
25 except :
26 msec = 0
27 i f cdate i s None : # i f data i s in form
28 re turn datet ime . combine (date . today () , time (i n t (hr) , i n t (mint)

, sec , msec))
29 e l s e :

76

B

30 re turn datet ime . combine (cdate , time (i n t (hr) , i n t (mint) , sec ,
msec))

31

32 de f delet_mult_qot (number_string) : # Delet the " " from
the Data

33 re turn re . sub (’ " ’ , ’ ’ , number_string)
34

35

36

37

38

39 ##
40 #Read the Data from the . csv f i l e then c a t e g o r i z e i t accord ing to SF
41 ##
42

43 de f bui ld_record (data_row) :
44 [counter , year , month , day , node_hr , node_min , node_sec ,

node_msec , air_time , gw_time , ttn_time , nr_time , delay , data_rate]
= data_row . s t r i p () . s p l i t (’ , ’) # as s i gn the row

45 cdate = date (i n t (year) , i n t (month) , i n t (day))
46

47 re turn [convert_to_proper_time ([i n t (node_hr) , i n t (node_min) , i n t (
node_sec) , i n t (node_msec)] , bad_chars=None , cdate=cdate) ,

48 f l o a t (delete_mult_quot (air_time)) /1000000 .0 ,
49 convert_to_proper_time (gw_time , bad_chars=True , cdate=

cdate) ,
50 convert_to_proper_time (ttn_time , bad_chars=True , cdate=

cdate) ,
51 convert_to_proper_time (nr_time , bad_chars=True , cdate=

cdate) ,
52 (f l o a t (delete_mult_quot (de lay)) /1000 .0) − 10 ,
53 delete_mult_quot (data_rate)
54]
55

56 data0FLAG = "SF12BW125"
57 data1FLAG = "SF9BW125"
58 data2FLAG = "SF7BW125"
59

60 data0 = []
61 data1 = []
62 data2 = []
63 #with open (" L_poli . csv " , ’ r ’) as c s v f i l e :
64 with open (" Test_Latency . csv " , ’ r ’) as c s v f i l e :
65 data = c s v f i l e . r e a d l i n e s () # Read a l i n e from the . csv f i l e
66 f o r i in range (1 , l en (data)) : # ignore the Counter and s t a r t

read a f t e r u n t i l SF
67 record = bui ld_record (data [i])
68 #pr in t (record)
69 i f r ecord [−1] == data0FLAG :

77

B

70 data0 . append (record)
71 e l i f r ecord [−1] == data1FLAG :
72 data1 . append (record)
73 e l s e :
74 data2 . append (record)
75 ###
76 # Test
77 # len (data0) = 98
78 # data0 [0] = [datet ime . datet ime (2020 , 9 , 27 , 17 , 28 , 25 ,

843596) ,
79 # 2.465792 ,
80 # datet ime . datet ime (2020 , 9 , 27 , 17 , 28 , 28 , 392) ,
81 # datet ime . datet ime (2020 , 9 , 27 , 17 , 28 , 28 , 413) ,
82 # datet ime . datet ime (2020 , 9 , 27 , 17 , 28 , 28 , 488) ,
83 # 0.01800049999999942 ,
84 # ’SF12BW125 ’]
85 ###
86

87

88

89 ##
90 # Calcu la te the Latency (subt rac t the t iming)
91 ##
92

93 de f ca l cu l a t e_de l ay s (record) :
94 node_time , air_time , gw_time , ttn_time , nr_time , re f_delay , _ =

record
95 t ime_deltas = [gw_time − node_time , ttn_time − gw_time , nr_time −

ttn_time]
96 re turn l i s t (map(lambda x : x . tota l_seconds () , t ime_deltas))
97

98

99 ###
100 # Assign the Latency o f each SF to an Array , data0 = SF12
101 ##
102

103 data0_delays =[]
104 f o r record in data0 :
105 data0_delays . append (ca l cu l a t e_de l ay s (record))
106

107 data1_delays =[]
108 f o r record in data1 :
109 data1_delays . append (ca l cu l a t e_de l ay s (record))
110

111 data2_delays =[]
112 f o r record in data2 :
113 data2_delays . append (ca l cu l a t e_de l ay s (record))
114

115

78

B

116 ##
117 # Calcu la te each la t ency component a lone
118 ##
119

120

121 SF12_node_gw_delays = [de lay [0] f o r de lay in data0_delays]
122 SF12_node_gw_delay_average = np .mean(SF12_node_gw_delays) ∗1000
123 SF12_node_gw_delay_std = np . std (SF12_node_gw_delays)
124

125 SF12_gw_ttn_delays = [de lay [1] f o r de lay in data0_delays]
126 SF12_gw_ttn_delay_average = np .mean(SF12_gw_ttn_delays) ∗1000
127 SF12_gw_ttn_delay_std = np . std (SF12_gw_ttn_delays)
128

129 SF12_ttn_tnr_delays = [de lay [2] f o r de lay in data0_delays]
130 SF12_ttn_tnr_delay_average = np .mean(SF12_ttn_tnr_delays) ∗1000
131 SF12_ttn_tnr_delay_std = np . std (SF12_ttn_tnr_delays)
132

133 SF9_node_gw_delays = [de lay [0] f o r de lay in data1_delays]
134 SF9_node_gw_delay_average = np .mean(SF9_node_gw_delays) ∗1000
135

136 SF9_node_gw_delay_std = np . std (SF9_node_gw_delays)
137

138 SF9_gw_ttn_delays = [de lay [1] f o r de lay in data1_delays]
139 SF9_gw_ttn_delay_average = np .mean(SF9_gw_ttn_delays) ∗1000
140 SF9_gw_ttn_delay_std = np . std (SF9_gw_ttn_delays)
141

142 SF9_ttn_tnr_delays = [de lay [2] f o r de lay in data1_delays]
143 SF9_ttn_tnr_delay_average = np .mean(SF9_ttn_tnr_delays) ∗1000
144

145 SF9_ttn_tnr_delay_std = np . std (SF9_ttn_tnr_delays)
146

147

148 SF7_node_gw_delays = [de lay [0] f o r de lay in data2_delays]
149 SF7_node_gw_delay_average = np .mean(SF7_node_gw_delays) ∗1000
150

151 SF7_node_gw_delay_std = np . std (SF7_node_gw_delays)
152

153 SF7_gw_ttn_delays = [de lay [1] f o r de lay in data2_delays]
154 SF7_gw_ttn_delay_average = np .mean(SF7_gw_ttn_delays) ∗1000
155 SF7_gw_ttn_delay_std = np . std (SF7_gw_ttn_delays)
156

157 SF7_ttn_tnr_delays = [de lay [2] f o r de lay in data2_delays]
158 SF7_ttn_tnr_delay_average = np .mean(SF7_ttn_tnr_delays) ∗1000
159

160 SF7_ttn_tnr_delay_std = np . std (SF7_ttn_tnr_delays)
161

162

163

164 ##

79

B

165 # Plo t t i ng the r e s u l t s
166 ##
167 import matp lo t l i b . pyplot as p l t
168 import numpy as np
169

170 l a b e l s = [’ SF12 ’ , ’ SF9 ’ , ’ SF7 ’]
171 node_gw_delay_means = [g1_node_gw_delay_average ,

g2_node_gw_delay_average , g3_node_gw_delay_average]
172 gw_ttn_delay_means = [g1_gw_ttn_delay_average ,

g2_gw_ttn_delay_average , g3_gw_ttn_delay_average]
173 ttn_tnr_delay_means = [g1_ttn_tnr_delay_average ,

g2_ttn_tnr_delay_average , g3_ttn_tnr_delay_average]
174

175 node_gw_delay_std = [SF12_node_gw_delay_std , SF9_node_gw_delay_std ,
SF7_node_gw_delay_std]

176 gw_ttn_delay_std = [SF12_gw_ttn_delay_std , SF9_gw_ttn_delay_std ,
SF7_gw_ttn_delay_std]

177 ttn_tnr_delay_std = [SF12_ttn_tnr_delay_std , SF9_ttn_tnr_delay_std ,
SF7_ttn_tnr_delay_std]

178

179 width = 0.35 # the width o f the bars : can a l s o be l en (x)
sequence

180

181 f i g , ax = p l t . subp lo t s ()
182

183 ax . bar (l ab e l s , node_gw_delay_means , width , ye r r=node_gw_delay_std ,
l a b e l=’TOA’)

184 #ax . semi logy (l ab e l s , node_gw_delay_means , width , ye r r=
node_gw_delay_std , l a b e l =’TOA ’)

185 #ax . bar (l ab e l s , gw_ttn_delay_means , width ,
186 #yerr=gw_ttn_delay_std ,
187 # lab e l =’Gw−>TTN ’)
188 #ax . bar (l ab e l s , ttn_tnr_delay_means , width ,
189 #yerr=ttn_tnr_delay_std ,
190 # lab e l =’TTN−>NR ’)
191

192 ax . l egend ()
193 ax . s e t_y labe l (’ Latency (ms) ’)
194 ax . s e t_ t i t l e (’ Latency Vs SF ’)
195 ax . l egend ()
196

197 p l t . show ()

80

B

The Node-Red Latency Function Node

1

2

3 msg . t op i c = "Data"
4 var gateways = msg . metadata . gateways ;
5 msg . payload = {
6 Counter : msg . counter ,
7 PL: msg . payload ,
8 DataRate : msg . metadata . data_rate ,
9 gateways : gateways .map(gw => {

10 return {
11 GW_ID: gw . gtw_id ,
12 TOA: msg . metadata . a i r t ime ,
13 Gw_Time: msg . time ,
14 TTN_Time: msg . metadata . time ,
15 }
16 })
17 }
18

19 return msg

81

Bibliography

[1] Edoardo Giusto, Renato Ferrero, Filippo Gandino, Bartolomeo Montrucchio,
Maurizio Rebaudengo, and Mingyang Zhang. «Particulate Matter Monitoring
in Mixed Indoor/Outdoor Industrial Applications: A Case Study». In: IEEE
International Conference on Emerging Technologies and Factory Automation,
ETFA. Vol. 2018-September. Institute of Electrical and Electronics Engineers
Inc., Oct. 2018, pp. 838–844. isbn: 9781538671085. doi: 10.1109/ETFA.2018.
8502644 (cit. on p. ii).

[2] Yaron Ogen. «Assessing nitrogen dioxide (NO2) levels as a contributing factor
to coronavirus (COVID-19) fatality». In: Science of the Total Environment
(2020). issn: 18791026. doi: 10.1016/j.scitotenv.2020.138605 (cit. on
p. 1).

[3] Xiao Wu, Rachel Nethery, Benjamin Sabath, Danielle Braun, and Francesca
Dominici. «Exposure to air pollution and COVID-19 mortality in the United
States: A nationwide cross-sectional study». In: medRxiv : the preprint server
for health sciences (Apr. 2020), p. 2020.04.05.20054502. doi: 10.1101/2020.
04.05.20054502. url: https://doi.org/10.1101/2020.04.05.20054502
(cit. on p. 1).

[4] Silvia Comunian, Dario Dongo, Chiara Milani, and Paola Palestini. «Air
Pollution and COVID-19: The Role of Particulate Matter in the Spread and
Increase of COVID-19’s Morbidity and Mortality». In: International Journal
of Environmental Research and Public Health 17.12 (June 2020), p. 4487. issn:
1660-4601. doi: 10.3390/ijerph17124487. url: https://www.mdpi.com/
1660-4601/17/12/4487 (cit. on p. 1).

[5] wikipedia. LPWAN. Oct. 2020 (cit. on p. 2).
[6] LoRa™ Alliance. «LoRaWAN™ Regional Parameters v1.1rA». In: LoRaWAN™

1.1 Specif. (2017) (cit. on pp. 4, 13).
[7] Sakshama Ghoslya. LoRa: Symbol Generation (cit. on pp. 5, 6).

82

https://doi.org/10.1109/ETFA.2018.8502644
https://doi.org/10.1109/ETFA.2018.8502644
https://doi.org/10.1016/j.scitotenv.2020.138605
https://doi.org/10.1101/2020.04.05.20054502
https://doi.org/10.1101/2020.04.05.20054502
https://doi.org/10.1101/2020.04.05.20054502
https://doi.org/10.3390/ijerph17124487
https://www.mdpi.com/1660-4601/17/12/4487
https://www.mdpi.com/1660-4601/17/12/4487

BIBLIOGRAPHY

[8] Noman Aftab, Syed Ali Raza Zaidi, and Des McLernon. «Scalability analysis
of multiple LoRa gateways using stochastic geometry». In: Internet of Things
9 (Mar. 2020), p. 100132. issn: 25426605. doi: 10.1016/j.iot.2019.100132
(cit. on p. 5).

[9] Dmitry Bankov, Evgeny Khorov, and Andrey Lyakhov. «On the limits of
LoRaWAN channel access». In: Proceedings - 2016 International Conference
on Engineering and Telecommunication, EnT 2016. 2017. isbn: 9781509045532.
doi: 10.1109/EnT.2016.9 (cit. on pp. 4, 7, 14).

[10] Semtech. LoRa Modulation Basics AN1200.22. 2015 (cit. on p. 9).
[11] Simtech. What are LoRa® and LoRaWAN®? (Cit. on pp. 9, 15).
[12] Ellen Li. «LoRapedia, an Introduction of LoRa and LoRaWAN Technology».

In: https://www.seeedstudio.com/blog/2020/08/03/lorapedia-an-introduction-
of-lora-and-lorawan-technology/ (Aug. 2020) (cit. on p. 10).

[13] Semtech. LoRa Modulation Basics AN1200.22. 2015 (cit. on p. 13).
[14] Eduardo Ruano, Bernard Tourancheau, and Olivier Alphand. LoRa TM

protocol Evaluations, limitations and practical test. Tech. rep. 2016 (cit. on
p. 13).

[15] Semtech. WIRELESS & SENSING Revision 2 May 2015 © 2015 Semtech
Corporation 1 SX1272/3/6/7/8 LoRa Modem Design Guide. Tech. rep. 2015
(cit. on pp. 14, 51).

[16] Download SX1272 LoRa calculator by Semtech SA. url: https://sx1272-
lora-calculator.software.informer.com/download/ (cit. on pp. 14, 51).

[17] Arjan Avbentem. Airtime calculator for LoRaWAN Retrieved from https://avbentem.github.io/airtime-
calculator/ttn/eu868. Sept. 2020 (cit. on pp. 15, 52).

[18] Simtech. An In-depth look at LoRaWAN® Class A Devices (cit. on p. 16).
[19] Lennart Nordin. LoRaWAN Device Classes: A, B and C. 2018 (cit. on pp. 17–

19).
[20] Diogo Ferreira. «Mockups, Authentication Service Completed & more». In:

https://medium.com/electric-cars-charging-system/week-3-mockups-authentication-
service-completed-more-41f1d865de0d (Oct. 2018) (cit. on p. 27).

[21] Pycom. Pycom_002_Specsheets_FiPy_v2. Tech. rep. (cit. on p. 32).
[22] DHT11 Humidity & Temperature Sensor. Tech. rep. url: www.droboticson

line.com (cit. on p. 30).

83

https://doi.org/10.1016/j.iot.2019.100132
https://doi.org/10.1109/EnT.2016.9
https://sx1272-lora-calculator.software.informer.com/download/
https://sx1272-lora-calculator.software.informer.com/download/
www.droboticsonline.com
www.droboticsonline.com

BIBLIOGRAPHY

[23] ETSI. EN 300 220-2 - V3.2.1 - Short Range Devices (SRD) operating in the
frequency range 25 MHz to 1 000 MHz; Part 2: Harmonised Standard for
access to radio spectrum for non specific radio equipment. Tech. rep. 2018.
url: https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx (cit.
on p. 34).

[24] Arjanvanb Arjan. Best practices to limit application payloads. Apr. 2016 (cit.
on p. 37).

[25] Node-Red. Interval length Node. Oct. 2019 (cit. on p. 39).
[26] The Things Network Global Team. LoRaWAN® distance world record broken,

twice. 766 km (476 miles) using 25mW transmission power. July 2019 (cit. on
p. 46).

[27] Gonzalo Casas. From zero to LoRaWAN in a weekend. Nov. 2018 (cit. on
p. 65).

[28] Albert Potsch and Florian Hammer. «Towards End-to-End Latency of Lo-
RaWAN: Experimental Analysis and IIoT Applicability». In: IEEE Interna-
tional Workshop on Factory Communication Systems - Proceedings, WFCS.
2019. isbn: 9781728112688. doi: 10.1109/WFCS.2019.8758033 (cit. on
p. 65).

84

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://doi.org/10.1109/WFCS.2019.8758033

	List of Tables
	List of Figures
	Acronyms
	Introduction
	LPWAN

	LoRa and LoRaWAN Technology
	LoRa vs. LoRaWAN
	LoRa Modulation (Physical Layer)
	LoRa Parameters
	Coding Rate(CR)

	LoRaWAN (MAC Layer)
	LoRaWAN Architecture
	LoRaWAN Packet Format
	Time On Air and Duty Cycle
	LoRaWAN Power Consumption
	LoRaWAN Classes

	Authentication And Encryption
	Authentication with the Network Server
	The Application Serve data Encryption
	The Full LoRaWAN Frame

	Activation of LoRa Devices: ABP or OTAA
	Activation By Personalization(ABP)
	Over The Air Activation(OTAA)

	LoRaWAN networks and servers
	The different types of networks

	LoRa Limitations
	ISM Band Limitations
	LoRa Technology Limitations

	Design and Implementation
	The System Design
	Architecture
	 Components
	TTN Limitations
	Node-Red
	Firmware Flowchart

	Measurements and Results
	The System Criteria
	Test Scenarios
	The Size of The Payload
	Measurements Points Geo-locations
	Test setup
	Range Test
	Throughput of the System
	Byte-Rate Suitability For The Task
	Can we do better ?
	The Latency

	Conclusion and future work
	Conclusion
	Future Work

	A
	B
	Bibliography

